NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

APOLLO 15

HEADQUARTERS FLIGHT READINESS REVIEW PART I MISSION SUMMARY COMMAND AND SERVICE MODULE

JUNE 24, 1971

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

CONTENTS

B	MISSION SUMMARY	3
D	COMMAND AND SERVICE MODULE	19
	INTRODUCTION AND REVIEWS SUMMARY	19
	A POLLO 14/A POLLO 15 CONFIGURATION DIFFERENCES	29
	WAIVERS AND DEVIATIONS	57
	APOLLO 14 ANOMALIES	71
	SPACECRAFT ISSUES	101
	GENERAL STATUS	127

MISSION SUMMARY

APOLLO 15 MISSION SUMMARY

• PROFILE DIFFERENCES

• MISSION RULE CHANGES

• MCC TRAINING

PROFILE DIFFERENCES

APOLLO 14

1. 100 N. MI. EPO

2. SPLIT LAUNCH TIME

3. 72 - 96° LAZ

4. CONSTANT SEA (10.3)

5. HYBRID TRAJECTORY

6. 33.5 HR LSST

7. 34 REVS (66.5 HR) 9 DAYS

8. NO SHAPING BURN

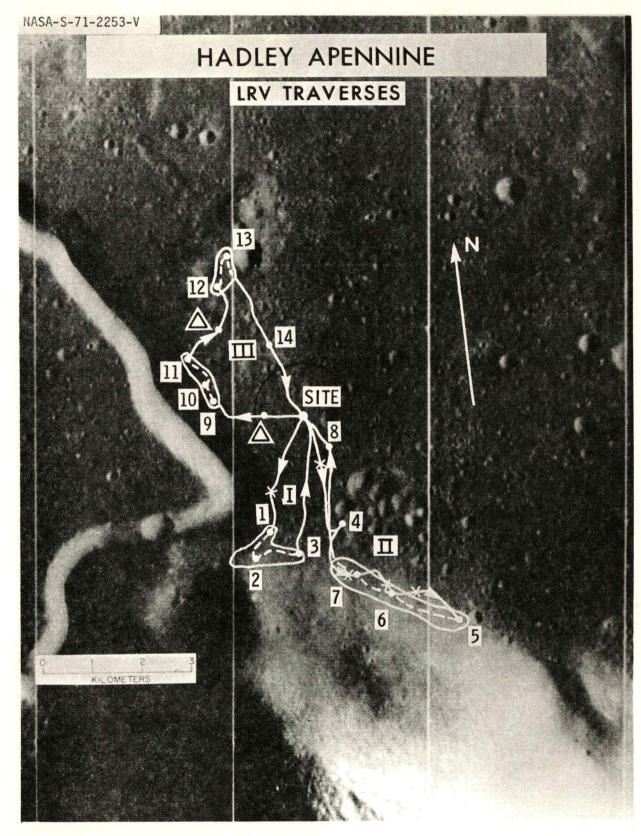
9. PLANE CHANGE PHOTOGRAPHY (DESCARTES)

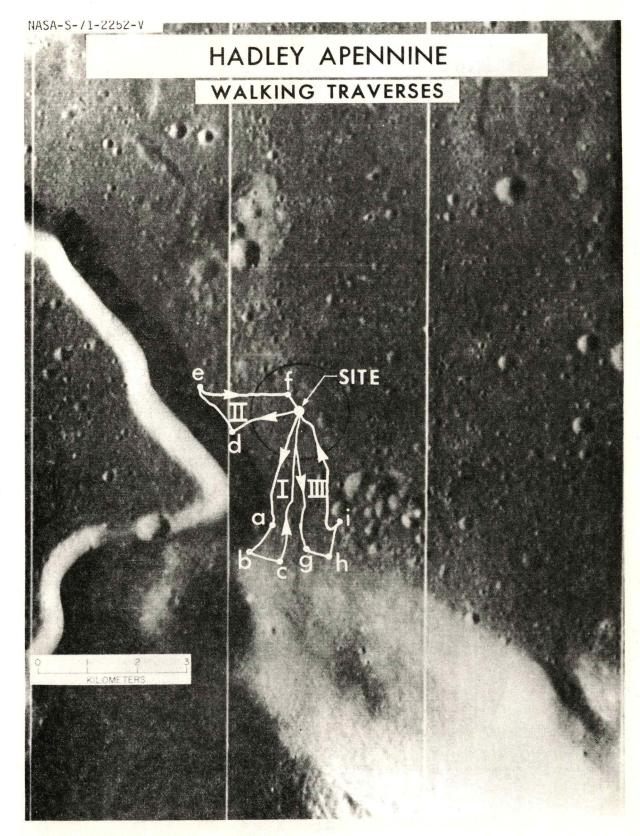
10. 2 EVA'S

11. 14° INCLINATION

12. -76.3° AZIMUTH

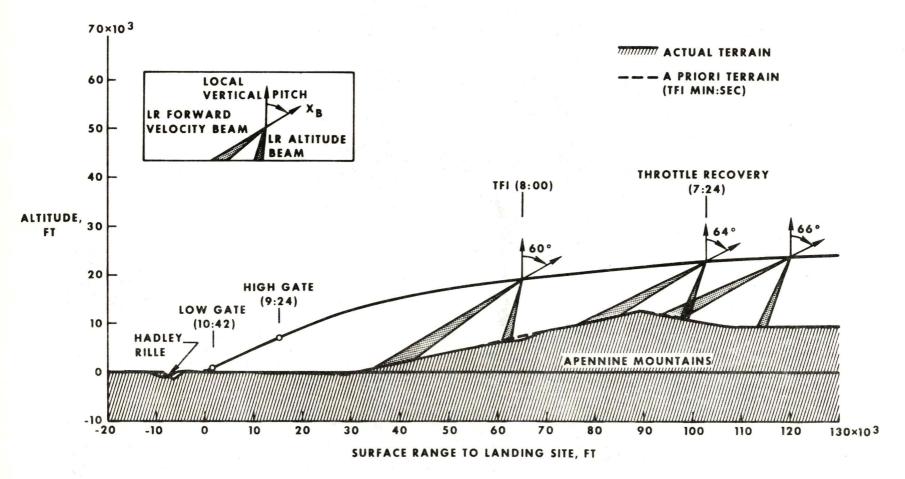
APOLLO 15


90 N. MI. EPO OPT. 1ST OPP. 80 - 100° LAZ VARIABLE SEA (12.0 - 13.6) OPTIMIZED TLI 67.0 HR LSST 74 (145 HR) 12 DAYS 7 HR SHAPING BURN TARGETS OF OPPORTUNITY


3 EVA'S 26° INCLINATION -91.0° AZIMUTH

APOLLO 15 SPS AV BUDGET

(JULY 26, 1971; 80 $^{\circ}$ LAUNCH AZIMUTH)


● REQUIRED △V FOR	MANEUVERS	6699.1
• L01	2997.9	
• DOI	207.6	
• CIRC	70.8	
• LOPC	308.6	
SHAPING BU	RN 64.2	
• TEI	3050.0	
DISPERSIONS		163.0
• TLMC	23.0	
• -3 o DISPERS	SION 140.0	
• S-IVB ΔV D		
	EATHER AVOIDANCE	318.0
(240 FPS AVAI	LABLE FOR 100 $^\circ$	
LAUNCH AZIM	UTH)	

MPAD 71-528 F

APOLLO 15 DESCENT OVER APENNINE FRONT

MPAD 71-525 V

SUMMARY OF LM LANDING PHASE FLIGHT TIME

	TIME, MIN:SEC			
MISSION	TOTAL AVAILABLE	ACTUAL REMAINING		
APOLLO 11	3:32 ± 24	1:02		
APOLLO 12	$3:51 \pm 34$	1:41		
APOLLO 13	4:08 ± 36			
APOLLO 14	$3:45 \pm 34$	1:06		
APOLLO 15	3:39 ± 35			

ALTERNATE MISSIONS

LUNAR ORBIT SCIENCE - WITH OR WITHOUT LUNAR MODULE, HIGH INCLINATION, 4 TO 6 DAYS DURATION

● EARTH ORBIT SCIENCE - 4 TO 6 DAYS DURATION

APOLLO 15 SPACECRAFT FLIGHT SOFTWARE

- AS REVIEWED BY THE FLIGHT SOFTWARE READINESS REVIEW (FSRR) HELD AT MSC ON JUNE 16, 1971, FORMAL INTEGRATED TESTING OF ALL THREE PROGRAMS HAS BEEN COMPLETED AND THEY ARE CAPABLE OF FULLY SUPPORTING THE APOLLO 15 MISSION
- MAJOR CHANGES FROM APOLLO 14
 - MINIMUM KEYSTROKE RENDEZVOUS SEQUENCE (MINKEY) CMC
 - TLI SEQUENCE INITIAL AND BURN CUTOFF PROGRAM (P15) CMC
 - UNIVERSAL TRACKING (P20) ADDING PTC AND SIM POINTING CMC
 - BIT FAILURE PROTECTION VIA DSKY INPUT CMC AND LGC
 - AUTO TRANSFER OF RR DATA TO THE AGS LGC AND AGS
 - REDESIGN AND ADD CURSOR/SPIRAL MARKING CAPABILITY TO INFLIGHT AS WELL AS LUNAR SURFACE ALIGNMENT PROGRAMS

MISSION RULE CHANGES

LAUNCH - TLI

- LAUNCH AZIMUTH 80 DEGREES TO 100 DEGREES
- IU UPDATE FOR MCC1 (AT 9:00 GET) GREATER THAN 23 FPS (1.8 σ)
 - APOLLO 14 WAS 55 FPS (3.7 σ)
- SIVB CONSUMABLES GO FOR TLI WITH LUNAR ORBIT CAPABILITY (SPS MCC, DPS LOI, SPS TEI)

LOI

- USE LM SYSTEMS AS BACKUP FOR CSM SYSTEMS IN EVALUATING GO FOR LOI
 - DESCENT ENGINE SPS BALL VALVES
 - COMMUNICATIONS
 - DPS LOI SPS PROPELLANT
- LOI ABORT TECHNIQUES SAME

MISSION RULE CHANGES (CONT)

LUNAR ORBIT - GENERAL

- 60 x 8 N.MI. LUNAR ORBIT FOR LUNAR LANDING MISSION ONLY
- CONTINGENCY EVA IS ACCEPTABLE FOR LANDING MISSION
- RADIAL NOUN 69 ALLOWS DESCENT TO 6000 FEET WITHOUT LANDING RADAR ALTITUDE DATA INCORPORATION
- LUNAR ORBITAL SCIENCE (SIM BAY)
 - TLC OPERATIONS THERMAL ONLY
 - ALL CREWMEN IN CSM FOR DOOR JETTISON
 - NO EVA FOR SYSTEMS MALFUNCTIONS FILM RETRIEVAL ONLY
 - PAN CAMERA FILM RETRIEVAL WILL NOT BE ATTEMPTED WITH 'HOT' SATELLITE
 - WILL SHAPE ORBIT FOR SATELLITE JETTISON
 - EXPERIMENT OPERATIONS PER MR PRIORITY
 - COVERS CLOSED FOR FLUID ACTIVITIES
 - AN EXPERIMENT WILL BE OPERATED WITH CORONA IF OTHER EXPERIMENTS ARE NOT AFFECTED
 - SPS BURN AND RENDEZVOUS PHASE REQUIRE EITHER POSITIVE CUE OF BOOM RETRACTION OR EXPERIMENT JETTISON

MISSION RULE CHANGES (CONT)

LUNAR SURFACE

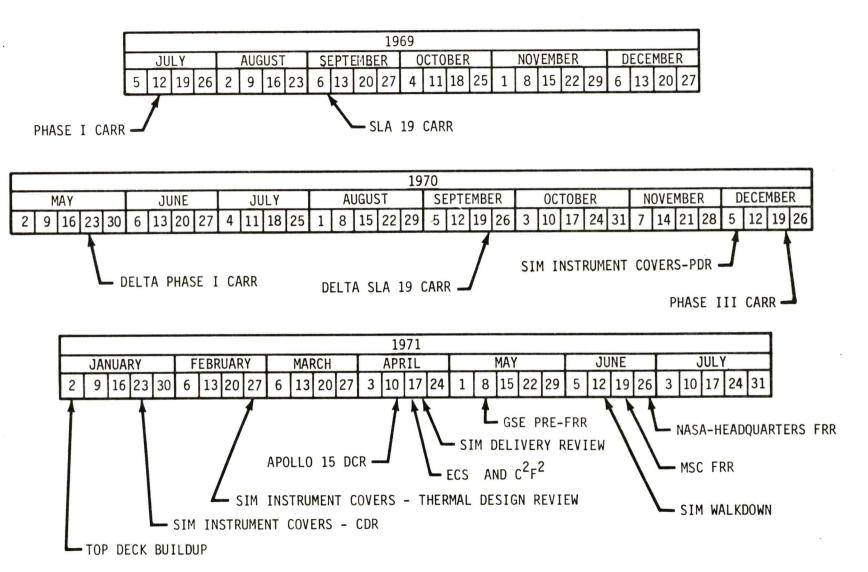
- LUNAR ROVER WILL BE USED AS LONG AS CREW HAS SAFE CONTROL
- LUNAR ROVER WILL BE USED AT DEGRADED SPEEDS IF WALKING EVA CAN BE ACCOMPLISHED OR IF LOAD JUSTIFIES REDUCED SPEED
- VOICE UP AND TELEVISION DOWN IS MINIMUM COMMUNICATIONS MODE
- 'NO COMMUNICATION' EVA WILL BE ACCOMPLISHED TO ACTIVATE LCRU
- LCRU WILL BE USED TO EXTEND COMMUNICATIONS RANGES IF REQUIRED
- EVA TRAVERSE LIMITS WILL ALLOW FOR FAILURE OF EITHER LRV OR PLSS (EFFECT IS TO DIMINISH RADIUS FROM LRV AS DISTANCE FROM LM INCREASES)
- HEAT-FLOW HOLES HAVE PRIORITY OVER DRILL CORE STEMS

MCC TRAINING SUMMARY

- 7 DAYS LUNAR ORBIT SCIENCE (SIM BAY)
- 7 DAYS LUNAR SURFACE (4 DAYS ON A-14)
 - 1 DAY TELEVISION CONTROL FAMILIARIZATION
 - 2 DAYS CAPE EVA's
 - 1 DAY FLAGSTAFF EVA
 - 1 DAY PLSS MATH MODEL
- 1 DESCENT/SEVA
- OVERALL SIMULATION PERIOD AND OTHER PHASES APPROXIMATELY SAME AS A-14

MPAD 71-541 F

APOLLO 15 MAJOR MISSION EVENTS


. EVENT	LUNAR REV	G.E.T., HR:MIN:SEC	CENTRAL DAYLIGHT TIME, DAY/HR:MIN:SEC	LONGITUDE, DEG	∆V, FPS	BURN TIME, SEC	SEA, DEG
EOI		00:11:54.5	JULY 26/08:45:54.5	-52.4*			
TLI		02:49:52.3	11:23:52.3	-168.5*			
TLI CUTOFF		02:55:29.1	11:29:29.1	-142.9*	10,431.2	336.8	
LOI	0	78:31:14.7	29/15:05:14.7	-169.9			
LOI CUTOFF	1	78:37:46.8	15:11:46.8	163.2	2,997.9	392.0	
DOI	2	82:39:32.6	19:13:32.6	-148.7			
DOI CUTOFF	2	82:39:55.4	19:13:55.4	-150.0	207.6	22.9	
UNDOCK AND SEPARATION	12	100:13:56.1	30/12:47:56.1	110.5			
CIRCULARIZATION	12	101:34:55.1	14:08:55.1	-146.0	70.8	3.9	
LM LANDING (APPROXIMATELY)	14	104:41:00.0	17:15:00.0	3.7			12.04
IST PASS OVER LLS	14	104:41:33.2	17:15:33.2	3.7			12.04
PLANE CHANGE 1	45	165:12:50.6	AUG 2/05:46:50.6	93.0	308.6	16.5	
2ND PASS OVER LLS (ASCENT)	48	171:38:28.2	12:12:28.2	3.7			41.5
CSM SEPARATION AFTER JETTISON	51	177:25:45.0	17:59:45.0	25.9			
SHAPING BURN	73	221:25:51.6	4/13:59:51.6	-111.8	64.2	3.4	
SUBSATELLITE JETTISON	74	222:36:12.7	18:10:12.7	41.4			
TEI	74	223:46:06.1	4/16:20:06.1	-167.8			
TEI CUTOFF	74	223:48:23.9	16:22:23.9	-175.8	3,049.7	137.8	
ENTRY		294:58:20.0	7/15:32:20.0	-175.0*			
LANDING		295:11:42.0	15:45:42.0	-158.0*			

*GEODETIC LONGITUDE, ALL OTHERS ARE SELENOGRAPHIC

CSM INTRODUCTION AND

REVIEWS SUMMARY

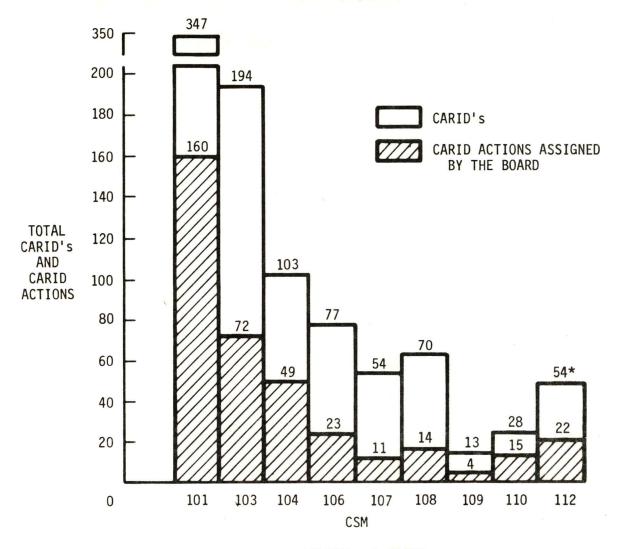
SIGNIFICANT MILESTONES CSM 112/SLA 19

DESIGN REVIEWS SUMMARY

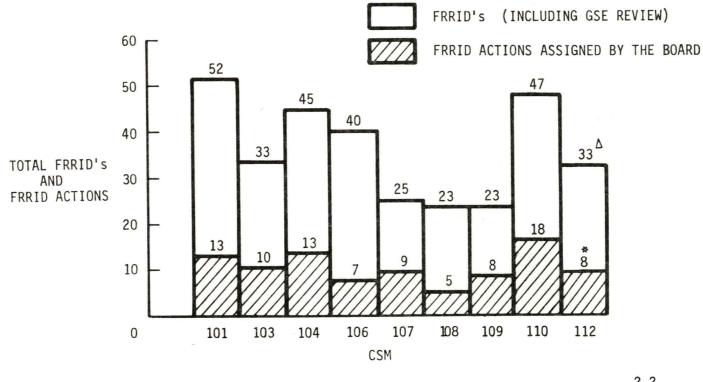
RID's/ACTIONS

REVIEW	DATE	OPEN	CLOSED
SIM INSTRUMENT COVERS - PDR	DECEMBER 8, 1970	0	21
SIM INSTRUMENT COVERS - CDR	JANUARY 20, 21, 1971	0	17
SIM INSTRUMENT COVERS - THERMAL DESIGN REVIEW	FEBRUARY 24, 25, 26, 1971	^7	61
DCR (APOLLO 15)	APRIL 5, 6, 1971	0	1*

* BRIEF SUMMARY WILL BE PRESENTED. △ ACTION CLOSEOUT STILL IN PROCESS.


HARDWARE REVIEW SUMMARY CSM 112/SLA 19

ACTIONS CARID/FRRID


REVIEW	DATE	OPEN	CLOSED
PHASE I CARR	JULY 15, 1969	0	1
SLA 19 CARR	SEPTEMBER 11, 1969	0	0
DELTA PHASE I CARR	MAY 21, 1970	0	11
DELTA SLA 19 CARR	SEPTEMBER 16, 1970	0	0
PHASE 🎞 CARR	DECEMBER 18, 1970	0	41
TOP DECK BUILDUP	JANUARY 4, 1971	0	0
ECS AND C ² F ²	APRIL 15, 1971	0	5
SIM DELIVERY REVIEW	APRIL 15, 1971	0	1
GSE PRE-FRR	MAY 7, 1971	0	18
SIM WALKDOWN	JUNE 12, 1971	10*	0

* 6 ACTIONS CSM 112 EFFECTIVITY - RESOLUTION IN PROCESS.

CARR'S

*INCLUDES SIM DELIVERY REVIEW - 1 CARID

*ACTIONS ASSIGNED AT MSC BOARD.

FRR'S

 Δ includes ecs and $c^2 F^2$

CSM 112 FRR DATA REVIEW SUMMARY

33 FRRID'S WRITTEN

23 WORKED AND CLOSED PRIOR TO MSC PREBOARD

• 6 CLOSED AT MSC PREBOARD, JUNE 17

4 ACTIONS ASSIGNED BY MSC PREBOARD

 1 FRRID'S TO MSC BOARD, JUNE 18 (UNEX PLAINED ANOMALY FC NO. 2 FUSE) FRRID 3.20.2

SUMMARY OF OPEN ACTIONS ASSIGNED BY THE MSC PREBOARD/BOARD

NR WILL REVISE THE SPECIFICATION REGARDING DRR TAPE LIFE LIMITATION

DUE: PRIOR TO APOLLO 15 FRR (JUNE 24, 1971)

NR WILL PROVIDE A PARALLEL FUSE ANALYSIS REGARDING THE INSTALLATION IN THE FUEL CELL NO. 2 HYDROGEN FLOWMETER

DUE: PRIOR TO THE APOLLO 15 FRR

NR WILL PROVIDE THE EXTENSION RATIONALE FOR THOSE COMPONENTS NOT MEETING THE 110-DAY SCRUB AND RECYCLE REQUIREMENTS

DUE: PRIOR TO THE APOLLO 15 FRR

MSC/PE WILL PROVIDE A FAILURE ANALYSIS STATUS AND KSC WITH PROVIDE A PLAN REGARDING THE EXTERNAL LEAKAGE OF GH₂ IN THE LH₂ DEWAR

DUE: PRIOR TO THE APOLLO 15 FRR

• 4 PROGRAM ACTIONS ASSIGNED, DO NOT CONSTRAIN APOLLO 15

UNEXPLAINED ANOMALIES

CARID

- 2.8.2 FUSE F-7 OPEN IN C28A5
- 2.12.1 SECS RESISTANCE READING
- 2.14.2 DIGITAL EVENT TIMER ON PANEL 306 STOPPED
- 2.14.3 DIGITAL EVENT TIMER ON PANEL 1 DID NOT STOP
- 2.14.5 DIGITAL EVENT TIMER ON PANEL 1 DID NOT START
- 3.20.1 FUEL CELL NO. 2 C&W INDICATOR LIGHTED

FRRID

- 3.4.6 X-RAY SPECTROMETER EXIBITED HIGH BIT RATE
- 3. 20. 2 FUEL CELL NO. 2 HYDROGEN FLOWMETER BLOWN FUSE

ALL UNEXPLAINED ANOMALIES HAVE BEEN REVIEWED AND CLOSED BY THE PHASE III CARR AND MSC FRR BOARDS

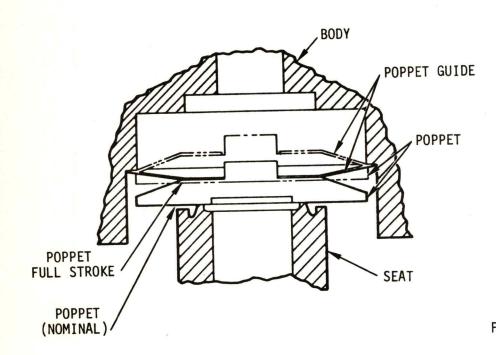
SIGNIFICANT CONFIGURATION DIFFERENCES CSM 110 VS CSM 112

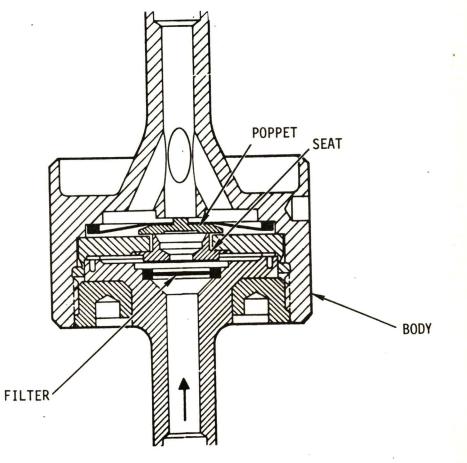
SIGNIFICANT CONFIGURATION DIFFERENCES (CONT) CSM 110 VS CSM 112

SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
SYS STRUCT	DESCRIPTION OF CHANGE DOCKING PROBE • CAPTURE LATCH CAM CHAMFER MOD • CAPTURE LATCH ROLLER CHAMFER MOD • CAPTURE LATCH EXTERNAL SHAFT BUSHING (NEW) • CAPTURE LATCH ROLLER PIN MOD • CAPTURE LATCH SHAFT BALL END DIAMETER REDUCED	110	112 X X X X X	REMARKS / RATIONALE DESENS IT IZES CAPTURE LATCH MECHANISM TO SIDE LOADS
				τ.

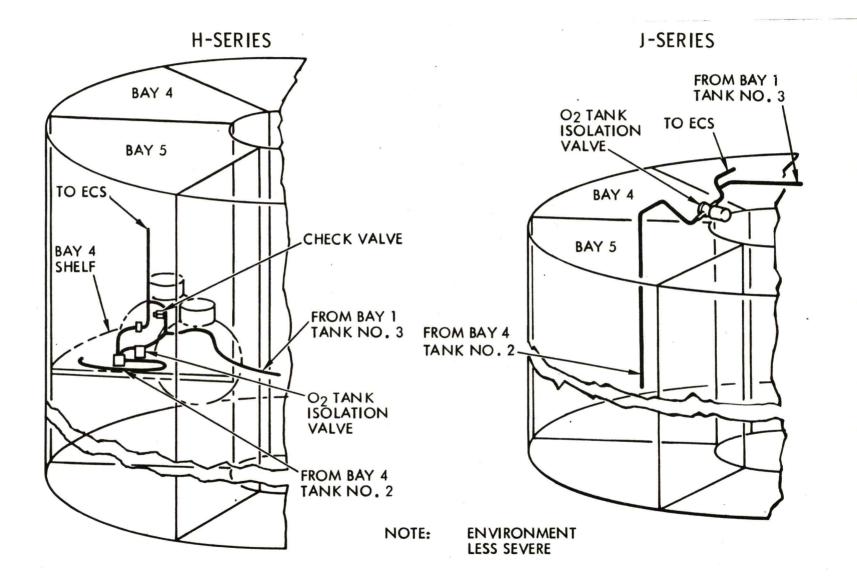
SIGNIFICANT CONFIGURATION DIFFERENCES (CONT) CSM 110 VS 112

SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
STRUCT (CONT)	● SHEAR PINS RETAINED		Х	REDUCES POSSIBILITY OF SHEAR PIN REMNANTS INTERFERRING WITH PROBE OR RING LATCHES AFTER SEPARATION
	CREW COUCH • Y-Y STRUT ADJUSTMENT CM RH SIDE WINDOW SYSTEM • OUTER WINDOW COATING REMOVAL		x	PROVIDES FINER ADJUST- MENT FOR STRUT EXTENSION SUPPORT ULTRA VIOLET PHOTOGRAPHY (EXP S-177)

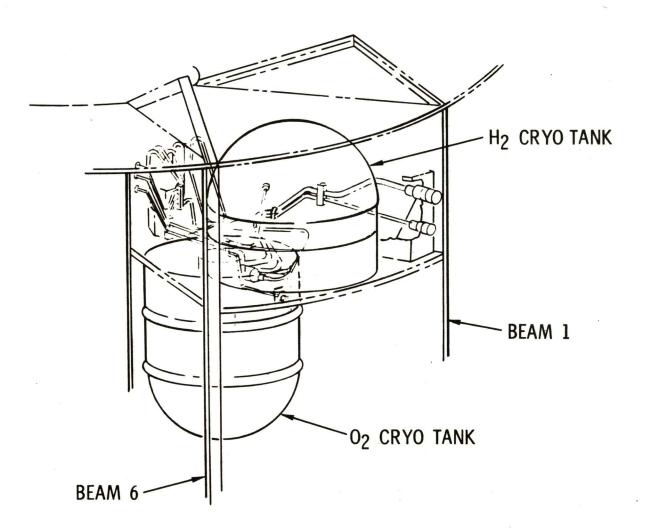

SIGNIFICANT CONFIGURATION DIFFERENCES (CONT) CSM 110 VS 112


SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
STRUCT (CONT)	CM RH SIDE WINDOW SYSTEM (CONT) • INNER WINDOW			SUPPORT ULTRA VIOLET PHOTOGRAPHY (EXP S-177)
-	 ALUMINO SILICATE 	X		
-	 QUARTZ (WITHOUT COATING) 		Х	
	LEXAN WINDOW SHADE		Х	
	CREW HATCH TV / DAC POLE MOD		Х	SUPPORT SIM EVA PHOTO- GRAPHY
-				
				х. Х

SIGNIFICANT CONFIGURATION DIFFERENCES (CONT) CSM 110 VS CSM 112


SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
SPS	SPS ENGINE• 1. 396 IN. DIA FUEL ORIFICE• 1. 337 IN. DIA FUEL ORIFICE	X	X	IMPROVE OXIDIZER/FUEL RATIO TO PROVIDE MAX- IMUM PROPELLANT MARGIN
CRYO	H2 TANK QUANT ITY INCREASE • 2 H2 TANKS • 3 H2 TANKS CHECK VALVE CONFIG • S INGLE SEAT • DOUBLE SEAT	x	X X	EXTEND MISSION CAPABILITY DECREASE SUSCEPTIBILITY TO DAMAGE

SINGLE SEAT VS DOUBLE SEAT CRYO CHECK VALVE

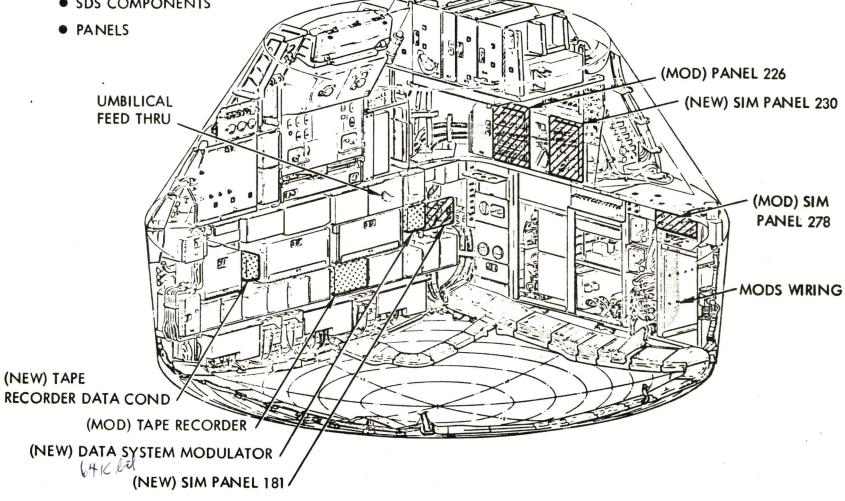


CSM RETURN ENHANCEMENT PROVISIONS

CRYO ADDITION SECTOR I

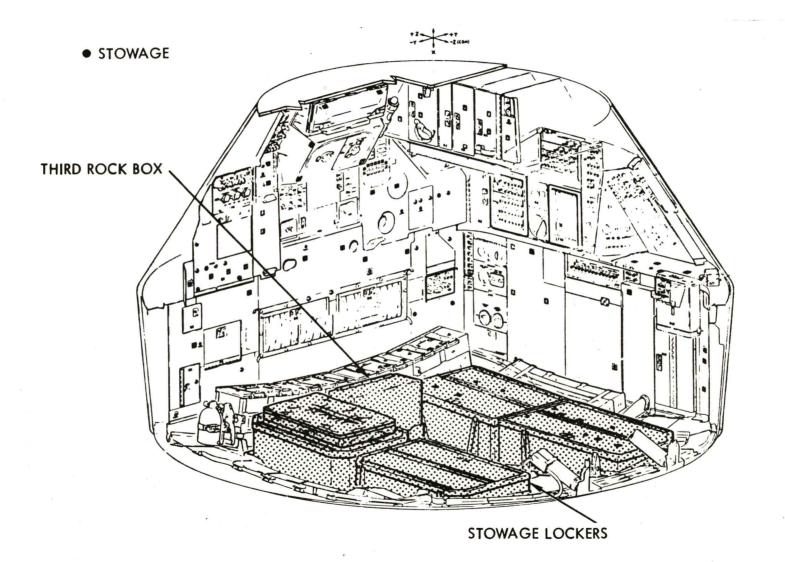
SIGNIFICANT CONFIGURATION DIFFERENCES (CONT) CSM 110 VS 112

SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RAT IONALE
D&C	MDC PANEL 1			
	 CONTROLS FOR ADDITIONAL TANKS 		х	
			τ.	
,				


SIGNIFICANT CONFIGURATION DIFFERENCES (CONT) CSM 110 VS 112

SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
D&C (CONT)	SM/SIM POWER CONTROL - PANEL 181		X	ADD PROVISIONS FOR J-MISSION EXPERIMENTS
1	SCI EXPERIMENTS CONTROL - PANEL 230 & DISPLAY		Х	SIM EXPERIMENT CONTROLS
	EXPERIMENTS COVER CONTROL - PANEL 278 MODIFICATION		х	ADD PROVISIONS FOR J-MISSION EXPERIMENTS
	SIM POWER DISTRIBUTION - PANEL 226 MODIFICATION		х	POWER FOR SIM & CRYO CONTROL
		a.		
				5.

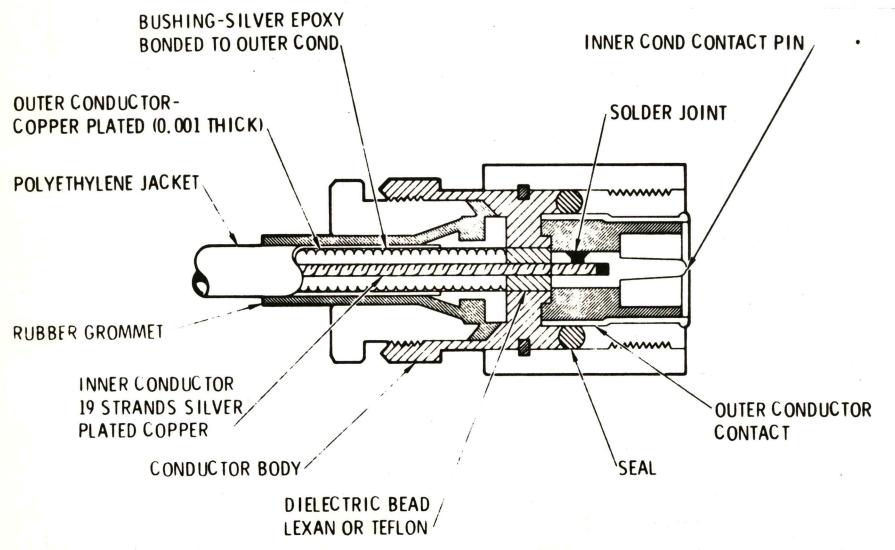
CSM J - SERIES MODIFICATIONS COMMAND MODULE


Six

- WIRING
- SDS COMPONENTS

SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
CREW	AFT STOWAGE LOCKERS • J-MISSION AFT BULKHEAD STOWAGE		x	

CSM J - SERIES MODIFICATIONS COMMAND MODULE


			T	
SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
CREW	IV CREWMAN TETHER		х	EVA REQUIREMENTS
(CONT)	HIGH CAPACITY URINE FILTER		х	MISSION REQUIREMENTS
	URINE CONTAINER		Х	MISSION REQUIREMENTS
	PENETROMETER RECORDING DEMONSTRATION		Х	MISSION REQUIREMENTS
	ELECTROPHORESIS DEMONSTRATION	X		MISSION REQUIREMENTS
	HEATFLOW & CONVECTION DEMONSTRATION	x		MISSION REQUIREMENTS
	LIQUID TRANSFER DEMONSTRATION	X		MISSION REQUIREMENTS
-	PANORAMIC CAMERA CASSETTE		x	MISSION REQUIREMENTS
	MAPPING CAMERA CASSETTE		x	MISSION REQUIREMENTS

SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
CREW	CMP PGA (A7LB)		Х	CM EVA
(CONT)	PGA (A7LB)		Х	LUNAR SURFACE EVA
	PGA (A7L)	Х		
	500 MM LENS	x		MISSION REQMTS
	HYCON CAMERA	X		MISSION REQMTS
	35 MM CAMERA		х	MISSION REQMTS
	80 MM LENS	x		MISSION REQMTS
	EVA PANEL GUARDS		х	PROTECT MDC PANELS DURING EVA
	16 MM MAGS	20	22	MISSION REQMTS
	70 MM MAGS	14	13	MISSION REQMTS
	ROCK BAGS	3	5	ADDITIONAL LUNAR ROCK REQUIREMENTS
				· · · · ·

			-	-
SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
CREW (CONT)	OXYGEN PURGE SYSTEM (OPS)		х	BACKUP OXYGEN SYSTEM FOR EVA
-				
		•		

SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
EPS	CSM/LM UMBILICAL, BEEPER, DAC TIMING & HEC TIMING CABLES			
	TEFLON BRAID COVERBETA CLOTH COVER	Х	х	ENHANCE CREW BAY FLAMMABILITY REQUIREMENT
СОММ	TAPE RECORDER DATA COND (TRDC) TRDC BY-PASS CIRCUITRY DRR - 51.2 & 64K BITS / SEC SYSTEM - 1 HR RECORD TIME		X X X	IMPROVE DATA PLAYBACK INCREASED CAPABILITY FOR EXPERIMENT DATA
с. 	DSE - 51.2K BITS / SEC SYSTEM - 1/2 HR RECORD TIME HIGH GAIN ANTENNA THERMAL ACCEPTANCE TESTING HGA COAX SCREENING	Х	x	SCREEN POTENTIAL DEFECTS FROM FLIGHT HARDWARE
SECS	LDEC - SIM PYRO INITIATOR (4) CIRCUITRY ADDED		x x	J-MISSION SUPPORT EXPERIMENTS

PLAXIAL CABLE AND TNC CONNECTOR

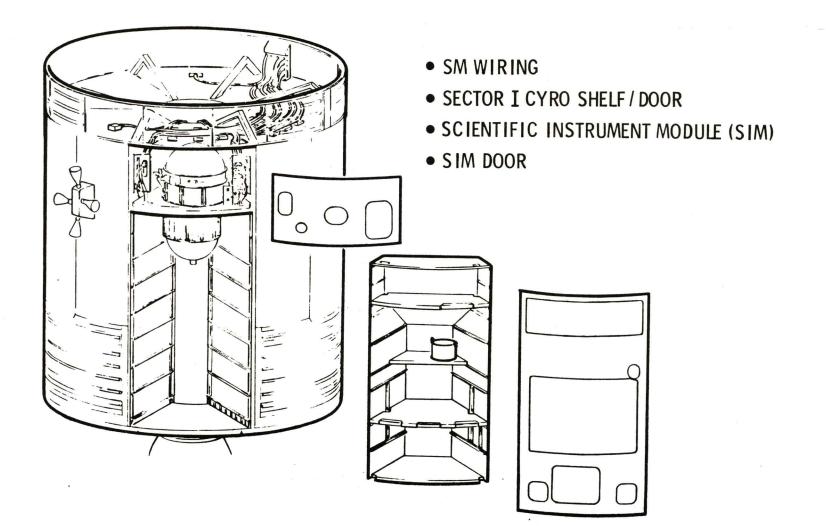
48

SIGNIFICANT CONFIGURATION DIFFERENCES (CONT)

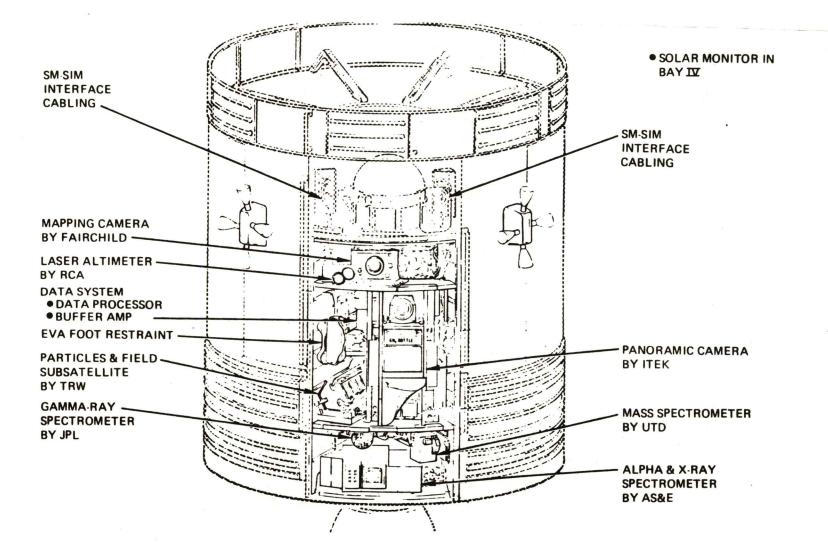
P				
SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
ECS	CO ₂ ABSORBER ELEMENT QUANTITY • 20 ELEMENTS TOTAL • 30 ELEMENTS TOTAL	x	X.,	EXTEND MISSION CAPABILITY
	CHLORINE & BUFFER AMPULES • 10 EACH • 16 EACH	X .	X	EXTEND MISSION CAPABILITY
	SUIT DEMAND PRESSURE REG- ULATOR CYCLIC TESTING		X	ASSURE STABILIZED SET CONTROL ADJUSTMENTS
	EMERGENCY CABIN PRESSURE REGULATOR CYCLIC TESTING		X	ASSURE NO INTERNAL CONTAMINATION
	CM SIDE HATCH AUXILIARY DUMP NOZZLE			
	 MODIFIED ASSEMBLY FOR TEST STANDARD UNIT 	x	x	O ₂ FLOW TEST IN CSM 110

49

SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
ECS	EVA PROVISIONS			ADDITIONAL MISSION
(CONT)	PANEL 603 WITH GUARD		X	ACTIVITIES
	PANEL 604		X	
	• 1 ADDITIONAL O2 RESTRICTOR		X	
	• EVA PANEL PRESS. GAGE		X	
-	EVA UMBILICAL ASSEMBLY		X	
INST	J-MISSION DELTA MEASUREMENTS:		X	
	SIM-EXPERIMENTS 79		·	
	THERMAL 11 PYROTECHNIC 2			
	CRYOGENIC TANK 3		•	х.
	• THERMAL CONTROL 13			
	• VHF AGC MONITOR. 2	-	8 °	
			- 13 X	


SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
SIM	SCIENTIFIC INSTRUMENT MODULE (SIM) SECTOR I STRUCTURE	÷	Х	SUPPORT J-MISSION EXPERIMENTS REQUIREMENTS
	MAPPING CAMERA (SIM)		х	INTEGRATED TO SUPPORT
	LASER ALTIMETER (SIM)		х	J-MISSION REQUIREMENTS
	PANORAMIC CAMERA (SIM)		x	
	SUB-SATELLITE (SIM) • PARTICLES & FIELDS • MAGNETOMETER • S-BAND		×	
	GAMMA RAY SPECTROMETER (SIM)		x	
	ALPHA/X-RAY SPECTROMETER (SIM)		x	
	X-RAY SOLAR MONITOR (SM SECTOR IV)		X	

DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
MASS SPECTROMETER SIM EXPERIMENTS GN ₂ SYSTEM		x x	INTEGRATED TO SUPPORT J-MISSION REQUIREMENTS
DEPLOYMENT MECHANISM		X	SUPPORT J-MISSION EXPERIMENTS REQUIRE- MENTS
SIM EXPERIMENTS COVERS		х	PROTECT EXPERIMENTS FROM RCS PLUME HEATING AND CONTAINMENT
			a ann a samaraga in ta a
	MASS SPECTROMETER SIM EXPERIMENTS GN ₂ SYSTEM DEPLOYMENT MECHANISM	MASS SPECTROMETER SIM EXPERIMENTS GN ₂ SYSTEM DEPLOYMENT MECHANISM	MASS SPECTROMETERXSIM EXPERIMENTS GN2 SYSTEMXDEPLOYMENT MECHANISMX


SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
S IM (CONT)	SIM PLUME HEATING THERMAL BLANKETS			PROTECT FROM RCS PLUME HEATING
	MAPPING CAMERA		Х	
	PANORAMIC CAMERA		Х	
	FOOT RESTRAINT		Х	EVA SIM DATA RETRIEVAL
	SIM DOOR SEPARATION SYSTEM SECTOR I		Х	EXPOSE SIM EXPERIMENTS TO LUNAR SURFACE
	SCIENTIFIC DATA SYSTEM (SDS) DATA PROCESSOR, - MASTER & SLAVE		X X	PROVIDE INCREASED DATA CAPABILITY FOR EXPER- IMENT DATA ACQUISITION

SYS	DESCRIPTION OF CHANGE	110	112	REMARKS / RATIONALE
S IM (CONT)	SCIENTIFIC DATA SYSTEM (SDS) (CONT) • BUFFER AMPLIFIER		X	PROVIDE INCREASED DATA CAPABILITY FOR EXPER- IMENT DATA ACQUISITION
	• DATA MODULATOR - 3 BI PHASE SCD'S - 4 FM VCO'S		X	
	M.O.M. BOX: CONTROL CIRCUITY FOR FUSIBLE LINK INITIATORS (8) & SIM PYRO INITIATORS (4)		x	J-MISSION REQUIREMENT

CSM J - SERIES MODIFICATIONS SERVICE MODULE

CSM J - SERIES MODIFICATIONS EXPERIMENTS

WAIVERS AND DEVIATIONS

WAIVERS AND DEVIATIONS SUMMARY

106	107	108	109	110	112
17	14	6	10	2	6
13*	15*	12*	22*	12*.	15
30	29	18	32	14*	21
	17 13*	17 14 13* 15*	17 14 6 13* 15* 12*	17 14 6 10 13* 15* 12* 22*	17 14 6 10 2 13* 15* 12* 22* 12*.

*NOTE: DIFFERENCES BETWEEN DATA ABOVE AND DATA FROM PREVIOUS FRR PRESENTATIONS ARE DUE TO WAIVERS RELEASED BETWEEN FRR AND LAUNCH

CSM 112 SPECIFICATION WAIVER/DEVIATION SUMMARY

DEVIATIONS

NUMBER

SUBJECT

192 WEIGHT & BALANCE OF SLA

RATIONALE

WAIVE HORIZONTAL & VERTICAL HISTORY OF PRIOR SLA WEIGHT & BALANCE DETERMINATION INDICATED EXCELLENT REPEATABILITY WITHIN SPECIFICATION FOR ±0.2 INCHES ON THE CENTERS OF GRAVITY

NON-AVAILABILITY OF EVA 0211 UMBILICAL CABLE TO MEET SPECIFIED CONTRACT SPECIFICATION

EVA UMBILICAL NOT AVAILABLE TO SUPPORT DOWNEY CHECKOUT DUE TO CONFIGURATION CHANGE. UNIT TO BE TESTED AT KSC

EEE PARTS IN O2 TANK HEATER 0212 TEMP SIGNAL CONDITIONER NOT TO SELECTION CRITERIA

EEE PARTS IN ROSEMOUNT ENGINEERING COMPANY SIGNAL CONDITIONER NOT SUB-JECTED TO BURN-IN & SCREENING PER REQUIREMENTS OF RELIABILITY PLAN PLAN SID 62-203B. COMPONENTS ARE CRITICALITY III. ALL PARTS ARE PROPERLY DERATED & THERE IS NO OVERSTRESS POTEN-TIAL. ALL PARTS ARE SUBJECTED TO ELECTRICAL PERFORMANCE CHECK & THERMAL-CYCLE TEST PRIOR TO SHIPMENT TO BEECH

CSM 112 SPECIFICATION WAIVER/DEVIATION SUMMARY (CONT)

WAIVERS

RATIONALE SUBJECT NUMBER SYSTEM PROOF PRESSURE TEST WAS CM RCS PROOF PRESSURE ON SYS 1 189 430 PSIG; S/B 450 ±10 PSIG. PROPEL-& SYS 2 LOW PRESSURE HELIUM SYS LANT TANKS WERE PROOF PRESSURE LOWER THAN MINIMUM ALLOWABLE TESTED TO 455 PSIG. SYS NOT SUB-JECTED TO REPROOF DUE TO FRACTURE MECHANICS LIMITATION ON TANK PRESSURE CYCLES PYRO GROUND LOOP READS 2.54 OHMS WAIVE PYRO GROUND LOOP RESIST-197 FOR SYS A & 2.57 OHMS FOR SYS B: ANCE REQUIREMENT FOR ADAPTER S/B 2.5 OHMS MAX. ENGINEERING SEPARATION INITIATOR CIRCUITS ANALYSIS INDICATES WORST CASE **RESISTANCE SHOULD BE 2.5 TO** 3.75 OHMS. REQUIREMENT FOR A MINIMUM OF 5 AMPS THROUGH INITIATOR SIMULATOR IS UNAFFECTED

CSM 112 SPECIFICATION WAIVER/DEVIATION SUMMARY (CONT)

WAIVERS (CONT)

NUMBER

SUBJECT

0210 DEVIATION FROM REQUIRE-MENT CF0034 PRIMARY STEAM DUCT PRESSURE TRANSDUCER

RATIONALE

CF0034 INDICATED 0.22 PSIA ON CRT; SHOULD BE 0.20 PSIA MAXIMUM. CF0073 INDICATED 0.18 PSIA. USEABLE DATA FROM CF0034 OBTAINED BY ESTABLISHING A NEW CALIBRATION CURVE DURING ALTITUDE RUNS AT KSC

CSM 112 TRSD WAIVER/DEVIATION SUMMARY - KSC

NUMBER

SUBJECT

RATIONALE

- 70mm CAMERA MOUNT INSTALLATION TO OPTICS CENTERLINE OF THE 70mm 112-P0-001 BE PARALLEL TO SC X-X AXIS, DEVIATED CAMERA WITH 80mm LENS INSTALLED 10 ± 2 IN -Z DIRECTION & FIELD OF VIEW IS PARALLEL TO SC X-X AXIS & THROUGH RIGHT RENDEZVOUS WINDOW TO BE UNOBSTRUCTED
- 112-P0-002 RADIATOR HEATER CONTROLLER SHALL TURN OFF BETWEEN 17,028 & 17,532 OHMS INPUT CSM 112 WAS 17,650 OHMS & 17,600 OHMS

DEVIATED 13.5 IN -Z DIRECTION. DEVIATION REQUIRED TO OBTAIN UNOBSTRUCTED FIELD OF VIEW

THE CSM 112 VALVES ARE EQUIVALENT TO 10.72°F & 10.64°F INCLUDING A 0.72. FACTOR FOR TEMP. SENSOR SELF HEAT. THE ALLOWABLE UPPER LIMIT IS 10.5°F (INCLUDING THE 0.72 FACTOR). THE 0.22°F OUT OF TOLER-ANCE CONDITION HAS NO ADVERSE EFFECT ON HEATER OPERATION SINCE SUFFICIENT DEAD BAND EXISTS TO PREVENT HEATER FLUCTUATIONS

CSM 112 TRSD WAIVER/DEVIATION SUMMARY - KSC (CONT)

NUMBER

SUB JECT

112-P0-003

OVERVOLTAGE ON BUS "A" & "B" SPEC VALUE IS 29 ± 2V DC

RATIONALE

MAIN A REACHED PEAK OF 40.5V DC (ABOVE 31V DC FOR 250 MILLISECONDS) & MAIN B REACHED 33.6V DC (ABOVE 31V DC FOR 334 MILLISECONDS). DATA REVIEW INDICATED NO DETRIMENTAL EFFECT ON SYSTEMS POWERED AT TIME OF OCCURRENCE

CSM 112 TRSD WAIVER/DEVIATION SUMMARY - KSC (CONT)

NUMBER

SUBJECT

112-PO-004 GO₂ NON-CONFORMANCE TO MSFC GRADE A SPEC ALLOWABLE OF 30 PPM MAXIMUM INERTS

RATIONALE

GO₂ SAMPLES IN S14-088 WERE 31. 6 PPM INERTS (PRIMARY) & 36. 0 PPM INERTS (SECONDARY). TEST REQUIRED GO₂ FOR ECS ONLY & GRADE B GO₂ WAS ACCEPTABLE BE-CAUSE FUEL CELL REACTANT VALVES ARE MAINTAINED CLOSED. ABOVE SAMPLES MEET GRADE B REQUIRE-MENTS

112-PO-005 CABIN PRESSURE REGULATOR SHALL ''CRACK'' ON INCREASING PRESSURE AT 3.5 TO 4.7 PSIA. CSM 112 WAS 3.48 PSIA DATA FROM TCP K-0034 INDICATES CABIN PRESSURE REGULATOR "CRACKED" AT 3.48 PSIA, WHICH COMPARES TO GSE READINGS OF 3.45 & 3.5 PSIA. WORST CASE DIFFERENCE OF 0.05 PSIA IS NOT DETRIMENTAL TO OPERATION IN FLIGHT

CSM 112 TRSD WAIVER DEVIATION SUMMARY - KSC (CONT)

NUMBER SUBJECT

112-PO-006 WASTE WATER DUMP NOZZLE HEATER ''B'' INOPERATIVE

112-PO-007 GO₂ NON-CONFORMANCE TO MSFC GRADE A ALLOWABLE OF 30 PPM MAX-IMUM INERTS

112-PO-008 ELS BAROSWITCH CLOSURE TOLER-ANCE IS 10. 67 TO 11. 57 IN. hg - CSM 112 SYSTEM A WAS 11. 66 AND SYSTEM B WAS 11. 92 IN. hg

RATIONALE

SYSTEM "B" HEATER INOPERATIVE & HAS BEEN ELECTRICALLY ISOLATED. REPLACEMENT ON NOZZLE REQUIRES MAJOR REWORK & SYSTEM A HEATER IS FUNCTIONING PROPERLY. NOZZLE HAS 2 BACKUP METHODS FOR DUMP-ING WASTE WATER

GO₂ SAMPLES AT S14-088 WERE 30. 6 PPM INERTS. TEST REQUIRED GO₂ FOR ECS ONLY & GRADE B GO₂ WAS ACCEPTABLE BECAUSE FUEL CELL REACTANT VALVES ARE MAIN-TAINED CLOSED. SAMPLES MET GRADE B REQUIREMENTS

COMPARISON OF DNY & KSC TEST DATA INDICATES A SHIFT ON ALL BAROSWITCH CLOSURES (10K & 25K) OF APPROX 0. 15 IN. hg

CSM 112 TRSD WAIVER/DEVIATION SUMMARY - KSC (CONT)

NUMBER

SUBJECT

112-PO-008 (CONT)

RATIONALE

(0. 15 IN. hg FOR 25K A1, A2, & B1 & 0. 24 IN. hg FOR B2). THIS IS EQUIVALENT TO 500 FT ALTITUDE ERROR & IS NOT DERIMENTAL SYSTEM PER-FORMANCE.

112-PO-009 HELIUM IN LH₂ SAMPLE. SPEC ALLOW-ABLE NITROGEN & HELIUM IS 170 PPM

DURING TCP K-0005, LH₂ TANK SAMPLE INDICATED 531 PPM HELIUM. PRATT & WHITNEY (F/C SUPPLIER) LIMITS INERT GAS IN HYDROGEN TO 600 PPM. NO DETRIMENTAL EFFECTS TO FUEL CELL OPERATION AND PERFORMANCE

CSM 112 TRSD WAIVER/DEVIATION SUMMARY - KSC (CONT)

NUMBER

SUBJECT

112-PO-010 SPS CONTROL BOX - GIMBAL DRIVE FAIL CIRCUITS NOT REVERIFIED AFTER INSTALLATION

112-PO-012 DC VOLTAGE - MAIN BUS A WAS -34. 65V DC SHOULD BE 29 ± 2V DC

RATIONALE

GIMBAL DRIVE FAIL CIRCUITS IN THE BOX WERE FUNCTIONAL CHECKED PRIOR TO SHIPMENT FROM DOWNEY. AFTER INSTALLATION, CAPABILITY DOES NOT EXIST TO FUNCTION & VERIFY CIRCUITRY WITHOUT DIS-CONNECTING SPS ENGINE CONNECTORS

MAIN A BUS VOLTAGE PEAKED AT 34. 65V DC WHEN CONNECTING F/C I TO MAIN BUS A. VOLTAGE DECAYED EXPONENTIALLY TO 31V DC IN LESS THAN 2 SECONDS. DATA REVIEW INDICATES NO DETRIMENTAL EFFECT ON SYSTEMS POWERED AT TIME OF OCCURRENCE

CSM 112 TRSD WAIVER DEVIATION SUMMARY - KSC (CONT)

NUMBER	SUBJECT	RATIONALE	
112-PO-013	CM RCS SYSTEM B PLUS PITCH ENGINE FUEL VALVE LEAK RATE EXCEEDS ALLOWABLE RATE	SP-T-0017, PARA 3.7.1 G SPECIFIES VALVE LEAK RATE OF 20 SCC/HR. MAX ACTUAL LEAK RATE WAS 36 TO 44 SCC/HR. THIS LEAK RATE OF HELIUM WILL NOT ALLOW LIQUID LEAKAGE. SYSTEM IS NOT PRESSUR- IZED UNTIL CSM SEPARATION. ACCEPTABLE FOR FLIGHT	
112-PO-014	SM RCS QUAD A SYSTEM 1 PRESSURE REGULATION WAS 173 PSIG VS SPEC REQUIREMENT OF 181 ± 4 PSIG	THE ACTUAL PRESSURE IS ESSENTIALLY THE SAME AS OBTAINED DURING CHECK- OUT AT DOWNEY. THE SYSTEM 2 REG- ULATOR IS WITHIN SPECIFICATION LIMITS AND EACH CONTROLS THE PRESSURE. TEST INDICATED NO REGULATOR DEGRADATION AND PERFORMANCE IS ACCEPTABLE	

CSM TRSD WAIVER/DEVIATION SUMMARY - KSC (CONT)

NUMBER

SUBJECT

112-PO-015 CM He TANK TEMP OUT OF SPEC

112-PO-016 SEC WATER/GLYCOL SYSTEM FLUID ANALYSIS NOT PER-FORMED AT EIGHT WEEK INTERVAL AS REQUIRED

RATIONALE

DURING TANK BLEED DOWN GSE CONFIGURATION CAUSED TEMPERATURE OVERSHOOT TO 32°F. HUMIDITY LEVEL DURING THIS TIME WAS LOW ENOUGH TO PRECLUDE CONDENSATION WHICH IS LIMITING CRITERIA FOR SPEC TEMP

SAMPLE TAKEN JUNE 14, 1971, PREVIOUS SAMPLE MARCH 30, 1971. DUE TO SCHEDULE WORKLOAD, SYSTEM NOT ACCESSIBLE. SAMPLES TAKEN WERE ACCEPTABLE. SYSTEM OPERATION IS NOT AFFECTED

APOLLO 14 ANOMALIES

CSM 110 ANOMALIES SUMMARY LIST AND STATUS

SUB JECT

STATUS

1.	COMMANDER ELECTROCARDIOGRAM	CLOSED
*2.	FAILURE TO ACHIEVE CAPTURE LATCH ENGAGEMENT	OPEN
3.	QUAD B OXIDIZER MANIFOLD PRESSURE TRANSDUCER	CLOSED
*4.	HIGH-GAIN ANTENNA TRACKING PROBLEMS	CLOSED
5.	UNEXPLAINED VENTING AND HIGH OXYGEN FLOW	CLOSED
6.	FROZEN URINE DUMP NOZZLE	CLOSED
7.	IN-LINE CHECK VALVE ON OXYGEN TANKS LEAKED	CLOSED
8.	INTERMITTENT VOICE COMMUNICATIONS FROM COMMANDER	CLOSED
9.	ERRONEOUS RANGE READOUTS FROM VHF	CLOSED
10.	ENTRY MONITOR SYSTEM DID NOT AUTOMATICALLY INITIALIZE	CLOSED
*1 1 .	MAIN BUSSES DID NOT DISCONNECT WHEN SWITCHES SET TO	OPEN
	OFF (MOTOR SWITCHES)	
12.	VHF VOICE COMMUNICATIONS INADEQUATE	CLOSED
13.	BUFFER AMPULES HARD TO INSERT	CLOSED
<u>14</u> .	HOT WATER VALVE LEAKED	CLOSED
15.	REPRESS PACKAGE LEAKED	CLOSED
*16.	INTERMITTENT BATTERY C TO MAIN BUS B CIRCUIT BREAKER	CLOSED

*SEPARATE BRIEFINGS

2

.

DOCKING PROBE

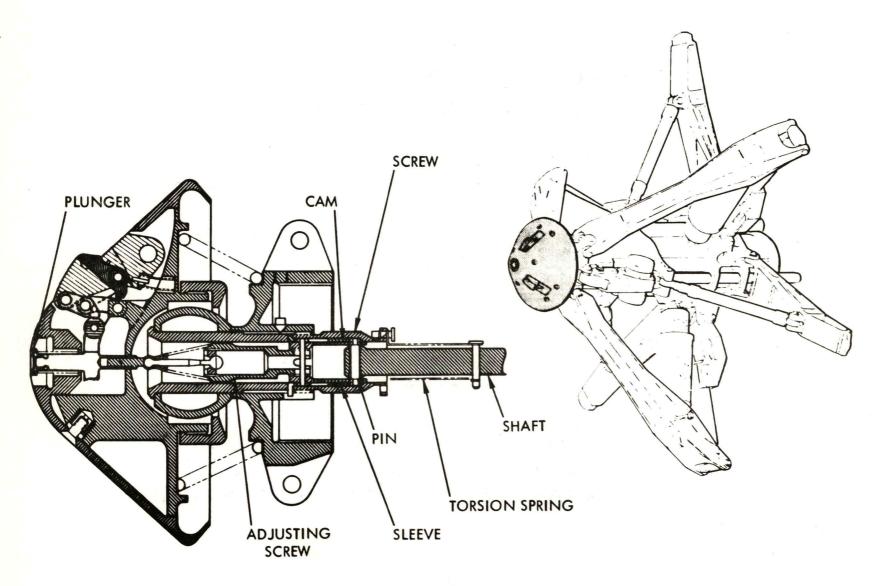
ISSUE: CSM 110 INFLIGHT FAILURE TO CAPTURE UNTIL 6TH ATTEMPT

ANALYSIS: POST FLIGHT TESTING & ANALYSIS COMPLETED

CONCLUSION: CAUSE OF PROBLEM COULD HAVE BEEN

- SHAFT BALL ENTERING CAM SLOT
- FOREIGN MATERIALS

CORRECTIVE • DESIGN CHANGE INCORPORATED TO ELIMINATE ACTION: EXCESS FRICTION IN CAM AREA


ADDED CLEANLINESS REQUIREMENTS IMPOSED

CSM 110 PROBE ANALYSIS

- 1. INFLIGHT EXAMINATION
 - MECHANISM FUNCTIONED PROPERLY
- 2. LRL EXAMINATION & TEST
 - NO SIGNIFICANT FOREIGN MATERIAL OR VISUAL PROBLEM AREAS
 - TIMING TESTS SHOW TIME TO LOCK FASTER THAN PREFLIGHT. TIME TO INDICATE SLOWER BUT NOT SIGNIFICANT
- 3. NR EXAMINATION & TEST
 - VERIFIED LRL TIMING
 - ELECTRICAL CHECKS OK
 - MECHANISMS FUNCTIONED REPEATEDLY. FAIL TO CAPTURE SIMULATED WITH SIDE LOAD ON SHAFT
 - TIMING TESTS RUN AT +50, AMBIENT, & 145°F, RESPONSE FASTER WITH INCREASING TEMPERATURE

The second

PROBE CAPTURE LATCH ASSEMBLY

CSM 110 DOCKING PROBE (CONT) CONCLUSIONS

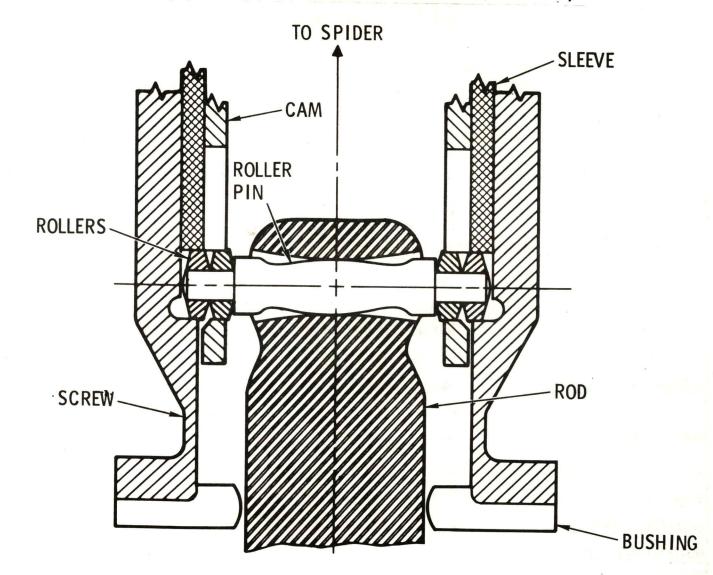
- 1. PROBLEM COULD HAVE BEEN CAUSED BY FOREIGN MATERIAL THAT WAS DISLODGED BY REPEATED DOCKING ATTEMPTS
- 2. ALTHOUGH NOT READILY REPEATABLE IN POST-FLIGHT TESTING, PROBLEM COULD HAVE BEEN CAUSED BY SHAFT BALL ENTERING CAM SLOT

CSM 110 DOCKING PROBE (CONT) CHANGES EFFECTIVE ON APOLLO 15

- 1. REMOVABLE COVER FOR PROBE HEAD AND ADDED CLEANLINESS REQUIREMENTS FOR GSE. LIMITATION OF FLUIDS, ETC. IN AREA OF PROBE
- 2. LOCK WIRE SHEAR REMNANTS IN PASSIVE TENSION TIE
- 3. PROVIDE BALL CENTERING TO DESENSITIZE MECHANISM AND REDUCE FRICTION IN CAM AREA

EXTERNAL BUSHING

ROLLERS

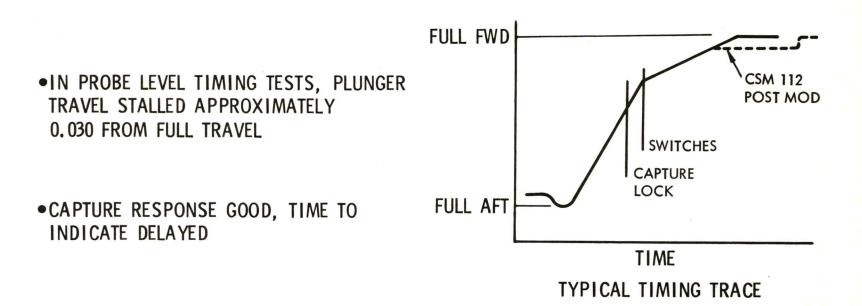

ROLLER PIN

CAM

SHAFT BALL END

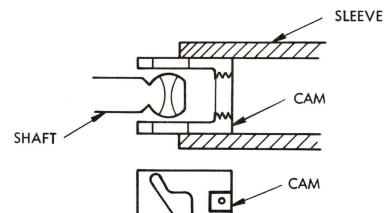
4. HORIZONTAL TIMING TESTS ON CAPTURE RESPONSE

CSM 110 DOCKING PROBE (CONT)



79

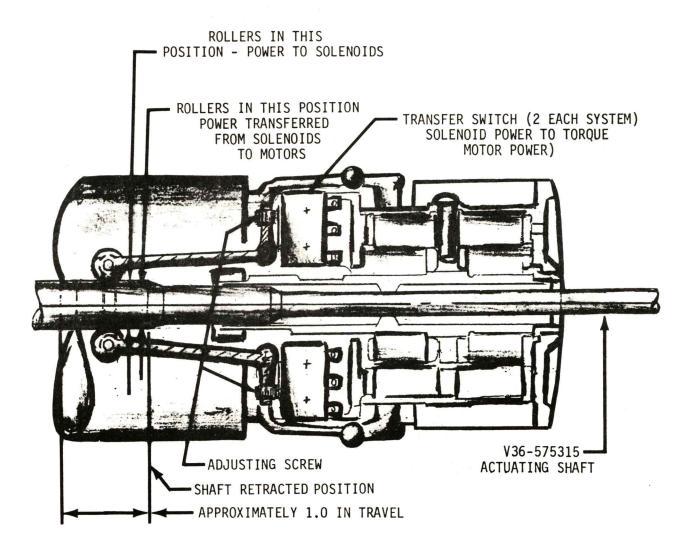
CSM 110 DOCKING PROBE (CONT) VERIFICATION LOGIC


CSM 110 PROBE	CSM 112	CSM 112 DDODE
(CIR IESIS)	FRODL	CSM 113 PROBE
INCORPORATE	●INCORPORATE	●INCORPORATE
CHANGES FROM	CHANGES	CHANGES
X-QUAL 3 AND		*
112	2	
●VIBRATION		
•AMBIENT TIMING	●DELTA ATP	●ATP
•THERMAL TESTS	•C/O IN SC 114	•TEST AND SHIP
(-20° TO +180° F)		WITH CSM 113
•AMBIENT TIMING	●INSTALL IN	a
	CSM 112	
• PRELOAD RELEASE		
●LM SIDE RELEASE		
•AMBIENT TIMING		
	(CTR TESTS) • INCORPORATE CHANGES FROM X-QUAL 3 AND 112 • VIBRATION • AMBIENT TIMING • THERMAL TESTS (-20° TO +180° F) • AMBIENT TIMING • PRELOAD RELEASE • LM SIDE RELEASE	(CTR TESTS)PROBE•INCORPORATE CHANGES FROM X-QUAL 3 AND 112•INCORPORATE CHANGES•VIBRATION •AMBIENT TIMING •THERMAL TESTS (-20° TO +180° F)•DELTA ATP •C/O IN SC 114•NBIENT TIMING •INSTALL IN CSM 112•PRELOAD RELEASE•LM SIDE RELEASE

CSM 112 POST MOD TIMING PROBLEM

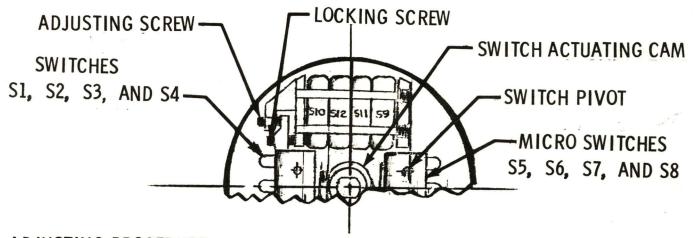
CSM 112 POST MOD TIMING PROBLEM (CONT) ANALYSIS

• CAM IN CSM 112 PROBE FOUND TO BE DRAGGING ON CORNER OF SLEEVE


•SPIDER & CAPTURE MECHANISM FREE

• EXTERNAL BUSHING PERFORMING PROPERLY

PROBE ASSEMBLY MOTOR SWITCHES


- PROBLEM
 - DURING ELECTRICAL ATP 'A' CIRCUIT SHOWED TWO SWITCH MALFUNCTIONS
 - ONE OR TWO SWITCHES IN THE CAPTURE INDICATING CIRCUIT SHOWED A MALFUNCTION LIGHT ON THE TEST CONSOLE AND ONE SOLENOID POWER SWITCH SHOWED NO CONTINUITY
- PROBABLE CAUSE
 - SWITCH MISADJUSTMENT
 - SWITCH DAMAGE
 - DIAPHRAM SEPARATION
 - CONTACT DAMAGE
- RESOLUTION
 - REPLACE MOTOR ASSEMBLY WITH 113 UNIT AND TROUBLESHOOT 112 ACTUATOR TO DETERMINE PROBLEM CAUSE

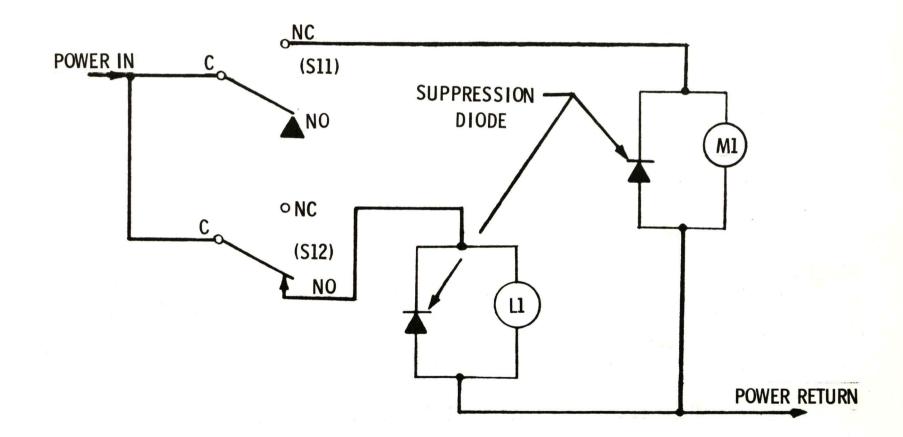
SOLENOID POWER TRANSFER SWITCHES

84

CAPTURE LATCH INDICATING SWITCH

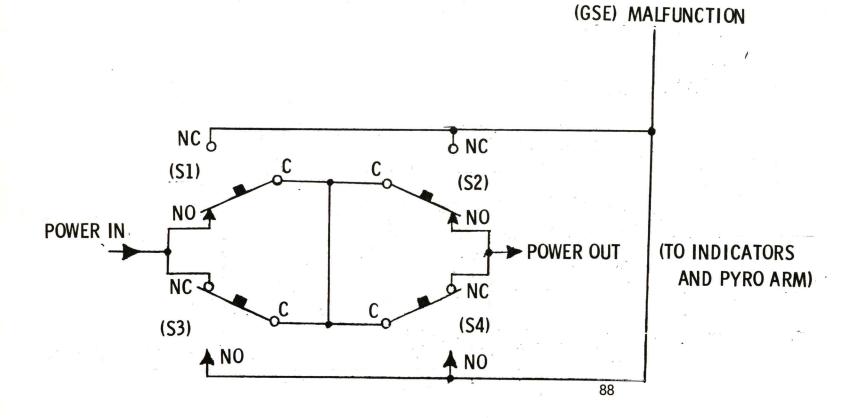
ADJUSTING PROCEDURE:

- 1. BACK-OFF LOCKING SCREW AND RUN IN ADJUSTING SCREW TOGETHER UNTIL SWITCH JUST ACTUATES.
- 2. WITH LOCK SCREW BACKED OFF TURN ADJUSTING SCREW AN ADDITIONAL 3/4 TURN FOR O/T. RE-CHECK 3/4 TURN AFTER ALL SWITCHES ADJUSTED AND TORQUED.


-401 (112) AND -501 (113) ACTUATOR DIFFERENCES

-501 -401 **O/T RECHECKED AFTER** O/T NOT VERIFIED AFTER SWITCH ADJUSTMENT INITIAL SETTING. SET SETTING SCREWS CHECKED TO FLATTEN CONTACT SURF SWITCH NOT LEAK CHECKED AFTER SWITCHES LEAK CHECKED TO VERIFY NO MACHINING **DIAPHRAM DAMAGE TOLERANCES CONTROLLED** CAM SHAFT TOLERANCES ON CAM LOBE CAN PREVENT

86


ADJUSTING

SOLENOID POWER/ TRANSFER CIRCUIT 'A' SYST.

-

- PROBLEM
 - WIDE-BEAM SKEW PREVENTED SWITCHING TO NARROW BEAM
- CAUSE
 - BROKEN PLAXIAL CABLE DUE TO POOR WORKMANSHIP PROBLEM
 - TESTS VERIFIED OPEN RF-SIGNAL PATH TO ONE WIDE-BEAM HORN GIVES COMPARABLE BEAM SKEW
- CORRECTIVE ACTION
 - ALL PLAXIAL CABLES REWORKED AND REINSPECTED XDV-9, XDV-15, AND SUBS
 - HGA ATP EXPANDED TO INCLUDE ATT
 - HGA SHOCK DESIGN INTEGRITY TO BE VERIFIED BY PYRO SHOCK TEST XDV-13

WIDE-BEAM SKEW PREVENTED SWITCHING TO N/B

CAUSE OF BEAM SKEW

OPEN RF-PATH TO ONE WIDE-BEAM HORN

• COMPONENTS INVOLVED

• STRIPLINE

• SEMI-RIGID COAX LINE

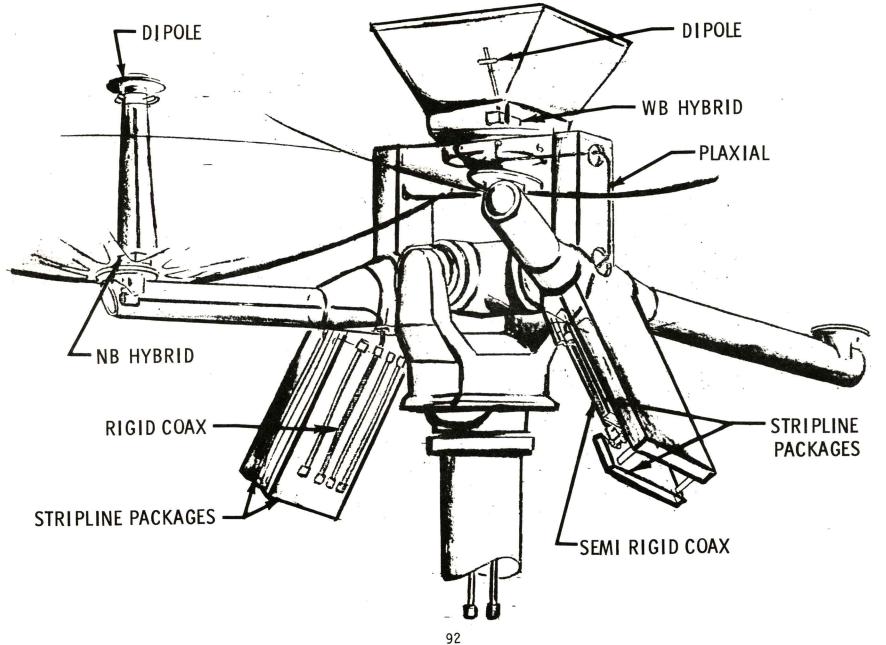
• FLEXIBLE COAX LINE (PLAXIAL)

• WIDE-BEAM HYBRIDS

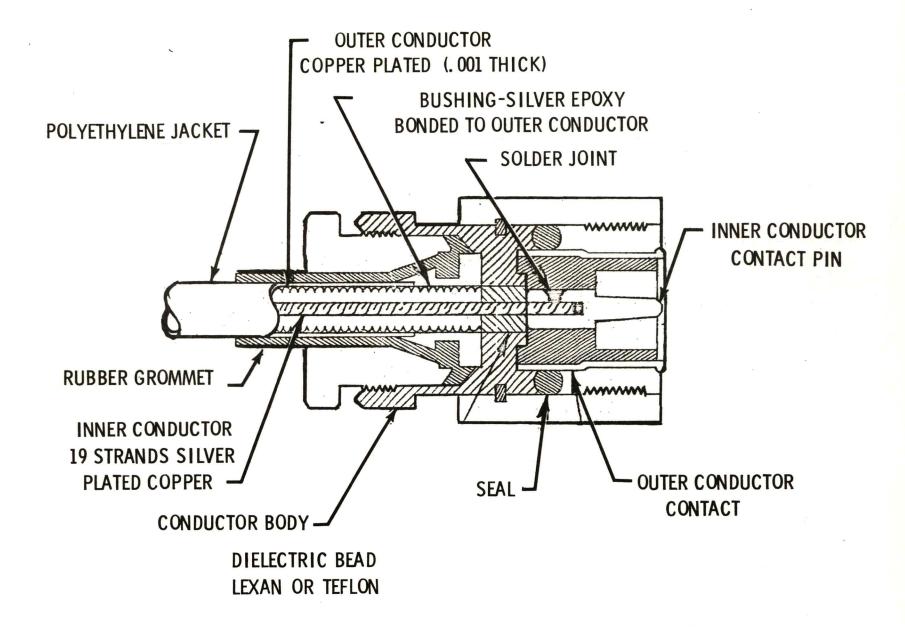
HORN

PLAXIAL LINE POOR WORKMANSHIP PROBLEM MAKE FLEXIBLE COAX LINE PRIME SUSPECT

WIDE-BEAM COMPONENT


- STRIPLINE
- SEMI-RIGID COAX
- WIDE-BEAM HYBRIDS
- HORN
- FLEXIBLE COAX (PLAXIAL)

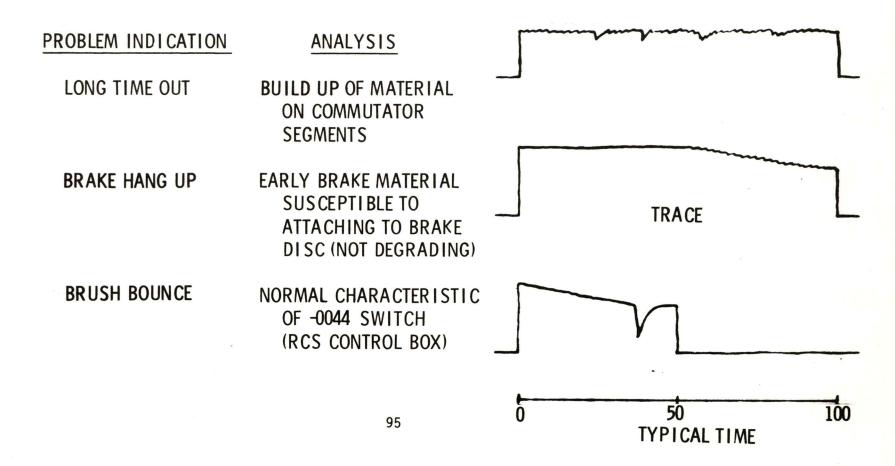
ASSESSMENT


DESIGN AND TEST HISTORY DESIGN AND HISTORY TEST HISTORY DESIGN AND TEST HISTORY DESIGN, FABRICATION HISTORY, HARDWARE INSPECTION

ASSESSMENT PROVIDED GOOD CONFIDENCE FOR COMPONENTS EXCEPT FLEXIBLE COAX

HGA WB AND NB ELEMENTS

PLAXIAL CABLE AND TNC CONNECTOR


PROBLEM RESOLUTION

- REWORK ALL PLAXIAL CABLES
- PERFORM OFF-LINE TEST ON CABLES AND HYBRID
- PERFORM ATT ON HGA WHILE RADIATING
- PERFORM PYRO-SHOCK TEST ON HGA AND RETURN TO D/V FOR COMPLETE FUNCTIONAL TEST INCLUDING ATT

MOTOR SWITCHES

ISSUE - MOTOR SWITCH DC POWER CONTROL BOX FAILED TO TRANSFER

- ANALYSIS DISASSEMBLY DISCLOSED EXCESSIVE OVERHEATING DUE TO STALL IN MIDCYCLE
 - ANALYSIS AND CYCLING TESTS HAVE DISCLOSED THREE PROBLEMS:

MOTOR SWITCHES (CONT)

CONCLUSION

CONDITION OF SWITCH CAN BE DETERMINED BY MOTOR SWITCH TRACE

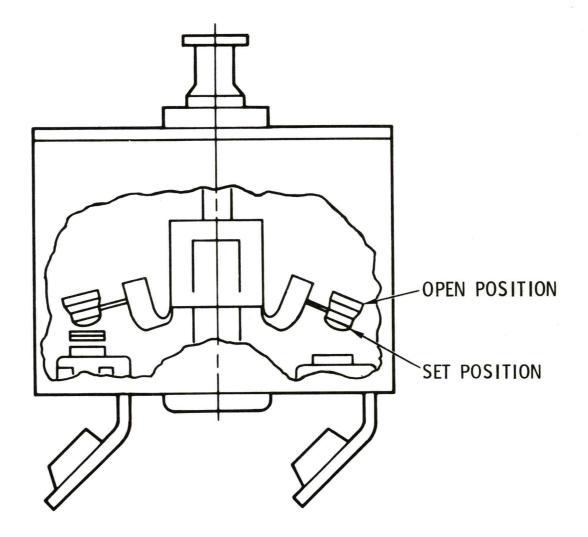
CORRECTIVE ACTION - TRACES RUN ON CSM 112 SWITCHES RESULTS AC CONTROL BOX REPLACED SPS CONTROL BOX REPLACED

APOLLO 14 CIRCUIT BREAKER FAILURE

ISSUE

CB 12 (ME454-0014-0035) ON PANEL 275 FAILED TO MAKE 'BATTERY C TO BUS B' CIRCUIT IN LATCHED POSITION

ANALYSIS


- OPEN CIRCUIT CONDITION REPEATED ON BENCH
- ADDITIONAL FORCE ON ACTUATOR BUTTON IN 'SET' POSITION RESULTED IN 'MAKE' CIRCUIT CONDITION
- X-RAY REVEALED ONE CONTACT PAIR HELD OPEN (0.003-INCH GAP)
- DISASSEMBLY DISCLOSED PRESENCE OF UNKNOWN CRYSTALLINE-LIKE MATERIAL IN ARC AREA OF THE OPEN CONTACT
- MATERIAL SUBSEQUENTLY LOST DURING PHOTOGRAPHIC
- HAVE NOT BEEN ABLE TO DUPLICATE MATERIAL
- NORMAL OPERATION AT DOWNEY AND KSC

APOLLO 14 CIRCUIT BREAKER FAILURE (CONT)

ANALYSIS (CONT)

- EXPERIENCE HISTORY OF THE ME454-0014 BREAKERS
 - 4665 UNITS MANUFACTURED FOR A POLLO SINCE 1965
 - THERE HAVE BEEN NO FLIGHT ANOMALIES EXCEPT CSM 110
 - THERE HAVE BEEN 106 FAILURES (CSM AND LM) DURING TEST AND CHECKOUT
 - NONE OF THESE FAILURES WERE OF THE UNIQUE NATURE OF THE CSM 110 FAILURE
- CONCLUSION
 - CSM 112 ACCEPTABLE BASED ON SATISFACTORY CHECKOUT

APOLLO 14 CIRCUIT BREAKER FAILURE (CONT)

SPACECRAFT ISSUES

SPACECRAFT ISSUES

- PYRO SHOCK TESTS
- LEAD AZIDE STUDY
- INTEGRATED CIRCUIT CONTAMINATION
- H₂ TANKS PRESSURE FLUCTUATION
- ECDU FAILURE
- MAIN BUS A UNDERVOLTAGE SENSOR

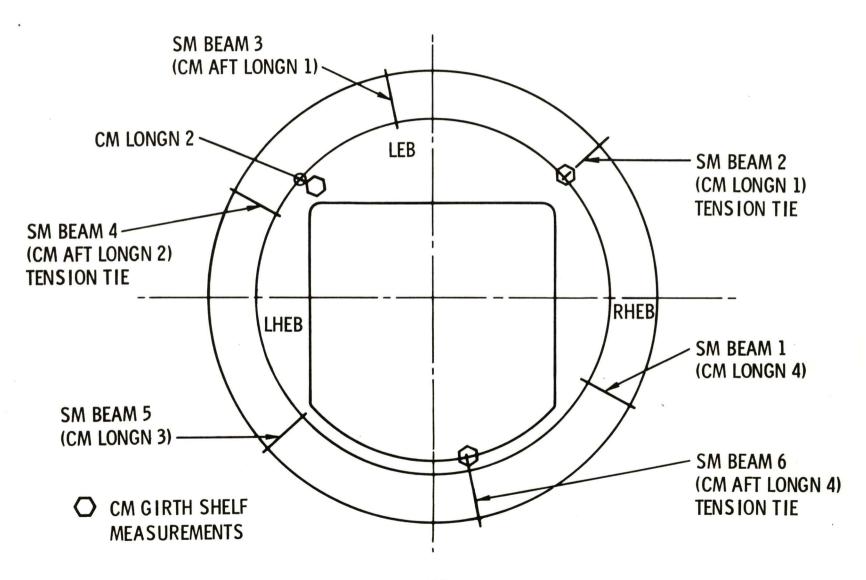
PYRO SHOCK TESTS

- SM 105 SIM DOOR SEP PYRO SHOCK TEST
 - AVAILABLE COMPONENTS ADDED TO SIM DOOR JETTISON TEST
- 2TV-2 SM/SLA SEP PYRO SHOCK TEST
 - HIGH GAIN ANTENNA
- 2TV-2 SM/SLA SEP & SIM DOOR SEP PYRO SHOCK TEST
 - REMAINING COMPONENTS
- COMPONENTS TESTED
 - J-MISSION UNIQUE (INCLUDING EXPERIMENTS)
 - SM COMMON EXPOSED TO HIGHER SHOCK
 - HIGH GAIN ANTENNA

PYRO SHOCK TEST (CONT)

 ALL COMPONENTS PASSED TEST WITHOUT DEGRADATION DUE TO PYRO SHOCK BASED ON PRE- AND POST-TEST FUNCTIONALS

SMJC AND MOM BOX RELAYS MONITORED DURING PYRO EVENT AND DID NOT CHATTER


 CWLM INTERFACE NOT AFFECTED SIM DOOR SEPARATION SHOCK IS LESS THAN 2 G's

2TV - 2 PYRO SHOCK TEST RESULTS CM RESPONSE

	g PEAK		
LOCATION	SLA	SIM	TT
GIRTH RING CM LONGN 4 (SM BEAM 6)	20	65	80
GIRTH RING CM LONGN 1 (SM BEAM 2)	25	25	80
GIRTH RING LH LEB SAME AS CM 101 LOC	25	8	* 80
DOCKING RING	5	>2	

* CM 101 FLIGHT MEASUREMENT - ASSUMED RELATIVELY UNIFORM AROUND GIRTH SHELF

CM PYRO SHOCK DATA POINTS

LEAD AZIDE STUDY

ISSUE:

USE OF LEAD AZIDE ON APOLLO RE: SENSITIVITY, GROUND & FLIGHT SAFETY

ANALYSIS: JOINT NASA/NR STUDY CONDUCTED TO EVALUATE SAFETY ASPECTS

CONCLUSION: ACCEPTABLE FOR USE ON APOLLO BASED ON QUALIFICATION, OFF-LIMIT TESTING, & FINDINGS OF STUDY

LEAD AZIDE STUDY (CONT)

LEAD AZIDE USED IN THE FOLLOWING:

EXPLOSIVE TRAINS

• SLA SEPARATION

• CSM GUILLOTINE

• UPPER LM GUILLOTINE

• LM DOCKING RING SEP

SIM DOOR SEPARATION

BLSC

DETONATORS

STANDARD DETONATOR

• LONG REACH DETONATOR

109

LEAD AZIDE STUDY (CONT)

BASIS FOR CONFIDENCE

1. OFF LIMIT TESTING DURING QUALIFICATION

• SHOCK - 8 FT DROP

• TEMP - 300 TO 350 DEG F FOR 1 HOUR

VIBRATION - UP TO 225% LIMIT

2. SPECIAL HANDLING AND STORAGE

HANDLED BY TRAINED PERSONNEL ONLY

• ALL EXCEPT BLSC CLASSIFIED AS CLASS "C" FOR TRANSPORTATION AND PACKAGING

- 3. SUCCESSFUL HISTORY ON APOLLO AND OTHER AEROSPACE APPLICATIONS
- 4. NO HISTORY OF INADVERTENT FIRINGS IN MILITARY OR AEROSPACE DUE TO SHOCK SENSITIVITY OR HANDLING QUALITIES

INTEGRATED CIRCUIT CONTAMINATION

ISSUE:

MOTOROLA (TRDC) T. I. 54L FAILURES

- 2 UNITS QUAL TEST
- 2 UNITS MANUAL SCREENING
- ANALYSIS INDICATES:
 - 2 STAINLESS STEEL PARTICLES
 - **2 PARENT MATERIAL PARTICLES**

ANALYSIS: FAILURE INVESTIGATION

- FAILURE DATE CODES 70-17, 70-20 70-30
- DATA MODULATION & DATA REPRO REC OTHER DATE CODES
- NASA AGENCY & APOLLO USERS 116,000 UNIT
- 6 FAILURES REPORTED IN 116 K UNITS
- 5492 APOLLO UNITS AVT TESTED
- 248 UNITS FROM FAILED DATE CODE AVT TESTED
- 356 UNITS FLOWN SATISFACTORILY ON LM

INTEGRATED CIRCUIT CONTAMINATION (CONT)

FAILURE EFFECT

DATA MODULATOR - 18 I/C'S

- 2 CALIBRATE MODE NO DATA LOSS
- 16 PHASE MODULATED SUB-CARRIERS (3)
- I/C FAILURE-LOSS OF RELATED SUB-CARRIER & DATA CHANNEL

DATA RECORDER REPRODUCER - 14 I/C'S

• I/C FAILURE-LOSS OF EITHER OF TWO RECORDED DATA CHANNELS

TRDC - 152 I/C'S

- 51 I/C'S AUTOMATIC SWITCH TO BYPASS
- 101 I/C'S REQUIRE GROUND COMMAND TO BYPASS TRDC (CAPABILITY ADDED BY E0796690)

INTEGRATED CIRCUIT CONTAMINATION (CONT)

CONCLUSIONS: • FAILURE INCIDENCE LOW

• BYPASS CAPABILITY ADDED. TRDC

• FAILURE DOES NOT JEOPARDIZE VEHICLE OR CREW

• NO FURTHER ACTION CSM 112 ACTION:

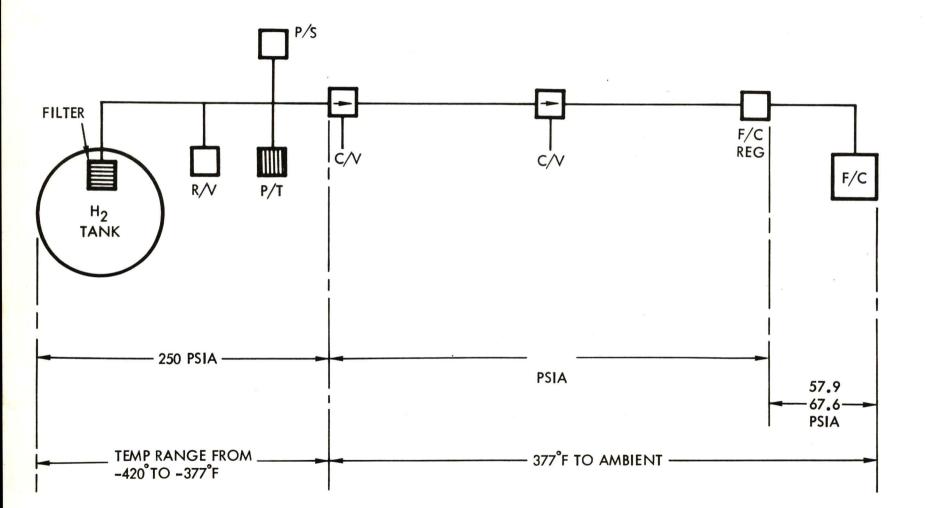
H₂ TANKS PRESSURE FLUCTUATIONS - CSM 112

ISSUE: DURING 0005 C/O PRESSURE IN ALL THREE H₂ TANKS FLUCTUATED

SEQUENCE OF EVENTS:

- HIGH H₂ FLOW (100 AMP LOAD ON FUEL CELLS)
- FUEL CELL PURGE FLOW (APPROX 3 MINUTES)
- FUEL CELLS ON OPEN CIRCUIT
- PRESSURE FLUCTUATIONS STARTED 1 MINUTE AFTER F/C ON OPEN CIRCUIT

ANALYSIS:


- H₂ TANK NO. 3 PRESSURE FLUCTUATED ±7 PSI AT 2 CPS
- H₂ TANKS NO. 1 & 2 PRESSURE FLUCTUATED AT <1 CPS
- CSM 110 TANKS NO. 1 & 2 SHOWED SIMILAR FLUCTUATIONS DURING COUNTDOWN (DURATION 2 MIN - 40 SEC LOW FLOW CONDITIONS)

H2 TANKS PRESSURE FLUCTUATIONS - CSM 112 (CONT)

ANALYSIS:

- BULK FLUID TEMP WAS -420°F, FLUID OUTLET TEMP WAS -377°F
- WITH F/C ON OPEN CIRCUIT SYSTEM WAS DEAD ENDED BETWEEN TANK & F/C REGULATOR
- REVIEW OF INSTRUMENTATION DATA REVEALED NO ANOMALIES
- FUEL CELL REGULATED PRESSURE WAS STEADY
- PRESSURE FLUCTUATIONS WERE BELOW NATURAL LINE FREQUENCIES (6.6 CPS)
- NO HISTORY OF PRESSURE FLUCTUATIONS DURING GASEOUS CHECKOUT AT DOWNEY & KSC
- NO HISTORY OF PRESSURE FLUCTUATIONS DURING MISSION

SIMPLIFIED SYSTEM SCHEMATIC

H2 TANKS PRESSURE FLUCTUATIONS - CSM 112 (CONT)

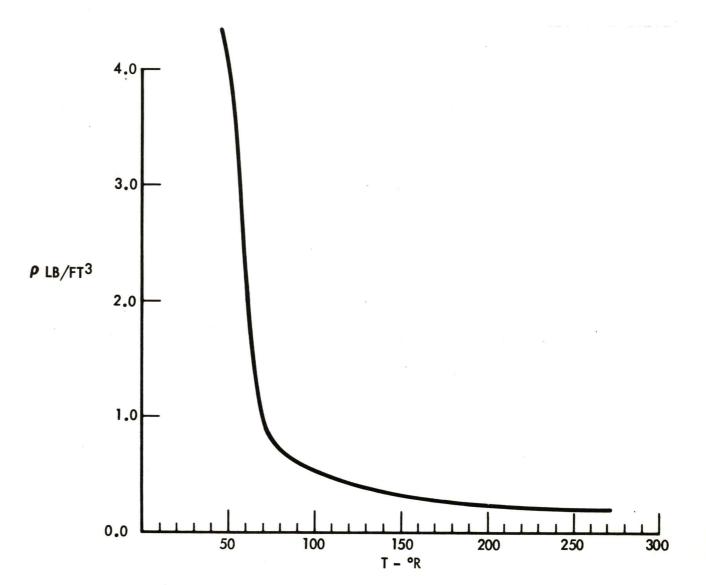
ANALYSIS:

 ASSUME 1.0 SCCH LEAKAGE THROUGH CHECK VALVE. STARTING AT 250 PSI & RAISING THE TEMPERATURE FROM -377°F TO +70° F THE PRESSURE IN THE LINE WILL REACH 2275 PSIA

CONCLUSION:

- PRESSURE CYCLES ARE MOST PROBABLY CAUSED BY RAPID EXPANSION & CONTRACTION OF ''BUBBLES'' (WARM GAS) WITHIN THE FLUID
- "BUBBLES" ARE CAUSED BY THE INCREASED HEAT TRANSPORT PROPERTIES OF THE FLUID NEAR THE CRITICAL TEMPERATURE REGIME
- AT A FLUID DENSITY OF 2.5 LB/FT³ AT 250 PSIA, A 5° TEMP INCREASE WILL RESULT IN A DENSITY CHANGE OF 1.0 LB/FT³

H2 TANKS PRESSURE FLUCTUATIONS - CSM 112 (CONT)

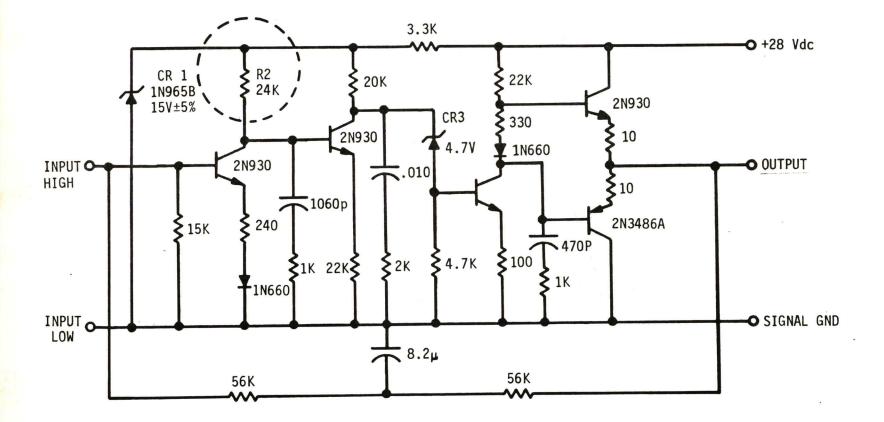

CONCLUSION:

- CONDITION IS INFLUENCED BY DENSITY, TEMPERATURE, PRESSURE, FLOW OR NO-FLOW
- SYSTEM OPERATION WAS NOT REPRESENTATIVE OF NORMAL FLIGHT OPERATION (DEAD ENDED SYSTEM)
- PRESSURE CYCLES ARE NOT EXPECTED TO OCCUR DURING NORMAL SYSTEM OPERATION

CORRECTIVE ACTION:

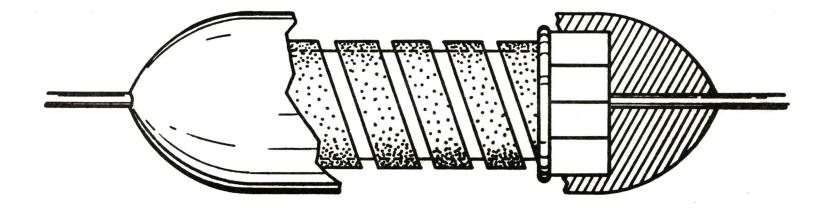
• IF PRESSURE CYCLES OCCUR, MANAGEMENT OF SYSTEM, i.e. ONE, TWO OR THREE TANK OPERATION, PLUS PURGING, CAN BE USED TO CORRECT THE CONDITION

DENSITY OF H2 VS TEMPERATURE AT 250 PSIA


APOLLO 15 ECDU - 44 FAILURE

- OPTICS TRUNNION SERVO TESTED GOOD ON JUNE 10, 1971
- LIGHTNING STRUCK VEHICLE 1730 HOURS MONDAY, JUNE 14, 1971
- SUBSEQUENT CM G&N INDICATIONS
 - ECDU FAIL ALARM 'ON'
 - TRUNNION FINE ERROR SIGNAL SATURATED ON TM
- REMOVED ECDU-44 AND RETURNED TO FACTORY FOR MALFUNCTION ISOLATION

ECDU FAILURE (CONT) FAILURE VERIFICATION AND DIAGNOSTIC ANALYSIS


- FAILURE VERIFIED AT THE BLACK BOX LEVEL
- FAILURE ISOLATED TO AN OPEN RESISTOR
- COULD BE MADE INTERMITTENT BY APPLYING PRESSURE TO COMPONENT BEFORE REMOVAL FROM MODULE
- NO EVIDENCE OF HEAT DAMAGE
- OTHER COMPONENTS WOULD HAVE BEEN DAMAGED IF CAUSE WAS VOLTAGE TRANSIENT

ECDU FAILURE (CONT) GLASS SUBSTRATE RESISTOR

100-PERCENT OVERSTRESS SCREEN x 1-1/2 RATED WATTAGE FOR 24 HOURS

ECDU FAILURE (CONT) P/N 1006750 GLASS SUBSTRATE RESISTOR

USAGE CM 6261 PER G&N

LM 6103 PER PGNCS

TOTAL PART OPERATING HOURS 204, 371, 518

30 FAILURES DURING MANUFACTURING PROCESS PRIOR TO ACCEPTANCE

• INDUCED AND SCREENED

2 INDUCED FAILURES IN FIELD

 THIS IS THE ONLY POST ACCEPTANCE FAILURE EXPERIENCED

MAIN BUS A UNDERVOLTAGE SENSOR

DID NOT FUNCTION AT 26-VOLT LEVEL DURING RETEST

DATA REVIEW INDICATED SENSOR WAS NOT WORKING PROPERLY AS EARLY AS JUNE 11

SENSOR TO BE REMOVED ON JUNE 23 AND FAILURE ANALYSIS PERFORMED

GENERAL STATUS

GENERAL STATUS

- ***** MATERIAL TESTING
- ★ LIMITED LIFE SUMMARY
- * AGE-LIFE SUMMARY
- ★ OPEN FAILURES SUMMARY
- ***** OPEN PROBLEM TRENDS
- ★ CERTIFICATION SUMMARY
- * REUSED HARDWARE SUMMARY
- * SINGLE FAILURE POINT SUMMARY
 - ICD STATUS SUMMARY
 - AVT/ATT SUMMARY
- *

 NONMETALLIC MATERIAL SUMMARY
 - PREOPERATIONAL SAFETY REVIEW
 - SNEAK CIRCUIT SUMMARY
- **★ ●** RETEST OF INVALIDATED SYSTEMS
- ***** LAUNCH CRITICAL SPARES
 - SAFETY ASSESSMENT
- * ITEMS FOR PRESENTATION

MATERIAL TESTING

SIM - OUTGASSING (VCM)

TOTAL PARTS IDENTIFIED & EVALUATED 282

MATERIALS TESTED BY NR FOR WT LOSS & VCM 115

6

DEVIATIONS REQUIRED (VCMA'S)

MATERIAL TESTING CAT. 'D' SC - 112 DELTA

TOTAL TESTED TO DATE = 150

OPEN ITEMS	EXPOSURE	MATERIALS TO BE TESTED	CONF ANAL OR TEST	MATERIAL TEST COMPLETION
BOURNS AP SWITCH	SBF	THREE	C/A-018	6-25-71
SEATON WILSON Q/D	DIRECT	ONE	-	6-25-71
AIRESEARCH △P TRANSDUCER	SBF	ONE	C/A-007	7-2-71

MATERIAL TESTING CAT. 'J' (SBF) SC - 112 DELTA

TOTAL TESTED TO DATE = 77

OPEN ITEMS	MATERIALS TO BE TESTED	CONF ANAL	MATERIAL TEST COMPLETION
NAT IONAL WATER LIFT VALVE	2	C / A-020	7-2-71
SPS ENGINE	1	-	7-2-71
SPS PROBE	1	C/A-021	7-2-71
RCS ENGINE	2	C / A-023	7-2-71
PUGS POTENTIOMETER	12*	C / A-022	7-2-71
PUGS	8	C / A-022	7-2-71

* 8 SHIPPED - REMAINING 4 TO BE SHIPPED JUNE 23, 1971.

LIMITED LIFE SUMMARY

OPERATING TIME/CYCLE - MA0201-0077

	SSAD SYSTEM	NOMENCLATURE	PART / SERIAL NUMBER	QUANTITY	REMARKS
•	RCS (2.6)	RCS ENGINE	ME901-0067-0011 063600950213	1	EXCEEDED 3000 WET CYCLE REQUIREMENT DURING VALVE FLUSHING CYCLE. PROCESS SPEC OPERATIONAL LIFE REQUIREMENT IS 9000 CYCLES. DISPOSITIONED OK TO USE PER MR A134138-1

LIMITED LIFE SUMMARY (CONT)

AGE LIFE - MA0201-5695

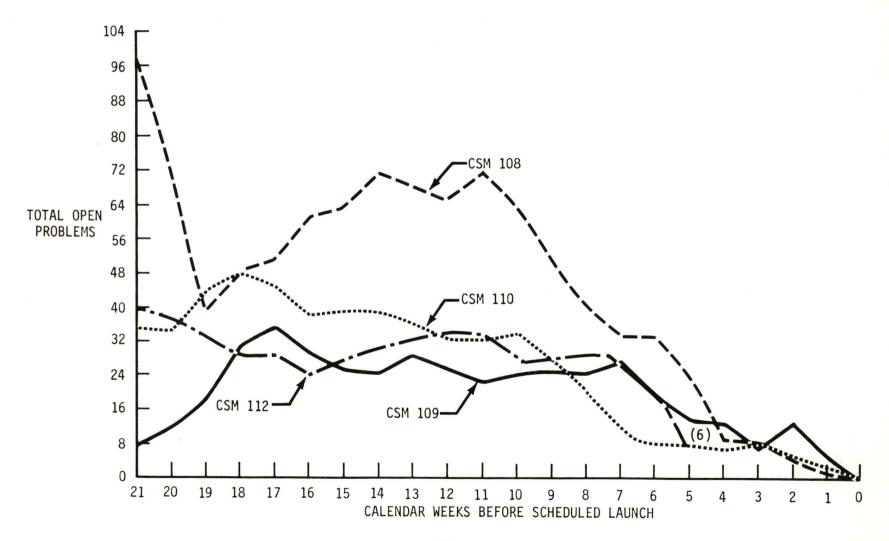
SSAD SYSTEM	NOMENCLATURE	PART / SERIAL NUMBER	QUANTITY	REMARKS
CRYO (3.20)	FUEL CELL NO. 2	ME464-0007-1002 06763P650776	1	AGE LIFE EXPIRES 5-18-71- DISPOSITIONED OK TO USE PER MR A184272-1
CRYO (3.20)	FUEL CELL NO. 3	ME464-0007-1002 06763P650782	1	AGE LIFE EXPIRES 7-29-71- DISPOSITIONED OK TO USE PER MR A184273-1

N MARKET STATES

CSM 112 AGE LIFE

- ALL CSM 112 COMPONENTS APPROVED FOR FLIGHT
- 3420 DATA PACKAGES REVIEWED TO DETERMINE WHICH PARTS OVER 3 YEARS OLD AS OF SEPTEMBER 1, 1971
- 386 PN's (1145 SN's) WERE OVER 3 YEARS OLD
- RESULTED IN ANALYSIS AND APPROVAL OF 171 ALAS PACKAGES
 - 119 CRITICALITY I, II, AND III*
 - 52 OTHER CRITICALITY III

*SIGNIFICANT CRITICALITY III PARTS ASSIGNED CRITICALITY III DUE TO REDUNDANCY.


OPEN CSM 112 FAILURES AND SIGNIFICANT UNSATISFACTORY CONDITIONS

SUBSYSTEM AND COMPONENT NAME	PROBLEM NUMBER AND FAILURE REPORT NUMBER	PROBLEM	<u>STATUS</u>
INSTRUMENTATION SIGNAL CONDITIONER ME901-0291-9034	5-296 063475	DURING CSM 112 SYSTEM CHECKOUT TEST THE TEMPERATURE MEASUREMENT SYSTEMS SIGNAL CONDITIONER WAS FOUND TO BE RADIATING A FREQUENCY BAND WITH A MODULATED FREQUENCY OF 3.3 KC. THIS WAS INTERFERING WITH THE VHF RECEIVER <u>'A'</u> (296.8 MC). PERFORMING SCREENING TEST USING SPECTRUM ANALYZER IN THE VHF RANGE. 250-400 MHz	NEW PROBLEM
STRUCTURE BOOM ACTUATING MECHANISM ME190-0005-0004	12-191 185 4 18	DEPLOYMENT BOOM BUCKLED APPROXIMATELY 3 FEET FROM HOUSING DURING APPLICATION OF INCREMENTAL LOAD TO TIP. BOOM WAS FULLY EXTENDED TO 27-FOOT LENGTH. TIP LOAD WAS BEING INCREASED FROM ONE- HALF POUND TO ONE POUND	NEW PROBLEM
DOCKING PROBE	12-192	DURING ATP ON THE CSM 112 PROBE. A SWITCH IN THE CAPTURE-LATCH MOTOR FAILED. THE MOTOR FROM THE CSM 113 PROBE WAS INSTALLED IN THE 112 PROBE	NEW PROBLEM

OPEN CSM 112 FAILURES AND SIGNIFICANT UNSATISFACTORY CONDITIONS (CONT)

SUBSYS	PROBLEM NUMBER AND FAILURE REPORT		
COMPONENT NAME	NUI1BER	PROBLEM	STATUS
DOCKING PROBE ASSEMBLY	12-188 158757	CSM 112 PROBE PRELOAD MECHANISM FAILED TO DEVELOP REQUIRED PRELOAD AT BREAK-OUT TORQUE OF RATCHET HANDLE. MEASURED PRELOAD AT RATCHET RELEASE WAS 5022 LB. REQUIRE REQUIRED PRELOAD IS 5900 ± 200 LB	PROBLEM WAS ATTRIBUTED TO A DAMAGED STUD SET. STUD SET HAS BEEN REPLACED AND FIX WILL BE VERIFIED DURING ATP
DOCKING PROBE ASSEMBLY	12-189 158760	CSM 112 DOCKING PROBE PLUNGER (SPIDER) DID NOT REACH FULL FORWARD POSITION WITHIN THE REQUIRED 500 MILLISECONDS INDICATING THE PROBE LATCHES HAD NOT LOCKED PROPERLY WITHIN THE REQUIRED TIME	PROBLEM WAS ATTRIBUTED TO FRICTION BETWEEN THE CAM CYLINDER AND THE SLEEVE. CAM EDGES HAVE BEEN BEVELED TO ELIMINATE THIS FRICTION. PROBE REASSEMBLY AND RETEST IS IN PROGRESS

CSM 112 CERTIFICATION STATUS

TOTAL TESTS REQUIRED	32
TESTS COMPLETE	28
TESTS TO GO	5

- TOTAL ANALYSIS REQUIRED 37
 - ANALYSIS COMPLETE 31
 - ANALYSIS TO GO 6

CSM 112 CERTIFICATION STATUS OPEN CERTIFICATION TESTS

	TEST	MSC
	COMPLETION	APPROVED
GAMMA RAY DEPLOYMENT MECHANISM	COMPLETE	6/22/71
MASS SPECTROMETER PROTECTIVE COVER	6/28/71	7/6/71
ALPHA X-RAY SPECTROMETER PROTECTIVE COVER	7/2/71	7/9/71
MAPPING CAMERA LASER ALTIMETER PROTECTIVE COVER	7/2/71	7/5/71
DOCKING PROBE	6/26/71	6/27/71
SUBSATELLITE DEPLOYMENT MECHANISM	COMPLETE	6/22/71
TAPE RECORDER DATA CONDITIONER	7/15/71	7/16/71

CSM 112 CERTIFICATION STATUS (CONT)

ANALYSIS	
COMPLETED	MSC APPROVED
6-25-71	6-30-71
6-25-71	6-30-71
6-25-71	6-30-71
6-25-71	6-30-71
6-25-71	6-30-71
6-25-71	6-30-71
	<u>COMPLETED</u> 6-25-71 6-25-71 6-25-71 6-25-71 6-25-71

REUSED FLIGHT HARDWARE

SSAD SYSTEM	PREVIOUSLY FLOWN ON CSM	<u>ASHUR</u> HRE	NOMENCLATURE PART NUMBER SERIAL NUMBER	ΩΤΥ	REMARKS
ECS	101 104 106 108	<u>101080 R-1</u> NOT SUBMITTED	P/N F01-610347-21 RI		UNITS ARE IN WORK REFURBISHMENT HAS NOT BEEN COMPLETED. ECD 7-19-71
ECS	101 104 106 108	<u>101080 R-1</u> NOT SUBMITTED	BUFFER AMPULE P/N F01-601347-31	16	UNITS ARE IN WORK REFURBISHMENT HAS NOT BEEN COMPLETED. ECD 7-19-71
SCS	2TV-1	2TV1003 PC5045	ROTATIONAL HAND CONTROLLER P/N ME901-0704-0702 S/N 10028CAK1036	1	SHIPPED TO KSC AS LOOSE EQUIPMENT
SCS	109	<u>109520</u> NR1056	ORDEAL SUPPORT ASSY P/N V36-311224 S/N 06362YCB9583	1	COMPLETED REFURBISHMENT & SHIPPED TO KSC ON 5-11-71
SCS	109	<u>109520</u> NR1059	ORDEAL FITTING P/N V36-311231 S/N 06362YCB9582	1	SHIPPED TO KSC ON 5-13-71
CREW	108	<u>108070 R-1</u> NR1032	CAMERA MOUNT ASSEMBLY P/N V36-752063-3 S/N 06362YCB8778	1	SHIPPED TO KSC AS LOOSE EQUIPMENT FOR 70MM HASSELBLAD CAMERA
CREW	106	<u>106530 R-1</u> TO NASA ON 5-20-71	SUIT COMPRESSOR P/N 825000-2-2 S/N 004000107169	1	INSTALLED IN VACUUM CLEANER P/N V36-612570 S/N 06362AAJ8349

CRITICAL SINGLE FAILURE POINT SUMMARY

ALL SINGLE FAILURE POINT ISSUES ARE RESOLVED

ICD STATUS SUMMARY

ICD's

STATUS

INTRACENTER

NO OUTSTANDING HARDWARE INTERFACES CHANGE CONSTRAINTS (FINAL DOCUMENTATION CHANGES IN PROCESS)

INTERCENTER

NO OUTSTANDING HARDWARE INTERFACES CHANGE CONSTRAINTS (FINAL DOCUMENTATION CHANGES IN PROCESS)

ACCEPTANCE VIBRATION TEST/ACCEPTANCE THERMAL TEST PROGRAM

ITEM DESCRIPTION	CSM 106	C SM 107	CSM 108	C SM 109	CSM 110	CSM 112
NUMBER OF COMPONENTS REQUIRING AVT/ATT	63/1	63/1	65/1	65/5	72/40	80/60
NUMBER OF COMPONENTS INSTALLED ON CSM WHICH RECEIVED AVT/ATT	71/17	71/18	72/19	72/24	72/40	80/60

SUMMARY OF NONMETALLIC MATERIALS (NMM) DEVIATIONS

DEVIATIONS APPROVED BY MSC CONFIGURATION CONTROL BOARD

	CM 106	CM 107	CM 108	CM 109	CSM 110	CSM 112
CFE	17	17	14	13	13	15
GFE	20	20	20	20	20	20
TOTAL	37	37	34	33	33	35

TOTAL WEIGHT OF DEVIATED NMM

	CM 106	CM 107	CM 108	CM 109	CSM 110	CSM 112
WEIGHT, POUNDS	64.70	64.06	63.75	49. 5	49.5	50. 86

PRE-OPERATIONAL SAFETY REVIEW

PRE-OPERATIONAL ENGINEERING AND SAFETY REVIEW WAS CONDUCTED ON ALL CSM 112 TEST AND CHECKOUT PROCEDURES TO BE USED AT THE KENNEDY SPACE CENTER. THE TEST AND CHECKOUT PROCEDURES FOR CSM 112 ARE CONSIDERED WELL PREPARED AND ACCEPTABLE FOR THE CHECKOUT AND LAUNCH OF CSM 112

SNEAK CIRCUIT ANALYSIS

OBJECTIVE

• SNEAK CIRCUIT ANALYSIS OF CSM 112 DESIGNED CONFIGURATION

SCOPE

- MAIN EMPHASIS ON POWER AND CONTROL PATH ANALYSIS, GOVERNMENT FURNISHED EQUIPMENT, AND ALL ELECTRICAL CIRCUIT CHANGES (PARTICULARLY THE SIM MOD)
- TREATED PRELAUNCH, FLIGHT, AND LANDING PHASES
- TREATED CM TO SM, CSM TO IU, LM, AND GSE INTERFACES; EMPHASIS ON CSM 110/112 DIFFERENCES

RESULTS

 4 NEW SNEAK CIRCUIT BULLETINS RELEASED - ALL NECESSARY CHANGES ARE BEING IMPLEMENTED

RETEST OF INVALIDATED SYSTEMS

 ALL CSM SYSTEMS INVALIDATED BY CHANGES AND MODIFICATIONS HAVE BEEN RETESTED AND VERIFIED BY NASA AND CONTRACTOR ENGINEERING PERSONNEL EXCEPT AS SPECIFIED BY WAIVER

CSM 112 GSE LAUNCH CRITICAL SPARES

 ALL GSE LAUNCH CRITICAL SPARES (CFE) ARE AVAILABLE AT KSC EXCEPT THE FOLLOW ING, AS OF JUNE 22, 1971

SUBSYSTEM	PART NAME	PART NUMBER	DUE DATE
S14-132 (MSS, FDS)	VALVE	451A4A-C-3013	JUNE 25, 1971
S14-132 (MSS, FDS)	HOSE ASSEMBLY	D 5479	JUNE 25, 1971
S14-132 (MSS, FDS)	VALVE	AD-916-4-3427	JUNE 25, 1971

CSM 112 SPACECRAFT LAUNCH CRITICAL SPARES

 ALL CSM LAUNCH CRITICAL SPARES (CFE) ARE AVAILABLE AT KSC EXCEPT THE FOLLOW ING, AS OF JUNE 22, 1971

SUBSYSTEM	PART NAME	PART NUMBER	DUE DATE
INSTRUMENTATION	MODULE ASSEMBLY	V36-759525-71	JUNE 23, 1971

CSM 112 SAFETY ASSESSMENT

- ALL ACCIDENTS / INCIDENTS INVESTIGATED & CLOSED
- SAFETY REVIEW OF TEST DOCUMENTS
 - DCS'S
 - SAFETY CRITICAL TPS'S
- ALL WAIVERS APPROVED
- SCREEN ALL ENGINEERING CHANGES
 - DETAILED REVIEW OF SAFETY SIGNIFICANT ENGINEERING CHANGES
 - REVISED SPECIFICATIONS APPROVED
- ALL FMEA'S APPROVED

.

- FLIGHT CREW EMERGENCY EGRESS TRAINING COMPLETED 6-10-71
- HYPERGOLICS, CRYOGENICS, & HI-PRESSURE GROUND CREW CERTIFICATION PROGRAM UP TO DATE

FLIGHT READINESS STATEMENT

CONTINGENT UPON THE RESOLUTION OF OPEN ITEMS IDENTIFIED IN THIS REPORT, OPEN WORK DEFINED IN SPACECRAFT RECORDS AND SATISFACTORY RESOLUTION OF "LIGHTNING ISSUES", CSM II2 & SLA 19 ARE HEREBY CERTIFIED AS CAPABLE OF SUPPORTING THE AS 510 APOLLO 15 FLIGHT MISSION.

and Cale

A. COHEN MANAGER for the CSM APOLLO SPACECRAFT PROGRAM OFFICE MANNED SPACECRAFT CENTER

G. W. JEFFS, VICE PRESIDENT and PROGRAM MANAGER, CSM PROGRAMS SPACE DIVISION