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A B S T R A C T  

THIS REPORT DOCUMENTS TEST RESULTS mnICATmG THAT THE ORIGINAL 
APOLLO WIRE/WIRE HJNDIE DESIGN CRITERIA FOR CURRENT-CARRYDIG CAPACITY 
IN FREE AIR /SPECIFICATION MIL-W-5088B/ RESULTED m A 10- TO 
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FOREWORD 

Significant theoretical and experimental work on 
heat t ransfer  and current-carrying capacity of Apollo 
wire/Wire bundles, in support of Contract NAS9-150, 
was conducted between May and September of 1967. 
The results of this work a r e  contained in this report ,  
which was prepared by J .  R .  Bedford, and T .  H. Seitz, 
of the Life Support and Syrstems department, and 
J. L. Schaefer, of Apollo CSM Pr0pulsion and Power 
Technology department. 
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ABSTRACT 

This report documents test resul ts  indicating that 
the original Apollo design criteria f o r  wire/wire 
bundle cur ren t -car ry ing  capacity in f r e e  a i r  (Speci- 
fication MIL-W-5088B.) resulted in a. 1 0 -  to  150- 

percent 'overdesign f o r  the Apollo power distribution 
system. While general  des ign  guides recommend 
derating the f r e e  a i r  cur ren t—car ry ing  capacity when 
operating wires  in a vacuum, tes t  results show that 
wrapped Wire  bundles required only 20 percent  derat-  
ing, and single wires required 35-  to 45-percent 
derating. Analytical results support the test findings 
fo r  environmental p r e s s u r e  levels between 2. and 
14. 7 psia. A. theory is  postulated to explain the 
enhanced wire bundle heat t ransfer  that occurred in 
the vacuum tes ts ,  with recommendations made for  
further analytical ef for ts  and testing to verify this 
theory. 
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I .  INTRODUCTION 

The dissipation of heat is  the primary factor for  establishing the 
current-carrying.  capacity fo r  electrical wiring that must Operate reliably 
under continuous overload or  transient short circuit conditions. The heat 
generated in a wire can be determined by the equation 

Where,  Q equals heat generation in watts, I equals the current  in  amperes,  
and R equals the Wire resistance in ohms. The heat generation in a wire 
increases  at a greater  rate than the current  squared because the temperature 
r i se  that accompanies the current increase, ra ises  the conductor resistance 
which increases  the heat generation further.  The cur ren t—carry ing  capacity 
is  normally limited to an overload o r  short  circuit condition that resul ts  in 
temperature levels which cause  the insulation to b reak  down, or cause the 

conductor to fuse.  Comrhon practice for  commercial applications is the use 
of overs ized conductors,  heavy insulation jackets over the conductors,  and 
wide spacing between the wires.  However, a number of constraints asso-  
ciated with the Apollo spacecraft and its mission had to be considered before 
the electrical distribution system could be designed. The significant 
considerations involving the heat transfer for  the spacecraft wiring a re :  

1. Spacecraft weight limitations require that the c0pper conductor be 
selected for  each circuit with a minimum of overdesign. The 
Block 11 Apollo wire insulation, consisting of an extruded thin wall 
TFE Teflon jacket with an outer coating of poly-imide, was selected 
as  possessing the best  combination of low weight and high tempera- 
ture capability. A similar insulation (FEP Teflon) was originally 
recommended f o r  Surveyor (Reference 1 ) .  However, the thin 
wall insulation places a greater  constraint on the conductor ' s  
current-carrying capacity than a. heavier, thicker insulation 
would, when applying the design limit of 400 F fo r  the maximum 
surface temperature within the spacecraft. 

2. ‘It i s  necessary  to u se  several smaller wires in parallel rather 
than a single wire in many spacecraft  circuits to improve the 
reliability of transmitting the power/signal, and to provide flex- 
ibility for installing wires in relatively inaccessible a reas .  An 

I - l  
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overload condition occurring in a. smaller wire results in higher 
wire temperature because of the higher res is tance ,  lower heat 
storage capacity, and smaller surface area of the wire. In addi- 
tion, the limited space fo r  routing Wiring necessitates many wires 
being tied together to  form large wire bundles. General design 
practice (Reference 2) f o r  wire bundles consisting of Teflon 
insulated wire indicates ZO-percent derating for  a bundle of 3 to 5 
wires, 30-percent derating f o r  5 to  15 wires and 40-percent fo r  
15 to 30 wires. However, these derating factors do not cover 
many of the Apollo wire bundles, some of which contain in excess  
of 200 wires .  

The environment for  the wiring during a. space flight is  very 
different than that which normally exists on earth. The environ- 
ment in the Apollo cabin during space flight normally consists of 
loo-percent oxygen at 5 psia. This environment not only requires 
more rigorous control of high temperature Operations to avoid f i re  
hazards ,  but provides l e s s  heat t ransfer  by convection than air  at  
14. 7 psia. However, this reduction i s  small compared to  the loss 
of free convection due to ze ro  or low gravity, that exists throughout 
Spaceflight, or  due t o  the m o r e  severe  condition of space  vacuum 
that could exist in the Apollo cabin during short periods of astro-  
naut extravehicular activity, or for  as long as  100 hours if the 
cabin sustained a. nonrepairable micrometeroid puncture. 

As a result of the level of complexity and the small degree of actual 
experience presently existing in spacecraft  wiring design, a. 
theoretical and experimental program was conducted. This pro- 
gram was designed to  determine the criteria f o r  sizing Apollo wire 
and wire bundles for  overload/short  circuit conditions. The 
results of this study, which a r e  documented in this repor t ,  may be 
applicable to the design of wiring systems f o r  future Spacecraft. 
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|| . SUMMARY 

The continuous-duty f r e e  air current-carrying capacity of Wires  and 
cables, a s  defined in Table I of Specification MIL-W-5088B (Reference 3) ,  
was used as the original criteria. for. Apollo wire/Wire  bundle design. In 
addition t o  f r e e  air,  the Apollo Spacecraft  wiring had to be designed to 
Operate in environments of l oo -pe rcen t  oxygen at 5 psia, and in a. space 
'vacuum. Analyses and testing to  establish the current-carrying capacity of 

single wires and wire bundles fo r  these Apollo environments a r e  summarized 
in this report. Comparison of the test  results for  single wire current-  
carrying capacity, tabulated in SectionIIII,with the Specification MIL-W-5088B 
criteria indicates that the Apollo wiring i s  overdesigned by 70 to  150  percent 
fo r  free-air Operation, and even after vacuum derating, by 10 to  50 percent. 
The overdesign factor is even greater when comparing the wire bundle test 
results tabulated in Section V with the MIL-W-5088B wire bundle criteria. 
The Apollo wire bundles a r e  overdesigned by 280 t o  415 percent f o r  f r ee - a i r  
Operation, and by 100  t o  240 percent  f o r  vacuum Operation. 

The ma jo r  portion of the theoretical study and testing was directed 
toward determining the electrical current levels that would cause a. single 
Wire, alone or in close contact with other wires,  to  Operate at 400 F under 
vacuum conditions. While test  results indicate 35- to  45 -percent derating 
i s  necessary  f o r  a. single wire Operating alone in a. vacuum, analysis of 
idealized wire bundles carrying nominal currents ,  indicates that a. lesser 
degree of derating is necessary  for  the single overloaded wire in a. bundle 
Operating under f r e e  air or vacuum conditions. Test results for  three 
typical Apollo Wire bundles confirmed this analysis f o r  the 14. 7 and 5. 0 psia. 
environments. 

The higher current-carrying capacity for  a wire in ”a lightly-loaded 
bundle is the result of gaseous conduction that provides a. low resistance 
path f o r  the heat flow away f rom the overloaded conductor t o  the surrounding 
wires. However, test  results fo r  wire bundles operating in a vacuum indi- 
cated significantly higher current-carrying capacities than predicted by 
analysis, which assumed no gaseous conduction below the environmental 
pressure  level of 0 .  1 Torr .  The derating factor f o r  wire bundle Operation 
in the vacuum t e s t s  was found to be 20 percent when the wire bundle was 
wrapped with a. continuous overlapped outer wrap of Teflon tape. These 
lower wire temperature measurements could not be explained by the most 
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Optimistic estimates for  radiation, contact, and solid conduction. Gaseous 
‘ conduction appears to be the only feasible explanation for  the enhanced wire 
bundle heat transfer. While the identification and source of the conducting 
gas has not been established, a 100 -hour vacuum test  has shown the heat 
t ransfer  to remain constant in the 1 x 10 '6  Tor r  vacuum, long after the 
outgas sing of absorbed air and moisture f rom the insulation should have 
been complete. Recommendations for  further testing and analysis a re  made 
in Section VII of this report. If the mechanism of gaseous conduction can be 
identified and its effectiveness quantitatively determined, appreciable reduc- 
tion can be made in the weight of electrical wiring for  spacecraft applications. 
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I I I .  SINGLE WIRE TEST/ANALYSIS 

A series of tests were conducted using single wire specimens of 
American wire gauge (AWG) s izes  4, 6 ,  8, 12, 16, 20, 22,  and 24, manufactured 
in accordance with Apollo Procurement Specification MB 0150-035. While 
the testing included measu remen t s  of conductor res is tance ,  dielectric with- 

standing voltage, and transient short circuit resPonse, only the major  test  
objective fo r  establishing the wire current-carrying capacity f o r  the Apollo 
environments will be discussed herein. Each test  Specimen was subjected to 
an environmental temperature  of 100 :l: 1 0  F, at three p re s su re  conditions: 
(1) air at 14. 7 psia, (2) oxygen at 5 psia, and (3) 1 x 10"6  Torr. Each speci; 
men was ten feet long and was instrumented a s  shown in Figure III-1. 

:‘ 10 FEET ; 

T 1 T 2  T3 T4 T5 

6 INCHES —-"l w t — é  INCHES 

1 6  INCHES 
T ‘ — 6  INCHES 

t 5 FEET 

THERMOCOUPLES ON INSULATION OUTER SURFACE: T1, T3 AND T5 

THERMOCUOPLES O N  CONDUCTOR OUTER SURFACE: T2 AND T4 

Figure III-1. Single Wire Thermocouple Location 

The concentration of thermocouples at the mid-length of the specimen reduced 
the eer  caused by axial conduction heat t ransfer .  Environmental tempera- 
tures of 200  and 3 0 0  F w e r e  also u s e d  in the 14.  7 psia t e s t s ,  with # 2 0 ,  # 2 2  
and #24 AWG Specimens. The test  reéults shown in Figures III-2, III-3, and 
III-4 indicate that the change in conductor temperature is relatively constant 
for  the three levels of environmental temperature with a. given current level 
change. Therefore, the 200 and 300 F levels were not applied in subsequent 
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runs. The test procedure consisted of applying current in increments of 
50 percent of a. specific value for  each Specimen. The current was main:- M 
tained at that increment until the specimen temperature was stabilized and 
the data were recorded. The current then was removed and the Specimen 
allowed to  c'ool to the environmental temperature. The current  level then 
was increased by another 50 percent increment, and the procedure was 
repeated. When a stabilized conductor temperature level above 500 F was 
reached, the testing of that specimen was concluded. In this manner,  the 
eight specimens were tested in the three pressure  environments, 14. 7 psia 
air, 5 psia. oxygen, and 1 x 10"6 Torr vacuum, and in that order.  The data, 
consisting of two conductor and three insulation temperature measurements 
fo r  each specimen, were averaged and plotted. Figures III-2 through III-9,  
inclusive, contain plots for  14. 7 psia air; Figures III-10 through III-17, 
inclusive, contain the plots for  5. O psia oxygen; and Figures III-18 through 
III-25, inclusive, contain the plots for  1 x 10 '  Tor r  vacuum. Table 111-1 
giVes the current levels obtained which cause an equilibrium temperature of 
400 F on the wire conductor during testing. Figure 111- 26 depicts graphically 
the derating factors based on Table III-1. 

Table 111-1. Current-Carrying Capacity* 
for Single Wire ' 

14. 7 Psia-Air 5 Psia-100% Oxygen 1 x 10 '6  Torr Vacuum 

Wire Size Current Current Current 
(AWG) (ampS) (amps) (amps) 

4 280 258 190 
6 .207  ‘ ‘ 180 138 
8 150 _ 134 103 

1 2  7O 65 46 
1 6  4.4 . 38. 5 ‘ . 2 5  
20 28 25 16 
22  21 18. 2 11 . 7 
2 4  14. 3 13.  1 8.  5 

* Current-carrying. capacity is based on a 400 F conductor temperature in 
a 100 F environment. ‘ 
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An average derating factor of 10 percent for  the 5-psia oxygen environment 
is  sufficient for  ground operation with f ree  convection, while 35 to 45 pe r -  ' 
cent is  required f o r  vacuum operation. However, the current-carrying 
capacity of a single Wire Operating in 14. 7 psia air ,  which was demonstrated 
in test and tabulated in Table III-1, is  70 to 150 percent higher than that 
shown in Table 111-2 (the original Apollo design criteria f rom MIL- W- 5088B). 
Even under the most stringent test condition, vacuum operation, the 
Table III-2 single wire current-carrying capacity is  10 to 50 percent 
conservative. 

Table 111-2. Current-Carrying Capacity* of Wires  and 
Cables—From Specification MIL-W-5088B** 

Continuous-Duty Current (Amperes) 

Wire Size Wires  and Cables in 
(AWG) Single Wire in Free Air Conduit o r  Bundles 

4 135 80 
6 101 60 
8 73 46 ‘1 

12  41 23 { 
16 22 , 13 Z 
20 11 7. 5 
22 - 5 i 
24 - - 

*Current-carrying capacity i s  based on a. 400 F conductor tempera- 
ture in a 315 F environment. 

**MIL-W-5088B, Military Specification Wiring, Aircraft ,  Installa- 
tion of,  dated 18 June 1956 has been superseded by MIL-W-5088C, 
dated 26  May” 1965. However, table values remained unchanged. 

The major reason f o r  this difference i s  the result of the ambient tem- 
perature of 315- F, which i s  assumed in MIL-W-5088B, and the 100  F used  
for the Apollo design. 

It should be noted that the temperature difference between the conduc- 
tor and insulation measurements shown in Figures III-Z through III-25, 
inclusive, should not be u sed  to determine the heat t r ans fe r  res i s tance  
ac ross  the wire insulation. Analyses using the average rate of heat dissipa- 
tion indicated significantly higher resistance values f rom the test  data than 
those determined by theory. Since the resistance increased with reduced 

III-28 
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pressure, photomicrographs of the cross-section of several wires were 
made to determine if air gaps existed between the conductor strands and 
the inner surface of the Teflon insulation. A s  shown in Figure III-27, the 
cross-section of a #20 AWG wire, magnified many times its actual-size, 
the extruded Teflon is  in close contact with all of the exterior strands of 
the conductor, and therefore, no significant difference in insulation heat 
transfer resistance should occur with environmental pressure change. 
The difference in resistance was finally resolved when the contribution of 
the thermocouple leads to the test specimen's heat transfer was evaluated. 
Heat conduction into the thermocouple leads and radiation f rom these leads 
caused a significantly higher local heat transfer than the average heat 
dissipation, especLally for  the smaller wire sizes in the 5 psia and vacuum 
tests ,  \vhere little orxno free  convection occurred. Therefore, the 

CONDUCTOR 
(NICKEL-P LATED 
COPPER STRANDS)\ 

fTFE TEFLON " 

INSULATION4 
POLY! MIDE - ; ‘_ 

Figure III-27. Photo-Micrograph of #20 AWG Wire Cross-Section 

resistance calculations, in which an average rate of heat transfer was 
assumed, should have used the higher local heat-transfer ra tes ,  thereby 
resulting in lower computed values for insulation resistance. As the heat 
transfer resistance path fo r  the insulation is higher than f o r  the conductor, 
a greater error occurs in the measurement of the insulation outer surface 

III-29 
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temperature than in the measurement of the conductor temperature. This 
was verified using the vacuum test data, which before correcting for  the heat 
t r ans f e r r ed  to the thermocouple leads required an emissivity greater  
than the theoretical value of 1.0 for  the radiation heat balance, using the. 
measured insulation temperature,  a s  shown in Figure III-28. By contrast ,  
a comparison of the average measured conductor temperatures with the 
required theoretical temperatures f o r  various emissivities, indicates the 
closest fit fo r  an emissivity of O. 95, which at high temperature is in the 
expected range of O. 8 to 1. 0 fo r  insulation emissivity. Thus, the failure 
to properly isolate the instrumentation from the basic heat t ransfer  of the 
specimen required the use  of the measured conductor temperature as  the 
best  indication of the true insulation surface temperature for  establishing 
current-carrying capacity under vacuumconditions. In Section IV it will 
be shown that this uncertainty in the true temperature of the radiating sur -  
face  i s  of little significance in determining total wire bundle heat transfer. 

III-30 
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IV. IDEALIZED WIRE BUNDLE 

Various arrangements of wires were examined to develop an ideal- 
ized wire bundle for  the purpose of heat t ransfer  analysis. The wire 
configuration shown in Figure IV-l was selected because this arrangement 
represented the maximum packing density f o r  heat t ransfer  by contact 
conduction, gaseous conduction, and radiation. The primary purpose of 
this phase of the analysis was to determine the Contribution of each of these 
modes (alone and in combination) on the t ransfer  of heat f r om an overloaded 
center  wire to the surrounding environment. The analytical results were  
not intended for  use  in establishing the current-carrying capacity fo r  Wires 
in bundles, but to be used  for  the purpose of quantitative comparison. I 

The idealized bundle was assumed to consist of three hundred sixty- 
seven # 2 0  A W G  wires ,  resulting in a wire  bundle diameter of approximately 
one inch (about the same size a s  bundles which at that time were being 
prepared fo r  tes t ) .  The bundle model used in the digital computer program 
consisted of the pie-shaped segment of one-sixth of the circular area  shown 
in Figure IV-l. The numbered elements shown in Figure IV-l represent 
each of the Wires a s  the nodes used in the program, while the necessary 
boundary assumptions were  made in the resistance values to co r r ec t  f o r  
the symmetrical partitioning of the complete wire bundle. Two-dimensional 
heat t ransfer  analyses were  performed after the radiation, contact, and 
gaseous  conductance values (o r  range of values) were  determined. 

As  shown in Figure I V - Z ,  the idealized wire bundle configuration 
presen t s  a th ree -s ided  symmetrical enclosure ,  s o  that the geometric View 
fac tors  between sur faces  a r e  of equal value, 0 .  5. Because the emissivity 
and sur face  a r e a  of the three  wires a r e  equal, the radiation interchange 
factors  a r e  equal, and can readily be determined by the Wye-delta relation- 
ship shown in the radiosity network of Figure IV-Z. 

The same geometric relationship was used to establish the gaseous 
conductance values between wires .  Thermal conductivity, as  a function 
of temperature and p ressure ,  was assumed to be in accordance with 
Figure IV-_3 which is  based upon the interstitial nitrogen gas p r e s su re  
function cited in Reference 4. A s  illustrated in Figure IV-3,  the thermal 
conductivity i s  independent of p r e s s u r e  at levels g rea te r  than 13:10"1 Torr, 
and less than 1x10 '4  Torr .  Thus, the maximum values f o r  thermal con- 
ductivity at specific temperatures were used to establish the gaseous 
conductance value! f o r  the 5. 0 and 14. 7 psia environments, and a value of 
z e ro  was assumed f o r  gaseous conductance at 11:10"6 Torr.  

IV- l  
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TYPICAL VIEWING SURFACES: 

WIRE I WIRE 2 

I I I  

WIRE 3 

RAD IOSITY NETWORK : 

WIRE 1 . WIRE 2 

WHERE: 
€=EMB$VHY " ‘ 3  
A = AREA (£A)3 
F = VIEW FACTOR 

WIRE 3 
Figure IV-Z. Radiation Interchange Model 
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The definition of contact conductance presented  the most difficult 
problem in the analysis of the idealized wire bundle. The ability to conduct 
energy across the solid contact interface between Wires  i s  dependent upon 
the contact a r e a  and the contact interface resistance. For the idealized 
Wire bundle, the contact a r e a  was assumed to be continuous along the length 
of the bundle, with the minimum contact Width defined a s  the chord,  com- 
mon to two circular wires that subtend a 5 - d e g r e e  circular  a r c ,  and f o r  
the maximum width, a cho rd  subtending a. 2 0 - d e g r e e  circular arc. It also 
was n e c e s s a r y  to a s  sume‘a  range f o r  the value of contact interface r e s i s t -  
ance f o r  the Teflon/polyimide insulation jacket. A range of 5. 0 to  50. 0 Btu/  
hour-square  foot-degree  F was selected, based upon information given 
in R e f e r e n c e  5 ,  f o r  contact conductance of materials  in a vacuum. Three  
values f o r  contact conductance were  determined f r o m  this data: ( 1 )  "bes t ,  " 
based upon the maximum contact area  and minimum interface resistance, 
( 2 )  "poor ,  " based upon the minimum contact a r e a  and maximum interface 
r e s i s t ance ,  and ( 3 )  ”nominal, " which was based  upon mid-range values 
of contact area  and interface res is tance.  

Six analytical c a s e s ,  representing various combinations of heat 
t r a n s f e r  modes ,  w e r e  evaluated under the identical condition of overload 
current  and environmental temperature.  The resul ts  of these analyses 
(Figure IV-4) relate the equilibrium temperature of the center #20  AWG 
wire (Node 1 ) ,  carrying a 30-ampere  current  in a 75  F environment. In 
all c a s e s  shown in Figure IV-4 ,  including ( 1 )  and ( 2 )  which r e p r e s e n t  s e a  
level Operation, heat t ransfer  by convection was ignored. The importance 
of gaseous conduction can be seen in comparing cases  (1) and (2). Equilib- 
rium tempera ture  in c a s e  ( 2 ) ,  depending solely on gaseous  conduction, was 
only 18  F higher than that f o r  c a s e  ( 1 ) ,  which had the "bes t "  contact con-  
ductance and "nominal" radiation, in addition to gaseous  conduction. Again, 
the importance of gaseous conduction can be seen in case  (3) where, with 
gaseous  conduction eliminated, the temperature r i se  above the environment 
i s  approximately four  times that found in case  ( 1 )  with gaseous conduction. 
In cases  (3 ) ,  (4) ,  (5). and ( 6 ) ,  where gaseous conduction was assumed to 
have no effect ,  contact conductance was found to have the grea tes t  influence 
on equilibrium temperature.  The equilibrium temperature i s  almost 300 F 
higher in case  (4 ) ,  using the "nominal" value of contact conductance, and 
almost 500 F higher in case  (5) with the "poor" value, than the equilibrium 
temperature in case (3) ,  using the “best" value. While these results could 
not be u s e d  to analytically establish the current-carrying capacity of 
#20  AWG wire in a bundle, the resul ts  were  used  to establish the following 
qualitative relationships before the wire bundle test program was started: ' 

1. The center wire in a nominally loaded Apollo Wire bundle will 
operate at a lower temperature than a single Wire of the same 
size at sea  level and 5 psia oxygen environments. 

I‘V-S 
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Figure IV-4. Idealized Wire Bundle Analytical Results 
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2. Under vacuum conditions, the contact between wires will be the 
primary factor  in determining the equilibrium temperature of 
the center wire. . A continuous outer wrap of Teflon tape which 
maintains the wires in closer contact than normal spot-ties 
every two inches along the length of the bundle would result in 
lower temperature Operation. 

3. Radiation has little effect on total heat transfer below 400 F. 

4. The loss of gaseous conduction_under vacuum conditions necessi-  
tates derating wrapped and unwrapped Wire bundles to approxi- 
mately the same levels a s  f o r  single wires under vacuum. 

This last prediction was proved wrofig fo r  wrapped wire bundles in 
subsequent tests  which a re  reported in following sections. 

;v-7 
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V. WIRE BUNDLE TESTING 

Three wire bundles, simulating actual bundles used in the Apollo 
Spacecraf t ,  we re  tested to  determine the level of overload cu r ren t  that 

could be ca r r i ed  by a. single wire at the center of each bundle. Each 
bundle was tes ted under the same environmental conditions~as the single 
wire specimens, 100 F in 14. 7 psia air ,  5. 0 psia oxygen, and 1x10'6 Torr 
vacuum. Each bundle had five thermocouples attached to the center in a 
manner shown in Figure V-l. Thermocouples 2 and 4 were located on the 

INSULATION 

CONDUCTOR 

. INE WIRE WRAP 

THERMOCOUPLES ARE THREE INCHES APART WITH NO. 3 AT MIDLENGTH 

Figure V - l .  Thermocouple histallation on Central Wire in 
Wire Bundle Test Specimen 

conductor,  and thermocouples 1 ,  3 ,  and 5 w e r e  located on the insulation. 
Five other thermocouples were.  located within the bundle (Figure V - Z ) ,  and 
installed in a similarfashion a s  thermocouples 1 ,  3 ,  and 5 ,shown in 

Figure V-l. ' 

Wire bundle Test Specimen A simulated the Apollo cable designated 
as  Panel 2-J'2/P422, and consisted of 16 #24 AWG wires, 31 # 2 2  AWG 
wires, and 42 #20  AWG Wires. . A constant load of 0.  4 ampere was main- 
tained on each of nine #24 AWG wires, and 0. 6 ampere was maintained on 
each of 24 #22  AWG Wires and 2 5  #20 AWG wires. The overload current  
was imposed on the center # 2 2  AWG wire, following the same procedure a s  
was used for  the # 2 2  AWG single Wire test. The wire bundle was f irst  
tested as_it i s  normally spot-tied Without an outer Teflon tape wrap. After 
testing the bundle in the three environments, the bundle was wrapped 
externally with a Teflon. tape, without removing the original ties. The 

.tape, which was approximately 0 .  030 inch thick and one inch Wide, was 
wrapped helically with a 0 .  5-inch overlap along the entire bundle length.- 
This wrapped configuration was then tested in the three environments. 
Figure V - 3  shows a portion of a wrapped bundle in the foreground in 

V- l  
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SECTION END VIEW 
0 H h 6 

x) 
9 x 

.0 33 
WIRE TYPE: MBOISO-O35 

THERMOCOUPLE TYPE: TYPE-K CHROMEL, ALUMEL 

. INDICATES APPROXIMATE LOCATION or THERMOCOUPLE 

® CIRCLE WITH NUMBER INSIDE INDICATES NUMBER OF ' 
THERMOCOUPLES FOR TEST DATA REFERENCE 

Figure V-Z.  Thermocouple Placement 
in Wire Bundle 

Figure V-3. Closeup View of Wrapped and 
Unwrapped Wire Bundle Test Specimens 
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contrast  to a portion of an unwrapped bundle. 
show plots of the center conductor equilibrium temperatures, in both the 
unwrapped and wrapped bundle, ve rsus  imposed current  in 14. 7 psia a i r ,  
5.  O psia oxygen and 1x10"6 Tor r  vacuum, respectively. 

wires ,  and 34 # 2 0  AWG Wires .  

Wire  bundle T e s t  Specimen B ,  which simulated the Apollo cable des'— 
ignated a s  Panel 8-P3 / J483 ,  consisted of four  # 2 4  AWG wires ,  2 3  # 2 2  AWG 

A constant load of O. 2 5  ampere was main- 
tained on each of two #24  AWG Wires,  and O. 7 ampere was maintained on 
each of 19 # 2 2  AWG wires and 20 #20  AWG Wires.  
was imposed on the # 2 2  A W G  cen te r  Wire ,  the same size a s  tested in w i re  
bundle Test Specimen A .  The Center conductor equilibrium temperatures 
ve r sus  cur ren t  plots a r e  shown in Figures V - 7 ,  V - 8  and V-9. 

SPACE DIVISION OF NORTH AMERICAN ROCKWELL CORPORATION 

The overload cur ren t  

Figures V-4,  V - 5  and V - 6  

A compari- 
son of # 2 2  AWG wire current-carrying capacity, which i s  tabulated in 
Table V - l ,  shows a maximum difference of 1. 6 F between the test specimen 
bundles A and B for  the same configurations (wrapped/unwrapped) and 
environment. 

Wire  
Size 

(AWG) 

22  
2 2  
22 
22 

, 16 
.. 16 
>{Current-carrying capacity i s  based on a 400 F center conductor tempera- 
ture in a 100 F environment. 

While all of the # 2 2  AWG center wire/bundle data. indicate 

Table V-l. Current-Carrying Capacity* f o r  a Center Wire  

[Specimen - 
Bundle Type 

A - Unwrapped , 
A - Wrapped ._ ’ 
B - Unwrapped 
B - Wrapped 
C - Unwrapped 
C - Wrapped 

in a Wi re  Bundle 

14. 7 Psia - Air  

Current  
(amps) 

Z4. 3 
25 .  8 
2 3 .  5 
24. 9 
49. O 
49. 5 

5. 0 P513. - Oxygen 

Current 
(amps) 

23. 9 
27. 6 
25 .  0 
26.  0 
49. 7 
52. 2 

1x10 " 6 Torr  
Vacuum 

Cur r en t "  
( amps)  

12.4 
1 7 . 0 , . »  
1 3 . 7  
1 6 . 7  
27.  5 
35.8 

higher capability than the single wire data shown in Table III-1, the 
greatest  difference i s  seen f o r  the wrapped test  bundle configuration when 
operated in a vacuum. Using the single wire current-carrying capacity 
at 14. 7 psia air a s  the base of 100 percent, the #22  AWG Wire requires 
only 20-percent derating when operated in a wrapped bundle under vacuum 
condition, a s  compared to 44-percent derating for  a single #22  AWG wire, 

Egas’ym/N‘ 

§9lfr¢”¢fio" 

3 5379, NZ» 
1 

and.41-percent derating for the central #22 AWG wire in an‘ unwrapped bundle. 
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Wire bundle Test Specimen C, which simulated the Apollo main d-c  
power distribution cable, consisted of 17 #12 AWG wires and 28 #16 AWG 
wires. The overload current  was applied to the center #16 AWG wire, 
while a 6. O-ampere load was maintained on each of 16 of the #12  AWG 
wires and one #16  AWG wire, and 3. O arnperes was maintained on each of 
five #16 AWG wires. The specimen was tested, in both the wrapped and 
unwrapped configurations, and reached the center wire conductor tem- 
peratures shown in Figures V-.10, V-ll and V-e12. A s  in the case of the 
other Wire bundles, the center conductor in the wrapped bundle operated 
a lower temperature in thethree environments. Again, the difference was 
greatest  in a vacuum between the wrapped and unwrapped bundles, a s  well 
as  between the wrapped bundle and single wire current-carrying capacity. 
The comparison of #16 AWG Wire current-carrying capacity shown in 
Table III-1 and Table V - l  indicates the center conductor in the wrapped 
bundle requires only 18. 5-percent derating, while 37. 5-percent derati'ng i s  
necessary  f o r  the unwrapped bundle, and 43. O-percent  derating i s  requifhed 
f o r  the single wire under vacuum conditions. A 

A s  in the case  of the single wire current-carrying capacity, the 
original Apollo design cri teria fo r  Wire bundles (Table III-2) were found to 
be overly conservative when compared with the test  results in Table V - l .  
Based upon the test  results,  the Apollo wire bundles a r e  overdesigned by 
280 to 415 percent for  14. 7 psia air Operation, and by 100 to 240 percent 
fo r  vacuum operation. 

Initially, it was believed that the enhanced heat transfer was due to 
outgas sing of air and water vapor f rom the surface of the insulation, and 
that this effect would have been eliminated if the test had been of longer 
duration. Because the original specimens (A, B, and C)  had been subjected 
to an overload-to-destruction tes t  in 5.  O psia oxygen environment, two new 
wire  bundles were  fabricated a s  duplicates of the original Specimen C. The 
two test specimens, one wrapped with Teflon tape and the other spot-tied 
as  shown in Figure V-13,  were subjected to a lOO-hour vacuum test with 
the same loads on the surrounding wires a s  imposed in the original 
Specimen C tests.  A constant overload current of 34 amperes was main- 
tained on the wrapped bundle, and 27 amperes on the unwrapped bundle. 
The equilibrium conductor temperatures which did not vary a s  functions 
of the time were 441 F for  the wrapped bundle and 423 F for  the unwrapped 
bundle. While these data indicate slightly higher temperature levels than 
the original bundle data shown in Figure V - l l ,  the derating value of 27 per-  
cent fo r  the unwrapped'bundle is less than the 43-percent derating required 
for  the single #16 AWG wire. With no indication of temperature change 
during the 100 hours of vacuum operation, the test  results refuted the 
original concept that the outgas sing f rom the insulation would be completed 
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after 10 hours in vacuum, causing the gaseous conduction to cease and the 
overloaded wires to reach equilibrium temperatures in excess of those 
measured in the single wire vacuum test. Further discussion of these 
results, and a comparison with analytical results, can be found in 
Section VI. 

Figure V-13. Wrapped and Unwrapped Wire 
Bundle Test Specimens 

V-14 
‘ SD 68-85 
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VI. TEST DATA ANALYSIS 

A thermal analysis was performed using a. model of the actual 
Specimen C wire bundle. Figure VI—l is  a photograph of the cross-Section 
of Specimen C, With the nodes numbered for  the analytical 'model. Nodes 1 
through 45  were  allocated fo r  each wire in the bundle. Nodes 46, 47, 48 

and 49 represent  the thermocouple leads. Node 50  represents the Teflon 
tape and Node 51 represents  the ambient environment. Photographs of 
other cross - sec t ions  of the same specimen indicate that the geometric 

relationship of the Wires did not remain constant. To compensate fo r  this 
variation, Wires which were observed to be in contact in Figure VI-l 
w e r e  assumed to have ”nominal ' l  conductance values,  and those which w e r e  

not observed in contact, but could be in direct contact elsewhere in the 
bundle, were  given a. ”poor" conductance value. Radiation was assumed a s  

"nominal" because of i ts low contribution to the total heat t ransfer  p rocess  

found in the idealized bundle analyses. Gaseous conduction was assumed a s  

zero for  the vacuum condition. ' 

The analytical and test  results for  the unwrapped configuration of the 
Specimen C wire bundle a r e  shown in Figure VI-Z. Because the original 
analysis proved excessively conservative when compared to the tes t  results ,  

two other cases were analyzed. The basic analytical model remained 
unchanged, with the exception of a threefold increase in all contact conduct- 
ance values in one ' case ,  and a tenfold increase  in all contact conductance 

values in the second case.  These results a r e  plotted in Figure VI-Z as  C x 3 
and C x 1 0 .  The c a s e  with the threefold inc rease  in contact conductance 

corre la tes  best  with the test data above 2 0  amperes .  It i s  possible to explain 
the use of the C x 3 conductance values on the basis  that these values a r e  in 

the range between the "best” and ”nominal'.' values established in the 
analysis of the idealized wire bundle. 

_ However, when a similar analysis was performed for the wrapped 
configuration, a ten- to twentyfold increase in contact conductance, as  
shown in Figure VI-3, was necessary to achieve correlation With the test 
results.  This is  beyond the most optimistic estimate fo r  contact conduct- 

ance. Since radiation is  relatively ineffective below 400 F, gaseous con- 

duction is the remaining mode of heat transfer that could serve to explain 
the lbw temperature operation‘of the wire bundle. Without further testing 
it i s  impossible to rule out the possibility that contact conductance may 
have been significantly higher than the ”best" estimate made in analysis, 

and that gaseous conduction is insignificant a s  originally considered for  the 

VI-l 
' SD 68-85 
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vacuum condition. In View of the significant weightsavings that can be 
made in Spacecraft wiring because of the higher current-carrying capacity 
of the wire bundle in a vacuum, a more complete understanding of the 
wire bundle heat transfer process  is required. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

Analysis and testing performed in this study indicate that .the origi- 
nal design guides used for  the Apollo spacecraft power wiring require 
more conductor c ross - sec t ion  than necessary .  Tes t  results indicate 7 0 -  to 
ISO-percent  higher current -car ry ing  capacity f o r  single Wire f r ee -a i r  
Operation than given in MIL—W-5088B. Using the single wire f ree -a i r  test 
results a s  a base  of 100 percent ,  the average derating cri teria  f o r  a single 
wire in 5. 0 psia oxygen and 1 0 " 6  Torr vacuum a r e  10 percent  and m e r -  
cent, respectively. The average derating f o r  a wire in a wrapped wire 
bundle is 2149 percent for  vacuum operation. The Wire in a wrapped wire 
bundle demonstrated a higher current-carrying capacity in f r ee -a i r  and 
5 psia oxygen tests than did the single wire in f ree-a i r  tests. 

Tests performed f o r  both wrapped and unwrapped wire bundles 
Operating at overload conditions in a vacuum for  periods up to 100 hours 
showed that the wiring is not heated to the extent predicted by present  
analytical studies. In these analyses the mechanism of gaseous conduction 
was assumed as  negligible fo r  a vacuum environment of 10 '6  Torr or lower. 
A s  indicated in Section VI, gaseous conduction, which is postulated as  
causing the cooler Wire bundle Operation in the vacuum tes ts ,  permits 
lower conductor Weight fo r  a given current/ temperature limit. ' 

Every effor t  should be made to exploit the appreciable weight savings 
offered through the higher current-carrying capacity of the individual wires  
in a wrapped bundle. In order  to obtain quantitative data fo r  future space- 
craft  wire design and analysis, the present  study should be extended. The 
following presents an outline of the recommended effort:  

1. ' Perform tests  to identify the oufgassing constituents that 
provide the gaseous conduction in wire bundles under vacuum 
conditions. ‘ 

2. Determine the thermal conductivity fo r  the major outgassing 
constituent(s) a s  a. function of temperature and p res su re .  

3. Conduct long-duration vacuum tests  to establish if, and when, 

SPACE DIVISION 01? NORTH AMERICAN ROCKWELL CORPORATION 
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- loutgassing is significantly reduced. 

SD: 68- 85 . 



SPACE DIVISION or NORTH AMERICAN ROCKWELL CORPORATION 

Determine the values of contact conductance for  Teflon and 
H-film (polyimide) electrical insulation as  a function of con- 
ductor diameter, insulation thickness, and contact force. 

Define the heat transfer  -mechanisms fo r  wire bundles. 
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