FORM 2977-G Revised 11-67

SPACE DIVISION
NORTH AMERICAN ROCKWELL CORPORATION

MANPOWER DEVELOPMENT

APOLLO GUIDANCE & NAVAGATION

SYSTEM FAMILIARIZATION

PART II

M e e i

SPACE DIVISION
NORTH AMERICAN ROCKWELL CORPORATION

MANPOWER DEVELOPMENT

APOLLO GUIDANCE & NAVAGATION
SYSTEM FAMILIARIZATION

PART II

COURSE NUMEER

FORM 2977-G Revised 11-67 :
— %

TABLE OF CONTENTS

Section IX The Computer Sub system

Block 9.1 CSS Purpose

Block 9.2 CSS Equipment
9.2..1 CMS Physical Description
9.2,2 CMS Use
9.2.3 DSKY Physical Description
9.2.4 DSKY Use
Block 9.3 CSS Organization
9.3.1 CMS Organization
9.3 1.1 Timer
9.3.1.2 Sequence
9.3.1.3 Central Processor
9.3.1.4 Memory
9.3.1.5 Priority Control
9.3.1.6 Input-Output
9.3.2 DSKY Organization
9.3.2.1 Keyboard
9.3.2.2 Display Indicators
9.3.2.3 Condition Indicators
Block 9.4 Computer Subsystem Operations
9.4.1 CSS/ISS Operations
9.4.2 CSS/0SS Operations
9.4.3 CSS/Spacecraft
9.4.3.1 CSS/Saturn Instrumentation Unit
9.4.3.2 CSS/Central Timing Equipment
9.4.3.3 CSS/Communications and IS
9.4.3.4 CSS/Mission Sequencer
9.4.3.5 CSS/Spacecraft Controls
9.4.4 CSS/Astronaut

Block 9.5 CMC Information
Block 9.6 Word Formats

Block 9.7 Addition Schemes
9.7.1 Non-Angular Data Additions

Block 9.8 Logic Implementatlo;l
Block 9.9 Hardware Registers

Block 9.10 CMC Organization
9.10.1 Timer '
1.1 Oscillator
1.2 Clock Divider Logic
.1.3 Scaler
1.4 Time Pulse Generator
1.5 Sync and Timing Logic

) 111
DDA DIHIIOOD

cpcocécpefcococo

©
]
a

PEELLE II
© © © 0 0 Qo G0 Qo

9-10
9-10
9-10
9=-11

9-22

9-22
9-22
9-26
9-26
9-26
9-28
9-28

+10::2 Central Processor
9.10.2.1 Registers
9.10.2.2 Basic Data Flow
9.10.2.3 Adder
9.10.2.4 Parity Block
9.10.2.5 Registers S, SQ, F Bank and E Bank
.10.3 Sequence Generator
9.10.3.1 Order Code Processor
9.10.3.2 Command Generator
9.10.3.3 Control Pulse Generator
9.10.3.4 Register £Q Control
.10.4 Description of Computer Instructions
9.10.4.1 Machine Instructions
9.10.4.1.1 Regular Instructions
9.10.4.1.2 Involuntary Instructions
9.10.4.1.3 Peripheral Instructions
9.10.4.2 Interpretive Instructions
9.10.4.3 Instruction Data Flow
9.10.5 Memory .
9.10.5.1 Erasable Memory Core Array
9.10.5.2 Addressing Erasable Memory
9.10.5.3 Fixed Memory Core Array
9.10.5.4 Addressing Fixed Memory
9.10.6 Priority Control
9.10.6.1 Start Instruction Control
9.10.6.2 Counter Instruction Control
9.10.6.3 Program Interrupt Priority Control
9.10.6.3.1 T6 RUPT Routine
9.10.6.3.2 T5 RUPT Routine
9.10.6.3.3 T3 RUPT Routine
9.10.6.3.4 T4 RUPT Routine
9.10.6.3.5 KEYRUPT 1 Routine
9.10.6.3.6 KEYRUPT 2 Routine
9.10.6.3.7 UPRUPT Routine
9.10.6.3.8 DOWNRUPT Routine
9.10.6.3.9 HAND CNTRL RUPT Routine
9.10.6.4 Alarm Detection Circuits
9.10.7 CMC's Input and Output Channel Interface
9.10.7.1 CMC Input/Output Channel Bit Assignments
9.10.7.2 PIPA Precount Logic
9.10.7.3 Interface Circuits
9.10.8 Power
Block 9.11 DSKY Functional Operation
Block 9.12 Keyboard
Block 9.13 Display Indicators
Block 9.14 DSKY Condition Indicators
Block 9.15 DSKY Power Supply
Block 9.16 Summary

1l

9-28
9-30
9-30
9-30
9-32
9-33
9-34
9-34
9-37
9-317
9-40
9-41
9-42
9-42
9-52
9-53
9-54
9-54

9-54
9-54
9-61
9-69
9-71

- 9-80

9-80
9-82
9-88
9-91
9-91
9-91
9-91
9-91
9-92
9-92
9-92
9-92
9-92
9-95
9-95
9-95
9-107
9-109

9-111

9-114

9-114

9-122

9-127

9-127

Figure

1111
(=]

QDQOQD(O:DQIDCD:DQDCDQD
:o-coaoqcncnuxwmp-

9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23A
9-23B
9-24A

9-24B
9-25
9-26
9-217
9-28
9-29
9-30
9-31
9-32
9-33
9-34
9-35
9-36
9-37
9-38
9-39
9-40

LIST OF ILLUSTRATIONS

CSS Components

Logic Tray A

Memory Tray B

CSS Functional Flow

Word Formats in Memory & Central Processor
Number Representation

Addition Schemes for Non-Angular Data
Typical Logic Functions

Logic Functions

Basic Storage Element

Computer Organization

Timer, Functional Flow

Scaler

Central Processor Block Diagram
Register Designation and Function (Sheet 1 of 2)
Sequence Generator Block Diagram

Order Code Processor, Block Diagram
Command Generator

Control Pulse Generator

SQ Register

Memory to SQ Register

Order Code Determination

Subinstruction Ado, Data Flow
Subinstruction Std 2, Data Transfer
Subinstruction NDXO, with Implied Address Code Resume,
Data Transfer Diagram

Subinstruction Rsm 3, Data Transfer Diagram
Erasable Memory Core Array

Erasable Memory Core Threading

Bit Plane

Erasable Addressing

Erasable Memory Block Diagram

Address Decoder

X and Y Coordinates

Erasable Memory Selection

Sample Rope Core

F Bank 00g through 27 ; Determination

F Bank 40g through 77 g Determination
FMA 421138 Determination

FMA 0743565 Determination

FMA 151444 _ Determination

Fixed Memogy Selection

Priority Control Functional Block Diagram

LLL

Figure

9-41
9-42
9-43
9-44
9-45
9-46
9-417
9-48
9-49
9-50
9-51
9=-52
9-53 '
9-54
9-55
9-56
9-57
9-58

LIST OF ILLUSTRA TIONS (contd.)

Counter Priority Block Diagram

Counter Input Interface Flow Diagram

Program Interrupt Priority Control

Computer Alarm Detection Circuits Functional Diagram
PIPA Forward - Backward Counter

PIPA Failure Circuits
Interface Circuit Types
Computer Power Supply

Main Panel and Navigation Panel DSKY

DSKY Functional Diagram

Diode Encoder and Associated Codes

Display Indicators
Digit and Sign Displays

DSKY Display and Command Relay Circuitry

Channel 10 Interface

Channel 11 Bits 2 through 7 Interface
Channel 13, Bits 7, 10, 11 and 15 Interface

DSKY Power Supply

IV

Page

9-86

9-87

9-90

9-93
9-104
9-105
9-108
9-110
9-112
9-113
9-116
9-117
9-119
9-120
9-121
9-122
9-124
9-126

SECTION IX

THE COMPUTER SUBSYSTEM

INTRODUCTION

This section of the study guide briefly describes the CSS equipment to a functional block
level. A brief description of the CSS organization and functional operation is also presented.

9.1 CSS PURPOSE

The computer subsystem is the control and computational center of the PGNCS. It performs
the following functions:

a. Solves the guldance and navigation problems for all mission phases including Saturn Guid-
ance take over capability during the boost phase.

b. Provides control information to the PGNCS, as well as other spacecraft systems.
c. Displays pertinent information to the astronaut and the ground when requested.

d. Provides a means by which the astronaut or ground control can directly communicate
with the PGNCS.

e. Provides direct on-off control for the reaction control jets, and service propulsion engines.

f. Monitors its own operation and other PGNCS operations.

9.2 CSS EQUIPMENT

The CSS consists of the Command Module Computer (CMC) and two identical display and
keyboards (DSKY's) (see figure 9-1). The CMC is located in the lower center of the lower
display and control panel below the power and servo assembly. One DSKY is located on the
lower display and control panel and is called the navigation panel DSKY. The other DSKY is
located on the main display and control panel and is called the main panel DSKY.

9.2.1 CMC PHYSICAL DESCRIPTION. The CMC measures approximately 24 x 12.5 x 6
inches and weighs approximately 60 pounds. It consumes 10 watts of power during standby
operation and 100 watts of power during normal operation. The CMC is mounted on a cold-
plate base which is cooled by a water glycol solution flowing through it.

The CMC consists of a logic tray assembly and a memory tray assembly which are mounted
back to back (figures 9-2 and 9-3) . A tray assembly consists of a tray with the modules
and connectors mounted on it. The modules contain the CMC's logic circuitry. The con-
nectors provide the CMC with a hardware interface.

9.2.2 CMC USE. The CMC is a core memory, digital computer with two types of
memory: fixed and erasable. The fixed memory permanently stores navigation tables,

trajectory parameters, programs and constants. The erasable memory stores intermediate
information.

9-1-

1. CSS Components

CONNECTOR

POWER SUPPLY MODULE A30-3I

INTERFACE MODULE A27-29

INTERFACE MODULE A27-29

/ INTERFACE MODULE A27-29

POWER SUPPLY MODULE A30-3I

LOGIC MODULE AIS

LOGIC MODULE Al4

LOGIC MODULE AI3

LOGIC MODULE Al2

INTERFACE MODULE A28-26

LOGIC MODULE A8-Ii

INTERFACE MODULE A25-268

LOGIC MODULE AB-II

LOGIC MODULE A24

LOGIC MODULE A23

LOGIC MODULE AB-II

LOGIC MODULE A8-l|

LOGIC MODULE A22

LOGIC MODULE A2l

LOGIC MODULE A7

LOGIC MODULE A8

LOGIC MODULE A20

LOGIC MODULE AS

LOGIC MODULE AI9

LOGIC MODULE A4

sis LOGIC MODULE AI8 ===l LOGIC MODULE A3
mass LOGIC MODULE AI7 = _ LOGIC MODULE A2
LOGIC MODULE AI6 \ LOGIC MODULE Al
N) X
"~ CONNECTOR CONNECTOR CONNECTOR

Figure 9-2, Logic Tray A

9-3

OSCILLATOR MODULE B7

ALARM MODULE B8

ERASABLE DRIVER MODULE B9-10

ERASABLE DRIVER MODULE B9-10

CURRENT SWITCH MODULE BI|

ERASABLE MEMORY MODULE BI2

SENSE AMPLIFIER MODULE BI3-14

SENSE AMPLIFIER MODULE BI3-14

S

STRAND SELECT MODULE BI5

ROPE DRIVER MODULE BI6-17

ROPE DRIVER MODULE BI6-17

ConnecTon 'connecToR

Figure 9-3. Memory Tray B

9-4

The CMC processes data and issues discrete control signals, both for the PGNCS and the
other spacecraft systems, It is a control computer with many of the features of a general
purpose computer. As a control computer, the CMC aligns the stable platform of the
inertial measurement unit (IMU) in the inertial subsystem, positions the optical unit in
the optical subsystem and issues control commands to the spacecraft. As a general pur-
pose computer, the CMC solves guidance problems required for the spacecraft mission.

In addition, the CMC monitors the operation of the PGNCS and and other spacecraft systems.

The CMC stores data pertinent to the flight profile that the spacecraft must assume in
order to complete its mission. This data, consisting of position, velocity and trajectory
information, is used by the CMC to solve the various flight equations. The results of var-
ious equations can be used to determine the required magnitude and direction of thrust
required. Corrections to be made are established by the CMC. The spacecraft engines
are turned on at the correct time, and steering signals are controlled by the CMC to re-
orient the spacecraft to a new trajectory, if required. The inertial subsystem senses ac-
celeration and supplies velocity changes to the CMC for calculating the total velocity.

Drive signals are supplied from the CMC to coupling data unit (CDU) and stabilization gyros
in the inertial subsystem to align the gimbal angles in the IMU Error signals are also
supplied to the CDU to provide steering capabilities for the spacecraft. CDU position sig-
nals are fed to the CMC to indicate changes in gimbal angles, which are used by the CMC
to keep cognizant of the gimbal positions. The CMC receives mode indications and angular
information from the optical subsystem during optical sightings. This information is used
by the CMC to calculate present position and orientation and is used to refine trajectory
information. Optical subsystem components can also be positioned by drive signals supplied
from the CMC.

9.2.3 DSKY PHYSICAL DESCRIPTION. The DSKY measures approximately 8 x 8 x 7
inches and weighs about 17.5 pounds. Mounted on the back oi the DSKY are six interchange-
able driver modules, a 91 pin connector, a filler valve, and a power supply. The driver
modules are used in the switching of the data displayed on the DSKY. The connector pro-
vides the interface between the DSKY and the CMC. The filler valve is used to pressurize
the DSKY to one atmosphere. The power supply module supplies the voltage to light the
DSKY indicators.

9.2.4 DSKY USE. The navigation DSKY located on the lower D & C panel and the DSKY
located on the main D & C panel provides a two-way communications link between the astro-
naut and the CMC (see figure 9-1). Through this communications link, the following func-
tions can be performed:

a. Loading of data into the CMC.

b. Display of data from the CMC and data loaded into the CMC.

c. Monitoring of data in the CMC.

d. Display of the CMC modes of operation.

e. System control by the initiation of subsystem and system testing and control of the
system's major modes of operation.

f. Requeste by the CMC to the system operator to perform actions.

[

The DSKY's consists of a keyboard, display panel, condition indicators, a power supply
and a relay package (see figure 10-1). The keyboard provides the astronaut with the capa-
bility of inserting data into the CMC and initiating CMC operations. Through the keyboard,
the astronaut can also control the ISS moding and some OSS moding. The DSKY display
panel provides a visual indication of data being loaded into the CMC, the CMC activity and
CMC program. The display panel also provides the CMC with a means of displaying or
requesting data. The condition indicators display PGNCS status.

9.3

CSS ORGANIZATION

Figure %—4 is agrossblock diagram of the CSS. This diagram should be referenced while
reading paragraphs 9.3.1 and 9.3.2.

9.3.1 CMC ORGANIZATION. The CMC is functionally divided into seven blocks:

1.

2.

N
0

6.

Timer.

Sequence generator,

Central processor.

Memory.

Priority control.

Input - output.

Power.
9.3.1.1 Timer. The timer generates all the necessary synchronization pulses to insure
a logical data flow from one area to another within the CMC. It also generates timing
waveforms which are used by (1) the CMC's alarm circuitry and (2) other areas of the
spacecraft for control and synchronization purposes.
9.3.1.2 Sequence Generator. The sequence generator directs the execution of
machine instructions. It does thia by generating control pulses which logically sequence

data tkroughout the CMC. The control pulses are formed by combining the order code of
an instruction word with synchronization pulses from the timer.

9.3.1.3 Central Processor. The central processor performs all arithmetic operations
required of the CMC, buffers all information coming from and going to memory, checks
for correct parity on all words coming from memory and generates a parity bit for all
words writtean into memory.

9.3.1.4 Memory. Memory provides the storage for the CMC and is divided into two
sections: eraaaﬁe memory and fixed memory. Erasable memory can be written into or
read from; its readout is destructive. Fixed memory cannot be written into and its read-
out is nondestructive. .

9-6

FROM

SPACECRA!'T

REACTION
CONTROL
SYSTEM

FROM
ISS

FROM
()SS

{
{,
l

KEYBOARD INPUTS

&

[)

\IODE/STATUS SIGNALS 4
MAIN ENGING SIGNALS 4

TELEMETRY —>

TRANSLATION,
ROTATION AND - ————»f
INPULSF SIGNALS

+ABy CDU PULSES — 9
AV PULSES — ™
CTATUS ———————

FAILURE DETECTION -8

A8T CDU 'ULSES ———
A8 CDU PULSES ——
STATI'S —————————
TARK COMALAN [———
\TARK REJECT ———

I AL RE DE TECTION —8»

2= VDO PRIMARY POV | R&

* A\DDRESSABLE

[MEMORY]
ADDRESS CODE I I I psky -
(FO ALL FUNCTIONAL AREAS)) | ASTRONAUT
CONTROL PULSES MEMORY [DSKY e ASTRONAUT
| SELECTION g | ' KEYBOARD | INPUTS
LOGIC
] | | |
s -9 | | I DSKY |
DISPLAYS
SEQUENCE) | ¢ $ | | |
| GENERATOR | ADDRESS CODE | | | s |
— 5 E. MEM F. MEM.
| | ORDER CODE | | | — |—4—e STATUS TO D&C
| 9. EXT. | L il F __L_ | RELAYS [4——e FAILURE DETHCTION
L J l '
¥ [1 | |
‘ . F. EXT (CHUT — R
: L5 [s [sanke]r. nanke] (NI | P G BUFFE! : : DSKY e BRIGHTNESS - oM DEC
L.OGIC POWER)
| | | | sveeLy |
. <@—— POWER - FROM EPS
| l | L _
: e —e —& WRITE AMPS :
x
WRITE LINES <y w
| . 1 ' 3
CENTRAL &
L PROCESSOR 4 READ LINES | (3]
B __|
I Z . r
| | 1. (CHO1) . |
i I:monrrv CONTROD ! Q (Chun) e | r 1 o
N | (| A . | | oMmc | U CDU DRIVE PULSES
I ' ' ' ALARM T TO INERTINI
P' | PROGRAM X DETECTION l P PIPA INTERR & S\WVITCH SIPSYSTIN
| PRIORITY (I oo | L U GYRO CRIVE PULSES o
| (. U GATES =9 1| 44 L MODE CONTROL
L | | | @* BOTH BANK - =41
N | FROM ALL ;
T | _— I . FUNCTIONAL 4 .
E INPUT I ey 1 FORCED ADDRESS AREAS N NPT CIv BRIVE & FO:OUTICAL
? & LOGIC —.l | T . MODE CONTROL SUBSYSTEM
o= R
A
p | ————-——--— . F
! A .
E ’—-ﬂ OUTPUT CHANNELS C TIMING SIGNA LS} TO PSA
________ | | SUTPUT SELECTION AND DRIVE £ .
[_ . , | I cios] LoGic SIGNALS
INPUT CHANNELS EACTION
| | I CHoe ! PITCH, VAW, AND ngﬁrhm :
I CH15 | | CH1Y | ROLL SISNALS SYSTH
| CHI16 | o CHI1 r _
“H30 & 2 & - T —
| CH30 () | | CHI2 | I— e — 1 MASTER (‘l[()‘(“k\{\‘sh,r) ENGINF
| CH31 (D) t | CII3 | | | CONTROL:SIGNA TO SPACECRAI'T
] CH32 (I) | | CH1d | | SO g) FhIss DOWNLINK DAT2
| CH33 (1) j—1——= CH34 | | ’ cuoa | cuos | | REF.
Lo] | CIEsS | | |
VIME COUNTER INCREMENTING/ T bbb m
" DECREMENTING PULSES ——
SgEt s - TO ALL FUNCTIONAL TIMING PULSES CMC DIGITAL
' . AREAS (TO ALL FUNCTIONAL AREAS) S

Figure 9-4. CSS Functional Flow

9-7

9.3.1.5 Priority Control. Priority control establishes a processing priority of
operations which must be performed by the CMC. These operations are a result of
conditions which occur both internally and externally to the CMC. Priority control
consists of counter priority control and interrupt priority control. Counter priority
control initiates actions which update counters in erasable memory. Interrupt priority
control transfers control of the CMC to one of several interrupt subroutines stored in
fixed memory.

9.3.1.6 Input - Output. The input - output section routes and conditions signals
between the EMC and other areas of the spacecraft.

9.3.1.7 Power. This section provides voltage levels necessary for the proper
operation of the CMC.

9.3.2 DSKY ORGANIZATION. The DSKY is functionally divided into three blocks:

1. Keyboard.

2. Display indicators.

3. Condition indicators.
9.3.2.1 Kegoard. The keyboard consists of ten numerical keys (pushbuttons), two
sign keys, and seven instruction keys. The keys are used to enter data into the com-
puter, place the computer in standby mode or remove it from standby, or release the
DSKY so the computer can display data to the astronaut.
9.3.2.2 Display Indicators. The DSKY contains 21 digit display indicators and three
sign display indicators. The program, noun, and verb displays each contain two digit

positions. Each of the three data displays contains a sign display and five digit display
indicators.

9.3.2.3 Condition Indicators. The DSKY contains 10 condition indicators which
indicate computer mode of operation and some computer problems and PGNCS malfunc-
tions. '

9.4 COMPUTER SUBSYSTEM OPERATIONS

The CSS interfaces with the ISS, OSS, astronaut and certain spacecraft systems. These inter-
faces are described in the paragraphs below.

9.4.1 CSS/ISS OPERATIONS. The CSS receives changes in IMU gimbal angles and
changes in velocity from the ISS. These changes are accumulated in the CMC. The IMU
gimbal positions are used by the CMC to monitor platform orientation. The velocity changes
are used by the CMC to calculate the velocity and, by integration, the position of the space-
craft. The CMC also commands ISS moding and monitors certain subsystem components

for failures. The components monitored are:

a. CDU inertial channels
h. Accelerometer loops
c. Stabilization loops

Power supplies

Inertial subsystem moding, with the exception of IMU cage, is controlled by the computer
by the generation of commands to the inertial CDU. The discrete commands issued are
CDU Zero, Coarse Align, Error Counter Enable, And SIVB takeover. The generation

of the discretes is done automatically through a computer program or by astronaut com-
mand through operation of either DSKY. During the coarse align mode of operation the
computer provides digital inputs to the Coupling Data Unit. The CDU converts the digital
command to an analog signal which is used to reposition the gimbals. During Fine Align
the computer provides torquing pulses to the Apollo II IRIG torque ducosyns for fine align-
ment of the stable platform. The computer also supplies frequency references to the CDU
and to the inertial subsystem power supplies.

9.4.2 (CSS/0OSS OPERATIONS. The optical subsystem is used in conjunction with the
computer to determine spacecraft position, velocity, attitude and alignment angles for
the inertial subsystem. The primary interface between the optical units and the CSS

is via the CDU. Upon completion of a navigation sighting, the sextant trunnion and shaft
angles are coupled, via the CDU, to the computer. The computer program uses these
angles and time to determine spacecraft position, velocity and attitude. In the event that
an IMU alignment is to follow the optical sighting, the program determines the angular
corrections necessary to align the IMU to the inertial reference frame.

Under certain combination of OSS control switches on the G&N Indicator Control Pane! :i*
is possible for the computer to control the moding and the positioning of the optics. The
astronaut must complete the navigation sighting after the computer positions the optics by
tracking and marking on the celestial objects.

The computer monitors the optical subsystem modes of operation to determine what com-
puter operation shall be performed. The mode Zero in the OSC, when manually selected,
causes the optics angle counters in the CMC to be zeroed. The computer, in addition

to monitoring or controlling the optical subsystem operation, provides timing pulses as
references to the OSS power supplies.

9.4.3 CSS/SPACECRAFT. The functions of the PGNCS is to provide guidance, naviga-
tion and control for the Apollo spacecraft. Because of this increase in scope, over previous
Apollo G&N Systems, the interface with the spacecraft has expanded and now includes the
following items:

9.4.3.1 CSS/Saturn Instrumentation Unit. The CSS receives indications of Saturn
lift-off and guidance release from the Instrumentation Unit. The receipt of the guidance
release discrete causes the CMC to discontinue the gyro-compassing routine and allows
the stable member to become inertially referenced. The lift-off signal causes the CMC
to begin computing velocity, position and attitude of the spacecraft. The computer com-
pares these data with a reference trajectory, the difference between the two are utilized
to determine the need for PGNCS takeover of Saturn guidance. In the event that the crew
selects the PGNCS to control Saturn guidance, the computer calculates steering errors,
which are converted from digital to analog by the CDU, issues start injection sequence,
and Saturn engine on/off commands all of which are coupled to the Saturn IU.

9.4.3.2 CSS/Central Timing Equipment (CTE). The Command Module Computer
provides a 1,024 MC Irequency reference to the CTE. This enables all command
module timing to be referenced to a single time standard.

9-9

9.4.3.3 CSS/Communications and Instrumentation System lgC and IS). The CSS
receives uplink telemetry data and downlin emetry synchronization pulses from the

C and IS. The uplink telemetry data is in the form of five bit codes which are identical
to the key codes provided by the DSKY's. The operation of the CSS8 then can be con-
trolled from the ground station via the uplink telemetry. There are two methods of
inserting the uplink telemetry data into the CMC One method is to insert all the up-
link data required and thereby exert complete control of the CSS from the ground station.
The other method is to insert all the uplink data except the final command for the CMC
to process the data. The astronaut then has the option of using the uplink data or not.
This data is displayed to the astronaut on the DSKY display panels for his inspection.
The downlink telemetry sync pulses are used to regulate the gating of downlink telemetry
data to the C and IS. The C and IS receives downlink telemetry data from the CSS. This
data can be transmitted at 10 words per second or at 50 words per second (1.6 K bits
per second or 51. 2 K bits per second, respectively).

The ground station uses part of this downlink data to duplicate the displays and DSKY
inputs that have occurred in the spacecraft. The ground station can send commands
and data to the CMC in a format similar to the DSKY inputs.

9.4.3.4 CSS/Mission Sequencer. The CSS receives an indication of command module-
service module separation and of SIVB separation from the mission sequencer.

9.4.3.5 CSS/?Facecraft Controls. The CSS interface with the spacecraft controls is
primarily on-off switching o voltages. The following switches on the Main D and C

panel have direct effects on the operation of the PGNCS.

a. S/C control of Saturn - Initiates a computer program for boost guidance.

b. AV CG Switch - Allows the computer to compensate for the change in the space-
craft center of gravity when the LM 1is attached. This information is necessary for
midcourse correction maneuvers.

c. SC Control - source switch - Selects computer control of the propulsion system.

d. SPS.Thrust - Indicates to the CMC that the SPS engine start checklist has been
completed and the SPS is ready for thrusting.

e. SC Control - CMC switch - A three position switch - Hold, Free and Auto indicat-
ing to the CMC what type of attitude control it should exercise.

The CMC also has inputs from the rotation and translation controls for pilot initiated
attitude and positional maneuvers. For attitude control during optical sightings, the
navigator utilizes the minimum impulse controller which also has direct inputs to the
CMC. For spacecraft maneuvers, whether automatically or manually commanded,

the computer issues on/off discretes to the 16 RSC jets on the service module or the
12 RCS jets on the command module. During PGNCS controlled thrusting maneuvers

using the SPS, the computer calculates steering signals and issues SPS engine on/off
commands.

9-10

9.4.4 CSS/ASTRONAUT. The CSS interface with the astronaut is through the DSKY's.
The operator of the DSKY can communicate with the CMC by the depression of a sequence
of keys on the DSKY keyboard. Each depression of a key inserts a five bit code into the
CMC. The CMC responds by returning a code to the DSKY, which controls the display
on a particular display panel, or by initiating a CMC operation. The CMC is also capable
of initiating a display of information or a request for some action to the operator under its
own initiative.

The basic communication language used in the interchange of information is a pair of words
known as the VERB and NOUN. Each of these words is represented by a two digit octal
number., The VERB specifies that an action of some sort is to be performed while the NOUN,
used in conjunction with the VERB, specifies on what the action is to be performed.

9.5 CMC INFORMATION FLOW

The main functions of the CMC are implemented through the execution of programs stored

in memory. Programs are written in basic instructions. The order code defines data flow
within the CMC. The relevant address selects data that is to be used for computations. The
order code of each instruction is entered into the sequence generator which controls data flow
and produces a different sequence of control pulses for each instruction. Each instruction is
followed by another instruction. In order to specify the sequence in which consecutive instruc-
tions are to be executed, the instructions are normally stored in successive memory locations.
By adding + 1 to the address of an instruction being executed, the address of the next instruc-
tion is obtained. Execution of an instruction is complete when the order code of the next
instruction is transferred to the sequence generator and its relevant address is in the central
processor.

The central processor consists primarily of flip-flop registers. It performs arithmetic
operations and data manipulations on information accepted from memory, the input registers
and priority control. Arithmetic operations are performed using the binary ones complement
numbering system. All operations within the central processor are performed under control
of nulses generated by the sequence generator.

The CMC has provisions for handling certain priority programs. Before a priority program
can be executed, the current program must be interrupted; however, certain information
about the current program must be preserved. This information includes the program coun-
ter contents and any intermediate results contained in the central processor. The program
counter is a register in the central processor which contains the address of the next instruc-
tion to be performed. The priority control produces an interrupt request signal which is sent
to the sequence generator. This signal causes the execution of an instruction that transfers
the current contents of the program counter and any intermediate results to memory. In
addition, the control pulses transfer the priority program address to the central processor
and then to memory. As a result, the first instruction word of the priority program is
entered into the central processor from memory and the execution of the priority program is
begun. The last instruction of each priority program restores the CMC to normal operation
if no other interrupt request is present. This is done by transferring the previous program
counter and intermediate results from their storage locations in memory back to the central
processor.

9-11

Certain data pertaining to the flight of the spacecraft is used to solve the guidance and navi-
gation problems required for the Apollo Mission. This data which includes real time, accel-
eration and IMU gimbal angles (via the CDU) is stored in the erasable memory counters which
are updated as soon as new data becomes available. An incrementing process which changes
the contents of the counters is implemented by priority control between the execution of sub-
instructions. Data inputs to counter priority control are called incremental pulses. Each
incremental pulse produces a counter address and a priority request signal which is sent to
the sequence generator where it functions as an order code. The control pulses produced by
the sequence generator transfer the counter address to memory. In addition, the control
pulses enter the contents of the addressed counter into the central processor. The contents
of the counter are then incremented or decremented.

Real time plays a major role in solving guidance and navigation problems. Real time is main-
tained within the CMC by the main time counter. The main time counter consists of two
erasable memory counters. Incremental pulses are produced in the timer and sent to priority
control for incrementing the main time counter every 10 milliseconds.

Continuous drive pulses originate in the CMC's timer. Rate signals, which are bursts of these
drive pulses, are used to drive the inertial CDU channels, the gyros and the optical CDU chan-
nels. Rate signals are also used for controlling the attitude of the spacecraft. The number of
pulses in each burst and occurrence of each burst are controlled by the program. The destin-
ation of the various rate signals, as well as the type of rate signals, is also selected by the
program. The continuous drive signals are also sent to other areas of the spacecraft where
they are used for synchronization and control purposes.

The uplink word from the spacecraft telemetry system is supplied to the CMC as incremental
pulse inputs to priority control. As these words are received, priority control produces the
address of the uplink counter in memory and requests the sequence generator to execute the
instructions which perform the serial-to-parallel conversion of the uplink word, When the
serial-to-parallel conversion is complete, the parallel word is transferred to a storage lo-
cation in memory by the UPRUPT subroutine.

With the DSKY keyboard, the astronaut can load information into the CMC, receive and dis-
play information contained in the CMC and initiate any program stored in memory. A keycode
is assigned to each keyboard pushbutton. When a keyboard pushbutton on either DSKY is de-
pressed, the keycode is produced and sent to the CMC where it produces the address of a
priority program (KEYRUPT) stored in memory and a priority request signal which is sent to
the sequence generator. The priority request signal functions as an order code and initiates
an instruction for interrupting the program in progress and executing the priority program
stored in memory. A function of this program is to decode and process the keycode. A
number of keycodes are required to specify an address or a data word. The program initi-
ated by a keycode converts the information from the DSKY keyboard to a coded display format
which is transferred to the display portion of the DSKY. The display informs the astronaut
that the keycode was received, decoded and properly processed by the CMC.

9-12

Word formats, addition schemes, logic implementation, and hardware registers are des-
cribed in preparation for a detailed description of computer organization.

CMC characteristics are summarized in table 9-1.
9.6 WORD FORMATS

All words are 16 bits long in the computer. There are two basic types of words: data words
and instruction words. The format of the words depend on where the words are located.
Figure 10-5 shows the word formats in memory (storage) and in the central processor regis-
ters.

In memory, data words contain a parity bit, fourteen magnitude bits and a sign bit. A
binary ""1" in the sign bit indicates a negative number, a binary "0" in the sign bit indicates
a positive number. When located in the central processor, bits 1 through 14 are the magni-
tude bits, bit 15 is the "uncorrected sign' bit, and bit 16 is the sign as before. The "uncor-
rected sign" bit 18 used to enable an overflow detection without destroying the sign bit when
two numbers are manipulated.

Parity bits are only included in words which are stored in memory.

An instruction word in memory contains a 12 bit address code and a 3 bit order code. Bits
10 through 12 are sometimes used to extend the order code when the work is transferred to
the SQ register. The address code normally calls out the location of a word in memory or
the central processor. The order code represents an operation which is to be performed on
the data whose location is defined by the address code.

9-7 ADDITION SCHEMES

The CMC performs angular data addition and non-angular data addition. The processes in-
volved with these manipulations differ slightly.

9.7.1 NON-ANGULAR DATA ADDITION. The CMC uses the binary ONE's comple-
ment numbering system. In this system, a negative number is the complement of the
corresponding positive number. Assume that the CMC uses five bit data words.

Figure 10-6 shows how +7 through -7 would be represented by words in memory and the
central processor.

9-13

Table 9-1. CMC Characteristics

Characteristics Description
Computer type Automatic, ‘electronic, digital, general purpose and control
Internal transfer Parallel
Memory Random access

Erasable Coincident current core, capacity = 2048 words
Fixed Core-rope, capacity = 36,864 words
Word length Sixteen bits
Number system Binary ONE's complement
Circuitry type Flat pack NOR micrologic
Machine instructions 56 total
Regular 42 total
Involuntary 9 total
Peripheral 5 total
Interrupt options 10 total
Memory cycle 12 y seconds
time (MCT)
Add time 24 y seconds
Multiply time 48 y seconds
Number of counters 29 total
Downlink telemetry Asynchronous to computer timing.
Basic clock 2.048 mc
oscillator
CMC power supplies One +4 volt switching regulator
One +14 volt switching regulator
Logic Positive
Parity Odd

9-14

WORD IN MEMORY

INSTRUCTION

IS 4 13 12 1 0O 9 8 7 6 S 4 3 2 |
OC|P|OCIOC|IA|AJA|A|JA|JA|A|AJAJAJA|A

§ N\

DATA WORD

—ADDRESS CODE ———&i

IS 4 13 12 1) 0 9 8 7 6 5 4 3 2 1|

MASNITUDE

EEEEERERR

}

b4

‘4

9-15

THE € REGISTER

DATA WORD IN

|

1

TO PARITY -

LOGIC

DATA WORD IN

CENTRAL PROCESSOR

REGISTER

HH&&HH

SRR

4

$

Figure 9-5. Word Formats in Memory and Central Processor

M M P
1 1 0
1 0 1
0 1 1
0 0 0
1 1 1
1 0 0
0 1 0
0 0 1
1 1 1
1 0 0
1 0

0 1

1 1 0
1 0 1
0 1 1
0 0 v

MEMORY
Figure 9-6.
\

+17
+6
+5
+4
+3
+2
+1

+0

OouUB

CENTRAL PROCESSOR

Number Representation

9-16

+17

+6

+5

+4

+3

+2

+1

+0

The CMC can only add. In order to subtract, the CMC adds the complement of a number.
Multiplications are performed by successive additions and shiftings; divisions are per-
formed by successive additions of complements and shiftings.

All adding is performed in the central processor. The CMC's consists of the X, Y and

U registers. The X and Y registers are the adder's input registers, i.e., the registers
to which the augend and addend are applied. The U register is the adder's output regis-
ter, i.e., the register at which the sum is found. An overflow occurs during addition
when the overflow/underflow bit (OUB) of the U register is a logic 1 and the sign bit (SB)
is a logic 0; an underflow occurs when the overflow/underflow bit is a logic 0 and the sign
bit is a logic 1.

Figure 9-7 shows the various addition schemes employed by the CMC for manipulating
non-angular data, Note in the first case of Example C that the CMC performs (+5) + (-3)
and not (+5) - (+3). Example A shows a case of overflow. Example B illustrates end-
around-carry and underflow. End-around-carry is a characteristic of the binary ONE's
complement numbering system: it is the result of a carry being generated during the
addition of the last two binary bits. When this happens, +1 is added to the LSD of the
subsum and the sum is then formed. Underflow results when a sum is negative and has a
magnitude larger than that expressable with the assigned magnitude bits. End-around-
carry and overflow/underflow conditions are mechanized by the CMC. When overflow/
underflow occurs, a special counter is incremented or decremented to prevent loss of
data.

Summarizing: If the SB and OUB of the sum are identical, then the sign of the sum is
determined by the SB, and the magnitude of the sum is determined by the assi ned magni-
tude bits, i.e., the OUB is not taken into consideration; if the SB and OUB of a sum are
not identical, then the sign of the sum is determined by the SB, and the magnitude of the
sum is determined by the assigned magnitude bits and the OUB. In this case, the OUB
becomes the MSD.

Orz important fact should be noted: the configuration of the magnitude 0 (zero) is not
unique but has signs associated with it, i.e., +0 = 00000 and -0 = 11111 in the central
processor registers.

9-117

A. ADDITION OF POSITIVE NUMBERS

Magnitude Bits
Overflow/Underflow Bit

Sign Bit l
Y=+3 Y 0011 Y=+6 Y: 00110
Xa+2 X 010 X=+3 X:00011
Sum = +5 U:00101 Sum=+9 U:0100 1,
Plus Sign Plus Sign
No Overflow Overflow
B. ADDITION OF NEGATIVE NUMBERS
Y=-3 Y:11100 Y=-6 Y:11001
X=-2 X:1 1101 X=-3 X:11100
Sum = -5 111001 Sum = -9 110101
I-Cax'ry—OI LCarry—ol
U:11010 U:10110,
5 | \ 9
Minus Sign Minus Sign
Underflow -

No Underflow

Y=+5
X=-3
Sum = +2

C. ADDITION OF POSITIVE AND NEGATIVE NUMBERS

Y: 00101 Y= -5

X:11100 X=+3

100001 Sum= -2
Carry—e1
U:00010

&

2

Plus Sign

No Overflow

Y>-11010
X:00011
U:11101

——
J |
Minus Sign

No Underflow

- Figure 9-7. Addition Schemes for Non-Angular Data

9-18

9.8 LOGIC IMPLEMENTATION

All logic sticks in the CMC are built up from "micrologic" elements. In the CMC, the prime
micrologic element used {8 a three-input NOR gate. The circuitry for two of these elements
is diffused onto a single wafer which is contained in a flat pack. Figure 10-10 shows the
accepted symbol for a single NOR gate and the associated truth table. The truth table defines
the output logic level (1 or 0) for all possible input combinations. The CMC uses positive
logic throughout. A logic 1 1s 4 volts, a logic 0 is 0 volts. When inputs A, Bor C equal a
logic one in the NOR circuit, the associated transistor is biased to an on condition . This re-
sults in a path for current flow to ground. The output then falls to nearly 0 volts (logic 0)

as indicated by the truth table. If all three inputs equal 0, the output D becomes logic 1.

Although the logic circuits of the CMC are comprised entirely of CMC gates, it is conveni-

ent to use the standard AND and OR logic blocks to simplifiy the presentation of later material.
Figures 10-10 and 10-11 show the OR, AND, FLIP-FLOP and EXCLUSIVE OR circuits. The
NOR gates within the dotted lines show the exact mechanization of the circuits in the simplified
systems. The reader should compare the truth tables included in the diagrams with the cir-
cuits. Note that a one input NOR gate is just an inverter (figure 10-10).

Figure 10-11 shows an EXCLUSIVE OR gate, Its distinguishing feature is that when both

inputs are logic one's, the output is a logic zero. A standard OR gate has a logic one output
when any or all inputs are logic one's.

9-19

A |
I BloJof1]1]o]o]1]2
B @- D :
: C o= : clofifo]1]of1]o]a
"NOR" GATE, SYMBOL TRUTH TABLE
r——--——--———‘-1
| | 0|1
| A DI : 1]o
| i
INVERTER, SYMBOL
{- -} AlofJolo]ola]1l1]2
| g‘., - | BlojoJ1f1]fo]o]1]2
: . : clof1]of1]of1]o]x
"OR" GATE, SYMBOL TRUTH TABLE
r- D G S GIES ClER R TGl TED D e —-----ﬂ
' |
|
| A |
| |
| | AlojJojojo1]1]1]2
: B 5 : BloJol1]1]o]o]1]2
. b fededifofaloliloln
| | Ilplojojojojojojo]a
I ¢ i TRUTH TABLE
| ! ,
l |
L-- --——_--——-—-----J

""AND" GATE, SYMBOL
Figure 9-8. Typical Logic Functions
©9-20 |

|
I
I
I
I
I
I
:
l
I
/
]

2]
=1
-

SET

J__.__;.________l__] RESET |0

FLIP-FLOP, SYMBOL TRUTH TABLE

[y
={o] >

9
I
|
I
|
|
I
i
{
|
i
I
I
i
I
{
I
I
:
|
I
|
I
J
|

J

>

(]

w

I——

| SR 5 e s e W (e i S P, i | N g, ol B s

"EXCLUSIVE OR", SYMBOL

AJOojoj1]1
BJoj1]o0|1
Cloj1j1}o

TRUTH TABLE

Figure 9-9. Logic Functions

9-21

9.9 HARDWARE REGISTERS

A hardware register is a device which accepts and stores parallel information. Most of the
CMC's registers are 16 bit registers (comprised of 16 storage elements).

The basic storage element for one bit, its read and write service gates, and the pulse re-
quired for write-in and read-out are shown infigure 10-12, The register service gates control
write-in and read-out. Each bit position (storage element) is cleared coincident with write-in.
Data from the write line is applied to the write service gate and is written into the storage
element under control of a write control pulse from the sequence generator. Data is read out
of a storage element under control of a read control pulse from the sequence generator.

Hardware register use and interface is described in the central processor description, para-
graph 10, 10. 2,

9.10 CMC ORGANIZATION

The CMC can be functionally divided into the following areas:

a. Timer.

b. Central Processor.

c. Sequence Generator.

d. Memory.

e. Priority Control.

f. Input - Output.

g. Power.

Each area(see figure 9-11)will be discussed separately in subsequent paragraphs.
9.10.1 TIMER. The timer generates the timing signals required for operation and
synchronization o1 the computer and is the primary source of timing signals for all
spacecraft systems.

The timer is divided into five functional areas (see figure 9-12):
a. Osclillator.

b. Clock divider logic.

c. Scaler.

d. Time pulse generator.

e. Sync and timing logic.

9-22

r-mrrz snwc: | “sTomaee | READ WRITE
| FLIP FLOP |

SERVICE AMPLIFIER
' GATE |
|

INPUT

R Tt SN S —
LeveL
wRITg g 777, :’
CLEAR J‘.“ i ‘m --------- ;
READ W ;

Figure 9-10. Basic Storage Element

9-23

POWER
SUPPLY

TO ALL

MEMORY

-

| Fexv]| [seLecTion Locic |

-“Ccvovz-—-

— —

FUNCTIONAL
AREAS

INPUT
CHANNELS

=

CH IS

CH (6

CHIT-CH2T

:
|
|
|
J

CH 30

CH 31

CH 32

mOPMIM<ZT—

CH 33

——

L]

COUNTER

mMOPMNIM-HZ —

FIXED ERASABLE
CENTRAL
PROCESSOR
— —
¢ OUTPUT
E BAnx|F BANK CHANNELS
sQ —— -7
R
.| L i
} A E E CH 06 ;
U
1 L(CHON 5|a CH 10 Y
G Q(CHO2) glp D CH Il
A z AL | CH 12
T T]!
E] EIF CHI3
s s]!
c & CH 14
PARITY BLOCK S |_ _]
= —_—
v
X

PRIORITY

e |

PRIORITY CONTROL

IMr-POn

TIMER

Figure 9-11.

Computer Organization

9-24

GcZ-6

|cT, wr,

MAIN DIVIDER LOGIC

CONTROL
PULSES __

TO
CENTRAL
PROCESSOR

1.024 MC.

MASTER |_ _

CLOCK

PHS 2 RING A QZA A
PHS 3 TINC B —— == ——
m 4 I
l ™ |
OVFSTE iy
POl
| GATING i SUPPLY
PULSES RING }
l COUNTER |
SCALER
| 17| poi-pos oA
Sesee GATING e oy b‘% FSO1- FS33
| s PULSES o5 ®-3 | roic-Fa3a
foz4ul potses 124V | Fo1p-Fa3B
] 45| FOID
= FO5D
F09D
1) MEMORY et MY
2) CENTRAL PROCESSOR GATRIT
3) INPUT ‘
4) OUTPUT j@— PULSES
5) SEQUENCE GENERATOR
6) PRIORITY CONTROL g:g;:-::
REAL TIME
WORD

512 KC GATING PULSES

1

TOl - T12, T12 SET

TIMING PULSES

Figure 9-12. Timer, Functional Diagram

The master clock frequency is generated by an oscillator and is applied to the clock
divider logic. The divider logic divides the master clock input into gating and timing
pulses at the basic clock rate of the computer. Several outputs are available from the
scaler, which further divides the divider logic output into output pulses and signals which
are used for gating, to generate rate signal outputs and for the accumulation of time.
Outputs from the divider logic also drive the time pulse generator which produces a re-
curring set of time pulses. This set of time pulses defines a specific interval (memory
cycle time) in which access to memory and word flow take place within the computer.

The start-stop logic senses the status of the power supplies and specific alarm conditions
in the computer, and generates a stop signal which is applied to the time pulse generator
to inhibit word flow. Simultaneously, a fresh start signal is generated which is applied to
all functional areas in the computer. The start-stop logic and subsequently word flow in
the computer can also be controlled by inputs from the Computer Test Set (CTS) during
pre-installation systems and subsystem tests.

9.10.1.1 Oscillator. The crystal controlled modified Pierce oscillator circuit
generates a 2, 048 mc square wave which is applied to the clock divider logic. Tem-
perature compensated components in the oscillator circuit maintain high stability and
assure an extremely accurate output frequency. The 2.048 mc signal is the prime
source frequency for the timer, and, consequently, for the entire computer and space
craft.

9.10.1.2 Clock Divider Logic. The clock divider logic is further sub-divided into the
main divider logic section, ring counter and strobe pulse generator. The 2,048 mc input
from the oscillator is applied to the main divider logic. This circuit divides the input
frequency by two, and generates the following outputs: clear, write, and read control
(CT, WT, RT) which are applied to the central processor to produce the signals neces-
sary to clear, write into, and read out the flip-flop registers; 1.024 mc gating pulses

(, PAS3, PAS4, OVFSIB, TT) which are used throughout the CMC; the master
clock signal (CLK) - a 1,024 mc output used to synchronize the other spacecraft systems;
and signal QZA which is applied to the oscillator alarm circuit in the power supply to
indicate oscillator activity. In addition, the main divider supplies signals (RING A and
RING B) to drive the ring counter, and signals (EVNSET and) to the time pulse
generator. These latter outputs occur at a 512 kc rate as a result of further division

of the 1.024 mc gating rate within the main divider.

The ring counter generates outputs (P01 - P05) at a 102.4 kc rate. The outputs are 5
microsecond pulses and are used for gating and for deriving other timing functions in
the CMC. Ring counter outputs are also used to derive the strobe pulses (SB0, SB1, SB2,
SB4) from the strobe pulse generator. These outputs also occur at a 102, 4 kc rate

and are 3 microseconds in width with the exception of SB4, which is a 2 microsecond
pulse.

9.10.1.3 Scaler. The scaler consists of 33 identical divider stages. The stages are
cascaded so that the frequency division is successive. The first stage is driven by
signal P01 from the ring counter, and generates outputs at a rate of one-half the input
or 51.2 kc. This output and the remaining outputs through stage 17 (0. 78125 pps) are
used for timing and gating. The outputs appear as signal outputs from flip-flop circuits
(FSO01 etc.), and 10 microsecond pulse outputs (FO1A etc.) at the same frequency as

the associated stage. Stages 6 through 19 and 20 through 33 form a 28 bit real time .

word (CHATO01 - CHAT14, CHBTO01 - CHBT14) which indicates time intervals up to
23.3 hours.

9-26

TWO COUNTERS IN E MEMORY - TOTAL TIME 31 DAYS

r 1 r 11111ttt T1TT1T T 117 1 rrrrrr o117 1717 717 1T 1
— 14 BIT COUNTER 14 BIT COUNTER
| N U D I O O I (R I T A (R T T NN (N T N N N N N N

|‘—— TIME 1 44—|- TIME 2 -——-J

BIT 10
L I B D L L ' T T T T T 7T 1T 17T 7T 1T T T 1T v v 1T 17 1T 1T 711 TOTAL
102.4 KC 33 BIT SCALOR TIME
[S U U NN NS WS N U TN U NN U N N NN MO M N N U O N N N O I 23.3 HRS.
CH-03 14 BIT CH-04 14 BIT —_—P

18599

Figure 9-13. Scaler

9-27

9.10.1.4 Time Pulse Generator. The time pulgﬁgenerator consists of 12 flip-flop
circuits and generates timing pulses TO1 through . (See figure 10-15,) This
sequence of timing pulses defines one memory cycle time (MCT) within the CMC or a
period of 11,97 microseconds, in which word flow takes place. The time pulse gener-
ator is driven by inputs a:vwéﬂ and ODDSET) from the main divider logic. Signal
can be inhibited by signal STOP from priority control. Signal STOP, an in-
put from the Computer Test Set (CTS) during preinstallation system and subsystem
tests, and subsequently inhibits the time pulses from being generated thus preventing
word flow in the CMC. This feature allows individual memory cycle times to be ob-

served during tests.

9.10.1.5 Sync and TimiqgmL_?i_c. The sync and timing logic (start-stop logic) con-

sists of a gating complex which generates various outputs for use within the CMC, and
synchronization signals for systems external to the CMC. The inputs to, and outputs

from this section are rather extensive.,

The ring counter, strobe pulse generator, and the scaler supply inputs to the sync and
timing logic. These inputs are used to derive gating and strobe signals for the input
and output channels, pulse outputs for the program time counters in memory, and
synchronization signals for the computer and DSKY power supplies and for systems

external to the computer.

During standby operation, the oscillator, clock divider logic, and the scaler are
operative and generate the signals associated with these functional areas. However,
the outputs that are significant during this mode of operation are the real time word
from the scaler and the synchronization signals to the other spacecraft systems. The
real time word continues to be accumulated during standby, and the external systems
sync signals continue to be generated.

9.10.2 CENTRAL PROCESSOR. The central processor, figure 9-14, consists of the
flip-flop registers, the write, clear, and read control logic, write amplifiers, memory
buffer register, memory address register and decoder, and the parity logic. All data and
arithmetic manipulations within the CMC take place in the central processor.

Primarily, the central processor performs operations indicated by the basic instructions
of the program stored in memory. Communication within the central processor is accom-
plished through the write amplifiers. Data flows from memory to the flip-flop registers

or vice-versa, between individual flip-flop registers, or into the central processor from
external sources. In all instances, data is placed on the write lines and routed to a spe-
cific register or to another functional area under control of the write, clear, and read
logic. This logic section accepts control pulses from the sequence generator and generates
signals to read the content of a register onto the write lines, and write this content into
another register of the central processor or to another functional area of the CMC. The
particular memory location is specified by the content of the memory address register.
The address is fed from the write lines into this register, the output of which is decoded

by the address decoder logic. Data is subsequently transferred from memory to the memory
buffer register. The decoded address outputs are also used as gating functions within the
CMC.

9-28

F=="T v |~~~ 71

MEMORY
I |
I |
(] E MEMORY F MEMORY |
L——— -— cmn cmm e e ——-——J
ALARM (16) FROM SENSE AMPS
(1 (1) WRITE LINES
PARITY G REGISTER jg———
(16) J
READ
LINES
FROM INPUT
INTERFACE
RL'S j
INPUT CHANNELS - - w
¢—»{ asza.r = -

H OUTPUT CHANNELS > ruqré’:g:c?

I::[r :] oL ~{

tg:?re&ev PROGRAM . r T r 1 —
s |
[

VWOEEP>P M-

(16) WRITE
LINES

[saexr | sa | eanx | esan |
(]) K '
A L -

TO SEQ TO MEMORY
GENERATOR SELECTION LOGIC

Figure 9-14. Central Processor Block Diagram

9-29

The memory buffer register buffers all information read out or written into memory.
During readout, parity is checked by the parity logic and an alarm is generated in case

of incorrect parity. During write-in, the parity logic generates a parity bit for informa-
tion being written into memory. The flip-flop registers are used to accomplish the data
manipulations and arithmetic operations. Each register is 16 bits or one computer word
in length. Data flows into and out of each register as dictated by control pulses associated
with each register. The control pulses are generated by the write, clear, and read con-
trol logic.

External inputs through the write amplifiers include the content of both the erasable and
fixed memory bank registers, all interrupt addresses from priority control, control pulses
which are associated with specific arithmetic operations, and the start address for an
initial start condition. Information from the input and output channels is placed on the
write lines and routed to specific destinations either within or external to the central pro-
cessor. The CTS inputs allow a word to be placed on the write lines during system and
subsystem tests.

9.10.2.1 Reg;sters. Each register can be considered to contain 16 bits, unless
otherwise specified. A description of each register in the central processor is

given in figure 9-15.

9.10.2.2 Basic Data Flow. Figure 9-14 is a block diagram of the central processor
including interface with other computer functional areas. When a word is gated out of
memory, it is stored just in register G. Register G is a temporary storage area. If the
data came from erasable memory, it is normally restored into erasable memory after

it is read into some other register. A parity bit is removed from all words that come
from memory. It is routed to the parity block where it is used to make the parity check.
It is the interface between register G and the write amps that causes a duplication of the
sign bit to form the overflow bit. This overflow bit is not written into the parity block;
however, all other registers will receive this bit. There are 16 write amp outputs which
can be gated into any of the central processor registers under control of the sequence
generator. Words that are to be written into memory must have a parity bit generated
for them in the parity block. This parity bit is sent directly to register G where it will
join the appropriate word that has been gated into register G via the write amps. Words
that are routed from the write amps to register G do not contain the overflow bit. This
bit is replaced by the newly generated parity bit. The entire word is then written into
erasable memory. In addition to temporarily storing all words to and from memory,
register G will cycle or shift words to the right or left when programmed to do so.

When shifting words to the left or right, the last bit is lost. However, in cycling, bit 1
becomes bit 16 or bit 16 becomes bit 1. The addresses mentioned will contain the

cycled or shifted contents when used with most order codes.

9.10.2.3 Adder. The adder consists of registers X and Y and associated carry gates.
The adder {8 the only true arithmetic manipulation circuitry in the CMC. Its function is
to add two numbers together. Provisions are made to handle carries when necessary.
The adder has the capability of adding + 1 to a number by forcing an end-around-carry.

9-30

Register Address Bits Name and Purpose

Designation | (Octal)

A 0000 16 1. Called the accumulator
2. Usually used to store results of these
manipulations:
a. Addition
b. Subtraction
c. Multiplication
d. Division
e. "AND'ing
f. "OR"ing

g. "EXCLUSIVE OR'"ing

L 0001 16 1, Called the lower order accumulator.
2. Used to store results of these manipulations:

a. Multiplication
b. Division

3. Sometimes used in channel instructions.

Q 0002 16 1, Called the return address register.

2. Used to store the contents of the Z register,
when the computer transfers control to another
operation.

3. Used to exchange information with addresses in
the central processor or erasable memory.
Z 0005 16 1. Called the program counter.

2. Contains the address of the next instruction
word in the program.

o000
B Newe- | 16 1. A buffer register.
2. Used to hold the order code of an instruction.
3. Used to hold address information.
4. Used as a temporary storage of data informa-
tion.
5. Has the ability to read out its actual contents
or the compliment of its contents.
S None 12 1. Contains the address portion of an instruction.
SQ None 7 1. Referred to as the instruction register.
,(:: cel:tde- 2. Contains the operand of an instruction word.
bit)

Figure 9-15. Register Designation and Function (Sheet 1 of 2)

9-31

Register Address Bits Name and Purpose

Designation | (Octal)
X and None 16 ea. 1. Are referred to as the adder.

Y 2. Performs all arithmetic operations.

3. The output gates of the adder are sometimes
called the U register.

G None 16 1. A buffer between memory and the central
processor.

2. All information going to or coming from mem-
ory passes through this buffer register.

3. Any parity bit received from memory is trans-
ferred to the parity block before going to the
central processor.

E-BANK 0003 3 1. Used to complete an address in erasable mem-
ory. ;
F-BANK 0004 8 1. Used to complete an address in fixed memory.
(includes
3 ext.
bits)

Figure 9-15. Register Designation and Function (Sheet 2 of 2)

9.10.2.4 Pari!:x(Block. The parity block provides a means of self-checking the com-
puter memory and transfer circuits. The parity block must test the parity of words
just arriving in the central processor from memory, and also generate a new parity bit
for words being stored in erasable memory. Any time a word is read out of memory,
its parity must be tested. Every time a word is written into memory, its parity must

be generated. The parity block is active during all of the 34 regular instructions and
some of the involuntary ones.

The essence of the parity test is as follows:

a. Logically (using NOR logic elements) determine whether the number of ONE's in a
word from memory is odd or even (excluding the parity bit).

b. Compare the parity bit with the information found in (a) above. If even, the parity

bit should be 1 if the total number of ONE's is to be odd. If odd, the parity bit should
be 0 for the same reason.

c. Any other condition except those defined in (b) above is an alarm condition.

9-32

The essence of the parity bit generation is as follows:
a. Repeat step (a) above.

b. If there is an even number of ONE's (excluding parity bit), generate parity bit = 1.
If there is an odd number of ONE's (excluding parity bit), generate parity = 0.

9.10.2.5 Registers S, SQ, F BANK and E BANK. The Sq register will receive bits
16 and 14 throug rectly irom the write amps under control of the sequence genera-
tor. The S register receives bits 1 through 12 from the write amps under control of the
sequence generator. The F BANK register will receive bits 16 and 14 through 11 from
the write amps under program control. The E BANK register receives bits 9, 10 and

11,

Registers A, L, Q, F BANK, E BANK, and Z are addressable; registers B, S, 5Q,
Y, X and G are not addressable. A register is addressable when it can be selected
for write-in or read-out by entering the proper address into register S,

A word can be transferred from one central processor register to another either via the
write amplifiers or directly. Direct transfer, however, takes place only among four of
the registers. Read and write control pulses occur simultaneously and gate the read
gates of the transmitting register and the write gates of the receiving register simuita-
neously. This also causes data to flow in parallel from one register to another via the
write amps. The flow of information from one register to another via the write amps
occurs on two different sets of lines: the read lines and the write lines. When one read
pulse and two or three write control pulses occur simultaneously, the same information
is entered into two or three registers. Direct read and write pulses transfer informa-
tion directly from one register to only one other register.

9,10.3 SEQUENCE GENERATOR. The sequence generator (figure 9-16) contains the
order code processor, command generator, and control pulse generator. The sequence
generator executes the instructions stored in memory by producing control pulses which
regulate the data flow of the computer. The manner in which the data flow is regulated
among the various functional areas of the computer and between the elements of the cen-
tral processor causes the data to be processed according to the specifications of each

machine instruction.

9-33

The order code processor receives signals from the central processor, priority control,
and peripheral equipment (test equipment). The order code signals are stored in the order
code processor and converted to coded signals for the command generator. The command
generator decodes these signals and produces instruction commands. The instruction
commands are sent to the control pulse generator to produce a particular sequence of
control pulses depending on the instruction being executed. At the completion of each
instruction, new order code signals are sent to the order code processor to continue

the execution of the program.

9.10.3.1 Qrder Code Processor. The order code processor (figure 9-17) consists

of the register SQ control, register SQ and decoders, and stage counter and decoders.
The register SQ control is regulated by special purpose control pulse NISQ from the
control pulse generator. Control pulse NISQ produces clear and write signals for
register SQ and initiates a read signal for register B. The clear, read, and write
signals place the order code content of register B onto the write lines and into register
SQ. The order code signals from the priority control and the peripheral equipment
pertain to instructions start, interrupt, and transfer control to specified address. These
order code signals cause the SQ control to produce the clear signals. If the order code
signal is start or transfer control to specified address, no further action occurs because
the order code for each of these instructions is binary 0 000 000, If the order code signal
is interrupt, register SQ is set to 1 000 111. Other special purpose control pulses pro-
vide regulatory functions within the register 5Q control during instruction interrupt and
some address - dependent instructions.

Register 9Q is a seven-bit register with only six of its bit positions (16 and 14 through

10) connected to the central processor write lines. The seventh (high-order) bit position
is the extend bit. This high-order bit position is used for extending the order code

field; it contains a ZERO for basic instructions and a ONE for extracode, channel, and
interrupt instructions. Bit positions 16, 14, and 13 produce the SQ signals. At any

time, only one of the eight possible SQ signals is present to indicate the octal number
specified by these bit positions. Bit positions 12 and 11 contain the quarter code. These
bits are decoded into one of four QC signals to indicate the octal number specified by these
two bit positions. Bit position 10 is not used for basic and extracode instructions; how-
ever, it is used for the channel and interrupt instructions.

The stage counter is a three-stage Gray counter especially adapted for various counts
other than the Gray code. Most instructions are several memory cycle times (MCT's)
long. The stage counter controls the length of each instruction. Most instructions use
the two low-order bits of the stage counter. The stage counter always starts an instruc-
tion with count 000, Then it may be advanced to 001, 010, or 011 by special purpose
control pulses ST1 and ST2 from the control pulse generator. The Gray code count is
used for the divide instruction. Control pulse DVST advances the counter through the
states, 000, 001, 011, 111, 110, and 100. The control pulse ST2 sets the stage counter
to 010 to complete the divide instruction. The content of the stage counter is decoded
into the ST code signals. Some of the ST code signals reflect the standard binary count

9-34

SE€-6

SR, S

l_ ENTRAIL
CENTRAL — e
r-" PROC ESSOR frs v e 1
l ————— |
|
I | 1
I = b ==
| PRIORITY | PERIPHER | | ' |
CONTROL. EQUIP TIMER S aaiTE. & DIREeT
I l...I —J 185 i | F :K(\’I:\‘:('-I'Z CONTROY
' T T . I ' PULSES
— = — R— = 5 " - -
| —: -3 -] | r-| 1
| 1 1 | TmE PUISES '
| | | INSTRUCTION SIGNALS |
I Ll |
| ORDER CODF. SIGNAIS
| |
l OUTPUT |
ORDER CODED |copmann 1
| il - SIonALST|CENERATOR |
l T |
| SPECIAL PURPUSE CONTROI PULSES '
SEQUENCE GENERATOR g

9€-6

r—===1

+—| COMMAND

1 B REGISTER
— — — — — — — ! CONTROL PULSE e s e
| | GENERATOR T Tl 1
, l—.-_.-- .LLJ_.I..L'____‘
| Mo e =
PRIORITY CONTROL SPECIAL PURPOSE '
| | AND PERIPHERAL | CONTROL PULSE i
| | EQUIPMENT v
_ ORDER CODE
| e ' ' SIGNALS
)
! | - .
m——— ——J — Rl — g ememora
| | — T
| ORDER CODE | , j INTERRUPT L
' SIGNALS ORDER CODE SQ CODE l
T REGISTER REGISTER
| L SQ CONTROL SQ & DECODER
| - = CLEAR AND
I | WRITE
SIGNALS i
SPECIAL PURPOSE
CONTROL PULSES STAGE
COUNTER ST CODE
L AND
—_———— DECODER |
- ORDER CODE PROCESSOR |

Figure 9-17. Order Code Processor, Block Diagram

»| GENERATOR |
L ——— G e— J

from octal 0 through 3, and others reflect the Gray code count of octal 0, 1, 3, 7, 6,
and 4. The order code signals from the priority control and the peripheral equipment
set the stage counter to a particular state in a manner similar to that in which the SQ
register is set. The interrupt order code signal sets the stage counter to 000, the
start order code signal sets it to 001, and the transfer control to specified address
signal sets it to 011. The outputs of the SQ and stage decoders are sent to the com-
mand generator where they are used to produce subinstruction and instruction com-
mands.

9.10.3.2 Command Generator. The command generator (figure 9-18) contains the
subinstruction decoder, instruction decoder, and the counter and peripheral instruction
control. The subinstruction decoder receives the SQ and ST code signals from the order
code processor. These signals represent the order codes of all machine instructions
and are decoded into subinstruction and instruction commands. For example, channel
instruction WOR has a binary order code 1 000 101 and stage code 000. The SQ code
signals SQEXT, SQ0, QC2, and SQR10 are combined with ST code signal STO to

produce subinstruction command WORO.

The instruction decoder receives the coded signals from the order code processor in
addition to certain subinstruction commands. It produces signals called instruction
commands. An instruction command is used for two or more subinstructions as
compared to a subinstruction command which is used only for one subinstruction.
For example, instruction command IC1 generates a combination of control pulses
shared by subinstruction NDX0 and NDXXO0. Instruction command IC1 is produced
by signals SQEXT, SQ5, and STO for subinstruction NDXO or by signals SQ5, QCO,
and STO for subinstruction NDXX0. Other instruction commands are produced from
subinstruction commands. For example, IC8 is produced by ORing DXCHO with
LXCHO.

The counter and peripheral instruction control receives instruction signals from the
priority control and the peripheral equipment. These signals are applied to separate
circuits which control the individual counter and peripheral instructions. The instruc-
tion signals from the priority control pertain to counter locations and the instruction(s)
associated with each lgcation. For example, signal C31A is interpreted as counter 31
address. The content of this location can only be changed by instruction DINC whose
subinstruction command is produced by the counter and peripheral instruction control.
Another example is signal C42P, interpreted as counter 42 positive increment or signal
C42M, counter 42 negative increment. The peripheral equipment supplies instruction
signals such as MREAD and MLOAD for the fetch and store instructions, respectively.
While the particular instruction is being executed, the counter and peripheral instruc-
tion control stores the input signals in the same way that order code signals are stored
by register SQ. Since some of the peripheral instructions are several MCT's long, they
use the ST code signals. The subinstruction and instruction command outputs of the
command generator are used by the control pulse generator in conjunction with time
pulses TO01 through T12 to produce action pulses.

9.10.3.3 Control Pulse Generator. The control pulse generator (figure 9-19) con-
tains the crosspoint generator, control pulse gates, and branch control. The cross-
point generator receives instruction and subinstruction commands from the command
generator and branch commands from the branch control. The crosspoint generator
produces an action pulse when a command signal and a time pulse are ANDed. This is
called the crosspoint operation. For example, action pulse 5XP12 is produced from’
subinstruction command DASO and time pulse T05. Many instructions use identical
action pulses. When this is the case, several command signals such as TCO, TCFO,

9-37

————

[PrRIORITY —

ORDER CODE
ONTROL & PE
PROCESSOR | EPHER e 1
T ~ T
I ' I
' l INSTRUCTION SIGNALS
ST CODE {
| T - -t - - - S
| | * COMMAND GENERATOR |
| | COUNTER AND
L — 4 -»| PERIPHERAL
| INSTRUCTION
| CONTROL
ST AND SQ L
CODE — -
I o _L SUBINSTRUCTION i ggg’srgox, |
T it r oy GENERATOR I
-t — — — _lINsTRUCTION L———
DECODER

b s wm— [s

Figure 9-18. Command Generator, Block Diagram

6€-6

4

3

:-".,;:} r(-wn.\m 1' CoexTaa,) rvnmrr::
GEXERATOR PROUESNDR CONTROL.
L.1_J -- g | L_T__J Laaad
'] | READ. WRITE, AND
1 | i — IMRECT EXCHANGE
| BRANCH TENT CUNTROL PULSES
| | DATA —_—
I SUBINSTRUCTION | WRANCIT | |
AND INSTRUCTION CONTROL b——:
COMMANDS
' I TEST CONTROL
PULSES
TIME PULSFES | | BRANCH coMMANIN |
7 |
' L
! ——— cnomporyt | Laemes fcoxmmon. r=="
| R -- GEXERATOR prLses | PUISE | SPECIAL PURPUSE JORDER)
¥ coxTROV. PIn SES .nncml
ISP |
CONTWOL PULSE GENERATOR |

Figure 9-19. Control Pulse Generator, Block Diagram
!

or IC4 will produce the same action pulse during time period T01. The branch
commands are used to change the action pulse that normally is produced at a given
time. For example, when certain conditions exist, a branch command will produce
action pulse 8XP6 in addition to another action pulse normally produced at time period
T08. The action pulses are supplied to the control pulse gates which convert them to
specific control pulses for use in instruction execution.

The control pulse gates perform the Boolean NOR function. There i8s one gate for each
control pulse. These gates split the action pulses into as many control pulses as are
required for a particular operation. For example, action pulse 3XP6 is converted to
control pulses RZ and WQ. Some of the control pulses produced by the control pulse
gates are used by the sequence generator. These include the special purpose control
pulses which control the operation of the order code processor and the test control
pulses which are applied to the branch control. The other control pulse groups, name-
ly the read, write, and direct exchange control pulses are used in the central pro-
cessor and the priority control.

The branch control is connected to the write lines of the central prdééssor. Data
which is placed onto the write lines by read control pulses is tested in the branch
control. The branch control contains two stages. Branch 1 normally tests for sign
and branch 2 test for full quantities such as plus or minus zero, Both branches test
for positive and negative overflow and have the overflow bits written directly into the
branch register. Positive overflow is 01 where branch 1 is the high order bit. Nega-
tive overflow is 10. The branch commands sent to the crosspoint generator affect the
action pulses at given times. The branch control also contains the special instruction
flip-flop which controls the execution of instructions RELINT, INHINT, and EXTEND.

9.10.3.4 Register % Control. The register SQ control is regulated by special pur-

pose control pulse N rom the control pulse generator. Control pulse NISQ causes

the register SQ control to produce clear signal CSQG, read signal RBSQ, and write
signal WSQG. These signals place the order code (content of register B) onto the write
lines and into register SQ at the beginning of each new instruction. The order code
signals applied to the register SQ control from the priority control (GOJAM and

RUPTOR) and peripheral equipment (MTCSAI) pertain to instructions start, interrupt,

. and transfer control to specified address, respectively. A distinct priority is associ-
ated with each of these three instructions. Instructions interrupt and transfer control
to specified address can never be requested when the computer is forcing the execution
of the start instruction, which has the highest priority. Certain peripheral instructions
occupy the next level of priority, followed by the counter instructions and in turn the
transfer control to specified address instruction, which has priority over the interrupt

_instruction; all six of these instruction categories have priority over basic instructions.

9-40

9.10.4 DESCRIPTION OF COMPUTER INSTRUCTIONS
The same instructions, which are directions given to perform specific operations, are the
same for the CMC and LGC. Together with data addresses, they constitute the building
blocks of a program., Programs are sequential lists of instruction words. There are two
general categories of instructions, machine and interpretive. Several types of instructions
used in the computer may be categorized as follows:
MACHINE (56)
REGULAR (42)
BASIC (15)
EXTRACODE (12)
CHANNEL (7)
SPECIAL (8)
INVOLUNTARY (9)
INTERRUPT (2)
COUNTER (7)
PERIPHERAL (5)

INTERPRETIVE

The machine instructions can be interpreted and executed directly by using the sequence

generator to control the computer operation. The interpretive instructions are a programmer's

convenience and must be interpreted under program control, converted to machine instruc-
tions and then executed as machine instructions. Table 9-2 lists the machine instructions
alphabetically and gives a brief description of each. The reader will find it to his advantage
to refer back to this table once he has gained a greater familiarity with the computer. The
following symbols are used in table 9=-2,

K represents any address in the central processor, erasable memory or fixed
memory.

F represents an address in fixed memory only.
E represents an address in the central processor or erasable memory.

H represents any channel address.

9-41

C represents any counter address.

A represents the A register on the central proceasor.

L represents the L register in the central processor.

c(K) represents the contents of K, i.e., the data located in address K.

I, 1+1, 1+ 2 represents the addresses of successive instruction words stored
in memory. :

c(h, C(1+1,C(I+2) represents the contents of successive instruction words
stored in memory.

9.10.4.1 Machine Instructions. The CMC has three classes of machine instructions:
regular, involuntary, and peripheral. Regular instructions are programmed and are
executed in whatever sequence they have been stored in memory. Involuntary instruc-
tions (with one exception) are not programmable and have priority over regular instruc-
tions: no regular instruction can be executed when the CMC forces the execution of an
involuntary instruction. The peripheral instructions are used during ground testing
when the CMC is connected to the CTS or PAC: the CMC cannot perform any program
operation during a peripheral instruction.

9.10.4.1.1 Regular Instructions. There are four types of regular instructions: basic,
channel, extracode, and special. The difference between the regular instructions is
directly related to the way in which the CMC interprets an instruction word. Instruction
words stored in memory are called ""basic instructions words'' and consist of a three

bit order code and a twelve bit address code. The order code defines an operation and
the address code defines a location.

The contents of the SQ register will determine what instruction the CMC will perform.
The SQ register reflects that data transferred into it from memory. The SQ register
consists of six bits and one EXT. bit (figure 9-20). A binary point is assumed to be
located between bits thirteen and twelve. When an instruction word is transferred
from memory to the SQ register, bits 15 through 10 of the word in memory are trans-
ferred to bits 16 and 14 through 10 of the SQ register (figure 9-21). In the follow-
ing paragraph, however, only the transfer of bits 15, 14 and 13 from memory to bits
16, 14 and 13 of the SQ register will be considered.

EXT 16 14 13 12 11 10

BINARY POINT

Figure 10-23. SQ Register

9-42

Table 9-2. Machine Instructions, Alphabetical Listing (Sheet 1 of 8)

Symbolic
Instruction

AD K

ADS E

AUG E

BZF F

BZMF F

CAK

Word

Order Code

Description

Execution
Time in

08.

02.6

12.4

03.

L

ruction: add c(K) to c(A); stores
result in A; takes next instruction fromI + 1
where I is location of AD K.

on: adds c(A) to c(E) and
stores result in both A and E; takes next
{nstruction from I + 1 where I is location of
ADS E.

Extra Code Instruction: adds +1 to c(E), if
c(E) 1s positive and -1 if c(E) is negative;
stores result in E; takes next instruction
from I+1 where I is location of AUG E.

NOTE: AUG, DIM and INCR are slightly
modified counter increment sequences.
Accordingly, if one of this group over-
flows when addressing a counter for which
overflow (during involuntary increment-
ing) is supposed to cause an interrupt, the
interrupt will occur. It should be noted
that all three of these instructions unlike
the increment sequences, always operate
in one's complement, even when address-
ing CDU counters,

Extra Code Instruction: takes next instruc-
tion from F If c(A) is #0; otherwise takes next
instruction from I + 1 where I is location of
BZF F.

Extra Code Instruction: takes next instruc-
tion from F if c(A) is +0 or negative; other-

wise takes next instruction from I + 1 where
I is location of BZMF F,

Basic Instruction: clears c(A) and copies c(K)
into A; takes next instruction from I + 1 where
I is location of CA K.

MCT's #

2

1 if c(A)
is +0;
otherwise
2

1 if c(A)
is +0 or
negative,
otherwise
2

2

9-43

Table 9-2. Machine Instructions, Alphabetical Listing (Sheet 2 of 8)

Symbolic Order Code Description Execution
Instruction | Time in
Word MCT's
CCSE 01.0 Basic Instruction: if ¢(E) is nonzero and posi- | 2

tive, takes next instruction from I + 1 where I
is location of CCS E, adds -1 to c(E) and stores
result in A. If ¢(E) is +0, takes next instruc-
tion from I + 2 and sets c(A) to +0. If c(E) is
nonzero and negative, takes next instruction
from I + 3, adds -1 to the absolute value of the
c(E) and stores result in A. If c(E) is -0,
takes next instruction from I + 4 and sets c(A)
to +0.

CS K 04. Basic Instruction: clears c(A) and copiesc{K) 2
into A; takes next instruction from I + 1 where
1 is location of CS K.

CYL .0022 Special Instruction: cycles quantity, which is
entered into location 0022, one place to left.
CYR .0020 Special Instruction: cycles quantity, which is

entered into location 0020, one place to right.

DASE 02.0 Basic Instruction: adds c(A, L) toc(E, E+1); | 3
stores result in E and E + 1; sets c(L) to +0 and
sets c(A) to net overflow if address E is not
0000g. Net overflow is +1 for positive overflow,
-1 for negative overflow, otherwise c(A) is set
to +0. Takes next instruction from I + 1 where
1 is location of DAS E.

Note: DAS A doubles the contents of the
double precision accumulator - implied
address code DDOUBL assembles as DAS
A. Since the nardware must operate on
the low order operands first, consider
DAS as the operation code 20001 to which
the address E is added to for the instruc-
tion.

DCA K 13. Extra Code Instruction: copies c(K, K + 1)into | 3
A and L; takes next instruction from I + 1 where
1 is location of DCA K.

9-44

Table 9-2.

Machine Instructions, Alphabetical Listing (Sheet 3 of 8)

Symbolic
- Instruction

Order Code

Description

Execution
Time in
MCT's

Word
=

= —1—

————— |

DCS K

DIM E

DINC C

DV E

DXCH E

EXTEND

FETCHK

T

12.6

None

11.0

05.2

00.0006

None

Extra Code Instruction: copies c(K, K + 1)
into A and L; es next instruction from
I+ 1 where I is location of DCS K.

ode ction: adds -1 if c(E) is
nonzero and positive and +1 if c(E) is non-
zero and negative; stores result in E; if c(E)
is +0, c(E) is not changed: takes next instruc-
tion from I + 1 where I is location of DIM E.
See NOTE under AUG.

Counter Instruction: adds +1 to ¢(C) if c(C)
is negative; adds -1 to ¢(C) if c(C) is positive;

provides no change if c(C) is +0; stores result
in C, delays program execution for 1 MCT.

Extra Code Instruction: divides c(A, L) by

c(E): stores quotient in A; stores remainder
in L; takes next instruction from I + 1 where
I is location of DV E,

NOTE: The signs of the double length
dividend in A & L need not agree. The
net signof the dividend is the sign of c(A)
unless c(A) is +0, in which case it is the
sign of ¢(L). The remainder bears the
net dividend sign, and the quotient sign
is determined strictly by the divisor and
net dividend signs.

Basic Instruction: exchanges c(E, E + 1) with
c(A, L); takes next instruction from I + 1 where

I is location of DXCH E.

Special Instruction: Take the next instruction
from I + 1, where I is the EXTEND instruc-
tion and execute it as an extracode instruction.
If I+ 11is INDEX (full operation code 15), the
following instruction will also be executed as
an extracode,

Peripheral Instruction: reads and displays
c(R) as binary numbers on CTS or PAC where
K is address supplied by CTS or PAC.

3

9-45

Table 9-2.

Machine Instructions, Alphabetical Listing (Sheet 4 of 8)

Symbolic
Instruction
Word

Order Code

Description

Execution
Time in
MCT's

EDOP

CcoJ

INCR E

INHINT

INOT LD H

INOTRD H

LXCH E

MCDU C

.0023

00.

02.4

00. 0004

None

None

02.2

None

?Ecial Instruction: shifts quantity, which
s entered into location 0023, seven places
to left.

Interrug‘lnF Instruction: transfers control
struction stored in location 40008 and
proceeds from there,

ruction: adds + 1 to c(E); stores
result in E; takes next instruction from1I + 1
where I is location of INCR E. See NOTE
under AUG.

Special Instruction: Inhibit program interrupts
until a subsequent RELINT. Take the next
instruction from I + 1 where I was INHINT

NOTE: The inhibition set by INHINT and
removed by RELINT in entirely inde-
pendent of the one set by an interrupt and
removed by a RESUME.

Peripheral Instruction: loads data supplied by
CTS or PAC into location H where H is chan-
nel address also supplied by CTS or PAC.
Peripheral Instruction: reads and displays

c(H) as binary number on CTS or PAC where
H is channel address supplied by CTS or PAC.

Basic Instruction: exchanges c(E) with c(L);
takes next instruction from I + 1 where I is
location of LXCH E.

Counter Instruction: adds -1 (two's comple-
ment) to c(C). E: Incrementing in two's
complement modulator notation transfers
octal 40000 to 57777 and 00000 to 77777 and
is otherwise like one's complement. PCDU
and MCDU replace PINC and MINC for
counters 0032 through 0036.

9-46

T‘able 9-2. Machine Instructions, Alphabetical Listing (Sheet 5 of 8)

Symbolic
Instruction
Word

MPK

MSK K

MSUE

NDX K

NDX K

PCDU C

Order Code

Description

MINC C : None

17.

07.

12.0

05.0

15.

None

Execution
Time in

MCT's
Counter Instruction: adds -1 to c(C); delays 1

program execution for 1 MCT. If negative
overflow occurs, c(C) is set to -0.

Extra Code Instruction: multiplies c(A) by
c(K); stores result and L; c(A, L) agree
in sign; takes next instruction from I + 1
where I is location of MP K. A zero result
is positive unless c(A) = +0 and c(K) is non-
zero with the opposite sign.

Basic Instruction: AND's c(A) with c(K);
stores result ; takes next instruction
from I + 1 where I is location of MSK K.

Extra Code Instruction: forms signed one's
complement dilference between c(A) and

c(E) where c(A) and c(E) are unsigned (modu-
lar or periodic) two's complement numbers;
stores result in A; the method is to form the
two's complement difference, to decrement it
if it is negative, and to take the overflow-
uncorrected sum as the result; takes next in-
struction from I + 1 where I is location of
MSU E.

Basic Instruction: adds c(K) to c(I + 1) where
I is location o X E; takes sum of c(K) +

c(+ 1) as next instruction. INDEX 0017 is an
implied instruction to resume an interrupted
program,

Extra Code Instruction: adds c(K) to c(I + 1)
where 1 i8 location of NDX K; sets extra code
switch: sum of ¢(K) + c(I + 1) becomes an
Extra Code Instruction which is taken as next
instruction. This INDEX will not act as a
RESUME.

Counter Instruction: adds +1 (two's comple-
ment) to c(C); delays program execution for
1 MCT. See NOTE under MCDU.

9-47

Table 9-2.

Machine Instructions, Alphabetical Listing (Sheet 6 of 8)

Symbolic
Instruction

PINC C

QXCH E

RAND H

READ H

ROR H

RELINT

RESUME

RUPT

Order Code

None

12.2

10.2

10.0

10.4

00.0003

05.0017

10.7

Description

Counter Instruction: adds +1 to c(C); delays
program exeoution for 1 MCT. If positive
overflow occurs, the counter is set to +0 and
an interrupt is set up if the counter is T3,
T4, TS5 or set up a PINC for T2 if the
counter was T1.

Extra Code Instruction: exchanges c(E) with
c(Q); takes next instruction from I + 1 where
I is location of QXCH E.

Channel Instruction: AND's c(H) with c(A);
stores result in A; takes next instruction
from I + 1 where I is location of RAND H.

Channel Instruction: copies c(H) into A; takes

next instruction from I + 1 where I is location
of READ H.

Channel Instruction: Inclusive OR's c(H) with
c(A); stores result in A; takes next instruction
from I + 1 where I is location of ROR H.

Special Instructions: Removes program
interrupt inhibits. Allows interrupts after
this instruction subject to the restriction

that an interrupt cannot occur while there
is plus or minus overflow in A.

Special Instruction: takes next instruction
from return address (location of which ad-
dress is stored in location 0017). This
allows the resumption of the interrupted
program.

Interrl_ugt% Instruction: takes next instruc-
tion from ress supplied by Interrupt Prior-
ity Control; stores c(B) (instruction that was
to be executed) in location 0017g; stores

¢(2) = I in location 00155 where I is assigned
location of instruction stored in 0017. This
instruction is for machine checkout only.

Execution
Time in

Word MCT's

1

9-48

Table 9-2. Machine Instructions, Alphabetical Listing (Sheet 7 of 8)

Symbolic Order Code Description Execution
Instruction Time in

Word MCT's
RXOR H 10.6 Channel Instruction: forms the exclusive OR 2

of c(H) and c(A); stores result in A; takes next
instruction from I + 1 where I is location of
RXOR H.

SHANC C None Counter Instruction: doubles c(C) and adds 1
+1; stores result in C; delays program execu-
tion for 1 MCT. This action amounts to shift-
ing ¢(C) one digit to the right and adding +1.

NOTE: SHANC and SHINC are used to
convert incoming serial bit streams into
words for parallel access.

SHINC C None Counter Instruction: doubles c(C); stores re- 1
sult in C; delays program execution for 1
MCT. This action amounts to shifting c(C)
one digit to the right. See NOTE under
SHANC.

SR .0021 Special Instruction: shifts quantity, which is
entered into location 0021, one place to right.
STORE E None Peripheral Instruction: data supplied by CTS 2
or 5%5 is stored in location E where E is

address supplied by CTS or PAC; delays pro-
gram execution for 2 MCT's.

SUE 16.0 Ex*rn Code Instruction: subtracts c(E) from 2
c(A); stores result in A; takes next instruc-
tion from I + 1 where I is location of SU K.

TC K 00. Basic Instruction: takes next instruction 1
from K; stores I + 1 in Q where I is location

of TC K; if K is 0006 (EXTEND), sets extra
code switch and takes next instruction from

I+ 1; if K is 0004g (INHINT), sets inhibit inter-
rupt switch and takes next instruction from I + 1;
if K 18 0003g (RELINT), resets inhibit interrupt
switch and takes next instruction from I + 1.

9-49

'Table 9=2.

Machine Instructions, Alphabetical Listing (Sheet 8 of 8)

Symbolic
Instruction
TCF F

TCSAJ K

TS E

WAND H

WOR H

WRITE H

XCHE

Order Code

Word

01.2
01.4
01.6

05.4

10.3

10.5

10.0

05.6

Description

Execution
Time in
MCT's

c ;. takes next instruction
from F. Does not change the contents of Q.

Peripheral Instruction: takes next instruc-
tion From K where K is address supplied by
CTS or PAC.

Basic Instruction: if c(A) is not an overflow
quantity, copies c(A) into E and takes next
instruction from I + 1 where I is location of
TS E; if c(A) is a positive overflow quantity,
copies c(A) into E, sets c(A) to +1, and takes
next instruction from I + 2; if c(A) is a nega-
tive overflow quantity, copies c(A) into E,
sets c(A) to -1, and takes next instruction
from I + 2,

Channel Instruction: AND's c(H) with c(A);
stores result in H and A; takes next instruc-
tion from I + 1 where I is location of WAND
H.

Channel Instruction: Inclusively OR's c(H)
with c(A); stores result in H and A; takes

next instruction from I + 1 where I is loca-
tion of WOR H.

Channel Instruction: copies c(A) into H; takes
next instruction from I + 1 where I is location
of WRITE H.

Basic Instruction: exchanges c(A) with c(E);
takes next instruction from I + 1 where 1
is location of XCH E.

1

9-50

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

.INSTRUC-
TION
WORD IN
MEMORY

EXT 16 14 13 12 11 10 SQ REGISTER

PROGRAM ACTION

Figure 9-21. Memory to SQ Register Transfer

The three bit order code in the memory basic instruction words has a capability of
uniquely defining eight operations: To increase the number of operations defined by the
SQ register, bit EXT (extend) is made a 1 or 0 under program control, therefore, bits
EXT, 16, 14 and 13 of the SQ register define sixteen operations.

Note the order codes in column 2 of table 9-2. These order codes are determined, in
most cases, by the contents of the SQ register. Figure 9-21 shows how the order codes
in table 9-2 are related to the actual contents of the SQ register. The instruction
defined by figure 9-22 is TS E.

In table 9-2, the instructions can be categorized into three distinct groups by their
listings in the order code column.

a. Those that list '"None."
b. Those that list four digits to the right of the binary point.

c. Those that list two or three digits with the binary point written to the right
of the second digit.

Group a contains the counter and peripheral instructions. There are no order codes
associated with these instructions.

Group b contains the special instructions that are address dependent basic instructions.
Their order codes are, in part, determined by bits 1 through 12. Those special instruc-
tions with no digits to the left of the decimal point can be combined with any basic
instruction order code. Those with digits to the left of the decimal point are combined
with that basic instruction whose order code appears to the right of the decimal point.

Group ¢ contains the basic, extracode and channel instructions, i.e., all the regular

instructions with the exception of the special instructions. Also included in this group
are the two interrupt instructions: these are pot regular instructions.

9-51

Note that the instructions in this group may or may not have a digit to the right of the
decimal point. When there is a digit to the right of the decimal point, it is determined
by bits 11 and 12 or bits 10, 11 and 12 of the SQ register. When bits 11 and 12 are
necessary to extend the order code field, their configuration is called a "quarter code."
When bits 10, 11 and 12 are necessary to extend the order code field, their configuration
is called an "eighth code.' Table 9-3:shows the configuration of the various quarter and
eighth codes associated with this group. Note that there are two ways of defining a zero
or an even digit to the right of the decimal point. Observe instructions CCS E and TCF
Fintable 9-3. These instructions are identical if only the digits to the left of the
decimal point are considered. There, two instructions can be distinguished, however,

if bits 11 and 12 of the SQ register are observed. Note that the content of bit 10 in
register SQ is irrelevant because only four cases have to be distinguished and, conse-
quently, a quarter code is sufficient to define the necessary operation. Now observe the
instruction intable 9-3 which have digits 1 and 0 to the left of the decimal point in the
order code column. There are eight of these instructions and to differentiate between
them, bits 10, 11 and 12 of the SQ register are necessary because eight cases must be
differentiated. If just bits 11 and 12 were used, only four cases could be distinguished.

EXT 16 14 13 12 11 10
0 1 0 1 1 0 | X |CONTENTS OF SQ REGISTER
\ —~ J \ . o J
0 5 &

X SIGNIFIES A 10R 0

Figure 9-22. Order Code Determination

Basic instructions can be differentiated from extracode and channel instructions by the
left hand digit of the order code. If bit EXT in the SQ register is a 0, then the left hand
digit is a zero and the instruction is a basic instruction. If bit EXT is a 1, then the left
hand digit is a one and the instruction is an extracode or channel instruction.

10.10.4. 1,2 Involuntary Instructions. The involuntary instruction class contains two
types of instructions - interrupt and counter. The interrupt instructions use the basic
instruction word format just as the regular instructions do. However, the interrupt
instructions are not entirely programmable. The contents of the order code field and the
address field are supplied by computer logic rather than the program. The counter
instructions have no instruction word format. Signals which function as a decoded order
code specify the counter instruction to be executed and the computer logic supplies the
address. The address for these instructions is limited to one of 29 counter locations in
memory.

There are two interrupt instructions. One instruction initializes the computer when
power is first applied and when certain program traps occur. The other interrupt
instruction is executed at regular intervals to indicate time, receipt of new telemetry or
keyboard data, or transmission of data by the computer. This interrupt instruction may
be programmed to test the computer. '

9-52

Table 9-3. Quarter and Eighth Codes

EIGHTH OR QUARTER 8Q REGISTER
CODES BITS

12 11 10
EIGHTH .0 0 0 0
QUARTER .0 0 0
EIGHTH S | 0 0 1
EIGHTH] 0 1 0
QUARTER .2 0 1 X
EIGHTH .3 0 1 1
EIGHTH .4 1 0 0
QUARTER .4 1 0 X
EIGHTH -] 1 0 1
EIGHTH .6 1 1 0
QUARTER .6 1 1 X
EIGHTH .1 1 1 1

X stands fora 1 or 0

There are several counter instructions. Two instructions will either increment or
decrement by one the content of a counter location using the one's complement number
system. Two other instructions perform the same function using the two's complement
number system. Certain counter instructions control output rate signals and convert
serial telemetry data to parallel computer data.

9.10.4.1.3 Peripheral Instructions. There are two types of peripheral instructions.
One type deals with memory locations and the other type deals with channel locations.
The peripheral instructions are not used when the computer is in the spacecraft. They
are used when the computer is connected to peripheral equipment during subsystem and
preinstallation system testing. The peripheral instructions are not programmable and
are executed when all computer program operations have been forcibly stopped. These
instructions are used to read and load any memory or channel location and to start the

computer program at any specified address. The peripheral instructions and counter:
instructions are processed identically.

9-53

9.10.4.2 Interpretive Instructions. Interpretive instructions, a programmer's
convenience and a means of saving memory storage area, must be interpreted under
program control, converted to machine instructions and then executed as machine *
instructions. The coding into interpretive instructions of routines which contain double
precision, triple precision, vector, and vector matrix operations results in a con-
siderable saving in program storage area in fixed memory. This saving is achieved at
the expense of computer operating speed; however, when operating in basic machine
language the computer operates much faster than the equipment with which it interfaces.
Since most of the PGNCS problems the computer is required to solve involve complex
mathematical equations, the use of interpretive instructions for vector matrix algebra
and complex differential calculus is a definite asset.

9.10.4.3 Instruction Data Flow. Examples of instruction data flow are illustrated
in figures 9-23a, 9-23b, and 9-24a and 9-24b. Figures 9-23a and 9-23b indicate the

detailed subinstruction flow diagrams necessary to produce an AD K instruction. Similar

diagrams, figures 9-24a, and 9-24b are presented for the Resume instruction.

9.10.5 MEMORY. The CMC has erasable and fixed memories. The erasable memory
can be written into and read out of; fixed memory can only be read out of. Erasable
memory stores intermediate results of computations, auxiliary program information, and
variable data supplied by external inputs from the PGNCS and other systems of the space-
craft. Fixed memory stores programs, constants, and tables. There is a total of 38,912,
sixteen bit word storage locations in fixed and erasable memories. It should be noted that
the majority of the memory capacity is in fixed memory (36,864 word locations). Both
memories are magnetic core storage devices; however, the cores are used differently
in each type of memory. It is assumed that the reader is familiar with the basic magnetic
properties of a ferrite core as described by a square hysteresis curve. A core is a static
storage device having two stable states. It can be magnetized in one of two directions by
passing a sufficient current, I, through a wire which pierces the core. The direction of
current determines the direction of magnetization. The core will retain its magnetization
indefinitely until an opposing current switches the core in the opposite direction. Wires
carrying current through the same core are algebraically additive. Sense wires which
pierce a switched core will carry an induced pulse.

9.10.5.1 Erasable Memory Core Array. Erasable memory is arranged in a three-
dimensional 32 x 64 x 16 core array for a total of 2048 16-bit storage locations. Each
bit requires 1 core for its storage. The direction of magnetization determines whether
a logic 1 or 0 is stored. The intersection of X planes and Y planes define 16-bit words.
There are 64 X planes and 32 Y planes as indicated in figure 9-25.

Each core of erasable memory is threaded by four lines: an X selection line, a Y
selection line, an inhibit line and a sense line. (See figure 10-29.) Each of the 64 X
planes has a unique X selection line threading each core in that plane; each of the 32 Y
planes has a unique Y selection line threading each core in that plane. Each of the
16-bit planes has a unique inhibit line threading each core in that plane and a unique
sense line threading each core in that plane. Therefore, there is a total of 64 X
selection lines, 32 Y selection lines, 16 inhibit lines and 16 sense lines in erasable
memory. Readout of the erasable memory cores is destructive. If it is desired to
retain the information in erasable memory, it must be written back into erasable
memory. To read a core, currents = +1/2 I are simultaneously passed through the
X and Y selection lines threading that core. Note the plus sign associated with the
current. Current in the plus direction is a read current; current in the minus direc-

9-54

FM \{
EM 25252 I 25282
|
CH |
|
s |23 | wSs § 0660
|
|
¢ [161213 wo *oooooo b 025282 ¢ "G T wG ’ozszsz b 025252
. 023232
|
s 161213 @ ws lozszsz L1} l ne T 023252
| !
000660,
| da
a |ooow0z RSC + | WA § 029354
5
L HS(+
==
o RSC + l 025252) (023334
‘4 000660 RSC x Ill 000660
u |oooe60 lulOls!St
v |oooes? wy%023232
x |oooooo A2x #000102
cr |]
sQ |060
TIME | 2 4 L] L4 8 9 10 " 2
STAGE RSC 1S FIXED ST2 SETS
COUNTER INHIBITED MEMORY STAGE
IS SET BY ADDRESS STROBE IS COUNTER
T0 000 1213 INS INHIBITED T0 010
8Y ADDRESS
1213INS

Figure 9-23b. Subinstruction ADO, Data Transfer Diagram

9-55

I
o

FM []
t
EM) 26007 | 28077
j ¢
T
CH l
L}
S | oeso | wsjeor?
! 26077
|
G | o2s2s2 wo'oooodb Yoz2e077 4 RAD¢ é026077
i —
X !
B | o2s2%2 | weVoze077 re ¢
A | ozssse nscd
A-
L rsc ¢
+
Q rscé
A
RZ M
z oooseog nsce vztoooom
@oosed) o2e
ru 025384 AU S00086!
Y | o2e2s29wyiz 000660
x | oool02e wviz 000000 .
Cl !
SQ wnn“ozo
TIME I 2 3 a 5 6 8 10 " 12
STAGE ci NISQ FIXED
COUNTER SETS CAUSES MEMORY
SET CARRY RB AND STROBE IS
ol0 FLIP WSQ AT INHIBITED
FLOP TIME TZ. 8Y ADDRESS
RSC I8 0660 IN 8
INMIBITED
8Y ADDRESS
0880 IN S

Figure 9-23a.

176368

Subinstruction STD2, Data Transfer Diagram

9-56

FM r
|
24148 2010
EM) 1
CH |
4
S |oorr | mpioes
A
T
|
G | 150017 weyo00002 V024148 * nr ntouul Soz24148
Al
X (D) @
L
8 |150017 @ we 0241489 @ -1
4
A rscéd
y
L nscd
4
v
Q rschd
L
Z |ool0ee asc‘ RZ29001084
[_L 001084
Y |ooioss
X | oooo00
Cl |
SQ|oso
TIME | 2 4 6 T 8 9 10 " 12
STAGE wscis TROM SETS FIXED STI SETS
COUNTER INMIBITED smer MEMORY sITIOF
IS SET 8YADDRESS COUNTER STROBE IS sTAGE
T0 000 00ITINS TOOIO INMIBITED COUNTER
sINCE SYADDRESS RESULTING
¢(8)1S00IT0OIT IN 8 N oIl

Figure 9-24a. Subinstruction NDX0, with Implied Address Code RESUME,

Data Transfer Diagram

9-57

40728

FM

EM p3lsie 241458
CH
S uooountoou "t"‘ﬁ
024148
G |o24148 wa,§000000 Y 031418 R nfouus RAD$ 024148 024108
| ’@)
A
8 [ozeies b wsboreres RS OReIes
|
|
A nsc‘ 03ie18
A
L nschd
A
v
Q rscéd
A
Z |ooiose nscd
024145
l U [oowee
Y |oooes
X |oooo000
Cci |
$Q |oso WSO 024
TIME I 2 3 4 S 6 8 10 " 12
STAGE RIS NSO
COUNTER PLACES GENERATES
IS SET 000015 RB AND SQ
Tool: ON AT TIME 12-
WRITE RSC IS
LINES INHIBITED
8¢ ADDRESS
COISINS
40727

Figure 9-24b.

Subinstruction RSM3, Data Transfer Diagram

9-58

8T m.me\

/\

16 BIT
PLANES

pe

(7777777277077 ILL;

N

STORAGE
LOCATION
(16 BIT LOCATIONS)

(
-
(/
(/
(/
{/
(./
{/
(/
{/
{ /
(/
(/
{/
(/
(/
-
(/
{/
(/

(4

Y PLANE

Figure 9-25. Erasable Memory Core Array

9-59

READ INHIBIT LINE
(+) (+)

SENSE LINE

READ
(+)

Y SELECTION LINE

WRITE
(=)

INHIBIT LINE
(=1

X SELECTION LINE

WRITE
(=)

FUNCTION X Y INNIBIT

wRITE ONE |- Ix [-3!y | ©
|

write zero|- 41y |- 1y | +3 1

READ (CLEARN+ % 1x [+5 1y | ©

Figure 9-26. Erasable Memory Core Threading

9-60

tion is a write current. Therefore, the total read current = +I. A read current

= +I will try to switch the core to a zero state. If the core was in a one state prior

to the generation of the read currents, the core will switch to a zero state and a

pulse indicating a logic one will be induced on the sense line. If the core was in a zero
state prior to the generation of the read currents, the core will remain in the zero
state, no switching will occur, and no pulse will be induced on the sense line; this
indicates that a zero was stored in the core. Note that the logic one stored in the core
was destroyed after the core was read.

To write a 1 into the core, -1/2 I is passed through the X and Y selection wires. Thus,
an attempt is made to switch the core to the 1 state. The two currents add and cause

a switching to take place unless it is desired to write a 0 into the core. In this case,
the inhibit line will carry + 1/2 I opposing the X selection line current. Thus, the

total current passing through the core is -1/2 I. This is not sufficient to switch the
core, hence, a logic zero remains in the core. In order to write into a core, it must
be cleared. This amounts to reading the core as described above.

The core array consists of 32,768 cores wired as described above. Figure 9-25
shows an X plane and Y plane intersecting to form a word. This intersection repre-
sents 16 cores, each core being a bit in the word. A single bit location is defined

by the intersection of an X plane, a Y plane, and a bit plane. There are 16 bit planes,
each containing 2048 bit locations, e.g., bit number five (5) of every word. Each core
in a bit plane is threaded diagonally by a common sense line and vertically by a common
inhibit line. (See figure 9-27.) Since a unique sense line threads all cores in a given
bit plane, current will be induced into the line if the state of any core is changed.
similarly, current through the inhibit line prevents every core in the bit plane from
changing to the 1 state during the writing process. Each X plane and each Y plane is
threaded by a common selection line. Choosing one of 32 Y and one of 64 X selection
lines will choose 1 word of 2048 in erasable memory.

9.10.5.2 Addresslnq Erasable Memory. Erasable memory is divided into eight
banks, each of which is capable ol storing 256 (16 bit) words. These banks are named
E-BANK 0 through E-BANK 7 (figure 9-28).. E-BANK 0 contains 207 locations for
general use; the other 49 locations have specific uses: 29 are used for counters, 12
have special functions, 8 are not used. The addresses of the eight unused locations
are used to address registers in the central processor. All locations in E-BANK 1
through E-BANK 7 are utilized for general use.

E-BANK 0, 1 and 2 are referred to as unswitched erasable memory because all of
their locations (as well as the addressable central processor registers) can be
addressed by entering their addresses into register S without regard for what might
be contained in register E BANK. E-BANK 3 through E-BANK 7 are referred to as
switched erasable memory because all of their locations can be addressed only if the
respective bank number is contained in register E BANK. Locations in unswitched
erasable memory can also be addressed in the same manner as switched erasable

memory if the proper bank number is contained in register E BANK and bits 9 and 10
of register S are logic 1's.

Figure 9-29 is a general block diagram of erasable memory and its associated
circuitry. The first twelve bits of an instruction word constitute the address portion
of the instruction. These bits are loaded into the S register and then applied to the
address decoder. If either bit 11 or bit 12 or both is a logic 1, then fixed memory

is being addressed and the erasable memory circuitry is not enabled, i.e., bit 11 and
bit 12 of register S must be a logic 0 if erasable memory is to be addressed. If bits

9 and 10 of register S are logic 1's, then register E BANK is enabled and its three
bits are also applied to the address decoder.

9-61

T T e e===7

——— e = ————— = —— e ——— - ———

Yoo ssTsTEsEn. w0 reessioses SEEEER

| > >l x> B[> BB B>
al = Bl &> 2l o B> B>
ol 5 2l e 2> e B s>
@l o olm > e x5 e B n]|n] B> >
vl o olm B> B> Bl B B>
0|l o ele olmx nlx x| n]n]n]»
m7 e ole ole o|mx mlx ml by wm|m]n]|n]»
ow| © ole ole o|m mn w5 B n|n]]| >
901010101110111111
m01010101011111111
uooooooooooooooooo
mooooooooooooooooo
9xoxoxoxox1x01°101
MN % ol ol o|x ©o| % ©o|x ~|~|o|o|~|~
]
Bla| x ol o % o|x o|x ©| Kk oo ~|~f~]~
31
-]
Bl s
°c0 m
g .m q 5 .m — o o|le|lo|e|~
EARIT IR B Y ERRY I (FIFIEE
] 2
(SN-¥
.mw o U.] N R
-5 (%] [&] FIETEC R
0 yuedg-3

Unswitched

Erasable

Memory

9-63

ﬁ

Switched
Erasable
Memory

Y Means 0 or 1 as defined by address

X Means 0 or 1 which does not have an effect on addressing

Figure 9-28. Erasable Addreéslng

xT(8)

T0 G ‘
REGISTER , X ToP
P SELECTION
| SWITCHES
16
SENSE
‘ 64
- WIRES

FROM G
REGISTER
I\
\\
13

[
INHIBIT
DRIVERS

> XTO THRU XT7

& X80 THRU X87

pef> YTO THRU YT7

pee> YOO THRU YB3

[' 16
X
32 Y
To WIRES o ; JSorTom L‘" vele)
T SELEC- . CORE WIRES L
LRy 7™ ARRAY a SWITCHES
SWITCHES
»
16 BITS
A\ SaWIRES
X BOTTOM
SELECTION
SWITCHES
' }um
&
3
e
L]
o S €
S REGISTER 7 ADDRTDE
CENTRAL A
PROCESSOR & DECODE!
2
o 1
1
|
D)
® £ sank 2
"
€ BANK ENABLE
NO INHIBIT
ERASABLE MEMORY
® TIMING ENABLE

Figure 9-29. Erasable Memory Block Diagram

9-64

The address decoder generates signals XB0 through XB7, XT0 through XT7, YBO
through YB3 and YTO through TY7. There are 64X selection and 32Y selection lines
associated with erasable memory. A conbination of an X selection and a Y selection
line determine a unique location (16 bit) in erasable memory. Figure 10-33 lists the
outputs of the address decoder and the inputs required to generate a given output. Note
that the address decoder can generate 64 separate combinations of an XT and an XB
signal (8 x 8) and 32 separate combinations of a YT and YB signal (8 x 4). Note also
that the XB's, XT's and YB's are a result of information located in the S register
while the YT's are a result of information located in the E BANK or S registers.

Figures 9-31 and 9-32 are block diagrams of the circuitry involved in determining
a particular X and Y selection line so that a unique location can be read from or
written into erasable memory.

The following is an example of how a location in erasable memory is addressed. After
the example, a detailed view of the selection switches involved will be presented.

Assume that the S register contains 001, 100, 000, 110 and that the E BANK register
contains 100, Using figure 10-33 it is seen that signals XB6, XT0, YBO and YT4 are
logic 1's while the other listed signals are logic 01s; note that bits 11 and 12 of the

S register are logic 0's; therefore, erasable memory is addressed. Note also that
bits 9 and 10 are logic 1's; therefore, register E BANK selects the YT signal. From
figure 10-31 it can be seen that the location addressed is in E BANK 4. Assume that
we wish to read the addressed location. In figure 9-32, only the switches that are
selected by iog‘lc 1 outputs of the address decoder can pass current; therefore, the
switches associated with outputs YBO and YT4 can pass current while the others can-
not. Consequently, a Y selection line has been selected. Also, in figure 9-32, only
the switches that are selected by the address decoder can pass current. Using the same
process as above, it can be seen that an X selection line has been selected, therefore,
a specific location (16 bit word) in erasable memory has been read out.

The core switches are not a part of the core array. They are, however, magnetic
cores with storage properties. The cores act as small transformers ¢ s well as storage
devices. The YBO and YT4 pulses will be generated simultaneously. This causes the
switch transistors to be momentarily biased on since their core windings are wired the
same as the control pulses. Thus, current will flow in the read direction (from B+ to
ground) through one of 32 Y selection wires. In addition, the cores are switched. The
cores essentially remember the location which is being read so that the information can
be rewritten back into the same location. The information would otherwise be des-
troyed. To write requires that current be passed in the opposite direction in the same
selection wires. The RESET pulse will be routed to all core switches in the selection
switch blocks. Only those switches just previously switches will be in a position to
switch back to their original state. This will cause the transistors to be biased on,
allowing conduction of current in the write direction from B+ to ground. Note that the
diodes simply steer the current by acting as blocking diodes.

9-65

8 Register .

Signal |10 | 9 | Signal [8| 7 |Signal |6 | 5| 4 |Signal 3|21
YTO 0 YBO |0|O0)] XTO |0|0|O0O| XBO [0|0]|O
YT1 0|1| YBl1 |0|1] XT1 |0|O0]1]| XB1|0]|O]1
YT2 1 YB2 |1|]0| XT2 |0|1|]0| XB2 |0|1|O

YB3 |1|1] XT3 |0|1|1| XB3 |0[|1]1
XT4 |1|0|0| XB4 |1|0]O
XT6 |1|0|1| XBS |1[/0]1
XTe [1]1|0| XB6 |[1({1]0
XT7 |1]1]|1] XB7T |1]1]1
E-Bank
Signal |11 |10 | 9
* Bits 11 and 12 are both assumed
V6 ol olo to be logic 0
YT1 0|l 01 ¥ Generated only if bits 9 and 10 of
YT2 ol 110 register 8 are both logic 1
YT3v | 0| 1|1
YT4¥| 1| 0|0
YIS5¥| 1| 01)
YIé¥| 1| 1]0
YTT¥)| 1| 11

Figure 9-30. Address Decoder

9-66

xT2 XT3 XT4
" XTS xXT6 x17

XTI

XTO

-~

TN

N

S SR Fpf pru RESEE
Il [} ’
SR |
o
i I
Yot fA Yoot Yeof Yoof Yo"
- XA RNA X oot Yo A Yoot oF-
. Nl N
[—
1 q
N %
e -
o
=
\.‘
o
ARNRRN T
Ml B 2 N ~ o SIS PRNESPRS |
@ ® o~).u«
> » Wa o

408620

40X
98x
Sax
v8X
€ox
20x
18X
o8x
48x
90X
sax
»0x
€ox
28X
18x
oax
0x
9ax
sox
»OX
€ex
2ax
18X
o8x
10X
98X
18
raX
€ex
2ex
1ax
oex
18X
98X
[1:1 8
rox
[1:1¢
20X
18X
o8x
18X
98 x
[1:
»OXx
cex
20X
19X
ogx
48X
98X
cax
»8X
Lax
28x
19X
oax
48X
X
cax
»8x
£ax
2ax
9%
oex

X and Y Coordinates

Figure 9-31.

Y-67

+14V (WRITE)
GND (READ) XTO
WRITE
YBO
READ
+14V (READ)
GND (WRITE)
o
S
K N oA
SELECTION
YT YB XT XB
ofoJofoJofofofoToo]o]o oo
1]1ofo [12]11fro] o [|76 5 2 |1
v T
E BANK S REG

XT1 —auff

READ

| WRITE

%

t14V (WRITE)

Figure 9Y-32, Erasable Memory Selection

9-68

\ 1 N—‘ :;Aﬁkj’f GN:)T(:EAD)
£ N\
N ,
b [\l YT3
—+——\
b"l YT5
T —9 YT6
ZZZ}Z}Zizz I\r g ?
T = ey
- e Uy
P \
Nt 1 -
XBO XBl1 XB2 XB3 XB4 XBS XB6 XB7 EEII:I‘)/ ((\SE{IATDI-%)

17635

The X selection circuitry is similar to the Y selection circuitry discussed above. It
is the selection of bothan X anda Y wire that causes the selection of a 16 bit word.

It should be mentioned that whether it is desired to read out or write into erasable
memory, the selection procedure and operation of the core switches is the same. If
it is desired to simply write a new word into a location, readout will occur, clearing
the locations to all zeros. The information read out can be loaded into the G register
where it will control the inhibit wires at the time the RESET pulse i8 issued. All bits
in the selected word will switch to a 1 except those which have inhibiting current run-
ing through them. The sense amps receive and amplify pulses which are induced into
the sense wires during readout. These amplifier pulses are applied to the G register
where they are stored as logic ONE's. There are 16 sense amps, one for each bit in

the selected word.

Erasable memory timing consists of several flip-flop circuits which produce the
timing signals for erasable memory (see figure 10-36). These timing signals are
produced in one memory cycle time (T01 through T12). At time TO03 a set signal
(SETEK) is generated to enable the core selection switches to be addressed and read
strobes (REX and REY) are generated to enable the selected data to be read out of
memory. At time T04, the sense strobe signal (SBE) is generated to enable the sense
amplifiers to supply memory data to the G register. At time T10 information is
written into erasable memory using the reset, inhibit, and write strobes. The reset
strobes (RSTKX and RSTKY) enable the reset drivers, thereby clearing the addressed
memory location prior to writing in data. The inhibit strobe (ZID) enables the inhibit
gates and the write strobes (WEX and WEY) enable data to be written into a particular
memory address.

q-33

9.10.5.3 Fixed Memory Core Array. Figure 8% |lustrates the use of the mag-
netic core in the rope core memory. This hypothetical model consists of 4 cores
(edge views) labelled CORE 0 through CORE 3. Each core stores one 4-bit word,
labelled WORD 0 through WORD 3. The bit configuration of each word is determined
by whether the particular sense wires are routed through the hole or around the hole.
The associated table in figure 10-37 shows the bit configuration that would be produced
on the sense wires if the associated core were switched. Only one core could be
switched at any one time. The problem becomes one of selecting the desired core to
be switched. A two-bit address could be used to uniquely define any one of 4 cores.

The A and B inhibit lines (along with their complements) represent the bit configuration
of the two-bit address. These wires are routed in and out of the 4 cores in order to
select only one core.

Assume that it is desired to read WORD 2 from fixed memory. In figure 10-37, the
direction of the arrows indicates the direction of current flow. Lines that are broken

at the core pierce the core. Lines that are continuous at the core are routed around

the core. Before reading a core, a current I is passed through the RESET line switch-
ing all cores into one state of magnetism. Currents are then passed through the SET
line, A line and B line simultaneously in the direction shown. The currentI in the

SET line attempts to switch all cores back to the original state. However, the inhibit
wires, & and B, carry current = 1/2 I in the opposite direction in order to oppose the
SET current and cancel its effects. All cores except one will receive inhibiting current.

9-69

SENSE
LINES

Figure 9-33. Sample Rope Core

9-70

A =
INHIBIT
A -) r LINES
[E— | Em—E
¢SET
—& RESET
o | 2 3 —) | :
— \ 2 gensE
— [3 LINES
—) 4
L] - - INHIBIT
B LINES
INHIBIT SENSE |
CORE O WORD 0O
CORE | WORD | 2
CORE 2 WORD 2 2
CORE 3 WORD 3
x INDICATES INHIBIT LINES NECESSARY TO ENABLE CORE SWITCHING

Note that CORE 2 is not pierced by the A or B inhibit line. Therefore, CORE 2 changes
state. This changing state produces a changing flux field which induces an electrical
pulse in all sense lines which pierce the hole. Thus, SENSE lines 1, 2, and 3 will
carry a momentary pulse while SENSE line 4 carries no pulse. The pulses represent
logic ONE's while the lack of pulses represents a logic ZERO. The table included in
figure 9-33 shows how the inhibit lines are wired to inhibit certain cores from switch-
ing. Note that if current is assumed to flow in A, it cannot flow in A. The same idea
applies to B and B. Additional cores could be added to this model by increasing the
number of inhibit lines.

9.10.5.4 Addressing Fixed Memory. Fixed memory consists of three ropes (R, S,
T). Each rope 1s divided Into two rope modules; B1 and B2, B3 and B4, B5 and B6,
respectively. Each rope module is divided into six banks; therefore, each rope con-
sists of 12 banks and, consequently, fixed memory consists of 36 banks. Each bank is
capable of storing 1024 (16 bit) words; therefore, fixed memory has a storage capacity
of 36,864 (1024 x 36) 16 bit words. Each core of fixed memory stores 12 16 bit words;
therefore, there are 3072 (36,864 + 12) cores in fixed memory. Note that 36 does not
divide into 3072 evenly. This means that a given core is not completely associated
with a particular bank. See table 9-4.

Table 9-4. Fixed Memory Composition

/MODULE

ROPES

MODULES 6 2 - -
WORDS 36, 864 12, 288 6, 144 12
CORES 3,072 1,024 512 -
BANKS 36 12 6 -
STRANDS 72 24 12 12
MODULE AREAS 24 8 4 -
SENSE LINES 1,152 384 192 192
INHIBIT LINES | 84 28 14 14

9-71

Fixed memory cannot be written into, and readout is nondestructive. Information
stored in fixed memory is determined solely by the configuration of sense wires
running through or around the cores; therefore, the stored information cannot be
electrically altered; a rewiring of fixed memory would be necessary to change any
programs, constant, or tables stored there.

Each rope module consists of 512 cores and 192 sense lines. The 512 cores are
divided into four sections of 128 cores each. The 192 sense lines either thread or
bypass each core, i.e., all 192 sense lines are associated with each core. The sense
lines are divided into 12 strands of 16 lines each; therefore, a given strand defines one
of the twelve words stored in each core, i.e., a given strand in a rope module is
associated with 512 16 bit words. When a single core in a rope module is switched,
(assume that all cores in the other 5 rope modules can be inhibited from switching), a
pulse is induced on those m sense lines threading the core; no pulse is induced on the
192-m sense lines bypassing the core. If only one of the twelve strands is enabled,
the location defined by the enabled strand and given core is selected. The method of
switching a single core in a rope module i8 to select one of the four 128 core sections
and then inhibit 127 of these cores from switching. The 127 cores are inhibited by
information stored in bits 1 through 7 of the S register. Note that 7 binary bits have
a capability of defining 128 different configurations.

The contents of register S, F BANK and F EXT are used to select locations in fixed
memory for readout. Register S is a 12 bit register while F BANK and F EXT are 5
and 3 bit registers respectively. The addressing scheme employed is capable of
defining 65, 356 unique locations (table 9-5). The fixed memory address field consists
of 64 banks. At the present time, only 36 banks (BA 8 through BANK 43g) are
actually built into the CMC; the addressing scheme, however, allows for the addition
of 28 extra banks (BANK 44g through BANK 77g) if necessary.

The first 24 banks (BANK 00g through BANK 27g) are referred to as F EXT-channel X.
This group is further divided into two sub-groups: fixed-fixed memory and variable-
fixed memory. Fixed-fixed memory consists of BANKS 02g and 03g and can be
addressed by two different methods: (1) bits 12 and 11 of register Sare 1 and 0 or 1
and 1 respectively, the contents of F BANK and F EXT are irrelevent; (2) bits 12 and
11 of register S are 0 and 1 respectively, the contents of F BANK are 00010 or 00011,
the contents of F EXT are irrelevant. It should be noted, therefore, that each location
in fixed-fixed memory can be addressed by two different methods. Variable-fixed
memory consists of BANKS 00g, 01g and 04g through 27g. These locations are
addressed by the S and F BANK registers only: their locations are not addressed by
the contents of F EXT.

BANKS 30g through 37g are referred to as F EXT-channel 0-3. The locations in these
banks are addressed if the F EXT register contains 000 through 0112, the F BANK
register contains 110002 through 111112 and bits 12 and 11 of register S are 0 and 1
respectively. ''Channel 0-3" is so designated because 0002 through 0112 is equivalent
to Og through 3g.

There are four other F EXT-channel groups: F EXT-channel 4 through F EXT-chan-
nel 7. Note that the channel numbers are a result of the contents of the F EXT regis-
ter, e.g., when F EXT contains 1012 = 5g then the locations in the F EXT-channel 5

group are addressed.

9-72

Register or Location | FMA Octal Address | F EXT Register F Bank Register 8 Register
Gyoups 7 6 5 16 14 13 12 11 [12 11 10 9 8 7 6 5 4 3 2 1
gdr—nankoz 04000-05777 X X x x x x x x |1 0 y yyyyvyyyyvyyy
‘1‘% X X X o 0 o0 1 O 0 1 y yvyyyyVyVvyYyYyYy
§ é F'-Bank 03 06000-077717 X X X X X X X X 1 1 vy yYyyyyyyVyYyYyy
z X X X o 0 o 1 1 0 1 y yyyyyyyyy
F-Bank 00 00000-01777 X X X o 0 o0 o0 O 0 1 yv yvyvyyyyyyyy
F-Bank 01 02000-03777 X X X o 0 o0 o0 1 0 1 y yvyyyyyyyy
F-Bank 04 10000-11777 X X X 0 0 1 0 O 0 l1 v ¥y vy Yy Yy vy VY UVYyY
F-Bank 05 12000-13777 X X X 0 0 1 0 1 0 l v vy vyyYyYyYyYVyYVyYVY VY VY
F-Bank 06 14000-15777 X X X 0O 0 1 1 0 0 1 y yyvyyyyyyy
F-Bank 07 16000-17777 X X X 0 0 1 1 1 0 1 Yy YyyyyyYyyyyyYy
F-Bank 10 20000-21777 X X X o 1 o0 0 O 0 1 y yyyyy U yYyyyyYy
F-Bank 11 22000-237717 X X X o0 1 0 0 1 0 1 vy yyyyyyyyy
5 g F-Bank 12 24000-25777 X X X 0 1 0 1 o0 0 1 y yyyyyyyyYy
g % F-Bank 13 26000277717 X X X 0 1 0 1 1 0 1 y yyyyyyVyUyy
6 ° F-Bank 14 30000-31777 X X X 0 1 1 0 0 0 1 Yy Y Y Y Y Y VYVYVYY
4 [F-Bank 15 32000-33777 X x x 0 1 1 0 1 |0 1 y yyyyyyyyy
& 3 [F-Bank 16 34000-35777 x x x 0o 1 1 1 0 |0 1 y yvyvyvyyyyyy
- F-Bank 17 36000-37TTT7 x x x 0 1 1 1 1 |0 1 v vyyJy9y9YJYyYVyyy
F-Bank 20 40000-41777 X X X 1 0 0 o0 o 0 1 y yy vy Yy Yy U yUVyYVyYy
F-Bank 21 42000-43777 X X X 1 0 0 0 1 0 1 y ¥yyyyyyyyYyy
F-Bank 22 44000-45777 X X X 1 0 0 1 O 0 1 y yyyyVyyYyVyyy
F-Bank 23 46000-47777 X X X 1 0 0 1 1 0 1 y vyyvy vy yYyUyyyy
F-Bank 24 50000-51777 X X X 1 0 1 0 0O 0 1 y yyyYyVyyVyVyyy
-Bank 25 52000-53777 X X X 1 0 1 0 1 0 1 y y vy vy Yy Yy yVyyYy
F-Bank 26 54000-55777 X X X 1 0 1 1 0 0 1 y Yy vy Yy Yy Yy YyYyVyYyVyYyYyYy
F-Bank 27 56000-57777 X X X 1 0 1 1 1 0 1 v yy 5y 5yYyY VYUY VYYy
-Bank 30 060000-061777 0 x x 1 1 0 0 o 0 1 y yvyyy Yy yy Uy yYy
; 'g © -Bank 31 062000-063777 0 x x 1 1 0 0 1 0 1 Y Y Y VYY Y YVYVYYVY
an F-Bank 32 064000-065777 0 x x 1 1 0 1 0 0 1 Y Y Y YVYVYYVYVYY

Table 9-5. Fixed Memory Addressing
(Sheet 1 of 3)

9-73

= v.v.v.v.yYV.Yv.v.v.v.Yv.v.v.v.v.v.v.v.v.v.v.v.v.v.v.v.
~ YYYYYYYYYYYYYYYYYYYV.YYV.Yv.v.v.v.v.
™ v.
4 v.
7y v.v.v.v.v.v.v.v.v.v.v.v.v.v.v,v.v,v.v.v.v.v.v.v.v.v.v.v.v.
b
Sle v,v.v.v.v.v.v.v,v.v.v.v.v,v.v,v.v.v.v.v.v.v.v.v.v.v.v.v.v.
(-]
= v.
RS V.V.yyyyyyyyyyyyyyyyyyyyyyV.V.V.V.V.
w0
-] yyyyyyyyyyyyyyyyyyyyyyyyV.V.yyv.
(-] V.yyyyyyyyyyyyyyyyyyyyyyV.V.V.V.V.V.
4
e 11111111111111111111111111111
-
) 00000000000000000000000000000
(]
- 10101010101010101010101010101
rl
mz 10011001100110011001100110011
gl
@
mlm 0111100001111000011110000111]
kl
m4 lllll111111111111111111111111
(]
FG lllllllllllllllllllllllllllll
=t
r
3
.ms xxxxx000000001111111100000000
Ele xxxxx0000000000000000111lllll
3
mnl 0000011111lllllllllllllllllll
<
3
o 7777777777777777”777777777777
L] ol el a1 S e B B e R B () o N R B e Bl B B
° 77777777777777777777777777777
=] 71357135713571”57135713571&57
< ©l=|=]le=l= ol =l2]2 2|2 alalo|a|o|o|¢|v|w|w|w wlw
000001111111111111llllllllll.ﬂ.
____.______._____......__._
w 0_000000OOOOOOOMMNWOMOOOOOMOOO
3] Sle|els|elolelelolelc|ielg] S clel|S]|o]le elele
o) 0000000000000000000“000 slele|lale
Sl18|IQ|<|e |e|lalw|le|o|a|xl2|2|2|2I8IR]18 6w2 MOZ&G
< 677770000111122223333 < -2 s Ir-]
m 00000111111111111111111llllll
a 345670123“5670123“5“701234.567
S cln|m|o|on ||| |- wlew|le|ld|n|lv|ln w wle|lve|le|e|o|lw|o|®
- Al | AR IR I A AR AL o loeloeloe e ||| x| xe]ae]e|x]2
a [.m el & .m.m
519| 8 mmmmaumum u.mmmmumuuumnmm
IR R N G Y E Gl ool Gl Gl ol ol Fol ol ol ol Bk ok B Bt ok B
|
M FFFFFFFFFFFFFFFFFFFPFFF.FFFFFF
: i
Suw
w
.W ¢-0 [9uueyd
A &) 1LXd d p 1auueyd LXI A G [9uueyD LXJH Jd 9 1auueyd LXJT Jd

Fixed Memory Addressing

(Sheet 2 of 3)

Table 9-5.

9-74

Register or Location FMA Octal Address | F EXT Register F Bank Register S Register
Groups 7 6 5 16 14 13 12 11 |12 11 10 9 8 7 6 5 4 3 2 1
F-Bank 70 160000-161777 1 1 1 1 1 0 0 O 0 1 y yyvyvyyyyyydy
- F-Bank 71 162000-163777 1 1 1 1 1 0 0 1 0 1 y yyyyyyyYyyYyydy
E F-Bank 72 164000-165777 1 1 1 1 1. 0 1 0|0 1 y yyyyyyyyy
E F-Bank 73 166000- 167777 1 1 1 1 1 0 1 1|0 1 y yyyyyyyyy
2 F-Bank T4 170000- 171777 1 1 1 1 1 1 0 0| O0 1 y yyyyyyyyy
ﬁ F-Bank 75 172000-173777 1 1 1 1 1 1 0 1 0 1 y yvyyyypyyyydwy
R F-Bank 76 174000-175777 1 1 1 1 1 1 1 0 0 1 vy yyyyyyyyy
F-Bank 77 176000-177777 1 1 1 1 1 1 1 1 0 1 y yyyyyyypyyy

x means 0 or 1 which does not have an effect on addressing.

y means 0 or 1 as defined by address.

Table 9-5. Fixed Memory Addressing
(Sheet 3 of 3)

9=T75

Assume that bits 12 and 11 of register S are 0 and 1 respectively. F BANK 00g
through F BANK 27g (F EXT-channel X) are determined by the contents of register
F BANK (figure 9-34). F BANK 30g through 37g (F EXT-channel 0-3) are also
determined by the contents of register F BANK (figure 9-34); note, however, that
bit 7 of F EXT must be a 0, F BANK 40g through F BANK 77g are determined by the
contents of the F EXT and F BANK registers (figure 9-35). This figure shows how
F BANK 54g is addressed. Note that bits 16 and 14 of register F BANK are both 1's
for all F BANK's except those in F EXT-channel X.

Table 9-5 lists all of the fixed memory addresses (FMA's). Assume again that bits

12 and 11 or reigster S are 0 and 1 respectively. The location in F BANK 00g through
27g are designated by a five digit octal number which is determined by the contents of
the S and F BANK registers. Figure 9-36 illustrates how location 42113g is addressed.
Note that bits 11 and 12 of register S are not used in determining address 42113g. The
locations in F BANK 30g through 37g are designated by a six digit octal number which
is determined by the contents of the S and F BANK registers and bit 7 of the F EXT
register. Figure 9-37. illustrates how location 074356g is addressed. The location in
F BANK 40g through 77g are designated by a six digit octal number which is determined
by the contents of the S, F BANK and F EXT registers. Figure 9-38 {llustrates how
location 151444g would be addressed.

Figure 9-39 i8s a block diagram of the selection logic connected with fixed memory.
A fixed memory address is selected by generating several selection signals:

a. Rope select.

b. Module select.

c. Set.

d. Reset.

e. Strand select.

f. Inhibit select.

9-76

Figure 9-34 F-BANK 004 Through 274 Determination

16 14 1318 11
REGISTER nmn
? BXT If!i]’il nunuu

s 4 <o—— F-BANK B4y

Figure 9-35. F-BANK 40, Through 77, Determination

.

I 1110 9 8 7 68 4331
ety ﬂﬂﬂﬂn nﬂnﬂﬂﬂnnnﬂﬂn 8 REGISTER

- FMA 4113,

Figure 9-36. FMA 42113¢ Determination

9-T77

] ‘s ‘
rexT GLLLLe) CelaleleliiaLe[a[1]: o) ® =cmrea
j - P | G A S

0 Y ¢) . 5

o— FMA 074388,

Figure 9-37. FMA 0743864 Determination

¥ EXT REGETER F BANK REGETER 8 REGETER

Figure 9-38 FMA 1514444 Determination

9-78

RLp o™

AM—0=0mon

- X mm

’
; MODUEE HI MODULE STRANDS ’ -
STRAND
RETURN LO MODULE STRANDS
6 ?__——- SELECTION L *— T
5
FIXED ROPE T
J MEMORY ROPE »
r—’ ADDRESS INHIBIT, SET | ROPE S
GENERATOR AND RESET
16 i} RETURN | CEER 1
- N ST r=taseg- F=tsmzT= r~temrt
——:- MOD. }-o{ MOD. : ——-———:- MOD. }-»4 MOD. : ——l—— MOD. pe{ MOD. :
B2 B3 B4 B5 B6
il hou) i -0 T -2
12 r-——:. — : ———-—:—. = : _{-. e :
2
J STRAND N - i . - | |
SELECTION L B T Iy ey == 1F—-]1 |"___ =
T i - — &= —2m s —
12 1 —lq = I ‘—L. e | '—L— — I
| | i | | |
‘ [} L)
ETAB
9 - S '
SET
SELECTION
5 \ - SETCD ¢
y
’
7
RESET A 4
6
> RESET RESET B &
SELECTION | RESET C)y
5
T RESET D I 4
s |
3 *[INHIBIT
DRIVER INHIBIT LINES L %
SELECTION
2 T —‘l
1
J

Figure 9-39. Fixed Memory Selection

9-79

9.10.6 PRIORITY CONTROL. Priority control consists of three separate and func-
tionally independent areas: start instruction control, counter instruction control, and
interrupt instruction control. See figure 9-40.

The start instruction control restarts the computer following a hardware or program
failure. The counter instruction control updates the various counters in erasable memory
upon reception of certain incremental pulses. The counter instruction control is also used
during test functions to implement the display and load requests provided by the computer
test set. The interrupt instruction control forces the execution of the interrupt instruction
(RUPTOR) to interrupt the current operation of the computer in favor of a programmed
operation of a higher priority.

9.10.6. 1, Start Instruction Control. The start instruction control consists of the logic
alarms processor and the start-stop generator. The logic alarms processor detects
the presence of any one of several abnormal conditions that may occur within the com-
puter and generates an alarm signal (ALGA) whenever any of these conditions exist.
These abnormal conditions are:

a. RUPT lock.

b. TC trap.

c. Parity alarm (PALE)
d. Night watchman fail.

A RUPT lock alarm occurs if a program interrupt has been in progress too long
(greater than 160 ms) or if an interrupt has not occurred within 160 ms. A TC trap
alarm occurs if transfer control (TC) or transfer control to fixed memory (TCF)
instructions do not occur within a period of up to approximately 15 milliseconds of
each other, or if too many consecutive TC or counter incrementing (INKL) instructions
are executed (continuous TC or INKL). A parity alarm (PALE) indicates that a word
read out of fixed or erasable memory contains an even number of ones. A night
watchman alarm occurs if address 00067 is not addressed by the computer within a

9-80

18-6

! START INSTRUCTION CONTROL

I ALARM

NIGHT WATCHMAN FAIL

CIRCUITS
CENTRAL

PARITY ALARM

PROCESSOR

INTERRUPT IN
PROGRESS (I1P)

GENERATOR

INCREMENT
SIGNAL (INKL)

)
s SEQUENCE
'

LOGIC
ALARMS
PROCESSOR

MONITOR START

TEST AND STOP
EQUIPMENT
ALARM (ALGA)

ALARM

START |
CIRCUITS | _sTARY 2 ‘

START-STOP
GENERATOR

TI2 STOP SIGNAL TIMER

SIGNAL (GOJAM) _ SEQUENCE

GENERATOR

]
]
START ORDER CODE I
.

'INTERRUPT INSTRUCTION CONTROL

SEQUENCE

CONTROL PULSES

GENERATOR

CENTRAL
PROCESSOR

DECOOED INTERRUPT
€ S

INTERRUPT CONTROL
SIGNALS

INPUT-QUTPUT ———— et

INTERRUPT
INPUT
CIRCUITS

INTERRUPT ORDER

READ CONTROL
SEQUENCE PULSES

GENERATOR

INTERRUPT REQUESTS

AND PRIORITY SIGNALS ol

B e |

INTERRUPT
ADORE SS
GENERATOR

CODE SIGMAL

(RUPTOR) o SEQUENCE

GENERATOR

ADORESS o CENTRAL
PROCESSOR

]
(]
INTERRUPT I
]

rc_o'_'_"_"—'_'—’—'_'_°—‘_'—"—°—‘—’—"_‘—’—'l

UNTER INSTRUCTION CONTROL

SEQUENCE

CONTROL PULSES

GENERATOR

g RESET CONTROL
l SEQUENCE PULSES '

GENERATOR

DECOOED COUNTER COUNTER ADDRESS

' CENTRAL ADORESSES COUNTER ADDRESS SIGNALS (C24A-C6OA) COUNTER | (capi-caDe) ___ cewTmaL l

PROCE SSOR PRIONITY ADORE 35 PROCESSOR
l COUNTER INCREMENTAL CELLS GENERATOR 3
} meuT-ouTRUT LuLses

[]
I1GNA
I L COUNTER nsTRUCTION SiGNALS | . 0
' counten om _ | Gegnaton
' '
]
COUNTER COULNTER ALARMS _ALARM
ALARM CIRCUITS

: DETECTOR
[]

4C3c8

Figure 9-40. Priority Control Functional Block Diagram

period varying from approximately 0. 65 seconds to approximately 1.9 seconds. If
any of the above alarm conditions exist, alarm signal ALGA is generated by the alarm
logic processor and is applied to the start-stop generator.

The start-stop generator generates signal GOJAM to restart the computer in response
to the logic alarm signal ALGA at the next T12 time. The restart condition is indi-
cated on the DSKY by the RESTART lamp being illuminated. The start-stop generator
simultaneously produces a T12 STOP signal which inhibits the generation of timing
pulses TTI through™TT2 in the timer until signal GOJAM has reset all critical circuits
in the computer and forces the sequence generator to execute instruction GO. The
detection of a computer power supply failure (START 1) or the detection of an oscil-
lator failure (START 2) also causes the computer to restart. In addition, the com-
puter can be started or stopped manually from the peripheral equipment.

9.10.6.2 Counter Instruction Control. A counter is updated when the counter instruc-
tion control receives a pulse for a given counter. This digital data consists of changes
in velocity, changes in time, changes in gimbal angles, telemetry information, etc.

It should be noted that some of these pulses come from within the CMC while others
come from various other S/C systems. Counter instruction control may receive pulses
for several counters at one time; the CMC, however, can only update one counter at a
time. Therefore, the counter instruction control circuitry provides the following five
functions.

a. It assigns a priority level to the inputs so that a logical processing order is
established when more than one input i8 received simultaneously.

b. It is able to store an input until the CMC can process it.

c. It generates the address of that location in erasable memory which serves as a
counter for that particular input.

d. It develops commands which are sent to the sequence generator to insure that the
proper processing occurs. These s ls are MINC, PINC, DINC, SHINC, SHANC,
PCDU, MCDU and TNKL. Signal inhibits the generation of the control pulses
defined by the order code held in the SQ register. The sequence generator then
develops those pulses necessary to perform a PINC, MINC, etc. instruction.

e. It resets the counter instruction control after the counter instruction has been
completed so that other pulse inputs can be processed.

A counter interrupt takes one MCT to be processed. If the counter interrupt occurs
during MCT (n), it will be processed during MCT (n + 1) provided, of course, that
it is not inhibited by a counter interrupt of higher priority or that the CMC is not in
the middle of an instruction.

Table 9-6 lists the 26 counters, their names, priorities, addresses and functions.

9-82°

Table 9-6. Counter Interrupts

PRIORITY | ERASABLE MEMORY NAME REMARKS
LOCATION (COUNTER)

1 0024 TIME 2 Stores most significant time word

2 0025 TIME 1 Stores least significant time word

3 0026 TIME 3 Time counter for program walitlist

4 0027 TIME 4 Time counter for T4 RUPT

5 0030 TIME 5 Time counter for thrust vector control

6 0031 TIME 6 Time counter for reaction control

7 0032 ICDU X Counts + A® pulses from X inertial
CDU

8 0033 ICDU Y Counts + A® pulses from Y inertial
CDU

9 0034 ICDU 2 Counts + A® pulses from Z inertial
CDU

10 0035 OCDU T Counts = A8 pulses from optics
trunnion CDU

11 0036 OCDU 8 Counts + A8 pulses from optics
shaft CDU

12 0037 PIPA X Counts = AV pulses from X PIPA

13 0040 PIPA Y Counts = AV pulses from Y PIPA

14 0041 PIPA Z Counts = AV pulses from Z PIPA

15 0042 BMAG X Counts & A6 pulses from the XBMAG

16 0043 BMAG Y |Counts % A6 pulses from the YBMAG

17 0044 BMAG Z |Counts % A pulses from the Z BMAG

18 0045 INLINK Converts serial uplink data into
parallel information

(Sheet 1 of 2)

9-83

Table 9-6. Counter Interrupts (cont)

9-84

PRIORITY | ERASABLE MEMORY NAME REMARKS
LOCATION (COUNTER)
19 0047 GYRO D Control pulse bursts which drive the
gyros
20 0050 X CDU D | Controls pulse bursts which drive
the X CDU
21 0051 Y CDU D | Controls pulse bursts which drive
the Y CDU
22 0052 Z CDU D | Controls pulse bursts which drive
the Z CDU
23 0053 TRUN Controls pulse bursts which drive the
CDUD optics trunnion CDU
24 0054 SHAFT Controls pulse bursts which drive the
CDUD optics shaft CDU
25 0055 EMSD Supplies entry velocity to EMS
26 0057 OUTLINK | Converts parallel downlink informa-
tion into serial data.
NOTE: The lower the priority number, the
higher the priority.
(Sheet 2 of 2)

Figure 9-41 is a block diagram of the counter priority control. In this diagram, the
inputs are divided into six groups. Each of these groups is associated with the parti-
cular counter interrupt instructions which they cause.

GROUP 1: PINC only
GROUP 2: DINC only
GROUP 3: PINC or MINC
GROUP 4: PCDU or MCDU
GROUP 5: SHINC or SHANC
GROUP 6: SHINC only

All of the counter interrupt parameters of each of these groups input to a circuitry
block called the priority chain. Included in this block are flip-flops for the storage

of the input pulses and the circuitry which establishes the various priorities of the
inputs. When a particular input is received, the priority flip-flop associated with that
input is set, and the outputs of all the other lower priority flip-flops are inhibited.
The request for a particular counter instruction and the address of the appropriate lo-
cation in erasable memory is then generated. The address generated during the pro-
cessing of a counter interrupt is also used to reset the appropriate flip-flop in the
priority chain. The signal TNRKL is generated as a result of ETHUR. is also
generated when instructions FETCH, STORE INOTRD or INOTLD are requested by
the CTS.

The overall flow of information which occurs during the processing of a counter
interrupt input is shown in figure 10-49, In this diagram it is assumed that a PIPA X
input is being processed which could be either a plus or minus pulse and result

in either a PINC or MINC instruction. These instructions require one MCT to execute.

When a plus or minus PIPA X pulse occurs, it is sent to the appropriate flip-flop in

the counter interrupt priority circuits. Assuming plus or minus PIPA X pulse is the
highest priority counter interrupt input that requires servicing at the end of the instruc-
tion during which it occurred, ¢commands MINC or PINC, signal TRRL and address 0037
are generated. During the next MCT, the sequence generator develops the control pulses
for a MINC or PINC instruction. These instructions cause the six bit address referenc-
ing the proper counter in erasable memory, to be sent into the S register through the
write amplifiers. 8till under control of the MINC or PINC control pulse, the contents
of the specified counter is read from erasable memory using the address contained in
the S register. The content of the counter is set into the adder circuitry of the CMC
where a binary 1 is added or subtracted from it. When the updating process is com-
pleted, the updated contents of the counter are stored back into its specified location

in erasable memory. This is done under control of the S register which still contains
the address of the counter. Having read, updated and written the contents of the coun-
ter back into memory, the address held in the S register is used to reset the flip-flop

in the counter priority circuitry which requested the servicing. In this case, it is the

X PIPA flip-flop. This completes the servicing of the PIPA X input which required
one MCT to perform, ; ’

9-85

INKL

CTROR

63

Ge

OUTLINK

PRIORITY
CHAIN

3

COUNTER
COUNTER REQUESTS o ALArM * ?gg":fn::‘:;ncuns
DETECTOR)
FROM CTS
CTS FETCH, STORE,
INTERFACE r > INOTRD, INOTLD
CTROR INHIBIT }——— INKL (TO SEQUENCE
GENERATOR)
N|s°—|
HIGHEST
PRIORITY
REQUEST Aﬁ AONNESSR | —— ¢ BT aoness
PINC
COMMANDS o COUNTER e JAINC
> SHANC
- PCDU

p—> MCDU

L ADDRESS CODE FEEDBACK (RESET)

Figure 9-41. Counter Priority Block Diagram

9-86

L8-6

NOTE:
(+)INPUT
EXECUTE
PINC

(-)INPUT
EXECUTE
MINC

PRIORITY]
CIRCUITS

T

SEQUENCE
GENERATOR

MINC INSTRUCTION

6 BIT COUNTER ADDRESS(FOR PIPAX= 0037,)

WRITE AMPS

!

Figux:e 9-42, Counter Input Interface Flow Diagram

-)

ADDER

COUNTER TO MEMORY

RETURN UPDATED
ERASABLE
MEMORY

£

All of the counter interrupt inputs are operated on in essentially the same manner as
the PIPA X input. Later in this section, the use of some other counter interrupt inputs
and parameters will be presented as they are used in implementing other functions
involving the CMC's interface functions.

9.10.6.3 Program Interrupt Priority Control. The T6 RUPT, T5 RUPT,

T3 RUPT, T4 RUPT, KEYRUPT 1, KEYRUPT 2, UPRUPT, DOWNRUPT, and HAND
CNTRL RUPT interrupt priority control routines are stored in memory and

have that order of priority. When a program interrupt request is present, the interrupt
priority control produces the address of the appropriate interrupt transfer routine and
commands the sequence generator to execute the proper interrupt instructions. Program
interrupts cause the suspension of the processing of a particular program and cause a
particular routine to be executed. This execution depends upon which input to the pro-
gram interrupt priority circuitry requires servicing. Table 9-7 lists the program
interrupts, their names, initiating events and the actions initiated by their occurrence.

The signals used to request RUPT's 1 through 4 and 7 and 8 have a very short
duration (about 1 u second). However, the requests for RUPT's 5, 6 and 10 have a
longer duration. If these long duration signals were used directly to request the
processing of an interrupt routine, the request for the routine would still be present
when the routine had been processed; therefore, the routine would be processed again.
This is an undesirable condition and, consequently, 'trap' circuits are used to prevent
such a situation. The trap circuitry enables only one 1 u second pulse to be developed
per input request. A reset signal is then required to reset the trap circuitry before
another request pulse can be developed. In the case of KEYRUPT 1 or 2, the reset
signal is generated by the release of the pushbutton whose depression originally caused
the program. In the case of RUPT 10, the reset signals are provided by bits 12, 13
and 14 of output channel 13.

Figure 9-43 is a block diagram of the program interrupt priority control circuitry and
its associated inputs.

The request signals for the program interrupts are routed to request flip-flops. The
outputs of the flip-flops are interconnected in such a manner that if a higher priority
request is present, the outputs of all lower priority request flip-flops are inhibited.
Whenever the request for the execution of an interrupt routine is honored, the
starting address of the routine is generated and a signal RUPTOR is routed to the
sequence generator. The honoring of an interrupt request is enabled at the end of
the last MCT of an instruction,

When the request for a program interrupt is honored, the signal RUPTOR forces

the order code for the RUPT instruction into the SQ register causing this instruction
to be executed. This instruction enables the contents of the Z and B registers to be
stored in the erasable memory and, using the generated address, forces control to
the starting point of the appropriate interrupt routine. At the beginning of the
interrupt routines, the contents of the A and Q registers are stored in the erasable
memory. By storing the contents of the B, Z, A and Q registers, the next instruc-
tion, the next-next instruction's address, the data being operated on, and the return
address of the interrupted program are stored. These quantities are restored in
the central processor registers prior to returning control back to the interrupted
program when the execution of the interrupt routine is completed.

9-88

68-6

Table 9-7. Program Interrupts

Interrupt Name Initiating Event Action Initiated
Priority
RUPT 1 T6 RUPT Underflow of TIME 6 counter Reaction control program termination (fine
control)
RUPT 2 T5 RUPT Overflow of TIME 5 c