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ABSTRACT

This report summarizes the results of a study of the LEM primary guidance,
navigation, and control system during automatic controlled powered landing maneu-
vers prior to touchdown on the moon. The navigation system employs an inertial-
measurement unit as the primary sensor, updated at discrete intervals of time by
landing-radar altitude and velocity measurements. The vehicle steering commands
are based on the difference between the present and desired terminal state of the
vehicle., Both the navigation and guidance systems are described in detail, including
key mathematical relations. Particular attention is given to the development and
selection of weighting functions to use in the updating of the navigation system by
the landing-radar measurements. Extensive data are presented from a digital-
simulation study of the guidance-and-navigation system performance in the presence
of initial-condition errors, propulsion-system uncertainties, random and bias

sensor errors, and lunar terrain altitude variations.
by B.A. Kriegsman¥*

N. E. Sears
June 15, 1966

"Raytheon Resident Staff



Sl = L3k in )

Chapter

1

TABLE OF CONTENTS

GENERAL INFORMATION

1.1 Definition of Guidance and Navigation Problem
1.2 Navigation Concept for the Landing Maneuver
1.3 Guidance Concept for the Landing Maneuver

1.4 Navigation System Design Considerations
PGNCS NAVIGATION SYSTEM DESCRIPTION

2.1 Introduction

2.2 Method of Operation of Navigation System

2.3 Weighting-Function Computations

2.4 Operations Required in a Typical Velocity - Component
Updating

LANDING MANEUVER

General Considerations

Braking-Phase Guidance System

Alternate Formulation of Certain Guidance Relations

w w W w w
e e e e e

1
2
3 Visibility-Phase Guidance System
4
5

Guidance System Operation on the Reference Landing
Trajectory

DEVELOPMENT OF LANDING-RADAR WEIGHTING
FUNCTIONS

4.1 Introduction

4.2 Modeling of Navigation Sensors

4, 3 Statistical Analysis of Navigation-System Performance

4,4 Evalution Process for Landing Radar Weighting Functions

PGNCS LUNAR LANDING MANEUVER SIMULATIONS

.1 General Comments
. 2 Simulation of Guidance and Control System
. 3 Simulation of Navigation Systems

. 4 Initial Errors in State-Vector Estimates

[S2ENNN) BN S RS BN

.5 Lunar Terrain Variations

Page

10
14

16

16
16
22

23
28

28
29
35
37

38

45

45
45
52
60

7l

71
72
73
76
80



ChaRter
6

Appendices

A

B

References

TABLE OF CONTENTS (Cont'd)

PGNCS-LR LANDING RADAR MANEUVER PERFORMANCE
STUDY

6.1

6.8
6.9
6.
6.

General Information
Typical Performance Data for Radar-Updated PGNCS

Effect of Landing-Maneuver Initial-Condition Errors of
PGNCS Performance

Effect of Terrain Characteristics on PGNCS Landing
Performance

Effect of DPS High-Throttle-Setting Acceleration
Uncertainties on PGNCS Performance

Effect of Altitude Errors at High-Gate Point on Landing-

Site Visibility

Comparison of PGNCS Performance with Different
Landing-Radar Weighting Functions

Effect of Initial Altitude Errors on System Performance

Effect of Errors in Assumed Radar-Parameter Values

10 Effect of Increasing High-Gate Altitude

11 Interruption of LR Measurements

CONCLUSIONS

DESIGN OBJECTIVES FOR GUIDANCE LOGIC, ATTITUDE
CONTROL LOGIC, AND TRAJECTORIES

THRUST-VECTOR PROFILES FOR VARIOUS INITIAL-
CONDITION ERRORS

THRUST-VECTOR PROFILES FOR VARIOUS TERRAIN
MODELS

THRUST-VECTOR PROFILES FOR ORIGINAL EMPIRICAL
LR WEIGHTING FUNCTIONS

THRUST-VECTOR PROFILES FOR LR WEIGHTING FUNCTIONS

OF 0.1

THRUST-VECTOR PROFILES FOR LR WEIGHTING FUNCTIQNS

OF 0.9

THRUST-VECTOR PROFILES FOR OPTIMUM UNCOUPLED
LR WEIGHTING FUNCTIONS

THRUST-VECTOR PROFILES FOR LINEARIZED WEIGHTING

FUNCTIONS 6667-FOOT HIGH-GATE ALTITUDE

THRUST-VECTOR PROFILES FOR LINEARIZED WEIGHTING

FUNCTIONS, 9200-FOOT HIGH-GATE ALTITUDE

Page
88

88
89
99

99

108
114
117

133
143
147
151
164

167
172
183
190
197
204
213
218

225

233



CHAPTER 1

GENERAL INFORMATION

1.1 Definition of Guidance and Navigation Problem

This report is concerned with the primary guidance, navigation, and control
system (PGNCS) of the LEM during the powered landing prior to touchdown on the
moon. The particular phase of interest here begins when the LEM's descent engine
is ignited, at which time the LEM is travelling at an essentially horizontal velocity of
about 5600 ft/sec at an altitude of about 50, 000 feet above the lunar surface. Typi-
cally this occurs about 60 minutes after the descent orbit injection of the LEM from
the CSM 80-mile-altitude lunar orbit. The landing maneuver to be studied here
nominally lasts for about 10 minutes. During this period the LEM's velocity is re-
duced from the initial value of 5600 ft/sec to a final value of about 3 ft/sec, while at
the same time the LEM's altitude is decreased from 50, 000 to about 115 feet. Speci-
fically, this report deals with the completely automatic mode of operation of the LEM
guidance and navigation system from the start of the landing maneuver to the point at

which the hover maneuver begins (Low-Gate point).

The basic objective for the guidance and navigation system considered here is
to control the LEM in such a manner that the preselected Low-Gate conditions (altitude
and velocity) are achieved within a desired accuracy. In the process of meeting this
objective, the guidance and navigation system must satisfy many different constraints
and requirements imposed both by the nature of the mission and the characteristics
of the existing subsystems. A detailed discussion of the trajectory constraints at the
time this study was made are given in Appendix A, including the requirements for site
redesignation. i The most important objectives for the guidance and navigation sys-
tem can be summarized as follows:

1) Propellant must be utilized as efficiently as possible during the decelera-
tion phase, i. e.the required characteristic velocity (AV) should be as low
as possible.

*Numerical superscripts refer to similarly numbered references in the Bibliography.



2) The selected landing site should lie at least 10 degrees above the edge of
the LEM's window for a minimum of 75 seconds just prior to arrival at
the Low-Gate point.

3) To minimize descent engine throat erosion, the descent propulsion system
(DPS) must either be operated at a specified fixed high-throttle settting of
92. 5 percent of the maximum specified thrust (10, 500 1bs), or over arange
of lower throttle positions from 10 to 60 percent of maximum thrust. There
is a range of throttle settings over which the engine should not be operated,
e.g. 60 to 92. 5 percent of nominal thrust. To minimize vehicle attitude
transients, switching the throttle back and forth from the 10-60 percent
operating region to the fixed 92. 5-percent setting is not desirable.

4) The powered landing maneuver is an extremely critical phase of the landing
with regard to LEM computation-time requirements. It is therefore im-~
portant that the computation times for the landing-maneuver guidance
and navigation computations be compatible with the various other functions

that must be performed on the LEM during the landing maneuver.

The general approach to the problem of LEM guidance and navigation during the
landing maneuver will next be discussed. Before doing this, it is appropriate to dis-
tinguish between the basic functions of the guidance and navigation systems. The
navigation system basically determines (estimates) the state of the vehicle, i.e. its
position and velocity. The guidance system uses the navigation information to steer
the vehicle such that the desired mission objectives are achieved. The relationship
between the guidance and navigation systems is shown in the simplified functional dia-
gram of Fig. 1.1. The emphasis in this report is on the navigation system, in particu-
lar on the landing-radar (LR) sensor-information processing techniques andon opera-
tions in the LEM PGNCS computer (LGC).

1.2 Navigation Concept for the Landing Maneuver
To accomplish the navigation of the LEM, an inertial measurement unit (IMU)
and a landing radar are provided on-board the vehicle., The IMU, which is the primary

navigation sensor, measures the net specific force (thrust acceleration and nongravita-

tional field forces) acting on the vehicle, The IMU operates continuously throughout
the landing maneuver. The landing radar provides data of the velocity of the vehicle
relative to the lunar surface (doppler frequency-shift data), and vehicle altitude data
above the local terrain. These doppler-velocity and altitude* measurements are used
to update the IMU at discrete intervals of time during the powered landing maneuver.
The time at which the updating process is begun and the spacing befween successive

updatings are strongly dependent on the performance characteristics of the landing

*The physicalquantity actually measured by the LR is the range from the vehicle to a
point on the lunar surface, along the direction of the landing-radar range beam. The
primary navigation information derived from this measurement is the altitude of the
vehicle above the local terrain. For this reason the range measurement is loosely
referred to throughout this report as an altitude rather than a range measurement.
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radar and the time required for processing the given measurement. Typically, altitude
measurements are initially taken when the LEM is at an estimated altitude of 25, 000 ft;
velocity measurements are begun when the LEM is at an estimated altitude of 15, 000 ft.
The spacing between successive altitude updatings is typically 2 seconds. For velocity
updatings, on the other hand, the spacing between successive updatings is typically

6 to 8 seconds., As will be shown later, in order for the LEM to meet Low-Gate
conditions with a satisfactory accuracy, within desired propellant limits, and with
adequate site visibility enroute, it is very important to achieve effective LR updating

of the IMU,

The actual estimates of vehicle position and velocity generated in the navigation
system are based on the optimum linear estimators developed by Kalman2 and Battin®,
Up-to-date estimates of the vehicle's state are obtained by comparing landing-radar
measurements with IMU-derived estimates of the same physical quantities. This
measurement difference properly weighted is used to update the a-priori* vehicle state
estimates. In between updatings, the state estimates are extrapolated forward by
integrating the two-body equations of motion for the vehicle, with the IMU providing

the required specific force data.

The key to the updating process is the choice of weighting functions used in the
incorporation of each new measurement into the state estimate. For the processing
of altitude information a single weighting function (wh) is used in the computer., The
velocity information, on the other hand, is processed as three individual components
along the orthogonal set of landing-radar antenna axes (XA, YA, and ZA). Hence,
three weighting functions (WVXA’ WyyAe and WVZA) are used in the velocity updating
process. All of these weighting functions are precomputed and stored for in-flight use
in the LGC. The altitude weighting function is stored as a linear function of vehicle
altitude. The velocity weighting functions are stored as linear functions of vehicle
speed. The factors involved in the selection of navigation-system weighting functions
are discussed in Sec. 1.4 and in Chapter 4 of this report.

1.3 Guidance Concept for the Landing Maneuver

To accomplish the landing-maneuver mission in an efficient manner, it is desir-
able to separate the landing maneuver into two major phases. For convenience these
two phases will be referred to as the braking and visibility phases, as shown in Fig. 1.2.
The basic function of the braking phase is to efficiently decelerate the vehicle to the
High-Gate terminal conditions. The High-Gate conditions must be met with a reasonable
accuracy in order that the visibility phase be successfully accomplished. The basic

*
The terminology of an ''a-priori estimate' is used in this report to refer to an estimate
of the state prior to the incorporation of the new measurement. The estimate of the
state immediately after the processing of the new measurement is referred to as the
"up-to-date'' or "updated'' estimate.

10
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function of the visibility phase is to allow the astronaut to observe the selected
landing site for a reasonable interval of time prior to arrival at the Low-Gate point.
The powered landing trajectory used for this study was than considered by MSC

for the Design Reference Mission-Two (DRM-2) when this report was prepared.

The desired terminal conditions for the braking and visibility phases are
shown in Table 1.1 for the reference landing trajectory. In this trajectory the
visibility phase is only about 2 minutes in duration; the braking phase, on the other
hand, lasts for about 8 minutes. It is interesting to note that at the High-Gate point,
the LEM is 6600 feet above the lunar surface; at the Low-Gate point, on the other
hand, the vehicle is only 115 feet above the surface. At the start of the braking
phase the LEM is typically about 250 nautical miles from the desired landing site;
at the start of the visibility phase, on the other hand, the LEM is generally only 4 mi
from the site. The selection of initial and terminal conditions for the braking and
visibility phases strongly determine the manner and efficiency with which the
guidance system objectives are achieved.

Although the steering profiles are different for the braking and visibility phases,
the overall guidance concepts for the two phases are similar. The required specific
force (magnitude and direction) at any given time is computed as an explicit function
of the difference between the present vehicle state (x)* and the desired terminal
state Q‘D) using the guidance laws presented in Refs. 1 and 4. The values of the
present vehicle state used in the guidance computations are the up-to-date estimated
values determined in the navigation system. The values used for the desired terminal
state are different for the braking and visibility phases: in the braking phase the High-
Gate terminal conditions are used; in the visibility phase the Low-Gate terminal
conditions are used. The overall landing-maneuver guidance problem in essence is
solved as two successive two-point boundary-value guidance problems.

Because of the difference in requirements between the braking and visibility
phases, the steering profiles (time histories of thrust magnitude and orientation) are
quite different for the two phases. During the braking phase the thrust vector is for
the most part in a nearly horizontal orientation; at the same time, the throttle remains
fixed at the selected high-thrust operating position (92. 5 percent of nominal thrust)
except for a short period at the end of the braking phase. During the visibility phase,
on the other hand, the vehicle is pitched up to a more nearly vertical orientation, i.e.
the thrust vector is typically oriented between 50 and 90 degrees above the local
horizontal; at the same time, the throttle is operated in the permissible variable-thrust
region (10-60 percent of nominal thrust).

%
Lower case letters and Greek symbols will generally be reserved for vectors and
scalars in this paper. Vectors will be indicated by underlining the symbol, e. g. X.
Upper case letters will be reserved for matrices.




Table 1.1

Desired Terminal Conditions for Braking and Visibility Phases

Braking Phase
(High-Gate Point)

Visibility Phase
(Low-Gate Point)

1)

2)

3)

4)

Position

Velocity*

Acceleration

Jerk

-23920 ft
6667 ft
0

501 ft/s
-132 ft/s
0

-8.56 f/s2
-1.33 /g2
0

-0.010 f/s°
0.0074 £/s°

-3.3 ft
115 ft
0

2.5 ft/s
-1.4 ft/s
0

-1.25 f/s2
0.70 /s>
0

0.0789 £/s°
0

Coordinate Axes: Origin at selected landing site location at the nominal

X

Y
Z

landing time.

= horizontal and forward in plane of nominal

trajectory.

vertical and upward in plane of nominal trajectory.

normal to plane of trajectory and directed to form

a right-handed X-Y-Z system.

“The velocity data here are presented relative to the rotating lunar terrain.
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The guidance system has the capability of steering the vehicle to landing sites
changed from the originally-selected site by the astronaut during the visibility phase.
A detailed description of the site-redesignation techniques is given in a separate
reportl. This present report is concerned with guidance and navigation of the LEM
for the automatic mode of operation with no site redesignations. A more detailed
discussion of the guidance system for this mode of operation is given in Chapter 3 of

this report, including the basic steering equations.

1.4 Navigation-System Design Considerations

The key to the operation of the navigation system is the selection of weighting
functions to use in the processing of each new navigation measurement. This section
discusses some of the important factors involved in the determination of the weighting
functions and the reasons for the mechanizations finally selected for them.

The choice of weighting functions for a given measurement is basically deter-
mined by comparing the expected accuracy of the a-priori state estimates with the
expected accuracy of the measurement., Statistical data must, of course, be used in
this procedure since the absolute accuracy of a navigation system or a particular
navigation measurement at a given time is not usually known. The most widely used
procedure for computing weighting functions is to minimize the sum of mean-squared
errors in the quantities being estimated, as developed by Kalman2 and Battin3.
Estimates of this type are normally referred to as least-squares or minimum-vari-

ance estimates, and are generally equivalent to maximum-likelihood estimates.

In order to make a meaningful least-squares or maximum -likelihood
estimate of the vehicle's state, it is necessary, ideally, to keep track of the accuracy
of the navigation system (statistical errors) throughout the landing maneuver. To
accomplish this in the problem under investigation, several factors must be considered.
First of all, initial-alignment errors of the inertial platform, gyro drift, accelerometer
bias, and accelerometer scale-factor errors cause the navigation information derived
from the IMU to become degraded with time. These IMU errors can reasonably be
assumed to be predominantly time-invariant bias errors. Second of all, the velocity -
measurement accuracy of the landing radar is limited by random errors (noise) in the
measurement of vehicle speed; the rms value of these errors is assumed to vary as a
function of the speed in the vehicle. Likewise, uncertainties in the knowledge of the
orientation of the radar beams with respect to the IMU reference axes limit the accur-
acy with which vehicle velocity in IMU coordinates can be determined from the radar
measurements. Landing-radar altitude measurements, moreover, are limited in
accuracy by random errors (noise) whose rms values are dependent upon the altitude
of the vehicle above the lunar surface. Finally, variations in the local terrain, i.e.
slopes, hills, valleys, and craters,can cause altimeter measurements of local vehicle
altitude to be significantly different from the a-priori estimated values inthe naviga-

tion computer.

14



To properly determine the accuracy of the navigation system (statistically) during
the landing maneuver, a navigation-system model should be used with all of the above-
mentioned error sources included. Under these conditions the in-flight computation
is not an easy job because of the large number of covariance-matrix terms that must
be included in the computer to account for correlations between navigation-sensor and
state-vector estimate errors. A particularly difficult problem in this statistical analy-
sis is the treatment of measurement bias errors and terrain-slope variations.

The minimization and simplification of guidance-and-mnavigation system compu-
tations during the LGC time-critical landing maneuver are extremely important. For
this reason it was decided not to compute the navigation-system weighting functions in
flight, Instead, it was decided to precompute weighting functions for the nominal
reference trajectory, based on the most accurate and complete simulations available
for the landing maneuver. These weighting functions would then be stored in the LGC
as functions of altitude for the altitude measurement data, and as functions of speed
for the doppler-velocity measurement data. Theoretically it is possible to update
all components of the state vector with the information from each new measurement.
To further simplify the navigation computations, however it was decided to update
only the component of the state vector corresponding to the measurement quantity
with the data from a given measurement; e.g. an altitude measurement is used
only to update altitude, and an XA-component velocity measurement is used only to
update the XA-component of velocity. For convenience in the report this type of
weighting function is referred to as an ''uncoupled'' weighting function. The end result
is that only four weighting functions need to be stored in the on-board computer; one
for altitude, and one for each of the three components of velocity being processed.

To simplify the required AGC computations still more, these weighting functions will

be stored in the computer as simple linear functions of altitude or speed,

In concluding this section, it should be noted that errors in the IMU-derived
estimates of the vehicle's state will increase with time during the landing maneuver.
Accordingly, in order to accomplish the landing-maneuver objectives successfully
(including the capability for site redesignation), the navigation data from the IMU
must be updated during the landing maneuver with velocity and altitude information
from the landing radar.

15




CHAPTER 2

PGNCS NAVIGATION SYSTEM DESCRIPTION

2.1 Introduction

In the preceeding chapter the mission objectives for the landing maneuver were
discussed, and the proposed guidance-and-navigation-system concepts to accomplish
these objectives were described. In the present chapter a more detailed discussion
will be given of the navigation system. Included here are the basic equations to be
used for extrapolating and updating the state-vector estimates. Also presented are
the relations for the weighting functions to be used in the processing of the landing-

radar measurement data.

2.2 Method of Operation of Navigation System

The navigation system's basic function is to provide information on the current
state of the vehicle, i.e. its position and velocity. This information is then used in
the guidance system to steer the vehicle in such a way that the mission objectives

are accomplished.

The primary navigation sensor is the inertial measurement unit (IMU) which
provides a continuous measurement of the specific force acting on the vehicle during
the powered flight. The landing radar provides measurements of the vehicle's altitude
and velocity. The LR velocity measurements are of the vehicle's velocity relative to
the rotating lunar surface. These landing-radar measurements are used to update the
IMU - derived state - vector estimates at discrete intervals of time during the landing

maneuvers.

If the IMU were used by itself to navigate the vehicle, the resultant errors in
the estimates of vehicle altitude and velocity would build up in time to unacceptably
large values, For this reason it is necessary to update the IMU-derived state-
vector estimates during the landing maneuver with altitude and velocity data from
the landing radar. This is especially advantageous because the errors in the land-
ing-radar measurements tend to decrease as the vehicle approaches the landing site
with a reduced velocity.

The landing-radar velocity-measurement data are basically obtained as com-
ponents along an orthogonal set of axes (XA, YA, and ZA) fixed with respect to




the landing-radar ‘antenna, as shown in Fig 2, 1. Each radar ‘beam experiences a
doppler-frequency shift proportional to the component of vehicle velocity (relative to
the moon) projected along the beam axis. By taking the sums and differences of the
frequency shifts from the three beams (fl, f2, and fs). the following relations are
obtained for the velocity-component measurements NXA’ VyA® and vZA):

N X (£ + £5)
VXA ©  Tsinf cos (2-1)
n V(!0 ¢V
A (f, -£,)
~ . 1 27 -
Vya © 4 cos 0 (2-2)
v
x(f, -£,)
V. = 2 (2-3)
ZA 4 sin Gvsm¢v

where A is the wavelength of the transmitted radar signals. The quantities 9V and
¢ o represent the orientation angles of the doppler-radar beams with respect to the
XA-YA-ZA coordinate frame, as shown in Fig. 2.1. The XA-YA-ZA frame, it
should be noted, is fixed with respect to the vehicle. Accordingly, this coordinate
frame will rotate in inertial space as the vehicle attitude changes during the landing

maneuver.

It might be noted that the LGC computes the velocity components of the above
equations 2-1 through 2-3 by the following procedure. Upon LGC command, the LR
will provide one of the three following sum-or-difference frequencies by allowing the
selected LR velocity signal to accumulate in the radar high-speed counter for an
80-millisecond count interval controlled by the:LGC. This frequency sample is then
transferred to the LGC as

SyA = (f1 +f3)+fB (2-4)

= - 2‘5
sya = fo) +fg (2-5)
Syp = (f3 = f2) + fB (2-6)

where S A’ SyA’ and S, are the signals transferred across the LR-LGC interface,
and fB is a bias frequency. Within the LGC, a digital number corresponding to the
numerical value of fB is subtracted from each of the LR signals, and the velocity
along each antenna coordinate axis is computed by

~

Viea = Ky (f1 + f3) (2-7)

* A tilda (~) over a quantity is used to indicate a raw measurement which may
have both random and bias errors.
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Vya T Ky (f; - 1) (2-8)
’GZA =k, (I, - ;) (2-9)

where kX, kY and kz are positive constant scale factors determined by the LR
operating frequency and alignment relative to the spacecraft as indicated in equations
2-1to 2-3. Successive 80-millisecond LR velocity samples along the same antenna
axis can be made to provide effective data smoothing to improve LR performance if

required.

The landing-radar altitude data are obtained from actual measurements of the
range from the vehicle to the lunar surface, directed along the range beam as shown
in Fig. 2.1. To obtain altitude data (?1‘ ) from the range data GLR)’ the range data
are simply projected along the direction of the local vertical (gr). The mathematical

relation is:

= T g cos (0p) (2-10)

where 9R is the angle between the direction of the local vertical (estimated) and the
range-beam axis. For convenience in this report the range measurement is loosely
referred to as an altitude measurement, since the data used in the navigation-system

updatings are for updating altitude rather than range.

Each of the three velocii}'r components (?;XA' VYA‘ and ?;ZA) and the landing-
radar altitude measurement ( h ) are incorporated into the state-vector estimate as
an individual measurement. In order to utilize thé/\\;éli)city measurement data most
efficiently, they are prefiltered or smoothed before incorporation into the estimate.

A typical measurement schedule for processing the altitude and velocity-
component data is presented in Fig. 2.2. Each altitude measurement is processed
at 2-second intervals, starting when the estimated vehicle altitude is 25,000 feet.
The velocity-component measurements are processed with a 2-second interval between
the different components, and an 8-second interval between successive measurements
for the same velocity component. The first velocity measurement is processed when
the estimated vehicle altitude is 15,000 feet. In the particular schedule shown in
Fig. 2.2 the velocity-component measurements are processed at essentially the same
times as the altitude measurements, with the altitude measurements being processed

first.

The basic vehicle state vector ()_(n) contains the three components of vehicle
position (En) and velocity (_Yn) in an inertially-fixed rectilinear coordinate frame. The
arrangement of the position and velocity elements is by definition:

r
= n

x u et
2n - (2-11)
-n \
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where it should be noted that ¥, represents the absolute velocity of the vehicle with
respect to an inertial point (not relative to the moon). The subscript n indicates
quantities at time tn‘

The updated estimate of the state vector is obtained by first making a comparison
between the raw measurement (e.g. B or 7XA) and the a-priori estimate of the
measurement quantity (e.g. h' or V'XA)T Based on this measurement difference, a
correction to the estimated state vector (5 §n) is computed. Only the component of
the state vector corresponding to the measurement being processed is updated by
data from the measurement, i.e, only h' is updated by the measurement ?1', and only

1 : o
Viga 18 updated by the measurement VA

Accordingly, the relation for correcting the state estimate by use of an altitude

ELS
measurement is

sr=w, (h-n)u, @-12)

where u is a unit vector directed along the estimated vehicle position vector (r') and
Wy is the altitude-measurement weighting function. Similarly, for the velocity-
component measurements, the corrections to the estimate for the XA, YA and ZA

measurements are:

8 = wyxa (xa " V'xa) Uxa (B3}
v = wyya (ya ~V'ya) Uya 2L
and 6V = Wyza (Vop =V ) us, (2-15)

where YuxA® WvyA® and Wi ZA represent the velocity -component measurement
weighting functions. The quantities Ugas Uyas and Usa represent unit vectors along
the XA, YA, and ZA axes. As can be seen, the position estimate (r') is corrected
only along the direction of the computed local vertical (gr). The estimate (5v), on
the other hand, is sequentially corrected along the computed XA, YA, and ZA axes

as the different component measurements are incorporated into the estimate.

The corrections to the a-priori state estimates, as given in Eqs. 2-12 through
2-15, are applied to the a-priori estimate ()_(n') to provide the up-to-date estimate
Seksk i
(égn). Mathematically this can be stated as:
N

x =8x_+x_' (2-16)
=n =n =n

where the subscript n is used to indicate the values of the quantities at time tn'

“The superscript of a prime (') will be used to indicate the estimated value prior
to the incorporation of the current measurement, i.e. the a-priori estimate.

0

sk
““The subscript n, which indicates values at time tn,has been left off the quan—
tities here to simplify notation.

**%The notation of a caret (™) over a quantity will be used to indicate the estimated
value after the current measurement is processed, i.e. the updated estimate.
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During the intervals of time when no landing radar measurements are being
processed, the state of the vehicle is determined by integrating the two-body equations

of motion for the vehicle:

dv'  wur
=8 - —3 (2-17)
dt r!
and dr!
___: ‘—,l (2'18)
dt

where r' and v' represent the current estimates of‘vehicle position and absolute
velocity, respectively. The quantity u represents the lunar gravitational constant
and ?s_’ represents the specific force measured by the IMU accelerometers. The op-
erations in Eqs. 2-17 and 2-18, it should be noted, are carried out in an inertially-

fixed coordinate system.

2.3 Weighting-Function Computations

The key elements in the navigation system are the weighting functions (w) to be
applied to the measurement difference to obtain the correction to the a-priori state
estimate (ng). In a typical optimum linear estimator a weighting vector (v_gn) is
computed so as to minimize the mean-squared errors in the quantities being estimated.

. . . b .
The updating relation for processing a measurement q, is given as:

~

§5X =W (gn = gn') (2-19)

The information from each measurement in this type of estimator is used to update
all six state-vector components. Different sets of weighting functions are required
for each type of measurement being processed. If this type of an estimator were to
be used for the landing maneuver, it would probably be necessary to perform in-
flight computations to determine the proper weighting functions. As mentioned
earlier, the computation requirements to do this appear to be quite formidable for
the landing maneuver, where the minimization of computation time is of prime

importance.

As an initial means of simplifying the navigation computations it was decided
to update only the component of the state vector corresponding to the measurement
being processed, as indicated in Eqs. 2-12 through 2-15. Under these conditions
only four weighting functions are required, one for each of the four types of
measurements processed in the navigation system. For convenience, these weighting

functions will be referred to as Wi Wosar Wyya® and Wy ZA®

To further simplify the required in-flight navigation computations, these altitude
and velocity-component weighting functions are precomputed on the ground prior to
the mission, using data from the best available computer simulations. The pre-

computed weighting functions are then stored in the navigation computer as linear
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functions of altitude and speed, with a typical example shown in Fig, 2.3. These
linearized weighting functions are approximations to weighting functions derived for
a reference trajectory to give least-squares state-vector estimates. The weighting
functions are stored in the computer in terms of altitude and speed rather than as
functions of time, in order to provide better operational capability in the presence of

landing site redesignations.

The linearized altitude-measurement weighting function (wh) of Fig. 2.3 would

be stored as:

= 0.55 (1 - (2-20)

hl
Yh 35,000
where h' is the estimated altitude of the vehicle, expressed in feet. When h' is
greater than 25,000 feet, the altitude weighting function (wh) is zero. Likewise, the

linearized weighting functions for the velocity-component measurements would be

stored as:
_ v _
WURA T 0.40 (1 1,550) (2-21)
- A _
WyvA S 0.70 (1 1.550) (2-22)
_ _ oy _
and WyZA S 0.70 (1 1,550) (2-23)

where v' is the estimated speed of the vehicle, expressed in feet/second. When the
estimated speed v' is greater than 1,550 ft/sec, the velocity-component weighting

functions have zero values.

2.4 Operations Required in a Typical Velocity-Component Updating

In the process of updating the navigation system with landing-radar measurements,
certain coordinate transformations must be performed. Likewise, in the processing
of velocity data, the rotational velocity of the moon must be considered. This section
will show how the coordinate transformations and lunar-velocity corrections enter
into the updating procedure. To illustrate the method, the processing of an XA-

component velocity measurement will be considered here.

Certain coordinate transformations are required in the navigation system be-
cause the basic information from the IMU is in an inertially-fixed frame, whereas
the doppler-velocity measurements are in the body-fixed radar-antenna coordinate
frame. Also, the rotational velocity of the moon must be accounted for in the updating
process, since the landing radar measures velocity relative to the moon whereas the
IMU data determine the absolute inertial velocity of the vehicle. Finally, a coordinate
transformation is required because the guidance-system input data must be provided
in a rotating coordinate frame, whereas the state-vector computations from the IMU

are in an inertially-fixed frame.

Detailed functional diagrams for the guidance-and-navigation system are given
in Ref. 5, including all coordinate transformations and lunar-rotation velocity
corrections. To illustrate the transformations and lunar-rotation corrections present

in the navigation system, a simple functional diagram is presented in Fig. 2.4 for
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the processing of an XA -component velocity measurement. The superscripts (I), (B),

and (L) are used to indicate components in the inertially-fixed, body-fixed, and
lunar-fixed frames, respectively. The subscript L on the velocity v is used to indicate
velocity relative to the moon, the subscript I is used to indicate absolute velocity.

The first step in the updating process, as indicated in Fig. 2.4, is to take the
absolute vehicle velocity from the IMU (YI) and remove the lunar-rotation velocity
to obtain vehicle velocity relative to the moon (YL)' This operation is performed in
the inertially-fixed frame, i.e. with inertial components of the quantities involved.
Then, using orientation-angle information from the inertial package, unit vectors

are computed in inertial-frame coordinated to specify the radar-antenna axes

(uxps Uyps and uy ).

The a-priori estimate of the measurement quantity(e.g. V'XA) is next obtained

(1)

by projecting the velocity Vi along the antenna-axis direction appropriate for the

measurement being processed. This simply involves for an XA -component measure-

ment the dot-product operation:

o @, B2

1 =
VL, XA
where the superscript (I) is used to emphasize the fact that inertial-frame components

1

are used for VL and u A comparison is next made between the velocity-component

XA
~J - . . . 1
measurement (VL,XA) and the a-priori estimate of the measurement (v L,XA)’ both

of which are scalar quantities. The magnitude of the correction to the a-priori
estimate is then computed as the weighted difference between the raw measurement
and the a-priori estimate of the quantity being measured. This computed correction
is then applied to the component of a-priori estimated velocity along the direction of

i)

the measurement (QXA(I)) to yield the updated velocity estimate ?_/ The updating

I
relation used here is:

A1) _ (D ~ o
Vi Ty Y Wyxa Vpoxa T V'L, xa) Uxa

is the XA -component velocity weighting function. The updating relations

(D (2-25)

where wva

are similar for the other velocity components.

To obtain the required navigation-system input data, the lunar-rotational velocity
is removed from \_/I(I), as shown in Fig. 2.4 to yield the relative velocity \_IL(I). The
updated relative-velocity estimate YL(I) and the vehicle-position estimate g(I) are
then transformed from inertially-fixed to lunar-fixed coordinates, as indicate on
Fig. 2-4 by the transformation matrix CI-L' These components of vehicle position
and velocity (in lunar-fixed coordinates) are used to generate vehicle steering

commands in the guidance system, as will be described in Chapter 3 of this report.

In concluding this section, it should be noted that the operation of projecting

the vehicle's estimated velocity along radar-antenna axes, as indicated by Eq. 2-24,
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requires the same basic computations as a transformation from inertial to body
coordinates. The row vectors of the matrix that would be required to accomplish
(I), ‘l’YA(I)’ and EZA(I)‘ Likewise, the
operation of applying the correction to the estimate along the measurement direction,

this transformation are the unit vectors uy ,

as indicated in Eq. 2-25, can be thought of as a transformation of the correction from
body to inertial coordinates. All the basic navigation computations, however, as
indicated in Eqs. 2-24 and 2-25 and Fig. 2.4, are really carried out as components

in an inertially-fixed frame.
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CHAPTER 3

LANDING MANEUVER

3.1 General Considerations

The mission objectives for the landing maneuver, as mentioned earlier, are
that the vehicle satisfy certain preselected Low-Gate terminal conditions. These
objectives require that the vehicle be decelerated from an initial value of about
5600 feet/sec down to about 3 feet/sec, while the vehicle's altitude is reduced from
50, 000 feet to about 115 feet. All of this must be accomplished on a trajectory that

makes efficient use of the vehicle's propellant, and at the same time permits ade-
quate landing-site visibility. The capability for changing landing sites during the
descent phase, i.e, site-redesignation capability, must also be provided.

To accomplish the mission objectives efficiently, the landing maneuver, as
mentioned in Chapter 1, is divided into two separate phases called the ''braking' and
"visibility'' phases. The overall guidance problem is then solved as two successive
two-point boundary-value guidance problems, separated by a short transition phase.
The terminal conditions for the braking-phase problem are referred to as the High-

Gate conditions; the terminal conditions for the V¥isibility-phase problem are referred
to as the Low-Gate conditions.

Both the braking-phase and visibility-phase guidance systems compute vehicle
steering commands based on the difference between the present estimate of the
vehicle's state (x') and the desired terminal state for the phase (’iD)' Because of
the difference in objectives for the braking and visibility phases, the important
system design considerations are different for the two phases. In the braking phase,
for example, where it is desirable to decelerate at a high-thrust level, the limited
throttling range characteristic of the descent engine is a major factor. In the visi-

bility phase, on the other hand, it is of prime importance that the vehicle thrust
| attitude be pitched up sufficiently high so that adequate landing-site visibility is
f obtained.

In this chapter the guidance concepts for both the braking and visibility phases

will be described for the automatic mode of operation without site redesignations.




Included here are the basic relations for the steering commands, i.e. the command
specific force* (sc) and the command thrust (fc). In a rigorous description of

the guidance systeml’ 3 five different coordinate frames are required. To simplify
the discussion here and to clarify the overall guidance concept, the different co-
ordinate frames have for the most part been suppressed in the discussions of this
chapter. A detailed description of the guidance system is given in Refs. (1) and (5),

including a discussion of the site-redesignation mode of operation.

3.2 Braking-Phase Guidance System

The basic objective in the braking phase is to accomplish the major deceleration
of the vehicle on atrajectory that permits efficient propellant utilization. In order that
the visibility-phase objectives be successfully accomplished, however, the vehicle
must satisfy certain preselected terminal conditions at the end of the braking phase.
These conditions, which are called the High-Gate conditions, specify the vehicle's
altitude and velocity, and its down-range distance from the visibility-phase terminal
point.

Under idealized conditions, where it is assumed that the descent engine's thrust
can be varied continuously over the desired operating range, the guidance obJect1ves
can be accomplished reasonably well by computing specific-force commands (s )

according to the relation:

(t - tf)2 et

=cpt cglt-t)+cg ——2—+__—3_ (3-1)

r'
where t is the present time, and tg is the predicted (or preselected ) final time for
the phase. The quantityy represents the lunar gravitational constant and r' represents
the vehicle's position vector relative to the center of the moon (estimated from the
navigation system). The coeff1c1ents Cor C Cas and c Cg which are three-dimensional
vectors, are computed ’ based on the difference between present vehicle state (x)

and the desired terminal state (ED)' The basic relations for these coefficients are:

€o~2p (3-2)
6 18 24
c, =( )a_ - (———) (v -V)+(——F(r_-r'-vi.)
=3 t =D -D — =D = - GO
GO tGOz tGOB
(3-3)
g * (—12 ap- (—38 (vp- v + 72, (rp - ' V'ig)

t 3 4

GO tco

“Specific force is defined as thrust per unit mass.

“*Specific force and thrust acceleration are used interchangeably in this report.
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where a ap v Yo and rp represent the desired terminal acceleration, velocity, and
position. The quantity tGO represents the time-to-go to the end of the phase, i, e,
tf - t. The quantities r' and v' represent the estimated values of vehicle position
and velocity.

The inertial acceleration of the vehicle under these conditions is given by the
relation:

a?r (t - t)?
— =c.+c, (t-t)+c (3-5)
dtz -0 =3 f -6 3

As can be seen, the inertial acceleration of the vehicle in this case is a quadratic
function of time. The coefficients EO‘ 33, and 36 correspond respectively to the
final acceleration, final jerk (time-rate-of-change of acceleration), and the final
snap (second derivative of acceleration) for the braking phase. By using a quadratic
function of time for the command specific force (-S—c)' there are nine available co-
efficients (co, Cls vvn c8) which permit the terminal position, velocity, and accélera-
tion to be specified.

Under ideal conditions where the errors in the estimates of r and v are small,
the coefficients Cps Cps =v- g do not change rapidly with time. As a result, the
coefficient computations (Eqs. 3-2 through 3-4) can be performed at a much slower
rate than the specific-force computation (Eq. 3-1). Under conditions where radar
updates or site redesignations are made, on the other hand, there will be changes
in the coefficients corresponding to the changes in the state estimates and desired
terminal conditions.

The actual trajectory that the vehicle will fly if the specific force provided by
the descent engine (s) is equal to the command specific force (§c) is dependent upon
the state of the vehicle at the ignition point (£, X)' the desired terminal conditions
(ED’ Yy and gD), and the terminal time (tf). This can be seen from Eqgs. 3-3 and
3-4 where the final jerk and snap are computed. The terminal time for the deboost
phase (t ) can be preselected for use in the steering relations of Eqs. 3-1 through 3-4.
It has been found ' 7, however, that it is more useful to specify the desired final down-
range component of Jerk (JDX) rather than the terminal time (tf). The time-to-go
(tGO) is then obtained by an iteration process, using the reciprocal of time-to-go
(tgo) as the iteration quantity. The basic relation for tGO_l is:

-1, -1, Gpx = Jpx)k-1

(3-6)

tco )k = tgo

+ :
k-1 < dJFX )
o1
®co™"/) k-1




where the subscripts k and k-1 are used to indicate the k'th and (k-1)' th iterations.

The quantity JFX is the computed down-range component of terminal jerk, and
dj
-VFX

e -1 is the derivative with respect to reciprocal time-to-go. The computed down-
GO

range terminal jerk jpy is given by:

3

aX(tE}IO ) - 18 v (t P-24r )

o K
ipx = (tGO 2 x tGo

(3-7)
where apx and Vpx are the desired terminal down-range components of vehicle
acceleration and velocity. The quantities Vx and ry represent the down-range com-

ponents of vehicle velocity and position. The time-rate-of-change of final jerk with

-1 o ol
respect to tGO is given by:

dj

FX  _ -1 -1 -1,2

—T = Sapg ~36vpy gy )~ 12Vg gy ) T T2ryltGy)”  (3-9)
GO

where apx’ VDX’ Vs and ry represent the same quantities as in Eq. 3-7. The
iterative process in Eqgs. 3-6 through 3-8, it should be noted, is carried out in
terms of the reciprocal of time-to-go, i-e"(t-GlO ) rather than tGO itself, because

of numerical computation advantages in the iteration computations.

The guidance laws presented in Egs. 3-1 through 3-4 have been investigated for
lunar-landing applications in Refs. (4) and (6). Other functional forms can be found
for the coefficients Cgs Cp» "7 Cg which will permit the terminal-point boundary
conditions to be satisfied. The best results to date, however, have been obtained

using the coefficients given by Egs. 3-2 through 3-4.

In the actual physical problem the descent engine is not continuously throttle-
able over the desired operating range. Instead, it must be operated either at a
fixed high-throttle setting (92. 5 percent of nominal thrust), or it can be operated over
a range of lower—throttle settings (between 10 and 60 percent of nominal thrust). To
achieve effective propellant utilization during the braking phase, it is desirable to
accomplish the major deceleration at the high-throttle setting. In order to satisfy
the terminal boundary conditions, on the other hand, it is necessary that the command
thrust be in the continuously throttleable lower-thrust region (10-60 percent of
nominal thrust) during the latter part of the braking phase. If the command thrust is
not in the throttleable region, then the propulsion system will not be able to provide

the required thrust (unless by chance it is 92. 5 percent of the nominal thrust).
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To accomplish the deboost-phase objectives in the presence of the above-
mentioned propulsion-system constraints, the guidance relations of Egs. 3-1 through
3-4 have been applied with certain special modifications. These modifications are
necessary because the engine cannot be throttled except over the low 10-60 percent
range. To minimize vehicle-attitude transients, moreover, the throttle is not per-
mitted to return to the high setting (92. 5-percent) once it has dropped to the low
range#< (10-60 percent).

The basic guidance philosophy adopted in this situation was to operate the
vehicle at the high-throttle setting for about the first 380 seconds of the braking
phase, as shown in Fig. 3.1 for the nominal reference trajectory. Then, during the
last 80 seconds of the initial braking phase, the throttle is operated in the 10-60 per-
cent throttleable region. To accomplish this, thrust commands are obtained from
Eq. 3-1 by using the relation:

f = s m (3-9)

where fc is the thrust command, S, is the specific force command (magnitude), and
m is the estimated mass of the vehicle. The following logic is then used on the thrust
command (fc) to determine the proper throttle setting, starting with the throttle at
the 92. 5-percent position and Flag, at zero:

If Flag, = 0 and fc_z .52 fnom’ then fc = .925 fnorn (3-10)
If FlagA = 0 and fc <.,52 fom* then Flag, =1 (3-11)
If Flag, =1 and f, >.60 fom: thenf = .60 Lo (3-12a)
If FlagA =1 and .60 fnom 3fc > .10 fnom’ then Ly = fC (3-12b)
If FlagA= 1 and fc <.10 fnom’ then fc =, lofnom (3-12¢)

where fnom represents the nominal maximum thrust of the descent engine, The

relations of Eqs. 3-10 through 3-12 say that as long as the initial command thrust

is greater than 52 percent of the nominal thrust, keep the throttle at the 92. 5-percent
position. As soon as the command thrust drops below 52 percent of the nominal
thrust, however, the throttle should follow the command thrust, provided that it
remains below 60 percent of nominal thrust (which it will do under normal conditions).
Once the DPS has been throttled down to the 10-60 percent region, the logic will

not permit the throttle to return to the 92, 5-percent position.

*“The 26-second low-thrust DPS trim period at the start of the braking phase is
not included here.
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The profile of command thrust as a function of time on a typical descent-phase
trajectory is shown in Fig. 3.1 along with a curve of the actual thrust provided by
the descent-stage engine. The 26-second low-thrust DPS trim period immediately
after engine ignition is not shown here. This general type of command-thrust profile
has been found by extensive simulation studies to provide efficient propellant utiliza-
tion, to provide satisfactory propulsion-system throttling characteristics, and to allow
the braking-phase terminal conditions to be met with a satisfactory accuracy.

To obtain command-thrust profiles which provide satisfactory guidance-system
performance, like the one in Fig, 3.1, is not a simple task. The procedure that was
adopted to accomplish this is presented in detail in Ref. (6). In essence, the desired
command-thrust profile is obtained by the following procedures.

(1) The DPS ignition is controlled to place the vehicle initially on a trajectory
to a preselected dummy aim-point, with preselected values of terminal
velocity, acceleration, and down-range jerk.

(2) For a preselected interval after ignition (typically 180 seconds)’specific
force commands are generated on the basis of Eqs. 3-1 through 3-4 and
Eqgs. 3-6 through 3-8, using the dummy aim-point conditions as required.
During this period the thrust vector (f) of the vehicle is oriented along the
direction of the command thrust (f c). The throttle remains at the high-
thrust position throughout this interval, as required by the thrust-control
logic (Eqs. 3-10 through 3-12),

(3) At a preselected time (about 180 seconds after ignition)*during the braking
phase, the desired terminal conditions used in Egs. 3-1 through 3-4 and
Egs. 3-6 through 3-8 are changed to those corresponding tothe braking-phase
terminal point (the High-Gate point). The same method of thrust-vector
control is still employed, i.e., the orientation of the thrust-vector is along
the direction of the command thrust (fc) and the throttle setting is determined
by the logic of Egs. 3-10 through 3-12.

(4) When the time remaining for the braking phase has dropped to about 80 secs,
the command thrust will for the first time (nominally) drop below the level
corresponding to 52 percent of the nominal thrust, The throttle will then
be permitted to move from its 92, 5-percent setting into the throttleable
10-60 percent region. Thereafter, during the braking phase, the propulsion
system will provide a thrust vector (f) oriented in the direction of and equal
in magnitude to the command thrust (f_c).

*180 seconds after the initial 26-second DPS trim period.
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Of particular importance in this guidance scheme is the selection of the trajectory
parameters for both the dummy aim-point and the High-Gate terminal point. This
can best be accomplished by a careful and accurate simulation of the braking-phase
guidance problem.

The vehicle steering commands, as mentioned earlier, are basically derived
from the command specific force (Ec)’ as given by Eq. 3-1. In the computation of

s . it is required that nine coefficients (c s c8) be computed using the relations

» Cia win
of Egs. 3-2 through 3-4. These coefficit?nts,1 as mentioned previously, will remain
essentially constant throughout the braking phase under ideal, error-free operating
conditions. Under realistic conditions, however, where guidance-and-navigation-
system errors are present and landing-radar updatings are made, some of these
coefficients will tend to increase very rapidly at the end of the braking-phase. This
can be seen from Eqgs. 3-3 and 3-4 where the various terms have time-to-go (tGO) in
6 at the end of the

phase, the coefficient computations (Egs. 3-2 through 3-4) and final-time predictions

their denominator. To guard against the rapid buildup of [ and ¢

(Egs. 3-6 through 3-8) are stopped for the braking phase when the time-to-go (tGO)
has dropped to 20 seconds. The command specific force thereafter is obtained simply
from Eq. 3-1, using the last computed values for the coefficients (cO, Cis ovee c8) and

the terminal time (tf).

In concluding this section it should be noted that the reference trajectory and
guidance operation have been predicated on DPS acceleration uncertainties of +1%
in the high-throttle-setting position. On the basis of simulation studies it has been
found that even with throttle-setting uncertainties of this magnitude, the above-
mentioned guidance system will satisfy all the braking-phase guidance objectives.
The length of time during which the throttle is in the 10-60 percent throttleable
region will, however, change about 30 seconds for a 1-percent acceleration un-
certainty. It will increase when the DPS acceleration is high, and it will decrease
when the acceleration is low.

3.3 Visibility-Phase Guidance System

The basic guidance objective of the visibility phase is to accomplish the final
deceleration of the LEM in such a way that the selected site is visible to the astronaut
through the window for a predetermined interval of time. Of prime importance here
is that the longitudinal X-axis of the vehicle (which is essentially the direction of applied
thrust) be elevated at a sufficiently high angle for the landing site to be visible through
the window. It is desirable, moreover, for the line-of-sight to the selected landing
site to be at least 10 degrees above the window edge for at least 75 seconds. At the
same time, it is undesirable from the viewpoint of efficient propellant utilization to
keep the thrust vector at the high elevation angle (required for site visibility) for any

longer than the minimum required time.
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The visibility-phase guidance concept must, of course, steer the vehicle to the
Low -Gate-point terminal conditions (position and velocity) with a satisfactory terminal
accuracy. In addition, the visibility-phase system must provide the capability of site
redesignation without violating the specified trajectory constraints for the visibility
phase. The trajectory constraints which were used in the study reported here are
presented for the convenience of the reader of Appendix A, as stated in Ref. (1),and
a detailed description of the site-redesignation mode of operation of the visibility -
phase guidance system is given in that reference. Accordingly, the discussion here
will be restricted to the automatic mode of operation with no landing-site redesignations.

Under these conditions, the guidance problem can be solved quite simply by a
straight-forward application of Eq. 3-1 to obtain the command specific force (Ec)'
The command thrust (f_c) is obtained by multiplying 8. by the estimated vehicle mass
(m). The coefficients Cos cl, e c8 required in the computation of N are obtained
from Eqgs. 3-2 through 3-4, using the Low-Gate-point values for ap Y and T'p as
given in Table 1.1. Likewise, the time-to-go (tGO), used in Eqgs. 3-2 through 3-4, is
computed iteratively from Eqgs. 3-6 through 3-8, using Low-Gate-point quantities as
required here,

By carefully selecting the desired terminal quantities for the visibility phase
(a p» Yy and ED)' the down-range terminal jerk (jDX), and the time duration of the
phase, it is possible to guide the vehicle in such a way that all the major objectives
are satisfied, using Eqs. 3-1 through 3-4 and 3-6 through 3-8. The commanded
vehicle thrust on a typical trajectory will remain in the throttleable (10-60 percent)
region throughout the visibility phase, as shown in Fig. 3.1. Accordingly, the
descent engine will be able to provide the commanded specific force (gc) throughout
the entire visibility phase. In order to achieve the required visibility-phase objectives,
the vehicle must have previously satisfied the braking-phase (High-Gate-point) terminal
conditions with a reasonable accuracy.

As the visibility phase nears completion, certain guidance coefficients
(c3, Cys ovn c8) will tend to increase rapidly as time-to-go becomes small. As
mentioned earlier in conjunction with the braking-phase system, this is caused by
the presence of tGO in the denominator of various terms in the coefficient relations
Egs. 3-3 and 3-4. To circumvent this problem in the visibility phase, the coefficient
computations (Eqs. 3-2 through 3-4) and terminal time computations (Egs. 3-6 through
3-8) are stopped when the estimated time-to-go to the end of the phase is less than
5 seconds. The specific force is computed thereafter simply from Eq. 3-1, using

the last computed values for Cps Cps +ee C and t,.
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3.4 Alternate Formulation of Certain Guidance Relations

The guidance-system studies presented in this report have employed the guidance
laws as formulated in Sections 3.2 and 3. 3. In the actual mechanization of the guidance
laws for use in the LGC, a somewhat different though equivalent formulation will be
used for Eqgs. 3-1 through 3-4. This formulation, which is simpler to mechanize, will

next be described.

The command specific force (§c) in this new formulation is given by the relation:

6 s 12 (' . \ pr'
se " ap = (v v+ 2 wp-r- .
¢ “D igo Tp T ¢ b R
GO
(3-13)

where a ,, v, and r  represent the desired terminal vehicle acceleration, velocity,
and position. The quantities v and r represent the estimated values of the present

vehicle velocity and position. The time-to-go (tGo) is given by the relation:
t =t, -t (3-14)

where t is the present vehicle time and 1:f is the final terminal time. The formulation
of Eq. 3-13 is identical to Egs. 3-1 through3-4 and can be obtained from Eq. 3-1 by
substituting the relations of Egs. 3-2 through 3-4 to eliminate o S3 and c .. The

relations of Eqs. 3-6 through 3-8 provide the means for computing I as

required in Eq. 3-13. G

Under conditions when the time-to-go for the guidance phase of interest becomes
small, the command specific force <§c) as computed from Eq. 3-13 can become badly
behaved,i.e. it may get very large as time-to-go becomes small. To circumvent
this difficulty, an alternate expression is used for B, when tGO is less than 20 second
during the braking phase, and less than 5 seconds during the visibility phase. This

alternate relation for small values of tGO is:

pr'

tco

s =a
L r'3

=-cC =L * (2'.

where tL represents the time at which Eq. 3-15 is first used in a given phase. The
quantity ar, represents the vehicle's acceleration at time tL. In effect, the relation
of Eq. 3-15 causes the vehicle's acceleration to change linearly with time from its
value at the time Eq. 3-13 is abandoned(i.e. a_L) to its final desired value for the

phase of interest (a ).
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In concluding this section, it should be noted that Eq. 3-13 provides a much
simpler mechanization for the LGC than Eqgs. 3-1 through 3-4, which is a very strong
recommendation for its use. Also, it is felt that the use of Eqgs. 3-13 and 3-15 for
computation of the specific force (s C) will give system performance not significantly
different from Eqgs. 3-1 through 3-4. Simulation studies are currently being made to
substantiate this point.

3.5 Guidance-System Operation on the Reference Landing Trajectory

To illustrate the operation of the landing-maneuver guidance system under ideal
error-free conditions, the reference-trajectory data of Fig. 3.2 through 3.5 are
presented. It is assumed here that there are no initial-condition errors(i.e. errors
in the initial estimates of r and _g), there are no errors in the IMU, there are no pro-
pulsion-system uncertainties, and the thrust vector is always oriented along the
direction of the command-thrust vector. It is assumed, of course, that the descent
engine must be operated either at 92. 5 percent of nominal thrust or in the throttle-
able 10-60 percent region. All of the data presented here start at a time 200 seconds
after the initial 26-second low-thrust DPS trim period following engine ignition. No
landing-radar updatings are taken or required on this idealized trajectory.

The particular trajectory shown in the data of Figs. 3.2 through 3. 5 goes to
a High-Gate point at an altitude of 6, 667 feet above the surface of the moon. The
initial, High-Gate, and Low-Gate-point conditions for the trajectory are summarized
in Table 3.1. For convenience the data here are presented as altitude, speed, flight-
path angle, and range-to-go to the selected site. (Table 1.1 presents High-Gate and
Low-Gate-point data in an inertial frame.)

The orientation of the thrust vector with respect to the local horizontal during
the landing maneuver is shown in Fig. 3.2 as a function of time. As expected, the
thrust vector remains within 25 degrees of the horizontal during the major part of the
braking-phase, in order to accomplish the deceleration with efficient utilization of fuel.
During the visibility phase, the vehicle's attitude is pitched upward so that the selected
site can be seen from the vehicle. There are small discontinuities in thrust-vector
orientation curves, as can be seen in Fig. 3.2. These occur at the time the throttle
is switch down from the 92.5-percent position into the 10-60 percent region, and at
the transition points between the braking and visibility phases. These discontinuties
do not constitute a seriousproblem in the actual operation of the system, and will be
smoothed out by the normal dynamic lag in the response of the vehicle and propulsion
system to steering commands.

Superposed on the thrust-vector orientation curve of Fig. 3.2 is a curve of
visibility angle during the landing maneuver. The visibility angle, as presented here,
is the angle by which the line-of-sight to the selected site is visible above the edge




of the LEM window. When the landing site is not visible through the window, the
visibility angle as shown has a zero value. The selected landing site is taken here

as a point 3. 3 feet down range from the Low-Gate point. In order for the landing site
to be visible through the window in the LEM, the line-of-sight to the landing site must
be at least 25 degrees above the longitudinal axis of the vehicle. Examination of the
visibility-angle curve indicates that the visibility requirements for the landing maneu-
ver, i. e. a visibility angle of at least 35 degrees (10 degrees above the window edge)
for at least 75 seconds, are satisfied on this reference trajectory.

The required velocity increment for the reference trajectory, as indicated in
Fig. 3.2,is 6281 ft/sec. Included here are 37 ft/sec expended during the 26-second

low -thrust interval immediately after ignition.

The important characteristics of the reference landing trajectory are given
in Figs. 3.3 and 3.4 and 3.5. Data are given in Fig. 3.3 of the vehicle altitude as
a function of the down-range distance travelled from the start of the braking phase.
Time histories of vehicle altitude, vertical velocity, speed, and flight-path angle

are shown in Figs. 3.4 and 3. 5.
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Table 3.1

Terminal Conditions for Reference Trajectory

Initial Point

High-Gate Point

Low-Gate Point

Time after ignition

Altitude

Speed

Flight-Path Angle

Range-to-go to site

26 sec

50, 355 ft

5563 ft/sec

-.08 deg.

227 nm

452 sec

6667 ft

518 ft/sec

-15. 0 deg.

4.1 nm

568 sec
114 ft

2.8 ft/sec
-29. 2 deg.

3.3 ft




CHAPTER 4

DEVELOPMENT OF LANDING-RADAR WEIGHTING FUNCTIONS

4,1 Introduction

A detailed description of the navigation system has been given in Chapter 2.
Included there were the relations for updating the state-vector estimates with range*
and velocity data from the landing radar. As was mentioned earlier, the landing-
radar weighting functions are to be precomputed and stored in the LEM Guidance
Computer (LGC). The altitude weighting function is stored as a linear function of
estimated vehicle altitude; the velocity-component weighting functions are stored as
linear functions of the estimated vehicle speed. The equations for these linearized

weighting functions are given in Chapter 2.

The present chapter is concerned with the development or evolution process
that led to the weighting functions that were finally selected. First of all, the models
formulated for the IMU and landing radar are presented. Then the various relations
used in the statistical analysis of the navigation-system performance during the
landing maneuver are presented. This statistical analysis is a necessary step in the
process of determining landing-radar weighting functions. Included here is a discussion
of the various methods investigated for the treatment of radar bias errors and terrain-
slope variations in the estimation process. Finally, a description is given of the
various weighting functions that have been considered for the landing radar, leading

to the currently employed weighting functions.

4.2 Modeling of the Navigation Sensors

4.2.1 General Considerations

In order to properly model the navigation sensors for the purpose of de- |
termining estimator weighting functions, two different types of information are |
required:

1) the statistical characteristics of the errors to be expected in the
measurements from all the sensors, and
2)  the sensitivities of the various landing-radar measurements to small

changes in the state vectors.

* The landing radar provides data on the range from the vehicle to the lunar terrain,
measured along the direction of the range beam. Inasmuch as this measurement is use-
ful Primarily in updating altitude estimates, it is often referred to in this report as
an ''altitude" measurement rather than a ''range' measurement.
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With regard to the statistical description of the measurement errors, it
must first be decided whether to model the error as a white noise (uncorrelated
in time), as a bias error (completely correlated), or as a colored noise (inter-
mediate correlation-time intervals). Then, it is necessary to determine the
first and second moments of the probability distributions (mean and mean-squared
values), including the correlations between the different measurement errors.

In many cases it is necessary to use a combination of white noise, bias errors,

and colored noise to properly represent the errors from a given measurement.

The sensitivity of the different landing-radar measurements,as required
in the navigation-system design, is defined for a given measurement (qn) by the

relation:

éqn = bn ’ 6§n (4-1)

where b represents the sensitivity of the measurement (qn) at the time t_ to
small changes in the state vector (6)_(n). The elements of t_Jn are the first-order
terms of a Taylor series expansion about the reference state, relating small
changes in q_ to small changes inx_, i e, 4 9q

g a, g X b—f}o, 3-;11 R
4. 2.2 Inertial Measurement Unit

The inertial measurement unit or IMU measures the total specific force
acting on the vehicle. By integrating the basic equations of vehicle motion, it
is possible to compute the changes in vehicle position and velocity from their
values at the start of the integration interval. The gravitational force term
required in these computations can be based on the current estimate of vehicle

position.

Some of the important sources of error in the IMU measurements used

for navigation during the landing maneuver are the following:

1) initial alignment uncertainty of the inertial package,
2) drift of the stabilization gyros,
3) accelerometer output bias errors,

4) accelerometer scale factor errors.

In order to obtain a reasonably accurate model for the IMU, it was decided to
represent the performance uncertainties by the combination of a random error
in the measurement of specific force (a I)’ and bias errors corresponding to the
initial misalignment (1 AL)’ the gyro drift rate ( '.Y.DR)’ the accelerometer bias

(l BI)’ and the accelerometer scale-factor uncertainty (ISF)'

The vectors ¢ 1, y pp» and y gp in this case represent components of
error in the measurement of specific force along the three orthogonal inertial-

package reference axes. Likewise, the vectors (y,;)and (y DR) represent
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small angular displacements and angular rates of rotation about the inertial -

package reference axes. The magnitudes of each of these errors for an ensemble
of inertial units are assumed to follow a Gaussian distribution about a zero mean

value.

In order to obtain a model for the IMU errors that was reasonably accurate
and at the same time not unduly complex, it was decided to represent the error
in measured specific force (Es) as a linear combination of the above-mentioned
measurement errors. By using this type of linear model for the IMU, the
statistical error analysis of the navigation-system performance during the
landing maneuver (which is useful in determining weighting functions) is greatly
simplified. This linear error model for the IMU is most conveniently described
by the re1ation8:

€s = Mpp, Yo

where M

M + o

1 1t Mgp Ysp * 2

Sf are 3 x 3 matrices. The measurement bias

+ MB (4-2)

DR Y DR
AL’ Mpg» Mpps and M
errors ¥ oy, Y pps Y BT’ and Y SF* and the measurement random errors &
are all three-dimensional vector quantities.

If the inertial-package alignment errors are reasonably small, it can

be shown8 that M is given by the relation:

AL
0 ' -s ! B |
I z | y
|
S N S
= | | =
MaL ™ | 82 1 © P (4-3)
____'_____:____
-s E s ! 0
|y i ]

where S.» Sy’ and s, are the components of specific force (s) measured along
the inertial-package axes. Likewise, for the assumed conditions of constant
drift-rate components of YDR and small angular displacements of the inertial

package, it can be seen that MDR is given by:

M =tM (4-4)

DR AL

where t represents the time after the start of the braking phase. It can also
readily be seen that MBI is equal to the 3 x 3 unit matrix I. Finally, if the
elements of 7y S are expressed as fractions of the total specific force, it

can be shown that MS is given by:

F
s y 0 o
_.3(__1____:__._
Mgy = 0 | s_ 10 (4-5)
SRR W S S
0 1 0 s
Z
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where S.» sy, and s, again represent the components of specific force measured

along the inertial-package axes.

The accuracy of the navigation system during the landing maneuver is
most conveniently described by the covariance matrix of the errors in the
estimates of the state vector. The relation of Eq. 4-2, as will be shown later
in this chapter, is extremely useful for computing this covariance matrix

during the powered landing manecuver.

4.2.3 Doppler-Velocity Measurement Unit

As a basis for modeling the doppler radar, @ three - beam config-
uration, as shown in Fig. 2-1, has been assumed. The doppler-frequency
shift experienced by each beam is proportional to the component of vehicle
velocity (relative tothe lunar terrain) along the particular beam. By adding
and subtracting the doppler-frequency shifts for the different pairs of beams,
it is possible to determine the components of vehicle velocity in an orthogonal
coordinate frame fixed with respect to the radar-antenna axes. This coordinate
frame is for convenience referred to as the XA-YA-ZA frame, and the corres-
ponding velocity components are referred to as Vxar VyA® and Voar The
relations between these velocity components and the doppler frequency shifts

have been presented in Chapter 2, (Egs. 2-1 through 2-3).

In order to utilize the velocity-measurement data (va, VyA® and VZA)

for navigation of the landing vehicle, it is necessary to determine the geometrical
relationship between the basic velocity-measurement frame (XA, YA, and ZA
axes) and the inertial-reference frame (XI, YI, and ZI axes). The desired re-
lationship is most conveniently represented by a matrix MIA’ which transforms
velocity data from components in inertial coordinates (YI) to components in

antenna coordinates (YA) according to the expression

i T (4-6)
The row vectors of M;, are the unit vectors along the antenna axes (EXA’ Uya»
and L_IZA) expressed in terms of inertial-frame components. The relation for

MIA 182 _ _

YA (4-17)

where the superscript T is used to indicate the transpose operation.




Using the relations of Eqs. 4-6 and 4-7, the sensitivity vector (b) relating
changes in the doppler-velocity measurements to changes in the state vector
can readily be determined. The desired relations for b, shown for convenience
transposed, are:

]
T __[TIT ] .
biyxa = L2 14 xa (4~8)
T _[T'T .
b yya ~ L2 ?EYAI -2
T [T T )
‘EVZA'[Q :EZA] (4-10)

where the vector 0 is a 3-dimensional vector having all zero-valued elements.
The sensitivity vectors by~ 4. EVYA" and EVZA are each 6-dimensional vectors
containing terms corresponding to all six state-vector components. The sub-
script "'n", which is used to indicate values at time t_, has been left off the
quantities in Eqs. 4-8 through 4-10 to simplify notation. The first three el-
ements of these vectors are zero, as would be expected, since the doppler-
velocity measurements are to first order insensitive to changes in the position
of the vehicle.

The modeling of errors present in the doppler radar will next be considered.

Some of the errors typically found in doppler r'adarsg-12 are the following:

1) actual frequency-measurement error (frequency tracker)

2) conversion of frequency data to electrical signals

3) transmission-frequency errors

4) terrain-reflectivity variation errors

5) orientation of radar-antenna coordinate frame (XA, YA, and ZA
axes) with respect to the inertial-reference frame (XA, YI, and
Z1 axes).

These errors lead to both random and bias errors in the measurement of vehicle

velocity.

As might be expected, it is difficult to model the doppler radar in sufficient
detail so that each of the above-mentioned errors is explicitly accounted for in
the model. Accordingly, in order to obtain a relatively simple model that at
the same time was somewhat representative of radar performance, it was
decided to model the radar by the following combination:

1) a random error (Gaussian white noise) whose rms value is
proportional to the magnitude of the vehicle's velocity ( g_D)

2) a bias error corresponding to the uncertainties in the knowledge of
the orientation of the radar-antenna coordinate frame with respect
to the inertial-reference frame ( 5 D)

Under these conditions the components of vehicle velocity as measured by the

doppler radar and then transformed to the inertial reference coordinate frame
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will be in error by the amount:
|

ptMps Tp (4-11)

~

€va ~ 2

where EVA isa 3-dimensional vector containing the errorsin the XA, YA, and ZA
components of velocity. If the angular displacement components of Y p are
small angles then it can be shown that MRD is given by the relation:

_ . | ;
¢ | Yz 1 Yy
S U SR

|
| - (4-12)
RD Vza  ® | Vxa
s s s s e —_ -
-v e o
YA 1 VXA

where VxA® VyA® and v, A Tepresent the components of vehicle velocity along
the XA, YA, and ZA axes.

It should be noted the magnitudes of the components of both ap and Y D
are assumed to be normally distributed about a zero mean value, even though
@ p represents a random error and ¥ D2 bias error. Also, the rms values of
the components of o . are varied during the landing maneuver as the vehicle's
velocity is changed, whereas the rms value for the components of Y D will re-

main fixed throughout the landing maneuver.

4.2.4. Range Measurement Unit

The landing radar provides data on the range from the vehicle to a point
on the lunar terrain below, measured along the direction of the range beam.
The range beam, as can be seen from Fig. 2. 1,is located half-way between the
two rear doppler-velocity beams. The range beam is fixed with respect to the
vehicle body, i. e, its orientation with respect to the inertial-reference axes
will change during the landing maneuver as the orientation of the thrust vector

is changed.

Inasmuch as the range measurement is simply to the lunar surface along
the range-beam direction rather than to a preselected known point on the surface,
the primary useful navigation data from the measurement are of vehicle altitude.
For this reason the range measurement is frequently referred to in this report

"range' measurement. The angular displacement

as an '"altitude" rather than a
of the range beam from the local vertical must, of course, be determined to

obtain useful altitude data from the range measurement.

The sensitivity of the range measurement to changes in the state vector

(b) is given simply by the relation:

| gq‘] (4-13)
|




where u, is a unit vector along the local vertical, and ¢ H is the angle between
the direction of the local vertical and range beam. The quantity 0 is a 3-dim-
ensional vector containing all zero-valued elements. The last three elements
of b are represented by 0, since the range measurement is insensitive to first
orderto changes invehicle velocity. It should also be noted that the position-
sensitive part of the b-vector is directed along the local vertical (gr) rather
than along the range beam. The reason for this is that to first order the

measurement is insensitive to changes in position in the horizontal direction.

An important source of error in the use of landing-radar measurements
to update the state vector is the uncertainty or variation in the characteristics
of the lunar terrain. Of particular concern here are differences in altitude
(relative to the lunar sphere) between the selected landing site and the point to
which the range measurements are made. It is expected that hills, craters,
and slopes of significant magnitude may be encountered during the landing man-

euver.

The basic model selected to represent the errors in the landing-radar

range measurements consists of the following combination:

1) a random white noise whose rms value is proportional to the altitude
of the vehicle down to a specified minimum altitude below which it
remains fixed (),

2) a constant slope away from the landing site ( -yh) causing a measure-
ment bias error proportional to the ground-range distance from the
vehicle to the site.

The measurement error ('é'h) under these conditions is given by the relation:
~ - 2
h “h 'GO Yh
where r represents the down-range distance from the vehicle to the landing

GO
site. Both « h and vy h are assumed to have Gaussian distributions about zero

(4-14)

mean values’f even though the rms value of « h is varied as a function of altitude

whereas the rms value of " remains fixed.

In the basic navigation system investigated in this report the IMU-derived
estimates of vehicle position are updated only along the direction of the local
vertical, as was indicated in Eq. 2-12 of Section 2. Under these conditions it
is possible for the vehicle to be as much as 5,000-6,000 feet down range from
the Low-Gate point at the end of the visibility phase. It is particularly important
that the vehicle be at the proper altitude at the point where the vehicle actually
arrives at the end of the visibility phase. For this reason the proper values of
range-to-go (rGO) to use in the navigation-system error models are the values

estimated in the navigation system rather than the true values.

sz ; ; ;
Viewed on an ensemble basis at a given time.
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An alternate model currently under investigation for representing terrain-

13, 14 whose rms value is varied as a

slope variations as a correlated noise
function of the distance from the vehicle to the selected site. The correlated
noise is obtained by passing white noise through a first-order filter. The

results of this study will be reported at a later date.

4.2.5 Summary of Sensor Models

The IMU has been modeled to include platform alignment ( ZAL)’ gyro
drift (1 DR)’ accelerometer bias ( ‘IBI)' and accelerometer scale-factor errors
| ( Y SF)’ All of these errors are represented as time-invariant bias errors. A
"' random error in the measurement of specific force («a I) was also included. The
basic errors in the measurement of specific force (gs) from all of these sources

are given by Eq. 4-2.

The doppler-velocity measurement unit has been modeled to include a
random error whose rms value is proportional to the magnitude of vehicle
velocity (o D)’ and a bias error corresponding to the uncertainty in knowledge
of the relative orientation of the radar-antenna and inertial-reference frames
(1 p)- The velocity measurement errors are given by Eq. 4-11, the measure-

ment -sensitivity vectors are given by Eqs. 4-8 through 4-10.

The range (altitude) measurement unit has been modeled to include a
random error whose rms value is proportional to the altitude of the vehicle.
The difference in altitude of the local terrain and the selected landing site
(relative to the lunar sphere) has been modeled as a constant-slope bias (i e,
the difference in altitude is proportional to the range-to-go to the site). The
altitude-measurement errors are given by Eq. 4-14; the measurement-sensitivity

vector is given by Eq. 4-13.

il
: 4.3 Statistical Analysis of Navigation-System Performance
!

4.3.1 General Considerations

In the selection of landing-radar weighting functions it is important to
determine the accuracy of the navigation-system state-vector estimates prior
i to the incorporation of a new measurement. By properly comparing the accuracy
| of the a-priori estimates with the expected accuracy of the new measurement,
a suitable measurement weighting funtion can be determined. The accuracies
of the navigation system and the measurement sensor must, of course, be
represented in statistical terms, since only the statistical characteristics of the
errors of a given navigation system or navigation sensor are generally known
before the actual operation of the system.

The accuracy of the navigation system can best be described by the co-

variance matrix of the errors in the estimate of the state vector (E). This




covariance matrix is defined mathematically by the relation:

| —-T'
E = ee (4-15)

el
| ;
where the quantity e represents the errors in the estimates of vehicle position
(gr) and velocity (gv), i,e, it is a 6-dimensional vector quantity. The bar over

€ and its transpose gT is used to indicate the operation of an ensemble average.

The estimation-error covariance matrix (E), which is a 6 x 6 symetrical

matrix, can be partitioned into four 3 x 3 submatrices as indicated by:

(4-16) |

e e
V=V

The upper-left submatrix represents the covariance matrix of the errors in
position, and the lower-right submatrix represents the covariance matrix of the
errors in velocity. The lower-left and upper-right submatrices represent the
cross-correlation between position and velocity errors. The elements along
the principal diagonal of E represent the mean-squared errors in the estimates

of vehicle position and velocity.

The basic equations for computing the estimation-error covariance matrix
(E) during the landing maneuver are quite complex, even with the relatively
simple sensor models described in Sections 4. 2. 2 through 4. 2. 4. For this
reason it is felt that a continuous in-flight computation of E during the powered
landing maneuver is not desirable. On the other hand, it is important in ground-
based simulation studies of the navigation system to determine E so that weighting
functions are most intelligently selected. It is for this latter purpose that the

relations for E presented in this section are intended.

4.3.2 Propagation of Estimation-Error Covariance Matrix

In this section the relations will be given for computing the covariance
matrix of the errors in the estimates of the state vector (E) during the period
when no landing-radar updatings take place. The important navigation sensor
during this time is the IMU. The following section will show how E is updated

after the processing of a landing-radar measurement.

Before presenting the relations for E, it is useful to describe the IMU
in a more compact notation. Accordingly, let us make the following definitions:
T

T N T, T] )
¥ 4 [IAL: Ypr, YBr i+ YsF (4-17)
and
| | ! ] =
Mp & [ My | Mpg | My | Mgp S
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where e is a 12-dimensional vector and MI is a 3 x 12 rectangular matrix.
Using these definitions, the relation of Eq. 4-1 for the error in the measurement
of specific force can be written simply as

~

g =My te (4-19)

Next, let the 3 x 3 symetrical matrix G represent the gradient with re-
spectto position of the gravitational force from the moon acting on the vehicle,
evaluated on the reference trajectory. It can be shown3 that G is given by the
relation:

T

%
G= 5 GBpp" -0 (4-20)

where M is the lunar gravitational constant, I is the 3-dimensional unit matrix,

and p is the position of the vehicle with respect to the center of the moon.

Finally, let us define the matrices K, F and M in the following manner:

A |
K = [o . ] (4-21)
A o ! I (4-22)
S G { O
A o ' o LY. ! o (4-23)
M I [ — N S T ______ : _____
Mpp, | Mpg | Mg | Mgg

where O represents a 3 x 3 matrix having all zero-valued elements, and I
represents the 3-dimensional unit matrix, F is a 6 x 6 square matrix, and M is

a 6 x 12 rectangular matrix.

The computation of E during the landing maneuver is most easily accom-
plished by integrating the differential equation for the time-rate-of-change of
E, starting from an initial value EO. It can be shown8 that the time-rate-of-
change of E, i.e. E, is given by:

§ iF

E=FE+EFL +MCT + cMT + KQ, K (4-24)

where K, F, and M are defined by Eqs. 4-21 through 4-23. The random errors
in measurement of specific force (& I) are represented by a Gaussian willjxite
noise having a zero mean value and a covariance matrix QI (t)5(t - 7). The
matrix C represents the correlation between the errors in the estimate of the
state vector and the IMU bias errors, that is:

C=ey’ ~ (4-25)
where the 12-dimensional vector 20 has been defined in Eq. 4-17. The matrix
C is most easily computed by integrating the differential equation for the time-

rate-of-change of C, starting from an initial value CO. It can be shown8 that

* The quantity 6§ (t - 7) represents the delta or unit impulse function.




the required equation for the time-rate-of-change of C, i.e. C, is given by:
C = Fc + M (4-26)
where [’ represents the covariance matrix 1 JIT of the IMU bias errors.

The relation of Eq. 4-24 permits computation of the navigation-system
estimation-error covariance matrix (E) during the periods in-between (and
before) landing-radar measurements when the IMU is the primary navigation
sensor. Simultaneously with the computation of E, the matrix C must also be

computed, as indicated in Eq. 4-26.

4.3.3 Updating of Estimation-Error Covariance Matrix

It will be next shown how the covariance matrix E is changed after a new
measurement is processed in the navigation system. The basic relation will
be presented in terms of the measurement weighting vector w. For convenience,
the covariance matrix of the estimation errors prior to the processing of the
new measurement at time tn will be referred to as E;l; the covariance matrix
immediately after the processing of the measurement will simply be referred
to as En'

Consider first of all the processing of a range (altitude) measurement at
time t . Using the sensitivity for the range measurement (Eq. 4-13) and the
measurement error model (Eq. 4-14), it can be shown8 that the error in the
state estimate immediately after the processing of the measurement ('_e_?n) is

given by:
e =( - I v =
€~ a Th 12n ) enr ¥ ¥n (e h,n * Go,n h) fh=ai)

where g'n represents the error in the estimate at time tn prior to the incorpor-
ation of the new range measurement. The quantity I represents the 6-dimensional
unit matrix, and the quantities of « n fco’ and h have the same meanings as

in Eq. 4-14 where the altitude-measurement error is modeled. The quantity

W which is a 6-dimensional vector here, represents the weightings to be

used on the altitude-measurement data in updating the six state-vector elements.

The basic updating relation, as stated in Chapter 2 is:

B ol D -
}_{n )_(n + V—Vn (hn hn) (4-28)

where h and h' represents the measured and a-priori estimate of the altitude

from the vehicle to the lunar surface.

Using the relation of Eq. 4-27, it can be shown that the estimation-error
covariance matrix after the measurement has been processed (En) is related
to the covariance matrix prior to the processing of the measurement (E'n)

by the expression:
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- =L o 2 2
En Sn En Sn * Y ¥n L h,n * I‘GO.n Zh)
(4-29)
" i ¥ .
i rGO,n (Sn Sh %n + X Ss sn )

where the symbol Sn has been vsed for convenience to represent the quantity
(I"L"n QnT). The quantities o h and -yhz represent the mean-squared values

of the random error (a h) and the slope-bias coefficient (7h) used in modeling

the altitude-measurement errors. The vector ¢, Which is required in the
computation of En (i.e. in the updating of E;l), represents the correlation between
the error in the estimate (e ) and the terrain slope-bias coefficient (y,). It is

given by the relation:

where the bar over €5 Ty is used to indicate the operation of taking an ensemble

average.

The vector ch is most easily obtained by integrating the differential equa-

tion for ¢ , starting from an initial value The desired relation isg:

Sy
.
c,=Fe, (4-31)
where F represents the 6 x 6 matrix defined in Eq. 4-22. The relation of Eq.
4-31 essentially propagates <, in-between (and before) the landing-radar
updatings. The vector Ch must also be updated after each new measurement
is processed. For the case when an altitude measurement is processed, the

updating relation isS:

= - T 1 2
€n ” a ¥i,n Eh,n) ey ™ ¥h,n GOo,n "n

where the quantity c_:n' represents the value of -y prior to the incorporation of

(4-32)

the new measurement into the estimate. The subscript "h" is attached to w
and l_)n to indicate that these quantities are for the altitude measurement being
processed at time to For the case when a velocity component measurement
is processed, on the other hand, the updating relation is simply:
- (T - £ '
c, = (I yv,ngv,n)gn (4-33)
mn__n

where the subscript v is used to indicate that the values of w and bn are for

the velocity-component measurement being processed.

Consider next the updating of E;1 after a velocity-component measurement
VA has been processed in the navigation system. The measurement bias error

in this case (—yva) is given by the relation:

T
YvxA T Bvxa Ip Cal
where the vector TBTVXA represents the top row-vector of the matrix Meb
(defined in Eqs. 4-11 and 4-12). The vector Yp represents the uncertainties
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in knowledge of the orientation of the XA-YA-ZA radar-antenna coordinate frame
relative to the XI-YI-ZI inertial-reference frame. Likewise, the random
component of the measurement error ayxXA is the top element of the vector

ap (Eq. 4-11). Using the above relations, it can be shown8 that the error in
the state estimate after processing the velocity-component measurement is

given by the relation:

T T
=@-w b e '+w (ayxa *Myxa 7p

where the weighting vector (\gn) and the measurement sensitivity (Rn) are those

(4-35)

corresponding to the velocity-component measurement being processed.

Using the relation of Eq. 4-35 it can be shown8 that En is given by the

expression:
: L T T, 2 T
E =S ErS 4w ow C (e yya tmyxs Tpmyxa)
ToT T (4-36)
* W rllVXA Chn By t5,C, Byxa ¥

where the 6 x 3 matrix Cn represents the correlation between the state-vector

estimation errors (gn) and the radar-antenna coordinate-frame alignment

errors ('yD). The relation defining C_ is:
C =e v T

n -n =D (4-37)

where the bar over e | 7DT is used to indicate an ensemble average.

The matrix Cn is most easily obtained by integrating the differential
equation for Cn’ starting from the initial value CO' The basic differential

equation is:
L]

C_=FC (4-38)
n n
where the matrix F is as defined as in Eq. 4-22. The relation for updating Cn
after a Ve A measurement has been processed issz

T By

1
)Ch' * Wyxa,n BVXA,n (4-39)

o T
Chn= I -¥yxa,nbyxa,n

where the subscript 'VXA' is used to indicate that the quantities w, b, and m

are associated with the v measurement. The relations for updating Cn after

XA
Vv A and VoA measurements are similar to Eq. 4-39, except that the values
of w, b, and m corresponding to the Vv A and VoA measurements are used.

For the case of an altitude updating, the relation for updating Cn is simply:

C_=(I-

n h n - h n) C' (4~40)

where Wy and t—)h are associated with the altitude measurement.
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-component

The relations have been presented for updating En for a V%A

measurement (Eqs. 4-36 through 4-40). The basic relations for the Yy A and
Vaa component measurements are similar to these, except that the measurement
errors and sensitivities associated with the VyA and VoA measurements are

used.

In concluding this section it should be noted that the updating relations
presented here are valid for any functional form of the 6-dimensional weighting
vector (wn). No simplifying assumptions have been made in regard to the
form of the weighting functions (e.g. optimumleast-squares) in the derivation

of these relations.

4.3.4  Application of Statistical-Analysis Techniques

The relations presented in the preceding sections (Secs. 4. 3.2 and 4. 3. 3)
provide a means for computing the estimation-error covariance matrix for the
navigation system (E) during the landing maneuver. The statistical relations,
as mentioned earlier, are valid for any 6-dimensional weighting vector (v_vn);
the extension of these relations to higher-order weighting vectors and state
vectors is a simple matter. It should be noted, however, that the relations for
the covariance matrix (E) are predicatedonan IMU model as described by Eq. 4-2

and a landing-radar model as given by Eqs. 4-6 through4-14.

The statistical estimation-error data are extremely useful in evaluating
navigation-system performance for different types of weighting vectors. A
set of typical, statistical estimation-error data are presented in Fig. 4.1 for
the uncoupled weighting functions shown in Fig. 2.3. Additional statistical

data are given in Chapter 6 for the other weighting functions investigated.

The curves of Fig. 4.1 show the rms errors in the estimates of vehicle
position and velocity as a function of time during the landing maneuver. These
data were obtained from a digital-computer simulation of the landing maneuver,
using the sensor models and statistical error relations given earlier in this
chapter. The initial and desired terminal conditions used here were as given

in Tables 1.1 and 3. 1; the measurement schedule was as shown in Fig. 2.2.

Examination of the data of Fig. 4.1 indicates that the landing-radar up-
datings, viewed on an ensemble-average basis, significantly improve the
accuracy of the navigation system. As can be seen, the final values of the rms
errors in altitude and velocity are much smaller than their values prior to the
start of the updatings. No position updatings (other than altitude) are made in
these data, with the result that the final values of the rms errors in the estimates
of position are larger than the initial values. The simplified linearized weighting

functions used in the data of Fig. 4.1 are not the optimum weighting functions
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for the navigation problem investigated here. This can be seen from the portion
of the altitude error curve immediately after the start of the updatings, during
which the rms errors initially appear to increase at a more rapid rate than
before the start of the updating.

Evolution Process for Landing Radar Weighting Functions

4.4.1 General Information

Several different types of weighting functions have been investigated for
processing the landing-radar data in the navigation system during the landing
maneuver. The present section will describe these weighting functions, leading
to the currently employed set. Statistical data will be presented to show the

navigation-system accuracy attainable with the different weighting functions.

An important source of differences between the various weighting functions
is the way in which doppler-velocity bias errors and terrain-slope variations
are handled in the derivation of the weighting functions. The bias-type error ,
for example, could either be completely ignored, could be estimated as an
additional state-vector element, could be treated as white noise, or could be

accounted for partially in the estimator design.

Also, the computations required to implement the weighting functions in
the LGC are a very important consideration here. Computation time is partic-
ularly critical during the powered landing maneuver.

For convenience in presentation, the weighting functions are divided in

"coupled" and "uncoupled' weighting

two classifications, referred to as
functions. The coupled weighting functions update all components of the state
vector with the data from each measurement. The uncoupled weighting functions
update only the components of the state-vector corresponding to the measurement
being processed. The computation requirements for the coupled weighting vectors
are relatively complex; the requirements for the uncoupled weighting vectors

are relatively simple.

4.4.2 Coupled Weighting Functions

In the earlier studies of landing-radar weighting functions, serious con-
sideration was given to the possibility of using the so-called "coupled' weighting
functions wherein all components of the state vector are updated by the data
from each measurement. These weighting functions are referred to as ''coupled"
weighting functions because information is taken from all elements of the
estimation-error covariance matrix in determining the proper weightings for
each new measurement. Altitude information, for example, is used to update
velocity (as well as altitude). Also, velocity information is used to update

position (as well as velocity).
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A potential advantage in the use of coupled weighting functions is that the

down-range position estimates can be improved to a certain extent by virtue of

data from the altitude and velocity measurements. This improvement will

occur even though no down-range measurements per se are taken. The computa-

tional requirements for the coupled weighting functions, however, are much
greater than for the uncoupled weighting functions. It is for this reason that

they are not being seriously considered at the present time.

The distinguishing characteristics of various coupled weighting functions
that have been considered for the landing maneuver are summarized in Table
4-1. All of these weighting functions are designed to give optimum linear
least-squares or minimum-variance state-vector estimate errors, using the
techniques of Kalman2 and BattinS. The differences between the weighting
functions, as indicated in the table, are basically in the treatment of doppler-
velocity bias errors and terrain-slope variations in the weightingfunction

computations.

The first weighting functions considered, W-1, of Table 4-1, are based
on the assumption that no doppler-velocity bias errors or terrain-slope
variations are present. This is not a good assumption in view of the expected
magnitudes of these errors. Using this assumption, however, it can be shown8

that the weighting functions for a least-squares estimation error is given by:

E'b
n -n
w = Xk (4‘41)

where Pn and « n2 represent the sensitivity and mean:{squared random error
for the measurement being processed. The quantity En' represents the co-
variance matrix of the errors in the state-vector estimates prior to the in-
corporation of the new measurement, assuming that no doppler-velocity bias
or terrain-slope variations are present. In effect, ffln' is the estimator's own
idea of what the estimation-error covariance En' is; the estimator's idea in
this case is not very good because its model here has ignored the bias and

terrain variations.

It should be noted here that, in the most general case, an in-flight com-
putation of wo from Eq. 4-41 would require the propagation and updating of a
6 x 6 estimation-error covariance matrix throughout the landing maneuver.

Also, the vector-matrix product operations in Eq. 4-41 would have to be per-

formed for each new measurement. Alternately, if the approach of precomputing

and storing were used instead, a total of 24 different weighting functions would

be required (six for each of the four types of measurements being processed).
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Table 4.1 Coupled Weighting Function Characteristics

Type

Treatment of
Doppler-Velocity
Bias Errors

Treatment of
Terrain-Slope
Variations

W-1
W-2

W-3

W-4

Ignored completely
Treated as white noise

Account for in computation
of E-matrix as bias error

Account for in computation
of E-matrix as bias error

Ignored completely
Treated as white noise

Account for in computation
of E-matrix as bias error

Estimate a constant-slope
bias error




The second weighting functions considered, W-2 of Table 4.1, are based
on the idea of modeling the doppler-velocity bias errors and the terrain-slope
variations as random errors (Gaussian white noise) in the derivation of estimator
weighting functions. This is not a particularly good modeling scheme, but it is
certainly better than ignoring the velocity-bias and terrain-variation errors
completely. Under these conditions it can be shown that the weighting function

for a least-squares estimation error is given by:

E 'b
n =n

Y..Vn = b < (4'42)
4 N 2 2
pn En * “n ¥ Yn

where a, and 'ynz represent the mean-squared values of the random and bias
errors in the measurement being processed. The quantity ﬁfn‘ represents the
computed En' in the estimator, assuming here a white-noise model for the

velocity-bias and terrain-slope variation errors.

The third weighting functions considered, W-3 of Table 4.1, are based
on the idea of accounting for the doppler-velocity bias and terrain-slope varia-
tion errors in the weighting-function computations as modeled in the earlier
part of this chapter. No attempt is made here to estimate either of these
bias-type errors. The weighting-function relations under these conditions are
more complex thanin. Eqgs.4-41and4-42. For the case of analtitude-measurement

updating, the weighting functions area:

E_'b. -~ x! ¢ "
‘En= n -n GO,n =n (4-43)
T 1 2 2 ] 2 - T
by En 9n+ “n * Go 4 t-)n gn'

where « n2 and —ynz represent the mean-squared values of the random component
of the measurement error and the assumed slope-bias coefficient, respectively.
The quantity rbo represents the current estimate of the down-range distance to
the landing site. The vector -C-n' is the estimated correlation between terrain-
slope-bias coefficient and estimation error, as defined in Eq. 4-30 and computed
in Eqs. 4-31 through 4-33. Similarly, for a velocity-component updating such
as with VA the weighting functions are8:

- En"bn_cn'&VXA,n (4-44)

T 2 r -2pTC' m

]
Qn En t—)n+ « n —=VXA,n

T
vXA,n T ®VXA,n ‘DZVXA,n

where the 6 x 3 matrix Cn is used to represent the correlations between the
errors in the state-vector estimates and the velocity-measurement bias errors.

The defining relation for Cn is Eq. 4-37; the relations for computing Cn are
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Eqgs. 4-38 and 4-39. The vector MyxA® which is used in the modeling of the
velocity-bias errors, contains the elements in the top row of the matrix MRD
(See Eq. 4-12). The quantity FD represents the covariance matrix of the radar

alignment bias error, that is, 7DIDI‘

It is evident from a cursory examination of Eqs. 4-43 and 4-44 that the
computational requirements for an in-flight mechanization of these equations
in the LGC are quite severe. In particular, not only would the 6 x 6 covariance
matrix (En) have to be computed throughout the landing maneuver, but also the
6 x 1 vector (c,) and the 6 x 3 matrix (Cn) would be required. Alternately, if
the landing-radar weighting functions were to be precomputed and stored in the
LGC, twenty-fouw different functions would be required in the general case.

The fourth weighting functions considered, W -4 of Table 4.1, estimate a
constant -slope bias for the terrain-slope variations. To accomplish this, the
state vector is augmented to be a 7-dimensional vector, as described in Ref.8,
with the slope bias coefficient*to be estimated as the 7-th element. The
doppler-velocity bias errors here are treated in the same manner as for the
weightingfunction set W-3. The weighting functions for the altitude updatings

in this case are given by the relation:

ot L TR g2 e
n
which is similar in form to Eq. 4-41, It should be noted, however, that the
vectors l_)n and wo in Eq. 4-45 are 7-dimensional vectors. Likewise, the co-
variance matrix En' in Eq. 4-45is a 7 x 7T matrix. It should also be noted that,
even though it is not shown explicitly in Eq. 4-45, the down-range distance from
the vehicle to the desired site (rGO) must be computed continuously in this

bias-estimation scheme.

The technique of estimating a constant-slope bias is not being strongly
considered at the present time for two different reasons. First, the computa-
tional requirements for mechanizing the bias-estimation procesé in the LGC
appear to be too severe. Second, although the idea of estimating a constant -
slope bias has been found by simulation runs to work quite well when the actual
terrain slope is reasonably close to being constant throughout the landing man-
euver, it has not worked out as well for other types of terrain variations. The
reason for this is that the later altitude measurements tend to be weighted
relatively lightly, on the assumption that the slope-bias coefficient has already

been well estimated. An alternate approach currently under investigation is

to estimate the terrain variations as a correlated noise, i,e, a white noise

“The quantity being estimated here is not the terrain deviation but rather
its rate of change (which is assumed to be constant).




passed through a filter, rather than as a constant slope. This work will be

reported at a later date.

4.4.3 Uncoupled Weighting Functions

In order to simplify computational requirements in the LGC, the basic
philosophy has been to use simple uncoupled weighting functions. The inform-
ation from each new measurement here is used to update only that component
of the state vector corresponding to the measurement quantity, i.e. an altitude
measurement is used to update altitude only and not velocity or down-range
position. This type of weighting function is precomputed from a digital simul-
ation of the landing maneuver for a reference trajectory, and then stored in the
LGC for in-flight use. A total of four different functions are required: one for
altitude measurements, and one for each of the three components of doppler-
velocity measurements being processed. The altitude weighting functions would
be stored in the LGC as a function of estimated vehicle altitude; the velocity-
component weighting functions would be stored as functions of the estimated

speed of the vehicle.

Several different types of uncoupled weighting functions have been investi-
gated for use during the landing maneuver. The important characteristics of
these weighting functions are summarized in Table 4. 2. For convenience these

weighting functions are referred to by the notation W-5, W-6, . . . W-11.

The first set of weighting functions, W-5 of Table 4. 2, are the original
set of uncoupled weighting functions considered for the landing radar. The
basic reasoning behind the choice of these particular functions can best be
described as heuristic or intuitive in nature. The characteristics of these
weighting functions are shown in Fig. 4.2 as functions of estimated vehicle

altitude and speed.

The second, third, and fourth weighting functions of Table 4.2, i.e. W-6
W-7, and W-8, are essentially constant in value throughout the operating-time
interval of the landing radar. For the set W-6 all four weighting functions are
held at 0.1, for set W-7 they are held at 0.5, and for set W-8 they are held at
0.9.

The fifth set of weighting functions, W-9 of Table 4. 2, are based on an
optimum least-squares or minimum-variance estimate of the state vector. The
doppler-velocity bias errors and terrain-slope variations are accounted for in
the computation of En' as required to determine oo The procedure here is
similar to that for weighting-vector set W-3 except that only the component of
wo corresponding to the measurement being processed is retained. No bias
errors are estimated here. The characteristics of these weighting functions are

shown in Fig. 4.3 as functions of estimated vehicle altitude and speed.
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Table 4.2 Uncoupled Weighting Functions

Type General Characteristics

W-5 Original set, intuitively selected from sensor
performance data.

W-6 Set at .1 for all measurements.

W-17 Set at . 5 for all measurements.

W-8 Set at . 9 for all measurements.

W-9 Optimum least-squares estimates, account for
bias errors in computation of E

W-10 Linear-segment fit to W-9,

w-11 Single Linear-fit to W-9.
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The sixth and seventh sets of weighting functions, W-10 and W-11 of
Table 4. 2, are linearized approximations to the set W-9. The set W-10 attempts
to fit the data with straight-line segments, as indicated in Fig. 4.4. The set
W-11 simply approximates the weighting functions by single linear functions,
as indicated in Fig. 2.3 of Chapter 2,

Statistical and Monte-Carlo data on navigation-system performance will
be presented in Chapter 6 for all the uncoupled and coupled weighting functions

described in this chapter.
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CHAPTER 5

PGNCS LUNAR LANDING MANEUVER SIMULTATIONS

5.1 General Comments

In order to study the performance characteristics of the primary guidance and
navigation system used in the LEM during the powered landing maneuver, an exten-
sive simulation of the landing problem has been built using a Honeywell-1800 digital
computer. The present chapter will present a general description of this simulation
and its capabilities. Also included are the standard performance numbers used in
the modeling of the IMU and the landing radar. The assumed initial-condition errors
for the state estimates and the actual terrain models used in the simulation are also

discussed.

The simulation basically has the capability of providing the following types of

information on a given run:

1) Vehicle trajectory data, such as position, velocity, acceleration, altitude,

attitude, down-range distance travelled, and flight-path angle.

2) Propulsion-system data, such as thrust magnitude, thrust-vector orienta-
tion, specific force, characteristic velocity increment (AV), and weight of

propellant expended.

3) Statistical performance data for the navigation system, such as the rms
errors in the estimates of vehicle position and velocity, the covariance
matrix of the estimation errors, and principal axes of estimation-error

ellipsoids.

4) Actual (Monte-Carlo) performance data for the navigation system, such as
actual errors in the estimates of position and velocity, the magnitudes of
the corrections used in the updatings of the state-vector estimates, and

the estimated values of position and velocity.

5) Overall-performance data for the guidance and navigation system such
as accuracy in achieving High-Gate and Low-Gate terminal conditions, total
propellant expenditure or AV, and line-of-sight angle to landing site rel-

ative to edge of LEM window,
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5.2 Simulation of Guidance and Control System

The steering of the vehicle in the simulation is accomplished by controlling the
magnitude and direction of the specific force applied to the vehicle by the descent
propulsion system engine. The required specific force (gc) and thrust vector (ic)
are determined in the simulation by first computing a set of nine coefficients

(c c8), using the relations of Eqs. 3-2 through 3-4. These coefficients,

y B winw
asowas1 noted in Sec. 3.2, are based on the difference between the present state of
the vehicle (x) as determined from the navigation system, and the desired terminal
state (}iD)‘ Then, the coefficients are used in the relation of Eq. 3-1 to command
a vehicle acceleration which is a quadratic function of the time-to-go for the phase
are recomputed

of interest. Under normal conditions, the coefficients Cor Cqs+--C

in the simulation at 2-second intervals. When the computed 1time-tg—go for the
braking phase has dropped to 20 seconds, the recomputation of the coefficients for
the braking phase is stopped; thereafter, during the braking phase, the command
specific force is obtained simply from the relation of Eq. 3-1, using the last com-
puted values for the coefficients. Similarly, during the visibility phase, the recom-
putation of the coefficients is stopped when the time-to-go has dropped to 5 seconds.
It should be noted here that an alternate mechanization of the command specific-
force equations, as described in Sec. 3.4, is currently under study and will be

reported on at a later date.

In the simulation-study results presented in this report it is assumed that the
throttle and attitude of the vehicle respond instantaneously to steering commands.
The capability is provided in the simulation for including first-order dynamic time
lags in both the response of the throttle to changes in command thrust, and in the
response of the vehicle to orientation commands. In order to minimize computer
running time, however, throttle and vehicle attitude dynamics have not been included
in the performance-study runs of this report. It might be noted that when dynamic
simulations involving vehicle attitude and DPS throttle were made on selected example
runs presented in this report, no significant effects on the resulting performance pro-

files were noted.

The descent propulsion system (DPS) in the simulation is operated either at a
fixed high-throttle setting (92. 5 percent of nominal thrust) or over a range of variable
throttle settings (10-60 percent of nominal thrust). The thrust applied to the vehicle
at the high-throttle setting is assumed to increase as a function of burning time

according to the relation:

f=9710+1.18¢ (5-1)




where the units of thrust (f) are pounds and of time (t) are seconds. The specific
impulse (ISP) corresponding to this throttle setting is assumed to be given by:

ISP = 303.4 -0.007 t (5-2)
where the units of ISP and t are seconds. High-throttle acceleration uncertainties
of +1 percent are assumed to be possible in the propulsion-system simulation.
The switching down from the high (92. 5-percent) throttle setting to the throttleable
(10-60-percent) region is assumed to take place when the command thrust falls below

a level corresponding to 52 percent of the nominal thrust.

5.3 Simulation of Navigation System

The navigation system modeled in the simulation employs an IMU anda landing
radar to obtain up-to-date estimates of vehicle position and velocity, as described
in Chapter 2, The IMU is assumed to operate continuously throughout the powered
landing maneuver to provide data on the specific force acting on the vehicle. Doppler-
velocity and altitude data are used to update the IMU-derived state-vector estimates
at discrete intervals of time. The typical updating schedule used for the simulation

runs is as shown in Fig. 2. 2.

Both the estimated and actual state of the vehicle are computed in the simula-
tion by integrating the equations of motion of a point-mass vehicle acted on by
engine thrust in an inverse-square gravitational field. The estimated quantities,
of course, are computed from the estimated values of the lunar gravitational force
and the measured specific force from the IMU. Also, these estimates are updated

at discrete times by the landing-radar measurement data.

The modeling of the IMU and landing radar, as incorporated into the simulation,
are essentially as described in Sec. 4.2. The error model for the IMU, which is
described mathematically by Eq. 4-2, includes inertial-platform alignment, gyro
drift rate, accelerometer bias, and accelerometer scale-factor errors. The error
model for the LR velocity-measurement unit, which is described by Eq. 4-11, in-
cludes a random error whose rms value is proportional to the speed of the vehicle,
and a bias error corresponding to uncertainties in the knowlege of the orientation of
the radar-antenna axes relative to the IMU. The error model for the LR altitude-
measurement data, which is described by Eq. 4-14, includes a random error whose
rms value is proportional to the altitude of the vehicle, and an error related to the
slope of the terrain.
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In the simulation of the PGNCS, as mentioned earlicr, both statistical and
Monte-Carlo data on navigation-system performance are oblained simultancously
from each simulation run. Random-number generators are uscd to simulate the
actual navigation-sensor errors and initial-estimate errors for each new run. At
the same time, computations arc made of the rms values of the estimation errors,

using the sensor models of Sec. 4.2 and estimation-error relations of Sec. 4. 3.

The important performance numbers used to represent the IMU and landing
radar in the simulation are summarized in Table 5.1, With regard to this data the

following points should be notcd,

1)  All of the errors (bias and random) are assumed to follow a Gaussian

distribution about a zero mean value.

2) The rms values given in the last column of Table 5.1 are l1-sigma, not

3-sigma, values.

3) The values in the last column of Table 5,1 correspond to single error
components, e,g, for platform alignment which is represented by a

3-dimensional vector (IAI ) the total rms error would be 1. 73 mils,

4) There are lower limits on the rms values of the specd- and range-measure-

ment errors, as indicated by the threshold values.

5) The primary IMU measurement errors in the simulation models are all

assumed to be time-invariant bias errors.

6) The landing-radar performance figureslisted in Table 5.1 were arbitrarily
chosen to represent general LR performance. The combined random and
bias errors of Table 5.1 represert an overall LR performance of about
2% (30). It should be noted that the actual detailed LLR performance is
currently being determined by MSC and the radar subcontractor. Future
PGNCS simulations will use the official LR performance when available.

Up-to-date estimates of the state vector&\ ) are obtained in the simulation by
computing a correction to the a-priori estimate (6x ) based on the weighted difference
between the raw measurement (J ) and its a-priori est1mate (g '). The updating rela-

tion, repeated here for convenience, is:
: = . - 1 e
0%, =¥, 9, -q." (5-3)

where W, represents the weighting functions used on the measurement difference
(_qn gn') to update the state-vector estimates. Included in the simulation is the
capability for incorporating each of the eleven weighting functions W-1, W-2, ---
W-11 described in Tables 4.1 and 4. 2 of Sec. 4.4 into the navigation-system model.
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Table 5.1

Navigation-Sensor Performance Characteristics

Used in Landing Maneuver Simulation Study

IMU:

Origin of Error Symbol Type RMS Value
Stable Member Alignment YAL Bias lmr
Gyro Drift Rate DR Bias .15 deg/hr
Accelerometer Bias YBI Bias . 006 f‘c/s2
Accelerometer Scale-Factor
Uncertainty YSF Bias . 01 percent
LR Velocity Measurement:
Speed Measurement an Random .33 percent of
speed
Threshold .5 ft/sec
Orientation of Radar-Antenna
Coordinate Relative to IMU D Bias 6 mr
LR Altitude:
Range Measurement ay Random . 33 percent of
altitude
Threshold 5 ft
Terrain-Slope Variations N Bias 100 ft/nm
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Both Monte-Carlo and statistical dat: on navigation system performance are com-
puted for all these cases.

The measurement schedule utilized in the majority of the simulation runs

presented in this report is essentially as shown in Fig. 2.2. It is possible, however,

to vary the starting times for the processing of measurements, the sequence of

measurements, and the interval between successive measurements.

5.4 Initial Errors in State-Vector Estimates

The landing-maneuver simulation described in the preceding sections of this
chapter generates both Monte-Carlo and statistical system-performance data. In
order to obtain meaningful Monte-Carlo results, particular care must be given to

the selection of initial-condition errors, i.e. the errors in the estimates of the state-

vector components at the start of the landing maneuver. The correlations between
, the different components of the estimation error in navigation-system coordinates
must be considered. This section will describe the method used in the simulation
i for the generation of the initial-condition errors. Then statistical data will be
presented on the characteristics of these initial estimation errors. Finally, a table

will be presented of typical error vectors for the initial-state estimates.

The method for generating initial-condition errors is based on the approach of
Refs. (16) and (17). It is assumed here that the individual error components follow
i a Gaussian distribution about zero mean values. The statistical characteristics of
i the errors (e) under these conditions can best be described by their covariance

matrix (E), wh. is equal to the ensemble average ggT_

The first step in computing the initial-condition error vectors is to obtain a

{ convariance matrix (E), which is representative of their statistical characteristics.
In general, E will not be a diagonal matrix. Next, the 6 X 6 E-matrix must be trans-
! formed to principal coordinates. This requires that the eigenvalues (A 0 )‘1’ 5 KS)
. and their 6-dimensional unit eigenvectors (37\0’ Uyys »ov U 7\5) be computed for the

{ 6 X 6 convariance matrix (E). The required error vector (e) is then obtained as the
linear combination of errors (¢ ) directed along the principal axes(i.e. along the

It
i‘ ' eigenvectors of E), The mathematical relation for the error (e) is:
! E €y T €y BY *.o Guyg (b=}

where u 20’ 3)\1’ @as EA5 represent the unit eigenvectors for the estimation-error
covariance matrix (E), The error magnitudes €p> €y» -+ €g represent randomly

4 selected samples from Gaussian distributions (about zero mean values) whose standard
_ deviations are respectively equal to Jk_, «/E, o J)TS In the simulation, random-

i number generators that provide numbers whose rms values are 1/%, ‘\/)_ 5 Gwmw Ag

are used to obtain €gr €95 eo- €ge
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As a means of identifying or classifying error vectors, the idea of computing
constant probability-density hypersurfaces has been adopted. It can be shown .17 that
surfaces of constant probability density (equiprobability ellipsoids) are given by the
relation:

T

k=e -1

E (5-5)
where E™! is the inverse of the estimation-error covariance matrix E, and e is a
particular error vector. The quantity k is proportional to the probability density on
the surface where e terminates. In effect, each value of k identifies an hyperellipsoid
surface of constant probability density. Rather than working with probability density
per se, it is more convenient to compute the probability (p) that an error vector lies
in the hypersurface having the probability density corresponding to k. There is a

direct correspondence between k and p, as given by the relation”:

k

2
p=l-(1+7+%—-)€—k/2

(5-6)
where the quantity € is here equal to 2, 7828, The relation of Eq. 5-6, it should be
noted, is based on the assumption of 6-dimensional error vectors and covariance
matrices. Using the relations of Eqgs. 5-5 and 5-6, each error vector can be iden-
tified by the probability (p) of an error vector being contained in the hyperellipsoid

(k) for the given error vector.

Following the above line of reasoning, error vectors in the data to be presented
in this report will frequently be referred to by nomenclature such as ''80-percent-
probability-ellipsoid'' error vector or as ""95-percent-probability-ellipsoid" error
vector. The probability numbers used here, it should be noted, merely identify
constant probability-density hyperellipsoid surfaces on which the error vectors lie.

It should also be noted here that the fact that an error vector lies on a surface with

a very high probability(e.g. a 99. 5-percent-probability-ellipsoid error vector), does
not necessarily imply that all components of the error vector are abnormally large.
For example, an error vector can have a very large error in the estimation of velocity
in combination with a very small (negligible) error in the estimation of position, and

lie on a high-probability ellipsoid.

Statistical data used to describe the errors in the initial estimates of the state
vector will next be presented. The initial estimation-error covariance matrix used
in the simulation studies is given in Tables 5.2 and 5. 3. The initial-condition covari-
ance matrix present in Table 5.2 was generated by combining the PGNCS descent-orbit
injection (DOI) uncertainties with a typical lunar-orbit-navigation covariance matrix
at the DOI point, and then propagating this matrix 180 degrees over the Hohmann descent
trajectory to the nominal DPS ignition point for the powered lunar-landing maneuver,

The matrix listed in Table 5. 2 is referenced to a local-vertical coordinate system at the

DPS ignition point,
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Table 5.2

Initial Estimation-Error Covariance Matrix in Perilune Point Coordinates

RX RY RZ VX VY vz
RX | 9.624421592 06 |-2.634647308 06| 7.561941888 03| 1.842901184 03|-8.771383145 03 | 1.762149097 00
RY |[-2.634646112 06 1.240815011 06|-1.248338281 04 |-9.353684137 02| 2,604251795 03 |-5.574364374 00
RZ | 7.561878330 03 |-1.248338133 04| 2.030286263 05| 1.233743444 01 |-7.279009286 00 | 1.693305349 02
VX | 1.842901184 03 |-9.353684137 02| 1.233743444 01 | 7.158792700 -01|-1.849701616 00 | 5.442918871 -03
VY |-8.771383145 03 2.604241795 03|-7.279009286 00 |-1.849703084 00| 8.516400643 00 [-6.219466844 -03
VZ | 1.762149097 00 |~5.574364374 00| 1.693305349 02 | 5.442921776 -03|-6.219393946 -03 | 1,001034016 O

NOTE: Units in above matrix are feet (position) and ft/sec (velocity).

RMS VALUES OF INITIAL ERRORS

RX (ft)

RY (ft)

RZ (ft)

VX (ft/sec)

VY (ft/sec)

VZ (ft/sec)

3.102325191

03

1.113918763

03

4, 505869797

02

8.460964897 -01

2,918287279 00

1.000516874 00
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‘Table 5.3

Initial Estimation-Error Covariance Matrix in Landing Site Coordinates

RX RY RZ VX VY vVZ
RX | 1.036869755 07| -3.848151880 05| 1.033021889 04 | 4.142453773 03 |-8.392164282 03| 3.045240383 00
RY [-3.843139925 05 4.965388449 05|-1.031040199 04 |-5.561495504 02| 3.046992047 02 |-4.990512860 00
RZ | 1.033015682 04 (-1.031041576 04| 2.030286263 05 | 1.372112914 01 |-4.114228933 00| 1.693305349 02
VX | 4.142453772 03 |-5.561495500 02| 1.372112914 01 | 2.022594437 00 {-3.450644691 00} 6.773423364 -03
VY (-8.392164282 03| 3.046992040 02 |-4.114228933 00 |-3.450646159 00| 7.209685475 00 |-4.735807172 -03
VZ | 3.045240383 00 |-4.990512860 00| 1.693305349 02 | 6.773408736 -03 |-4.735735698 03| 1.001034016 001

NOTE: Units in above matrix are feet (position) and ft/sec (velocity).

RMS VALUES OF INITIAL ERRORS

RX (ft)

RY (ft)

RZ (ft)

VX (ft/sec)

VY (ft/sec)

VZ (ft/sec)

3.220046202

03

7.046551247

02

4,505869797

02

1.

422179467 00

2.685085747 00

1.000516974 O
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The format for the error covariance matrix (E) is as indicated in Eqs. 4-15 and
4-16, with the upper part of e representing position-estimate errors, and the lower
part velocity-estimate errors. Both sets of data are presented as components in a
rectilinear X-Y-Z-coordinate frame, with the X-axis horizontal and directed forward,
the Y-axis vertical and directed upward, and the Z-axis directed perpendicular to
both the X-axis and Y-axis so as to form a right~handed coordinate system. In the
data of Table 5.3 the X and Y axes are parallel to the horizontal and vertical directions
at the location of the landing sitc at the nominal landing time (site-point, inertial, or
reference coordinates). The basic navigation-system computations are carried out in
the inertial site-point coordinates used in Table 5. 3. Also prescnted in Tables 5. 2

and 5. 3 are the rms values of the errors in the different coordinate frames.

The correlation coefficients for the initial E-matrix of Table 5. 3 are presented
for reference in Table 5.4. These data are presented as components in the landing sitc
reference-coordinate frame. The square-root of the eigenvalues of the 6-dimensional
E-matrix are given in Table 5.5, along with the corresponding eigenvectors. The
eigenvectors are presented here as row vectors in the reference-coordinate frame,

1’ etc. The

eigenvalues and eigenvectors of Table 5.5 are used in Eq. 5-4 to compute initial-

l.e.,the first row corresponds to A,, the second row corresponds to X
p

condition error vectors in the landing-maneuver simulations.

Using the method described in this section, initial-condition estimation-error
vectors have been computed for use in Monte-Carlo simulation runs. A series of
representative error vectors are presented for general interest in Table 5. 6. Included
here are the particular error vectors that were used in the simulation runs given in
this report. The error data are presented as components in the X-Y-Z landing site
reference frame. Also presented in the table are the probability ellipsoid correspond-
ing to the error vector (p). In the navigation system under study in this report, the
major concern was on initial-position errors along the Y direction,i.c. essentially
initial-altitude errors. For this reason the initial errors selected as "worst-case'
errors were those having both a high probability-ellipsoid number(i.e. over 95-percent)

and a large error component along the Y direction.

945 Lunar Terrain Variations

The function of the LEM PGNCS is to guide the vehicle to a preselected landing
site, subject to fuel-management and visibility constraints imposed by the mission.
The navigation of the vehicle, as mentioned earlier, is accomplished by using landing-
radar velocity and altitude (range) data to update IMU-derived estimates of position
and velocity.

The basic navigation information from the IMU is the measured specific force,
“rom which changes in the estimates of vehicle position and velocity can be computed.
The IMU output data are in an inertially-fixed coordinate frame. The landing radar,

on the other hand, measures the altitude of the vehicle above the local terrain. As the
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Table 5.4

Correlation Coefficients for Initial Estimation-Error Covariance Matrix in Landing Site Coordinates

RX RY RZ VX VY \'4

RX | 1.000000000 00(-1.693748135 -01|7.119816206 -03 9.045678817 -01 |-9.706300087 -01|9.452246951 -04
RY | -1.693748135 -01| 1.000000000 0O} 3.247284545 -02-5. 549585820 -01 | 1.610410326 -013-7.078547433 -03
RZ | 17.119816206 -03 |-3.247284545 -02[1,000000000 0Q 2,141197904 -02|-3.400569510 -03| 3.756057435 -01

18

VX | 9.045678817 -01 [-5.549585820 -01|2,141197904 -02 1,000000000 00(-9,036238381 -01|4.760246031 -03
VY | -9.706300087 -01| 1,610410326 -01}3.400569510 -03—9.036238381 -01| 1.000000000 O0OF1.762834063 -03
VZ | 9.452246951 -04 |-7.078547433 -03| 3.756057435 -01f 4,760246031 -03|-1.762834063 -03| 1. 000000000 00




Table 5.5

Eigenvalues and Eigenvectors for Initial Estimation- Error Covariance Matrix in Landing Site Coordinates

SQUARE ROOT OF EIGENVALUES OF INITIAL E-MATRIX

. 222367965 6.942277767 02 [4.501844047 02 | 7.514392177 -02 |6.655115554 -01| 9.272862405 -01

EIGENVALUES AS ROW VECTORS

9.992443979
3.885521749

.261346776
.605052068
. 751216710
. 148191144

. 884201370
. 986146050
. 548893263
. 126736905
.907397838
. 429140386

-02
-01
-02
-04
-04
-06

. 053262043
. 547479873
. 993696637
.218309245
. 950799978
. 340597433

-03
-02
-01
-05
-05
-04

. 007205040

193994485
306151175

. 699636872

432384064

. 162243516

-04
-04
-05
-01
-01
-03

. 087392401
. 492943154
. 956447937
.432453821
. 698700138
. 353405411

=04 :

-05
-05
-01
-01

-02

. 288954660
. 255881328
. 341237182
. 194903533
. 365348564
. 999057175




Table 5.6

Error Vectors at Start of Landing Maneuvers in Landing Site Coordinates

Prob. Ellipsoid

Position (feet)

Velocity (ft/sec)

No, (percent) RX RY RZ VX YY vz
2 63.89 -550 | -1024 -821 0. 59 0.63 -1,47
3 73.35 4972 | -1226 358 2.62 -3. 34 -0. 37
4 38.68 -2116 -57 -288 -0.80 2,27 1.03
5 45. 06 1154 134 13 0.18 -0. 37 1.85
6 53.18 1814 -85 743 0.81 -1.46 0.64
7 52. 40 3083 7 -555 0. 89 -1.58 0. 45
8 11.80 1639 -240 -526 0.92 -1.65 -0.67
9 74.26 1857 | -1291 122 2.08 -2.26 -0. 33
10 26.81 -3290 -5717 -457 -0.83 3.03 -0.10
26 91. 48 7664 -499 577 3.53 -7. 36 -0.14
123 99,33 -10053 -61 248 -3.24 7.09 -0.76
203 90.91 -9652 -224 -125 -3.53 8.41 0.37
212 99. 64 8089 | -1048 -699 4,17 -7.10 -2.07
376 99.14 -10283 -90 163 -4, 08 9. 90 0.71
524 88. 57 8556 =777 210 3. 96 -7.19 1. 00
539 98. 07 4975 | -1961 -746 3.42 -3.86 0.98
1089 52.08 -2763 421 -203 -1.14 1.03 -0. 50
1120 93.09 2112 | -1599 784 2,41 -2.48 1.33
1191 99. 84 -6278 1906 43 -4,21 6.68 -1.88
1597 94. 22 4683 1831 340 0. 26 -4,05 1.16
828 46.61 4078 -748 147 2.08 -3.58 0.02
429 18.22 -542 87 553 -0.41 0.90 -0. 30
1749 99,73 7258 2859 145 0.11 -7.36 -0.92
223 79,81 -7487 1123 -133 -3. 77 6.56 -0.75
616 80. 25 -6080 1130 728 -3.06 4,52 0.33
739 68. 10 -5536 1309 21 -2,92 3.80 0.44
786 80.63 7782 -489 -470 3.49 -7.00 0.47
862 97.26 -8882 897 -541 -4,29 8.14 -1.83
887 99. 67 10131 | -1253 -945 4,55 -7.78 -1,64
1142 95, 22 -4708 | -1575 136 0. 46 3.58 1.46
1154 4,39 -602 -577 369 0.23 0.53 0.60
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vehicle approaches the selected site, this altitude measurement will essentially be

that of vehicle altitude relative to the site.

In order to guide the vehicle to a safe landing on the moon, it is necessary to
accurately determine vehicle altitude relative to the local terrain during the visibility
phase of the descent maneuver. It is more important to know the local altitude of the
vehicle at this time than the altitude relative to the selected site, since the vehicle
may actually land several thousand feet away from the selected site due to down-range

position-estimation errors.

On the basis of the information available at this time it is expected that there
will be significant variations in the altitude of the local lunar terrain (relative to the
mean lunar sphere) over the length of terrain for which the landing radar will operate.
The PGNCS will begin taking landing-radar altitude data when the cstimated altitude of
the vehicle (relative to a mean lunar sphere) is 25, 000 feet, at which time the vehicle
is typically 50 n miles away from the site. In the navigation-system design, as mentioned
earlier, it was assumed that the difference in altitude between the local terrain and
the landing site was directly proportional to the distance from the site, i.e. a constant-
slope terrain model was used. The numerical value used for the rms slope coefficient

was 100 ft/n mi, which corresponds to a 1-degree slope.

In the digital simulation of the landing maneuver, several different models were
used to represent altitude variations of the terrain below the vehicle. The general
characteristics of the terrain models in the vicinity of the site are shown in Table 5.7
and the altitude-vs. -down-range-distance profiles are shown in Figs, 5.1 and 5, 2.

The first terrain model (T-1) is a constant slope of 100 ft/n mi. This is the same
terrain model used in the derivation of navigation-system weighting functions. The

next three terrain models (T-2, T-3, and T-4) are combinations of simple mathematical
functions (straight lines and exponentials) which represent,in a simple manner, possible
lunar-terrain variations. The final five terrain models (T-5, T-6, T-7, T-8,and T-9)
represent data obtained from NASA18 on the apparent lunar-terrain variations within

25 n mi of tentative landing areas. Terrain models T-6, T-8, and T-9 were
selected as typical landing sites that would be chosen for a given lunar landing mission.
The three landing sites would be selected as a function of launch time over the la:nch
window such that one of the three would have suitable lighting conditions <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>