
Massachusetts Institute of Technology
C. S, Draper Laboratory

Cambridge, Massachusetts

LUMINARY Memo #139

To: Distribution

From: D. Eyles

Date: 3 March 1970

Subject: Description of Variable Servicer

The Variable Guidance Period Servicer is now running in ZERLINA
revision 3. This is the Servicer and the version -- introduced in Luminary
Memo 138 -- inspired by the fact that LM powered flight is approaching a

sort of asteroid belt of TLOSS difficulties as its time margin slips away. The
new Servicer is performing, as expected, very well. It is time to describe

it in greater detail.

The new Servicer is characterized by structural simplicity in return

for a little extra algebra to replace assumptions about guidance period.

The structural changes are the most important. The READACCS task

has disappeared, though the tag survives, and the accelerometers are read
in the Servicer job. The rigid timing of which tasks are capable is not needed
since Servicer computes guidance period and does not care exactly when the

PIPAs are read. The Servicer job is no longer set up at fixed intervals by
READACCS; it is continuously running. When it finishes, after Guidance
puts out its commands and displays, it simply starts over. Because
Servicer is only one long job, not a series of jobs, it can never overlap itself.

Thus Servicer can never clobber its own erasables (as it can now), and it is

impossible for tail-ends of self-interrupted Servicer jobs to hang around in

the vac areas and core sets (as they can now), liable to be executed long after

they apply with pernicious results, such as the issuing of anachronistic

commands. No job's exact timing is important. With the new Servicer we
do not care when a given job runs or how long it takes. (At most we require

it to run in a one-to-one correspondence with Servicer passes. ) We have

only to make sure that every essential job does get done, and this is easily

accomplished with a priority system in which Servicer has the lowest



priority of all the jobs that must run. Servicer runs at priority 20. With the

exception of a few extended verbs, all the other jobs which may be set up

while Servicer is running are given higher priorities so they will break in on
it. This is true of present ropes too. The only jobs Servicer could lock

out are extended verbs, like V82, which lower their priority from the initial

30 to something below Servicer's. The variable Servicer will occasionally

have to go to sleep to give these time to function. There are three or more
satisfactory ways to do this of which the simplest - -to use the Minimum
Period Logic (described below) --is the one implemented in ZERLINA.
Incidentally, the landing radar read, which used to include off-line jobs

LRHJOB and LRVJOB, is now done entirely in interrupts, starting with

R12READ; this is true of current LUMINARYs as well as ZERLINA. The
other Servicer auxilliary, RIO, Rll, known as QUARTASK to signify its

nature, also uses interrupts.

By the elimination of READACCS and the adoption of the Cyclical PIPA
Reader (described below) particularly, Servicer's restart protection is also

simplified. Group 5 is used for Servicer itself and for Guidance which to-

gether make up the Servicer job. As written in ZERLINA, Servicer does

without restart tables. A specialized "phase change" routine called

SERVCHNG is provided in fixed-fixed (7 words) for use by Servicer and

Guidance in setting restart points. Both LASTBIAS (set up by PREREAD)
and 1/PIPA (called by Servicer proper) which in turn sets up 1/GYRO are

skipped rather than repeated in the event of a restart while they are in

progress. This has always been true although it is a complication and the

reason, unless we really expect the instruments to behave better rather than

worse than their compensation, is not apparent. Group 3 is used by

BURNBABY (along with groups 1, 4 and 6) and for P66ROD. P66ROD can no

longer be half-in half-out of the Servicer job as it was. It becomes a higher

priority job (24) running at regular intervals and asynchronous with Servicer.

P66ROD will also be more thoroughly restart protected than it was before.

P66HZ, the attitude command half of P66, stays in the Servicer job.

QUARTASK, vital because besides the Landing Analog Displays (RIO) it

contains the Abort Monitor (Rll), is rigorously protected in group 2.

Individual landing radar reads cannot be restart protected practically and

never have been for it is sufficient to protect the routine that sets them up.



namely Servicer.

In words the new Servicer compares as follows with LUMINARY 1C

and ID:

LUMINARY 1C LUMINARY ID ZERLINA
bank 22 24 23

bank 23 24 24

bank 27 - 31 31

bank 32 25 3

bank 33 920 808 1019

bank 34 77

bank 37 162 171 77

1263 1060 1096

Although this comparison is somewhat biased against LUMINARY 1C by the

fact that it included in Servicer some landing radar routines which in ID

and ZERLINA are replaced by added coding in another section, it is still

true that the new variable Servicer takes more words than the fixed Servicer

in ID but less than the one in 1C.

On the next page is a rough picture of the new Servicer job to make

the description that follows a little clearer.



c PIPCYCLE \— ^
MINIMUM PERIOD LOGIC

State and gravity
vectors initialized.

<

Start Servicer here

I
PREREAD

Zeroes PIPAs.
Initializes Flags. Sets
up NORMLYZE job.
May start QUARTASK.

READACCS
Reads time, PIPAs, and
CDUs. Computes DELV
and PGUIDEl.

QUARTASK
R 1 0 and R 1

1

MAXIMUM PERIOD LOGIC

E
QUARTASK

Compute 1/PIPADTand
call 1/PIPA

GETABVAI.
Compute ABDELV,
ABDVCONV, MASSl
DVTOTAL. XNBPIP

l/PIPA
IMU Compensation
Sets up 1/GYRO job.

QUARTASK

etc- every 1/4 second

CALCRVG
Computes DELVREF,!
RNl, VNl, Gl,

I

UNIT/R/

1/GYRO

RVBOTH
Compute R(CSM)
V(CSM). G(CSM)

MUNRVG
Compute RIS, VIS, Gl.
ABVEL. UNIT/R/, HCALCi

LR Logic
Possible update of RIS, VIS,
DELTAH. At high-gate sets
up IIIGATJOB.

HIGATJOB
Initiate antenna

I

position change

I
sleep

COPYCYCl
Compute Gl, HCALC,
HDOTDISP, VSURFACE,

.

RNl , VNl , and RIO interface
Write RIS -R

VIS -V

I

Signify if position
change accomplished

R12READ

COPYCYCl.
Write RNl-^RN

VNl - VN
PIPTIMEl -PIPTIME

Gl -G
PGUIDEl -PGUIDE

MASSl -MASS

1/ACCS

Z

I

^

—

I
Store alt. RDGIMS

I

*
I
Store vel.

DVMON
Possibly set up
COMFAIL job. COMFAIL

SERVOUT
Transfer control
to Guidance

GUIDANCE
Possibly set up P66 ROD
job. Compute commands
and displays.

P66 ROD
1

1

1

Put out displays

PIPCYCLE ^

P66 ROD

etc. every second

Display job.



PIPCYCLE begins the Servicer cycle. NORMLIZE, the Servicer

initialization routine and lead in of the Servicer job (set up by PREREAD
which is called by the TIG -30 task of BURNBABY) falls through to

PIPCYCLE. And it is to PIPCYCLE that Guidance returns when it finishes.

But PIPCYCLE is just a tag and a restart point.

First to be executed after PIPCYCLE is the Minimum Period Logic:

if it has been less than PGMIN since the last accelerometer reading, then

Servicer goes tosleep for the remaining time. The reasons for such logic

are to establish a (hard) lower bound on guidance period for scaling purposes,

because PGUIDE is sometimes in the denominator, and to provide a mechanism

for granting (but not guaranteeing since if there is TLOSS this time is used up

before period stretches) some time to low priority extended verbs, and for

insuring enough time for at least one full downlist to be sent for each Servicer

cycle. Two seconds is the obvious choice for PGMIN because that is how

long it takes to send a downlist, (For P40s cases where the downlink data

may be less urgently required an extended verb could be provided to shrink

the minimum to one second; by speeding up the computation and display loop

this might save a little RCS fuel in nulling residuals. ) Two seconds has the

second advantage of making the new Servicer's timing very like that of the

one it replaces in the absence of enough TLOSS or program activity to

stretch it longer. This would serve to maximize initial confidence in variable

Servicer ropes.

Next, after a restart point and under inhint, come the reading of time

into PIPTIMEl, the reading of the PIPAs into the PIPATMPs and the CDUs

into the CDUTEMPs, and the computation of DELV and PGUIDEl. PGUIDEl
14

is the length of the PIPA interval scaled in units of 2 centiseconds with its

lower order half always zero. The PIPAs are read according to a recent

philosophical advance called the Cyclical PIPA Reader: after PREREAD the

PIPAs are never zeroed and each DELV is computed, not read from the

PIPA, as the difference between this and the previous value of the PIPA,

stored in PIPAOLD, Suitable correction for the chance that the PIPA in

question overflowed between the two readings is easily performed under the

assumption that 81. 92 m/s cannot be accumulated during one PIPA interval.



This won't happen until the LM gets a J-2 or PGUIDE reaches 10 seconds.

As A1 Harrano demonstrated to me, the PIPAs behave with perfect grace

when they overflow. No counts are lost. One good thing about the Cyclical

PIPA Reader is the straightforwardness it gives the PIPA reader restart

protection. If there is a restart while it is in progress the clocks and

PIPAs are reread and DELV is recomputed; for a PIPA reader like the

present one which destroys the contents of the PIPAs the problem is much

hairier. Second, because interfacing routines like P66ROD and the Landing

Analog Displays were hampered by Servicer's periodic flushing of the

PIPAs, the new scheme will assist them. By putting the reading of the

PIPATMPs into the PIPAOLDs in COPYCYCL we enable off-line routines,

asynchronous or otherwise, to integrate from R and V at PIPTIME to the

current time in a consistent way by always using the current PIPAs-PIPAOLDs

as the thrust delta-V, suitably corrected for possible PIPA overflow by a

subroutine which is provided. The Cyclical PIPA Reader is one of the ideas

that make it easier to write a variable Servicer, but because it is an interest-

ing notion in its own right I'll probably describe it in more detail in a future

memo.

After another restart point comes the Maximum Period Logic. Here if

PGUIDEl exceeds PGMAX an ALARM is issued, tentatively number 555. This

logic establishes a (soft) upper limit on guidance period for scaling purposes.

Three or four seconds would be a reasonable PGMAX. (Note that both

PGMAX and PGMIN could be put in erasable if there were ever a reason to. )

Next l/PIPADT is computed from PGUIDEl and l/PIPA is called.

1/PIPA in turn sets up 1/GYRO (at priority 21) as an off-line job. The
8 10

scaling of l/PIPADT is changed from 2 cs. to 2 cs. to accomodate

guidance periods greater than 2.55 seconds. This scale change involves

altering 3 words in 1/PIPA and l/GYRO.

From this point on the variable Servicer is little changed from the

present one.

Unchanged are the computations that begin at GETABVAL, after another

restart point, of ABDELV, ABDVCONV, MASSl, DVTOTAL, and XNBPIP,

the body-platform matrix valid for PIPTIMEl. The quantities ABDELV,

ABDVCONV, and DELV are strictly delta-Vs, not accelerations, and it is

no longer valid to use them as accelerations unless PGUIDE enters the

computation. This means small modifications in 1/ACCS, DVMON,



THROTTLE and Ascent Guidance, Because DELV is in the downlink

possibly RTCC programs will require a small change here.

Next come the average-G integration routines. In P40s cases near

Earth or Moon CALCRVG is used. Descent, ascent, and the aborts use

RVBOTH. At RVBOTH the CSM position, velocity and gravity vectors for

PIPTIME are computed, stored in temporaries, and after a restart point

copied into R(CSM), V(CSM) and G(CSM). Then, after another restart

point, the LM state is integrated. These three average-Gs were modified

to take account of guidance period and to compute Gl, a gravitational

acceleration in units of 2 m/cs (full scale 156. 25 m/s*^), instead of

GDTl/2 which assumed a two second guidance period. The scaling of Gl

and G and PGUIDEl and PGUIDE is such that multiplied they match the

extinct GDTl/2 and GDT/2 exactly, facilitating the changeover. As a

matter of fact GDT/2 was a contrivance that at most saved a couple of

words in the average*G computations. G suits most users better. The

average-G alterations are navigationally the core of the variable Servicer,

and were well tested a year ago in version DIANA by MOONLIGHT.
The equations as currently programmed are:

PGUIDE = 2 seconds

RIS = PGUIDE (V + raLV/2 4- GDT/2) + R
Compute GDTl/2 from RIS.

VIS = GDTl/2 + DELV/2 + GDT/2 + DELV/2 + V
As programmed in ZERLINA these become:

PGUIDEl = PIPTIMEl - PIPTIME

RIS = (PGUIDEl G/2 + DELV/2 + V)PGUIDE1 + R
Compute Gl from RIS.

VIS = PGUIDEl Gl/2 + PGUIDEl G/2 + DELV/2 + DELV/2 + V
This change took no words.

Following RVBOTH, unless LRBYPASS is set, the landing radar

incorporation logic is executed. CALCRVG goes straight to COPYCYCL
via a restart point. Changes in the landing radar logic include the addition

of an average-G integration to find LM altitude and velocity at the time of

the radar read, since R12READ is no longer synchronized with the PIPA

reading. It could be, with difficulty, but it seems preferable to perform



the integration and remain free of all timing constraints. In addition a

Nav Base to Stable Member transformation must be performed on the beam
vectors which is valid at the time of the read rather than at PIPTIME.
RDGIMS, a task set up by R12READ, records PIPAs, CDUs and time at

the mid-point of the read. These changes are almost like putting back

coding which existed in LUMINARY 1C and earlier when the velocity read

was unsynchronized. -At the end the incorporation logic clears the measure-
ment-made discretes and sets up R12READ which is performed during the

rest of Servicer and Guidance.

The miscellaneous computations at COPYCYCl are virtually unchanged

except for the addition of a recalculation of Gl. This is needed because a

G1 valid at radar read time is left by the LR logic, and because the LR

logic may have updated the length of the position vector.

To the string of variables copied at COPYCYCL is added PGUIDEl

which is copied into PGUIDE. Also at COPYCYCL the PIPATMPs, which

contain the PIPA value at PIPTIME, are written into the PIPAOLDs for

use by the next Servicer cycle and by off-line routines.

DVMON is not changed (except as indicated above with reference to

ABDELV) and after 1/ACCS is called control is transferred to the Guidance

routine specified by the contents of AVGEXIT, just as always. If no

Guidance is hooked up AVGEXIT contains the 2CADR of PIPCYCLE.

Changes in Guidance are as follows: (1) G must be used in place of

GDT/2 to subtract away from total desired acceleration to get desired

thrust acceleration. This typically saves a few words. (2) If ABDELV

or ABDVCONV is used, as in ascent, a change may be necessary, as

indicated above, to remove the assumption of a two second period.

(3) Guidance must restart protect itself in a way consistent with Servicer

in group 5. This is eased by the provision of SERVCHNG which does a

variable type of "phase change" when called with a TC. (4) Guidance must

raise its priority (to 23) before calling display routines so that the off-line

jobs created have a higher priority than the Servicer job. On return from

the display routine the priority has to be lowered again to 20. (5) The

VACRLEAS calls must be eliminated from Ascent and Descent. (6) The

throttle will have to be modified as indicated above and the other Guidance



output routine FINDCDUW will be modified in a simple way to prevent over-

shoot in the event of a stretched period. (7) Guidance must at the end

transfer control to PIPCYCLE and avoid like poison going to ENDOFJOB,
because this would terminate Servicer.

It is not impossible that in some ways the variable Servicer will not

turn out precisely as described, but this is a description of an actual, running

Variable Guidance Period Servicer which contains no known shortcomings

(except for a DVMON which is an eyesore) and is so superior to the old one
that if I were going to the Moon next week I would almost prefer to fly with
ZERLINA than with LUMINARY.

Since drafting the above I have learned from Allan Klumpp of two even
more elaborate ways for powered flight to go wrong due to TLOSS. Such
possibilities seem likely to turn up at the rate of one or two a day for as
long as Allan looks for them (although admittedly he is stress testing) --

and for as long as we preserve the present amusement park organization
of Servicer and its adjuncts.


