
Massachusetts Institute of Technology
C. S. Draper Laboratory

Cambridge, Massachusetts

LUMINARY Memo # 152

To: Distribution

From: D. Eyles

Date: 21 May 1970

Subject: Cyclical PIPA Reader

A PIPA reading philosophy has been developed which significantly
simplifies powered-flight restart protection and facilitates asynchronous
accelerometer reads outside of Servicer. This scheme, called the Cyclical
PIPA Reader, is particularly suited to a Variable Guidance Period Servicer
and is being used in version ZERLINA.

The philosophy is this: never zero the PIPAs (except in PREREAD;
and compute DELV as the difference between each and the previous PIPA
reading, suitably correcting if a PIPA has overflowed between readings.

In other words: after a preliminary restart point, time is
stored in PIPTIMEl and the contents of the PIPAs are transferred into
the PIPATMP registers. DELV is then computed component by component
as the difference between the PIPATMP contents and the contents of the
PIPAOLD registers. Next the components of MLV are corrected for the
chance that between this and the previous reading the corresponding PIPA
has overflowed, i.e. passed POSMAX (or NEGMAX) and started counting up
(or down) again from zero. Finally, after another restart point the contents
of the PIPATMPs are moved to the PIPAOLDs.

Thus:
I

;
RESTART POINT

r— *

1 PIPTIMEl = TIME2

LPIPATMPs = PIPAs
^

DELV = PIPATMPs - PIPAOLDs—
CORRECT DELV FOR PIPA OVERFLOW

7- j'
~~ —

1 RESTART POINT
j

^IPAOLDs^= PIPATMPs
«

f

This renders unnecessary the complicated and unlovely restart

protection logic which currently takes up most of the subroutine PIPASR.

Note that a restart anywhere between the first and second restart points

will cause control to be transferred to the first restart point. The clocks

and PIPAs will then be read again and DELV recomputed. The second

reading may not see the same values in the PIPAs and clocks, but this

doesn't matter. A restart after the second restart point merely causes the

PIPATMPs to be retransferred into the PIPAOLDs.

For asynchronous PIPA reads the problem is simplified because they

do not have to reckon with a READACCS juggernaut which periodically comes

around and destroys values in the PIPAs. This destruction turns out to be

wanton. Now an asynchronous read can preserve its own PIPAOLD type

registers and compute its DELV just as Servicer does, with no mutual

interference.

If Servicer's copying of the PIPATMPs into the PIPAOLDs is not

done immediately after the PIPA reading but is done at COPYCYCL where

also RIS, VIS, PIPTIMEl and G1 (which in ZERLINA replaces GDTl/2)

are under INHINT copied into R, V, PIPTIME and G, then this fact follows;

that at any time whatsoever (T^) PIPA - PIPAOLD is the thrust delta-v

needed to compute current position and velocity from ^ and V. This

computation is always:

AT = T^ - PIPTIME

R. = AT(V+ (PIPA -PIPAOLD)^ AT fi)

UNIT (R^)

V^ = V + (PIPA - PIPAOLD) +
AT G + ATGi

2

In other words, the PIPAOLDs make a consistent set with R, V,

PIPTIME and G. This consistency, and the consequent uniformity

of computations, simplify the Landing Analog Displays, P66 ROD,
and the Landing Radar Update routine, all of which in ZERLINA
make such an extrapolation.

I should explain that as implemented in ZERLINA the registers

I have called the PIPATMPs are PIPATMPX, PIPATMPY and PIPATMPZ.

The so-called PIPAOLDs are PIPAXOLD, PIPAYOLD, and PIPAZOLD.

As the reader may have guessed the corrections of DELV for PIPA

overflow is the key to the Cyclical PIPA Reader. The method used is as

Although it may not be instantly apparent, the assumption that makes

this logic work is that the difference between successive PIPA readings can

never amount to half a register or more unless PIPA overflow has occurred.

In other words, that delta-v can never exceed 81. 91 m/s over one PIPA

interval. The worst conceivable LM case is when both APS and DPS tanks

are (about) empty and the DPS engine is thrusting at full throttle. Even in

this case the PIPA interval, i. e. guidance period, would have to exceed 8

seconds for the assumption to be violated. It should nevertheless be explicitly

recognized that an assumption is being made.

J

That the logic charted above is valid for all cases can most easily be
seen by considering certain ranges of value taken on by the now PIPA
difference, call it AV, before any correction is applied (at point A in the

flow chart):

(a)

(b)

(c)

(d)

(e)

(f)

AV positive,

AV negative,

AV positive,

AV negative.

I
AV| < 81. 92 m/s,

|av| < 81. 92 m/s,

I
AV| > 81. 92 m/s,

|AV| i 81. 92 m/s.

00000 to 17777

77777 to 60000

20000 to 37777

57777 to 40000

AV positive with overflow

AV negative with overflow

Cases (a) and (b) are the most common ones. The logic dictates

that (a) POSMAX + 1 (or HALF twice) be added to the positive AV and (b)

NEGMAX - 1 (or NEGl/2 twice) to the negative AV. These additions are in

fact vacuous in these cases because once overflow is cleared the difference

AV is unaffected. DELV = AV in other words — the final value equals the

raw value. Examples of processes which lead to cases (a) and (b) are

shown next, with the PIPA counts written above the arrows and all numbers
in octal:

30567

57432
-9Ci

77700

30604 =^AV=00015 ==^DELV=00015

57555 ==^AV=00123-=^DELV=00123

77660 =^AV=77757 =^DELV=77757

Cases (c) and (d) result when the PIPA in question has overflowed

during the PIPA interval. For instances:

+20
37765 ^ 00005-=^AV=40017=^ DELV=00020

-40
40021 > 77761=^ AV=37740==#>-DELV=77737

+ 1

2

-4
37770 > 00002 77775 AV=40005—^ DELV=00006

The logic causes twice HALF to be added to the big negative AV,

or twice NEGl/2 to the big positive AV. This procedure yields the right

result: when a PIPA has overflowed, to correct the difference simply add

back in a full register of counts of the right sign.

Cases (e) and (f) will be extremely rare, but can result from a

PIPA history similar to the last example given above, in which the PIPA

counts reverse direction during a PIPA interval. For instances:

40017 77773 00026^=^AV=°40006=#> DELV=00006 (e)

37770 00002 77765=^AV=^37775=^ DELV=77775 (f)

(When sign bits disagree the dominant one is shown at the upper left.) These

cases are the reason for including the initial clearing of overflow, for it

turns out that clearing overflow reduces cases (e) and (f) to cases (a) and

(b), and leads to the correct answer.

In the current ZERLINA this correction process is performed by a

subroutine PIPNORM whose input is the raw difference AV and output the

corrected difference. When (and if) Variable Servicer is put into LUMINARY
the routine PIPNORM will replace VACRLEAS (not needed in ZERLINA) in

fixed-fixed memory, making it available to P66ROD and the Landing Analog

Displays which need to perform the correction but occupy fixed banks

remote from Servicer.

The reader may have realized that there is a lesson for the future

in this involved explanation of the correction process. This is that PIPAs,

like CDUs, should work in 2's complement. If this were the case a simple

modular subtract would suffice to compute DELV in all cases, and the engine

in question would not have to oblige by providing less than half- a- register in

PIPA counts over each PIPA interval.

