Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

LUMINARY Memo # (5

TO:	Distribution
FROM:	George W. Cherry
DATE:	7 February 1969
SUBJECT:	A Variable Time Constant Velocity-Nulling Guidance Law

Introduction

The present velocity-nulling guidance law has a fixed time constant. This guidance law is used for the last ten seconds of P64 and all of P65. This fixed gain guidance law is simply

$$\underline{\mathbf{a}}_{\mathrm{TD}} = (\underline{\mathbf{v}}_{\mathrm{D}} - \underline{\mathbf{v}}_{\mathrm{O}})/\tau_{\mathrm{v}} - \underline{\mathbf{g}}_{\mathrm{O}}$$
(1)

where

aTD the	present	desired	thrust	acceleration.	
---------	---------	---------	--------	---------------	--

 $\underline{g}_0, \underline{v}_0 =$ the last measured gravitational acceleration vector and velocity vector.

 \underline{v}_{D} = the desired touchdown velocity vector.

 τ_{v} = the fixed time-constant for nulling the velocity error; currently equal to six seconds.

A variable-gain (τ_v not fixed) velocity - nulling guidance law has certain advantages. For example, it is desireable to null the velocity error early and quickly so that there is not much attitude maneuvering near touch-down. Also, with lags in the system (computation lag and FINDCDUW lag chiefly) stabilization suggests a larger $\boldsymbol{\tau}_{_{\mathbf{V}}}$ than one might otherwise choose.

The following guidance law has time-varying gains and guidance command projection. It is analytically derived later.

$$T_{go} = T - t_{o}$$

$$T_{go}^{*} = T_{go} - \tau$$

$$R = T_{go}^{*}/T_{go}$$

$$\underline{a}_{TD} = n R^{n-1} (\underline{v}_{D} - \underline{v}_{o})/T_{go} - \underline{g}_{o}$$
(2)

Equation (2) is more complicated than (1) but only marginally so and it is much simpler than Equation 15 in LUMINARY Memo #63, which is used in the guidance phase immediately preceding the velocitynulling phase.

The quantity n is any positive non-zero integer. The best value for n is yet to be determined. From inspection it can be seen that the larger n, the larger, relatively speaking, is the gain at large values of T_{go} and the earlier the velocity error is nulled. We can analytically relate the stationariness of the commanded thrust acceleration at t = T, the touchdown time, to the order of n.

Equation (2) has not been tested in simulations yet but its relative simplicity, time-varying gains, and guidance command projection recommend its investigation. Both MIT/IL and MSC/G&C have noted oscillations with the present law, Eq. (1).