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WHOLE NUMBER STRAPDOWN COMPUTATIONS

ABSTRACT

An inertial navigation system employing a gimballess inertial measurement

unit requires an analytical transformation of the vehicle co-ordinate system

into the inertial co-ordinate system. An algorithm is developed for maintaining

an up-to-date transformation matrix in a general purpose whole number computer.

A method of implementing the algorithm in the Apollo Guidance Computer (AGC)

is described. The performance of the algorithm, the effects of flight

profile parameters upon the accuracy of the algorithm, and the effects of

certain equipment constraints are detailed in the results of computer simulations.

Extensive computer simulations were conducted to verify the validity of the

algorithm; while conclusions about navigation computer design were drawn

from the simulation results, raw simulation data is included for individual

interpretation. For comparative purposes, the results of simulation of

a digital differential analyzer (DDA) are included. It is concluded that

for at least certain missions, general purpose computers can be built

which will perform the strapdown computation with sufficient accuracy

and which will not significantly detract from the other tasks required

of the general purpose computer by doing these tasks fast enough.

by J. C. Pennypacker

February, 1966
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I. INTRODUCTION

There is at the present time considerable interest among designers

of inertial navigation systems in the utilization of inertial measurement

units which are mounted directly to the vehicle frame; the resulting con-

figuration is a gimballess inertial measurement unit (GIMU) , commonly referred

to as a "strapdown" system. Such a configuration requires that analytic

methods rather than the conventional physical gimbals be employed to isolate

the vehicle co-ordinate axes from the inertial co-ordinate system in which

navigation and guidance of the vehicle are performed. There are at least

two basic methods of implementing the required analytic functions: the

more generally accepted approach is to use a digital differential analyzer

(DDA), the other approach is to use a general purpose whole number computer.

The desirability of the latter method becomes pronounced in those systems

for which a general purpose computer is required to perform functions other

than those required for navigation; in such a system, the hardware configuration

need not include an extra processor - specifically the DDA - for navigation.

The primary question in using a general purpose computer centers around

the algorithms used for updating the transformation matrix. For the general

purpose computer approach to be practical, the computer must spend only a

small fraction (less than 10%) of its time in the strapdown task otherwise

performed by the DDA. The time spent by the general purpose computer is

a function of both computer speed and the updating algorithm utilized.

The DDA algorithms are ill suited for implementation in a general purpose

computer and the question thus arises as to whether the whole number algorithms

of the class proposed by A. Hopkins will give sufficiently precise results

without requiring excessive computation times. While the advantages, dis-

advantages and capabilities of the DDA are generally understood, such insight

into the performance of a general purpose computer operating in conjunction

with a strapdown navigation system is lacking.

^ Albert Hopkins, Digital Development Report #5, Updating a Cosine Matrix
in a Whole Number Computer , MIT Instrumentation Laboratory, August 12, 1964.
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This paper presents one algorithm which could be used to perform

navigation functions on a whole number general purpose digital computer;

the results of extensive computer simulation of this algorithm are also

included. Because of the current interests of the author, the study under-

taken is oriented towards the Apollo mission; of specific interest is the

feasibility of utilizing the Apollo Guidance Computer (AGC) to perform the

navigation functions of the Lunar Excursion Module (LEM). The scope of

this study is restricted to one portion only of the general navigation

problem, that of maintaining an accurate and timely direction cosine matrix.

The vehicle containing the strapdown system is assumed to be a spacecraft

of the LEM type; this assumption is fundamental to the characteristics

of the algorithm and simulations presented herein.
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II. THE COSINE MATRIX

In order to perforin the navigation and guidance computations in a

fixed co-ordinate system, it is necessary first to resolve the accelerations

measured by the accelerometers in the spacecraft (body) co-ordinate system

into components in the fixed co-ordinate system. For a fixed co-ordinate

system F and a body co-ordinate system B, the transformation of acceleration

from the body system to the fixed system is given by the following equation:

\ = [c] ^ ( 1 )

Ap = Acceleration vector resolved into the fixed co-ordinate system.

[c] = Transformation matrix.

Ag = Acceleration vector resolved into the body co-ordinate system.

The transformation matrix is a matrix composed of the direction cosines

of the angles between the axes of the two co-ordinate systems; thus, the

elements of [c] are given by the following:

C. .

ij
( 2 )

u
( )

a unit vector in the direction of the co-ordinate system

indicated by the subscript.

The matrix [c], which is dependent only upon the attitude of the vehicle,

must be precisely known at the time accelerations occur in order to determine

the position in inertial space of the spacecraft. The analytical determination

of the C matrix is the basic difficulty encountered in the strapdown configuration.

As the vehicle rotates, the matrix [C] changes; thus in general the velocity

of the spacecraft in the fixed co-ordinate system is given by:

t

V
F
(t) = J [C(t)] Ag (t) dt

0

( 3 )



The inertial position of the spacecraft is determined from a further integration

of equation (3). In order to determine an expression for the change of

[C(t)] as the vehicle rotates, let the vehicle rotate with respect to the

fixed co-ordinate system with an angular velocity fi (t). Then from equation (2)FB

- c. .(t) = C. .(t)

dt 1J Fi Bj

—

>

+ u
Fi Bj

(4a)

= U
Fi

• (n
FB

(t) X U
Bj

) + °

Evaluating the vector equation and writing in index form yields:

C
ij

(t) = U
Fi

‘ [-Wt)u
Bi

+ “Q
FBi

(t)u
Bk ] (4b)

From equation (2) this can be rewritten as:

thLetting x, y and z represent the i, j and k axis of the spacecraft

respectively, equation (4c) can be expressed as:

[C(t)] = [C(t)][fi(t)]
(5 )

where

[fi(t)] =

0 -^(t) ®
y
(t)

0)
z
(t) 0 -^(t)

-®
y
(t) ®

x
(t) 0
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III. THE BASIC ALGORITHM

3.1 Derivation

( 2 )
A. Hopkins has described a method of approximating the solution

to equation (5) utilizing a general purpose digital computer. Because this

approximation provides the basis for the computer simulation, the remainder

of this section presents the algorithm originally described by Hopkins.

Define a matrix [M(T) ] which is a function of the cu' s , of their derivatives,

and of a sampling time interval T. The matrix [M(T) ] relates the C matrix

at the end of the sampling time interval T to its value at the beginning

of the time interval. This relationship is defined thus:

[C (T) ] = [C (0) ] [M(T) ] (6)

Knowledge of M(T) enables one to calculate the current value of [C(t)]

by a recursive process. Owing to limitations of GIMU instruments, however,

[M(T)] can only be approximated. Previous approaches have emphasized the

use of digital differential analyzers (DDA's) in order to achieve maximum

precision with a small computer. Utilization of a general purpose digital

computer such as the Apollo Guidance Computer (AGC) requires a substantially

different approach: a large time interval T with a sophisticated approximation

to [M(T)] instead of the DDA's short interval and skeletal approximation

to [M(T)]. The fundamental question associated with large intervals T centers

around the uncertainties as to the order in which rotations occur, and the

inaccuracies which result from these uncertainties.

The data from which [M(T) ] can be approximated by a spacecraft navigation

computer is a quantized representation of angle changes as detected by the

body-mounted gyros. It is here assumed that these angle changes are known

precisely; the effect of introducing imperfect gyros into the system

is described in a later section. To express [M(T) ] in terms of the spacecraft

angle changes (denoted 0^, 0^, 0^) , [C (t)

]

is expressed as a function of

[C (0)3. The Taylor series expansion of element C„ is:

(2 ) Ibid.
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( 7 )

• JL r\ *0 n •••

C..(t) = C. .(0) + t C. .(0) + - t C..(0) + - t C..(0) + . . .

1J 1J 1J 2 1J 6 1J

At this time it is convenient to rewrite equation (5) in index form:

cil(t)
= C.

2
(t)05

z
(t) - C

t3
(t)cn

y
(t)

C
i2 (t ) = - C

i]L
(t>® (t) + C.

3
(t)co

x
(t) (8)

C
i 3

(t) = c
il

(t)031 (t) - c
i2

(t)<n
x
(t)

The expressions of equation (8) cai be used to replace the C„ (t) term of

equation (7) with undifferentiated terms. Equation 8 can also be differentiated

to give C „ ' s in terms of C„'s. Further substitutions utilizing equation (8)

yield expressions for the Ch ,
' s in terms of the C..'s alone. These expressions

# ® J 3

may be substituted for the C term of equation (7). For example:

cil(t) = c
i2 (t >“

z
( t ) + a)

z
< t ) C

i 2
(t) ' C

i3
(t)<D

y
(t) “

= c
i2

<t)“
z

( t )
-
°i

(t) c
il (t) + C0

x
(t)cD

z
(t)C

i3
(t)

- a5

y
(t)C

i3
(t) - o? (t)C

il
(t) + ^

x
(t)03

y
(t)C

i2
(t)

= E-“y (t) - <4 (t)] C
il

(t) + [®
x
(t)a, (t) + co

z
(t)] C.

2
(t)

+ [03
x
(t)03

z
(t) - a>

y
(t)] C.

3
(t) (9)

Continuing in this manner, one can obtain expressions for the time derivatives

of each C. . in terms of all the C. ,'s. Since these expressions contain cd' s
tj ij

and their derivatives, they will be of the general form:

d>V0 + f
ljk2

[‘“<t > ]C i2
(t > + £

1Jk3
t»(t)] c

13
(t) (10a)
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Specifically, at time t = 0, equation (10a) becomes:

d

dt
— V°> ' £

ijkl
[a)<°> ]C

il<°> + ]Ci2 C°> + f
l;|k3

[“<0> ]C
13

(0 >

When equation (10b) is substituted for the differentiated terms of

equation (7), one obtains:

C (t) = Z f [co(0) ] - C (0)
1J k=0 1Jlci

kl
xL

+ z f.
jk2 MO)] c.

2
(0)

+ S f MO)] - c (0)

k=0 J J
k'.

J ( 11 )

Comparison with equation (6) shows that at time t = T, the elements of

[M(T)] are given by the infinite series in equation (11). Elimination of

the redundant subscripts in equation (11) leads to the expression:

M (T) = Z f M0)] -

J k=0 Jk
k!

( 12 )

which is recognized as the Taylor series expansion of M.
.
(T) where f is

th
ij ijk

the k derivative of M. .(0).

It has been shown that the elements of [M(T)] can be approximated by

a Taylor series whose terms are obtained from differentiation of equation (8);

a list of these terms is given in Table 1. There remains to be shown how

these terms can be expressed in terms of the spacecraft angle changes during

the time interval T.

til
Letting the change of the spacecraft angle about the i axis be denoted

by 9^, the first step is to use the Taylor series expansion to relate the

9's to the respective co' s . According to the definition of 0^(T):

(10b)

13



T

e.(T) = I
co
i
(t)dt

o

T 2

/

• L • •

[no. (0) + tax (0) + - ax (0) + . . . ]dt
!L 1 1

0

= Tcd. (0) + - cd. (0) + - cd. (0) + o . .

3- O 1 H

(13)

It is evident that terms of equation (13) appear also in the Taylor expansion

of some of the M. ,'s. For example, from equation (13) and from Table 1:
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Order

M
12

(T)

M^tf)

M
32

(T)
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CM X ^X _ X + • 3
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X

N_^ <f- cn x 3
/'“N CM CO i 3 CN X
H H H N • 3
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'

—

1 1 CN] «—
1 1 vO T—1 1 <t + + + + EH

CM

3
x

• 3
CM

+
N

• 3 * d
x CM X

3 3^ 3

+ 1

• 3 _N • 3
/—

N

_ X CM N
• 3 3 „x 3 3

• 3 3 LO
+ + CM • 3

+ 3 1 CO
CM N

N 3 • 3 i N 1
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X 3 • 3 n N
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'—

x

1—1

. ^X CM 1
1

V—/ CO <f - 3 3 3 •
* CO H Eh EH CO CO VO

: 3
3

M 0 H <

—

1 1 CNJ r-H 1 VO I—1 1 <j" + 1 1 +
CNJ

u
Q)
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1

CM CO <t
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e (T) = To) (0) + - CD (0) + - CD (0) + . .

M
13

(T) = Tco
y
(0) + - [cd

x
(0)cd

z
(0) + CD

y
(0)]

+ - [03 (0) + 03 (0)03 (0) + 2cd (0)03 (0) - 03 (0)o3 (0)] + . .

ft
y x z x z y

Comparison shows that 9 (T) approximates M-
^
(T) with an error function whose

leading terms (for T < 1) are:

03 (0)o3 (0) + - [03 (0)O3 (0) + 203 (0)o3 (0) - 03“ (0)o3 (0)] (14)xz /- x z xz y

An improved approximation to M^(T) is obtained by expressing the first error

term of expression (14) using the product ®
x O)® z

(T)» From equation (13):

9 (T) (T) = T cd (0)cd (0) + - [cdi (0 )cd (0) + CD (0)co (0)] + . . . (15)xz; xz
2

x ^ xz
Utilizing Table 1, equation (13) and expression (14), one can approximate

e
x
(T)0

z
(T)

M.„(T) by 9 (T) + — — with an error function whose leading terms are
y 2

[CD (0)CD (0) - CD
,
(0)05 (0) - 2 CD (0)CD

. (0) ]Z X X Z y

Table 2 gives a number of functions of 0. which are used in the
1

formulation of yet better approximations to the (T)

.

18



2 3 4
T • T .. T ...

0 .
= TO). + - CD. 4- - CD. + - CD. + . .

1 1
2

1
6

1
24

1‘

2 2 2 3 4 ^'2 ^ "
0 = T CD. + T CD. CD. + T (-CD. + - CD. CD.) + . . .

1 1 11 . 1 „ 1 1
4 3

2
T .

. 4 1 * ’

0 0 = T CD. CD. + - (CD.CD. + CD. CD. ) + T (- CD. CD. +
lj i j 2

l J j i
^

l j

-T
4

1 2
. 1 3.. T

0 = / CD. (t)dt = -Tcd. + - T CD. - - T
J
CD. + -

-1
Q

/ 1 1
2

1
6

1
24

T 1 .

2
1 *

' 4
•

0.0 _

= -x CD.CD. + - (CD.CD. - CD.CD.) + T (- CD.CD.
1 -J 1 J 13 J 1 1 J

3
0 0 - 0 0 .

= T (CD.CD. - CD.CD. ) + . .

1-3 3-1 31 31

2 3 2 4 2
' 2

*

00 = T CD CD. + T (- CD CD. + CD.CD. + CD.CD. .CD.
i 1

2
1 1 1 1 1+ i i+ i

1 .0 1

-CD.CD. + - CD.CD. ) + . . .

6
1 J 6 J L

1 1 ..

- - CD.CD. - - CD.CD.) + . . „

6
1 J 6

1 J

+ CD.CD. CD. )
1 1+2 i+2

NOTE: All cd's are evaluated at time 0, the beginning of the sampling interval T.?222
CD = CD + CD + CD

x y z

0 . is the negative of the angle change in the preceding interval.

TABLE 2. AUXILIARY FUNCTIONS OF 0
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It is now convenient to define a matrix [N(9)] which approximates

[M(T)] with an error [E(T)]; that is:

[M(T) ] = [N (9) ] + [E (T) ] (16)

The number of possible forms of [N(9)] is of course unlimited and no procedure

is given here for deriving optimized approximations. Table 3 shows three

N matrices which are equivalent to Taylor expansions of [M(T)] to the first,

second and third order terms respectively. The N matrices are written in

terms of body angles; the leading terms of the corresponding error matrices

[E(T)] are expressed as functions of the cd' s and their derivatives. The

process of updating the N matrices of Table 3 at regular sampling time

intervals T constitutes the basic algorithm; modifications to this basic

algorithm are discussed later.

3.2 Interpretation of Algorithm

The algorithm presented in the preceding section was developed from

a purely mathematical basis with no physical interpretation of the algorithm

included. The transformation matrix can be visualized as a vector originating

at the center of the unit sphere and terminating on the surface of the unit

sphere. Rotation of the vehicle employing the strapdown system corresponds

to tracing a path on the surface of the unit sphere. The N matrix vector,

which approximates the true transformation vector, is updated only at discrete

time intervals. Because the vector addition of small angle changes is

an ordered process, the N matrix vector which is updated based upon the algebraic

sum of angle changes during a sampling time interval is accurate only within

some cone of error. To reduce the size of this cone of error, the position

of the N matrix vector is extrapolated not only on the basis of historical

velocity, but also on the basis of changes in velocity. This extrapolation

is evidenced by the inclusion in the third order update formula of angle

changes over two successive sampling time intervals. The physical assumption

which is thus being made in the basic algorithm is that changes in angular

positions during successive sampling intervals caused by acceleration are

small compared to changes in angular position caused by current rotation.

20
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3.3 Error Accumulation

The accumulation of attitude error is a complicated process, and no

manageable analytic description has been developed. However, a crude upper

bound of the accumulated error can be calculated by using the assumption

that the absolute value of the error is the sum of the absolute values

of the errors at each update calculation. As an example of this calculation.

consider the error terms of the matrix [N^CT)]. Since:

[C (T) ] = [C (0) ] [M(T) ] (17)

and

[M(T>] = [N
3
(T)] + [E

3
(T)] (18)

it follows that:

[C (T) ] = [C(0)][N
3
(T)] + [C(0)][E

3
(T)] (19)

where the second term is the error resulting from the approximation

formula N3> Let this error be denoted by [D(T)], i.e.,

[D(T)] = [C(0)][E
3
(T)] (20)

Referring to Table 3 we can write:

D
il (T) = Cn en (T) + C.

2
e
21

(T) + C.
3

e
31

(T) + 0(T
5

) (21)

where the e's are the elements of [E
3
(T)]. An upper bound to equation (21)

can be obtained by substituting unity for each of the CL ' s and by replacing

the in's in the expressions for the e's by the magnitude of cjo. This gives:

4 9* 4 ? • "4 2 *

D • i (T) <- [cd + 2cn uo + cjo + 4cd“cd + 2co cjo + to + 4crTcD + ao ao ]Li
24

D
.

(T) < - [3co^ + IOcjo^oo + 4co ao]
1

24
( 22 )

Similarly (T) and D^
3
(T) have an upper bound identical to that of equation (22).

This upper bound gives a means of assessing the update formulas in connection

with a particular time interval T and mission profile, i.e., relationship

between no, to, cjo and time. The final error of the C matrix can in principle

be evaluated by the integral:

24



0

t
f inal

f [D(t,T)]dt

where ^- s t 'le e laPsed mission time. The uncertainty of the spacecraft

attitude at time t .

.

, is in turn a function of the final errors in C.
final

Of much greater interest than the analytical error expressions derived

above, are the actually observed errors resulting from the computer simulations.

3.4 Timing Considerations

The rationale behind the utilization of a general purpose whole number

computer to perform the navigation functions in a strapdown navigation system

is that such a computer must necessarily be included in the spacecraft

to perform other necessary on-board functions. The argument is made that

if the percentage of computer time required to perform the navigation function

is sufficiently small such that the other functions are not adversely affected,

then the special purpose digital differential analyzer (DDA) which is normally

associated with the strapdown system can be eliminated from the spacecraft.

Assuming that a whole number algorithm of updating the cosine matrix is

sufficiently accurate, the problem reduces to one of comparing an estimate

of the amount of computer time required to perform the algorithm with the

amount of excess time capacity of the guidance computer.

If the Block II AGC as it is presently conceived were required to

perform the full third order update calculations at the rate of, say,

10 complete updates per second, then rough estimates indicate that the

AGC would be saturated performing this task alone. However, it is estimated

that the AGC could perform an economized version of the third order update

formula, N^CT), in less than eight milliseconds. (For a complete description

of the economized form, see Section 5.8.1 Comput er Word Length, page .)

It is estimated that such an economized form would require less than

ten percent of the AGC's computing time. A rough estimate of the types

and number of instructions required by the AGC to perform the third order

update calculations is given in Table 4.
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Number Function Performed Total Memory Cycle Times

3

3

3

9

3

3

3

30

9

27

27

18

Read 9

.

l
9

Shift Once 12

Square 18

Cross Multiplies 54

Sum of Squares 6

9^9
. Terms
l

18

Multiply by 2 6

Double Precision Adds 90

Adds 27

Multiplies 108

Double Precision Adds 108

Exchanges 36

APPROXIMATE TOTAL 600 MCT « 7 msec.

TABLE 4. ROUGH ESTIMATE OF INSTRUCTIONS AND TIMES REQUIRED TO PERFORM

THIRD-ORDER UPDATE CALCULATIONS IN AGC
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IV. DIGITAL DIFFERENTIAL ANALYZER (DDA)

The basic approach to maintaining an updated cosine matrix using

DDA techniques is to solve equation (4c). Using rectangular rule integration,

the DDA updates the transformation matrix by solving the difference equations:

AC. .
= C.

ij i»J+l B,j+2
" C

i,j+2 B,j + 1

where 43 . is that angle change of the spacecraft about the j^ axis
b , J

which results in one pulse of a pulse torqued gyro.

Solution of equation (23) requires that the update cycle time of the DDA

be sufficiently short such that not more than one 40 change is observed

by an axis gyro during the update cycle; i.e., 40 pulses about any given

axis must be processed one at a time and in the order observed. Examination

of equation (23) indicates that, since addition of angle changes about three

different axes is non- commutative the updated transformation matrix is

dependent upon the order in which the individual elements of the matrix

are updated. This order dependency of the updating procedure of the DDA

introduces into the updated matrix an inherent inaccuracy which is a function

of the updating procedure and of the particular flight profile.

An analysis of various updating procedures for a DDA and of the errors
(3)associated with each of these procedures has been conducted by R. M. Hession

,

the principal results and recommendations resulting from Hession' s analysis

were utilized in this study as a basis for comparing the performance of a

whole number updating algorithm with the performance of a DDA. Hession

concludes that, considering the tradeoffs involved between required accuracy

and machine speed, the optimum configuration of a DDA is one designated

as Serial-Parallel (± separately; with reversal rule). Under this organization,

a complete update of the transformation matrix consists of three partial

updates; the DDA must thus operate at a cycle time sufficient for the

three partial updates to be completed between successive 40 changes about

(3)
R. M. Hession, R-481, Analy s is o f a Transformation Computer Used
with a Gimballess IMU, MIT Instrumentation Laboratory, January, 1965.
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any axis. To minimize the error resulting from the order in which the

updates are performed, the update order is reversed after an angular

change of is observed about any body axis.

The difference equations to be updated by a Serial-Parallel organized

DDA are shown below. To simplify the notation, tu is used instead of

C _ (K + n) refers to the value of the element after having been updated

n times. The difference equations are:

c
il

(K + 1) == C
il

(K)

C
i2

(K + 1) == C
i2

(K) '

°il
(K) h

3

C
i3

(K + 1) == C
i3

(K) + C
il

(K) h
2

C
il

(K + 2) == C
il

(K + 1) + C
i2

(K + D h
3

C
i2

(K + 2) =" C
i2

(K + 1) (24a)

C
i3

(K + 2) =‘ C
i3

(K + 1) - C
i2

(K + 1) h
1

il
(K + 3) = Cn (K + 2) - C

i3

i2
(K + 3) - (K + 2) + C

i3

i3
(K + 3) - Cu (K + 2)

(K + 2) h
2

(K + 2) h
1
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Upon reversal, the equations become:

Cn (K + 4)

C.
2

(K + 4)

C-
3

(K + 4)

c
il

(K + 3) - C.
3

(K + 3) h

C
i2

(K + 3) + C.
3

(K + 3) h

C
i3

(K + 3)

C.
x

(K + 5)

C
i2

(K + 5)

C
i3

(K + 5)

C. . (K + 4) + C.„ (K + 4) h,
ll J

C.
2

(K + 4)

C.
3

(K + 4) - C.
2

(K + 4) h
1

C

C

C

il
(K + 6 > = C

il
(K + 5)

i2
(K + 6) = C.

2
(K + 5 >

- cn (K + 5) h

i3
(K + 6) = C.

3
(K + 5) + Cn (K + 5) h.

(24b)

The set of equations (24) were used to describe a DDA subject to the

following mechanization rules. Each of the elements of the transformation

matrix consist of two finite length computer words, Y and R. Only the

Y words were used in the multiplications with the products added into the

appropriate R register. The lowest order "slot" of the Y word equals the

magnitude of 1A©. (The terminology "slot" is introduced because the value

of A© which was utilized, 1/4 milliradian, is not representable by a negative

integral power of either 10 or of 2. Thus while in most DDA's 149 corresponds

to the lowest order bit of a binary register, the value of A3 chosen

for the simulations prohibits the normal use of the word "bit" for the purposes

of this study.) The R register is restricted in magnitude to be less than

1 A©
; when the R register exceeds 1A© , an overflow of 149 is affected into

the corresponding Y register. Under the above form of mechanization, a

typical update equation from the set of equations (24) becomes:
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R.
2

(K + 1) = R.
2

(K) - Y
±1

(K) h
3

If R
i2

(K + 1) exceeds 140, then Y^ (K + 1) is incremented by 140 and

R_
2

(K + 1) is decremented by 140.

In addition to the mechanization described above, a roundoff rule

was employed. Before using a Y word in a multiplication, the corresponding

R word was checked to determine the value in the R word. If R equalled

or exceeded 1/2 40 , then Y was incremented by 140 before being used in

the multiplication; otherwise the value of Y was not altered. In neither

case was the value of Y modified as it appeared in the Y register.

All of the DDA results obtained during the simulations resulted from

the DDA as mechanized above where 140 = 1/4 milliradian. At any given

instant in time, the value of an element of the transformation matrix is

equal to the algebraic sum of the contents of the corresponding Y and R

registers

.



V. COMPUTER SIMULATION

5.1 Goals of Simulation

Extensive simulation has been performed on a Honeywell 1800 computer

to evaluate the algorithm developed in Section 3.1 and especially to

obtain a more precise feel for the behavior of the accumulated error of

the C matrix. The simulations were performed in floating point arithmetic

with a mantissa of 10 decimal digits and an exponent of 2 digits.

The simulation programs were designed essentially to:

a. Simulate rotational velocities and accelerations incurred by a

spacecraft for any specified flight profile.

b. Determine changes of spacecraft attitude angles (9's) about

each of the spacecraft's axis for consecutive sampling time intervals

of length T for the duration of the flight profile.

c. Update the third order N matrix of Table 3 at time intervals T.

d. Determine the true C matrix as a function of time by utilizing

knowledge of the flight profile to solve equation (5).

e. Determine the error matrix E(t) by comparing the matrices resulting

from steps c and d.

It must be emphasized that the simulations were concerned only with determining

the efficacy of the algorithms as an analytical method of maintaining the

C matrix. No effort was made to solve the navigation and guidance equations

of the simulated flight profiles. Thus this study at best represents an

effort to investigate only one of the many problems associated with the

strapdown configuration.

The final step of the study was to simulate the performance of the

DDA as represented by the set of equations (24) for certain of the profiles

and to determine the error matrix resulting from the DDA updating technique.

These simulations permit a comparison of the performance of the DDA with

the performance of the whole number algorithms. While results of the DDA
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simulations are included, the remainder of this report is concerned principally

with a discussion of the whole number algorithm.

5.2 Determination of True C Matrix

The principal uncertainty in the results of the many simulated flight

profiles is the accuracy of the standard solution against which the results

are compared. Theoretically, the solution to equation (5) would provide

the precise standard which is desired; in practice, however, the approximations

introduced by the computer differential equation subroutine make the accuracy

of the solution questionable.

The differential equation subroutine utilized in this study permits

the solution of any set of simultaneous differential equations of the form

of equation (5) provided that the highest derivative is piecewise continuous

and that the locations of the discontinuities are known in advance. To

relate these restrictions to the problem at hand, it is noted that the LEM,

and in fact the great majority of present day maneuverable spacecraft, is

attitude controlled by the thrusting of reaction jets. Throughout the

simulations, the attitude jets were assumed to be capable of existing

in only one of two states, "on" or "off." When turned "on" the jets provide

a thrust which results in a constant angular acceleration; when "off" the

jets provide no angular acceleration. Because the transition between "on"

and "off" is assumed to occur instantaneously, the angular accelerations

measured by the spacecraft - and hence indirectly the elements of the matrix

[C(t)] as updated by the computer - are discontinuous at the time the attitude

jets are switched. In order to correctly evaluate equation (5) using the

differential equation subroutine the times of such discontinuities must

be known in advance.

It has been assumed in this study that the differential equation

solution to equation (5) for each flight profile yields an accurate C matrix

against which the results of the algorithm can be compared. The accuracy

of the differential equation subroutine utilized depends upon the size of

an incremental interval of time At, during which the dependent variable

must be continuous. To determine the validity of the differential equation

solution for a given flight profile, the subroutine was run several times

with decreasing values of the increment At; the resulting solutions were
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checked for convergence. As an example, at the termination of a particular

40 second mission, the convergence of the solutions corresponding to decreasing

time increments At is depicted in Table 5.

The convergence indicated by Table 5 is typical of convergence observed

for other flight profiles and suggests that a time increment of At = .0015625 second

provides a sufficiently accurate solution to equation (5). However, it

was discovered during the simulations that for flight profiles exceeding

a duration of 100 seconds, the requirements imposed by the small value

of At exceeded the single precision capabilities of the computer; it was

also observed that solutions with a time increment of .0015625 second

required an unreasonable amount of computer time in proportion to the scope

of this study. Hence for all flight profiles the "true" C matrix was obtained

by solving the differential equation (equation (5)) with an incremental

time interval At = .003125. The resulting C matrix can be considered accurate

to at least the sixth decimal place.

5.3 Characteristics of Simulated Flight Profiles

The flight profiles which were simulated in this study fall into two

basic categories:

1. Missions which in the most general case consist of alternate polarity

acceleration pulses applied independently to the attitude jets of

each of the three spacecraft axes.

2. Profiles which represent a typical LEM mission.

The following constraints were imposed upon the spacecraft maneuvers called

for in the simulations:

1. All angular accelerations about each axis were of constant magnitude,

3/4 radian per second per second.

2. For profiles of the first category, rotational velocities about

each axis were limited to magnitudes of 20° per second or less;

maneuvers in the LEM missions were limited to rotational velocities

whose magnitudes were 10° per second or less.
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TABLE 5. CONVERGENCE AT 40 SECONDS OF DIFFERENTIAL EQUATION SOLUTION OF

COSINE MATRIX FOR DECREASING TIME INCREMENTS, At (At MEASURED IN SECONDS)
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Characteristics of successive runs were dictated by the desire to isolate

the effects of the various parameters which influence the capabilities of

the basic algorithm.

5.4 Effect of Vehicle Rotation

The characteristics of the first few simulations were designed to

isolate the effects of vehicle rotation upon the matrix [E (T) ] given in

Table 3. A single acceleration pulse, commencing at time t = 0 and of

a specified duration, was applied to the x axis attitude control jets;

subsequent to the termination of acceleration, the spacecraft was allowed

to rotate freely at a constant angular velocity for a duration of 200 seconds

during which time the third order N matrix of Table 3 was updated at sampling

time intervals of 0.1 second. Periodically during the 200 seconds, the

updated N matrix was compared with the true transformation matrix [C ( t )

]

(differential equation solution) and the resulting error matrix

[E(t)J = [C(t)] - [N(t)J was determined. The magnitude of the elements

of [E(t)] represents the degree to which the updated N matrix approximates

the M matrix of equation (6).

The profile described above was simulated for the acceleration pulse

lasting .025 second, 0.25 second and .465625 second. (The last value

represents the approximate time which it would take a body under an angular

acceleration of 3/4 radian per second per second to achieve a rotational

velocity of 20° per second.) The behavior of one element, e22’ t ^le resu lting

error matrix for each of the three profiles is shown in Figure 1. It

should be noted that there is nothing unique about the element e
22 !

i- ts

behavior is simply typical of - but not identical to - the other elements

of the error matrix.

There are several interesting properties about the functions shown

in Figure 1. According to the error matrix of Table 3, it was expected

that the element should be essentially a constant for the duration

T
4

1
4

of the profile since a99 of Table 3 reduces in this case to - co . It
24

X

is apparent from Figure 1 that the truncated error matrix of Table 3 does

not adequately represent the behavior of the basic algorithm; evidently
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higher order terms must be considered. The periods of oscillation of the

error functions are identical to the time it takes for the spacecraft to

rotate 360° while the peaks of the error function oscillations grow in a

linear fashion which is apparently a function of the speed of rotation.

The unfortunate result is that the error peaks appear to be monotonically

increasing. From the three functions depicted, no simple relationship

between the rotational velocity and the growth of the error peaks has been

determined. One is tempted to conclude from Figure 1 that the errors

resulting from the basic algorithm are functions of the spacecraft velocity

and attitude. It should be remembered, however, that the differential

equation solution was shown to converge only to the sixth decimal place

for At = .003125; therefore, considering the magnitude of the error, one

might question the accuracy of these initial conclusions.

To ensure that simultaneous rotation about each of the body axes does

not adversely affect the performance of the basic algorithm, a flight profile

similar to the above was simulated. This profile consisted of applying

a .025 second acceleration pulse about each of the body axes at time t = 0

and then allowing the spacecraft to rotate freely for 200 seconds. The

behavior of element the resulting error matrix is shown in Figure 2.

While unquestionable conclusions cannot be drawn from one simulation,

nevertheless comparison of Figure 2 with Figure la indicates that simultaneous

rotation about the three body axes does not significantly affect the accuracy

of the basic algorithm.

5.5 The Basic Profile

From the results observed for constant rotation of the spacecraft,

it became apparent that more sophisticated maneuvers must be studied.

A flight profile was designed which consisted essentially of limit cycle

maneuvers performed about each of the body axes; because this profile was

the basis of the great majority of the simulations, it will hereafter be

referred to as the basic profile. The characteristics of the accelerations

applied about each of the body axis are shown in Figure 3. The sequence

of the pulses about the z axis permits acceleration to the maximum allowable

rotational speed of 20° per second, free rotation at this velocity for

a period of time, followed by deceleration to zero rotation about the
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z axis. The vehicle is assumed to be rotating at time t = 0 about the x and

the v axes with a velocity oo = CD = -.009375 radian per second; thus the
x y

x and y axis limit cycle maneuvers are centered about the respective axis.

The basic algorithm was used to update the N matrix during simulations

of the above described profile for elapsed mission times of 1000 seconds.

Sampling time intervals of 0.1, 0.05, and 0.025 second were employed. A

crude graph of the behavior of one element, e^, of the error matrix

[E(t)] = tC(t)] - [N(t)] for each of the three values of the sampling

time interval is shown in Figure 4. Figure 5 is a more detailed presentation

of the behavior of e^ for the first 200 seconds of the mission with a

sampling time interval T = 0.1 second.

Figure 4 substantiates the prediction that a reduction in size of the

sampling time interval results in a corresponding decrease in the magnitude

of the errors. According to the error matrix of Table 3, a reduction in

size of the sampling time interval by a factor of two should reduce the

error by a factor of sixteen. While it is not immediately apparent from

the functions of Figure 4, comparison of corresponding raw data points

indicates that halving the sampling time interval results in a reduction

of error magnitude by a factor of only five. This result tends to substantiate

the earlier conclusion that at least some of the higher order effects which

were omitted in the basic algorithm and the error matrix are not truly

negligible

.

There are several interesting observations which can be drawn from the

function shown in Figure 5, which is an expansion of the first 200 seconds

of the profile. The frequency of the sinusoidal type pulses, which evidently

result from high speed rotation about the z axis, is identical to that

observed in Figure lc. Since the magnitude of rotatation is the same

for both cases, this is not an unexpected result; however the magnitude

of the error now indicates that the differential equation routine is not

the cause of oscillatory behavior of the error function. Where the peaks

of the error in Figure lc grow linearly, such is not the case for the basic

profile. In fact, according to Figure 4, the magnitude of the error peaks

is well bounded. The most significant result which is apparent in Figure 5

is the difference in the order of magnitude between the errors observed

for this profile and the error function of Figure lc even though the magnitude

of body rotation is the same for both profiles. Such a discrepancy can only

be caused by one or more of the following:
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1. Simultaneous acceleration about one body axis and rotation about

the other body axes; i.e., occurrrence of non-synchronous accelerations

about the three body axes.

2. Occurrence of limit cycling or repetitive accelerations.

It should be remembered that simultaneous rotation of small magnitude

about the three body axes did not previously appear to affect the performance

of the basic algorithm.

To determine the effects of the limit cycle maneuver, a profile similar

to the basic profile was s imululated ; in this profile, however, no accelerations

were applied to the z axis. The error function e^^(t) which results from

limit cycle maneuvers about the x and z axes is shown in Figure 6. Although

the speed of rotation about the two axes of the spacecraft was identical

to that of the earlier profile, the magnitude of the errors is nevertheless

considerably larger than that observed in Figure la. Because the x and y axis

accelerations are synchronous, the error shown in Figure 6 can only be due

to the repetition of accelerations. It appears that the errors are somewhat

cumulative; however the periodicity of groups of three error pulses remains

unexplained at this time.

Further evidence that the performance of the basic algorithm is

influenced by the occurrence of repetitive accelerations is presented in

Figure 7 which shows the error function e^(t) resulting from simulation

of the z axis accelerations only of the basic profile. For the profile

in which one .465625 second acceleration pulse was applied to the z axis

attitude jets followed by a 200 second period of free rotation (profile

for Figure lc) ,
the error function e^Ct) was identically zero. Thus

the existence of the error function shown in Figure 7 can be caused only

by the repetitive accelerations.

5.6 Non-Synchronous Accelerations

The simulations considered thus far have consisted of applying accelerations

simultaneously to various combinations of the spacecraft axes. To investigate

the effect of asynchronous accelerations, two profiles were simulated.

The profiles consisted of accelerations of alternating polarity applied

to the x, y, and z axes at multiples of 4, 5, and 7 seconds respectively;

in one profile the accelerations lasted for .025 second while in the other
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profile the pulses were of .465625 second duration. The error functions e
31

(t)

for the .025 and the .465625 second profiles are shown in Figures 8a and

8b respectively. The functions shown in Figure 8 substantiate the previous

conclusion that the magnitude of error is dependent in part upon the speed

of rotation of the spacecraft. It is significant to note, however, that

the error shown in Figure 8b is of smaller magnitude than the corresponding

error of the basic profile, even though the profile for Figure 8b calls

for high speed rotation about each of the spacecraft axes while the basic

profile calls for high rotation about only the z axis. Such a result was

completely unexpected and at the time unexplained.

5.7 Extensions of the Basic Algorithm

Of particular concern to the design of the LEM navigation and guidance

system is the magnitude of errors resulting from seemingly non-violent

maneuvers. Since the updated N matrix is an approximation to a matrix
_2

of direction cosines, an error of 3 x 10 (see Figure 4) can represent a

spacecraft attitude error of almost 2 degrees, an error which is unacceptable

for the LEM mission. In at attempt to reduce the size of the errors while

simultaneously gaining more insight into the characteristics of the basic

algorithm, several extensions of the algorithm were developed and simulated.

These modifications and the results of their simulation are described below.

5.7.1 Reduction of Sampling Time Interval

The error matrix of Table 3 predicts, and the error functions of

Figure 4 verify, that a reduction of the sampling time interval results

in a reduction of the error magnitude. However, if the sampling time interval

is made small enough to ensure that the updated N matrix closely approximates

the true solution, an unreasonable computational load is placed upon the

navigation computer. An attempt was made to realize the reduction of error

magnitude by sampling attitude angle changes at relatively short time intervals

while performing update calculations only at longer time intervals. The

update calculations are of course more complex than the elements of the

N matrix shown in Table 3.
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Referring to Figure 9, let the long update time interval T be divided

into two shorter time intervals, each of length T/2.

Fig. 9. Reduction of Sampling Time Interval

Within each interval T, denote the change of attitude angle about the i
t '1

body

axis during the first interval T/2 by Oh and the change of angle during

the second interval T/2 by 3^; thus the total angle change, 9^, equals

OL. +3.. If the N matrix of Table 3 is updated at intervals T/2 rather
r a.

than intervals T, the N matrix at time T is:

[N(a, 3, T)] = [N(a, T/2)] [N(3, T/2)] (25)

where [N(a, T/2)] and [N(6, T/2)] have the same elements as given in Table 3

for [N(9, T) ] except that 9 becomes a and 3 respectively. By sampling

the angles a and 3 at times T/2 the result given in equation (25) can be

obtained by updating a new N matrix, [N 1

], periodically at time intervals T.

The expression for [N 1

] is of course:

[N'(a, 3, T)] = [N(a, T/2)] [N(3, T/2)] (26)

and includes terms of the sixth order rather than the third order as given

in Table 3. (The expansion [N(QI, T/2 )][n(3, T/2)] is rather tedious and,

since it is of no real significance, is not included in this report.) Thus

the effect of updating the N matrix at shorter time intervals can be realized

by measuring the angle changes at shorter time intervals T/2 while performing

update calculations periodically at longer time intervals T.

The above procedure was simulated with the following exception: in

order to keep the computational load on the navigation computer at a reasonable

level, it was decided not to include in the elements of the N' matrix terms

which were of the third order or greater. The results of the simulation

of the N' matrix approximation are not plotted but in general the elements
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of the error matrix resulting from this procedure are somewhat smaller

than those resulting from the basic N matrix approximation; however, the

reduction of the error matrix is less than one order of magnitude. Considering

that the computational load is higher for the N' matrix than for the N matrix,

such results are not encouraging.

From the expansion of the product [N(a, T/2 )][n(8, T/2)], it was observed

that the leading terms of the difference ([N(a, T/2 )][n(8, T/2)]) - [N(9, T)]

(remembering that 9 = a + 8) were terms typically of the form (<X 8. - Ct. 8.)/2.

Since these terms do not represent an unreasonable amount of computation,

a logical suggestion is to include these terms in the elements of the third

order N matrix of Table 3 to determine whether or not they contribute significantly

to the reduction of error observed in Figure 4 when angle changes are sampled

at twice the update rate. The results obtained from the simulation of this

amended N matrix approximation indicate that the elements of the resulting

error matrix are slightly smaller than the error terms resulting from the

N' matrix approximation. Again, however, the decrease in error magnitude

is less than one order of magnitude.

5.7.2 Fourth Order N Matrix

The error matrix shown in Table 3 results from truncating the expansion

of the N matrix elements of the third order. To verify that the updated

third order N matrix is in fact a reasonable approximation to the cosine

matrix, an N matrix was constructed whose elements include the fourth order

terms necessary to eliminate the fourth order terms of the error matrix.
t

The fourth order N matrix was then used in simulated profiles to approximate

the cosine matrix. That it is unnecessary to include fourth order terms

in the N matrix was demonstrated by the fact that the resulting errors

were at least 907o as great as the errors observed for the third order N matrix.

The results obtained for the fourth order N matrix in turn suggest

that the necessity of including third order terms in the N matrix is questionable.

Profiles were simulated, wherein various combinations of the third order

terms of the N matrix of Table 3 were not included in the elements of

the update matrix; in one simulation, no third order terms were included.

The results of these simulations showed that the omission of the third
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order terms of the basic algorithm results in error functions which are

one order of magnitude greater than the error functions resulting from a

full third order N matrix. It thus appears that, at least for the flight

profiles which were simulated, an updated full third order N matrix represents

a reasonable approximation to the direction cosine matrix with a corresponding

acceptable level of computational complexity.

5.7.3 Interrupted Sampling Time Interval

The derivation of the basic algorithm results from the Taylor series

expansion of the changes of spacecraft attitude angles during a specified

time interval as given by equation (13) . For equation (13) to be a valid

representation of 9, the function 9(t) and all of its time derivatives

must be continuous throughout the time interval T. However, for the method

described for implementing the basic algorithm, the requirement for continuous

derivatives is not necessarily met. Permitting the spacecraft attitude

control jets - and hence the body angular acceleration - to be in only

one of two states, on or off, introduces a discontinuity in the angular

accelerations at the time the control jets are switched. Unless these

discontinuities occur at the initiation of a sampling time interval, the

function 9(t) has discontinuous derivatives ard the expansion of equation (13)

over the sampling interval becomes invalid.

A necessary condition to ensure that the function 9(t) has no discontinuous

derivatives during a sampling interval is that changes in spacecraft acceleration

be made coincident in time with the beginning of a sampling time interval.

For any realistic flight profile, it is impractical to predict the exact

times when changes in acceleration will occur; it is therefore impossible

to determine a priori a fixed value T for the sampling time interval which

guarantees coincidence between the sampling interval and acceleration change

for the entire mission. The obvious solution is to force, at the time of

acceleration change, the current sampling interval to be terminated and

the subsequent interval initiated.

Several practical methods of implementing the interruption of the

sampling interval can be suggested. If the navigation computer is also

performing the guidance functions of the spacecraft, knowledge of the

attitude jet firing is implied; otherwise an interrupt signal from the
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guidance equipment to the navigation computer is required. In either case,

the navigation computer can terminate the current sampling time interval,

perform update calculations and initiate the subsequent sampling time

interval; thus no discontinuous derivatives are permitted to occur during

a sampling time interval. On the other hand, in any realistic space mission,

there are bound to be rotational accelerations of the spacecraft which

will not be initiated or observed by the on-board computer. Fuel slosh,

motion by the spacecraft occupants, etc., result in changes in rotational

accelerations about which the guidance computer has no knowledge. Thus

complete coincidence between sampling time intervals and changes in vehicle

accelerations cannot be simply assured. It might be noted, however, that

these sources of accelerations are not as sharp as the jets and presumably

will not introduce large additional errors.

Although only one method of interruption was simulated, it is felt

on the basis of earlier simulations that other methods would yield essentially

the same results. Under the simulated procedure, the length of the sampling

time interval is set at some constant value T and, in the absence of

acceleration changes, update calculations are performed periodically at

time intervals T as usual. When an acceleration change occurs at time t

during the n^ sampling time interval (n = integer)
(
the n^ interval is

s t
terminated at time t and the length of the n + 1 interval is set at nT - t.

Until the next acceleration change occurs, all subsequent intervals are
s t

of length T. (The length of the n + 1 interval could have been set at T.)

Changes in spacecraft attitude angles are noted and update calculations

are performed periodically every nT seconds for the duration of the flight

profile and in addition are performed at every change of acceleration.

Although the interruption of the sampling time interval assures that

the M matrix of equation (6) can in theory be approximated by an N matrix

such as that given in Table 3, nevertheless the interruption introduces

an additional error which results from the fact that all sampling intervals

are not of the same length. To illustrate this inherent error, consider

the case where the n
t^ sampling interval is of length T while the n + 1

st

interval is of length t. For the sake of notational convenience, let time 0

represent the termination of the n^ interval and the initiation of the n + 1
st

interval; in other words, at time t a change in acceleration occurs resulting
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in two consecutive sampling intervals of different lengths. The time

sequence is illustrated in Figure 10. It is convenient now to investigate

some of the functions of Table 2 as they are calculated at the end of the
s t

n + 1 interval. For example:

t t

0 .
=

l

0

o\(t)dt

2
t -

[03.(0) + - 0^(0) + . . ] dt

= tO3.(0) + - %(0 )
+

2

- 03. (0) + . . . (27a)

9
"J

-T -T

=
/

®j(t)dt =
j

0 0

. t

[03. (0) + tO3.(0) + -

J J
2

2

oo (0) +

T . T ..

= -T03. (0) + - 03. (0) - - 03. (0) + . . .

J 2 3 6 3

. ] dt

(27b)

9.0
1 "J

-tT03. (0)03. (0) - T - 03. (0)03. (0) + t - 03. (0)03. (0) + . . . (27C)
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Fig. 10 The Sequence of Interrupted Sampling Time Interval
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2 2
Tt tT

= - + - [to. (0)o>. (0) - to. (0)oo. (0) ] (27d)

2 2
1 J

Inspection shows that equation (27d) is identical to the corresponding

function given in Table 2 only when t = T, a condition which is not possible

when an interrupt occurs. Thus the interrupt inherently introduces an error

not shown in Table 3 which in this case is represented by the factor

3 2 2
T - - (Tt + tT ) . In general the error is a function of the difference

2

in length between consecutive sampling time intervals.

Updating the full third order N matrix given in Table 3 with an

interrupted sampling time interval was simulated using the basic profile.

The normal sampling time interval was 0.1 second, the same value used in

the earlier simulations. The error functions e^Ct) resulting from the

interrupted simulation is shown in Figure 11. The principle result to

be noticed from a comparison of Figure 11 with Figure 5 is that the error

has been reduced by three orders of magnitude. Such significant reduction

is not limited to this profile; comparison of the interrupted update method

with the basic algorithm for other profiles revealed similar results.
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5.8 Practical Considerations

5.8.1 Computer Word Length

A full third order update N matrix approximation evaluated ten times

a second and at every change of acceleration results in an error matrix

which corresponds to at least milliradian accuracy for the profiles which

were simulated and in considerably better accuracy for the LEM profile

which was simulated. To achieve such accuracy with the 15 bit word length

of the Apollo Guidance Computer, calculations would have to be performed

in double precision form. A rough estimate indicates that if the interpretive

mode were employed, the computer would be fully occupied with this job alone.

In order to reduce the time requirement levied against the AGC by the update

formula, the calculations are expressed in a more convenient form.

The variables are first scaled such that the number of double precision

additions is minimized. Terms of the N matrix in 9 occupy the higher component
2 2

of the double precison word; terms in 9^, 9^9^. and ® occupy the lower

component. The maximum value of the 0^ is scaled by choosing the interval T

in accordance with the maximum angular velocity of the spacecraft. These

terms are accumulated to form the nine elements of the matrix [N-l] where

[i] is the identity matrix. The matrix multiplication [C] x [N-l] is performed

in single precision using the upper components of each matrix and the resulting

double length product is added to [c]. The lower component of [N-l] is saved

to be added to the next sampling period's [N-l]. The process is like that

of the DDA where the lower component of a double precision word is saved

and accumulated at each step. Because this form of mechanizing the computational

procedure yields results which are less accurate than those resulting from

precision, it will hereafter be referred to as computation of 1 1/2 precision.

The 1 1/2 precision form of computation described above was implemented

on the Honeywell 1800 with two slight variations.

1. The 15 bit word length of the AGC was simulated as a five digit

decimal word length. Thus the accuracy of the simulated solutions

should be less than the true solutions for the described procedure.

(Because the N matrix is a matrix of cosines, the first digit of

either the binary or decimal word must have a magnitude of either

0 or 1 leaving 4 decimal digits and 14 bits to provide the precision

of the cosine.)
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2. All terms of the N matrix were accumulated in the lower component

of the double precision word but were allowed to overflow into

the higher component of the double precision word. However,

because of the floating point arithmetic employed by the simulation

computer, the higher component of the simulated double precision

word always contains five significant digits of the cosine approximation.

Thus the simulated procedure is accurate to the extent that terms
2 2

of 6^ and 9 0^ do not contribute to the first five significant

digits of the cosine approximation. The effects of the 1 1/2

computational precision will be discussed with the results of the

simulated LEM mission.

5.8.2 Gyro Limitations

The results presented to this point are predicated upon the assumption

that the changes in the spacecraft attitude angles during each sampling time

interval are known precisely, i.e., that the gyros by which the angle changes

are measured provide a continuous readout of angle change data to the navigation

computer. In practice, of course, this situation is not realized. In the

case of the LEM mission, the gyros are pulse torqued gyros which require

one output pulse from the computer for each change of attitude angle £6,

a positive pulse for a net positive angle change and a negative pulse for

a net negative angle change. Because angle changes are algebraically accumulated,

are measured with respect to a fixed reference, and can only be measured

to the nearest A© through which the vehicle has rotated, it is possible for

the spacecraft to rotate between the angles +A0 and -A3 with no pulses being

applied to the gyros. This range of angles is known as the dead band of

the gyros and introduces a memory type effect into the determination of

angle changes. A dead band of 1/2 milliradian (AS = ± 1/4 mr.) was introduced

into the simulations of all profiles; the effect of introducing imperfect

gyros was observed to be essentially independent of the mission profile

and is therefore discussed only with the results of the simulated LEM mission.
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5.9 LEM Profile

The fundamental purpose of the entire investigation was to determine

the practicality of utilizing the N matrix given in Table 3 to maintain

spacecraft attitude during the LEM mission. The LEM mission profile which

was simulated is in fact a fairly simple approximation to an actual LEM

profile, the simplicity being a result of the author's ignorance of the

detailed flight profile. The approximation will, however, suffice for

the purposes of evaluating the results of the update approximation.

The simulated LEM mission profile consisted of maneuvering the spacecraft

about the pitch (x) axis while limit cycling the LEM about the roll and yaw

(y and z) axes. The maneuvers performed about the pitch axis can best be

described with reference to Figure 12a and consist of the following:

1. At time t = 0, the LEM leaves the orbiting platform with an inertial

pitch rate of 0.1°/second, allowing the LEM to retain local orientation

with the moon.

2. At t = 300 seconds, the LEM pitches 20° in preparation for approaching

the moon; this attitude is held for 150 seconds while the LEM

descends towards the surface. The pitch of 20° is made at the

maximum allowable rotation of 10°/second and maximum accelerations
2

of 3/4 radian/second .

3. At 450 seconds, the LEM pitches 60°, at which point it is oriented

with the local vertical of the moon.

4. For 120 seconds, the LEM hovers in a vertical attitude over the

landing spot.

5. Failing to find an acceptable landing point, the LEM aborts a

lunar touchdown, pitches 60° and lifts off to a rendezvous with

the orbiting platform; during this period of the mission, a pitch

rate of 0.1° is again employed to maintain local orientation.
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6. The mission terminates at t = 1000 seconds at which time rendezvous

with the orbiting command module occurs.

7. Throughout the mission, limit cycling as shown in Figure 13b is

occurring about the roll and yaw axes of the LEM.

As a result of knowledge gained from the earlier simulations, maintenance

of the LEM attitude for LEM profile was simulated using the basic algorithm

both with and without interrupted sampling time intervals. For each of

these methods of updating the N matrix, the following combinations of computational

precision and gyroscope performance were simulated:

1. full precision, ideal gyros

2. full precision, gyro readout quantized at 1/4 milliradian

3. 1 1/2 precision, ideal gyros

4. 1 1/2 precision, gyro readout quantized at 1/4 milliradian

It should be mentioned that the above combinations were also simulated

for the profiles described earlier in this report and the results described

below were observed for all profiles.

For the four simulations using the basic update formula, the error

functions corresponding to the 9 elements of the error matrix are shown

in Figure 13. Only very general and almost insignificant statements can

be made about these error functions. The first such statement is that

the errors resulting from computing in 1 1/2 precision are of the same

magnitude as those resulting from the utilization of quantized gyros.

One interesting result is that the errors resulting from the combination

of computing 1 1/2 precision and of using quantized gyros are not significantly

greater than the errors caused by either of these two factors separately.

Furthermore, at least for the simulated LEM mission, the basic algorithm

utilizing full computational precision and employing ideal gyros yields

error functions which are of the same order of magnitude as the errors

resulting from the utilization of 1 1/2 precision and quantized gyros.

Figure 14 shows the 9 error functions resulting from the simulation

of the LEM mission using the third order N matrix with interrupted sampling

intervals. It is significant to note that the errors resulting from the

utilization of this method with full computational precision and perfect
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gyros are orders of magnitude less than errors resulting from the other

combinations of computational precision and gyro readout. Thus the limiting

factor of the accuracy of the cosine matrix approximation for this profile

is not the update method itself but rather can be attributed to external

sources. It is again noted that the effect of 1 1/2 precision is essentially

the same as the effect of quantized gyros and that these effected do not

appear to be cumulative.

To more readily compare the results of the basic algorithm with those

of the interrupted sampling interval update method, certain of the functions

of Figures 13 and 14 are superimposed and presented in a common co-ordinate

system in Figure 15. Figure 15 substantiates the major conclusion which

was evidenced earlier: elimination of discontinuities in the angular

accelerations (and the higher derivatives) results in significant improvement

in the performance of the basic algorithm.

Figures 13, 14 and 15 reveal the performance of the basic algorithm

for a mission which somewhat approximates one possible LEM mission. In

order to delineate the relative performance between the whole number algorithm

as herein implemented on a general purpose computer and the specialized

techniques employed by what is felt to be a better-than-average configuration

of a DDA, the performance of the DDA described in Section IV was simulated.

The nine elements of the error matrix, the difference between the true trans-

formation matrix and the transformation matrix as updated by the DDA for

the LEM profile, are shown in Figure 16. Comparison of Figure 16 with

Figures 13, 14 and 15 indicates that in general the elements of the trans-

formation matrix as updated by the DDA are somewhat more accurate than those

of the whole number algorithm as simulated.

5.10 Comparative Data for the Basic Profile

The error functions shown in Figures 13, 14, 15 and 16 present a

reasonably complete picture of the capabilities of the whole number algorithm

for the simulated LEM mission. To forestall the possibility of doubt arising

about the general validity of the information depicted because of the mild

characteristics of the LEM mission profile, a complete set of error functions

was obtained for the first 200 seconds of the basic profile. Of all the

mission profiles which were simulated, this profile resulted in the largest
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magnitudes of the error functions. However, the maneuvers encountered

in the basic profile are far more extreme and violent than one would anticipate

for an actual spacecraft mission; therefore the large errors resulting

from this profile should not be viewed with excessive alarm.

Figure 17 shows the 9 error functions of the basic profile resulting

from three mechanization combinations of the noninterrupted update algorithm.

Figure 18 shows the 9 error functions of the basic profile resulting from

simulation of the interrupted update procedure. Figure 19 shows the 9 error

functions of the basic profile which result from simulation of the DDA

techniques. The combined set of Figures 13 - 19 present a reasonably complete

picture of the absolute and relative capabilities of the whole number

algorithm derived in Section III. It is felt that they, in conjunction

with the results previously described, provide an objective basis from

which designers of data processors associated with strapdown navigation

systems are free to draw their own conclusions.
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VI. MATRIX ORTHOGANALITY

The updated N matrix, regardless of how derived, is an approximation

to the true cosine matrix C given in equation (1), a matrix whose elements

are the direction cosines of the angles between the axes of the body co-

ordinate system and the axes of the fixed or inertial coordinate system.

Since the two coordinate systems are each orthogonal, it follows that the

matrix C represents an orthorgonal transformation and is therefore orthogonal.

Furthermore if the C matrix is orthogonal, it follows from equation (6)

that the M matrix must also be orthogonal. The update formula given in

Table 3 yields an N matrix which is an approximation to the M matrix; therefore

[N] should also be orthogonal.

Consider the matrix:

[Z] = [N][N]
T

(28)

T
where [N] is the transpose of [N]. If [N] is orthogonal, [Z] is the

identity matrix; the variation of [z] from the identity matrix provides

a measure of the degree of orthogonality of [n].

It was initially suggested that the Z matrix might provide an evaluation

of the update formula and might further be used to "correct" the N matrix

on a real-time basis. In practice, however, it was found that the difference

between [z] and the identity matrix provides at best a crude indication

of the effectiveness of the update methods. Examination of the Z matrices

given in Table 6 reveals the difficulty in constructively utilizing the

property of orthogonality to correct "the update formulas." For example,

according to Figure 15, the use of interrupted sampling time intervals

yields consistently more accurate results than those realized from the

noninterrupted update technique; yet at the termination of the LEM mission,

the Z matrix for the noninterrupted algorithm is closer to the identiy

matrix than is the Z matrix for the interrupted updating. Similarly, according

to the Z matrices d, e, and f of Table 6 the N matrix of the noninterrupted

update method is, at the time of maximum error magnitude, less orthogonal

than the N matrix of the interrupted N matrix at the same time. However,

at the time of peak error magnitude, the N matrix for noninterrupted update

formulas is more orthogonal than the N matrix of the interrupted formulas
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at the time of its largest error functions. Such results indicate that the

property of orthogonality cannot be constructively utilized.
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(a)

Z Matrix at End of LEM Mission Resulting from Basic Update Formula,

Perfect Gyros and Full Computational Precision.

1.0000119

- .00000012

.00000016

- .00000012

1.0000114

.00000018

.00000016

.00000018

1.000011

(b)

Z Matrix at End of LEM Mission Resulting from Interrupted Update Formula,
Perfect Gyros and Full Computational Precision.

1.0000122

.00000044

.00000045

.00000044

1.0000133

.00000016

.00000045

.00000016

1.000013

(c)

Z Matrix at End of LEM Mission Resulting from Interrupted Update Formula,
Gyros Quantized at 1/4 Milliradian, 1 1/2 Precision.

"".99955 .000070 .000015

.000070 .99984 .000084

.000015 .000084 .99981

(d)

Z Matrix at t = 190 of
Perfect Gyros and Full

.9998908

.00001186

.00002645

Profile #1 Resulting from
Computational Precision.

.00001186

.9998949

.00002999

Basic Update Formula,

. 00002 645~

.00002999

.99997939

TABLE 6. TYPICAL Z MATRICES FOR VARIOUS PROFILES
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(e)

Z Matrix at t = 190 of Profile #1 Resulting from Interrupted Update Formula,
Perfect Gyros and Full Computational Precision.

.9998918

.00001155

.00002580

.00001155

.9998965

.00002995

.00002580

.00002995

.99997979

(f)

Z Matrix at t = 193 of Profile #1 Resulting from Interrupted Update Formula,
Perfect Gyros and Full Computational Precision.

.9998889

.00001248

.00002684

.00001248

.9998943

.00003142

.00002684

.00003142

.9999778
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CONCLUSIONS

Extensive computer simulations have verified that the transformation

matrix required for attitude reference in a strapdown inertial navigation

system can for certain missions be updated at relatively long time intervals

with sufficient accuracy by an on-board general purpose whole number computer.

The accuracy of the update formulas is strongly dependent upon the characteristics

of the particular flight profile, specifically upon the spacecraft rotational

velocity, rotational acceleration, the number of times angular accelerations

are encountered, and the times at which the accelerations occur. The third

order update formulas offer a reasonable compromise between computational

complexity and accuracy of the updated matrix; little improvement is realized

by using fourth order formulas while significant degradation results from

second order expressions. Sampling time intervals of the order of 0.1 second

are sufficiently small to yield maaningfull results; smaller intervals will

of course yield more accurate results but will also place an increasing

computational load upon the navigation computer. Real time knowledge of

the occurrence of discontinuities in the time derivatives of the angular

velocities can be used to significantly improve the performance of the basic

algorithm. A sufficient increase in computer word length such that computations

can be performed in single precision without excessive loss in computational

accuracy results in improvement in the accuracy of the whole number algorithm.

Similarly, an increase in precision of readout from the strapped down gyros

results in improved accuracy of the transformation matrix.

Relating the results of the study to the AGC Block II computer, it

appears that the Block II computer yields results in terms of accuracy which

are barely acceptable. Second generation airborne computers will, however,

operate at speeds five to ten times faster than the Block II AGC. The increased

accuracy resulting from shorter sampling intervals thus makes a strapdown

navigation system employing a general purpose computer very attractive.
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