1D

February 1970

Attached are pages extracted from GSOP R-567, LUMINARY 1C, which have been updated to reflect LUMINARY 1D PCRs effected as of now. This is a preliminary publication issued for information, evaluation, and comments. Formal publication of R-567, Program LUMINARY 1D is scheduled for May 1970. The following PCRs were evaluated, and included in Sections 2, 3, 4, and 5 of GSOP as noted below:

PCR	PCN+) TITLE	Section 2 Revision 8	Section 3 Revision 4	Section 4 Ravision 8	Section 8 Revision
288	Format Change to Landing Site Update				
287	Removal of 528 Alarm in P22 and P20				
294	Update Fixed Memory Mass Properties				
254	Set "G" Vactor Parallel to Landing Site Radius Vector			•••	**
298	Decresse Time to Call Alarm Cods 823				
302. 2	Channel 17	***			
821. 2	Move AZO to Fixed Hemory				
872.2	Instinte TFI in P30s				
874.2	Change Decimal Load Technique				
892	Delete R19	•			
898	LR Velocity Read Contered at PIPTIME			***	
897	Delate PCR 175				
898	LR Velocity Read	•			
854	N38 in C/A. IS, and R/P Liste	•			
642	LR Update Cutoff				
944	Read X-Pointer Input from CDU				
845	Descent Downlist				
70.2	Modify Cyre Terguing Routine				
78	Delate 621 Alarm				
242	Extend Capability of Lunar Surface Star Acquisition Routine R58		-		
43	Unit Vector Capability for N#8				
88. 2	Update Fixed Constants for 1870-1971 Ephemeris Year				
80 ·	V44 RR Remode Check				
\$1.2	Sum Uplank Data				
58	Liftoff Check in P07				
015	Check for AVEGON at Start of R38				
	and the second se			_	

* Preliminary change pages were issued January 1970.

** Preliminary change pages included herein.

*** May impact this section, but information as yet unavailable. A blank space indicates that no change is required.

> MASSACHUSETTS INSTITUTE OF TECHNOLOGY CHARLES STARK DRAPER LABORATORY CAMBRIDGE, MASSACHUSETTS 02139

GUIDANCE, NAVIGATION AND CONTROL

R-567

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SECTIONS 2, 3, 4, & 5 PRELIMINARY CHANGE PAGES SECOND ISSUE

FEBRUARY 1970

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-23870, sponsored by the Manned Spaceraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065 with the Charles Stark Draper Laboratory, Massachusetts Institute of Technology, Cambridge, Mass.

The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the conclusions contained therein. It is published only for the exchange and stimulation of ideas.

2.1 Digital Uplink to LGC (P27)

By means of the LGC UPLINK, ground control can insert data or issue instructions to the LGC in the same manner that these functions are normally performed by the spaceraft crew in using the DSKY keyboard. The LGC is programmed to accept the following UPLINK inputs:

1. LIFTOFF TIME INCREMENT: Provides ground capability via VERB 70 to increment or decrement the LGC clock, LM and CSM state vector times and TEPHEM time with a double precision octal time value, scaled centiseconds $/2^{28},$

 CONTIGUOUS BLOCK UPDATE: Provides ground capability via VERB 71. to update from 1 to 18 consecutive E memory registers in the same EBANK.

 SCATTER UPDATE: Provides ground capability via VERB 72 to update from 1 to 9 nonconsecutive E memory registers in the same or different EBANK's.

 OCTAL CLOCK INCREMENT: Provides ground capability via VERB 73 to increment or decrement the LOC clock with a double precision octal time value, scaled centiseconds/2²⁸.

All information received by the LGC from the uplink is in the form of keyboard characters. Each character is assigned an identifying code number called its character code. Each character code transmitted to the LGC is sent as a triply redundant uplink word preceded by a leading "1" bit. Thus, if C is the 5-bit character code, then the 16 bit uplink word has the form:

ıcīc

where \overline{C} denotes the bit-by-bit complement of C. (Table 2-1 defines all the legal input keycodes.) To these 16 bits of Information the ground adds a 3-bit code specifying the system aboard the spacecraft which is to be the final recipient of the data and a 3-bit code indicating the spacecraft which should receive the information. The 22 total bits are sub-bit encoded (replacing each bit with a 5-bit code for transmission). If the message is necesived and successfully decoded, the on-board receiver will and back an 8-bit "message accepted pulse" to the ground and shift the original 16 bits of the uplink word to the LGC (I \overline{C} C). The leading "1" bit causes an interrupt within the LGC after all 16 bits have been shifted from the uplick receiver.

Any ground command sequence normally transmitted via the uplink may be duplicated by the astronaut via the keyboard. All reference to uplink words used in this section are in the form transmitted from the uplink receiver to the LGC. Therefore, they do not contain the vehicle or subsystem addresses added by the ground facilities.

During ground testing the court of UPRUPTS and the sum of the CCC codes entring the USC are accumulated in erasable resisters, permitting a count and sum-check on data transmitted UPLINK to the UGC. This feature will not be used in flight because the summing of uplink" data, is disabled.

X Revised GSOP # R-567 PCR 991.2 Rev. B

RELIMINARY

0

2, 16 Absolute Addresses for UPDATE Program

1D

• •

BREVISEd GOP# R-507 PCR#286 Rev. 8. Preliminary

Word Number

Contents

39-44 (Cont'd)

Flagword Bit 12

11

10

Meaning LUNAFLAG. Used in lat-long subroutine. A 1 means lunar lat-

long. A 0 means earth lat-long. Set to 0 or 1 by routines that call lat-long subroutine.

- NODO PO7 BIT is set to 1 by ground uplink at liftoff Tested by V92 which performs POODOO (alarm 21521) if the bit is set. Tested in UPRUPT which maintains erasable sum of key codes if the bit is 0. (NOTE: this bit is not cleared by FRESH START.)
- 3

VFLAG. Used in automatic star selection routine (R56) during IMU alignment program (P52). Set to 1 to indicate that a pair of stars are not in the AOT field-of-view. Set to 0 if pair of stars found. Initially set to 1 at beginning of R56 and is used temporarily for program control purposes.

-

R04FLAG. Set to 1 by Verb 63 entry to indicate R04 is running and set to 0 at the end of R04. Set to 0 by Verb 78 entry to indicate R77 is running, rather than R04, since the two routines use much of the same coding. Set to 0 in R00 (V37). Set to 0 in the beginning of P20/P22 in order that alarm 521 be sent if the radar cannot be read. Set to 1 by R65 before reading RR and set to 0 by R55 after reading RR. The bit is checked in the RADAREAD routine (which is used by R04 and P20/P22) if the radar cannot be read; if the bit is 1 (R04 is running), alarm 521 will not be sent.

PRELIMINARY

1D

2-41

Revised GSOP # R- 567

Contents

Word Number 39-44 (Cont'd

Flagword Bit

8

11

11

11

11

Meaning

LRINH. This bit is initially reset to 0 by R00 allowing the landing radar data to be read and tested but not incorporated into the state vector. The bit may be set to 1 via extended verb 57, permitting landing radar data incorporation into the state vector. It is reset to 0 via extended verb 58 and also R12 (when LM altitude below 50 feet) inhibiting landing radar data incorporation. Bit may be reset to 0 after it has been set to 1 in V57.

7 VELDATA. Bit is set to 1 by the landing radar velocity read routine after a valid reading has been made. A 1 indicates that a landing radar velocity reading has been made and that the data is available. Bit is reset to 0 by R12 after the data is used. Bit has a limited value on the downlink because it is set and reset at least once during a two second interval; and, due to the fact that the downlink reads this bit at the same point during each pass, it may read executiv the same (either always set or always reset) on acch pass.

3 LPOS2FLG. Set 1 in SETPOS2 to inform that position 2 transformation is being used. Reset 0 in fresh start and V37 logic. Also set 0 for abort or abort stage.

11 5 Not used.

Revised G-SOP# R-567

RNGEDATA. Bit is set to 1 by the landing radar altitude read routine after a valid reading has been made. A 1 indicates that a landing radar altitude reading has been made and that the data is available. Bit is reset to 0 by R12 after the data is used. Bit has a limited value on the downlink because it is set and reset at least once during a two second intervalgand, due to the fact that the downlink reads this bit at the same point during each pass, it may read exactly the same (either salways set or always reset) on each pass.

PCR 942

Rev. D

2-61

V LUNAR SURFACE ALIGN LIST

w

ord Number	Contents
1a	I. D. word for this list. Will contain 777728.
1b	Sync bits. Will contain 773408.
2-8	Same as words 2-8 on Orbital Maneuvers List.
9-13	Same as words 9-13 on Rendezvous and Prethrust List.
14	TALIGN. Time to which a landing site or LM state vector is referenced for the landing site and nominal IMU alignment orientations during P52 and P57. Scaled centiseconds/2 ²⁸ , referenced to computer clock.
15-20	Same as words 15-20 on Orbital Maneuvers List.
21-23	Y NAV BASE VECTOR (X, Y, Z). Orientation of Y component of navigation base with respect to lunar-fixed coordinate system. Computed initially by Pé8. Compated with each P54 alignment If REFENTEIG (Bit 13 of flagword 3) is set 1. Unit vector. Scaled 2 ⁻¹ .
24-26	Z NAV BASE VECTOR (X, Y, Z). Orientation of Z component of mavigation base with respect to lunar-fixed coordinate system. Computed initially by P68. Computed with each P53 alignment if REFENTED (Bit 13 of flagword 3) is set 1. Unit vector. Scaled 2 ⁻¹ .
27-	Same as word 27 in Rendezvous and Prethrust List.
30-64	Same as words 30-64 on Orbital Maneuvers List.
65-74	Same as words 65-74 on Coast and Align List.
75-77	GRAVITY VECTOR. Defines direction of gravity with respect to
	body axes. Recomputed with each technique 1 & 3alignment in P57. Unit vector. Scaled 2 ⁻¹ .
78	Same as word 9 on Coast and Align List.
79	Same as word 79 on Coast and Align List,
80-98	Same as words 80-98 on Orbital Maneuvers List.
99-100	Spares. See page 2-70 for definition.
2.8	Same as word 76 on Coast and Align List.
29	Same as word 29 on Rendezvous and Prethrust List.

18 Revised GSOP # R-567

2-110 PC R # 899 Rev. 8 (Preliminary) 1D

1D

SECTION 3 CHANGES

The 1/ACCS Routine

Another part of the SERVICER program is the I/ACCS routine, the primary function of which is to compute the control effectiveness of the LM DAP as a function of the vehicle mass, the unfailed jets, the configuration, and other such factors. In addition to being executed as part of the SERVICER program every 2 seconds during nowered-flight mission phases, 1/ACCS is called several times during a mission when certain discrete events occur, such as restarts, fresh starts, detection of disabled jets, data load by crew (Routine 03), resetting of the atilitied deadband, and the turning-off of the main engine. Also, prior to lunar full-off, the ignition logic of the powered-ascent program (P12) loads the bias angular accelerations of the state estimator from the prior estimates given in padloaded erasables IGNAOSQ and IGNAOSR. This is followed by an execution of 1/ACCS that establishes the proper ascent control effectiveness. D

The first thing done in 1/ACCS is a determination of the vehicle configuration on the basis of APSFLAG and CSMDOCKD. The LM mass limits and the mass-to-inertia coefficients to be used in 1/ACCS itself are selected on this basis.

Next, the mass of the LM alone is separated out as follows:

- a) For the LM-alone case, LM mass = total mass.
- b) For the CSM-docked case, LM mass = total mass CSM mass.

The LM mass, which is displayed and loaded in Routine 03, is therefore kept updated during burns as though it were maintained directly in the SERVICER program.

There is a check on the LM mass in the 1/ACCS routine that serves to keep this critical parameter within a reasonable range despite any possible error in the initialization, in the Routine 03 load, or in SERVICER maintenance. It also results in an automatic correction of the mass when staging occurs, since the old, descent value is too high for the ascent stage alone.

36,740

PRELIMINARY

The following limits on the LM mass have been implemented:

Highest descent mass (33, 73

Lowest descent mass = 3858 lb + HIASCENT

Highest ascent mass = HIASCENT

Lowest ascent mass = 4850 lb

HIASCENT was made a pad-loaded erasable quantity so that it can reflect the ascent fuel loading used in each particular flight. Its value for a fully loaded ascent stage is about 11, 133 lb, and it is so initialized in a fresh start (to be over-written by the erasable load shortly thereafter). HIASCENT should not be less than 7265 lb, in order that the minimum descent mass will not be too low. When the LM mass is found to violate a limit, its value is changed to equal the limit (maximum or minimum); the total mass is changed correspondingly.

3.6-8

1D

SECTION 4 CHANGES

RELIMINARY

30 SPARE 31 SPARE

XXX.XX DEG (+ NURTH) XXX.XX DEG (+ EAST) XXX.X NM COXXX, HRS 000XX, MIN 0XX,XX SEC 00XXX. HRS 000XX. MIN CXX. XX SEC 00XXX. HRS 0C0XX. HIN 0XX.XX SEC COXXX. HRS 000XX. MIN 0XX.XX SEC CCXXX, HR S 000XX, HIN CXX, XX SEC 00XXX. HRS 000XX. NIN 0XX.XX SEC 00XXX. HRS 000XX. MIN 0XX.XX SEC XXXX.X NH XXXX.X NH XXXX.X FPS XXX. XX DEG XX.XXX DEG 3 3 3 3 38 SV INTEGRAFION TIME LTETS 40 TIME FROM IGNITION/CLIDFF 32 TIME FROM PERIGEE VG DELTA V INEASUREDI 36 TIME CF LGC CLCCK NAV BASE AZIMUTH 34 TIME OF EVENT LATI TLOE LONGITUDE ALT LTUCE 37 TIG I TPI) APC ALT PER ALT DELTA V APO ALT PER ALT TFF 39 SPARE 33 TLG 35 TFI Ŧ ÷ ş

XXBXX MIN/SEC XXXX.X FPS XXXX.X FPS

ANY TIME

P 32.P 34,P 72.P 74

PHOP PAZ

872.2

SYSTEM TEST

064

P21.P68

R 30

XXXX.X NH XXXX.X NN XXXXX NN

259.459.559.259.059 279.419.579.279

KXBXX MIN/SEC

XXXX.

HARKS (M) TFI MGA

** \$\$ NOUN LUMENARY

1D

21 NOUN LUMI NARY

P12 .P22 .P30 .P76

830

P21.P52.P57

'2

IMINARY		1.042.							TIAN VECTOR				*		NOUVLLUKINARY
REL	824	P30, P32, P33, P34, P35, P40, P4	P32 • P72	P47	P76	P12, P40, P41, P42, P70, P71	P40*P41 *P42	R52,R53,R59	RSB POSI	P52, P57	R36	P21 .	P63, P64, P65, P66	P57,R55,V42	
XXX.XX DEG XXX.XX DEG XXXX.	XXXXX. XXX-XX UEG	XXXX.X FPS XXXX.X FPS XXXX.X FPS	XXXXX FPS XXXXX FPS XXXX.X FPS	XXXX.X FPS XXXX.X FPS XXXX. X FPS	XXX -XX DEG XXX- XX DEG	XXXXX. X XXXXX. Y XXXXX. Z	XX.XXX DEG XX.XXX DEG XXX.XX NH	CDT XXX.XX NH CDT XXXX.XX FPS SC XXX.XX DEG	XXXXX - NMX 10 XXXXX - FPS XXX-XX 0EG	XXXXX. PCI XXXX.X FPS XXXXX. FI	X XX,XXX DEG Y XX,XXX DEG				
3		10	3		9		q	LOS ALEVATION LU		3	ANE PARANETERS	(1) 3.6		ES	
75 CLRSOR ANGLE SPIRAL ANGLE PCSITICA CCUE	8D DATA INUICATUR GREGA	81 DELTA VX(LV) DELTA VY(LV) DELTA V2(LV)	82 DELTA VX(LV) DELTA VY(LV) DELTA VX(LV)	83 DELTA VX(LM) DELTA VY(LM) DELTA VY(LM)	84 UELTA VX(OV) DELTA VY(OV) DELTA V2(CV)	85 VGYILMI VGYILMI VGZILMI	86 VG2(LV) VG2(LV)	B7 BACKUP OPTICS I BACKUP OPTICS L	88 CELESTIAL BODY	89 LATITLOE LCAG/2 ALTITUDE	40 RENC CUT OF PLA	91 ALTUTE	92 THRCMC H DCT H	93 DELTA GYPC ANGL	

PREFSONTES :

4

L

14

				10		
4.4.8 FLAGS REFERE	NCED IN	A SECTION 4 OF R567		REV OF		
FLAG	PCK	IF FLAG SET	IF FLAG RESET	T1657E0	1.35	RESET
ABCRT ENABLE FLAG		ABURT PROGRAMS ENABLEC	AOUR T PROGRAMS NOT ENABLEC	P 70, P71, R11	P6.3	P12+P68+P70+P71
ABORT TARGETING FLAG	E	J 2. X 2 P A R A H E F K S USEO F CP A B C H T TAKGE 11 NG	J1.K1 PARAMETERS USEC FOR ABORT TARGETING		179,071	R 00
ACTIVE FLAG VEHICLE		LM IS ACTIVE VEHICLE	CSH IS ACTIVE VEHICLE	TAR GE TING CO PPUT AT LONS	P32+P33+P34+P35	P12. P13. P14.
APS ABCRT CONTINUATION FLAG		APS CLNT INJEC ABURT AFTER OPS ABORT	APS ABORT NOT A CCNTINUATION OF OPS ABORT	12 d	014	FRESH START (V36E)
APS FLAG		CREA HAS SPECIFIED THAT CPS hAS BEEN STAGEO	CREW HAS SPECIFIEO THAT CPS HAS NCT BEEN STAGEO	P12, P40, P42, P63 P70, P71, R03, R40	P42, P68, P71, R03	R 03
A STRONALT FLAG		CHEM HAS APP- RUVED IGNI TIUN	CREM HAS NOT APPROVED IGALTION	P12, P40, P41, P42, P63, R40	P12,P40,P42,P63,R40	P12,P40,P41,P42, P63.840
ATTITLOE FLAG		LGC MAS ST CREC LM ATTITLDE IN MUCN-FIXED GC-CRC	LEC HAS NOT STORED LP ATTITUDE IN HOUN-FIXED CU-DRO	P 5 7	P57.P68	FRESH START (V36E)
AUX FLAG		IF IDLE FLAG RE- SET SERVICER MILL & XENCISE OVNON	IF IOLE FLAG RESET SERVICER MILL SKIP CVPCh And SET AUX FLAG	K40	K4.0	R 40
AVERAGE 6 FLAG	8	AVERAGE G ISERVICERI DESTREC	AVERAGE G (SERVICER) NOT CESIREO	P70,P71,R25,R30,A31, AVERAGE 6, V59	AV ER AGE G	R 00, FRE SH START (V36E)
CCMP E FLAG		ELEV. ANGLE SUPPLIEC FLR P34/74	ELEV. ANGLE NOT SUPPLIED FOR P34/74	P34,P74	P34, PT4	P 34*P 74
CCATIALCUS CESIGNATE		NI THOLY LCCK CN	LGC CHEOKS FOR LCCK Ch	V4 IN 72 + V44	5 ZEN150	R 25, 8 26, 8 26, 800
DESIGNATE FLAG	8	RR DESIGNATE	RH CESIGNATE NOT	V41N72	Velinz 2	V4IN72, V44

FLAG/ LUMINARY

1D

FLAG/LUMIA	P Street	310	, R50, P36, P51, P52, P57, 8 50, P44, M22, P57,	P27, 503, 504, 505, 605, 805, 805, 805, 805, 805, 805, 804, 805, 805, 805, 805, 805, 805, 805, 805	219,279,269,269 ET9.	, 2014	420, P20, P22	400	R 00, R L 2	R 00	P71. P12.P40.P42.P63. FART P70.P71.840	P63, P12, P40, P41, P42, P63, 840	P40, P42	904-900 914	k 10	657	P68.800
	IMINA	¢ 14	P51,P52,P57,K90	4 76	279,659,559,059	79,579,589,589,994,579	420, P20, P22		R12	P12	PI2.P40.P42.P7C. 200.840. FRESH S (V346)	P12. P40. P41. P42.	P4.0.P42	208, 129, 129	RIO	51	012,963
	PRE	4 IO	T 3k UP T	k 05, R 30, F 31, R 76, V85	TVC CUMPUTATIONS	P32, 433, P74, P35, P72, P73, P72,	249,050,022		R09	R1 2	840	P12+P40+P42+P63+R40	P4C+P42+P63+R40	R47	RID	154	R10
	RELUESTEL DA IN PALGRESS.	PERFURM DATA CISPLAY INITIAL- ILATICA	NU GYRO COMPEN- SATICN	NO EXTENDED VERB Prcgress	LAMBERT VG COMP	INTER IN PASS THRCUGH REN- DEZ VOUS CUMP	SUCCEEDING PASS	NOT GIMBAL LOCK	OC NCT FLASH LA ALTITUDE FAIL LANP	BEFORE HIGATE	CONNECT DV MCNITUR	TIG HAS NGT ARRIVED	STEER ING BURN	INU NUT IN USE	WR CGUS NOT IN USE FOR INERTIAL CATA CISPLAY	SECUND PASS OF PS7	LANCING AMALOG
	C . Rewester Le In Pruderess	INERTIAL Data avail- Aull	CONT UTRO LON-	EPIT EXTENDED VERN IN PRUGRESS	EXTERNAL UELTA V V. CCPP	LAST PASS THKUUCH RENC. CUMP.	297 FINST PASS	GIMBAL LUCK	FLASH LH ALTITUDE Fail Lape	AFTER HIGATE	NO DA PCALICE	TIG HAS ARRIVED	MINIMUM INPULSE BURN IC/C SETI	INU IN USE	AR CTUS IN USE Fur inertial Cata Uisflay	INITIAL PASS	LANDING ANALCO
).		ULO FLAG	DRIFT FLAG	EXTENDED VERN ACTIVE FLAG	EXTERNAL CELTA V FLAG	FINAL FLAG	FINST PASS FLAG	GINBAL LOCK FLAG	H FLASH FLAG	RIGAT & FLAG	IDLE RAG	GNITICN PLAG	MPULSE FLAG	MUSE FLAG	NERTIAL DATA DISLAGTE LAG	NITIAL ALIGN FLAG	ANDING ANALOG DISPLAYS

4

1-7

51 FLAG/LUMINARY

5.

9

P63.800.856	P00	k03.R12	R12, R22	P70,P71	6	800	P 63, P 64	P06 .P51.P52.P57.	R21 . R25 . .	P06,P12,P€3,R00, R56	5 P12.V67.V93	R25, W41N72, FRESH START	12,010,071, FRESH	R 25, V40472	1 8.25
P.25	5+A	R12	R 20	P12, P7C, P71	0	412	P54	P51,P52,P57	k21 ••••• •••1 N72	P20.P22.	NAVIGATION COMPUTATION	M25	P.0.671	R25,V40N72	R25. FRESH START LV36E1
P25,400,456,461,865	P.CC	R 12	R12+R22	1779 P71	8	R1.2	P64	P 3C, P 32, P 33, P 34, P 35, P 57, R 02, R 4 7	WHINTS, VALUE	P20.P22.R00.R22. R24.R25.R56.R61.R65.	NAVIGATION CUMPUTATIONS	R 26. R 21. 4 8 25. V40N72, V41N72	P12, P7C, P71	💼 R21	ZENOSA
P25 NCT RUNNING	CCNT INUE INTE- GRATION	ND LR ALTITUOE MEASUREMENT MAUE	NO SCALE CHANGE OLRING RR/LR READ	WAIN ENGINE MUDE	6	OC NOT READ LR VELOCITY OATA	LANDING SITE RECESIGNATION FRCHIBITEC	REFSMMAT BAD	NO CHANGE IN Antenna Mode Requested	NEI THER P20 NOR P22 RUNNING	H HATRIX INVALIO	ND REPOSITION IN PRCGRESS	OC NCT FORCE VEHICLE RCTATION	RR IN MODE #1	RR IN AUTO HODE
P25 RUNNING	STOP INT E- GRATICA	LR ALTITUGE NEASLNEFENT MADE	872 SCALE CHANGE DURING RRILR READ	EULT RCS INJECTION HUDE	i zu	REAU LR VELUCITY Cata	LANDING SITE Redes ignat iln Allumeo	REFSMMAT GCOC	PTC CHANGE IN PTC ANTENNA PCDE REQUESTED	EDIT P20 UK P22 RUNNING	W MATRIX VAL IO	892 IN PAGERESS	EDIT FORCE VENCLE ROTATION IN PRE- FERREC CINECTICN	892 HR IN HODE #2	ME NOT IN
P25 FLAG	OLIT FLAG	RANGE CATA FLAG	RANGE SCALE FLAG	RCS FLAG	1	READ VELOCITY FLAG	REDESIGNATION FLAG	REFSHMAT FLAG	REMODE FLAG	RENDEZVOUS FLAG	REND & FLAG	REPOSITION FLAG	ROTATION FLAG	RK ANTENNA MOGE FLAG	RR AUTO MODE FLAG

PRELIMINARY

1D

FLAG/LUMINARY

PRELIMINARY

KK CUU NLT FAILLE FL	S 🔰 ND AR COU FAIL	RK CDU FAILED	R20, R25	R25. FRESH CTART (V36E) R25
AR CLU ZERU FLAC	ML RR COUS RULLIS	R4 CIJUS NJT 96 ING ZFRJEL	P20.P22.52.825	R25,440N12	R25. V 40M72.
KR DATA FALL FLAG	RR LATA VAIL	$h^{(1)} \geq \gamma - 1 \mathbf{A} \mathbf{T} \mathbf{A} - \mathbf{F} \mathbf{A} \mathbf{L}$	K 25	Run	(1358) N2 U
AN TURN CN FLAG	RR FURL CN Style ENCE IN SKLURIDD	No ex TURN UN SECUENCE	PERSON	R25	K23, F9ESM START (,356)
R C4 FLAG	ALANK UC . IL SLAVKE SSEU	ALLUNGU ALLUNGU	Heren	R04,4 65	P20, P22, Pn1, K14,
RIG FLAG	KL) CUTFUIS UNLY TC -1 AVC F CUT 4ETERS	RIU DUPUTS TO H ANC POCT PETERS AND FUNNARU AND LATERAL CRUSSPCIMTERS	91 a	12,470,471	FFCIM STARI
R-12 X-AXIS CVEMMICE FLAG	INFIBIT CVERFICE	DU NOT INHIBIT GVERAIGE	612	512	RCO
R61 FLAG	NUN <el lm<="" td=""><td>RUN R65 LM</td><td>R 6 1 + R 6 5</td><td>86.1</td><td>F 65</td></el>	RUN R65 LM	R 6 1 + R 6 5	86.1	F 65
R17 FLAG	EDIT 477 DH ISUPPRESS MAUAR ALAFPS ANC INACKER FAILSI	KTT CFF	R04,620, R77, v 59, V40N72, v4 LN72	· · · · B3	7, V79, FRESH START
SEARCH FLAG	RACAN IN AUTC Seanch LPTICA	RALAN NOT IN AUTO SEARCH CPTICN	P2C+P22+H24	824	229, 024
SAUFFER FLAG	U. V JETS ETS- AdleU ULATNU DPS BURA	U+ V JETS FNAELEI) UURING DFS BUKN	DA4	4+4	V74. FRESH ST APT (V35F)
STEER FLAG	SUFF ILIENT FIRUST	NCT SUFFICIENT THRUST	۲۷.	K4N	440
SURFACE FLAG	EDIT LH ON HLCH	LM NLT UN MUUN	P20, P22, A21, R22, H.	2 4 1	214
TRACK FLAG	IKALKING ALLUNG	TRACKING NOT ALLUNE J	P20. P22. P25. R04. 8 22.	172,423,425,417, 172,433,434,475,474, 172,473,473,674,	P116, P51, P57, 200, 5 50, 2 56, V41V20
ULLAGE FLAG	ULLAGE FECLEST	NC ULLAGE Kt ULST	Dar	P4C+P42+P63+R41	F4C+P42+F63.P70.
UPDATE FLAG	SV UPLATING EV AN MANNS ALLENED	SV UPCATING BY RA Marns nut allowed	426	Pr 0,722,830,932, 123,034,435, P22,934,435,	P30. P32. P33. P34. P35. P72.
					F LAS /1 11MT NA 8V

3 | 5

006.0

\$ 310

0320

RESET THE NO RR PONITCE FLAG.

Se

8

RESET LCSCM FLAG.

RESET CESICHATE FLAG

RESET CONTINUOUS CESIGNATE FLAG

287

SET FIRST PASS FLAG

CISABLE RR ERROR

MAN ENTER HERE. ENTER HERE. FECP FR. SEARCH R241) R241

ZERC RR TRACKING MARK CCLMTER

PRELIMINARY

056.0

0958

1D

P20/LUMINARY

P20/LWI MARY	0 *** 8	650 152	0686	P20/LUN IN ARY	
PRELIMINARY					
•		And			
	90, 90, 90, 90, 90, 90, 90, 90, 90, 90,		C PREFRANCO C PREFRANCO BCC PREFRANCO TCC TCC RCUT 14C (105 (105).		
			to		

RCS FRCGRAM IP41)

PURPOSE:

60 Ke v 🛠 ILI TC CCMPUTE & PREFERED INU ORIENTATIUN AND A VEHICLE ATTITUDE FDR AN RCS THPUSTING MANEUVER.

TD PERFORM THE VEHICLE MANEUVER TD THE T-RUSTING ATTITUDE. 12)

TC PROVIDE SUITABLE CISPLAYS FDR MANUAL EXECUTION OF THE THRUSTING MANEUVER IN THE ATTITUDE HOLD MODE. 13)

II. THE TARGET PARAMETERS MAVE BEEN CALCULATED AND STORED IN THE LGC BY PRIOR EXECUTION OF A PRE-THRUSTING PROGRAM. ASSUMPT LCNS:

2

The relation strength strength could be constrained by the negative strength strength strength strength or the strength str

11. The Hie callestic carles are to see and the cost corres, soften in ATTITOR HOU THE POCS HILH GLO HE MELLER ATTIVE ADDALESS AFER THE PORE ADD THE CORRES, SOFTEN ATTITOR CORREST ATTITOR THIS LISE: ADDALE THE ADDALE CORPORED THE CARL WAS ADDED TO ADDALE ATTIVE ADDALEST ATTIC ADDALE ADDALEST CORPORED THE ADDALESS ADDALESS ADDALESS ADDALESS ADDALESS ADDALESS ADDALE ADDALESS AD

P

(4) The Policy can extent for intro of will use is now for uptave by the folic decision of the second second second second second second second second extension of the second particular second second second second second second second second particular second secon

4

[5] HE INLIS UN AND MIST BE AT A MACAN CRIENFATION BEFORE HUS PROCRAM MAY BE COMPLETED. IT IS NORMALLY REQUIRED INAT THE ISS OF UN FOR A MINIMUM UF IS MINUTES PRIOR TO A THRUSSING MANEUVER.

I &) THE EVENT TIMER IS SET TO COUNT TO ZERO AT TIG.

17) ACS IGNTICM MAY BE SLIPPED BEYOND THE ESTABLISHED TIG IF DESIREU BY THE CREM, DR IF STATE VECTOR INTEGNATION CANNOT BE CUMPLETED CM TIME.

In start and structure and structure and start with the matter to exects mount context and the matter with the failure occurrence and matching and structure context or the start me context is requered to effort the Points and Structure Structures and with the failer is a barbor, and the maturity fail matting.

ATTINGS - AIS ORERIDE CPTICA IS ALVAS MAILARE TO THE CREM. MARKEN IT SOUND MOT BE EXECTED WHEN THE GG IS DIRECHTING & DISTRID MAINTING, FLELI DURING THE ATTINUE MARKUREN TO THE FRANST IMA ATTINUE IS FRAND.

IS) THE LUAU UAP DATA PULTINE (RO3) HAS BEEN PERFDRHEC PRIDE TO SELECTIUN OF THIS PROGRAM.

LIDJ THE LGC WILL NEITHER CESIGNATE NDR REAC THE RENDEZVOLS RADAR (RR) DURING THIS PROGRAM.

P 41/L UM INARY

D

INTER THE INU STATUS CHECK ROUTINE ROUTINE ROUTINE TO THE SECONDSI BY KEVING IN YOS MADE PAILUMINAN I) THE ASTRONAUT MAY OBSERVE THE FOLLOWING ADDIVENAL PARAMETERS DURING THIS PROGRAM TFI - TIME FROM DPS IGNITION.IN MIN, SEC TO NEAREST SEC.MAXIMUM READING IS 59859. R2 - VG R3 - DELTA VM R1 - TFI (A) VO6 N40

872

D

Sign is - before nominal TIG, + thereafter.

VG - MAGNITUDE OF THE VELOCITY TO BE GAINED BY THRUSTING MAMEUVER. IN FPS TO NEAREST .1 FPS.

DELTA WM - MEASURED DELTA V AMGNITUDE. IN FPS TO NEAREST .1 FPS.(THIS DISPLAY WILL BE 00000 UNTIL TIG-30 SECONDS AND THEM SHOULD CHANGE ONLY DUE TO PIPA BIAS UNTIL ULLAGE IS STARTED).

(12) THIS PROGRAM IS SELECTED MANLALLY BY DSKY EMIRY.

Bo

5

P 56/LUMI NARY

1D

•	1179 RS9/LUMINARY	810	8	664	100	un e	D ARAVINUAR
•	::::	stak acoutstittok it star acoutstittok it stecrt a outstat outsti			18310 ADV AVAILABLE AVAILA	• CCOR IN R1.	
		3. FRCNT RIGHT CE- TENT ER ALGHT OEFNT - FREAR ALGHT OEFNT - 5. REAR CENTER CE- 6. REAL LEFT OETENT -	7+ advert of orticat assten (nor advert of orticat assten (nor advert of assten (nor advert of state of orticat cetternt act of cettern (nor of the of orticat	00 - 94445 11/43 - 544 FECA 11/43 - 514 FECA 51 - 541 51 - FECA 51 - FECA	MIT for keyedado		
	sst			i	. 1 5		03

F. Kummenne er fanst

19

ID AMARINO 1661	140	1150	1100	1170	859/LUN IMARY
ELIMINARY					
				•••••••••••••••••••••••••••••••••••••••	
Be CERSTAL BUT BE CERSTAL BUT (553) FOL CELET (553) FOL CELET BUT WITEADE BE USED.	••••••••		••••••		
0	100	23 ² 8	1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	466	
Definition to the second secon	CALCULATE STAR IN ANY BASE IN ANY BASE CCCCPOIATES FRO STORED STAR OAT	SET AUT POSITIO CCEE TL 1 ANC PL CCEE TL 1 ANC PL F AL FRCE ACE STORAGE, SET EL + 45 CEGRES -	CALCULATE CPICA CALCULATE CPICA ALS OF INE ADT PRESENT CE NUE AUT PESTITICA COURD INA	- 15 THE ANGLE BETA 1-FE STAR LCS AND	
03	1				0 *

840

650

098

LOGIC REV OL PCR 456 VEV OL (LUM ID) PCN 990

V44/LIMINARY

52-1100

1D

SECTION 5 CHANGES

Figure 2.4-1 Target Acquisition Routine (Page 1 of 2) 5.2-36

At the start of the Target Acquisition Routine in Fig. 2. 4-1 the range determined between the LM and CSM by taking the vector difference between the LM and CSM position vectors propagated to that time. If the range is greater than (400 nm, a program alarm is issued since the RR is unable to provide the correct range information to the LGC because of the ranging technique used in the radar. insert as on left

Therefore, if the range is greater than 400 nmi and P.22 is running, the LGC flashes range and range nate. If P-20 is running with excessive range, the ALARM got is Illuminated The the range, range-rate display, if he so desires . In either case, range and range-rate are recalculated periodically, until the range is less then 400 hmi

PCR

After verifying that the range between the LM and CSM is less than 400 nm, the Preferred Tracking Attitude Routine (R-61 of Sections 4 and 5, 2, 4, 4) is used to align the LM +Z-axis along the LOS to the CSM. This is done to insure that the RR antenna will be designated in the correct antenna angular coverage region (Mode 1 of Fig. 2, 4-3) for operation with program P-20. In addition, this attitude permits the LM optical beacon to be seen by the CSM in case optical tracking is being performed. The LM optical beacon is centered with respect to the LM +Z -axis and has a beamwidth of approximately 60 degrees. In Sections 5, 2, 4, 2, 1 and 5, 2, 4, 4 it is seen that the LM +Z -axis is continuously directed along the LOS to the CSM by use of the Fine Preferred Tracking Attitude Routine (R-65) astromat may then call when RR Data is being used to update the navigation equations in P-20. In addition it is seen in Section 5.2.4.2.1 that the RR data is not used to update the navigation equations if the RR is more than 30° from the LM +Z -axis. The above constraints on LM attitude not only insure that the LM optical beacon will be seen by the CSM but also insure a reliable estimate of the RR angle biases when processing RR data.

> After using the Preferred Tracking Attitude Routine in Fig. 2. 4-1 the LGC checks to see if the RR Auto Mode discrete is being received from the RR. This discrete signifies that the RR is on and has been placed under LGC control by a

> > 5.2-38

In this section an explanation will be given only for those logic steps in Fig. 2. 4-6 associated with the use of the RR Data Read Routine during operation of the Rendezvous Navigation Program (P-20). D

IPCR 979

In Fig. 2.4-6, the first check made by the routine, after establishing that P-20 or P-22 is being used, is to see if the Track flag is present. This flag is removed during the preparation and execution of a LM AV maneuver when there is no desire to have the routine request RR data or call any other routine such as the RR Designate and Fine Preferred Tracking Attitude Routines,

If the Track flag is present, the routine next checks for issuance of the RR Track Enable discrete and reception of the RR Auto Mode discrete. The former discrete is removed and not re-issued by the RR Monitor Routine whenever the RR antenna angles exceed the limits in Fig. 2.4-3. Its absence therefore indicates a need to go back to input(B) of Fig. 2.4-1 to re-establish the preferred tracking attitude and re-designate the radar. Afterwards, a check is made to insure that RR data is not taken if the RR CDU's are being zeroed, if the RR CDU's are being zeroed and program P-20 is in operation, the Fine Preferred Tracking Attitude Routine (R-65) of Section 5.2.4.4 is called with a specified value of 2 for the quantity N_Z, which indicates how many times routine R-65 is to repeat itself before returning protoutine R-23.2

The sequence used by the routine for reading RR data is shown in Fig. 2.4-6 where frequent checks are made on the RR Data Good discrete to insure that no RR tracking interruptions have occurred during the read-out. If this discrete is missing, the Tracker Fall and Frequent Alerni Hight discrete is missing, the Tracker Fall and Frequent Alerni Hight discrete is missing. The Tracker Fall and Frequent Alerni Hight discrete is missing. Fig. 2.4-1 that checks are also made to see if the RR CDU's have falled during the read-out and, if eo, a return will also be made to point (i) of Fig. 2.4-1, except that the Tracker Fall and Program Alarm Hights are not turned on by the Data Read Routine, but are turned on by the RR Monitor Routine of Section 5.2.4.3.

5.2-57

The logic associated with the LR Position Command Subroutine is shown in Fig. 3. 4. 4-4. Initially, the routine checks to see if the LR Position Two discrete is being received from the LR. signifying that the antenna is already in Position Two. If the discrete is not present, the LR Position Command discrete is issued to the LR, causing its antenna to be driven to Position Two. When Position Two has been successfully obtained. It is seen that the NOLRREAD flag is reset and the unit vectors defining the orientations of the range and velocity beams for Position Two are determined. Seven seconds after the start of the routine, and each second thereafter, the routine checks to see if the LR Position Two discrete is being received, until Deconds have expired, at which time, an alarm is issued to the astronat.

At this point, the astronaut has three options in response to the \$523 alarm. He can terminate LR updating operation in R12 by entering V34E, which will set the NOLREAD flag. He can try to place the antenna in Position Two with the separate antenna position control provided with the LR. Entering V32E in this case will cause checks to be made for the Position-Two discrete. Finally, the astronaut may decide to use the LR atter High-Gate, even if the Position-Two discrete input has not appeared at the LGC input channel. In this case, he will key in PROCEED, which will set the NOS11FLG flag. If the Position-One discrete is still present, the LR data will be used assuming the LR is still in Position One. If the Position-One discrete is not present, it will be assumed that the LR is in Position Two.

LR Velocity and Range Measurement Data. -- The velocity data obtained from the LR by the LR Data Read Subroutine are with respect to the LR antenna coordinate system of Fig. 3, 4, 2-2 and are in a form which is described as follows, along with the various data processing steps the LGC performs to transform the data into the Navigation Base Coordinate System.

The velocity data furnished at the LGC interface by the LR comprise three binary data words of the following form;

$$\begin{split} \mathbf{S}_{\mathbf{X}\mathbf{A}} &= [\ (l_1 + l_3) \ / \ 2 + l_B] \ \tau_{\mathbf{L}\mathbf{R}} \\ \mathbf{S}_{\mathbf{Y}\mathbf{A}} &= [\ (l_1 - l_2) \ + \ l_B] \ \tau_{\mathbf{L}\mathbf{R}} \\ \mathbf{S}_{\mathbf{Z}\mathbf{A}} &= [\ (l_3 - l_2) \ + \ l_B] \ \tau_{\mathbf{L}\mathbf{R}} \\ \end{split} \tag{3.4.1}$$

where S_{AA} , S_{AA} , and S_{ZA} correspond, respectively, to the velocity components along the X_{AA} , Y_{AA} , and Z_{A} antenna axes of Fig. 3.4.2-2. The quantities I_{A} $I_{D_{A}}$, and I_{A} are the beam doppler frequencies I_{B} is the bias frequency used in the LR, and I_{LR} is the time interval used by the LR when counting the cycles of the above frequencies so as to produce the data words S_{AA} , S_{YA} , and S_{ZA} . The time interval I_{LR} is 80.001 milliseconds.

1D

coordinates, which are either obtained from the computer's star catalog, loaded by the astronaut, or computed from ephemeris data such as for the Sun or Earth.

Once the alignment vectors have been obtained for Technique 2, it is seen in Fig. 6.2-2 that the remaining steps in the alignment process are the same as described for Technique 0 in Section 5.6.2.2, except that Technique 2 also computes and stores the LM attitude in moon fixed coordinates and sets the Attitude Fig. The astronaut can repeat the final alignment if he so desires. At the bottom of page 2 of Fig. 6.2-2, it is seen that the astronaut can repeat the final alignment by keying in a "PROCEED". If he wishes to establish a new landing site position vector as described in Section 5.6.2.2,6, he must key in an "ENTER" after the final alignment with Technique 2.

5.6.2.2.4 Technique 3-IMU Alignment Using the Gravity Vector and One Celestial Body

Technique 3 is selected when the complete alignment is to be made by determining the lunar gravity vector with the IMU accelerometers and sighting on one celestial body with the AOT. As will be discussed later, this technique may be selected by the astronaut if he is only interested in determining the direction of the gravity vector. No program alarm is issued by program P-57 when selecting this technique if the Attitude flag or REFSMFLAG is not set.

LGC's currently stored value of <u>r</u>Ls, the landing site vector.

PCK

5.6-24

5.6.3.1.3 Lunar Surface Star Acquisition Subroutine

The purpose of the Lunar Surface Star Acquisition Subroutine is to assist the astronaut in locating a navigation star with the AOT when the celestial body code (or star code) has been selected by him at the beginning of the Lunar Surface Sighting Mark Routine (R-59). The subroutine is bypassed when the astronomy collects the Sun, Besch, Moonre blockstar astronomy there is no REFSMMAT just prior to entering the subroutine.

Initially, the subroutine checks to see if the star is within 30 degrees of the center of the AOT field-of-view (POV) for any one of the six AOT viewing positions defined in Section 5.6.3.1.1. If successful, the subroutine then computes the reticle rotation angles needed to place the cursor and spiral of the AOT reticle onto the star. The parameters computed by this subroutine for display to the astronaut are the following:

N

- AOT viewing position as defined in Section 5, 6, 3, 1, 1,
- YROT Reticle rotation angle in order to place the cursor on the star for viewing position N.
- SROT Reticle rotation angle in order to place the spiral on the star for viewing position N.

5.6 - 39

		10
tion No.	GSOP Name	LGC Name
.2.4	t	
	ωt	
	ΔV _{TPI} (LV)	
. 2. 5	δ <i>τ</i> 3	
	δTη	
	ΔV(LV)	
3, 1, 3	J1	J1PARM
	J ₂	J2 PARM
	к ₁	K1PARM
	K2	K2PARM
	θα	THETCRIT

PCR 821.2

5.6.3

<u>Sec</u>

5.4

5.4

£_M

AZ₁ thru AZ₆ EL₁ thru EL₆ AZ EL

nce Comment .8.2) (Sec. 5.8.	26	16	24								6	m	ß	6	m
Refere (Sec. 5			29, 30	12	12	12	12	12	12	80	,10 ⁻¹	7, 8	7,8	7, 8	7,8
Value	3.56	0.785	32.62	2 -22	2-19	2 -12	2-13	2 -23	2-17	4,86315127049	4.09159633164	5.854146887	5-20002210500	-7. 19757 3791 × 10 ⁻¹⁴	-1. 070470 10 × 10 -8
C Name Units	· m/sec	m/sec ²	1b/sec	1	1	m1/2	m ^{1/2}	I	1	rad rad/U-sec	rad	rad	rad	rad/U-sec	rad/U-sec
GSOP Name AGC	ΔV _{min}	A _T (RCS)	m (DPS)	(Kepler) ¢ _t	(Lambert) ϵ_t	$\epsilon_{\rm X}$ (earth)	€ _x (moon)	¢ c	k ₁	Azo "E	B ₀	A10	F0	Ĥ.	'n
Section No.	5.3.5.9		5. 4. 3. 1. 2	5.5.1.2						5.5.2		-			-

5,8-6

PCF.

PRELIMINARY

1D

môl

Commènts (Sec. 5. 8. 3	3	en	ę					4	4	4	4	4	4	4	4	4	4	4	4	10
Reference (Sec. 5, 8, 2)	7, 8	7,8	7, 8		2, 3, 4	2, 3, 4		9, 10	9, 10	9, 10	9, 10	9,10	9, 10	9,10	9,10	9,10	9, 10	9,10	9,10	
Value	2. 672404250x 10-6	9.996417320 × 10 ⁻¹	$2.676579050 \times 10^{-2}$		6, 378, 166	6, 373, 338		0.917455029	0.035711455	0.397839501	0.082353949	5.122570	2.661699 × 10 ⁻⁶	6.2160	1.2619	2.6392078 × 10 ⁻⁶	2.2725641 × 10 ⁻⁶	3.3350170	3.6779607	
Units	rad/U-sec	ſ	1		E i	88		ı	ł	,	ı	rad	rad/sec	deg	deg	rad/sec	rad/sec	rad	rad	
LGC Name																				
GSOP Name	ų.	c ₁	s ₁		71 -1	r, P	1	K ₁	K ₂	K ₃	K4	гомо	LOMR	A	р	OMEGAA	OMEGAB	PHASEA	PHASEB	
Section No.	5.5.2			0 11 11	0.0.0			5.5.4												
PCR, 86.7	-									5.8	-7									

Internal Distribution List

R-567

LUMINARY 1D

1D

Group 23A	<u>S. MacDougall</u> Berberian Gustafson Higgins Kachmar Klumpp Kriegsman	<u>lL7-205</u> Levine Muller Pippenger Pu Reber Robertson	15
Group 23B	<u>J. Flaherty</u> Barnert Berman Eyles Finkelstein Gilson	IL7-238A Kirven McCoy Millard Moore	9
Group 23B	<u>J. Kaloostian</u> Bernikowich Dunbar Ostanek	IL7-221L Volante White	5
Group 23B	D. Lutkevich Reinke Babicki Beck Danforth Daniel DeCain Entes Flaherty Glendenning	IL7-228 Good Hubbard Kana Klawsnik Maher Nayer Reed (20) Williams Wolff	38
Group 23P	A. Tucholke Battin	Smith 1L7-203	1
Group 23B	C. Taylor Densmore Hamilton	IL7-221L Rosenberg Rye	4
Group 33	J. Hargrove Drane Glick	IL7-111 Johnson (23P) Mimno	4
Group 23H	B. Lynn Cook Kossuth	IL7-234A OConnor	3
Group 23C	<u>M. Erickson</u> Bairnsfather Fraser Goss Jones Kalan	IL11-102 Penchuk Pope Schlundt Stengel Work	11

Group 23D	S. Prangley Nevins	<u>IL7-209</u>	1
Group 23P	J. Sutherland Greene	IL7-266 Stubbs	2
Group 23D	F. McGann Davis Dunbar Dimcock Johnson Kiburz Metzinger	IL7-332 Olsson Schroeder Schulte Sewall Walsh Woolsey	13
Group 23P	<u>C. Mitaris</u> Cherry Copps	IL7-213 Larson	3
Group 23S	P. Amsler Adams Aiyawar Day Felleman Johnston	IL7-240 McOuat Petrillo Strunce Werner White	10
Group 23Ţ	D. Farrell Day Edmonds Grace Kido Laats Lawrence Lones	IL7-140 McKern Megna Mills Sarda Sheridan St. Armand	13
Group 23N	G. Grover Blanchard Johnson Ogletree	1L7-202 Parr Tanner	5
Group 23P	A. Rubin Hoag	IL7-252 Larson	2
Group 23P	E. Johnson Ragan	IL7-248 Stameris	2
APOLLO Librar	7		2
MIT/IL Library			2

D-2

External Distribution List

MIT Instrumentation P.O. Box 21025 Kennedy Space Cent Attn: Mr. Robert C	on Laboratory ater, Florida 32815 D'Donnell	1D	(5)
MIT Instrumentatio Code EG/MIT Buil NASA Manned Spac Houston, Texas 770 Attn: Mr. Thomas	on Laboratory ding 16 ecraft Center 58 Lawton		(3)
NASA MSC HW Building M7-409 Kennedy Space Cen Attn: Mr. Frank H	ter, Florida 32815 aghes		(10)
Mr. A. Metzger (N.	ASA/RASPO at MIT/IL)		(1)
AC Electronics Div General Motors Co Milwaukee Wiscon	rision rporation		(16)
Attn: Mr. J. Stridd Attn: Mr. Reino Ka Attn: Mr. W. Siarn	e, Dept. 32-31 urell icki, Dept. 38-02	(13) (2) (1)	
Kollsman Instrume 575 Underhill Bould Syosset, Long Islan Attn: Mr. F. McCo	nt Corporation evard y		(1)
Raytheon Company Boston Post Road Sudbury, Massachu Attn: Mr. R. Zazro	setts 01776 odnick		(6)
NASA/MSFC:	National Aeronautics and Space Admi George C. Marshall Space Flight Cen- Huntsville, Albana M. State State State State A. Deaton R. AERO-DG A. Deaton R. AERO-DG F. Moore R. ASTR-Y H. Hosenthien R. ASTR-Y A. Germany I-11B-F R. Barraza I-V-F W. Chubb R. ASTR/NG J. J. McCullough I-VE/T	nistration ter (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(10)
NASA/MSC	National Aeronautics and Space Admin Manned Spacecraft Center APOLLO Document Control Group (P. Houston, Texas 77058 Attn: A. Alber, FS5 (letter of transmi	nistration 300 A 2) ttal only)	+ 2R

1D

BELLCOMM:	Bellcomm, Inc. 1100 17th Street N.W. Washington, D.C. 20036 Attn: Info. Analysis Section		(6)
LINK:	LINK Group, GPSI SIMCOM 1740 A NASA Boulevard		(3)
183	Attn: Mr. D. Klingbell		
NASA/GSFC:	National Aeronautics and Space Administrat Goddard Space Flight Center Greenbelt, Maryland Attn: Mr. Paul Pashby, Code 813	ion	(2)
GA:	Grumman Aerospace LEM Crew Systems Bethoge, Long Ialand, New York 11714 Attn: Mr. J. Marino Mr. C. Tillman Mr. F. Wood Mr. R. Pratt Mr. R. Pratt Mr. B. Stdor Mr. R. Kress	(1R) (13) (1) (3) (4) (1) (1)	(23 + 1R)
NAR:	North American Rockwell, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California 80241 Attn: CSM Data Management D/386-402 AE99		(1 + 1R)
NASA/RASPO GA:	National Aeronautics and Space Administrati Resident APOLLO Spacecraft Program Offic Grumman Aerospace LEM Crew Systems Bethpage, Long Island; New York 11714	on er	(1):
NASA/WSMR:	National Aeronautics and Space Administrati Post Office Drawer MM Las Cruces, New Mexico Attn: RH4 Documentation	on	(2)
NASA/RASPO NAR	National Aeronautics and Space Administrati Resident APOLLO Spacecraft Program Offic North American Rockwell, Inc. Space and Information Systems Division 12214 Lakewood Boulevard Downey, California	on e	(1)

N ASA-KSC:	National Aeronautics and Space Administration John F. Kennedy Space Center J.F. Kennedy Space Center, Florida 32899 Attn: Technical Document Control Office	(3)
N ASA/R ASPO GE:	NASA Daytona Beach Operation P.O. Box 2500 Daytona Beach, Florida 32015 Attn: Mr. A.S. Lyman	(1)
NASA/HDQ:	NASA Headquarters 500 independence Avenue S.W. Washington, D.C. 20546 Attn: MAP-2 (4) Attn: Mission Director, Code MA (1) Attn: Mission Director, Code MAO (1)	(6)
NASA/LEWIS:	National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Attn: Library	(2)
NASA/FRC:	National Aeronautics and Space Administration Flight Research Center Edwards AFB, California Attn: Research Library	(1)
NASA/LRC:	National Aeronautics and Space Administration Langley Research Center Langley AFB, Virginia Attn: Mr. A.T. Matison	(2)

D-5