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Introduction 

The purpose of this memo is to outline a modified Encke 

method for generating precision trajectories which is computationally 

faster than the conventional Encke. The modification is a change of the 

independent variable from time to the universal conic variable "x". The 

integration of the resulting equations does not require the time consuming 

iterative solution of Kepler's equation. 

The idea of changing the independent variable is not new , 

but the particular formulation of the differential equations presented here-

in is. 

This memo will first contain an outline of the conventional 

Encke for reference; then the change of variables will be made followed 

by a discussion of the resulting new equations along with a numerical com-

parison between the Encke and the modified Encke. 

The Conventional Encke 

The six equations to be integrated in the conventional Encke 

are: 
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See References 1 and 2 

See Reference 1, Chapter 6 for derivations 
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where: 

I-t = Mu of the primary body 

t = Time 

Osculating conic position 

Osculating conic velocity 

True position 

True velocity 

Sr = Encke position deviation, r -
c 

SV = Encke velocity deviation, v -
c 

aa d  Acceleration due to disturbing bodies 
usually a function of r and t 

f(q) 	q(3  + 3 q q2 )  

1 +(1 + q) 3 " 
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The computation of F e  and Ve  is made by first iteratively solving Kepler's 

equation below, for "x" 
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where 

t 	= Time since rectification 
r 

0 = Position at rectification 

0 = Velocity at rectification 

a 	1/a, a = semimajor axis based on Fo  and Vo  

And then explicitly computing Fe  and Tie  where 
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Change of Independent Variable  

The independent variable will now be changed from "t" to 

"x". This is done to eliminate the iterative solution of Eq. (3). 

The change is easily made by recognizing that 

d Sr 	d Sr dt 

dx 	dt 	dx 

d Sv_ dov dt 

d dt dx 
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Thus x becomes the independent variable by simply multiplying (1) and (2) 

by (8). The remainder of the computation remains the same with the ex-

ception that time can now be computed explicitly using Eq. (3). Should it 

be desired to terminate the integration at a desired time, it is a simple 

matter to test the computed time and, if it exceeds the desired time, to 

solve Eq. (3), as in the conventional Encke, iteratively for the "x" which 

will produce the desired time. 

In the conventional Encke, the allowable integration time 

step for a constant truncation error was found to be 

At =  K3/2 
rb 

^TIT 
where: 

At = Max allowable integration step 

K = Emperical constant 

rb = Distance from primary body 

See Appendix 

rc = 2 

(6)  

(7)  

(8)  

✓ 0 

(9) 
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K is established by a doubling and halving integration. The corresponding 

"x" step can be computed to be (substituting Eq. (8) into Eq. (9)): 

Ax = K r
1/2 	

(10) 

Thus, the A x step, which varies as r 1/2
, produces the same time step as 

the conventional Encke produces. Also, it is interesting to note that the 

A x step is independent of mu, which the time step was not. 

Numerical Comparison of the Modified Encke and the Conventional Encke 

The modified Encke was run in the doubling and halving mode 

with the same initial conditions and for the same time of flight that pro-

duced the results outlined in SGA Memo #60-64 for the conventional Encke. 

The trajectory travels from the earth to the moon's sphere of influence in 

approximately 58 hours. 

The following is a comparison of the results: 

a) Number of Time Steps:  

Conventional Encke — 40 

Modified Encke — 40 

b) Final Conditions (Miles and Hours): 

Conventional Encke Position 204024. 7817 85024. 97463 37052. 37272 

Modified Encke Position 204025.  0081  85025. 00914 37052. 37926 

Difference Encke Position -0. 2264 -. 02451 -. 00654 

Conventional Encke Velocity 1861. 927370 1118. 695832 565. 9181469 

Modified Encke Velocity 1861. 932431 1118. 697141 565. 9186049  

Difference Encke Velocity -. 005061 -. 001309 -. 0004580 

c) Time Step History 

The attached curve presents the time step history as a func-

tion of distance from the earth for both the conventional and modified 

Encke, along with the Ax step history. Note that A t and A x varies ap-

proximately as r
3/2 and r 1/2 respectively. Which of the two methods is 

more accurate is a moot point. 
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Fig. 1 Comparison of the modified encke and the 
conventional encke using a translunar trajectory. 
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Appendix  

One can, without too much trouble, convince oneself that 

Eq. (9) is proper. 

The truncation error resulting from the numerical inte-

gration of a first order differential equation can be expressed as follows: 

e k ptP+l fp+1 	
(la) 

where 

the order of the integration 

truncation error 

error constant, dependent on integration 
method 

At = independent variable 
fp+1 (p + 1) th derivative of the equation be 

integrated 

One can let p = 4 and select the following equations, which 

are the very familiar two dimensional equations of motion of a conic, to 

illustrate the point: 

d rx 

p 

e 	. — sin ( 2f) 
2 

sin (f) 	 (2a) 
dt 

d r 

dt
-  e sin2 (f) + 147  cos (f) 

r 

r 

(3a) 

d v x _ 	ki cos (1) 

dt 	 r 2 

d v
y _ 	/.1, sin (f)  

dt 	r 2 

See Reference 2 

(4a) 

(4a) 
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If Eq. (2a) were differentiated four more times and substituted 

into Eq. (la), one would find that 

1/ 5 

At (k 

f (r, p, a) 

^71  
(6a) 

where p and a are conic parameters and f (r, p, a) includes r 9/5 to r
6/ 5 

 

Since for a given trajectory p and a are constants, one might 

conjecture that, with constant truncation error, Eq. (6a) can be approxi-

mated by: 

A t 	k rn 

471,  
where 

an emperical constant 

an emperical power of r 

Experience has shown the conjecture to be true and that 

n 	3/2. 

The same conclusions would also be reached for Eqs.(3a), 

(4a) and (5a). 

This analysis, of course, applies more directly to the Cowell 

method than to the Encke; however, the right hand side of the Encke 

differential equations also are essentially functions of r -2 and r -1 and mu 

couples into the equations in the same fashion. Without carrying out a 

rather complex analysis, one can again conjecture that Eq. (7a) might 

apply to the Encke also. Experience again has borne out the conjecture. 

Experience has also shown that the effect of changing p and 

a, for practical earth and moon centered trajectories is negligible and 

in truth, the time step can be ratioed as mu l/ 2 . 

(7a) 
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