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INCLUSION OF BIASES IN STATISTICAL MIDCOURSE NAVIGATION 

Because sextant and horizon biases may be important in mid-

course navigation, and since non-linear problems do not seem to be of 

major consequence in midcourse, the following derivation has been 

carried out. With the following equations it should be possible to avoid 

doing most Monte Carlo (MC) simulations 3  although as a final check, 

MC studies are always desirable. 

We know the error in the state vector after the K
th 
 measurement 

is 

e 	e' 	(b e' 	(a + [3 )) 

	

K —K --K —K —K 	K (l) 

where indicates before the measurement and aK is the random (from 

measurement to measurement) measurement error; i. e., aJ a7  = 0, and 
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is the correlated (colored) part of the measurement noise: /3 	can 

be non-zero. The vectors w K 
 and b 

vectors. 

are the weighting and geometry 

Taking the transpose of e and forming the covariance matrix, 
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from Eq. 

Since we desire to know what the true uncertainties are (neglect-

ing non-linear effects), W K , the weighting vector which must be used in 

Eq. 2 is 

where E
OB 

is the on-board covariance matrix. This w
K 

 must be used 

in the calculation of E (the true covariance). The on-board covariance 

matrix nominally commences with the approximation 

The true matrix, E, will commence with the true injection uncertainties. 

Also, the truec72 may be different than the on-board a-2—  Hence, 
OB° 

everything is known and can be calculated in Eq. 2 except for the last 

two terms which involve the unknown vector, ek f3 K. Since OK  is the 

colored part of the measurement noise, it can possibly be correlated 

with all of the previous gis that are implicitly included in e' 
K° 

The equation for the error before the K th 
measurement is 

which is just 	propagated up to the time, K, with the transition 

matrix, (assuming no driving noise). 



If we let e 0 
 be the injection error, then just before the 

first measurement 

e' = 
1 	1,0 -0 

After the first measurement the error is: 
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Extrapolating to the second measurement gives 

and using Eq. 
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The error before the next measurement is 
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From these above equations and Eq. 3, there follows 
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where in the products, a factor with I or J = M-1 is to the right of the 

factor with I or J = M. 

Post multiplying by i3 K  and taking the expectation gives 

The first two terms contain e0 
K 

 0 and are z ero since e
0  is assumed to 

be independent of all measurement errors, Also, since a i  is assumed 

to be completely random, a lig K  = 0 for all I and K. For our present 

,T= I+ 
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study, we shall make another simplification and assume 
11 

 13
K 
 is not 

2 dependent on I ( on time); therefore, gI K g2 = 	=0-  where u is the g 	g 
standard deviation. Other models for the time dependence of are 

possible. A common one is of the form e -a  where a is a. positive con-

stant. 

o, Eq. 5 becomes 
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If there are both instrument and horizon biases, the variance 

can be written as 

2 0- 13  = 

where 6 113 
 is the instrument bias standard deviation and 6 is the hori- Hg 

zon bias standard deviation of the planet. We have assumed no time 

dependence of either bias and the independence of each from the other. 

At MCC times, if the direction and magnitude of the accelera-

tion measurement uncertainties due to the burns are known, then these 

can be added to the true covariance matrix (E) at each MCC. 

A simple recursion equation can be obtained from Eq. 6 ig it 

is written in a compiler language in.stead of as an algebraic expression. In 

MAC, at the K th measurement, the equation for e' gK  can be written 
 

as 
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where A on the left side is elf3 K , and A on the right side is ek_
1

f3x _ 10  

PHI is 	
K-1' 

and Wl, and B are the weighting and geometry vectors 

from the previous (K-1) measurement. BIAS is the standard deviation 

of the bias. Equation 7 is valid at all measurements except the first 

one. For the first measurementA = O. 


