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Introduction 

The personnel working on the LEM digital autopilot have just com-

pleted an LGC program for steering the attitude and attitude rate of the 

spacecraft with the descent engine trim gimbal. This venture represents 

somewhat of a departure from our previous philosophy of merely using the 

trim gimbal to null the disturbing acceleration due to the DPS moment off-

set. While merely nulling the moment offset with the trim gimbal had the 

advantage of simplicity in the control law, this philosophy does not appear 

consistent with the extremely tight RCS propellant budget contained in the 

recently negotiated Performance and Interface Specification. 

This memo is intended to bring interested personnel up to date on 

the new philosophy of trim gimbal control and the current status of the 

implementation of the new philosophy. 

Background  

For some time it has been known that attitude hold could be per-

formed by the DPS trim gimbal. Thus, the trim gimbal can cause the LEM 

to limit cycle inside the RCS jet dead band. (See Figure 1.) The LEM 

spacecraft designers originally intended the trim gimbal merely to be used 

as a moment offset control. By keeping the average moment offset at or 

near zero foot-pounds the RCS jets would have to fire very rarely in the 

attitude hold kind of situation. In the more ambitious kind of trim gimbal 

control we find a control law which actually steers the spacecraft, actuating 

the trim gimbal on the basis of vehicle attitude error and rate as well as 



disturbing acceleration; and the j ets do not fire at all in attitude hold. 

This kind of control views the angular acceleration due to DPS engine 

thrust not merely as a disturbance but more constructively as a control 

agency. 

The gimballed DPS engine can actually impress very large torques 

on the LEM, on the order of 10 times the torque due to the firing of a single 

RCS jet. (See Figure 2.) The advantage of the RCS jets for the control 

function is that they generate their torques very quickly upon receiving a 

command. When a quiescent jet is commanded to thrust, the delay before 

full thrust and torque is achieved is only a matter of milliseconds. On the 

other hand, if the thrust vector of the DPS engine passes through the c. g. , 

approximately 30 seconds are required before the maximum lever arm of 

the moment can be achieved by gimballing the DPS engine ! (The gimbal 

angle changes at the rate of 0. 2 ° /sec. ) Another 30 seconds are required 

to return the gimbal to the zero moment arm position. 

An interesting way of comparing the speed of the RCS jets and the 

speed of the trim gimbal is to compute how many milliseconds are re-

quired for the trim gimbal to generate a torque impulse equivalent to the 

minimum impulse generated by a single RCS jet. A single RCS jet gener-

ates a minimum impulse of approximately 4 ft-lb-seconds; and approxi-

mately 15 milliseconds are required to generate this torque impulse. On 

the other hand, about 400 milliseconds are required to generate 4 ft-lb-

seconds with the trim gimbal. 

The slowness of the trim gimbal quite evidently makes it unsuit-

able for the control function when the steering commands are changing 

rapidly. Thus, during phase 2 (the visibility phase) when the radar data 

is being assimilated in the navigation and guidance system (causing the 

steering errors to fluctuate a great deal) and the astronaut is causing site 

re-designations, a trim gimbal law which attempts to steer the spacecraft 

is of marginal or even negligible utility. 

But during the major portion of the first phase of the landing trajec-

tory, when the steering commands change in a smooth and gradual manner, 

the trim gimbal should be fast enough to steer the LEM without the assist-

ance of RCS jet firings. 
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Because the RCS propellant budget for phases 1 and 2 of the land-

ing are so tight (in fact, the budget is partially predicated on a trim gim-

bal steering technique) it appears necessary to try to exploit the ability of 

the trim gimbal to steer, at least during phase 1. 

Because the trim gimbal is so slow, a control law which does not 

add to the slowness in reacting to attitude errors is required if the RCS 

jets are not going to have to fire. The faster the trim gimbal control law 

the better. A time-optimal system of control is the most desirable kind 

of control here. There is no penalty connected with running the trim gim-

bal drive. Therefore, a time-optimal control is the correct pay-off func-

tion. 

The Time-Optimal Control Law 

The following time-optimal control law has been derived by W.S. 

Widnall as an exercise in Professor Athan's class and by Bard Crawford, 

Dick Goss and George Cherry working from Athan's notes. SGA Memo 

# 3-66 contains a detailed derivation of this law. 

K = FLR/I 

A = - sgn (K +9191/2) 

u = - sgn [K
2
(9-9

D
) + 6

.3
/3 - AK 9 A - A(-AK 9 + A 2  /2) 3/ 2 

 where 9 is the measured angle around a controlled axis and 9D  is the de-

sired orientation around that axis. The quantities 9 and 9 are simply the 

rate and acceleration around the axis. This control law drives 9 - 9
D' 

 0, 
and 9 to zero in minimum time. The quantity K is computed every second 

(in the guidance equations) because it changes very slowly. 

This control law has been simulated in a MAC program written by 

Dick Goss. Figures 3a and 3b illustrate the convergence of the vehicle's 
• 	•• 

state to a tight limit cycle about the origin of the 9 - or 
 9, 9 phase space. 

The MAC simulation which produced the data plotted on figures 3a and 3b 

used a sampling frequency of 5 cycles per second and a first order lag of 

0.1 second time constant on the trim gimbal drive rate. The Kalman fil-

ter was not simulated. (The state variables used in the control law simu-

lation were perfect; in the real system the state variables must be in-

ferred from the CDU measurements by a Kalman filter. ) 
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It is interesting to compute how large an initial deviation, 6 0 , 

(see figure 2 for the definition of a) can be handled during the initial DPS 

start-up without any RCS jet firings. Assume that the RCS jets have es-

tablished the following conditions just prior to DPS engine ignition. 

9 - 	= 0 

é = o 

Then the maximum angular error which will be encountered (without any 

jet firings) is 

2 FL  6 0
3 

- 8D )  max3 I 	61-r2—  

Assuming the following realistic numbers 

F = 3000 lbs 

L = 3 ft. 

I = 22,000 ft-lb-sec
2 

= 0.2°/sec. 

we obtain 

,, 3 

	

(9 - AD )  max 
	

(5 u 

	

max 	44 	(degrees) 

Now, assuming that we will tolerate an error of 2 °  without firing RCS jets, 

(A - OD ) max = 2°  

we can solve the above equation for 6 0  

6 0 
 2/3 degree 

Thus, if we tolerate an attitude error of 2 o (do not fire jets for smaller 

attitude errors) we can handle initial moment offsets of 2/3 degree and 

smaller without firing jets at all during the initial phase of the lunar landing. 



Two-thirds of a degree happens to be the one sigma offset due to c. g. un-

certainties and engine alignment uncertainties. Thus, with an initial phase 

of 3000 lbs thrust the one sigma case may be handled without any jet firings 

during almost all of phase 1. Obviously, with a lower initial thrust setting, 

say F = 1000 lbs, a larger initial 6 0  can be handled without exceeding an 

attitude error of 2 °  and without firing RCS jets. In the practical case then, 

it seems fairly reasonable to expect very few RCS jet firings during the 

first 300 or so seconds of the DPS burn, Optimism must be guarded, how- 

ever, until a complete LGC simulation of the Kalman filter and time-optimal 

control law is completed. 

The Problem of Obtaining.  _Accurate Switching  

The trim gimbal control equation exhibited on page 3 results in a 

bang-bang type of control. The trim-gimbal drive command, u, is either 

plus or minus. The basis of the law is a surface whose equation is 

A = - sign ( +0 191/2K) 

where 
	 f (0 - O D, 0, 9)= 0 

f(0 - 0 13,6,01 )= 0 - 0D - Ad 671‹ + 6.3  /3K 2  -A(-AKg +19'2 /2) 3 / 2/K 2  

• - 
This is a surface in the 0 - O D, 0, 0 phase space which divides three space 

into two simply connected sub-spaces. On one side of the surface, + control 

is always applied; on the other side, - control is applied. The surface it-

self is the locus of all trajectories which go to the origin with zero or one 

switch of u. It is easy to see that f is always positive in a simply connected 

subspace on one side of f = 0, the switching surface. Consider the partial 

derivative of f with respect to (0 - O D). 

afta 	- e D ) = 1 

Thus, f is zero on the surface, and positive if 0 - O D  is incremented with-
., 

out changing 0 or 0. Thus, if a given phase point lies in the surface, (0 - O D ) 

is 

0 - O D 
= aó b7K. - 3 13K 2 is, ( _,AK  6  + 0 /2) 3/2 /K 2 
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If 0 - 0
D 

is "above" the surface 

6- 0 D > ® 00/K - 83/3K2 	 + 62 /2) 3/2 /K 2 

and 

f(0- O D , O, 	> 0 

Similarly if 0 - 0 is "below" the surface 

f(0 - 0 D , 	< 0 

Since the phase trajectories which go to the origin lie in the surface 

and the trajectories which go near the origin lie near the surface, the sign 

of control which causes the phase trajectory to approach the surface must 

be reversed at nearly the instant of impinging on or piercing through the 

surface. (The case of being exactly on the surface need not be considered 

because the volume of the surface is zero, i. e. , the points which lie on the 

surface comprise a set of measure zero). The proper control is evidently 

• 	•• 
u = - sgn[f(0 - 0 D ,0,0)] 

since, for example, if f is positive 0 - 0 D  is above the surface and the phase 

point can be forced toward the surface by negative control only. 

The above control law is the perfect time optimum control system if 

the trim gimbal rate can be switched from one sign to the other without lag 

and if the signum functions and the control law are computed continuously. 
The trim gimbal does have dynamical lag,however. And the LEM DAP is 

a sampled data system; consequently, the control law is only computed 

periodically. The highest sampling frequency which appears computationally 

feasible is 5 cycles/second. (A higher sampling frequency causes the DAP 

to use more than its share of the LEM computer time. ) 

Let us consider first the effect of sampling when using the above con-

trol law. If the velocity of the phase trajectory is high relative to the speed 

of sampling, i. e. , the phase point moves quite far during a sampling period, 

the trajectory may overshoot the surface considerably before the state is 

sampled and the trim gimbal reversal signal is sent to the gimbal drive. 

Relatively fast trajectories can result from either a high gain system (large 

`o° I = K) or large initial conditions (large initial 0 and 0). 
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When the velocity of the phase trajectory is high relative to the sampling 

frequency, convergence to the steady state limit cycle is slow. On the 

other hand, when the gain of the system is high relative to the sampling 

frequency, convergence to the limit cycle is slow; and, furthermore, the 

steady state limit cycle tends to have a very large amplitude. Both of these 

effects are due to the fact that the system trajectory tends to go rather far 

past the switching surface before the crossing is detected. A higher sampling 

rate would improve the situation - if a higher sampling frequency were poss-

ible. 

The trim gimbal rate lag causes overshoots which cannot be compen-

sated by increasing the sampling frequency. Something of the nature of pre-

diction is required to compensate for the effect of the trim gimbal rate lag. 

Thus, the command to reverse the trim gimbal drive should be issued before  

the switching surface is reached. 

There is a rigorous solution to this problem. The theory which pro-

duced the "time-optimal" control law exhibited in this memo and derived in 

Widnall's memo is not deficient. The difficulties arise because the true sys-

tem has been simplified in order to obtain a fairly simple control algorithm. 

In SGA Memo # 3-66, Widnall assumes that the plant is defined by 

=w 

= a 

= uK 

where u = +1 and K is the scale factor. This simplified model of the plant 

leads to a useful and fairly simple control law; but the difficulties referred 

to do crop up. A more realistic model of the plant would be 

9 = 

CO F.  a 

= a6 

6 = b (6
c 

- 6) 

Here, b is the reciprocal of the time constant of the trim gimbal rate res-

ponse, a = FL/I, and 6 c  is + O. 2°/sec. These equations can be put into a 

form suitable for the optimizing theory used in SGA Memo # 3-66 by re-

writing them as 
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X
1 = X

2 

X2  =X3 

X
3 

= arX
4 

X4 = b (u - X4 ) 

where u = 1, a' = a/5, and X 4  = 5 S. 

Several difficulties crop up if this more realistic, more complicated 

model is used. First, the dimension of the state and the order of the system 

is increased to four; and the forth state variable, proportional to 6 , must 

be estimated. Secondly, more complicated transcendental functions enter the 

resulting time-optimal control law. Finally, if the continuous theory is used, 

the effect of sampling is not taken into account by this model either. 

Rather than make a rigorous appeal to the optimization theory, we 

have tried several fixes of an engineering nature. 

The first method used to obtain accurate switching and small ampli-

tude limit cycles was to predict the time-to-go to reach the surface. An 

algorithm for computing T
go exactly is very, very complicated. An approx-

imate Tgo can be computed from 

Tgo 

where 

1/ 2 •• 
i= (u -A) p.2/K-A8 - 36.0 (-AK u+u /2) /2K) 

Since the switch should take place on the surface, i.e. , when f = 0, the 

above calculation yields an estimate for T
go . Note that the derivative is 

zero (the trajectory moves parallel to the surface) when u =A . The time 

of switch command should take the trim gimbal rate lag into account. 

Thus 

T
s  = T

go 
 - 3 T 

is a useful expression for the time of switching, where T is the trim gimbal 

lag time constant. This method of predicting  the time of switching has been 

simulated on the MAC program written by Dick Goss. The results reveal 
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fast convergence to a small amplitude limit cycle. But the logic is fairly 

complicated since the trim gimbal may actually reverse before the surface 

is reached. Then the decision must be made as to whether the system state 

should be considered close enough to the switching surface to consider the 

sign of the drive appropriate. 

Another technique which has been investigated by simulation is the 

policy of using a coast prior to intercepting the surface. By turning off the 

drive before the surface is reached the velocity of the phase trajectory is 

decreased, reducing the overshoot which results from sampling. Further-

more, because the trim gimbal is stopped when the surface crossing is de-

tected, the delay in reaching trim gimbal speed in the right direction is 

reduced by a factor of 1/2. Simulation of this technique reveals it to reach 

a small amplitude limit cycle. There are two techniques for establishing a 

coast prior to reaching the switching surface. One technique defines a 

second surface with smaller gain. Thus, when 

fe (0 - O D , 0, 0, K<Ktrue ) 0 

is encountered the trim gimbal drive is switched off. When the true surface 

is reached the control is turned on according to 

fs (0 - O D , 0, 0, K = Ktrue  ) = 0 

This could be mechanized by noting that the drive signal is applied when 

sign (fs ) = sign (fe ) 

Coasting is used when 

sign (fs ) / sign (fe ) 

The drawback of this mechanization is the need to compute two complicated 

functions, f s  and fe . 

Another way of providing a coast is to coast whenever 

sign (f) # sign (f) 
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This is easy to mechanize. The drawback is that the coasts may be quite 

long. Simulation of this shows it to work adequately. 

Finally, a technique for reducing the amplitude of the limit cycle 

has been suggested by W.S. Widnall. His suggestion is to reduce the K 

used in the switching surface by a factor of about 0.5. The result of this 

gain reduction is to cause the system trajectory to approach the origin by 

switching back and forth across a surface which represents a lower gain 

system. Thus, in effect, the true system is made to behave like a lower 

gain system by switching the control signal sign back and forth. This policy 

results in a very small limit cycle. The angle limit on the steady state 

limit cycle is less than 0.1 degree. The settling time to attain this limit 

cycle is only a little longer than the truly optimum system. This policy is 

the one which has been programmed for the LGC and it is this policy which 

will be used unless the 100 % duty ratio on the trim gimbal drive turns out 

to be objectionable. If a smaller duty ratio should be required, a coasting 

policy using a reduced gain switching surface will be investigated. 

Implementation of the Time-Optimal Control Law in the LGC  

The time-optimal control law requires knowledge of the system state, 

0, e , and U. A Kalman filter has been programmed to estimate gimbal 

angles, gimbal angle rate, and gimbal angle acceleration. The Kalman filter 

is programmed in gimbal angle coordinates because the CDU measurements 

and the estimation procedure are performed four times for each calculation 

of the control law. The matrix multiplication required to resolve from gim-

bal angle coordinates to body coordinates is performed only when the control 

law is computed. The Kalman filter is described in R-499. The only thing 

to add to what is discussed in R-499 is that the components of the weighting 

vector are fitted as exponential functions which are then computed as simple 

recursion formulas. This mechanization of the W vector was suggested by 

Kurt Lanza. Suppose we can satisfactorily represent a Kalman filter weight 

by the following exponential functions of time 

w(t) = a e -bt  + c 

10 



then 

w(t+At) = a e
-b (t+At) 

+ c 

w(t+At) = e -bAt(a  e -bt 
 + c) + c (1 - e -bAt ) 

w(t+6,t)  = e  -bAt 	 -bAt ) w (t) + c (1 - e 

thus 

wn wn-1 

is a recursion formula for w (t) where 

a = e 
-bAt 

 

p = 	- e -bAt ) 

Since At, the filter sampling time, is fixed, a and p are constants. Thus, 
only three constants, w 0 , a, and i3 need be stored and the sequence of 

values of the w weight are handily generated by a simple multiplication and 

addition. 

The Kalman filter computation is performed 20 times a second and 

takes 5 milliseconds a pass. 

The control law computation (both axes) takes about 9 milliseconds. 

Thus, without violating the 14 millisecond maximum interrupt time, the 

control law can be performed with a filter calculation. If the control law is 

calculated 5 times per second, every fourth filter execution, the following 

computer load results 

P axis 5 X 6 msec . 30 msec 

Filter 20 X 5 msec = 100 msec 

Control Law 5 X 9 msec = 45 msec 

Matrix Updates 2 X 3 msec = 6 msec 

181  msec 

Thus, about 18 % of the computer time is used by the DAP during the time 

the trim gimbal is used to steer the vehicle. 
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During each pass through the control law the angular error is check-

ed. If the error exceeds a given bound (about 1 to 2 degrees) the jets are 

used for control until the vehicle's state is brought closer to the origin. 

Before exiting from the trim gimbal law to the RCS jet control law, the trim 

gimbal is set to drive 0 to zero and a waitlist call to turn off the trim gimbal 

in 

T= 

seconds is requested. When the jets have returned the spacecraft to the 

vicinity of the origin of the 0 - 0 D , 0 phase plane, control is returned to 

the trim gimbal control law. The Kalman filter weights are re-initiated 

upon this return. 

Figure 4 is a block diagram of the trim gimbal control law. 
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