Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

Space Guidance Analysis Memo #8-65

TO:

SGA Distribution

FROM:

E. M. Copps, Jr.

DATE:

May 3, 1965

SUBJECT:

An Analysis of Control of Track Deviation During Lunar Deboost

1. This memo answers two questions:

- 1) How much track error results from no track position control?
- 2) How much extra delta-v does it cost to have track position control? For lunar orbit insertion, the diagram of velocities is;

Figure 1 Vector Diagram

where

 $\bar{\mathbf{v}}_{c}$ = circular velocity ~ 5335 ft./sec.

 \bar{v}_h = inbound hyperbolic velocity ~ 8300 ft./sec.

 $\bar{\mathbf{v}}_{g}$ = velocity to be gained during insertion

 $\overline{\mathbf{I}}_{\mathbf{N}}^{\mathbf{S}}$ = unit vector perpendicular to desired plane

The thrust acceleration vector $\overline{\mathbf{a}}_{T}$ is essentially along $\overline{\mathbf{v}}_{g}$. We work first in a coordinate along $\overline{\mathbf{v}}_{g}$ the x coordinate. We assume constant $|\overline{\mathbf{a}}_{t}|$ for ease of operation. In these coordinates, the change in position in the x direction due to thrust acceleration is;

$$\Delta x = \frac{a_T T^2}{2}$$

where T is the burning time ~ (320 secs.)

By referring to the vector diagram of Fig. 1, the final y position where y is along $\overline{\mathbf{1}}_N$ is;

$$y = \frac{a_T T^2}{2} \sin \theta - v_H T \sin \alpha + y_0 \quad (t_{ignition})$$
 2)

This equation permits the calculation of three important partial derivatives:

1. Change in y due to late ignition. In this case the burn time T is invariant, but the absolute time of cut off increases. This influences the third term in Eq. 2, and the partial is approximatly,

$$\frac{\partial y}{\partial t_{ignition}} = -v_{H} \sin \alpha$$
 3)

2. Change in y due to unpredicted changes in thrust to mass ratio:

Here make the substitution

$$T = |\overline{v}_g|/a_T$$

where

$$|\overline{v}_{g}| \cong 3200 \text{ ft./sec.}$$

$$a_T \cong 10$$
 ft./sec.²

then

$$\frac{\partial y}{\partial a_{T}} = -\frac{|\overline{v}_{g}|^{2}}{2a_{T}^{2}} \sin \theta + \frac{v_{H} \sin \alpha |\overline{v}_{g}|}{a_{T}^{2}}$$

$$4)$$

3. Change in y due to changes in magnitude of inbound velocity. (This is easily accounted for by choice of ignition time since it known beforehand).

$$\frac{\partial y}{\partial |\bar{v}_{H}|} = -T \sin \alpha$$
 5)

We now turn to Δv lost in maneuvering to make up track displacements. Using coordinates along $\overline{v}_g \sim x$ and perpendicular to $v_g \sim y$, we proceed:

A near optimum track steering law, for track position control is;

$$\psi = A + Bt \tag{6}$$

$$\ddot{y} = a_T (A + Bt)$$
 7)

yielding

$$\dot{y}_F = a_T (AT + BT^2/2) + \dot{y}_0$$
 8)

$$y_F = a_T (AT^2/2 + BT^3/6) + \dot{y}_0 T + y_0$$

The appropriate boundary values to correct for a displacement yield.

$$\begin{bmatrix} \frac{\mathbf{a}_{\mathrm{T}}^{\mathrm{T}^{2}}}{2} \end{bmatrix} \mathbf{A} + \begin{bmatrix} \frac{\mathbf{a}_{\mathrm{T}}^{\mathrm{T}^{3}}}{6} \end{bmatrix} \mathbf{B} = \mathbf{y}_{\mathrm{F}}$$

$$\begin{bmatrix} \mathbf{a}_{\mathrm{T}}^{\mathrm{T}} \end{bmatrix} \mathbf{A} + \begin{bmatrix} \frac{\mathbf{a}_{\mathrm{T}}^{\mathrm{T}^{2}}}{2} \end{bmatrix} \mathbf{B} = \mathbf{0}$$
10)

for lunar deboost, we can use

$$5.11 \times 10^5 \text{ A} + 5.45 \times 10^7 \text{ B} = \text{y}_{\text{F}}$$

$$3.2 \times 10^3 \text{ A} + 5.11 \times 10^5 \text{ B} = 0$$

Inverting these equations yields A and B in terms of $y_{\mathbf{F}}$.

A =
$$5.89 \times 10^{-6} \text{ y}_{\text{F}}$$

B = $-3.68 \times 10^{-8} \text{ y}_{\text{F}}$

Delta-v lost can be expressed by the approximate formula.

$$\Delta v_{L} = \int_{ignition}^{cut-off} \frac{a_{T} \psi^{2}}{2} dt$$
12)

yielding

$$\Delta v_{L} = \frac{a_{T}}{2} (A^{2} T + \frac{B^{2}T^{3}}{3} + ABT^{2})$$
 13)

Returning to Fig. 1, we note that displacements of interest are along the $\bar{1}_n$ vector, since displacements in the desired plane are not of interest. We must therefore modify our calculations by the sine and cosine of the angle θ .

Figure 2 Velocity Diagram

An approximate relation between θ and α is;

$$\theta = \frac{8300 \ \alpha}{8300 - 5235} = 2.7 \ \alpha$$

We now use A, B, (y_F) to relate Δv_L to y_F, using T = 320 secs.

$$\Delta v_L = 1.85 \times 10^{-6} \, y_F^2$$
 15)

3. Some typical numerical applications.

For a 6 degree plane change at lunar orbit insertion,

Table 1

Thrust Perturbation	Max distance out of plane if no track position control	Δv lost if track position control is used
3%	3900 ft.	.306 ft./sec.
6%	7800	1.22
9%	11,700	2.75

For a 9 degree plane change at lunar orbit insertion,

Table 2

Thrust Perturbation	Max distance out of plane if no track position constraint	Δv lost if track position control is used
3%	5900 ft.	.795 ft./sec.
6%	11,800	3.12
9%	17,700	6.35