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Introduction

At the initiation of thrust, a disturbing moment on the
vehicle can be produced by an initial misalignment of the thrust vector

relative to the vehicle CG. This misalignment can be caused by:

(1) An uncertainty in the information, on the CG location, used by

the astronaut to pre-align the engine gimbal servos.

(2) A mechanical offset in the positioning of the engine nozzle by

the pitch and yaw gimbal servos.

(3) A misalignment of the thrust vector relative to the nozzle center-

line.

The necessity for stabilizing low -frequency slosh and
bending modes of the CSM - LM vehicle places some severe limitations
on the gain and bandwidth of the CSM - LM digital autopilot filter. As
a result of these limitations, the use of the autopilot feedback loop to
generate a signal to compensate for thrust misalignment would result

in the buildup of excessive attitude errors. Therefore, an auxilliary

-external correction scheme is needed to augment autopilot action in pro-

viding this misalignment correction. A number of such schemes have

been proposed and are being investigated.



T

A method for recursively canceling the effects of the
disturbing moment is presented here, A correction signal is applied
to each engine gimbal servo immediately after the first attitude mea-
surement is received from the IMU, and is updated with each subsequent

measurement.



St atement of Problem

The model of the vehicle used for this derivation is shown in Fig. 1,

X3

In Fig. 1:

(1) w(t) is a driving signal characterized by unbiased Gaussian
noise with the known covariance O

(2) r(t) is a measurement error characterized by unbiased
Gaussian noise with the known covariance crrz,

(3) z is the IMU measurement,

(4) The state is defined to be

é T

_X_=[9 RB‘: 6b] ’

RB

where GRB and éRB are the vehicles rigid body angular
position and angular velocity, and 6 is the disturbing

moment.

(5) The initial value of the covariance of the state estimate,
P (X (0)), is known. "

(6) }?3 is the previous best estimate of X3



(7) 60 is the commanded engine position.

The difference equation corresponding to the state diagram in

Fig, 1 is:
x{n+ 1) =¢x m+ [u ), (1)
where
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un)=[é, (n)- 93 (n), w (n)]T-

The best estimate of the state at the n+ 1 sample, prior to the n+ 1 mea-

surement, is
Em+ D=¢R@+ [T, (2)

where

Q (n) = E(n)ﬁ(n)T = .

0 o
[ .

The problem is now to determine the value of by, from the noisy measurement

Zo



Derivation

Subtracting (1) from (2) yields:
e+ D=X0m+1-xm+ D=9 [Rm-x@ + [([Ew-um).

Therefore, the estimation covariance at the n + 1 sample, prior to the n+ 1

measurement, is

M@+ D=e@m+De@+ DT =P m¢T+ [Qul T

+oE@-x @ [E@-u@T T

+ [T E@-um] x@ -x ] ¢

However,

[5, () - %5 ()] - [5, () - &, ()] 0
T (n) - u (n) = = -

0 -w (n) w (n)

, w{n)=0, and w (n) and [g (n) - x (n)] are independent, therefore,

M@+ 1)=6Pmél+ ['Qm [T (3)

If a signal with a gaussian distribution is passed through a linear system,
the output of the linear system has a gaussian distribution. Therefore,

the distribution function for E(n") is:
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The probability density function for the measurement noise is
[ - :
f, [r (n)] = € ~ m-— (5)
2 (zﬂ)llz o, 9 o;‘Z
Since the measurement noise is white, r (n) and g (n) are independent;
therefore,
flx@), r(n)]-= fy [x (n)] f2 [ r (n)],
or,
1 -1/2 X -1 g+ 2
£lx(m), r@)]=—y R [x(n) -X ()] M “(n) [x(n) -X (n)] +gr—2
. 4r% o, IM(n)]

(6)

The estimated value of x (n) that maximizes the joint probability density
function (the most probable value of x (n)) maximizes the argument of the
exponential given in (6). This then is the Maximum Likelihood Estimator.

The likelihood function is

2
[x (@ -% @] M@ [(x0-2@T+L I
r

DN -t

L [x ()] =

(7

Notice that minimizing (7) is the same as maximizing the argument of the

exponential in (6).



From Fig. (1), the relationship between r (n), z (n), and x (n) can be
derived by observation.

r(n)=z(n)-h' x @), (8)

where ET = [1, 0, 0]. The substitution of (8) into (7) yields:

L [x(m] = 5 [x(0) - @] M () [xm) - 2@ 7T+

2
. 5 [z (n) - nT x(n)]
2c7r

The first variation of the likelihood function is

6L =d" x () M ') [x @ -T@] -aTx ) 2 bz (@ -n' x @],
r

(9)

The value of x (n) which causes L [x (n)] to be stationary can be derived
from (9). '

M) &) - M) E@) - —phz(n)+ -
: O'r O'r

1 T
[—s-hh' +
G2 ==

M ))& @ = [— bhT+ M )] X ()
o
r
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+—-hlz(-h' @]
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Therefore,

£=Xm+dm5h [zm-nTEm), (10)
g
r

where

M @)]. (11)

47 ) = [ nnT
(83

r
It will now be shown that Y(n) is the covariance of the estimate at the nth

sample after the incorporation of the nth measurement according to (10).

The time subscript will be dropped for this derivation. Let e = g - X, then

1< >

e =

(K|

+}E-}£ (12)

The substitution of (8) and (10) into {12) yields:

e=LP———1—h(th+r—th +x - x,
€ oA\ X o x)+ X - X
r

or,

1 1 Ty = _

9_-'0'—'2—¢1_1r+(1“6:'§¢1_1£)(§ 35) (13)

r r
From (13) P can be expressed as
T 1 T T 1 T 1 7.t
P=ece =-—§Llikl_f_1 / +(I—~—7¢EE)M(I-—2¢EE) (14)
o o o
T r r

Premultiplying (11) by ¥ and then postmultiplying by M yields .



hT

M=y+—ynnl
e
or
1
(I-—5¢hhl)M=y (15)
Ir
The substitution of (15) into (14) yields:
1
P=—¢hh"¢T+ya-LoynnhHT,
o o T
r r
or
1
P=-oghh ¢T - LynnT T4y
o o)
r r
Therefore,
P=y
Summary

The correction scheme is summarized below.

(1) Precompute and store in the flight computer the filter
weights for the maximum likelihood estimator as follows.

(a) Let w (n) = ——12— P (n) h, where the initial covariance
w o a,
P (0) is given.



(b)  Extrapolate the covariance matrix using (3)

M@+ 1)=¢P@é + [Qm ™ T (3)
(c) Calculate the covariance matrix, after the incorporation

of the measurement using (11)

P+ 1)=[25hnT+ M+ 1) (11)

g
r

(d)  Calculate the n+ 1 weighting vector from

wm+1)=—P@m+1h
g
r

Repeat (b) through (d) until a sufficient number of filter weights have been
calculated.

(2) In the flight computer

(a) Extrapolate the state using (2)
X+ 1)=¢Xm+ [T (n) (2)
A . .
where X (0) is given.
(b) Incorporate the measurement using (10).

S+ D=X(+1D+wn+1) [z@m+1)-hl X (n+ 1)] (10)

(e)  Apply the thrust vector misalignment signal 6 (n+ 1)

A A }
= Xgq (n+ 1) = 64, (n+ 1)
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A block diagram of this correction scheme is shown below.

A Digital +
> Autopilot "@ Vehicle
: A

| Vehicle

4 Thrust Vector
Misalignment
- Estimator

Figure 2. A Block Diagram of the Implementation for the
Recursive Correction Scheme

Equations (2) and (10) can be simplified for programming as follows:
Equation (2) written out is

- ‘ ; 2 ) 2
0 (m+1)=0@+ATE @+ kA 5 w3 k8L (5, @ - & ()]
(2a)
2 . ;\ A A .
@ (n+1)=0 (n)+k AT ch(n)+kAT[6C (n) - by (n)] (2b)
5, (a+ 1) = & () | (2c)
:»Or:
— A r{ ATZ
0 (n+ 1)=9(11)+AT9(n)+’k‘T6C (n)
G(a+ 1)=0(a)+ k AT 5, () )

5.+ )= 5, (n)
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Substituting (2') into (10) yields:

$(n+ 1) ='§(n+1)+w0c(n+ 1) (16)
A K

B (n+ 1) =6 (n+ D+w cn+ 1) (17)
6, (n+ 1) = 5, (n)+ Wy e (n+ 1), (18)

where w (n+ 1) = [wy (n+ 1), wy (n+ 1), w, (n+ 1) 7

andc @+ D=z (n+1)hY x (n+ D=zm+1) -8 (n+ 1)

12



Results

This correction scheme has been applied to the CSM and the
CSM - LM vehicles. A total thrust vector misalignment of 1° was used
for each simulation, '

Plots of the attitude, engine angle, and the velocity error verses
time for the CSM vehicle are shown in Figs. (3) thru (5), Correspond-
ing plots for the CSM - LM vehicle are shown in Figs. (6) thru (9).

13
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Fig. 7. A plot of the commanded and the actual engine position versus time for the CSM-TLM.
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Conclusions

It was found that the attitude errors were less than 3 degrees for
the cases shown in Figs. (3) and (6). The curves shown in Figs. (5) and
(8) indicate that the velocity error for a 25 second burn without steering
never exceeds 0.5 ft/sec. in the case of the CSM vehicle, and 4 ft/sec. for
the CSM - LM vehicle.

Figures (3) and (6) indicate that there might be a relative stability
problem produced by the addition of the corrective signal. However, the
resulting system does appear to be stable in an absolute sense . The curves
in Figs. (4) and (7) show that the correction signal rapidly approaches the
value required to cancel the the initial thrust misalignment and then oscil-
lates about this value. Therefore, the correction process could be termina-
ted early by supplying a constant bias equal to the average value of the os-
cillating signal after approximately 10 seconds. This would eliminate the

stability problem.

The interaction between the estimator and the original system is
being investigated to determine the resulting stability margins. It is hoped
that these studies will lead to approaches for improving the overall system
stability through revised estimation procedures, and better coordination be-

tween the autopilot design and the estimator selection.
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