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Let

C(u>=l-?108(r\/_ﬁ)

for u > 0. Then 0 <ucC (u) < 2. Let A be a number between 0 and 2

and consider the roots of the equation

uCi(u) -A=0

lying between 0 and 7r2, If U, is a root we have

cos ('\/uo) =1-A
Y Remark (a) u C (u) - A = 0 has exactly one root between 0 and 7r2.
The feasibility of calculating this root using the

recursion formula

will now be investigated.
Remark (b) Let v denote the root and let U be the initial guess at the
root. If 0<u

<v, then u >u_for every n and un-»vasn — 0,
n T

0
Similarly, if v <u

n+ 1

< ’/‘T2, then u < u for each n and u — vas

0 nt 1

Il ~ 0,

Proof of Remark (b). We will start with two lemmas.

Lemma (1) u C (u) is (strictly) monotone increasing and C (u) is (strictly)
monotone decreasing for 0 <u < 7r2. (Strict monotonicity means that if

u; > u, then C (ul) >C (u2) and not : C(ul) >C (uz); that is C (ul) +C (uz).)



Proof of Lemma (1).
uC(u) =1 - cos (Nu).
Since cos (_\/fl?) is monotone decreasing for 0 <u _<_7r2, it follows that

u C (u) is monotone increasing.

Let
f(x) =sinx - X cos x
then
£f(0) =0 (0
!
f(x)=xsinx
and
H
£ (>0 (2)
for 0 < x<w. From (1) and (2) it follows that
f (x) >0 (3)
for 0 <x <. '
Let
- sin x
g (x) =
then
g(0) =1 . (4)
1 - al ' '
g (x) = Xcos;zc sin x =-—1—2f(x).
X X
Therefore
1
g (x)<0 (5)
for O i X _<_ .
Furthermore
g(r) =0 (6)

Therefore, from (4), (5) and (6) it follows that g (x) is monotone decreasing
for 0<x<m and

0<g(x)<1
for x in this range,

Finally,
NN ey
1) 1,9 2 2sin (‘32‘ u)

1 -cos (Nu)

u

= C (u).



Since g (x) is monotone decreasing and positive, it follows that C (u) is
monotone decreasing.

Lemma (2) If0<u_<wv, thenu <u <wv.,
—_— —'n n nt1
Proof of Lemma (2). By Lemma (1) C (u) is monotone decreasing and

C(v)<C (un).
Therefore

A=VC(V)<VC(un)

or
u = A <
n+1 C iun) Ve
Since (Lemma (1) ) u C (u) is monotone increasing
unC(un)<VC(v) = A

and therefore

u<A-

n C?un}u-un+'1"

Proof of remark continued. If 0 Sug<v, it follows by Lemma (2)
and induction that the un's form an increasing sequence bounded above by
v. Therefore, the un's approach a limit u . Taking limits on both sides

of the recursion formula

B = A
Yn + i C iuni
we have
u_ = A
o ~ Clu.y
o0
or ' u C (-uoo ) = A
Furthermore, since
0 < u, < 7r2
we have
O<u. < 7r2,
— QO e

Since v is the only root of u C (u) - A = 0 between 0 and 712,; U = v. This
completes the proof of the first half of Remark (b). The proof of the

second half follows the same lines.




Now consider the roots of the equation

uC(u -A=0 (7

when A is negative. We are interested in the roots lying between -« and
1r2'. u C (u) is positive when u lies between 0 and 2 so any possible roots

are negative. For u negative

u C (u) = - <cosh (N -u) -1} .
Let B= -A and w = ~u. Then equation (7) becomes
wC(-w) =B
or

cosh Nw) =B+ 1

Remark (c¢) For A <0, equation (7) has exactly one root and this root is
negative.

The feasibility of calculating the root of equation (7)
using the reciirsion formula

Yh+1 T Zun)b_
for negative values of A will now be investigated. In order to have

positive variables, the recursion formula will be rewritten in the form

- B
Wn+1 C l-—wni
Also let
zZ = -V
where v is the root of equation (7).
Remark (d) If W < z, then W + 1 > z and if - L >z, then W41 < z. Thus

the successive Wn‘s oscillate about the root.

Proof of Remark (d). Using the power series expansion for the hyperbolic

cosine we have : , 2
) ‘(1'+’;¥"‘ "%V“t+*'-)‘1
C (-w) = 21 !

+
w



1 w W2
C{-w) = +'74—!+'6—!+"‘

21
Since w" is strictly increasing, C (-w) is the sum of strictly increasing
functions and is therefore strictly monotone increasing for positive w.
Let

_ B
Fw = 1) -

Since C (-w) is strictly monotone increasing, F (w) is strictly monotone
decreasing.
Furthermore

Wn +:'1 = R (Wn)
and

z =F (z) .

Assume that wn< z. Then, since F (w) is monotone decreasing,
=F (wn) >F (2)% z

or

Similarly, if w_> z,

W41 T F(Wn)<F(z)=z

or

Unlike the case when A> 0, W does not converge to

z if -A is too large. Let X, be the positive nonzero root of the equation

x = 2 tanh x



let

and let
B0 =2z, C (-zo) .

Remark (e) If 0 <B< BO
then W, —zasn-—ow If B>BO, then the un‘s oscillate and do not approach

and the initial guess W is sufficiently good,

a limit as n — oo,

(To three decimal places:

Xq =1.91
zg = 14.6
BO = 21,8

For a given value of B it is not easy to tell whether an initial guess W is
sufficiently good to insure convergence. By using the methods of the
following proof and the mean value theorem it can be shown that if one

makes the initial guess Wa T2 and B is less than BO’ then W~ z.)

Proof of Remark (e). Again let

F (W) ooy
Then
F (w) = Bw
cosh (N'w) -1
Let .
G(w)= F'(w) = B [cosh Nw) -1 - —'\/; sinh N__J Eo’s.h (Nw) - 1:1
Since

B =cosh Nz) -1



- we have

G (Z) = _ '\]_Z— Sinh ('\]—E)

2 cosh (Nz) -1 t1 (8)
It is necessary to determine the values of z for which G (z) = - 1. By (8)
this is the same as solving the equation ’ |
Nz  sinh (N 2) i - (9)

2 cosh (NZ) -1
If zq is a root of (9) we have

7=

0 sinh,('\/—z;)_) = 8 (cosh ('\/—z_o) -1)

Using the identities
cosh & - 1 = 2 sinh® (2)

and _
sinh a = 2 sinh (%) cosh (—g—)

we have

0 2

NZ. = 4tanh (“Z‘)) ]  (10)

Letting zy = 4 x2, (10) becomes
x = 2 tanh x (11)
Since G (0) = 0 and G (z) —~ - was z — o, G (z) = - 1 for at least one value of

z. By considering the graphs of y = x and y = 2 tanh x one can see that v(ll)

has one positive root X, as well as the root x = 0, . The root x= 0 can be

V4
discarded since G (0):‘: - 1. Since —5— satisfies (11) for every root Zg
of G(z) = -1 and Xq is the only acceptable root of (11), there must be
exactly one root of G (z) = - 1 and '
- 2
Zg 4 X .




As G (z) = -1 has only one root, it follows that

G(z)> -1

if 7 <zO and

G (z) < -1

if z> Zg

It will now be shown that, if B > BO’

do not converge as n — o. Suppose that W,—~W_ asn-—

then the w _'s
n

. B
Yn+1 T TCTwW C
Taking limits
w_o= B
0 C I-W:')

or
W o C (—Woo )= B R

Therefore w w = 2. Moreover

Wn +1 =F (Wn)

and

z = F (z) .

Combining the last two equations we have

Wn+1-z=F(Wn)—F(Z) 5
Thus
Wl’l+1 -z . F(Wn)—F(Z) (12)
W _ - Z 1 i w_ -z ’
n n



Asn — o

F (Wn) - F (z)

w_ -2
n

F (z) =G (2)

Since z > Z g lG (z) ‘ >1 Choose 8 sothatl<g <| G (z) ' . Then

for n greater than or equal to some number N,

IF(Wn)-F(z)

I W - z > 8 .
n
By (12) it follows that
W -z |
nt1 > 8
I‘ W~z l
for n_>_ N. Therefore
; _ n-N
Iwn-z|>’ Wy~ 2 6

for n > N and hence
IW - z| — o
n

as n — o, since 8 > 1. This contradicts the assumption that W — 2z as
n — o, The proof that w o —zasn-—w if B< B0 is similar.



