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Introduction 

The lunar rendezvous midcourse navigation system is capable of estimat-

ing a measurement bias which can be described by three parameters, if the 

state vector and covariance matrix are to be limited to nine dimensions. In 

order to analyze the effect on midcourse AV of non-estimated biases or CSM 

ephemerus uncertainties, equations were developed for mean square velocity 

corrections under these non-optimum estimation conditions. 

Error Matrix Equations  

Define a covariance matrix E c (6 x 6) which may represent either the CSM 

error matrix or the covariance matrix of non-estimated measurement biases. 

An example of measurement biases might be: 1) a rotation of the radar mea-

surement frame due to structural flexure and 2) constant radar angle pick off 

Ec = az Sz T = 

biases. The matrix E c would then be: 

	 ETILT 0

— 
6 E CON 

where: Sz = CSM position and velocity errors, or 6 parameters describing 

non-estimated measurement biases. 
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2 = variance of 3 Euler angles describing rotation of radar mea-

surement frame. 
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 = variance of constant biases in elevation angle ((3) and azimuth 

angle (9). 

Also define a b vector (b c  (6 x 1)) which relates the deviation in the mea-

sured quantity (Q) to the measurement bias (or CSM uncertainty), accor-

ding to: 
6Q = b T  6z 

Since the non-estimated biases are not known on board the LEM, the 

following estimation equations are utilized for navigation i. e. 

weighting vector = W (9 x 1) = E' b/A 

A = bT E' b + a2  

covariance matrix of state estimation errors = E (9 x 9) = E' -WW T A 

where: b satisfies: 6Q = b T  ox, 6x=state deviation vector 

a2  a = variance of random measurement error 

The actual estimation error which takes into account the non-estimated 

biases will be represented by e*(9 x 1) and its associated covariance 

matrix is given by: 

E* = (I - Wb T  ) 	(I - W b) +TWW
T a2 

-Gb—c WT 	

(1) 
_ wb  T GT_ wb  T E  'b WT 

— —c 	— —c c —c — 

where: 	,,,1 (9 x 9) 	= L  E (LT (extrapolation of E * ) 	(1 a) 

G (9 x 6) is defined as e *  ozT  , Go  = 0 

G' 	 = 0L G0c T (extrapolation of G) 	 (lb) 

0L x 9) 
L 	

= LEM state transition matrix 

0
c 
 (6 x 6) 	= CSM state transition matrix, or bias transition 

matrix 

Ec i 	 = 0c  Ec  0c T 
(extrapolation of E c ) 	 (lc) 

G 	 = (I - W bT) G' - Wb c  T  Ec  1  (update of G after mea- 

surement. ) 	 (1d) 

Mean Square Velocity Correction (DEL V) 

The estimate of the midcourse velocity correction is given as usual by: 
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A A 	A 
AV = c' Sr - 6v = B Ox = 	+ Ox)  

where: 	 B(3 x 9) = (c *  -1 0 j 
A A T 

Then: 	DELV = AV AV = B(E* + x + e* oxT  + 6x  e*T)  BT 	(2) 

and: 	 DELV = TRACE (DELV) 	 (3) 

where: 	x = Ox Ox
T 

= covariance matrix of actual state deviations 

and: x' = tI L x .1L  (extrapolation) (extrapolation) (4) 

For an optimum estimate, it is recalled that e6x T 
= -E so that DELV re -  

du.ces simply to B(x - E) B T. However, this is not true for the non-op-

timum estimate and e - n5xT must be computed in order to compute DELV. 

Thus, define F(9 x 9) = e * SxT  
A Fo 	e Ox 	= e (Ox - e ) T = -e e 	= -E -0 -o 	-o -0  -o 	o o 

F' 	= (I L F L
T 

(extrapolation) 	 (5a) 

F 	= (I - W b T) F' - W b 
T 

 L (measurement up,- (5b) 

 date) 

L' 	=^ c L ALT  (extrapolation) 	 (5c) 

where: 	L(6 x 9) = Oz Ox T 

The L matrix is usually zero before any velocity corrections since the 

actual LEM state is not correlated with measurement errors. (It may have 

an initial value, however, when Oz represents the CSM state vector, L will 

probably be quite small even in this case when the rendezvous phase is ini-

tiated). 

After a velocity correction, Ox is correlated with Oz since AV is a 

function of Oz. Thus, the update of L after a velocity correction is given 

by: 

L = Oz Ox+  = L'(I + MB) T  + G
T 

BT MT (velocity correction up - (6) - - 
date) 

T 
(noting Ox+ = SxT 

 (I+ MB)T 
 + 1/4T BT 

where: 	 M(9 x 3) = 

The x matrix and F matrix must also be updated after a velocity 
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correction: 

x = M(DELV) M
T 
 + x' + MB (XI + F') + (x' + 

(velocity correction update) 

F = F' + (F ,  + E*°) BT  MT 

 (velocity correction update) 

T T 
 F') B MT (7) 

(8) 

Thus the procedure followed to compute DELV is: 

1 ) Between measurement points compute E'' ' , G ' , Ec 

x°, F', and L' using equations (la), (lb), (lc), (4), 

(5a), and (5c) respectively. 

2) Compute E *, G, F, after each measurement using 

equations (1), (id), and (5b) respectively. 

3) Compute DELV and DELV when desired using equa-

tions. (2) and (3) respectively. 

4) Compute L, x, and F after each velocity correction 

using equations (6), (7), and (8) respectively. 
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