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TO: 	SGA Distribution 

FROM: 	Bard S. Crawford 

DATE: 	September 8, 1964 

SUBJECT: Optimization of Reentry "Up-Phase" Guidance 

This memo presents the results of an attempt to optimize the 

"up-phase" portion of reentry guidance. The equations of motion are linear-

ized about a reference trajectory in order to permit the computation of sta-

tistical results. An unsophisticated steepest descent procedure is used to 

find optimum values of control system gains. An optimum set of varying 

gains is found that is significantly better (less sensitive to altitude-rate 

errors) than the optimum set of constant gains. 

1. Introduction 

When the total reentry range is greater than approximately 

2000 n. m. it is necessary to climb out of the atmosphere and perform a 

"skip" maneuver at velocities somewhat less than circular. The most criti-

cal task of reentry guidance is to steer the vehicle through this climbing 

maneuver, starting at a high-g, supercircular condition and achieving a 

suitable "exit" condition, The combination of velocity magnitude and rate-

of-climb at exit should be such that when the vehicle enters the atmosphere 

the second time, the target is well within the remaining "footprint" defining 

the vehicle ranging capability at that time. 

The measure of performance used in this study involves the 

projected range at exit, the sum of the range covered during the Keplerian 

portion prior to the second entry and the range covered after the second en-

try assuming a nominal value of Ida An optimum up-phase system is one 



which minimizes the mean squared value of the difference between the pro-

jected range and the actual range to go at exit. 

The sources or error considered in this study are navigation 
errors such as incorrect knowledge of velocity and rate-of-climb and devia-

tions in the scale height of the atmosphere. 

It had previously been found that a computed reference trajec-

tory scheme performed better during the up-phase portion than any other type 

of scheme tried. The system works as follows. During the high-g portion a 

pair of functions 
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are generated within the AGC. These represent the way velocity and rate-

of-olimb are to vary as a function of acceleration-due-to-drag in order that 

the reference value of projected range is equal to the actual range-to-go. 

The control equation is then as follows: 

(LID) cornm 	(L/D)ref  + K (v 	- vref)  + K 2 (r-meas _ 

	

1 meas 	 ref ) 

(1) 

In the investigation described below a control equation having 

the essential nature of Eq. (1);is assumed and values of the gains, K 1  and K 2' 

(not necessarily constant) are sought which minimize u E , the root mean 

squared value of the deviation in projected range at exit. Note that the objec-

tive is not to optimize the trajectory, but to optimize the control system. 

2. Analysis  

The main steps of the analysis are outlined here; certain details 

are relegated to the appendix. 

A. Non-Linear Time-Dependent Equations 

We assume that a particular reference trajectory has already 

been established and we are primarily interested in the actual time histories 
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of the following three state variables: altitude, velocity and rate-of-climb, 

Lr, v, c} . Using time as the independent variable and assuming small 

flight path angles and an exponential atmosphere, we have the following 

a.pproximate , differential equations: 

(2) 

= -a PO c D A  

2 m 

(r - r o ) 
(3) 
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If we assume that a desired value of LID can be obtained 

instantaneously (roil controllsystem is fast compared to trajectory dynamics), 

we can insert Eq...,(1;)'into Eq. (4) to get 

c ref ) ] 

(5) 

Equations (2), (3) and (5) are a set of non-linear differential equations which 

approximately describe the behavior of the system. 

B. Non-Linear Drag-Dependent Equations 

We can derive an equivalent set of equations using a D, rather 

than time, as the independent variable. Corresponding to Eqs. L(2) and (3) 

we have (a = aD ) 

r 
	d r 	

f (c, v, r, f3) 	 (6) 
d a 

d v = 	- g (c, v, r, [3) 
d a 

(7) 

where f and g are complicated, non-linear functions. Corresponding to 

Eq. (5) we have 

(4) 



dc - dt dc 

d a 	d a dt 

1 
• 

(8) 

a G + a — 
D 

+ 	
fl(vmeas - vref ) + K2 (cmeas - cref) 

ref  

which can be rewritten as 

c = c 	+ kl (vmeas - 
vref)  + k (c 	- c 	) 	(9) ref 	 2 meas 	ref 

where 

and k2 
a 

a 

Equations (6), (7) and (9) are equivalent to Eqs. (2), (3) and (5). If we can 

find optimum values for k
1  and k2, it is a simple matter to compute cor-

responding values for K 1  and K 2 to be used in the real-world system. 

C. Linearized Equations 

The next step is to linearize Eqs. (6)„ (7) and (9) about the 

reference trajectory. Thus we have 

r = fc  6c + fv 6 v + fr 6 r + fo  6 	 (10) 

6v = ge 6c + gv 6v+g 6r+ gi3 60 	 (11) 

6c = k2 Sc+ k 1 6v+ k2 e c 
+ k

1 e
v 	(12) 

a 

where 6 r, 6 v and 6 c are deviations from the reference trajectory; 

60 is a deviation from the nominal value of g (reciprocal of scale height); 

e c  and e v are errors in the navigation systems knowledge of rate-of-climb 

and velocity; and the subscripted f's and g's are partial derivatives. 

We now have a set of linear differential equations with coeffi-

cients that vary as a function of the independent variable, a. (Expressions 

for the partial derivatives, are given in the Appendix. ) 



This set of linear equations can be integrated (from a o  to ad 

to solve the following deterministic problem. 

Given: 

1. A particular reference trajectory {f's and g's tabulated 

as a function of a] 

2. A particular set of initial deviations (6 v o , 6 col 

3. A particular set of error sources [6 13, ec, e 

4. A particular set of gains 	k 1 (a), k 2  (a)1 

Determine: 

1. The final (exit) deviations 	vf'  6 cf  I 

2. The "error" in projected range at exit 

X c  cf  + X v  of  

where X c and X v  are "exit sensitivities" describing 

the effect of deviations in exit conditions on the projected 

range. 

D. Statistical Equations 

So far we have not gained much since the same deterministic 

problem could have been solved using the original set of non-linear equations. 

But the fact that we have linear equations permits us to proceed to a statisti-

cal analysis. We can then directly compute statistical results pertaining to an 

ensemble of runs. 

From the linear set, Eqs. (10), (1 1) and (12), we derive a set 

of 15 linear equations relating various statistical quantities. These are 

given in the Appendix. They can be integrated to solve the following statis-

tical problem. 

Given: 

1. A particular reference trajectory &'s and g's tabulat-

ed as a function of a3 

2. Statistics of initial deviations 	6 v 	6 c { 2 
o' 	o 

2 



3. Statistics of error sources {60 2
, e

2 
e 2 

c , v 

4. A particular set of gains tk i (a), k 2  (a)3 

Determine: 

1. The statistics of exit deviations 

2. The measure of performance, 

2 —2-  
c 

6c
f 

+ 2X X 6cf  6v + X 6v cv 	f 	v f 

3. Computer Programs 

A. UPREFFILE294BC 

This program simulates a particular type of reference trajec-

tory and generates a file of partial derivatives to be used by the other three 

programs. 

B. DETERM294BC 

This program integrates Eqs: (10), (11) and (12) to solve the 

deterministic problem described on page 5. One run simulates a particular 

case and results in a particular error in projected range at exit. 

C. RMSCOMP294BC 

This program integrates the 15 equations given in the Appendix 

to solve the statistical problem described above. 	One run generates en- 

semble averages and produces a measure of performance, E'  for a partic-

ular set of gains. 

D. STEEPDSCT294BC 

This program uses the previous one as a sub-program and is 

essentially an iterative procedure which continually modifies the gains to 

improve performance. Each trial set of gain modifications is generated by 

means of a steepest descent procedure. The number of parameters to be 

modified is 2, 4, 6 etc. depending upon whether the gains are assumed to 

be constant, linearly varying with a D  , parabolically varying, etc. 
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Results and Discussion  

A. EgpeCted Performance with "Balanced" Gains 

Consider first the performance we might expect from one 

obvious choice of gains. Most of our results to date pertain to an up-phase 

reference trajectory which is part of a typical 5000 nm. range trajectory. 

The exit sensitivities for this trajectory are 

= 2. 99 nm/fps 

and 

= 1. 97 nm/fps . 

Thus, for example, if the exit deviations 6 c f and 6 vf are both + 100 fps, 

the error in projected range would be 

E = 2. 99 (1 00) + 1. 97 (1 00) = 496 nm. 

We choose a pair of constant gains which are high enough to 

achieve fairly tight control of the  indicated  exit conditions and select the 

ratio of the gains so as to balance the effects of 6 v f  and 6 cf. That is, 

the gain ratio is 

2.99 	= 	1. 52 
1. 97 

and we call these balanced gains. In this case we expect the projected-

range error to be mainly a function of the navigation errors, e and e c 
Assuming that these two are uncorrelated and that 

o- e 	= 1 0 fps 
v 

 

and 

e 	
= 30 fps 

c 
 



we expect the following performance: 

0-
E = 	

[2. 99 (10)] 2  + [1. 97 (30)] 2 	- 66. 2 nm. 

This value is a useful standard of comparison for what follows. The signifi-

cance of this value is that it defines the required ranging ability of the final, 

subcircular, glide phase of reentry. In a 3a case, for example, the range 

to be covered during the final glide is approximately 200 nm different from 

what would occur if the glide were flown open-loop with a nominal L/D. 

B. Constant Gain Performance 

WitIv constant gains there are only two parameters to vary and 

we can get a complete picture of the effects of various gain combinations. Such 

a picture is shown in Fig. 1 which plots constant aE  contours on the k 1 - k 2 
plane. Figure 1 pertains to a 5000 nm trajectory and the following data. 

Reference Exit Conditions: 

vref 	24, 700 fps 

c ref = 	1, 055 fps 

X 
v 	2. 99 

X 
c 	1.97 

Initial Deviation Statistics: 

a 
6 v 	

= 250 fps 
0 

a 6 c
o  

= 	100 fps 

Error Source Statistics: 

o- 
6 g 	

1Q°70 of nominal J./  

these 5 quantities 

are assumed to be 

uncorrelated 

a 
ev 

a 
ec 

10 fps 

30 fps 

The dashed line in Fig. 1 is a locus of balanced gains for the 

given exit sensitivities. We see that along a considerable portion of this 

line the performance is very close to the expected value of 66. 2 nm. 
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We see also that there is a narrow region somewhat to the right of the bal-

anced -gains line where the performance is somewhat better; namely, about 

62 nm. These are the optimum constant gains. 

The fact that the system can achieve better performance than 

that achieved by balanced gains means that it is taking advantage of the dy-

namic relationship between 6v and 6 c described by the equations of mo-

tion. Since 6v is known more accurately than 6 c, the control equation 

gives relatively more weight to 6v than the balanced-gains concept calls for. 

As a result of using optimum gains the vehicle exits with an "indicated" error 

in projected range, but it relies on the total system dynamics (with optimum 

gains) to produce a final rate-of-climb which is better than that produced by 

balanced gains. In other words, for a given exit velocity, the difference be 

 the actual rate-of-climb and the ideal rate-of-climb. The above dis-

cussion applies even more strongly to the varying gain combinations which 

achieve still better performance. 

C. Linearly Varying Gain Performance 

With linearly varying gains there are four parameters to vary. 

We take these to be the initial and final values of the two gains, k 1  , k1  , 
o 	f 

2  and k2 • Here the steepest descent procedure proves to be very use- 
o 	f 

ful and gives surprisingly good results. 

Table 1 illustrates the action of the steepest descent program. 

Starting with a set of constant gains (a E  = 169 nm) the program took 41 itera-

tions to reach a performance of a E  = 43 nm. At this point it was suspected 

that better performance might be obtained with k 2  = 0. The program was 
f 

restarted with this assumption and took only 16 iterations to go from a E  = 

141 nm to aE = 37. 2 nm. This is believed to be very close to the best per-

formance possible with linearly varying gains. 

Each iteration cycle involves integration of the equations 5 

times; one nominal run and 4 perturbed runs, each with a small test varia-

tion in one parameter. The next set of parameter changes are chosen in 

proportion to the effects of the test variations (steepest descent procedure). 

If the performance worsens instead of improving the parameter changes 

are cut in half. 



The "path" of the gains corresponding to the last row of Table 1 

are plotted as a dotted straight line on the k J.  - k 2  plane (Fig. 1). Note that 

in the early portion' rate-of-climb (k 2 ) is emphasized while toward the end 

of the trajectory velocity (k 1 ) is emphasized. An interesting result is that 

no single point along the path represents a good set of constant gains. In 

fact the beginning and ending points would be very poor choices as constant 

gains (o-E  > 300 nm in both cases). 

D. Optimum Gains 

It was discovered that significantly better preformance could 

be achieved without increasing the number of parameters. This is done by 

making k 2  (a) the product of allinear k 1 (a) and another straight liar repre-

senting the ratio, k 2  (a)/k1 (a). Thus, k 2  (a) becomes a parabola, but we 

still have just four parameters, the initial and final values of k 1  and k2 . 

Figure 2 plots two sets of gain variations which have the form 

described above. One set is believed to be nearly optimum for the 5000 nm 

case, and the other for a 3000 nm. case. These were found by means of the 

steepest descent program. 

The best performance achieved in the 5000 nm case is 31. 7 nm. 

Since the theoretical limit is believed to be 29. 9 nm (X v = 2. 99, o- ev = 10), 

no attempt was made to use more sophisticated gain variations. 	Similarly, 

the best performance achieved in the 3000 nm case is 6. 4 nm while the thed-

retical limit. is 5 nm (X = 0. 5, g e  = 10). 

The operation of the system with nearly-optimum gains is 

illustrated in Figs. 3 and 4. These are phase-plane plots showing .6v, 8 c 

histories for several specific cases generated by computer program 

DETERM294BC. All of the runs plotted in Fig. 3 assume perfect informa-

tion (e
v 
 = e

c 
 = 0). The four runs shown at the top also assume a standard 

atmospheric scale height and simply show how the trajectory achieves the 

nominal exit conditions regardless of initial deviations. The straight line 

labeled "target line" is a locus of acceptable exit conditions which balance 

off the effects of deviations in velocity and rate-of-climb. The slope of this 

line is simply the negative of the ratio of the exit sensitivities. The two 

runs plotted at the bottom of Fig. 3 show the effect of scale height deviations 

of 10%. The exit conditions are fqr from the origin (reference values) but 
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do lie along the target line and are, therefore, acceptable. That is, the 

error in projected range is small. 

Figure 4 compares the operation of the nearly-optimum gains 

with that of balanced gains when errors in the knowledge of rate-of-climb 

are present. In each case three runs are plotted with e c  = + 30, 0 and -30fps, 

respectively. Points of equal acceleration are connected with dotted lines. 

The difference between the two systems is very striking in the later part of 

the trajectory. With optimum gains, which are comparatively low toward 

the end, the trajectories slowly "drift" in to the target line. The effect of 

a rate -of -climb error is to displace the exit point along the target line, 

making the final projected range very insensitive to the rate-of-climb error. 

With the higher, balanced gains, on the other hand, the final  indicated values 

of 6v and 6 c are driven to a point along the target line, with the result 

that the actual exit point is above or below the line by an amount equal to the 

negative of the error, e c  . 

E, Conclusions 

For any particular up-phase reference trajectory a set of vary-

ing gains can be found which achieve good performance by making the pro-

jected range insensitive to errors in knowledge of rate-of-climb. The per-

formance achieved is mainly a function of the accuracy in knowledge of vel-

ocity magnitude. The following table summarizes the results found to date. 

(Assuming ge  = 10 fps, ge  = 30 fps. ) 

Performance (6 E ) with: 
	

5000 nm case 	3000 nm case 

1. Balanced Gains 	 66. 2 nm 	 30. 4 nm 

2, Optimum Constant Gains 	 62 nm 	 not found 

3. Best Linear Gains Found 	 37. 2 nm 	 not found 

4. Best Gains Found 	 31. 7 nm 	 6. 4 nm 
(k 1  linear, k 2 parabolic) 

Theoretical Performance Limit 
(cy

e 
X X

v
) 

v 
 

29. 9 nm 	 5 nm 
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The improvement from 66. 2 nm to 31. 7 nm may seem un-

important since a performance of o-E  = 66. 2 nm ought to be well handled 

by the final glide phase. If, however, the rate-of-climb errors become 

larger than those assumed above the improvement could become much more 

striking and very important. Just how large the rate-of-climb errors could 

be before linearity and the predicted insensitivity breaks down can only be 

determined by extensive simulation of the complete, non-linear problem. 
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NEARLY-OPTIMUM I I 

 LINEARLY VARYING l  / 
GAIN PATH I 
( CrE  = 37.2nm 	V 

I 
I 

.10 

.05 

.05 	 .10 

K 1  ( GAIN MULTIPLYING Si') 

0 .15 

K2 

GAIN 

(MULTIPLYING) 

Sr 

Fig. 1 Performance Contours for Constant Gains (5000 nm case) 



Table 1 

Operation of Steepest Descent Program with Linearly Varying Gains 

effect of 0. 1% ch_ange  in parameter 
Iteration 1 (a0) 

(mu) 

kl (af) 

• 
(nm) 

k2  ch  
a 

• 
(nm) 

k2  
(a) 

1 	1  
(nm) 

•  

To change in 
parameter with 
largest effect 

crE 

(nm) 
1 

Start .03000 -.0019 .03000 -. 0326 1.0000 +.0439 1.0000 +.233 ; 	-- 169.2 
1 .03004 +.0059 .03067 -.0409 .9698 +.0287 .8400 +.194 16 	 129.8 
2 .02989 +.0061 .03170 -.0442 .9468 +. 0010 .7056 +.132 	16 	 99.I 
3 .02967 -.0098 .03341 -.0346 .9456 -.0388 .5927 +.0376 	16 	 81.8 
4 .03087 -. 0377 .03817 -. 0064 • 1. 0970 -. 0568 . 5007 -.0378 	16 	 70. 5 
5 .03415 -.0028 .03886 -.0292 1.2720 	-.0109 .5541 +.0685 	16 	 64.3 

10 .03821 -.0120 .04006 +.0187 1. 5750 	-.0255 .4462 -. 0126 8 53.3 
20 .03816 -.0043 .03761 +.0235 1.9540 	-.0213 .3766 -.0057 4 47.9 
30 . 03574 +.0002 .03517 +.0191 2.1690 	-.0159 .3344 -.00004 2 	 45.0 
40 .03326 -.0038 .03370 +.0297 2.3300 	-.0198 .3063 -.00560.. 2 	 43.3 
41 .03335 +.0124 .03302 -.0089 2.3300 	+.0032 .3063 +.01490; 2 	 43.0 

Restart .03330 -. 1377 . 03300 +. 3332 

	

2. 3300 	-. 1472 

	

2. 4950 	-. 1616 

	

2. 7090 	+. 1866 

	

2.5570 	-.0362 

	

2. 5460 	+. 0095 

	

2.5130 	-. 0040 

	

2.5160 	+.0089 

0
 0
 0
 0
 0
 0
 
0
 

0
 0
 0
 0
 0
 0
 0
 

-- 	 141. 6 
1 .03550 -. 1173 . 02772 +. 3019 16 	 64.4 
2 .03771 +. 1102 .02328 -.2676 16 	 55.0 
3 . 03647 -.0217 .02515 +.0736 8 	 38.1 

10 . 03623 +. 0078 . 02450 -. 0017 0. 5 	 37. 4 
15 .03579 	-.0007 .02432 +.0187 0.5 	 37.25 
16 .03580 	+.0007 .02420 -.0020 . 0. 5 	 37.22 

L 
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Fig. 3 Operation with Optimum Gains (5000 n. m. case) 
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OPTIMUM GAINS  
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Fig. 4  Comparison of Optimum-Gains Operation with Balanced-Gains Operation 
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APPENDIX 

1. Partial Derivatives 

The partial derivatives used in the linearized drag-dependent 

equations (Page 4) are derived in two steps. First, some partial deriva-

tives pertaining to the time-dependent equations are derived. Second, ex-

pressions relating these to the desired partial derivatives are obtained. 

With the following changes in notation 

z = r -1.o 

c • 0 DA  C - 
2m 

we have the following time-dependent equations. 

dv = d(v, z, P) = -a = -Ce -13zv2 

dt 

da aa dz aa dv — iLkc, v, z,Q ,  - 	- 

dt 	 az dt 	av dt 

as 	as — c - —a 
a z 	av 

= COv2  ce -Pz  -2C v3 e -20z 

The following partial derivatives are then easily obtained. 

P d = d = - 2Cve -Pz 

 av 	v  

d z = CPv2 e - )3z  

= Czv2 e -I3z 
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he = -Ci3v2 e-3z 

by  = -2COvce -Pz  - 6C2 v2 e -2bz 

h
z 

= COv2 ce -Pz  + 4C2(v e-2)3z 

h (3z - 1)Cv2  ce -3z  + C2  zv3 e-2  

The drag-dependent differential equations may be expressed 

as follows: 

dr dr/da _ 	 

= f(c, v, z, (3) 

V 
	dv dv ida d(v, z, )3)  

da 	dt dt 	h(c, v, z, () 

= ec, v, z, tg) 

The desired partial derivatives than become: 

h - ch a f -   
c h2  

- ch  v f 
h

2 

dhc 
gc h

2 

h d - dh v 	v  
gv 	

h
2 

f- z h
2 h

2 

chi 
 f)3 - 	

h
2 

hd - dh13 
g13 = 	

h2 

The un-subcripted quantities, d and h, are simply the time rates of change 

of velocity and acceleration-due-to-drag, 1 .7-  and 5, along the reference 

trajectory. 

da 	dt dt 	h(c, v, z, (3) 

chz 	
hdz  dh 
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2. Statistical Differential Equations 

The following equations are easily derived from Eqs. (10), (11) 

and (12) on Page 4. 

Sc 21  = 2(f
c 

6c 2  + f
v. 

6c6v + fr 6c6r + fp  6c60 

Svc  = 2{gv  6v2  + ge  6 coy + gr  vor + gp  6v6 

6r2
'  = 2(fr 6r2  + I 6 car + f

v 
6v6r + f u  6r6(3) 

ScSv = gc  Sc 2 + kl  6v
2

+ (k 2  + gv) ScSv + gr  oar + gp  a 03 

+ k 2  Ove c  + k1
6re

v  

Scar = f
c 

6c 2 + f
v 

 OcOv + (k 2  + fr ) Oar + k1 
 OvOr + f 6c60 

   

2 
Sre 

 c 

    

           

           

6v6r = f
v 

6 v2  + g
c 

6c 2 + f
c 

6c6v + gc  Scar + fr  + gv) 6vOr 

      

+ fp  6v60 + gp  6 v60 

  

                   

Sce c  = k2 ace s  + k1  Ove c + k 2 e c
2  

 

 

2 
Ocev 

= k 2 
Ocev + k1 6ve

v 
+ kl ev 

 

 

6c60 	k 2  6c00 + k (5v60 

     

. 	I 
ave

c 
= g

c 
Oce

c 
+ g

v 
 6ve c + g

r 
Ore

c 

1 - 	 
Ove = 	(key. 	r + g 6 vev 

+ r 
 6re 

v 	c 	 v 

 

 

60 = ge  6c60 + gr  6v60 + gr  6r60 + g1 6P 

 

ore
c 

= f
c 
 6ce

c 
 + fv  Ove c 

 + fr 
 Ore c 
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6re
v 

= f 	e+ f Ove + f ore 
c c v v v r v  

  

         

         

6r 60 = fe  6c613 + fv  6vol3 + fr  61-6 13 + 

 

We have assumed the error sources to be constant over a particular tra-

jectory and uncorrelated with each other. Therefore, 

2 	2 
e= e

v 
= Op = 0 

and 

e 
c  e v  = e c 60 = ev

013 = 0 
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Massachusetts Institute of Technology 
Instrumentation Laboratory 
Cambridge, Massachusetts 

Errata Sheet to Space Guidance Analysis Memo #35 - 64 

TO: 	 SGA Distribution 

FROM: 	Bard S. Crawford 

DATE: 	September 8, 1964 

SUBJECT: 	Optimization of Reentry ' °Up-Phase" Guidance 

On Page 9, paragraph 1 should read: 

The fact that the system can achieve better performance than 

that achieved by balanced gains means that it is taking advantage of the dy-

namic relationship between 6v and 6c described by the equations of motion. 

Since Ov is known more accurately than 6c, the control equation gives rel-

atively more weight to 6v than the balanced-gains concept calls for As a 

result of using optimum gains the vehicle exits with an "indicated" error 

in projected range, but it relies on the total system dynamics (with optimum 

gains) to produce a final rate-of-climb which is better than that produced by 

balanced gains. In other words, for a given exit velocity, the difference 

between the actual rate-of-climb and the ideal rate-of-climb is less (on the 

average) than the error in knowledge of rate-of-climb. The above discussion 

applies even more strongly to the varying gain combinations which achieve 

still better performance. 


