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FROM: Peter J. Philliou
DATE: September 23, 1964
SUBJECT: Optimal Guidance Laws

The material in this memo is taken primarily from lectures
given by Professor Bryson. A general guidance law is presented
and then it is applied to

(a) injection

(b) interception
(c) rendezvous
(d) soft landing

Let subscript p denote the pursuing body and T the target
body.

The equations of motion are

where fT = external forces per unit mass

= f + a
where a = control acceleration
fp = ¥p



We now have 12 equations, but we want relative values, consequently

the 12 equations reduce to 6 by letting

v o= v - vp
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The 6 equations are
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where tO is initial time and tl is final time. The problem is to
find the control law a which minimizes the cost function J , where

J 1is assumed to be
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and which satisfies the differential equations
v=1+a
r=y

This is a control problem to minimize J , the cost function,
with initial state, time and final time fixed. The cost function J
considers fuel cost and Cr’ CV are weighting factor constants for

position and velocity. Form the Hamiltonian

+ A+ v +p - (f+a)



and consider the Hamiltonian system (differehtial equations associated
with H)
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E: -azz-l
‘A: —g? =0 = A = constant

p » A are the adjoint free vectors.
For optimality ( special case of maximum principle)
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p = -(t-ty)x + p,y
solving for a
a = (t-t5) 2 -pg (1)
v=1f +(t-t;) 2 -p,
r=y

from transversality conditions

p(t;) = C v (tl)

At ) = Cor(t))
let

vity) = v,

r(ty) = r,



solve for v, r with f_ = constant
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A is constant, therefore

-and

p (1)) = Cov(t))=-(t;~t) 2 + g

Eqs. 1 to 5 are the basic equations which will now be applied to

some special cases.

(A) Injection

Final position is not important, therefore

C =0
r
A= 0
Therefore from (1)
a=-"Py

from (2)

v t)) = (4, -t)f - p, (t;-ty) + v,

(2)
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(4)

(5)



X(tl) tp, (1 -to) = (tl

1

from (5)

O) -p, —T

-to)_f_+zp -V

p(t))=Covit)=-(t-t)r+p,=p,

since
A=0
therefore p is constant,
_f(tl—t0)+zp Vo
Po~
(tl—to)
f_=£p—_f_T=g—0§constant
Usually want
v(t)=
then C - w
v
Xp - v
a (tl) =pg=-g- 0 -—-T sample data feedback law
ty -t where tg is latest sample time.

for continuous measurements

Zp YT

tl—t

a=-g

continuous feedback control law



(B) Interception

For interception, final velocity is not important, therefore

a=(t-tg)r-p,
Therefore, one must determine A, Py

Assume f = 0

(tl— t0)3 (tl— tg )2
A=Cy . A-Py 5 Ty (timty) T,
P_oz(tl _to) A
(t,- ty)° (- tg)°
A=Cr - A - . 1+K0 (t1't0)+£0
(- tg)° (t; - tg)°
A-C, A +C, A =C [y_o(tl—to)+£0}
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Solving for A :
N - Vo (t- %) * Xy
T (t,-ty)3
1", 1
3 C

Solve for p ,in p = (tl— to)l to yield
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Combining terms to yield
-0 [y (- 1) v
a= - sample data case
+
3 C
r
(tl-t)[y_‘ (tl-t)+£]
a= - 3 continuous feedback
(t,-t) control law
0 ST T
3 C
r
NOTE:
t
As Cr - w0, £(t1) - 0 at the expense of large S’ az dt
to
-3 [z(tl—t)+_r;]
Or a -~ ) as Cr - o

(t, - t)



(C) Rendezvous

To place pursuing body in immediate vicinity of target with small

component of relative velocity.
a=(t 'tg)l"Eo
Assume f =0

This is reasonable if the distance from the target to pursuing body

is small, since in this case

(t,- 1)
v(t;)=0= ; A-pgtymt) +¥g
o ) (- )7
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(D) Soft Landing

Assume
f_=g= constant
a=(t-t,)2 Py
(t,-ty)
0= 3 p po(’c1 tO) +v0+ (tl-to)g
(t;-t,)3 (t,-t,)? ( | (t-t,)?
0= A - + v t,~t )+r  + g
v t, -t
Ro= —— + =22 +g
tl-to 2
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- - 1 0 -0 1 0
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Solve for Pg> A and substitute in equation for a to yield

-4v 6r
a = - -
a - 2 £
t -t (t1 t)
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