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The material in this memo is taken primarily from lectures 

given by Professor Bryson. A general guidance law is presented 

and then it is applied to 

(a) injection 

(b) interception 

(c) rendezvous 

(d) soft landing 

Let subscript p denote the pursuing body and T the target 

body. 

The equations of motion are 

v 	= f —T —T 

where f T = external forces per unit mass 

v = f + a 
—ID 	 — 

where a = control acceleration 

rT  = vT  

v —p 



We now have 12 equations, but we want relative values, consequently 

the 12 equations reduce to 6 by letting 

v = v - v - —p —T 

r = r - r 
- —p —T 

f = f 	f 
— —p —T 

The 6 equations are 

• 
v = f + a 

r = v t 	t 	t 
0 	= 1 

where t 0 
 is initial time and t

1 
is final time. The problem is to 

find the control law a which minimizes the cost function J , where 

J is assumed to be 

    

t
l  

a
2 

dt J = C v•v+C r•r 
v — — 	r — — t i  to  

   

and which satisfies the differential equations 

v

▪ 

 = f + a 

• 
r = v 

This is a control problem to minimize J , the cost function , 

with initial state, time and final time fixed. The cost function J 

considers fuel cost and C r'  Cv 
 are weighting factor constants for 

position and velocity. Form the Hamiltonian 

H= a 2 +X• v + 	• (f + a ) _• _  
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and consider the Hamiltonian system (differential equations associated 

with H ) 

a H 
=- 	 - a v 

a H -- 0 	X = constant a r 

are the adjoint free vectors. 

For optimality ( special case of maximum principle) 

a H
= 

 =a +p 8 a 	— — 	— 

p = - (t- t 0 	+ Po 

solving for a 

= ( t - t o  ) X - 	 ( 1) 

= f + ( - t o  ) X - p 0  

r = v 

from transversality conditions 

p(t 1  ) = v v--  ( t 1  ) 

x(t 1  ) = 	r r ( t l ) 

let 

= v0 
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solve for v, r with f = constant 

(t - t)
2 

v = ( t -+  	 - t ) + v 0 	 X  - PO 	0 	0 2 

(t-t )
2 	

(t-t 0 ) 3 	(t-t ) 2  

— r = 	 — f + +v (t-t )+r 
6 	X  - PO 	2 	0 	0 	0 

X is constant , therefore 

and 

p ( t = C
v—

v ( t 1 
	-t 

Eqs. 1 to 5 are the basic equations which will now be applied to 

some special cases. 

(A) Injection 

Final position is not important, therefore 

Cr = 0 

• : X = 0 

Therefore from (1) 

a = - p —0 

from (2) 

- t o )f - 13 0  ( tr  t o  ) + 



from (5) 

p (t )= C v(t ) 	-t )X-Fp 1 	v 	 0 +p0 	0 

since 

X = 0 

therefore p is constant. 

_f (t i -t 0 )+ —v p0 - v rr  

(t
1

- t
0 

) + 
Cy 

f =f p 	T -f =g-O= constant — — — — 

Usually want 

then 

v (t 1 
 ) 
 

Cy 

= 

co 

0 

sample data feedback law 

where t 0 
 is latest sample time. 

a (t 	) = p 1 	0 = - g 
— PO - YT 

t - t 0  0 

for continuous measurements 

 

v - v —p —T 
a = - g 	 

t i  - t 

  

continuous feedback control law 

  

Eo 
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(B) Interception 

For interception, final velocity is not important, therefore 

C
v 

= 0 

a = (t - t o  ) X - p 0  

Therefore, one must determine X , p 0  

Assume f = 0 

[(t
1
- t

0
)3 

 X - 	
(t

1
- t

0  +v (t -t )+ ri • = Cr 	 —13 
6 	 2 —0 1 0 	—0 

P n =  

(t 1 - t 0 )
3 	(t 1 -  t 0

)
3 

X - 
6 	 2  

] X +v 0  (t - t ) + r 
—0 1 0 	— 0 • = Cr  

t 
1
- t

0
)3 	 (t 1 - t 0 )

3 

• -Cr 	
X + Cr 	 = Cr  (v 0  (t 1 - t o  ) +1: 0  

	

 6 	 2 

X 	t
1
- t

0
)3

X + 
(t1.- t0)3 

 X = v (tr  t o ) 	r 0  
C 	6 	 2 

r 

Solving for X : 

v (t -t )+r 
—0 1 0 	0 

X - 
(t

1
- t

O 
)3 	

1 

3 	Cr 

Solve for p 0  in p = (t 1 - t 0 ) X to yield 



(t 1 -  t ) 0 	1 

3 	C
r 

(t - t) v 
0 	0 	

- t 0 ) +r o] 	(t 1 - t 0 ) [y o  (t i - t0)  +.110] 
a - 	 — 

(t 1 -  t 0
) 3 

1 	 (t 1 -  t 0 )
3 

1  
3 	 Cr 	 3 	 Cr 

Combining terms to yield 

(t 1 - t) v (t 1  - t 0 	) + r 
—0 a - 	

3 	 sample data case 
(t 1 -  t 0 	1  

3 	 Cr 

(t
1 	- t) [ 
	(t l -  t) + r 

a - 	 continuous feedback 
(t

1 
 - a3 

1 	 control law 

3 C
r 

NOTE: 

As Cr 	Go , 	1 
r (t ) 	0 at the expense of large J a 2  dt 

to 

as C 
(t 1 

 - t) 2 Or a 
-3 {v(t 1  -t)+ rj 

00 
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(t 1 - t
0 

)3 

0= 
6 2 	2 

+ v (t - t ) + r —0 1 0 	0 
—0  t 1 - t 	(t

1
- t

0
)  

X - 

2 

(C) Rendezvous 

To place pursuing body in immediate vicinity of target with small 

component of relative velocity. 

a = (t - t
o 	I20 

Assume f = 0 

This is reasonable if the distance from the target to pursuing body 

is small, since in this case 

f 	f 
— p — T 

(t 1 - t O 	)
2 

v (t ) =0= 	 X - PO (t 1 -t 0 ) +v 0 1 	2 

(t -t ) 3 

r (t 1  )= 0 = 	1 	 P  6 	 0

(t 1
-t 

0 
)2 

2 
+ v o  (t 1 - t0)  +r o  

p 0  (t 1  - t 0  ) = v
-0  + —  

- t o  )
2 

 

2 
X 

t - t 
0  0  

P - —0 	 X 

	

t0 
	— 

t 1 	0  

X + v0 	t ) + r u 1 0 	—0 
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£0 
12 

v0  (t 1  -t 0  ) -  

2 

-6 v0 	12 r 0 
 

- to )
2 	

(t 1  - to )
3 

0  t i. -t,„6 .yo 	12 r o  —  
P0  - —  

 _ 	 
t

1 
-t

0 	
2 	(t 1-t 0 )

2 	
t

1 -t
0

) 3  

3 	6r0  
0  

PO   - 
t

1 -t
0 	t 1- t 0 (t 1-t0 )

2 

_P o 	t 1 -t 0 	(t 1 -t
0 )2 

2v 	6r0  0 

-6v 	12
r0 	2v 

	

a = (t-t 0 ) 	
-t

0  ) 	

—0  —0 
 2 	

(t 1 -t0 ) 3 ] 	t 1 -t 0 

-6 v 	12 r 	2v 	6r 

	

a = 	—0 	0 +  —0 	—0 

-4v 	6r 0  
—0  a (t) - 	 

2 

	

a (t) - -4v 	6r  

	

t
1
-t 	

1
-t )2 

t 1 -t 0 (t 1 -t 0 ) 

6r 0 
 

(t 1 -t 0 
)2 

t 1 -t 0 
	(t 1 -t

0 ) 2 	t 1 -t 0 	- t O  )2 



( D ) Soft Landing 

Assume 

f = = constant 

a = (t - t o ) X -E 0  

0= A 
 p0 " 1 -  to ) 	vo + " 1 -  to ) g 2 

v o 	t 1  -t0 

t 1 - t 	2 
X + g 

(t -t ) 3 	 t 1 - t 0  1 0 	1 	Y- 0 

+ 
0 - 	 X+ 	(t 1 - t o  

2 t 1
- t 0  6 	 2 [  

Solve for p 0  , A and substitute in equation for a to yield 

- 4 v 
a - 	 

t 1  -t 

6r 

(t 1  -t)2 


