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SUBJECT: Optimization of Midcourse Correction Times

Section 4 of reference {1} discusses the possibility of varying
the times of midcourse velocity corrections to minimize a function
¢, which involves the terminal deviation variances and a statistical
measure of the tel.! velocity change used for control.

It is suggested that a¢>/atj be calculated by changing tj to
t, + Atj and recalculating the X(t) and E(t) histories. In such an
approach At, would have to be kept small to make the assumed
linearization valid. But when At is small, the computation of the
derivative inevitably involves taking differences of nearly-equal
numbers, a procedure to be avoided if reasonable accuracy is to
be attained. The following procedure allows direct computation of
the derivative.

A general performance criterion of this type is

tr fi (X (ti-), E (ti-)) = min.
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where n -1 corrections are made and tn is the final time.
The basic problem is that of finding the partial derivatives

1

aX(ti-) aE(ti—)
and - - (k<i<n)

ot K ot K
We first derive the relations describing the propagation of
perturbations in the variance matrices, 6§ X(t) and 6 E (t). From

(3-1)" and (4-7), with A= Q=0 andK = EH R L.

*Hyphenated equation numbers refer to reference [1]
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Equation (1) is linear and the correspohding perturbation equation,

from (4-29), has the solution

§X.. 8 . L (i>k) (3)
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Equation (2) is of the Riccati type, and its perturbed solution

(see Appendix A) satisfies the equation

_ N 1, -1

0 Ei ~ [EiJrl— b1, 1 By }6Ei+ {EH b1, iEi+1‘—}
(i>k) (4)

From Eq. (4-33),
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Ei+—Ei- + GiQiGi (4-33)
where Q is the control implementation error covariance matrix, we see
that
6E. = 6E. +G. 6Q.GL
i+ i- i i7i

where 6 Q, can be expressed in terms of § X, _ and ¢ E._, or may be zero.

Combining this with Eq. (4) we can write 6 Ei+1— in the form

t 1
SEipq- = Z Wiy & %4- Ny +ZNeij S E,  Neij (5)
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The propagation of § X across a correction is derived by pertur-
bing Eq. (4-28)
X, = X, +G, [B(X—E)BTJrQ} al+ [(X—E)BTGT+GB(X—E)]

1+
i- 1-

(4-28)

where B (derived by Battin) determines the correction B § g,
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Combination of Eq. (3) with Eq. (6) gives an expression for

) Xi+1— of the form
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The above recurrence formulas Eq. (5) and (7) require, as
initial conditions, the values of § E(tk+l—) and & X(tk+1—), where

t
k
(4-28) with respect to time at t, we can express 90X (tk+)/atk in

is the correction time to be varied. By differentiating Eq.

terms of the time oderivatives, at (tk—), of the com‘ponen’cs of the
right hand side. X(tk—) is obtained from Eq. (1),. G from the
original differential equations, E from Eq. (2), B from Battin's
derivation of B, and Q from the (time-varying) statistical pro-
perties of the control implementation error v. If Q is also a
function of X and E, its derivative must be calculated accord-

ingly. We can thus write

5t (8)

6X(tk+) = M K

k+

Now Egq. (3) must be altered, for i = k, because ®k+1 Kk changes

as we vary tk' Hence

sX., @ T 28 X . 68 L (9)

6 X = 1ot ], k 2k 0 B,
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Now the transition matrix may be written

} -1
Gy - Tltey) TGy (10)



where

T'(t) = F I(t)
Hence
0 _ d -1 ~ - -1
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Hence, combining Eqgs.(8), (9) and (1) we may write
§ X by i) = My, 81, (12)

- In similar fashion, by differentiating (4-33) we can express
s E (tk+) as

6t (13)

6E(tk+) = Nk+ K

The relation between § E (tk+) and 6 E (tk+1—) is derived in

Appendix B, and allows us to write

§E (tk+1—) = Nk+1 &ty (14)
With Egs. (12) and (14) and the recurrence formulas Eqs(5)
and (7) we can now evaluate the matrices Mi and Ni (i>k+1)
which enable us to write
6 X (ti-) = Mi 6tk (i>k) (15)
6 E (ti-) = Ni 6tk (i>k) (186)

The matrices Mk and Nk are just the time derivatives of X

and E at t. as determined from Egs. (1) and (2).



Appendices

The Perturbed Riccati Equation

A. Fixed Initial and Final Times.

The solution of equation (2) is given by Kalman [2] as

, -1
E = [621 + 922 EO] [911 + Oleo] (A1)
EO and E here will represent values at the beginning and end of an interval
between corrections, t. and t. . The matrix
i+ i+l-
-
1 %1 %12
6 = (A2)
921 92
is the transition matrix of
X =- FTg +H'R 1 Hw (A3)
W = Fw (A4)
Obviously, 021 = 0 in this c»ase and 922 = CI>i+ 1 6,1 is the transition

matrix of the equation (A3), u’?\g‘oiht to (A4), and can be shown to be

6 "T

11 =814 (A5)
From Eq. (Al) we can deduce that, with 921 =0,
E'ie 6 E'1 (A8)
019 = 22 ~ 911 Eg :

By perturbing Eq. (Al) we find
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With 921 = 0, this can be written, using Eq. (A1),
-~ ~ _1
SE = l@m - Eelz] 6E0[922E0J E (A8)
which, together with Eq. (A8), gives

_ -T -1 -1.-1
SE = {Eé Eq ] 6EO[ 0 & E} (A9)

B. Variable Initial Time.

We now consider the effect of varying the initial time on the Eq. (A9).
We consider only the special case 921 =0. Ej and E represent Ek,‘" and Ek+l'-'

Equation (Al) can be written

T -1
E =«1>Eol;} + 912E0 (B1)

and Eq. (A6) can be written

9. -rle-¢ Tp 1 (B2)

Hence, from Eq. (B1),
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where, using Eq. (11),

-3F, 6t (B4)
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The quantity 6912 is determined by noting that the solution of Egs.
(A3) and (A4) can be expressed as

w(t) = £(t, t, ) wlt,) (B6)

t
wt) = € Tt x) + (& T, nET (R L (mE(Dw(n) ar (B7)
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Since the last term represents 912(t, tk)\_i_v(tk), it follows that
; :

6., (t 1) = 5 T, DHEN (MR UDHEDE(1t )dr (B8)
f
from which
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where we have made use of Egs. (B4) and (B8) in evaluating the last term.
Combining Egs. (B2) - (B5), (B9) and (13), and simplifying,

1

1 R DRE R 'Eet,  (B10)

_ -Tl;TH-1 - -1 T -
oE = E® [HkRk Hk + E0 Nk+EO Fk EO EO Fk]§



References

Denham, W.F., and Speyer, J.L., "Optimal Measurement
and Velocity Correction Programs for Midcourse Guidance, "
Raytheon report BR-2386, April 24, 1963,

Kalman, R.E., and Bucy, R.S., "New Results in Linear
Filtering and Prediction Theory, " ASME Journal of Basic

Engineering, March 1961.



