Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

Space Guidance Analysis Memo #44

TO:

SGA Distribution

FROM:

Robert J. Fitzgerald

DATE:

May 27, 1963

SUBJECT:

Optimization of Midcourse Correction Times

Section 4 of reference [1] discusses the possibility of varying the times of midcourse velocity corrections to minimize a function ϕ , which involves the terminal deviation variances and a statistical measure of the total velocity change used for control.

It is suggested that $\partial \phi/\partial t_j$ be calculated by changing t_j to $t_j+\Delta t_j$ and recalculating the X(t) and E(t) histories. In such an approach Δt_j would have to be kept small to make the assumed linearization valid. But when Δt is small, the computation of the derivative inevitably involves taking differences of nearly-equal numbers, a procedure to be avoided if reasonable accuracy is to be attained. The following procedure allows direct computation of the derivative.

A general performance criterion of this type is

$$\phi = \sum_{i=1}^{n} \text{ tr } f_{i} (X (t_{i}^{-}), E (t_{i}^{-})) = \min.$$

where n-1 corrections are made and t_n is the final time.

The basic problem is that of finding the partial derivatives

$$\frac{\partial X(t_i^-)}{\partial t_k} \quad \text{and} \quad \frac{\partial E(t_i^-)}{\partial t_k} \quad (k \le i \le n)$$

We first derive the relations describing the propagation of perturbations in the variance matrices, $\delta X(t)$ and $\delta E(t)$. From (3-1)* and (4-7), with Λ = Q = 0 and K = EH^TR^{-1} :

 $^{^*}$ Hyphenated equation numbers refer to reference [1]

$$\overset{\bullet}{X} = XF^{T} + FX \tag{1}$$

$$\stackrel{\bullet}{E} = EF^{T} + FE - EH^{T} R^{-1} HE$$
 (2)

Equation (1) is linear and the corresponding perturbation equation, from (4-29), has the solution

$$\delta X_{i+1} = \Phi_{i+1, i} \delta X_{i+1} \Phi_{i+1, i}$$
 (i > k) (3)

Equation (2) is of the Riccati type, and its perturbed solution (see Appendix A) satisfies the equation

$$\delta E_{i+1-} = \left[E_{i+1-} \Phi_{i+1, i}^{-T} E_{i+}^{-1} \right] \delta E_{i+} \left[E_{i+}^{-1} \Phi_{i+1, i}^{-1} E_{i+1-} \right]$$
(i > k) (4)

From Eq. (4-33),

$$E_{i+} = E_{i-} + G_i Q_i G_i^T$$

$$(4-33)$$

where Q is the control implementation error covariance matrix, we see that

$$\delta E_{i+} = \delta E_{i-} + G_i \delta Q_i G_i^T$$

where $\delta \, Q_i$ can be expressed in terms of $\delta \, X_{i-}$ and $\delta \, E_{i-}$, or may be zero. Combining this with Eq. (4) we can write $\delta \, E_{i+1-}$ in the form

$$\delta E_{i+1-} = \sum_{i} N_{xij} \delta X_{i-} N'_{xij} + \sum_{j} N_{eij} \delta E_{i-} N'_{eij}$$
 (5)

The propagation of $\delta\, X$ across a correction is derived by perturbing Eq. (4-28)

$$X_{i+} = X_{i-} + G_i \left[B(X-E)B^T + Q \right]_{i-} G_i^T + \left[(X-E)B^TG^T + GB(X-E) \right]_{i-}$$
(4-28)

where B (derived by Battin) determines the correction B $\delta \hat{x}$.

$$\delta X_{i+} = \delta X_{i-} + G_{i}B_{i} \delta X_{i-}B_{i}^{T}G_{i}^{T}$$

$$+ \delta X_{i-}B_{i}^{T}G_{i}^{T} + G_{i}B_{i} \delta X_{i-}$$

$$-G_{i}B_{i} \delta E_{i-}B_{i}^{T}G_{i}^{T} - \delta E_{i-}B_{i}^{T}G_{i}^{T} - G_{i}B_{i} \delta E_{i-} + G_{i} \delta Q_{i}G_{i}^{T}$$
(6)

Combination of Eq. (3) with Eq. (6) gives an expression for $\delta \; X_{i+1-} \; \text{of the form}$

$$\delta X_{i+1-} = \sum_{j} M_{xij} \delta X_{i-} M_{xij}' - \sum_{j} M_{eij} \delta E_{i-} M_{eij}'$$
 (7)

The above recurrence formulas Eq. (5) and (7) require, as initial conditions, the values of $\delta E(t_{k+1}^-)$ and $\delta X(t_{k+1}^-)$, where t_k is the correction time to be varied. By differentiating Eq. (4-28) with respect to time at t_k we can express $\partial X(t_k^+)/\partial t_k$ in terms of the time derivatives, at (t_k^-) , of the components of the right hand side. $X(t_k^-)$ is obtained from Eq. (1), G from the original differential equations, E from Eq. (2), B from Battin's derivation of B, and Q from the (time-varying) statistical properties of the control implementation error v. If Q is also a function of X and E, its derivative must be calculated accordingly. We can thus write

$$\delta X(t_k^+) = M_{k+} \delta t_k \tag{8}$$

Now Eq.(3) must be altered, for i = k, because $\Phi_{k+l, k}$ changes as we vary t_k . Hence

$$\delta X_{k+1} = \Phi_{k+1, k} \delta X_{k+} \Phi_{k+1, k}^{T} + 2 \Phi_{k+1, k} X_{k+} \delta \Phi_{k+1, k}^{T}$$
(9)

Now the transition matrix may be written

$$\Phi_{k+1, k} = \Gamma(t_{k+1}) \Gamma^{-1}(t_{k})$$
 (10)

where

$$\dot{\Gamma}(t) = F \Gamma(t)$$

Hence

$$\frac{\partial}{\partial t_k} \Phi_{k+1, k} = \Gamma(t_{k+1}) \frac{d}{dt_k} \Gamma^{-1}(t_k) = -\Gamma_{k+1} \Gamma_k^{-1} \Gamma_k \Gamma_k^{-1}$$

$$= -\Phi_{k+1, k} F(t_k)$$
 (11)

Hence, combining Eqs. (8), (9) and (11) we may write

$$\delta X (t_{k+1}^{-}) = M_{k+1} \delta t_{k}$$
 (12)

In similar fashion, by differentiating (4-33) we can express $\delta \to (t_k^{} +)$ as

$$\delta E (t_k^+) = N_{k+} \delta t_k$$
 (13)

The relation between $\delta \to (t_k^{}+)$ and $\delta \to (t_{k+1}^{}-)$ is derived in Appendix B, and allows us to write

$$\delta E (t_{k+1}^{-}) = N_{k+1} \delta t_{k}$$
 (14)

With Eqs. (12) and (14) and the recurrence formulas Eqs.(5) and (7) we can now evaluate the matrices M_i and N_i (i>k+1) which enable us to write

$$\delta X (t_i^-) = M_i \delta t_k \qquad (i > k)$$
 (15)

$$\delta E (t_i -) = N_i \delta t_k$$
 (16)

The matrices \mathbf{M}_k and \mathbf{N}_k are just the time derivatives of X and E at \mathbf{t}_k , as determined from Eqs. (1) and (2).

Appendices

The Perturbed Riccati Equation

A. Fixed Initial and Final Times.

The solution of equation (2) is given by Kalman [2] as

$$E = \left[\theta_{21} + \theta_{22} E_0\right] \left[\theta_{11} + \theta_{12} E_0\right]^{-1}$$
 (A1)

 ${\rm E}_0$ and E here will represent values at the beginning and end of an interval between corrections, ${\rm t}_{i+}$ and ${\rm t}_{i+1-}$. The matrix

$$\theta = \begin{bmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{bmatrix}$$
 (A2)

is the transition matrix of

$$\underline{\dot{\mathbf{x}}} = -\mathbf{F}^{\mathrm{T}}\underline{\mathbf{x}} + \mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{H}\underline{\mathbf{w}}$$
 (A3)

$$\underline{\underline{\mathbf{w}}} = \mathbf{F}\underline{\mathbf{w}} \tag{A4}$$

Obviously, $\theta_{21} = 0$ in this case and $\theta_{22} = \Phi_{i+1,i}$. θ_{11} is the transition matrix of the equation (A3), and can be shown to be

$$\theta_{11} = \Phi_{i+1, i}^{-T} \tag{A5}$$

From Eq. (A1) we can deduce that, with $\theta_{21} = 0$,

$$\theta_{12} = E^{-1} \theta_{22} - \theta_{11} E_0^{-1}$$
 (A6)

By perturbing Eq. (A1) we find

$$\delta \mathbf{E} = \begin{bmatrix} \theta_{22} \delta \mathbf{E}_0 \end{bmatrix} \begin{bmatrix} \theta_{11} + \theta_{12} \mathbf{E}_0 \end{bmatrix}^{-1}$$

$$- \begin{bmatrix} \theta_{21} + \theta_{22} \mathbf{E}_0 \end{bmatrix} \begin{bmatrix} \theta_{11} + \theta_{12} \mathbf{E}_0 \end{bmatrix}^{-1} \theta_{12} \delta \mathbf{E}_0 \begin{bmatrix} \theta_{11} + \theta_{12} \mathbf{E}_0 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} \theta_{22} - \mathbf{E} \theta_{12} \end{bmatrix} \delta \mathbf{E}_0 \begin{bmatrix} \theta_{11} + \theta_{12} \mathbf{E}_0 \end{bmatrix}^{-1}$$
(A7)

With θ_{21} = 0, this can be written, using Eq. (A1),

$$\delta \mathbf{E} = \left[\theta_{22} - \mathbf{E} \theta_{12} \right] \delta \mathbf{E}_0 \left[\theta_{22} \mathbf{E}_0 \right]^{-1} \mathbf{E}$$
 (A8)

which, together with Eq. (A6), gives

$$\delta \mathbf{E} = \left[\mathbf{E} \Phi^{-T} \mathbf{E}_0^{-1} \right] \delta \mathbf{E}_0 \left[\mathbf{E}_0^{-1} \Phi^{-1} \mathbf{E} \right]$$
 (A9)

B. Variable Initial Time.

We now consider the effect of varying the initial time on the Eq. (A9). We consider only the special case θ_{21} = 0. E_0 and E represent E_{k+} and E_{k+1-} Equation (A1) can be written

$$\mathbf{E} = \Phi \mathbf{E}_0 \left[\Phi^{-\mathrm{T}} + \theta_{12} \mathbf{E}_0 \right]^{-1} \tag{B1}$$

and Eq. (A6) can be written

$$\theta_{12} = E^{-1} \Phi - \Phi^{-T} E_0^{-1}$$
 (B2)

Hence, from Eq. (B1),

$$\begin{split} \delta\mathbf{E} &= \left[\delta \mathbf{\Phi} \mathbf{E}_0 + \mathbf{\Phi} \delta \; \mathbf{E}_0\right] \left[\mathbf{\Phi}^{-\mathrm{T}} + \theta_{12} \mathbf{E}_0\right]^{-1} \\ &- \mathbf{E} \left[\delta \mathbf{\Phi}^{-\mathrm{T}} + \delta \theta_{12} \mathbf{E}_0 + \theta_{12} \delta \mathbf{E}_0\right] \left[\mathbf{\Phi}^{-\mathrm{T}} + \theta_{12} \mathbf{E}_0\right]^{-1} \\ &= \left[\delta \mathbf{\Phi} \mathbf{E}_0 + \mathbf{\Phi} \delta \mathbf{E}_0\right] \mathbf{E}_0^{-1} \mathbf{\Phi}^{-1} \mathbf{E} \\ &- \mathbf{E} \left[\delta \mathbf{\Phi}^{-\mathrm{T}} + \delta \theta_{12} \mathbf{E}_0 + \theta_{12} \delta \mathbf{E}_0\right] \mathbf{E}_0^{-1} \mathbf{\Phi}^{-1} \mathbf{E} \end{split} \tag{B3}$$

where, using Eq. (11),

$$\delta \Phi = -\Phi F_k \delta t_k \tag{B4}$$

$$\delta \Phi^{-T} = -\Phi^{-T} \delta \Phi^{T} \Phi^{-T} = \Phi^{-T} F_{k}^{T} \delta t_{k}$$
(B5)

The quantity $\delta\theta_{12}$ is determined by noting that the solution of Eqs. (A3) and (A4) can be expressed as

$$\underline{\mathbf{w}}(t) = \Phi(t, t_k) \underline{\mathbf{w}}(t_k)$$
 (B6)

$$\underline{\mathbf{x}}(t) = \mathbf{\tilde{\Phi}}^{-T}(t, t_k) \underline{\mathbf{x}}(t_k) + \int_{t_k}^{t} \mathbf{\tilde{\Phi}}^{-T}(t, \tau) \mathbf{H}^{T}(\tau) \mathbf{R}^{-1}(\tau) \mathbf{H}(\tau) \underline{\mathbf{w}}(\tau) d\tau$$
 (B7)

Since the last term represents $\theta_{12}(t,t_k)\,\underline{w}(t_k)$, it follows that

$$\theta_{12}(t, t_k) = \int_{t_k}^{t} \Phi^{-T}(t, \tau) H^{T}(\tau) R^{-1}(\tau) H(\tau) \Phi(\tau, t_k) d\tau$$
 (B8)

from which

$$\frac{\partial}{\partial t_{k}} \theta_{12}(t_{k+1}, t_{k}) = -\Phi^{-T} H_{k}^{T} R_{k}^{-1} H_{k} + \int_{t_{k}}^{t_{k+1}} \Phi^{-T}(t_{k+1}, \tau) H^{T}(\tau) R^{-1}(\tau) H(\tau) \frac{\partial}{\partial t_{k}} \Phi(\tau, t_{k}) d\tau$$

$$= -\Phi^{-T} H_{k}^{T} R_{k}^{-1} H_{k} - \theta_{12}(t_{k+1}, t_{k}) F_{k}$$
(B9)

where we have made use of Eqs. (B4) and (B8) in evaluating the last term.

Combining Eqs. (B2) - (B5), (B9) and (13), and simplifying,

$$\delta \mathbf{E} = \mathbf{E} \Phi^{-T} \left[\mathbf{H}_{\mathbf{k}}^{T} \mathbf{R}_{\mathbf{k}}^{-1} \mathbf{H}_{\mathbf{k}} + \mathbf{E}_{0}^{-1} \mathbf{N}_{\mathbf{k}+} \mathbf{E}_{0}^{-1} - \mathbf{F}_{\mathbf{k}}^{T} \mathbf{E}_{0}^{-1} - \mathbf{E}_{0}^{-1} \mathbf{F}_{\mathbf{k}} \right] \Phi^{-1} \mathbf{E} \, \delta \mathbf{t}_{\mathbf{k}} \quad (B10)$$

References

- [1] Denham, W.F., and Speyer, J.L., "Optimal Measurement and Velocity Correction Programs for Midcourse Guidance," Raytheon report BR-2386, April 24, 1963.
- [2] Kalman, R.E., and Bucy, R.S., "New Results in Linear Filtering and Prediction Theory," ASME Journal of Basic Engineering, March 1961.