NASA TECHNICAL NOTE NASA TN D-2967

NASA TN D-2967

APPLICATION OF AN ITERATIVE
GUIDANCE MODE TO A LUNAR LANDING

by Helmut J. Horn

George C. Marshall Space Flz’gbt Center
Huntsville, Ala.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION e« WASHINGTON, D. C. « NOVEMBER 1965



NASA TN D-2967

APPLICATION OF AN ITERATIVE GUIDANCE MODE
TO A LUNAR LANDING
By Helmut J. Horn

George C. Marshall Space Flight Center
Huntsville, Ala.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — Price $1.00



TABLE OF CONTENTS

Page
SUMMARY ..t vttt v tnnansnees et ettt et e e s . 1
INTRODUCTION. . ....... e e s et e et e e e e e e e e e e 1
‘COMPARISON OF VARIOUS GUIDANCE MODES & . ¢ ittt vt et oo v senssasna 2
Delta Minimum Principle. . ... .... e e e s e e e e e a c bt e e e 2
Path Adaptive Guidance MOde. . v v v v v v v e v ot o e v s s v v oo nueoeons . 2
" Iterative Guidance Mode . . . v v v o v ottt v e s s s oo v o oseoeosas R |
 DERIVATION OF EQUATIONS . . v et v v v v v e annonoeceonsan c e rs e 3
Optimization with Calculus of Variation . . . v v o v v v v v et v 0 e e v o e .o 3
Graphical Solution if End Position is Not Specified. . . « v ¢« v v ¢ v e o v e 4
Approximate Solution, if One Coordinate of the End Pomt is Spe01f1ed 7
Both End Point Coordinates Specified. . e e e s e e s e et e e 7
A LUNAR LANDINGSCHEME. . . . ¢ v st v vt s v s v et s e s e et e e e e 8
Mission and Ground Rules . . ... ..... et e c e e e et e e e . 8
The Guidance Equation ........... s e e s e e et e e e e  ee e 8
First Check Case: Direct Landing for Circular Orbit. . . ... ... e e e e 10
Second Check Case: Landing from a Hohmann Transfer Ellipse........ 13
CONCLUSIONS. . .. .. Gt e e e e ae e e et e et e e e e e e e e e e e 15
REFERENCES..... e s s s e e e e s s s e e e e s s s s s e e s s e s e s s et e e e 16

iii




Table

LIST OF ILLUSTRATIONS

Title Page
Optimization for Free Choice of End Location. . . . . .. v v v v v v . 5
Lunar Flight Geometry . . v v v v vt ittt vttt v o s e e s oo v o onneas 9
Flow Diagram ..... ettt e e e e e e e s ettt e e 10
Typical Trajectories. . « v v v v v v v v v v v v v a e e e e e e e e 14

LIST OF TABLES
Title Page

Error Summary for Direct Landing from Parking Orbit .......... 11

Descent from Nominal Parking Orbit (Case ).« .. ... ... e e e 11
Descent from Disturbed Parking Orbit (Case II) . .. v v v v o v o v ot v 12
Descent from Disturbed Parking Orbit (Case III). . . ... cve.v .. 12
Error Summary for Landing from Hohmann Ellipse . . .. . o v v v v o . 13
Descent from Nominal Hohmann Ellipse (Case I}, .. ... ... O
Descent from Disturbed Hohmann Ellipse (Case I} . .. ee v v o v v v v 14

Descent from Disturbed Hohmann Ellipse, Grazing Surface
(CaseIIl) . v v v v vt e vt envonan b e e e et e e e s e e 15

iv



DEFINITION OF SYMBOLS

Symbhol Definition
t time
T time at target
T time to complete consumption
R value to be extremized
X, ¥, X, ¥ horizontal and vertical coordinates and velocity components
£, M ;’, TI rotated coordinates and velocity components
€ angle of rotation of ¢ against x
@ thrust angle
0 path tangent
d central angle to point of origin
F thrust
m, m mass and flow rate
g constant of gravity
a, b, c, d, Ky, Ky coefficients of the steering equation
a acceleration
v velocity
Subscript
1 vy initial or instantaneous
g : Vg caused by gravity
T : Vo total or final
L : gr, lunar



DEFINITION OF SYMBOLS (Cont'd)

Superscript Definition
~ 5 preliminary value for restricted case
* « F% previous value
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APPLICATION OF AN ITERATIVE GUIDANCE MODE
TO A LUNAR LANDING *

SUMMARY

The purpose of a guidance system is to direct a vehicle from a given set of initial
conditions to a predetermined set of final conditions with a minimum expenditure of pro-
pellants. Optimization of trajectories for minimum propellant consumption can be
achieved with use of the calculus of variation, This method requires a large volume of
numerical computation, making a real-time solution on board the vehicle impractical.

For highly simplified problems, e.g., for a homogeneous gravitation field,
closed form solutions are available. These solutions provide an approximate answer
for a real case. If applied repetitively, they can be used as steering equations, These
approximations become stepwise better and better, and the end conditions should be
reached with any desired degree of accuracy (disregarding instrument errors).

Application of this "Iferative Guidance Mode'" to a lunar landing confirms this
expectation, and calculated propellant losses are negligible. Real-time computation is
possible with a small, medium speed computer (RPC 4000). This proves the feasibility
of the "Iterative Guidance Mode' for on-board computation, Used for trajectory optimi-
zation, substantial savings in computer time are possible.

INTRODUCTION

The task of a guidance system generally is to direct a vehicle from a given in-
stantaneous state to a prescribed final state, This study will describe a special system
designed to handle large disturbances with a minimum energy expenditure. This is done
by calculating a new optimum trajectory from any instantaneous state to the end point.
By using analytical solutions of simplified problems as iteratively improving approxi-
mate solutions for the real problem, computation effort can be reduced to such an extent
that real-time calculation of the optimum trajectories with on-board components be-
comes possible,

* Paper presented at Third European Space Flight Symposium and 15th Annual
Meeting of the DGRR in Stuttgart, Germany, May 22-24, 1963.



Application of this scheme to a lunar landing verifies its accuracy and usefulness
numerically,

Special acknowledgement is given by the author to various members of the
Dynamics Analysis Branch, especially Mr. Judson J. Hart, Mrs. Doris C. Chandler,
and Mr, Daniel T. Martin, for their contributions in the preparation of this paper.

COMPARISON OF VARIOUS GUIDANCE MODES
The Delta Minimum Principle

One of the classical guidance modes uses a precalculated standard trajectory as
a reference. Deviations from this reference caused by external disturbances, as well
as inaccurate performance, tolerances, misalignments, etc., are sensed, and the
vehicle is returned to the reference,

The term "trajectory," just like the terms ''state,'" "condition,"' or "point,'" as
used before, does not only define the geometric shape, but may include any other state
variables which may be of significance, e.g., velocity vector or components, time, or
instantaneous mass.

The method of keeping deviations from a reference small was, under the name
"Delta Minimum Principle," used for the Juno launch vehicles which carried the Ex-
plorer satellites. Its main advantage is simplicity of the computing operations, since
higher order terms of the steering equation can be neglected.

Deviations from the reference can usually be kept sufficiently small if the
guidance system is continuously active and if the disturbances at no point exceed the
system's capability.

The Path-Adaptive Guidance Mode

If the guided phase of the trajectory is preceded by an extended unguided interval,
e.g., landing on the moon (direct or through orbit) after about three days of unpowered
transit, or if for other reasons large deviations have occurred, it may become very un-
economical or even impossible to return to the standard trajectory. In such a case, it
is preferable to compute a new trajectory from the actual conditions to the prescribed
final state. Like the original standard trajectory, this secondary reference has to be
optimized, e.g., by calculus of variation. The next logical step is to abandon the con-
cept of a reference trajectory completely and to calculate at each instance the thrust
level and direction that lead in optimum fashion to the desired end condition. This ap-
proach, called the ""Path-Adaptive Guidance Mode" was pointed out by Dr, R. Hoelker
and his co-workers [1, 2]* for the guidance of space vehicles like the Saturn.

*Numbers in brackets indicate references at the end of the report.
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The considerable computation effort spent in the optimization of even a single
reference trajectory makes it impossible to do all the calculations in real time on hoard.
Therefore, a large family of trajectories is being precalculated and evaluated before the
flight, and the steering equation as a function of several variables derived and stored in
the on-board guidance computer., Another possible solution for an on-board computation

will be given below.

The Iterative Guidance Mode

Analytical solutions for optimum trajectory equations are possible for certain
simplified cases. These analytical solutions are also approximate solutions for the
general, i.e., not simplified, case. As the vehicle proceeds toward the target, the
solution of the trajectory equations is repeated over and over. If the simplifications are
chosen so that they converge toward the real conditions as the end point is approached,
each recalculation of the trajectory will not only correct errors caused by external dis-
turbances, but will also step-wise reduce those resulting from the original simplifica-

tions.

This iterative mode was applied to a (calculated) lunar landing problem and
found to give solutions very close to a time optimum, even for considerable initial errors,

In the derivation of the equations, graphical methods were used extensively. The
resulting case of understanding helped considerably toward the formulation of the prob-~
lem and the proper choice of simplifications.

DERIVATION OF THE EQUATIONS
Optimization with Calculus of Variation

As mentioned at the beginning, the terminal state of the vehicle is defined not
only by its position but also by the velocity vector, time of arrival, mass (respectively
propellant consumption), etc. Some of these values are prescribed by the mission,
e.g., height and velocity vector in the case of an ascent to orbit. All but one of the
remaining variables (or degrees of freedom) are then chosen in such a way that the re-
maining one, usually the final mass or the final velocity, becomes an extremal,

One of the two control variables available to shape the trajectory, the thrust
level, may for the time being be considered as constant, i, e., determined by the power
of a selected engine,

Making some additional simplifying assumptions, a homogeneous gravitational
field, vacuum conditions, and constant specific impulse, Fried [3] and Lawdon [4]
show an analytical solution for the remaining independent variable, the thrust direction.




8R/0yp, + (T - 1) 8R/dy, .

tan ¢ = 8R/dky + (T - t) 8R/oxy c+dt ° (1)

In an important special case, the injection into a circular orbit, the range over ground
to the injection point X is not necessarily specified. To have maximum mass, the
partial derivative becomes

dR/0xp = 0. (2)
Subsequently, the steering equation takes the form

R/ ayT + (T -t) 8R/8yr

= = A \
tan ¢ R/ o%T a'+b't. (3)

The same equation is valid if any straight line is prescribed as locus for the terminal
point, The x, y coordinate system has then to be replaced by a rotated £, n system,
the ¢ axis of which is parallel to the straight line, and the thrust angle ¢ is measured
against the f axis.

The end conditions of a trajectory, following steering equation (3), were calcu-
lated in analytical form by Ehlers [6]. No such solution for the inverted problem, the
computation of the coefficients a' and b' that lead to a given end condition, seems to be
available. Approximate solutions, e.g., by serial development and truncations, are
possible, However, geometric relations can be exploited to derive another solution,
which will be pursued in this report.

Graphical Solution if End Position is not Specified

Some understanding of the ideas that lead to the formulation of the iterative
guidance mode will contribute to its general usefulness and its adaptation to various
missions., Therefore, the derivation of equations, and particularly the use of graphical
methods, is presented in considerable detail for some typical applications.

If the location of the end point is of no concern, Figure 1 allows a quick deriva-
tion of the equations. The inertial velocity, v; is shown for clarity as the chain of arrow
connecting point P; to P}, Py, or P)'', respectively, where

?71 = ) F/m At, (4)



(a2) Vector Diagram

‘b) Angular Relations .J

FIGURE 1. OPTIMIZATION FOR FREE CHOICE OF END LOCATION



instead of the true integral form. It is obvious that the distance PPy = l\'i, is lurgest
if the ""chain'" is straight. This means, however, that the thrust angle ¢ is constant,
With v, = PP, representing the initial velocity and Vg = Py P, representing the gravi-
tational contribution, the locus for the total velocity vector v is a circle with P, as
center and v; as radius. Prescribing the direction of Vo provides the necessary seconc
condition for the end point P;' of v and vj. If the velocity direction is free, the re-

Tt

quirement for maximum velocity will place the end point to Py ',
From the well known rocket equation, we determine

F
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gives the time at which the vehicle would have completely burned,

From Figure 1b, Equation (5¢) and

it follows that
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These two equations can be solved simultaneously for either T and ¢ or for Ve and @,

as the case may require,



Approximate Solution if One Coordinate of the End Point is Specified

The additional constraint in the end condition requires an additional degree of
freedom added to the steering equation, which can be provided by using the form of
Equation (3), somewhat rewritten:

9= ¢ - (K - Kyt , (9)

where g’; is the constant thrust angle that satisfies the velocity conditions. Equations (7)
and (8), and K, and K, will be chosen so that the position constraint yr is satisfied
without disturbing the end velocity condition er. For small values of (K; - Kyt), the
equations of motion can be approximated.

jr'i = F/m sin [o - (Kq - Kypt) ] =T sin [ ¢ - (Ky - Koty ] (10a)
. :\., c>}< ~
i yi_T_t(Ki"K?t) cos @ (10Db)
y ='§;—c*cos’g\o'[+K ln——T——K(Tln T —t):l (11a)
i 7 15 g 2 T-t
. ~ . ~ T T B
J.(T) - §,(T) =c* cos ¢ [~ K; In K (TIn -T) =0 (11b)
.yi=yi-c* cos<p[K1[t—('r—t) 1n7—t]
PE, (- ot T-t) In ——] 12a)

2y 277 ( T-t (

_ : 1 _
yp(T) =y1+y1 T-5 8T +yi(T)-yT(T)N0m. (12b)

Equations (11) and (12) can be solved simultaneously. If necessary, the hori-
zontal velocity component can be corrected by recomputing the flight time.

Both End Point Coordinates Specified

As Equation (1) shows, an additional degree of freedom, in the form of the
constant c, is available to allow one more constraint, (The constants ¢ and d are not
free since by division either can be made unity.) In practice, however, any shifting
of the end point in the ""average' flight direction by changing the thrust angle is rather



ineffective; this should rather be accomplished by adjusting the thrust level either by
continuous throttling or, stepwise, by turning all or part of the engines on and off,

For this study, it will be assumed that the constant thrust level which would
satisfy the end conditions will be recomputed at adequate intervals and the engine ad-
justed accordingly.

A LUNAR LANDING SCHEME
Mission and Ground Rules

Only a rather general idea, subject to rather restrictive simplifications, has
been presented so far, The easiest way to check its practical usefulness is to apply it
to a specific mission, e.g., the automatic landing of a space vehicle on the moon, We
guide the vehicle from a lunar orbit, either a nominally circular one or a Hohmann
transfer ellipse, to a predetermined point on the surface, and then compare the tra-
jectories for nominal and strongly disturbed initial conditions. The system can then be
judged by the accuracy with which the landing point and zero velocity are reached, the
amount of fuel used ahove that for a true optimum path, and the magnitude of the
maneuvers required, especially engine throttling.

Since the information available to determine the instantaneous state probably
will be limited, we will restrict ourselves to the use of D, the line of sighf distance to
the landing site; D, its rate of change; ¢, angle between the line of sight direction to
landing site and the local horizontal; €, its rate of change; and a;, the inertial accelera-
tion.

While the amount of information is considered very carefully, the means of ob-
taining it (radio, optical, inertial, etc.) are beyond the scope of this study. Instru-
mentation errors are not considered either, but the trend of errors to become smaller
as the measured value decreases will hopefully keep them within reason.

The Guidance Equation

The flight geometry shown in Figure 2 shows the primary xy coordinate system,
pointing in the local horizontal and vertical at the landing site. The -y system is
formed by rotating the x-y system through the variable angle ¢ with the negative
¢-axis pointing toward the vehicle,

The instantaneous coordinates of the vehicle are x, (shown to be negative), y,,
£y (negative), and py = 0. Since the landing site is at the point of origin, all nominal
values at the terminal point are zero. As the gravitation changes in direction and mag-
nitude, mean values were used for both:
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FIGURE 2. LUNAR FLIGHT GEOMETRY

D, cos €

¢, = arc tan

2 r; + Dsin g
2
1 y 1 [Dcos ¢
= ~ S S A L
2 (81, *81) gL[i ~ 2( rL )]

(13)

(14)



An attempt was first made to calculate the thrust level from the condition that g and ¢
must simultaneously become zero, but it was found more simple and accurate to use the
precalculated value F* for a nominal trajectory as initial value, calculate the ¢* that
would result from its use, and correct the thrust level to

Fy = F* £ (15)
3

For each integration step, the thrust from the previous step is used as first approxima-
tion. The other steps shown in the flow diagram (Figure 3) are selfvexplanatory. A
detailed derivation of the equations is given in a NASA report [5].

INITIAL DATA

Tys 8p, oX, FX

{

COMPUTE PRELIMINARY COMPUTE PRELIMINARY RE -COMPUTE RE-COMPUTE
CONSTANT ATTITUDE AND VARYING ATTITUDE THRUST LEVEL ATTITUDE
FLIGHT TIME
- -t ¢ —— -
T =P-K +Kt = P — -
> =9 1 A Fl E‘*_g qa_qs-l(l-g.xzt

MEASURED DATA

b, D, €, €, 8 FLY FOR PRESET PERIOD

FIGURE 3. FLOW DIAGRAM

The interval for recomputing the guidance equation was arbitrarily set at 10
seconds. There are indications that a considerably longer step would have been per-
missible,

First Check Case: Direct Landing from Circular Orbit

A circular parking orbit with a nominal height of 100 km is selected as initial
condition for the landing. The vehicle has an initial mass of 30, 000 kg, a nominal thrust
of 9000 kp, specific impulse of 420 sec, and in the nominal case a landed mass of
18,572 kg,
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guidance,

Table I shows the effect of probable error sources on the accuracy of the

. variations in the orientation of the ellipse, and errors in ignition time,

The perturbations consist of distortions of the parking orbit into an ellipse,

TABLE 1. ERROR SUMMARY FOR DIRECT LANDING FROM
PARKING ORBIT
Angle
between Ignition Thrust
Peri- Apo- Periselenum & Time Variation Landing Errors
selenum selenum Land-Site Error max, X y y

Case km km deg sec kp m - m m/s
I 100 100 0 0 +320 -.12 -.09 -.02
I 100 150 180 0 £850 -.07 -. 05 -.01
it | 50 100 0 0 + 60 -.10 -.12 -.02
w 100 150 0 0 +310 -.07 -.05 -.01
v 50 100 180 0 +340 -.09 -. 06 ~-.01
VI 75 125 90 0 +320 -.12 ~-. 07 -.02
viI 75 125 270 0 +320 -.09 -.07 -.02
Vi 100 100 0 +10 +310 -.10 -. 07 -.02
X 100 100 0 -10 +320 -.12 -.01 -. 02

Table 1 shows that in all cases the errors at landing are negligible.

The payload

loss, compared to an optimum descent from the initial conditions, was within the com-
puting accuracy of about 10 kg, and therefore is not shown,

shown are the maximum deviations occurring at any time,.
percent of the nominal value.

TABLE 2. DESCENT FROM NOMINAL PARKING ORBIT (CASE I)

The thrust level variations
They are always within +10
Three typical trajectories are shown in Tables 2, 3, and 4.

¢ X y @ v F h
seéc km km deg m/s kp km
60 -448.9 44,3 227.9 1695, 3 9005 100.0

100 -387.0 57.5 217.7 1627, 3 8912 98

140 -328.5 65, 4 208, 1 1548, 4 8844 95.1
180 -273.8 68.7 199.0 1459.5 8796 89.4
220 -223.5 68.1 190. 4 1361,5 8762 81.8
260 -178.0 64.1 182, 2 1255, 1 8737 72.9
300 -137.5 57.6 174, 2 1140.6 8720 62.8
340 -102. 3 49, 2 166.6 1018.4 8708 52.1
380 -72.5 39.6 159, 2 888, 6 8701 41,1
420 -48.1 29,7 151.9 751, 3 8696 30,4
460 -29.0 20,1 144. 8 606, 3 8694 20.4
500 -14,9 11,6 137.8 453.5 8693 11.7
540 -5.7 5.0 130.9 292.9 8693 5.0
580 -0.9 0.9 124, 0 124, 3 8693 0.9
608. 3 0.0 0.0 119.3 0.0 8693 0.0
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TABLE 3. DESCENT FROM DISTURBED PARKING ORBIT (CASE II)

t X y @ v F h
sec km km deg m/s kp km
108. 8 -481.0 86.8 246. 3 1656. 8 9037 149, 2
148. 8 -420.0 100. 2 232, 2 1630. 0 8773 147.6
188.8 -361. 4 107.7 219, 6 1585, 3 8586 142,17
228, 8 ~306. 0 109,9 208, 2 1525, 1 8467 135.1
268.8 -254, 5 107.6 197.8 1451, 9 8386 125.1
308. 8 -207. 4 101. 6 188. 1 1367. 5 8331 113. 3
348.8 -165.0 92.6 179. 0 1272.9 8291 100.0
388.8 -127.5 81.3 170. 4 1169. 0 8264 85. 8
428. 8 -95. 2 68.6 162. 1 1056. 2 8244 71.1
468, 8 -67.9 55,1 154, 2 935.0 8231 56. 4
508. 8 -45.7 41.7 146.5 805. 4 8222 42.3
548. 8 -28.3 29. 1 139.0 667, 4 8216 29. 3
588. 8 -15.5 17.9 131.7 521, 0 8214 18.0
628. 8 -6.8 8.9 124, 6 366. 1 8213 8.9
668. 8 -1.8 2.7 117.5 202. 9 8213 2.7
715.9 0 0 109, 4 0 8213 0
TABLE 4. DESCENT FROM DISTURBED PARKING ORBIT (CASE III)

t X y ® v F h
sec km km deg m/s kp km
113, 6 -432.7 -2.4 207. 3 1707. 8 8999 50.7
153.6 -369.9 11,3 209. 5 1607, 4 8983 50. 0
193.6 -311,1 20. 8 194, 7 1501. 3 8970 48.1
233.6 -256.7 26.7 188. 6 1389. 6 8961 45. 3
273, 6 -206.9 29. 4 182.7 1272, 4 8954 41.4
313.6 -162. 2 29. 3 176. 8 1149.6 8949 36. 7
353.6 -122,7 27.1 171.1 1021, 3 8946 31.3
393.6 -88.6 23, 2 165. 4 887. 3 8944 25. 4
433.6 -60.0 18. 3 159.7 747.6 8942 19.3
473.6 -37.0 13,0 154, 1 601. 8 8942 13.4
513.6 -19.6 7.8 148. 6 449, 8 8942 7.9
553. 6 -7.8 3.5 143, 0 291, 3 8942 3.5
593. 6 -1.4 .7 137.5 125,9 8943 .7
622. 9 0 0 133.5 0 8043 0
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Second Check Case: Landing from a Hohmann Transfer Ellipse

A nominal periselenum of 20 km as standard ignition point is chosen. It is varied
similarly as in First Check Case, except that the periselenum altitude is changed +100
percent (Table 5). The vehicle is the same as in Case I except that the thrust has a
nominal value of 15,000 kp and the landed mass is 19, 522 kg.

TABLE 5. ERROR SUMMARY FOR LANDING FROM HOHMANN ELLIPSE

Angle fr. Thrust
Peri- Apo- Periselenum to Time Variation Landing Errors
selenum selenum Land-Site Error Max. X y y
Case km km deg sec kp m m m/s
I 20 100 -8.5 0 +30 -.14 -.28 -.04
I 40 100 -8.5 0 +170 -.29 -.38 -.07
111 0 100 -8.5 0 +10 -.01 -.05 -.01
v 20 100 -18.5 0 +40 -.15 -.31 -.05
v 20 100 +1.5 0 +30 -.14 -.28 -.04
Vi 20 100 -8.5 +10 +1100 -.17 -.34 -.05
=30
vo 20 100 -8.5 -10 +30 -.10 -.21 -.03
~-950

Case III demonstrates rather dramatically the power of the system. The vehicle
grazes the surface when power is applied. Still, it recovers and lands with perfect
accuracy (Figure 4 and Table 8). In addition, Cases III and IV are equivalent to missing
the time for the Hohmann kick by about +3 minutes. Tables 6, 7, and 8 show some more
trajectory details.

TABLE 6. DESCENT FROM NOMINAL HOHMANN ELLIPSE (CASE 1)

t X y 1% A F h
sec km km deg m/s kp km
54,3 -259.1 0.8 199.0 1702.9 15000 20.0
94.3 -196.0 8.3 192.1 1515.2 14987 19.3

134, 3 -140.6 11,7 185, 2 1314, 4 14978 17.3
174, 3 -93.7 11.6 181.5 1099. 8 14973 14. 1
214, 3 -55.8 9.3 171.9 871.1 14970 10.2
254, 3 -27.4 5.8 165, 3 627,0 14968 6.0
294, 3 ~8.8 2,3 158. 8 366.7 14968 2.3
314, 3 -3.4 0.9 155, 6 230.0 14968 0.9
346.5 -0.0 0.0 150. 4 0.0 14968 0.0

13



30 km.

/—’/__
+
/l
- |
| N ’,/// ‘ — 420 kmn—
R ‘ -
| &ff/ A
| & -3l
//
A |
l - E —— POk ——
| / j//
| 7
| T
| y’ i—iOO -10 +10 km X
I -
////1///, +4-- tokm
I
|
1

FIGURE 4. TYPICAL TRAJECTORIES

TABLE 7. DESCENT FROM DISTURBED HOHMANN ELLIPSE (CASE II)

t X y Q@ v F h
sec km km deg m/s kp km
54, 2 -263.9 20.3 213.3 1698.0 15011 40.0
94.2 -201.0 27.0 202. 4 1534, 5 14947 38. 4

134, 2 -145,5 28.2 192.0 1351, 5 14905 34,1
174, 2 -98.1 25.0 181.2 1149.8 14879 27,7
214, 2 -59.6 19.0 172. 1 929.6 14865 20.0
254, 2 -30.5 11.8 162.6 691.0 14859 12.1
294, 2 -11.1 5.1 153.2 433.8 14857 5.1
334.2 -1.3 0.7 143.9 157.5 14857 0.7
355. 8 -0.0 0.0 139.1 0.0 14857 0.0
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TABLE 8. DESCENT FROM DISTURBED HOHMANN ELLIPSE, GRAZING
SURFACE (CASE III)

t X y @ 1% F h
sec km km deg m/s kp km
51,4 -259.1 -19.4 184. 2 1696, 5 15003 0.0
91.4 -195.6 -10, 8 181.3 1498, 0 15005 0.2

131.4 -140.1 -4.9 178.3 1289, 8 12007 0.7

171,4 -93.0 -1.4 175.4 1070.6 15008 1.1

211, 4 -54,9 0.3 172.5 839.3 15009 1.2

251.4 -26.4 0.7 169.6 594.3 15009 0.9

291.4 -8.0 0.4 166. 6 333.9 15010 0.4

339.2 0.0 0.0 163, 2 0 15010 0.0
CONC LUSIONS

No attempt is made to prove the validity of the iterative guidance scheme in a
general way. However, when used for a specific application, a lunar landing, all re-
quirements previously stated are satisfied. It handles disturbances heyond those ex-
pected in a real flight with a minimum of measurements. Payload loss is negligible,
the landing accuracy does not deteriorate, and control requirements, especially thrust
control, are acceptable.

At the same time, the computation effort is modest. Calculation time for the
steering equations (including trajectory calculation) for one integration step is 10
seconds on a small, medium speed computer, the RCP 4000, i.e., in real time,
Storage requirements of 1300 words are well within the capacity of these computers.

The important question of how to measure the required variables is beyond the
topic of this report. Other questions that remain are (1) the extension to three di-
mensions, which should not pose any major difficulties, (2) some improvement of the
computer program, and (3) an analysis of the effects of instrument errors.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama February 1965
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