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EVALUATION

The cost of producing software has increased at a rapid pace, and,

as a result, much has been said about the unreliability problems

associated with producing this software. The need by the software

industry in general, and the military establishment in particular,

to produce reliable, maintainable and quality software, is ever

increasing. Investigations into the types of software errors and

the reasons for their occurrence are taking place, but are some-

what deterred by an insufficient gquantity of error data. The ‘
error data base can be utilized for in-depth analysis as well as :
testing software error prediction models.

In an attempt to overcome this insufficient data base and to

respond to these needs, this effort was initiated. The effort

is in accord with the goals of RADC TPO No. 5, Software Cost
Reduction (formerly RADC TPO No. 11, Software Sciences Technology) ;
particularly in the area of Software Quality (Software Data). The
report provides a description of the delivered data. The data
consists of a history of software modifications to an on-board
flight software project for a specific period. The value of
acquiring this data is that it will be analyzed for the purpose

of developing software measurements and will also be used to support
current software model development projects. In addition, this

data will be used concurrently with other procured software error 1
data, to aid in establishing a baseline for on-board flight soft-
ware projects in quantitative terms. This class of information
will, in the future, influence better methods of developing on-
board flight software projects.

% }%)?r
JAMES V. CELLINI, Jr.
Project Engineer




SECTION 1

INTRODUCTION

This study is based on a unique experience: Project Apollo,
the manned 1lunar landing, an effort combining many technologi-
cal disciplines. The Instrumentation Laboratory of The Massa-
chusetts Institute of Technology (MIT/IL), since incorporated
as The Charles Stark Draper Laboratory, Inc. (CSDL), was given
responsibility by NASA for the guidance, navigation and control
(GNC) functions of the Apollo space vehicles. The data investi-
gated by this study are derived from the software developed for
the computers of the onboard Primary GNC Systems (PGNCS) of both
the Command Module (CM) and Lunar Module (LM).

This study compiles and categorizes modifications that were
made to the flight software programs during the development of
the PGNCS of both CM and LM. This material was recorded on mag-
netic tape; the data contents are described in Section 4 of this
report. The purpo of this effort is to contribute to the est-
ablishment of a ire error data base to support research in
software reliab:

A great d«¢ support software was produced at the labora-
tory for the Apollo project in addition to the flight software:
simulators, assemblers, data management systems, post proces-
sors, and engineering simulators. Figures for computer usage
and staffing include this total software effort; the modifi-
cation data collected and described in this report, however,
are only from the flight programs. These data are compiled
from changes made to the flight software for Apollo flights 7
through 17. Apollo flights 16 and 17 used the same software as
Apollo 15. The data were collected from flight software devel-
oped over the years 1967 to 1971.

This report provides a description of the project used as
the source for these data, and describes the data base itself.
Section 2 of this report describes the flight computer archi-
tecture, the functional nature of the software, its production,
testing and managemente. Section 3 discusses the life cycle of
the software. Section 4 describes in detail the collected data
and its format. Section 5 summarizes the data in graphic and
tabular form. Section 6 presents some conclusions and recommen-
dations drawn from this activity.
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SECTION 2

BACKGROUND
2.1 FLIGHT COMPUTER ARCHITECTURE

The Apollo Guidance Computer designed and developed by the
MIT/IL was advanced for its day, being small, light-weight and
highly reliable. During all the hours of testing and actual
flight, not one failure was ever recorded. The AGC was used
throughout all the Apollo, Skylab, Apollo-Soyuz and F-8 Phase I
programs.

2.1.1 MEMORY ORGANIZATION

The computer consisted of a fixed wired program memory
(called a "“core rope*") of 36,864 words in 36 banks and a read-
write ("erasable") memory of 2048 words in 8 banks. Words were
15 bits plus parity; the memory cycle time was 12 micro-seconds.
Fixed memory could not be changed after manufacture.

There were 34 possible machine instructions. Since 15
bits were not sufficient to specify an op-code and all 38,912
memory addresses, computer core was divided into banks and pro-
grammable bank selection registers were provided in the CPU.
Any instruction could specify any address within its own bank
and could also address the first 3 banks of erasable as well as
the first 2 banks of fixed memory. Access to any other bank
was accomplished by using the bank registers. The limited size
of erasable memory forced the time-sharing of these locations.
Many software modifications resulted from this memory organiza-
tion and appear in such error categories as V050, program memory
optimization, NO010, items in wrong location, F040, organization
problem.

Throughout all Apollo programs, there was a "memory
crunch". Extreme efforts were expended by programmers to be
"clever" 1in order to save even a few memory locations. Not

surprisingly, this added to the difficulty of the debugging
process and made ongoing program modification a tricky business.
In some instances modifications were not made even though
potential problems were Kknown to exist because it was felt that
known problems were less hazardous than new problems that could
be introduced by a complex correction. Care was taken that the
problems were well understood and work-around procedures were
developed, when reauired, to avoid them.

* The term "rope" came to be used by Apollo engineers to denote

each program intended for release, even while it was under
development. "Rope" 1is also used elsewhere in this report in
that sense.




The fact that the program memory was hard-wired led to an
effort (not covered by this study) which extended through the
late Apollo flights, Skylab, and the Apollo-Soyuz programs. Tie
consisted of the development of Erasable Memory Programs (EMPs)
which were implemented in order to provide modifications to a
flight program while avoiding remanufacture of the "rope". The
EMPs resided in erasable memory. time-sharing even further that
scarce resource. Needless to say, extreme caution was used in
specifying, designing, implementing and testing each EMP. An
experienced team of experts participatea in each phase of EMP
development, and the astronauts and ground crews were
thoroughly briefed on the use and limitations of each EMP.

2.1.2 INTERRUPT SYSTEM

Ten interrupt 1levels were provided. They are shown in
Table 2-1. Of these ten, four were programmable counters of
varying granularity, the finest being 10 milliseconds. These

counters were utilized to provide cyclic servicing of the vehi-
cle control functions, hardware calibration and other servicing
such as displav refresh and telemetry.

One of the counters was used to service a time queue by
which the operating system dispatched asynchronously timed
tasks to be processed in the interrupt mode. Processing in the
interrupt mode was constrained to a time limit of 14 milli-
seconds, since other interrupts were masked while the current
interrupt was being processed. Computer hardware failure moni-
tors were provided and are described in Table 2-2. Any of these
failures caused a GOPROG interrupt and a subsequent software
restarte.

2.1.3 HARDWARE INTERFACES

The computers were interfaced to the several hardware com-
ponents shown in Figures 2-1 and 2-2.

All input/output (I/0) took place through counters and
channels. Counters were used for the transmission and reception
of numeric data; channels were used for the communication of
discrete data. Counters were accessed by direct memory access
on a cycle-steal basis.

2.2 FLIGHT SOFTWARE FUNCTIONS
2.2.1 MISSION PROGRAMS

The purpose of the AGC was to compute guidance, targeting,
navigation, and control functions for the Apollo space vehicles

for all mission phases. Many guidance, targeting and naviga-
tion functions were computed by the ground control system and




Table 2-1 INTERRUPT STRUCTURE

INTERRUPT PURPOSE HIERARCHY
GOPROG RESTARTS 1
T6RUPT JET TURN ON/OFF 2
TS5RUPT DAP 3
T 3RUPT WAITLIST 4
T4RUPT IMU/OPTICS MONITORING 5
KEYRUPT (2) KEYSTROKE PROCESSING 6
UPRUPT UPTELEMETRY PROCESSING 8
DOWNRU PT DOWNLINK PROCESSING 9
RADRUPT RADAR RETURN PROCESSING 10

Table 2-2 COMPUTER HARDWARE INTERRUPTS

OSCILLATOR FAIL
Occurs if loss of oscillator 1.02 MHz square wave
happens. In addition a logic circuit insures a
RESTART condition for a 250 millisecond interval upon
transferring from STANDBY to OPERATE.

TRANSFER CONTROL (TC) TRAP
Occurs if too many or too few TC instructions are
requested. The period for "too many" or "too few" is
from 5 to 15 milliseconds in duration.

PARITY ALARM
Occurs if any accessed word in fixed or erasable
memory whose address is 10 octal or greater contains
an even parity of "ones." All locations of 10 octal
or dJgreater are stored in fixed or erasable memory with
odd parity.

NIGHTWATCHMAN FAIL
Occurs if the computer should fail to access address
67 within a period whose duration varies from .64 to
1.92 seconds. This assures that the computer is still
operating during an extended idle period and is tied
up in an interrupt loop.

INTERRUPT (RUPT) LOCK
Occurs if an interrupt is either "too long" or "too
infrequent" . -

VOLTAGE FAIL
Occurs if the AGC voltages are out of limits for 157
to 470 microseconds.
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duplicated on-board, but control functions were, of course, an
on-board responsibility: so too were computations of range,
range-rate, velocity requirements, and other parameters for lun-
ar landing and rendezvous. These computations were based on
radar and optics sensor inputs and monitored by the astronauts,
who had final authority over all activity. The following defi-
nitions of these functions appear in reference 1.

Navigation - the measurement and computation necessary
to determine the present spacecraft position and velo-
city.

Targeting. - the computation of the maneuver requi:ed
to continue to the next step in the mission.

Guidance - the continuous measurement and computation
during accelerated flight to generate steering signals
necessary to assure that the position and velocity
changes of the maneuver will be those required by navi-
gation measurements and targeting computations.

Control - the management of spacecraft attitude motion;
the rotation to and maintenance of the desired space-
craft attitude during free-fall coasting flight and
powered accelerated flight.

Table 2-3 lists the major mission programs that were available
for astronaut selection.

2.2.2 CREW INTERFACE

Because of the importance of the man-machine interface, a
significant portion of the software effort was devoted to dis-
plays and handling of crew Kkeyboard inputs. At significant
points in the processing, a display was presented to the crew;
the program did not advance further until directed to do so by
the crew (depression of a PROCEED key was the standard method
of crew approval).

These paragraphs are adapted from material presented in
reference 1.

The basic man/computer incterface device 1is the
display keyboard (DSKY) (shown in Figure 2-3). Through
the DSKY the astronaut could initiate, monitor, ot
change programs being processed by the computer. He
could request the display of specific data or enter new
data. Communication with the DSKY was two-way: the
astronaut could exercise command via the DSKY and the
computer could 1request the astronaut to monitor,
approve, or enter data when necessary. There were two




Table 2-3 MISSION PROGRAMS

T T T

COMMAND MODULE

LUNAR MODULE

00
01
02

06
07

11

20
21
22
23
27

30
31
i
33
34
35
37

40
41

51
52
53
54

61

63
64
65
66
67

72
755,
74
75
76

CMC Idling

Prelaunch Initialization
Gyro Compassing

Verify Gyro compassing
CMC Power Down

IMU Ground Test

EARTH ORBIT INSERTION
Earth Orbit Insertion
NAVIGATION

Rendezvous Navigation
Ground Track Determination
Orbital Navigation
Cislunar Navigation

CMC Update

RENDEZVOUS TARGETING
External Delta V
Lambert Aimpoint
Coelliptic Sequence
Constant Delta Height
Transfer Phase Init
Transfer Phase Midcourse
Return to Earth

POWERED FLIGHT

SPS Maneuver

RCS Maneuver

IMU ALIGNMENT

IMU Orientation

IMU Realign

Backup IMU Orientation
Backup IMU Realign
SNTRY

Maneuver and Separation
Separation and Reentry
Entry-Initiation
Entry-Post .05 g
Entry-Up Control
Entry-Ballistic
Entry-Final Phase

LM RENDEZVOUS TARGETING
LM Coelliptic Sequence
LM Constant Delta Height
LM TPI

LM TPM

Target Delta V
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DSKYs available in the CM and one in the LM. Each DSKY
had a keyboard, several electro- luminescent displays:,
and activity and alarm lights. The activity lights
were for the computer and the telemetry uplink, and
the alarm 1lights were for the computer and inertial
subsystems. These aided the astronaut in monitoring
the status of the G&N system. The alarm lights indi-
cated equipment failure and program alarms.

The basic language used for communication between
the operator and the computer was a pair of two
character  numbers that represented a verb/noun combin-
ation. The verb code indicated the operation to be
performed, while the noun indicated the operand to
which the operation (verb) applied. Typical of the
verb codes used are those for displaying and 1loading
data. For example, VERB 16 NOUN 20 provided a
monitored display of gimbal angles and VERB 25 NOUN 18
loaded the desired gimbal angles.

Noun codes called up <¢roups of erasable registers
within computer memory-. Processing of nouns provided
information in units scaled for ease of crew use.

The users of the system, the Apollo astronauts, Wwere very
much involved in the design of the software/crew interface. In
the early flights, a great deal of keyboard activity was
required of the astronauts who wanted total control over the
selection of computer program sequences- Later in the Apollo
program, ac confidence in the computer system increased, the
crews were willing to relinquish some of cthat authority and the
program sequences were automated tO a dreater extent. One sig-
nificant effort in that direction was the development of the
MINKEY (for minimum Kkeystroke) sequence in the command module
rendezvous programe. The MINKEY sequence automated what was
formerly a burdensome period for the single astronaut aboard
the command module. Another effort that was undertaken after
the first manned flights was the incorporation into the soft-
ware of the error checking of all crew inputs. Experience had
shown that illegal or incorrect inputs caused aberrant behavior
and could have seriouslv impacted mission performance. Legal-
ity checks in the software, although consuming scarce memory
resources, were deemed necessary to guard against a potentially
dangerous source of error.

2.2.3 RESTARTABILITY

A unique aspect of the Apollo software was its built=-in,
real-time error recovery and restart capability. This capability
was implemented by storing restart pointers at strategic points
in each process. The pointers were stored in "restart tables",

10
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which accommodated up to six separate processes at any time.
Determination of restart points was a complex process based on
the repeatability of coding sequences. Updating of variables
was protected by storing a copy of the updated value, inserting
a restart point, then replacing the o0ld values with the newly
computed ones. Other coding sequences posed more difficult
logic problems for the programmers, sometimes necessitating

multiple restart points within a few lines of code. The multi-
programmed nature of the software contributed to the complexity
of the restart design. The restart tables were time-shared, so
that the assignment of table locations to various processes
required expert knowledge of the total program activity
throughout the mission. Also, insertion of restart points in
the code had to take into consideration the possibility that
processes could be preempted by a higher priority process at

almost any time. Although ‘this capability was expensive in
terms of memory usage, as well as being a significant source of
errors dur ing development, this feature was directly

responsible for the success of the Apollo 11 and 12 missions,
which may well have failed without ic.*

Modifications to the software for the implementation of this
capability are recorded under categories HO040, inadequate
restart, or HO050, errors in restart logic.

2.2.4 MULTIPROGRAMMING AND ASYNCHRONISM

The AGC operating system was designed and implemented very
early in the program, before the time period covered by this
study. It provided great flexibility in that it allowed for both
synchronous, precisely timed cyclic processing and asynchronous
tasks which could themselves be either cyclic, timed processes
or priority-driven jobs. Timed processing was interrupt-driven
and was itself non-interruptable. For this reason timed proces-
sing was subject to a time limit of 14 milliseconds. Typical
synchronous timed processes were the digital autopilot (DAP)
and the hardware monitoring and service routines. Dedicated
interrupts were assigned to these processes.

*Lightning struck the Apollo 12 vehicle during the ascent phase
and caused a series of power transients in the computer
systeme The software recovery system successfully restarted
the program allowing the mission to continue. The recovery
system was similarly involved in the 1lunar landing phase of
Apollo 11 when erroneous radar inputs caused a computational
overload. The recovery system deleted low priority functions,
performing only essential computational sequences, and thus
relieving the computer overload and allowing successful comple-
tion of the landing.
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Asynchronously timed processes were dispatched by the oper-
ating system from a time queue (called WAITLIST) to which
another interrupt was dedicated. These tasks were scheduled
in response to real-time program requirements.

Priority-driven jobs were also scheduled as required by cur-
rent demands on the system, often in direct response to crew
inputs. These jobs were preemptable; that is, they could be
interrupted by timed tasks (unless interrupts were specifically
masked) or by jobs of higher priority.

Interaction between processes in real time, the sharing of
resources necessitated by 1limited memory, and the fact that
processes could be initiated asynchronously and unpredictably,
created a complexity in program behavior that readuired extensive
testing and often heroic debugging efforts. The Assembly Cont-
rol Supervisor (para 2.4.1) and a relatively small group of
software experts were often called upon to dig into a problem
to help explain the seemingly inexplicable.

2.3 FLIGHT SOFTWARE PRODUCTION AND TESTING

The laboratory began its Apollo work in 1961, and the
early years were primarily devoted to hardware development,
including computer design and prototyping. Early software work
was performed by a small group of engineers who were familiar
with the computer design work and who had been closely involved
with the working groups that developed the mission requirements.
All of the programs for the manned Apollo flights were based on
this initial existing "core" of system (e.g., executive, display
and hardware interface) software. Thus each new program was
essentially a modification, although usually a large-scale modi-
fication, of a previous release. With the approach of manned
missions, software requirements grew and the programming and
verification group was expanded. Figure 2-4 shows how this
effort was staffed over the years.

2.3.1 PRODUCTION

The group responsible for the flight software included
guidance, navigation, and control engineers, programmers, and
test engineers, led by a small team who had been associated
with the early work at the laboratory and who had themselves
developed the first test and flight programs. Experts in the
various disciplines worked closelv together and in many cases a
single person participated in all phases of development of a
particular software module, i.e., initial engineering studies,
programming and testing.

The coding was done both in the assembly language of the AGC
and in the interpretive language (INTERPRETER) developed for the

12
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project. Fixed point arithmetic was used throughout. Most

mathematical programming was done in INTERPRETER, which provided

pseudo instructions for matrix and vector arithmetic, trigono-

metric functions, and double precision arithmetic. The code
3 was assembled by a cross—assembler hosted first on the Honeywell
i 1800 computer and later on the IBM 360/75.

2.3.2 TESTING
2.3.2.1 TYPES OF FACILITIES

Testing and verification at the laboratory were performed
b using various facilities, including engineering simulation on
; the host computer, full scale digital simulation on the host
computer, and a hybrid laboratory and system test laboratory
that provided real-time execution. Engineering simulations
were primarily used as a design tool to test algorithms and
techniques before actual incorporation into the flight program.
Some of these simulations were used throughout the Apollo
program to evaluate the performance of the mission programs and
procedures.

B

By far the largest amount of in-house code verification was
performed using the all-digital simulator, a sophisticated tool
which performed high-fidelity environment modelling and inter-
pretive simulation of the AGC and provided a large variety of
diagnostic tools and user options.

The hybrid 1laboratory consisted of 2 complete simulators,
one for the lunar module and one for the command module. Mock-
ups of the CM and LM cockpits were interfaced with the hybrid
computers to provide a realistic environment. A XDS-9300
computer controlled the simulation. It enabled real-time test-
ing of the crew interfaces and procedures with the flight soft-
ware (in a core rope simulator) and a mix of real and simulated
hardware.

The system test laboratory also contained two complete hard-
ware systems, one for the LM and one for the CM. It provided a R
test bed which included a simulated guidance computer (the core
rope simulator), actual radar, optics, and inc:rtial measurement
units.

The hybrid and system test laboratories were extensively
used, in parallel with digictal simulation, for level 3,4,5 and

6 tests (see below). Levels 1 and 2 were performed exclusively
on the digital or engineering simulators.

14
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2.3.2.2 LEVELS OF TESTING

Several levels of testing were performed.

Level 1 tests were high order language (HOL) programs run on
the host computer to test algorithms. The MAC (MIT Algebraic
Compiler), developed at MIT/IL, was used for this effort.

Level 2 was the AGC counterpart of these programs. The
results of the two were compared to establish the accuracy of
the AGC equivalent. The errors found at this level were prim-
arily computational.

Level 3 was intended to verify the operation of a complete
program or routine including crew interface and realistic physi-
cal environment models. The errors discovered at this level
were primarily logic and display interface problems. This
level was performed only when a routine was incorporated into
the flight program.

Level 4 testing was intended to verify mission phases,
e.g., ascent, rendezvous. The multi-programmed environment was
exercised extensively and therefore uncovered priority. timing,
and erasable-sharing problems.

Level 5 repeated the level 4 tests on the final rope which
was released for manufacture. This was required because even
though the level 4 tests had been successfully completed, they
may not have run on the version of the program that was
released.

Level 6 rtook place after the ropes were released for manu-
facture and were intended to verify the program using actual
mission data and the flight time-line. These runs were run
with 1 sigma and 3 sigma errors in the simulated instruments.

2.4 IN-HOUSE CONFIGURATION CONTROL

The very early programs, produced by a small cadre of
dedicated engineers, were not subject to formal configuration
control procedures. By the time of the period covered by this
study, however, the magnitude of the task and the large number
of contributors necessitated control procedures to insure the
continuing integrity of the software.

2.4.1 ASSEMBLY CONTROL SUPERVISOR
The assembly control function was established to 1localize

responsibility for the quality of each program as it was being
developed. The Assembly Control Supervisor (ACS) was a person

15




who was knowledgeable about all aspects of the program, and
especially expert in the system software, subprogram interfaces,
initialization and crew interfaces. The ACS could call on a
group of "experts" in the various disciplines to act as consult-
ants to resolve problems. All code was submitted to the ACS
for approval before it was incorporated into the official assem-
bly. The code was documented usin3j coding forms* which provided
information about the nature of the code, the reason it was
being incorporated, the official change notice or change request
reference (if any), and the signatures of the programmer and
his supervisor, which guaranteed that the code had been checked
out independently before it was submitted.

It was only after carefully scanning the code and analyzing
it with respect to its interfaces with existing software that
the ACS approved each submittal for incorporation into the
official assembly. The ACS issued memos documenting in detail
each change that had been included into each new assembly
revision.

2.4.2 ASSEMBLY CONTROL BOARD

The assembly control activity described above was under the
overall management of a system integration group. A board con-
sisting of an integration supervisor, the ACS for each separate
program** and a group of experts was established to provide pol-
icy guidance and resolve technical issues not able to be decided
by the ACS alone.

For testing and checkout before submittal to the official
assembly, engineers could snapshot a version of the assembly,
incorporate their new code, run simulations, and modify and
remodify their programs.

2.4.3 ERASABLE COMMITTEE

This system, with its built-in checks at several levels
(engineer, supervisor, ACS, experts), worked well to provide
visibility and control during development phases of the project.
Because only 2048 words of read-write (erasable) memory were
available, it was necessary to time-share data memory among many
software modules. Assuring the integrity of erasable data
required an overview of the program behavior and a knowledge of

*These coding forms served as the source of the data prepared
for this study.

** There were always at least two programs under development,
the IM and CM programs and at times programs for different
flights.

SUB——

.




B

the timing characteristics and interactions of the various
program modules. To this end a committee was established to
oversee the management of erasable memory; the ACS was an
important member of this committee. Requests for data storage
from engineers working on the software were reviewed by the
committee which assigned data locations on the basis of global
needs and time-sharing considerations.

Some consideration was given to automating the process of
erasable assignments. Studies that were conducted at the time.,
however, led to the conclusion that the effort and accuracy
required to provide correct input describing data redquirements
and time-sharing characteristics would be as difficult for the
automated process as it was for the manual activity.

Figure 2-5 is a typical erasable memory map showing the data
overlays in one bank of erasable memory.
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SECTION 3

SOFTWARE LIFE CYCLE
3l SYSTEM SOFTWARE

Much Apollo flight software was developed before the con-
trols discussed in Section 2 were established. This included
both system software and mission software. Although the
mission-related software was eventually replaced by software
capable of performing the 1lunar landing mission, the system
sof tware was basically unchanged. This software included the
executive, display interface, interpreter, much of the hardware
interface logic, interrupt handling and computer self-test. 1In
general, the system design was not formally documented and was
produced by a relatively small group of engineers who were thor-
oughly knowledgeable of the performance requirements of the
hardware, the sensor instruments and the computer. As the pro-
grams continued to develop and as more and more testing was
done, some changes were made to these programs for improvement
and error corrections, but these corrections were relatively
few.

3.2 MISSION SOFTWARE REQUIREMENTS

The requirements for the Apollo mission were determined
jointly by NASA and the laboratory. Once the lunar orbit rendez-
vous technique was established as the method of accomplishing
the ultimate goal of Apollo, some obvious and desirable require-
ments became apparent, e.g., navigation, guidance, etc. The
software was designed to perform the mission functions on-board
even though many functions were duplicated on the ground.

3.3 MISSION PROGRAM DEVELOPMENT

For the period of time covered by this studyv, software
development consisted of creating a program for a particular
mission, testing that program, and releasing it for manufacture.
This cycle was repeated for each release. The major utilization
of host computer resources during a program’s life cycle was in
testing. Testing continued after every release to evaluate any
deviation from the planned mission.

In the development of software capabilities, use was made of
engineering simulations of varying complexity to validate the
algoricthms and techniques before actual implementation into the
flight software.

During the development phase a data base management system,
List Processing Service, LIPSVC, was used. The LIPSVC system
provided reliablity and visibility in that earlier program re=-
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visions could be recreated at any time; it provided control of
the frequent assemblies and permitted easy creation of "off-
line" versions while recording all modifications to these ver-
sions. This allowed new programs to be debugged without inter-
fering with the main line production. The interim modifications
to the off-line versions were not centrally maintained and
therefore do not appear in the data collection.

There often was parallel development of software for the
same vehicle. For example, Colossus 3, the software program
which flew on Apollo flights 15, 16 and 17, was begun by snap-
ping a version of the program named Comanche under the new
name, Artemis. This new version was begun in parallel with the
Apollo 12 program. Since extensive changes were planned for
Apollo 15,16 and 17, a major effort was undertaken to recode
vast portions of the existing program solely for the purpose of
gaining space for the new features. Rather than waiting for
the release of the Comanche program for these changes, the new
version was developed.

3.4 SPECIFICATIONS AND DOCUMENTATION

The controlling document in the life cycle of the Apollo
software was the Guidance System Operation Plan (GSOP), a docu-
ment which served as the specification for the software efforts.
Development and control of the GSOP were important activities
in planning, controlling, and documenting a flight program. For
early flights the GSOP was a single volume document. With the
advent of manned flights, it was expanded to six separate
volumes. Each volume of the GSOP was dedicated to controlling a
different aspect of the AGC software. Section 1 controlled the

AGC prelaunch activities. Section 2 dealt with data 1links,
uplink, downlink, and telemetry- Section 3 dealt exclusively
with the digital autopilot. Section 4 governed operational

modes including PGNCS interfaces with the flight crew and mis-
sion control. Section 5 contained the guidance and navigation
equationse. Section 6 specified the data used in the digital
and hybrid simulators in support of the verification of the AGC
programs.

In addicion to the function of the GSOP as a NASA controi
document, it served as an internal working document, as a test-
ing guide, and as a crew training aid.




Changes to the software or the GSOP were controlled by the
documents described below.

@ Program Change Request (PCR)

A PCR was a request for a change in the
specification (GSOP) for a flight program.
It was given a preliminary review by a lab-
oratory engineer and by the NASA Flight
Software Branch and then held for Software
Control Board action. The SCB was composed
of representatives of various branches of
. NASA. SCB could disapprove the change,
require more detailed evaluation by MIT/IL
s or require implementation of the change.
k.- This decision involved overall mission con-
siderations and scheduling, as well as the
particular software considerations.

eProgram Change Notice (PCN)

A PCN originated at MIT/IL and was a noti-
fication that a change was being made
rather than a request for a change. The PCN
was used for clerical corrections to the
flight program specifications or for changes
that were required to the program for devel-
opment to continue. PCNs required approval
by the SCB, but approval was usually auto-
matic. If the SCB disapproved, a change to
undo the PCN was generated.

®eAnomaly Report

Anomaly Reports reported a discrepancy
between a program’s specification and its
operation. Anomaly Reports required offi-

cial disposition ,but did not always result

in program modification. Work-around pro-
cedures or EMPs were sometimes developed to
correct the anomaly. Table 3-1 shows the

number of known anomalies that existed in
each flight.

® Assembly Control Board Request

An Assembly Control Board Request was pre-
pared by MIL/IL’s Assembly Control Board |
and initiated a program change. This change
did not change the program’s specification.

Instead it was in the nature of an in-house |
improvement. 3
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Table 3-1 ANOMALIES IN FLIGHT PROGRAMS

FLIGHT COMMAND MODULE LUNAR MODULE
7 32 =
8 60 =
9 28 10

10 10 49

11 9 28

12 9 13

13 8 9

14 13 12

15 12 11
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3.5 SOFTWARE RELEASES

When the laboratory was directed to release the mission
program, a magnetic tape was produced for delivery to the manu-
facturer. The manufacturing process, which required at least
45 days, started by processing the magnetic tape to produce 2
mylar tapes. One tape, the core rope weaver, actuated the
weaving machines that produced the module memory. The other
tape was used to verify the memory fabrication process.

Figure 3-1 shows the development of the flight ropes for
the Command and Lunar Modules.

3.6 MISSION SUPPORT

All missions were supported around the clock by laboratory
personnel both in Cambridge and at NASA facilities. Although no
software problems occured in flight, work«-around procedures
invoked through the software were occasionally required to solve
GNCS problems*. These procedures had to be developed very
quickly to allow as much testing as possible before they were
transmitted to the crew.

*Apollo 14 reaquired a procedure to bypass checking the failed
L1 abort switch by the software.
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SECTION 4

APOLLO SOFTWARE DATA FILES

Two files of data have been delivered to the sponsor of
this sctudy. The first file contains 11,729 records, each of
which describes a modificaction to the software, called a Record
of Software Modification (RSM). The second file contains 83
records, and gives data on other errors, machine use statistics,
speed of simulation and charateristics of the software.

4.1 APOLLO SOFTWARE MODIFICATIONS

The basic data in the RSMs (record identifier, date of mod-
ification, revision identifier, reference, functional category.
modification category, modification description), were prepared
by a team of 14 engineers with experience in developing Apollo
software. The rest of the data in the RSMs was computationally
derived from this basic data.

Each RSM was prepared from one of 2 types of software
Modification Report (MR). The first of these two was used only
for modifications entered into the Sundisk and Sundance series
and is illustrated in Figure 4-1. The other one was used for
the Sundance and for all later programs and is illustrated in
Figure 4-2.

Each MR documents one or more software changes and the
reason for the change(s). Each change resulted in a different
RSM. In this way a MR may have generated several RSMs. 1In some
cases a change went into more than one program; in that case an
RSM for each was prepared. All modifications were also docu-
mented in a memorandum series for each program. Frequently
these memoranda were referenced by the engineer preparing the
basic data of the RSM, thus supplementing the information in
the MR.

A good deal of knowledge, background and judgement was
required and used in interpreting the MRs and other documenta-
tion in order to prepare the RSM’'s basic data, in particular in
supplving the data for the functional category field, the modi-
fication category field and the modification description field.
The background knowledge and judgement were provided by
restricting the people preparing the data to those with exten-
sive experience in developing Apollo software; nevertheless, it
should be recognized that a significant degree of subjective
judgement was exercised in assigning categories to the data
items.

Each RSM contains 9 fields, which are described below. In
all numeric fields leading zeroes are replaced by blanks.
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4.1.1 RECORD IDENTIFIER (Columns 1 - 4)

Each record identifier is unique in the file of RSMs. A
record identifier consists of a letter followed by a three deci-
mal digit number. These unique record identifiers were gener-
ated at the time of the preparation of the record. They provid-
ed traceability during the data preparation process, in that the
letter identifies the engineer who prepared the record. At the
time of the preparation of the RSM, its record identifier was
written on the MR from which the RSM was prepared, thus provid-
ing references from the file of MRs to the file of RSMs.

4.1.2 DATE OF MODIFICATION (Columns 6 - 13)

An entry in this field is in the form YY-MM-DD, for year-
month-day. MM and DD may contain a leading blank, but no lead-
ing zero. All entries in this field were checked to make sure
that they were valid dates.

This date is the date the modification was submitted‘by the
programmer to the Assembly Control Supervisor for approval and
inclusion in the program. The date that the modification was
actually incorporated into the program is not Kknown, but was
usually within a day or wtwo. or at most a week, of its submit-
tal.

In most cases this date is the date shown on the MR. In
those few cases where the date field on the MR was left blank,
the revision identifiers (see paragraph 4.1.3, below) were used
as the basis for estimating this date. Estimating this date
sometimes required a linear interpolation, interpolating between
revision numbers with approximately known dates.

4.1.3 REVISION IDENTIFIER (Columns 15 - 18)

This field was taken directly from the MR and denotes the
program revision into which the modification was incorporated.
The programs to which the data applies consist of six distinct
program series: Sundisk, Colossus, Comanche, Artemis (all Com-
mand Module programs), Sundance and Luminary (Lunar Module
programs) . As shown in Table 4-1, sixteen separate flight
programs were manufactured from these series.

The revision identifier consists of a letter followed by a
three decimal digit number. The letter identifies the program
series; the number is the revision number within that series.

For some revisions there are no RSMs. This could happen

for one of twwo different reasons. (1) For Sundisk revisions 1

through 88, and for Sundance revisions 1 through 82 there were

no treports on modifications available. (2) In some cases a
29




Table 4-1 REVISION IDENTIFIERS, FLIGHT PROGRAMS, SIZES, FLIGHTS
Exog Revi- |Program |Flight Total New Space Apolld
ode sions Name| Program Words Words Vehicle |Flight
D 1-282|Sundisk |Sundisk 36480 23100 C 7
€ 1-237|Colossus|Colossus 1 37757 11770 C 8
e 238-249|Colossus|Colossus 1A| 37854 110 C 9
M 1- 45|Comanche|Colossus 2 38575 2035 @ 10
M 46— 55(|Comanche(Colossus 2A| 38610 110 c 11
M 56- 67 |Comanche|Colossus 2C| 38702 215 ! C 12
M 68~ 72 |Comanche|Colossus 2D | 38702 34 ! C 13
= M 73-108 [Comanche|Colossus 2E| 38402 1692 ! C 14
A 1- 72 |Artemis |Colossus 3 38485 770 # e 15
S 1-306 |Sundance [Sundance 36424 28600 L 9
L 1- 69 |Luminary|Luminary 1 37904 10560 L 10
L | 70- 99 |Luminary|Luminary 1a| 38646 | 2310 | L 11
L 100-116 |Luminary |Luminary 1B | 38502 700 ! L 12
L 117-131 |Luminary |Luminary 1C| 38502 150 ! L 13
L 132-178 |[Luminary (Luminary 1D | 38202 940 ! L 14
L [179-210 |[Luminary [Luminary 1E| 38452 770 ¥ L 15
Legend for column headed "Space Vehicle":
"C" means Command Module
"L" means Lunar Module :
Legend for the columns headed "Total Words" and "New Words":
3 Number taken from the program listing for Artemis 72
+ Number estimated by experienced assembly contol supervisor
! Number taken from Rankin’s thesis
# Number estimated by averaging the numbers for the
previous 4 flights

N —
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revision was created without a MR being prepared. This happened
only in the case of an abort during the assembly process, where
due to a clerical error or a machine failure, a spurious rev-
ision was cCreated. In those cases, the assembly supervisor
simply resubmitted the original modifications.

The following revision numbers do not appear on the RSMs:

Comanche 45.1, 45.2
Comanche 72.1, 72.2, 72.3
Luminary 69.1, 6S$.2
Luminary 99.1

Luminary 131.1

The revision number on the RSM contains only the digits to the
left of the decimal point; thus a modification to revision
Luminary 69.1, for example, is recorded in the RSM as occurring
in L 69. Fewer than 15 RSMs contain these truncated revision
numbers-. These revisions are the result of re-releases that
were made after further development had continued on the prog-
rame. To illustrate: Luminary 69 was released for manufacture;
meanwhile Luminary 70, 71, 72, etc. were being created (as
updates of Luminary 69). Testing of the released program con-
ducted during this period revealed a problem serious enough to
warrant re-release. Apollo support software allowed the
retrieval of any previous revision; revision 69 was therefore
retrieved, copied, and corrected without disturbing the later
revisions. The offshoot revision was entitled Luminary 69.1,
which later spawned Luminary 69.2 when still another serious
problem surfaced.

4.1.4 REFERENCE (Columns 20 - 25)

For about 13% of the RSMs, another document is referenced.
The document 1is identified in the reference field in the manner
shown in Table 4-2. The referenced document is either a Prog-
ram Change Request, a Program Change Notice, an Anomaly Report
or an Assembly Control Board Request (see paragraph 3.4). The
document established the basis for the change. If it was wric-
ten before the MR, then it served to initiate cthe change. If
after the MR, then it served to rationalize the change.

When such a document was cited in an MR, it was recorded
in the reference field of the corresponding RSM.

For the remaining RSMs the reference field is blank.

VESEC——-




Table 4-2 REFERENCE NUMBERS

Columns Meaning
20-25

PCRdAdd Program Change Request
PReddd Program Change Request
PCNddd Program Change Notice
PNeddd Program Change Notice
coLddd Colossus Anomaly
ACBxxX Assembly Control Board
Request

coMddd Comanche Anomaly

LNYddd Luminarv Anomaly

svmbol used explanation
above

d a decimal digit
) a decimal digit other than zero
X a decimal digit or a capital letter




»1.5 FUNCTIONAL CATEGORY (Column 27)

This field identifies the function within the flight prog-
am which 1is being modified. 22 functional categories were
dentified and assigned code letters "A" through "V". The func-
ional categories and their codes are shown in Table 4-3. The
ield, then, contains a letter denoting the functional category
f the code being modified.

This field was coded on the basis of the information in
he MR, supplemented by other documentation and the background
nowledge of the individual preparing the data.

.1.6 MODIFICATION CATEGORY (Columns 29 - 32)

The entry in this field denotes that category out of the
08 preselected categories (shown in Table 4-4) which best
escribes the modification or the reason for the modification.
he entry itself is a code denoting the modification category
nd consists of a letter followed by a three decimal digit
umber.

184 categories were defined by the sponsor in the Statement
f Work, each with its unique code. First these codes, which
ere S5 characters 1long, with the first and second character
lways identical, were changed by deleting the second redundant
haracter of the code to shorten it, and by replacing leading
eroes in the numerical portion of the code by blanks.

Secondly, it became apparent in the course of this study
hat a large proportion of Apollo programming errors do not fit
he 184 categories defined by the sponsor. This mismatch is
ue primarily to the fact that the Apollo code was written for

real-time multiprogrammed application, whereas the error data
nalyzed previously under the sponsor’s auspices was derived

rom non real-time applications. Real-time errors manifest
hemselves as routine-to-routine interface conflicts as well as
rioricy or <time conflicts. The sequence of operation of

outines in real time is frequently dependent upon the proper
etting cf flags and other interface data by other routines.
‘rogram sequencing and restart protection is considerably com-
ilicated by the actions of an on-line astronaut. Finally. the
xistence of an interactive user creates a series of possible
lan/machine interface problems.

In order to avoid forcing the Apollo real-time errors into
nnatural categories, 24 new categories were defined, each with
new code. 5 other categories had their descriptions modified
ut not their code; one category had its description modified
nd was given a new code; and 1 category was given a new code
ithout its description being modified. We thus arrive at the
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Table 4-3 FUNCTIONAL CATEGORIES, THEIR CODES AND SIZES
Colossus |Luminary
Code| Functional Category 237 98

A | Digital Autopilot 5815 3464
B |Error Detection/Recovery 332 280
C |Crew Interface 1771 2220
D | Telemetry 404 242
E|I/0 NA NA
F | Executive 773 1173
G | Sequence Initialization/Reinitialization 1009 953
H |Display 3603 3107
I |Navigation 4043 4655
J |Coordinate Transforms 616 474
K |Vehicle Attitute Computations/Maneuvers 939 998
L |Tracking 2929 3560
M |Targeting 3728 2684
N | Powered Flight Maneuvers 2479 3103
O |Guidance Computations NA 1570
P |Alignments 1588 2101
Q lInterpreter 2145 2150
R |Math Subroutines 71 126
S |Software Utility Routines 196 162
T |Hardware Failure Monitor 1291 1780
U |Hardware Service Routines 1982 967
V {Manual Operations (non-software) NA NA

"NA" means that the size of the code for the functional

category is not available.
S~
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final count of 208 categories. Care was taken to avoid prolif-
eration of categories. In most cases, the new real-time cate-
gories are simply subsets of existing, closely related non real-
time categories. Descriptions of categories were modified to
clarify their meaning within the Apollo context. Categories
were recoded to provide a clearer hierarchy of categories. All
these changes are shown in Table 4-5.

The value of the modification category field was entered
by the RSM’s preparer on the basis of 1) all the information in
the MR, 2) other documentation related to the modification, 3)
using his or her knowledge of the context in which the MR had
been written and 4) using his or her knowledge of the categor-
ization scheme that was being used.

The MRs document each change to an assembly and the reason
for the change. Ideally it would be possible for experienced
Apollo programmers to go through the MRs categorizing each modi-
fication according to the categorization scheme being employed.
However, when the hand-written MRs were originally produced,
they were not produced with anything like the present purposes
(e.g, carrying out error analysis) in mind. As it is, the MRs
frequently do not contain sufficient information to categorize
a modification and thus other documentation is required. The
appropriate Apollo memo series was used for this purpose, since
that series contained memos provided by the Assembly Control
Supervisor which gave for each revision a detailed description
of all modifications incorporated in the revision. Also, if the
MR references a PCR, PCN, Anomaly Report or an Assembly Control
Board Request (see paragraph 4.1.4), supporting data identify-
ing the source of the change was obtained, if needed, from the
referenced document. Even with all this documentation, often
not enough information was available about the nature of the
original change and about the context in which the change was
madc: in many cases, judgement based on experience was relied
on.

4.1.7 MODIFICATION DESCRIPTION (Columns 34 - 83)

This field contains a brief textual description of the
program change or the reason for the change. Generally this is
just a fuller description of the modification or the reason for
it then what 1is denoted in the modification category field
(paragraph 4.1.6). (Note that "reason for the modification"
and "description of the modification" are largely synonymous.)

The description in this field, like the code in the modi-
fication category field, was entered by the RSM's preparer on
the basis of all che information in the MR, other available doc-
umentation, as well as his or her knowledge of the context in
which the MR had been wricten.

<




Table 4-5 CHANGES TO THE ERROR MODIFICATION CATEGORIES
Code|Status | Categorv Description. (Explanation of the Change)
A 42 A Sampled data problem; characteristic of real-time

data was not as expected.
Al130 A Fixed point scaling error.
B 63 A Open branch; possibility of logic branch to
undefined location.
B 70 c Incorrect log:.c design.
("design" added to differentiate category from
the one below coded "B 71")
B 71 A Incorrect implementation; logic designed
correctly but incorrectly implemented.
D 20 C Data written in or read from wrong memory
location.
("disk" changed to "memory")
F 11 C Program segmentation (layout of subroutines, etc.).

(Original category was specialized to apply
only to changes to the organization of
subroutines) .

Real time organization problem (incompatible
modes); incompatible modes of operation of
routines in real time (includes restart
problems) .

Organization errors (location of code, etc.):
errors in location of code, deletion of
unused code, etc.

Real time routine/routine initialization error:
initialization error resulting in
real-time sequencing problem.

Prioricy conflict; error in establishment of
priority of real-time routine.

Time conflict; real-time routine does not meet
time constraints.

Inadequate rectart capability (was J100); addition
or modification of restart tables, etc.




CHANGES TO THE ERROR MODIFICATION CATEGORIES (cont.)

Category Description. (Explanation for the Change)

Table 4-5
Code |Status
H 50 A
J 10 c
\ J 90 c
3 Jioo| o
. K 11 D
9 K 20 A
3 L 26 A
L 27 A
L 90 A
N 60 A
N 70 A
N 80 A
S 10 A
s 20 A

Errors in restart logic; modification in restart
procedures.

Incompatibility with external requests; changes
made to conform to external requests.

Poor design in man/machine interface.
("operator" changed to "man/machine")

Inadequate interrupt and restart capability.
(Code for the category changed to "H 40")

Uncoordinated use of data elements by more than
one user.
(Code for the category changed to "K 20")

Uncoordinated use of data elements by more than
one user.
(Code for this category was "K 11" originally)

Man/machine real-time spec change; user requested
change in man/machine interface.

Error recovery spec change; user requested change
in restart mechanism.

Implementation of original spec.; new code required
to conform to original specification.

Make room in E-Bank (erasable memory) .
Reorganize data.

Missing data definition; primarily includes those
modifications to the Erasable Assignments
that parallel coding changes that fall
into such categories as "incorrect
implementation of logic design", "missing
logic", and others of a similar nature.

Requirements error (insufficient, inadequate):
coding changes due to an insufficient or
inadeauate specification.

Requirements enhancement; coding changes due to
changes in requirements.

e

39




Table 4-5 CHANGES TO THE ERROR MODIFICATION CATEGORIES (cont.)

o Code |Status | Category Description; Explanation for the Change f
’f v O A IN-HOUSE PROGRAM IMPROVEMENTS.
3 vV 10 A Simplified interface and/or convenience.
= (Description same as for the category coded
"L 10")
vV 20 A New and/or enhanced functions. :
8 ‘ (Description same as for the category coded
E !lL 20")
v 30 A Data base management and integrity.
(Description same as for the category coded
"L 70»)
V 40 A CPU time optimization.
Vv 50 A Program memory optimization. [

Legend for column headed "Status":

“A" means that the code was added.

"C" means that the description was changed,
but the code was not.

"D" means that the code was deleted.
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4.1.8 FLIGHT PROGRAM (Columns 85 - 87)

A modification is intended for a particular flight program
then under development. This study covers the development of 16
different flight programs.

The field has one of 16 values, and indicates that the mod-
ification is intended for the flight program denoted by the
value and under development at the time of the modification.
Table 4-~1, page 30, shows which value denotes which flight
program.

This field also indicates that the modification was intend-
ed for a particular space vehicle (paragraph 4.1.8.1) and a
particular Apollo flight (paragraph 4.1.8.2). However, there
are no modifications that were intended for the Lunar Module of
Apollo flight 7 or 8, because there was no Lunar Module on
Apollo flights 7 and 8. Thus, instead of 18 (i.e., 2*9) possi-
ble combinations of vehicle and flight number, there were only
16. :

The entry for this field is compated from the revision
identifier (see paragraph 4.1.3), wusing  the information in
Table 4-1.

4.1.8.1 SPACE VEHICLE (Column 85)

This field has one of two values. "C" denotes that the
modification was made to a Command Module program, "L", to a
Lunar Module program.

The entry for the field was derived from the 1leading
character of the revision identifier (see paragraph 4.1.3),
using the information in Table 4-1.

4.1.8.2 FLIGHT NUMBER (Columns 86 - 87)

A flight program (rope) is designed to play its part in
one or more Apollo flights. The Apollo flights are numbered.
The flight programs covered in this study flew on Apollo flights
7 cthrough 17. Note that the two flight programs intended for
Apollo flight 15 are also for Apollo flights 16 and 17, since
these three flights employed the same programs.

This field identifies for which one of these Apollo flights
the modification was first implemented, by containing in the
field a two decimal digit number identifying the Apollo flight.

The entry for this field was derived from the revision
identifier (see paragraph 4.1.3), wusing the information in
Table 4-1.
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4.1.9 SOFTWARE DEVELOPMENT PHASE (Column 89)

This field indicates whether the modification was made
during the development or during the verification phase of the

flight program’s software development cycle. The letter "D"
entered in the field indicates that the change was made during
the development phase, the letter "V", during the verification
phase.

Note that, if the modification is to correct an error, then
this field does not generally indicate (neither does any other
field) in which phase of the software development cycle the
error was found (recognized). Such data is not generally avail-
able. However, it is safe to assume that in most cases the
error was discovered in the same phase that it was corrected.
This 1is, of. course, necessarily the case if the error was
corrected during the development phase.

Note further that, if the modification is to correct an
error, then this field does not generally indicate in which
phase of the software development cycle the error was intro-
duced into the program. However, the modification category
field generally indicates whether an error was introduced
during the specification phase or later.

The value of this field was derived from two other values
contained in the RSM, (1) the date the modification was complet-
ed (paragraph 4.1.2), and (2) the flight program (paragraph
4.1.8), as well as from (3) the date the verification phase
began for that flight program. The value of the field is "D"
if the date the modification was submitted was earlier than the
date of the beginning of the verification phase; otherwise the
value of the field is "V".

The date the verification phase began is the date that is
underlined in Table 4~-6 for that flight program. This date is
either the date that configuration control by NASA began, if
that date is available, or else the date that Level 4 testing
started. The NASA configuration control date was preferred, if
available, over the Level 4 testing date, because it is consid-
ered a more accurate and reliable estimator of the beginning of
the verification phase.

Other and more refined breakdowns of that portion of the
sof tware development cycle during which program modifications
were made were considered, but were rejected, either because
the resulting phases would not be sufficiently meaningful or
because the available data, whether on the basis of partition-
ing the series of revisions into phases or on the basis of
establishing dates that separate phases, was not sufficiently
reliable.




Table 4-6 FLIGHT PROGRAM RELEASE DATES, etcC.
Flight Space Apollo| NASA Release - - Level 4 - -
Program | Vehicle|Flight| Control Date | Start Complete
Sundisk Command 7 67~10~- 4 |68~ 2 NC NC
Module| |===~=e==--
Colossus | Command 8 68~ 7-26 [68- 8 NC NC
1 Module| |=======-
Colossus | Command 9 68~ 8-23 |67-10-28 | NC NC
1A Module| |==~====-
Colossus | Command| 10 69~ 3- 7 |69~ 4- 2 | NC NC
2 Module| |===~====-
Colossus | Command| 11 NA 69~ 4-18 | 63~ 3-14 69~ 4- 4
4 2A Modqule} | | | memm—e—-
Colossus | Command | 12 NA 69- 7-18 | 69~ 7- 7 69- 7-17
2€C Module|{ | | | mme——————
Colossus | Command| 13 NA 69-12-12 | 69-10-10 69-10-24
2D M adale T e R e e e
Colossus | Command | 14 NA 70~ 5-29 | 70~ 5~ 8 70~ 5-26
2E Module| | | | memeeeee-
Colossus | Command | 15 NA 71- 3- 11| 70~ 7-20 71~ 1-28
3 Module|] | | | =mem——ee—-
Sundance | Lunar 9 68~ 4-12 |68-10 NC NC
Module| |==w=e==-
Luminary | Lunar 10 NA 69- 4- 2| 68-11-22 68-11-22
1 Module: | | | =ee—e——-
Luminary | Lunar 11 NA 69- 6-17] 69~ 2-28 69~ 4-14
1A Module} | - | @ ] seesaaes .
Luminary | Lunatr 12 NA 69- 8-12| 69- 7-14 69- 8-12
1B Module({ | ] eeecae—-
Luminary | Lunar 3 NA 70- 2- 5| 69-10-20 69-11- 5
1C Module | | | | =eee—ee-
Luminary | Lunar 14 NA 70- 4-18)| 70- 4-13 70~ 5-24
1D Module| | | | =em—eee—-
Luminary |Lunar 15 NA 71- 3-20}| 70-12- 7 71- 1-18
1E Moduley | | ==m—————-
Legend for date fields:
: NA Date not available
; NC Date not compiled, but probably available
g

faars o
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4.2 SUPPLEMENTAL DATA

The data described in this section was derived from CSDL
Apollo project documentation. It is contained in the second
file delivered to the sponsor. This file contains 83 records
of 80 characters each. The order of the items in each record
is listed below:

Field 1 Columns 1 - 5 paragraph of the sponsor’s
_ Statement of Work

Field 2 Columns 7 - 16 alphanumeric tag

Field 3 Columns 18 - 29 numeric value

or
Field 3 Columns 18 - 19 NA (for not available)

or
Field 3 Columns 18 - 76 multiple subfields (computer hours

table)
Field 4 Columns 31 - 80 comment (for records other than those
containing computer hours table)
The information contained in this file is described below.
4.2.1 ERRORS

No errors were due to failures in the computer hardware

‘only.

The number of software errors that resulted in abnormal
processor termination is not available, since such data would

have to be based on a detailed history of digital simulation'

runse.

The number of software errors that resulted in normal
processor termination is not available, since such data would
have to be based on a detailed history of digital simulation
runs.

There were no software errors for which the exact cause of
the error was unknown when the corresponding software problem
report was closed, since such reports were not closed until the
problem was understood.

4.2.2 MACHINE USE STATISTICS

The total amount of CPU time used for the Apollo project
per month is shown in Figures 4-3 and 4-4 and Table 4-7. This
CPU time 1is provided only for Draper Laboratory’s Honeywell
1800 and its IBM 360/75, and not for the Draper Laboratory’s
hybrid computer, its System Test Laboratory, or testing facili-
ties used outside the Laboratorv. The CPU time given, for the
Honeywell 1800 and the IBM 360/75, is in IBM 360/75 equivalent

44
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Table 4-7 COMPUTER USAGE (in hours)

Feb | Mar | Apr | May | Jun |July | Aug| Sep

444 | 553 | 385) 414 | 453 | 325 {485 | 529
484 | 555 | 606 | 703 |1010 | 932 | 915 |1097
569 | 678 [ 802 | 546 | 623 | 325 |[416 | 386
513 | 573 | 508 | 571 | S71 | 4864 435 | 941

315 | 262 | 264 323 | 216 | 214 |206




hours. (4 hours of Honeywell 1800 time are considered equiva-
lent to 1 hour of IBM 360/75 time.) The total amount of CPU
time used for the Apollo project is provided on a monthly
basis, not on a daily basis.

The monthly CPU time is based on Apollo project documenta-
tion.

Note that the CPU time used for the Apollo project went
mainly into (1) testing (i.e., finding errors), (2) assembling
programs to correct errors, (3) assembling programs tc modify
the programs tc meet new requirements and (4) developing the
equations. Thus, except for the time that went into developing
the equations--a rather small proportion of the total time used,
the preponderance of the CPU time used for the Apollo project
went into finding and correcting errors or effecting
requirements changes.

4.2.3 NUMBER OF SIMULATION RUNS

Data on the number of simulation runs for each period in
the software development cycle is not available; the record of
this item, therefore, contains the letters "NA".

Even if data regarding the number of simulation runs were
available, it is not clear how meaningful this data would be,
since the simulation testing done at Draper cn Draper’s IBM
360/75 and on Draper’s Honeywell 1800 represented only a small
portion of all the simulation testing that was done. A great
deal of simulation testing was also done at Cape Kennedy,
NASA/JSC, Grumman, Rockwell, Delco and on Draper’s hybrid comp-
uter and in Draper’s System Test Laboratory. (These remarks
also apply to the data discussed under paragraph 4.2.2, above.)

4.2.4 SPEED OF SIMULATION

The simulator to real time processing ratio varied
considerably, depending on the rate of activity of the AGC being
simulated. At best, when the AGC (the on-board computer) was
performing the coasting flight functions (i.e., when only a
small percentage o¢f its processing capacity was being used),
about 1 unit of IBM 360/75 time was required to simulate 8 units
of AGC ctime. At worst, when the AGC was very heavily loaded
(i.e., all of its processing capability was being used), about
4 unics of IBM 360/75 time was required to simulate 1 unit of
AGC time. Wicth an average load on the AGC, about 3 units of
IBM 360/75 time were required to simulate 2 units of AGC time.

These figures remained fairly constant over the period
covered by this study. The Honeywell 1800 program that simu-
lated the AGC was, when correcting for the 4 to 1 ratio in
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processing power between the IBM 360/75 and the Honeywell 1800,
approximately as efficient in simulating the AGC as the IBM
360/75 simulator program.

The user of the simulator program was able to vary the
fidelicty (high and low) with which the environment was simulat-
ed. Users specified high fidelity only when high accuracy was
required, thus effecting some savings in run time.

4.2.5 SOFTWARE CHARACTERISTICS
4.2.5.1 SIZE

The total number of computer words in all the 16 releases
covered by this study is approximately 610,000.

A second estimate of the total size of the Apollo flight
software covered by this study is provided by the sum for all
ropes of the number of words added or changed since the last
rope, excluding, however, all words changed to correct
programming errors. This number is 83,866.

The second of these two numbers is a more meaningful esti-
mate of the total size of the Apollo project, if we consider
primarily the extent of the development effort. However, the
first is the more meaningful estimate, if we consider the size
of the testing effort, since every rope had to be tested anew,
and there was relatively 1little carry over to the testing of
one rope from the testing of its parent. 1In particular, approx-
imately the same amount of Level 4 through Level 6 testing was
performed for each rope.

The ™ ‘first of these two numbers can be fairly well
approximated by multiplying the size of the computer’s memory
(38,912 words) by the number of ropes (16, i.e., one rope for
each of the Apollo flights 7 and 8 and two ropes for each of
the flights 9 through 15). This provides an estimate, albeit
high, of 622,592 words. However, a more accurate estimate,
610,000 words, was obtained by using the data of reference 1l1.
The sizes of Colossus 3 and Luminary lE are not available in
reference 11. The total number of words for flight program
Colossus 3 was taken from the program listing for Artemis revi-
sion 72. The total for Luminary lE was estimated by an exper-
ienced Assembly Control Supervisor. Table 4-1, page 30, lists
the sizes for each rope.

The best estimate of the second of these numbers is the
sum of the entries of the sixth column (headed "New Words") of
Table 4-1. This column 1lists, for each of the 16 flight prog-
rams, an estimate of the number of words added or changed since
the last flight program (rope) for the same space vehicle,
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excluding, however, all words changed to correct programming
errors. 8 of the 16 numbers of this column are taken from
reference 12. 6 of the 16 are taken from reference 7. The
other 2 were estimated by averaging the numbers in the column
for the previous 4 flights.

For an explanation of why size is estimated in terms of
numbers of computer words, see the discussion in paragraph
402.5-1-1.

4.2.5.1.1 SIZE OF FUNCTIONAL CATEGORIES

Table 4-3, page 34, provides an estimate of the amount of
code (in numbers of words) used for each functional category for
two representative revisions, Colossus revision 237 (the final
revision for the Command Module for Apollo flight 8), and Lumin-
ary revision 98 (one of the later revisions for the Lunar Module
for Apollo flight 11). Where, for a size, "NA" 1is entered
instead of a number it means that the size of the code for the
functional category is not available, since the code is embedded
among the code that was counted for other functional categories.

These numbers have not been computed for the other ropes,
because the program listings on the basis of which these numb-
ers are computed are not readily available. The NASA archives
in Houston may contain a complete or near complete set, but
this has not been investigaced.

The size of each component module (i.e., the amount of
code used for each functional category) is stated in terms of
number of machine words (each word consisting of 15 bits of
information, with a sixteenth bit being used as a parity check),
and includes constants (data) and interpretive code, as well as
instructions. Although a 1listing of a program :ndicates for
each word whether the word is an instruction word (the word is
unmarked), a constant (the word is marked with a "C"), or a word

of interpretive code (the word is marked with an "I"), it would
still be an arduous task to count these separately (for each
rope over 30,000 words would have to be categorized), and no

clear benefit would be obtained from this. Typically and very
roughly, about 53% of the words of a program represent basic
machine instructions, 34% represent interpretive code and 13%
constants.

Measuring size in terms of machine words conforms to the
sponsor’s requirement that programs be measured in terms of
numper of machine instructions for that portion of a program
written in assembly language. The AGC instructions can be
meaningfully viewed as being of fixed (i.e., constant) length,
each the size of a word. Thus it makes sense to measure the
number of machine instructions in terms of the number of words
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the machine instructions occupy. (This makes sense even in
terms of those machine instructions that employ more than one
word. For example, a conditional branch instruction requires 4
words, yet those 4 words are generally occupied by 4
instructions.)

Measuring size in terms of machine words conforms to the
sponsor’s requirement that programs be measured in terms of
number of lines of source code for that portion of a program
written in a higher order language, since each line of the list-
ing representing interpretive code can be considered to be a
line of source code and corresponds to a machine word.

]

Furcher, since interpretive code, machine instructions and
constants are apt to be interspersed throughout a log section,
subroutine or functional category, it makes sense to use the
same yardstick for interpretive code as for machine instruct-
ions. Note that this situation is different from the typical
one, where different modules are written in different languages,
in that one segment of code is often written partly in a higher
order language (interpretive <code) and partly in a (more
normal) assembly language.

Since modules are viewed as functional categories, the
size of each module given here is based on an approximation
obtained by considering each "log section"* as containing one
function. To the extent that this is true, the sizes are cor-
recte. It should be recognized:. however, that, although 1log
sections in general were assigned on a functional basis, cert-
ain code embedded in any given log section properly belonged to
a function other than that represented by the log section. As
an example, a log section that was, quite reasonably:, judged to
belong to the functional category of "navigation" (since a very
large proportion of its code is dedicated to that function),
contains within it some code that is "display", some that is
"I1/0", and perhaps some other categories as well. Since the
functional category assigned to the code modification (column 27
in the first data file) was assigned on the basis of actual
function, there is an inconsistency between the sizes given
here and the modification functional categories.

The first step in computing the size of the functional
categories for the two programs was to assign each log section
of each of the two programs to one (or, in some cases, tO none
or to twtwo) functional categories, depending on which category
(or categories) best described the 1log section’s principal
function. The result of this step is shown in the Table 4-8

*An explanation of "log section" and "subroutine"--these fields
appear on the Modification Report (MR)=--is given in Appendix B.

ol




headed "Functional Categories Applied to Colossus 237" and Table
4-9 headed "Functional Categories Applied to Luminary 98". The
second step was to take the listing for each of the two programs
in cturn, loock up on the 1listing the size of each log section
and add this number to the size for the appropriate functional
category.

One minor problem connected with this procedure arises
from the fact that, for each of the programs, just 2 (out of
some B80) log sections are assigned to more than one functional
category. In particular, in both Colossus revision 237 and in
Luminary revision 98 the log section T4RUPT PROGRAM is assigned
to functional category "E" (I/0) as well as "T" (Hardware Fail-
ure Monitor), and IMU COMPENSATION PACKAGE assigned to "E" and
"U" (Hardware Service Routine). Clearly we do not want to add
the size of a log section to the size of each of two functional

categories. There are at 1least the following 3 ways of
resolving this problem: (1) We arbitrarily split the size of
the log section in two, and add half to one functional category
and half to the other. (2) We could specify, for each 1log

section which is assigned to more than one functional category.,
what proportion it is most appropriate to assign to one and what
to the other. (3) We assign the size of the log sections to the
more appropriate of the two categories. We chose the third of
these 3 ways. The reasoning was as follows: All the log sect-
ions in question involved I1/0. Input/Output is a more subsidi-
ary function than is Hardware Seivices and Hardware Failure Moni-
tor, and 1s thus best subsumed under (embedded in) the more
primary function. Input/Output may not be a meaningful func-
tional category in the first place.

Tables 4-8 and 4-9 were prepared by two engineers with
extensive experience with Apollo software. For each log section
the functional category (see paragraph 4.1.5) was selected which
pest described the function to which the log section contribut-
ed. Some log sections consisted only of constants, which parti-
cipated in many, if not all functions. The functional category
column in the table for these log sections is marked "all". The
log section ENTRY LEXICON of Colossus 237 consisted of a comment
and did not produce executable code, hence could not be assigned
to a functional category, and is marked "comment".

4.2.5.2 MODE OF CONSTRUCTION
All the 16 flight programs were developed using convention-

al programming techniques. Structured programming was not in
general use at the time of the Apollo development.
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Table

4-8 FUNCTIONAL CATEGORIES APPLIED TO COLOSSUS 237

Sub-
routine

Log Section

Functional
Category
(coded)

KILERASE

ERASABLE ASSIGNMENTS

all

KOOLADE

INTERRUPT LEAD INS

T4RUPT PROGRAM

DOWNLINK LISTS

FRESH START AND RESTART
RESTART TABLES

SXTMARK

EXTENDED VERBS

PINBALL NOUN TABLES

CSM GEOMETRY

IMU COMPENSATION PACKAGE
PINBALL GAME BUTTONS AND LIGHTS
P60,P62

ANGLFIND

GIMBAL LOCK AVOIDANCE
KALCMANU STEERING

SYSTEM TEST STANDARD LEAD INS
IMU CALIBRATION AND ALIGNMENT

=]

a

o]
CHRXXNRXRXID~-GoOoHIQOME™S

ISMOOCH

GROUND TRACKING DETERMINATION
PROGRAM - P21-P29

P34-P35, P74-P75

P31

P76

P80

STABLE ORBIT - P38-P39

2NN

#ANDORA

P11

TPI SEARCH
P20-P25
P30,P37
P40-P47
P51-P53

LUNAR AND SOLAR EPHEMERIDES SUBROUTINES

P61-P67

SERVICER207

ENTRY LEXICON

REENTRY CONTROL

CM BODY ATTITUDE

P37,P70

S=BAND ANTENA FOR CM

LUNAR LANDMARK SELECTION FOR CM

HPOOWZIDIZ

comment

HOIRP




Table 4-8 FUNCTIONAL CATEGORIES APPLIED TO COLOSSUS 237 (cont.)

Sub-
routine

Log Section

Functional
Category
(coded)

DAPCSM

TVCINITIALIZE

P15

TVCEXECUTIVE

TVCMASSPROP

TVCRESTARTS

TVCDAPS

TVCSTROKETEST

TVCRCIIDAP

TVCGENBFILTERS

MYSUBS

RCS-CSM DIGITAL AUTOPILOT
AUTOMATIC MANEUVERS
RCS-CSM DAP EXECUTIVE PROGRAMS
IFT SELECTION LOGIC

CM ENTRY DIGITAL AUTOPILOT

PPPIPRPIPIPAPODI P QP

SATRAP

DOWN-TELEMETRY PROGRAM
INTER-BANK COMMUNICATION
INTERPRETER

FIXED-FIXED CONSTANT POOL
INTERPRETIVE CONSTANTS
SINGLE PRECISION SUBROUTINES
EXECUTIVE

WAITLIST

LATITUDE LONGITUDE SUBROUTINES
PLANETARY INERTIAL ORIENTATION
MEASUREMENT INCORPORATION
CONIC SUBROUTINES
INTEGRATION INITIALIZATION
ORBITAL INTEGRATION

INFLIGHT ALIGNMENT ROUTINES
POWERED FLIGHT SUBROUTINES
TIME OF FREE FALL

STAR TABLES

AGC BLOCK TWO SELF-CHECK
PHASE TABLE MAINTENANCE
RESTARTS ROUTINE

IMU MODE SWITCHING ROUTINES
KEYRUPT, UPRUPT

DISPLAY INTERFACE ROUTINES
SERVICE ROUTINES

ALARM AND ABORT

UPDATE PROGRAM

RTB OP CODES

o o
—
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Table 4-9

FUNCTIONAL CATEGORIES APPLIED TO LUMINARY 98

S ub-
routine

Log Section

Functional
Category
(coded)

LUMERASE

ERASABLE ASSIGNMENTS

[+]
[
(=

LEMONAID

INTERRUPT LEAD INS

T4RUPT PROGRAM

RCS FAILURE MONITOR
DOWNLINK LISTS

AGS INITIALIZATION

FRESH START AND RESTART
RESTART TABLES

AOTMARK

EXTENDED VERBS

PINBALL NOUN TABLES

LEM GEOMETRY

IMU COMPENSATION PACKAGE
R63

ATTITUDE MANEUVER ROUTINE
GIMBAL LOCK AVOIDANCE
KALCMANU STEERING

SYSTEM TEST STANDARD LEAD INS
IMU PERFORMANCE TESTS 2
IMU PERFORMANCE TESTS 4
PINBALL GAMES BUTTONS AND LIGHTS
R60,R62

S—-BAND ANTENNA FOR LM

=

QEOHWOU’U'—B;}"‘J

o]
c

LEMP20S

RADAR LEADIN ROUTINES
P20-P25

e c NOXRIHEHEARRNRRNRN~

LEMP30S

P30,P37
P32-P35, P72-P75
GENERAL LAMBERT AIMPOINT GUIDANCE

==

KISSING

GROUND TRACKING DETERMINATION PROGRAM - P21
P34-P35, P74-P75

R31

P76

R30

STABLE ORBIT - P38-P39

ENoR< ol

LY

BURN, BABY, BURN == MASTER IGNITION ROUTINE
P40-P47

THE LUNAR LANDING

THROTTLE CONTROL ROUTINES

LUNAR LANDING GUIDANCE EQUATIONS

cozz2
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Table 4-9 FUNCTIONAL CATEGORIES APPLIED TO LUMINARY 98 (cont.)

Sub-
routine

Log Section

Functional
Category

FLY

P70-P71

P12

ASCENT GUIDANCE

SERVICER

LANDING ANALOG DISPLAYS
FINDCDUP - GUIDAP INTERFACE

onNHOZ2Z=2

LEMP50S

P51-P53
LUNAR AND SOLAR EPHEMERIDES SUBROUTINES

X o

SKIPPER

DOWN-TELEMETRY PROGRAM
INTER-BANK COMMUNICATION
INTERPRETER

FIXED-FIXED CONSTANT POOL
INTERPRETIVE CONSTANTS
SINGLE PRECISION SUBROUTINES
EXECUTIVE

WAITLIST

LATITUDE LONGITUDE SUBROUTINES
PLANETARY INERTIAL ORIENTATION
MEASUREMENT INCORPORATION
CONIC SUBROUTINES
INTEGRATION INITIALIZATION
ORBITAL INTEGRATION

INFLIGHT ALIGNMENT ROUTINES
POWERED FLIGHT SUBROUTINES
TIME OF FREE FALL

AGC BLOCK TWO SELF-CHECK
PHASE TABLE MAINTENANCE
RESTARTS ROUTINE

IMU MODE SWITCHING ROUTINES
KEYRUPT, UPRUPT

DISPLAY INTERFACE ROUTINES
SERVICE ROUTINES

ALARM AND ABORT

UPDATE PROGRAM

RTB OP CODES

o o
- -

NMOOWDWVIUCDITHAZZYMHHHAHOGOGTET I —O0™O

LMDAP

T6~RUPT PROGRAMS

DAP INTERFACE SUBROUTINES
DAPIDLER PROGRAM

P-AXIS RCS AUTOPILOT

Q-R AXIS

KALMAN FILTER

TRIM GIMBAL CONTROL SYSTEM
AOSTASK AND AOSJOB

SPS BACK-UP RCS CONTROL

DPPPOPPPDYD
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4.2.5.3 LANGU  SES USED

The language used on this project was assembly language,
with interpretive <code interspersed throughout an assembly
language program.

Tvpically interpretive code and machine instructions, as
well as data, are interspersed throughout a 1log section, sub-
routine or functional category. Thus there would not likely be
a log section consisting only of interpretive code.

The interpretive language being used is primarily oriented
toward doing three kinds of arithmetic, 1) one that operates on
28 bits plus sign fixed point scalar numbers, 2) one that oper-
ates on 42 bits plus sign fixed point scalar numbers, and 3)
the third that operates on three element vectors, each of whose
elements is a 28 bit plus sign fixed point scalar number. The
vector arithmetic includes provision for multiplying three ele-
ment vectors and 3 by 3 matrices. Even though this language is
thus considerably more powerful than a typical assembly lang-
uage, 1its form (syntax) is that of an assembly language rather
than of a higher order language. For a fuller description of
the language see Appendix A. Use of the interpretive language
instead of assembly language (or machine code) generally saves
storage space in the AGC memory at the expense of speed of
execution-.
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SECTION 5
DATA SUMMARIES

The data described in Section 4 have been summarized and
presented in this section in tabular and graphic form. The
following observations are made from examining these summaries
with a knowledge of the software development.

5.1 PATTERNS OF FLIGHT SOFTWARE DEVELOPMENT

The general pattern over time of the number of software
modifications accurately reflects the history of ©program
development. Figure 5-1 shows that the periods of greatest
activity would be expected before the Apollo 9 flight and
before the Apollo 15 flight,since a long lead development time was
scheduled for those flights and they were developed in parallel
with others. The data bear this out (Figures 5-2, 5-3, 5-4;
Tables 5-1, 5-2, 5-3, 5-4). In mid-1970 a new flurry of
activity followed the release of Apollo 14, reflecting the fact
that a large number of new capabilities were specified for the
Apollo 15 flight. The increased modification activity shown
for the Apollo 15 flight reflects the space saving activity
that took place to enable the implementation of those major
improvements.

At least two ropes were under development at all times.
Throughout 1967 and for a period in 1969 and 1970, three or more
were being developed simultaneously. Many of the modifications
tabulated for these periods, therefore, are multiple
implementations of the same change.

Apollo 9 was the first joint flight with the Lunar Module:
not surprisingly, Table 5-4 shows that the vast majority of mod-
ifications for Apollo 9 were those made to the Lunar Module
program, Sundance.

5.2 FUNCTIONAL CATEGORIES

Figure 5-5 and Tables 5-5, 5-6, and 5-7 show that the
greatest modification activity was in mission-oriented
fuictions; powered flight, navigation, tracking, targeting and
digital autopilot (DAP). These functions were all specifically
related to the 1lunar landing and the rendezvous programs that
were being newly developed during the period covered by this
study.

5.3 MODIFICATION ACTIVITY RELATED TO MEMORY SIZE
It was expected that a «correlation would be observed

between the size of the functional categories and the number of
modifications to them. The data do not exhibit this, however,
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as shown in Figure 5-6 and Table 5-8.

It is probably true that modification activity is more
directly correlated to the specific development taking place,
as discussed in Section 5-2, than to memory size.

A factor that should be considered is the method used in
this study to determine the sizes of the functions. The sizes
were taken directly from two intermediate programs that were
thought to be representative. Furthermore, the determination
of size and the assignment of functional categories to the mod-
ifications were done on different bases: the sizes were based
on log sections, while the assignment of a category to a modifi-
cation was based on the actual content of the modification
itself. Thus the usefulness of the figures on sizes of func-
tions is questionable.

Off-line development and checkout were more common for
some functions than for others. Data on this off-line activity
are not available, but it may well be a factor in these statis-
tics. It is known, for example, that the digital autopilot
(DAP) programming group did a large amount of off-line work,
while the powered flight programming group did not. The data
show that the percentage of modifications vs. size for these
two functions is in direct opposition, 7.4% of the modifications
vs. 13% of the memory size for the DAP, 13.1% of the modifica-
tions vs. 7.8% of memory size for powered flight.

5.4 MAJOR MODIFICATION ACTIVITY

It was expected even prior to the examination of anv of
the data summaries that large numbers of modifications would
fall into the categories of logic, in-house improvements, com-
pool definition, interfaces, configuration control and user
requests. The nature of the Apollo project and its computer
architecture led to this expectation, which is borne out by the
data (see Figure 5-7, Tables 5-9, 5-10 and 5-11).

The use of assembly language undoubtedly contributed to the
preponderance of logic errors; had a higher order language been
used, the percentage of these errors would no doubt have been
smaller.

The number of in-~house improvements was expected to be, and
was, large. This category included memory optimizations as an
ongoing activity.

Modifications to compool variables were expected to be

large in number because of the time-sharing of erasable memory.
This limitation imposed continuing requirements for modifica-
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tions throughout the development-

Interfaces are a traditional source of error; in the Apollo
project, the complexities of real-time interactions and the use
of assembly language coupled with interpretive language
exacerbated the problems in this area.

The fixed bank architecture of the computer required
specific code to address remote banks; in addition, the memory
organization was changed frequently to accommodate: program
changes, both actual and anticipated.

The "“user requested" category is actually a more significant
factor than is shown by the number of modifications in that
category, since more often than not, a single change involved
one or more large blocks of code. Data on the size of the
individual changes are not available.

It was expected that the number of computational errors
would be significant, due to the large percentage of "number-
crunching" code and especially because of the fixed point scal-
ing that was used. The data show, however, that this category
was relatively small in comparison to the others discussed
above.

5.5 DEVELOPMENT PHASE VS. VERIFICATION PHASE

Although Figure 5-8 and Table 5-12 indicate that most of
the modifications to each rope were made during the development
phase as expected, the information presented is probably not
entirely accurate. The configuration control dates for Apollo
flights 7,8, and 9 are available and, therefore, the phase indi-
cators for these flights are reliable. Phase indicators for
later flights were based on the completion of level 4 testing,
which approximates the configuration control dates.

It should be pointed out that some errors were found after
configuration control but were not corrected for that flight
and, therefore, will not appear in the verification phase data:
instead; corrections were implemented in the development phase
of the next flight. Figure 3-1, page 23, shows that a signifi-~
cant number of known anomalies were allowed to remain in the
flight programs.

5.6 REFERENCED DOCUMENTS

Tables 5-13 and 5-14 illustrate the references in the data
to supporting documents- PCRs, PCNs, ACBs and Anomaly Reports.
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TABLE 5-2 MODIFICATIONS BY FLIGHT

§ APOLLO NUMBER OF
- FLIGHT MODIFICETIONS
7 1964
2 2947
9 3377
10 1431
; 11 296
g 2 266
' 13 71
14 421
15 956
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TABLE 5-4 MODIFICATIONS BY ROPE

1POLLO NUMBER OF

ROPT  [MODIFICATICNS
07 196u
08 2947
c9c 52
9L 3325
10C 291
1L 1162
11C 32
L 264
12¢ 94
121 172
13C 22
131 49
14¢C 21
4 21%
15¢ 787
15L 176
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\ TABLE 5-12 MODIFICATIONS BY PHASE AND ROPE
P - APOLLD NUMBER 0T MODTIFICATICNS
3 ROPE CEVILOPMTNT VEZFIFICATICN
PHAST PHXSE
: 0y 1876 38
nR 2897 57
6acC 5] 52
raL 3194 131
10¢ 291 0
k! 121 1124 16
. e 32 o)
115 149 116 :
32E 32 12 1
= 121 1G9 €3
135 15 7
131 23 2€ %
14e 207 u
PHE 15 55
15C 62€ 154
157 147 26
TABLE 5-13 MODIFICATIONS BY REFERENCE CATEGORY 1
NUNEIR OF
SZFFETNCT CATEGORY MODIFICATIONS
YD G[EFTFIONCET 15222
#SSE¥BLY CCNTROLZ 3CaRD 357
ZOLCSS'IS ANOMALY i)
- COMANCHT ANOMALY 43
LUMINARY ANCMIL ug
PRCGRYY CHANGY {oTs 78
PROGHLY CHANGE RIQUZST 949




TABLE 5-14 MODIFICATION BY ROPE AND REFERENCE CATEGORY

APOLLC | NUMBER CF MODIFICATICNS EY REFFRENCE CATEGORY
RCPT YOREF ACE COL coM LMY PCN PCR
7 1963 0 0 c G 0 1
08 2884 1 1 0 0 22 33
09cC 28 9 16 0 0 1 il
09L 3286 0 0 0 4 3 27
10C 174 25 23 ) e 2% 44
10L 1071 9 0 ¢ 0 ) 64
11C 8 2 Q 10 0] 1 11
11L 162 5 0 4] 16 2 79
12C 2 10 d 8 D) 1 48
12L 38 2 0 0 19 0 63
13C 4 4 p 8 C 0 )
13L 16 5 ] € 0 0 25
14cC 53 26 g € o 4 122
14L 59 7 0 @ 1 4 129
156 337 2u7 ) 1 ¢ 1 184
15L 59 13 0 ¢ ) u 109




SECTION 6
SUMMARY AND RECOMMENDATIONS

6.1 NATURE AND QUALITY OF THE DATA

The set of data provided by this study is derived directly
from the program modifications. It is a complete history of the
programs over the four-year period. It includes, therefore,
all changes made to the programs, including error corrections,
enhancements of capability, deletions of obsolete capabilities,
changes in mission requirements, optimizations of either memory
or execution time, and improvements in elegance of construction.

It is not quite correct to classify these data, then, as
an "error history", since a larger portion of the items were in
the nature of improvements rather than corrections to outright
mistakes-. On the other hand, had the system been specified and
built perfectly the first time, there would have been no need
for any modifications at all, except for those that reflected
changing mission requirements. Since the requirements imposed
by changes in mission were relatively few in number (although
large in number of lines of code), it is fair to say that the
data set represents the response to system errors, some of
which were software errors (mistakes), some of which represent-
ed a failure in specification or design, and others which repre-
sent the fact that the job was not done perfectly the first time
and, therefore, could be improved.

The value of this data set to prospective analysis should
be considered in the 1light of several factors unique to the
Apollo project:

A. The real-time multi-programmed aspects of the programs:

This led to problems in data integrity and data
availability in real-time. In addition, the
varying 1levels of demand on system resources
caused problems in timing and assignment of
priorities

B. The importance of the man/machine interface:

The crew, through the DSKY, was an interactive
user of the software in that approval was
required at each major program step; options
presented to the <crew enabled selection of
alternate program paths. Furthermore, many
special functions could be invoked, at any
time, by crew request.
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C. Ultra-high reliability requirements:

This imposed a heavy programming and testing
burden, especially for real-time restart
ability and error checking.

D. Severe memory limitations:

This led to extensive modifications for memory
optimiztion, as well as the necessity for time-
sharing of erasable data locations.

E. The computer architecture:

This led to many modifications to tailor both
fixed and erasable code to enable the correct
addressing mode.

F. The era in which the development took place:

The strict methodologies in specification tech-
niques, design standards., documentation stand-
ards and programming conventions were not in
general use at the time.

6.1.1 RELIABILITY OF THE DATA

The initial recording of the data was done for the purposes
of management control and visibility at the time; it was not
anticipated that the records would be used for later statistical
analysis. The format did not, therefore, always provide suf-
ficient information for the categorization process performed in
this study. Some items reaquired reference to other material --
memos, management plans, presentation material.

A team of experienced Apollo programmers and engineers was
formed to collect and categorize the data; had these special-
ized personnel not been available, it is doubtful that the job
could have been done. Yet it is possible that biases may have
been introduced due to their personal involvement with the
original project.

The inherent subjectivity of the categorization process
should be emphasized. Judgement was exercised by fourteen
individuals in assigning categories. The risk was recognized
early in the process and consultations produced a general
approach to be taken by all; nevertheless, it is impecssible to
estimate the extent of the divergence in judgement decisions.
Also, it must be recognized that inadvertent errors were
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undoubtedly made; it was impossible to check for any but
mechanical exrrors (examining the fields of machined data) due.
to the large volume of data-.

Specific fields which may not be completely reliable
include:

- reference field: there is no way of assuring that
references were always cited on the modification report
when they applied; it is reasonably certain, however,
that the recorders included all such references when
they were cited.

= functional category, modification category., and

modification description fields: subjectivity. as
discussed above, was a component in determining these
fields.

- software development phase field: due to lack of
sufficient data, the date chosen for the verification
phase was estimated for the later flights (Apollo 10
through Apollo 17).

- size fields: the estimates on which the values of
these fields are based are discussed in paragraph
4.2.4.

6.1.2 UNAVAILABILITY OF DATA

Certain items would have been included in the data had they
been available. These include:

- the date of initiation of each error correction; the
date or program revision of the discovery of each
error: no information is available on when errors were
found or when correction processes were begun-.

- detailed information on the number of simulation
runs, the termination conditions of tests, the amount
of computer time necessary to isolate each error.
- the size of the modifications.
- traceability from one modification to others: only
incomplete information is available to establish the
effect, in causation of additional errors., of
incorporating a given modification.

6.2 RECOMMENDATIONS

One of the prime goals of software research is to achieve
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greater software reliability. One promising approach toward
this goal is to find methods of measuring and predicting the
reliability of a given software product, much in the way that
hardware reliability is measured and predicted.

Another approach is to attack the reliability problem at
its source, that is, to ask what kinds of errors happen in
software production, to attempt to analyze their causes, and to
develop tools designed to deal specifically with those aspects
of software production that contribute to the creation of
errors.

In order to implement these approaches, large quantities
of error data must be analyzed. This means that errors must be
tracked from the very beginning of software development, and
further, that they must be recorded in a way that will enhance
analysis of their types and causes.

A study such as this one reveals the difficulty of
compiling data from sources that were originally designed for
other purposes. Had more analysis of the data been included at
the time it was produced, the job of compiling the data would

have been merely a clerical one. As it was, specialized
personnel were required to expend considerable effort in the
compilation and categorization process. Further, some data

that would have been useful for analysis were not available
(see paragraph 6.1.2).

The first recommendation, therefore, is that reporting
procedures be designed so that the material collected during
development will be useful for later analysis. Specific
studies should be conducted to determine just what information
is relevant to error analysis and an effort to compile for
several large current projects should be instituted.

In practice, however, there is extreme difficulty in
attempting to maintain error records during project development.
The realities of schedules and costs make it almost impossible
for project engineers and programmers to devote their time to
anything but the process of software production, test, and
verification.

Methods must be found, therefore, that can automate the
production and collection of error data without significantly
impacting the schedule or the cost of the host project.

Studies should be conducted to investigate the feasability
of incorporating error analysis and compilation of statistics
into existing tools. Modern compilers already contain sophisti-
cated diagnostics; the use of these as a basis for maintaining
error statistics may be easily implemented. Similar existing
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diagnostics contained in simulators and other testing tools
could be enhanced to provide error histories as well.

Much work has already been done to prevent errors at their
source. Higher order languages themselves preempt many of the ]
errors common to assembly-coded programs; structured program- 3
ming is generally recognized as a giant step forward and docu-
mentation and control techniques have been greatly improved. a

Still, there is a need for a better understanding of the
roots of the problem, and work toward this understanding should ;
be founded on a sound statistical base.

The creation of the data base by the sponsor is certainly
a step in this direction.
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APPENDIX A
THE INTERPRETIVE LANGUAGE

The interpretive language used as one of the two languages
in which to write the flight programs for the Apollo on-board
computers can well be viewed as a language in which to write
instructions for a virtual machine. This machine, called an
interpreter, has its own instruction set, its own multi-purpose
arithmetic accumulator, its own arithmetic overflow indicator,
its own arithmetic argument stack (push-down 1list), its own two
integer index registers, its two step registers (used by the TIX
instruction, which manipulates an index register), its own 60
switches (boolean variables), its own program (control) counter,
its own return address register, and its memory, which is
essentially the same as the memory of the AGC, which hosts the
interpreter. Each of the interpreter’s instructions can be
viewed as consisting of an operation code followed by 0, 1 or 2
operand designators.

Consider first a class of instructions whose operation code
can be followed by either one or no operand designator. The
operations invoked by these instructions are binary arithmetic
operations, e.g., add, multiply, subtract and divide. Each
such operation operates on two arguments. The first argument
is the content of the interpreter’s accumulator. The second is
either explicitly designated, in which case the operation code
is followed by an operand designator, or not, in which case the
operand designator is missing. If the second argument is only
implicitly designated, then it is the top of the interpreter’s
stack, and one of the side effects of the operation is the pop-
ping of the stack. If explicitly designated it can be designat-
ed statically or dynamically. If designated statically, it is
designated by giving a fixed address. If designated dynamical-
ly, it is designated by giving a fixed address and by designat-
ing one of two index registers, the argument being the one at
the address which results from adding to the fixed address the
content of the designated index register. The result of the
operation is returned to the accumulator, and the interpreter’s
overflow indicator is set if overflow occurred during the
operation.

Consider next another class of instructions whose operation
code is never followed by an operand designator. The operations
invoked by these instructions are unary arithmetic operations,
e.g., square, round, double, sine and complement. The opera-

tions operate on one argument, the content of the interpreter’s.

accumulator, with the result of the operation being returned to
the accumulator, and the interpreter’s overflow indicator being
set if overflow occurred during the operation.
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Other instructions provide for testing the accumulator or
the overflow indicator, transferring data between the interpret-
er’s registers (e.g., accumulator, index registers) and memory.
resetting the program counter, resetting the return address
register, manipulating and testing index registers, manipulat-
ing and testing switches, manipulating the stack, and exiting
and conditionally exiting from the interpreter. By an instruc-
tion by which testing is carried out is meant an instruction
which conditionally resets the program counter (i.e., resets
the program counter if the test succeeds).

Each of certain store instructions with N operand designat-
ors (N=1 or 2) occupies N words of consecutive storage. Any
other instruction with N operand designators (N = 0, 1 or 2)
requires N plus a half or N+l words of (not necessarily consec-
utive) storage. Thus an instruction requires anywhere from a
half to 3 words of storage. The average amount of storage
required for an instruction is around one and a half words.
(Of course these figures do not include the amount of storage
required to house the interpreter, which is itself part of the
flight program and ctakes up around 2150 words of storage.)

Interpretive instructions are interpreted by the interpret-
er only afcer a transfer of control to the location INTERPRET
is effected by the AGC via a Transfer Control (TC) machine
language instruction. The word in the 1location immediately
following the TC instruction is the first to be interpreted
after invoking (entering) the interpreter. Transfer of control
from the interpreter to a designated real machine instruction
is effected by the interpreter via an appropriate exit
instruction.
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APPENDIX B
LOG SECTIONS AND SUBROUTINES

The fields "Log Section" and "Subroutine" appear on . the
modification reports (Figures 4-1, page 27, and 4-2, page 28)
used as the source of the data of this study. They are
explained below.

Log sections, even though recognized by the assembler as
program components, should not be identified as modules. (3
examples of log sections are, for subroutine PANDORA of
COLOSSUS 237, Pll, TPI SEARCH, P20-P25.) Log sections were
created during the Apollo development as a bookkeeping
convenience, to partition the software into manageable
portions. In some cases, but not all, a given log section was
assigned to a single group of engineers who had responsibility
for maintaining it. Line numbering began anew with each 1log
section; renumbering could be accomplished by an assembler
instruction. A log section could not be separately assembled.
In most cases (as can be seen from Tables 4-7, page 47 and 4-8,
page 53, which are described in paragraph 4.2.5.1.1) a log sec-
tion was dedicated to a particular functional category, but was
not sufficient for carrying out the functior- ‘nce more than
one log section was usually required to carry function.

Subroutines, also recognized by the assembler as program
components, again should not be identified as modules. (4
examples of subroutines are, for COLOSSUS 237, KILERASE,
KOOLADE, SMOOCH, PANDORA.) Subroutines were also created as a
bookkeeping convenience, to partition the software into manage-
able but more inclusive portions. A subroutine could be separ-
ately assembled. However, a subroutine was seldom dedicated to
carrying out a particular function. Instead (as can be seen
from Tables 4-8, page 53, and 4-9, .page 55), different portions
(log sections) of a subroutine participated in carrying out dif-
ferent functions. It should be noted that this sense of
"subroutine" is not the same as the common concept of a coded
module that can be invoked by, and will return to, another
module.
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