
n

I . "" ""--. "{:LCc.-z ;--c:.-+**- -

Instrumentation Laboratory
Massachusetts Institute of Technology

Cambridge, MassachusetEs

Digital Development Memo 11286

To: Eldon Ha1l
From: Herb Thaler
Subject: Some Idiosyncrasies of Bloek 2 AGC Logic
Date: Decernber 28, L965

Arithrnetic Unit

The Block 2 AGC arithmetic unit eonsists of several simple flip-fIop
regisLers (A, tr, Q, etc.) and a binary adder. The flip-flop registers are

much like their Block I counterparts, ard information transfets beLveen them

are handled in a similar fashion. The registers are driven by three elocked

action pulses - read, wriEe and clear. If one divides the register transfer
intervaL (1- microsecond) into four successive phases, then the three action
pulses can be described as follows:

read . phases 2,3 and 4 - places the current value of the register being

interrogated on a set of data .buses (write lines).+
clear phase 3 - the register being set Lo a new value nnrst first

be cleared of its previous contents, else the two vaLues wil1
combine.

write phases 3 and 4 - samples the value of some data source and

gates it into the proper register. Editing of data is achieved

by sampling in a fashion other than directly bit by bit. An

exampLe of editing on writing is a shift of data by one or more

posiEions as in the AGC shift and cycle registers.

Ihe adderr, on the other hand, is significantly different from the llock 1

adder. One of the tricks of logic design which greatly improves the operational
speed of such a paralle1 binary adder has been incorporated. The technique

used is called carry skip.
Each sLage of the basic adder has three inputs (X, Y, carry in) and two

outputs (Sum, earry out). The two input operands (X, Y) are by themselves

not sufficient to fu1Ly define the sum and carry output - one must also know

the val-ue of the trearry in.fr Unfortunately, one does not determine this

il

,/L

-2-

I'carry f-n'r val-ue tqglatlgggg.g-lX without the expenditure of 1iteraLLy dozens

of extra gates. Normally this information is provided by one of the adjacent

adder stages as a byproduet of its sum computation. That st.ate, too, musL

be provided with itcarry intt information from an earlier stage, and so on down

the trength of the adder. Thus a string of carry propagation gates is formed

by linking successi-ve adder stages. Ihe time delay beEween t'carry inil being

inserted into say stage l- and being propagated through stage 16 for a worsL

case operand pair can be as high as 800 nanoseconds with the logic circuits
eurrently being used.

In order to circumvent this problem the adder carry chain has I'skip gatestr

placed across it. These gates examine four successive sets of operands (X, Y)

and the itcarry intr presented Eo the first of the string. The worst case deLay

situation cited above is that in which every adder stage propagates a carry
applied to its input through to the next stage, but does not generate one by

itsel"f. This situation can be deEermined by examining the four sets of instantaneously

avaiLable operands, and, if Lhis condiEion pertains, permit the carry ent,ering

the first stage to inrnediately pop out of the fourth. This process is repeated

for various groups of four adjacent bits, resuLting in an adder whose carry
structure is as shown in Figure L. The carry propagate and skip paths are

joined by logical OR connections, so that the first one to arrive at a junction
can irrnediately go through it. Thus, for example, a carry inserted into stage 1

may reach stage 13 by several" paths, the guickest of which wilL predominate.

These paEh deLays range from 600 nanoseconds via all propagate stages to 150 nano-

seconds via all skip gates. The worst case carry propagation time in the adder

is thus reduced from 800 nanoseconds to 350 nanoseconds (3 skips and 4 propagates).

@
Full use was made of this high speed

divide instruction. In that instruction,
sequence of events occurs 14 times:

pLsec 1 The Lwo operands (X, Y) are

adder in designing the Block 2

the following three microsecond

entered into the adder.

The adder Sum output is tested and if positive, the X operand

is cleared out (pu1se CIXC). If the Sum output is negative the

psee 2

-{,5

,a\aut
-l

H-t*
--qrr

tr>
-

<
i ,>

A
+t

l.
>

5 t)-
+

14
,*\\r l-i

tn
\.-/

rf,.,
S

 t{F
\\.,

^.
$ '

*' f id"
>

\-
\J

tl{dx"
u \-

,--\
Y

:I>
*

f
.r:

i

T
ltrx

",rt+
aC

q. L
-aa

tth'
f

I's
X

qs?Y
h*

{
*-}

A

d
,fi

$.tJ
H

qi
\---

7"-

ul,t4t-
{5

s- -\-r.
f v] T
*.r-{
oii
2 J

v)

+{Y5'
aU-u*2o!dt

IA
J

qt.{\4\La

I

uul

\9Im
II3-
lrw

t

t6I

t4l
g}(v1str\

:vvlII

I0nYaftf
*t{Us00

Lr-s.{s)
.j:

rd
-t

-+
-

isiqJ
Y

i
\,)

i{
sl

,4L
LLI &

)B€s+
-*s3

T
L

)L!.(dU

usec 2

(cont.)

psec 3 rhe sum is read into buffer storage to prepare for Ehe next add-test
sequence.

If one looks very carefuLLy at the fine Eiming structure of this sequence,

the following facts emerge. Ttre first addition (pLsec 1) is permitted only
750 nanoseconds before the stgn tesE in trrsec 2 is performed; and if CIXC is
generat,ed the second addition (and it is truLy a second eomplete addition)
is granted only 1000 nanoseconds minus the delay of the data bus structure
(typically 250 nanoseconds). Thus both additions are only permirred

750 nanoseconds for maximum earty propagate time.
The mechanics of the first addition follow the adder discussion in the

previous section, so 1et us now consider the worst case of the second addition
that occurs with generation of CIXC and the subsequent clearing of the X operand.
If one operand entering into a sum computation is identically zero, the sum

equals the other operand, and the rrcarry outrr Ievels should be identically
zero. rhis is the desired adder output following a clJtc pulse - (sum= y,
carry chain' a1l zeros). If the Y operand is alL ones and the initial X operand

is a 1ow order bit one, then the adder state at the instant the X bit is cleared
has carry out at a1-1- stages with all skip gates also activated. Ihe carry
propagate and skip equations (Figure 1-) are such that loss of the singLe X bit
has no effect on Ehe propagate chain once end-around Lockup occurs. thus the
adder fail-s to produce the proper second sum output. To avoid this lockup
phenomenon, the I4IHOMP signal (derived from CLXC) instantaneousl-y zeros seLected.
points in the propagate and skip loops, such Ehat the carry loop is broken.
The points selected form an optinlrm set t.o minimize carry-loss delay at a reasonabLe
eircuit cost.

Memorv Cvcles and Quar.ger Codgs

Ihe Block 2 memory cycLe structure differs considerabl-y from that of
Block L. The basic difference is in the phasing relationship between core
rope memory activity and the computer time pulse generator (T01 - T12).

In the BLock L machine, the tweLve microsecond intervaL beginning with
Tiure L and ending after Time L2 was defined as a memory cycle time. Both

-4-

X operand is Left undisturbed, but a quotient bit represented
by puLse RBLtr' is entered into another flip-flop storage register.

-5-

erasable and rope memory cycLes began with an address determination at Time 1,

followed inrnediately by activity in the proper memory. The proper memory LocaEion

was always selecLed in this manner so that memory cycles, once begun, were

aLways carried Eo completion.

The rope memory addressing technique invoLves something ealled strand
selection. This requires the establishment of forward current in a pair of
back-to-back diodes to couple the core rope output, signal through a transformer
into a DC coupled sense amplifier. The basic circuit is shown in Figure 2.

If the diode forward voltages (VU, and VUr) are unequal, an instantaneous

DC bias is introduced into the sense amplifier. Ihis bias diminishes with

Vdr -

3\is
Pul se

fvr.ngf}

I

I

I {"*COffE

5ISMryL

+Vd" p * s tri be
T'i ltrB

Figure 2

time, sir:ce the coupling transformerrs 1ow frequency response is limited.
Unfortunately the time scales of eore signal envelope and memory access time

are comparable, so the DC bias lntroduced in this manneg has not compl-etely
disappeared at ttstrobe time.rr If the strand selectionould be made several
microseconds earlier, the bias left at strobe time would be substantiaLly
reduced.

This has been done in BLock 2 by establishing a groundrule that address

rv?,cr

information sha11,.hg**y-"*f"lgp--1"e*Af_.T*;1-e*.."9, If the address fal!-s-".into the domain

of rope addresses (2000a - 7777o), the cycle is to begin inrnediatel-y (Time 9).

+v

5TRBT'.JD
5E LECTI t*ttTtrH

-6-

Since access to the information (Strobe Time) is not required for ten microseconds
(the fol"lowing Time 7), strand sel"ection transients are aLlowed to decay an

order of magniEude further than in Block 1. If the address fal1s into the
domain of erasable O_ :^!7J_7o) rhe memory activity is posrponed until

Note that in Block 2 the field of erasable memory overLaps that of Special
and Central memory (0 - 7), causing erasabl-e memory eurrents to flow when S&C

access is made. This has been done to smooth out the current drain on the
memory power supply in the interest of reducing memory voltage variations.
Although memory eurrents flow, no strobe is all-owed for S&C eore locations.
To further stress this concept, there is some memory activity during every

computer subinstruction except MPL. Activity is initiated in the rope memory

during the middle cycles of the divide instruction by setting bit 12 of the
address register late in the first divide cycIe. Ttris action forces the computer

address into the rope memory region after the initial- erasable memory data
access. Since rope memory can be safely eycled repeatedly without data restoration,
no information is lost by Lhis artifice.

Qualter-Codes and Mq:Egrf,_llmin&

The AGC instruction set is greatLy expanded in BLock 2 by the use of two

techniques - true extension and order code splitEing (quarter codes). True

extension is achieved by setting a flip-flop with the instruction EXTEND.

This flip-fIop then specifies that the next instruction in the program sequence

is to.be interpreted as an extended order code. Thus the AGC three-bit order
code is effectively doubled in range by EXTEM.

Consider now the set of l-6 available instructions. Some of them such

as cLear and Add or Add would be appLicable to al-I memory types - fixed,
erasable core and flip-f1-op. Others such as Transfer to Storage or Exchange

eouLd not be sensibly directed to fixed memory, since Ehe nature of fixed memory

precludes the modification of its contents by program. In the latter case,
one might consider Ehat the order code was therefore appLicable only to the
erasabLe memory portion of machine addresses. since this is on]y Ll4 of
available addresses, it is obviously wasteful of two bits of instruetion
memory. Ihe origin of the quarEer code concepE lies in the desire to utilize
this wasted informatioir for additionaL instruction specifications.

the next Time 2, just as in*"BLo-ck 1.I

-7-

Bach of the original L6 order codes which could be thus restricted is
subdivided into four quarter codes. Ihese are distinguishabLe by bits lL and L2

of the instruction word. Take the case of INDEX as an example. Order code 5

and address 0 - L777 is interpreted as IIIDEX (0 - L777); code 5 and address

2000 - 3777 as DXCH (0 - 1777), 5 and 4000 - 5777 as TS (O - L777); and code 5
address 6000 - 7777 as XCH (0 - L777) " Note that although the origlnaL address

rnay have been 2000 or greater, Ehe final interpreted address for aLL four
quarEer codes is in the same erasable memory field (0 - L777), but the instruction
executed depends on the initial address range. Note also that the g{igipeL
address is placed into the address register at Time 8 as previously described.
Since the last three quarter codes actually lie in the fixed memory address

field, fixed memory cycles are initiated to the Location specified by the initial
address. Each of the quarter code subinstructions is responsible for clearing
S-bits 11 and L2 aE Time 1 by control pulses RLIOBB-WS to achieve the restriction
to erasable memory. Meanwhile the fixed memory has undergone haLf of its own

cycle, and must be restored to its initial" rest eondition. This is done by

a rope clear current which is energized whenever a rope address is present a!
Time 10 but not at the following Time 2.

I{hat about Erasable?

Just as the rope memory rmrst be restored to a rest condition, the erasabl-e
memory must also be left in its natural state fo1-Lowing an E-Memory cycle.
In this case, the natural state is with the proper information restored into
the memory location just accessed. As previously mentioned the E-Memory cycle
starts at Time 1, just as in Block I, but the address register is allowed to
change at Time B. This is not enough time to permit the necessary data restoration
(see Figure 3).

fl4E*-+

@wRt T S.

SJJress
Chr"v.ges

€r*seatle FielJ

Figure 3

-

T+lwL-+eJj"ess S=l

-8-

Ttre originaL address set up aE Time 1 must be remembered by the Erasable

Memory Switch Core array Eo effecf writing back into Ehe proPer Loeation.

ALso the memory timing 1"ogic must remember that an Erasable Memory cycLe

was begun, so that it wil-1 be properly finished.

/

