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Introduction

“I dare to imagine the general public learning how to write code. I 

do not mean that knowledge of programming should be elevated to 

the ranks of the other subjects that form basic literacy: languages, 

literature, history, psychology, sociology, economics, the basics 

of science and mathematics. I mean it the other way around. What 

I hope is that those with knowledge of humanities will break 

into the closed society where code gets written: invade it.” 

——Ellen Ullman, Life in Code
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This collaboratively authored work, much like the object that has inspired 

it, is nonlinear and modular. It has been compiled together from several 

smaller component parts. We invite you to read this book accordingly. We 

have provided a series of experimental readings — just a few of what we be-

lieve to be the numerous explorations of the creative possibilities found 

within the confines of a rigidly constructed formal language that was once 

used to facilitate the breaking of existing spatial boundaries. We intend 

each section to expose new horizons of interpretation and exploration for 

understanding the poetics of code. 

Throughout this book, we seek to show that software, or more specifi-

cally computer code, in excess of its bare functionality or its use value as 

an instrument to achieve some planned and programmed goal, also has nu-

merous aesthetic properties and creative features. The aesthetic features 

of computer code — often characterized by a rigidly formal, restricted syn-

tax, and numerous paralinguistic dimensions — sometimes have a supple-

mental character; they appear, at times, almost ornamental in their sheer 

excess beyond the functional elements and programmed goals. At other 

times, these features are an intrinsic and necessary part of the code. We 

believe that these special properties of computer code make possible im-

aginative uses or misuses by its human programmers and that these prop-

erties and features justify our exuberant readings, misreadings, transla-

tions, and appropriations. 

At its base, this book is a poetic and philosophical meditation on the 

idea of computer code and the affordances and limitations of a language 

that is machine-oriented yet human-authored. The ordered instructions 

of this technological language work overtime to keep at bay the disorder 

of the world and the imprecision found in human language and thought. 

At the same time, this book is also a work of cultural analysis that exam-

ines what we will show to be the intersections of several distinct discours-

es that are all registered in this now obsolete and obscure computer lan-

guage: the dreams and aspirations of 1960s computer and space science, 

the Cold War ideologies that enabled these technologies, the knowledge 

gained from the application of these technologies that was then used to 

advance and exercise imperial military power, and the traces of a coun-

ter-cultural language that emerged to supplement and at times resist com-

ponents of the sparse, stripped-down syntax of these other discourses. Re-

covering, uncovering, and decoding these imbricated discourses requires 
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the resources of multiple fields and approaches — methods both specialized 

and radically undisciplined.

Together, we take up a fascinating and now monumentally important 

historical source text for our critical and creative readings: the source 

code for the guidance computer that powered both the command and lunar 

modules for the Apollo Project, and specifically the version or edition of the 

code as used in the legendary Apollo 11 mission from July 16 to July 24 1969. 

This book appears during the fiftieth anniversary of this historic flight and 

we want to use this moment and our work to commemorate and critique this 

scientific and cultural event. This code was one of the technologies that 

made space travel possible; it would not be wrong to say that we wrote our 

way to the Moon. The Apollo Project, with its grand ambitions and aims, has 

inspired countless students, scientists, and engineers to dream big, to find 

and follow their vocations into the sciences and the arts, and to launch 

their own large-scale imaginative projects. Yet one of the most crucial 

newly developed technologies that enabled the astronauts to land on and 

return from the Moon, the digital computer that provided these astronauts 

with guidance data and assisted in the control of the Lunar and Command 

Module, has remained somewhat cloaked in obscurity. Unavailable and un-

interpretable to the larger public, the text of the code powering this revo-

lutionary computer remained locked within what we might call its base or 

bare functionality.

Each section of this book highlights and illuminates different aspects 

and dimensions of the Apollo Guidance Computer (AGC) code and the cultur-

al moment that enabled its construction. We are producing code commen-

tary — remarking and remixing the code. We intend no single account of 

the code to be definitive; our purpose in presenting critical commentaries 

alongside poetry is to interrupt the desire to fix and re-instrumentalize our 

source text. Instrumentalization, in part, involves the flattening of a tech-

nology into a mere tool and the privileging of what we might term the an-

thropological account of a technology as a means by which to accomplish 

some goal. In reading an object that one might assume to be the province 

of one culture through the tools and methodologies of another, we want 

to show that this division, the now entrenched separation of the sciences 

and the humanities, itself has already been called into question by the in-
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vention of code.1 Proceeding from here, we provide wide ranging readings, 

responses, and interpretations of the code that we believe will aid our read-

ers in thinking broadly about exploration, collaboration, and computation. 

Moonbit will not get you to the Moon, but seeks to re-claim the text that did 

this, as a site for artistic exploration.

It is in this spirit that we write this book as a collaborative project. In-

spired by the collective work of over four hundred programmers, writers, 

engineers, project managers, and others who worked on the various Apollo 

11 digital computer systems — both hardware and software — not to mention 

the hundreds of thousands participating in the larger 1960s space program 

itself, we “compiled” this book from a critical reading and what could be 

called a deformation of its source text into a collection of poems and ex-

pansive commentary. We would like to think of this project as a set of re-

marks — here we use remarks in order to riff on the term for the existing 

formalized commentary supplied by the original authors of the code and 

included within the body of the code — on the code that frame and elaborate 

the meaning of the code at its point of origin in 1969, its longer historical 

context of the development of computing and scientific exploration, and 

the code’s meaning for our present moment. 

The authors of another study and exploration of “old” and obsolete code, 

10 PRINT CHR$(205.5+RND(1)); : GOTO 10, faced a much larger task than ours at 

present: convincing their readers that their singular titular line of BASIC 

code for the Commodore 64, a popular home computer produced during the 

1980s, was an important cultural artifact and one worth engaging with in 

the present and that their interpretations and readings had value for soft-

ware studies. They write:

The subject of this book — a one-line program for a thirty-year-old mi-

crocomputer — may strike some as unusual and esoteric at best, indul-

gent and perverse at worst. But this treatment of 10 PRINT was under-

taken to offer lessons for the study of digital media more broadly. If they 

1	 In “New Methods for Humanities Research,” his 2005 Lyman Award Lecture, prominent 

digital humanities scholar John Unsworth cites Bill Wulf, a former president of the 

National Academy of Engineering, as arguing that “computer science should really be 

considered one of the humanities, since the humanities deal with artifacts produced 

by human beings, and computers (and their software) are artifacts produced by human 

beings,” http://people.virginia.edu/~jmu2m/lyman.htm.
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prove persuasive, these arguments will have implications for the inter-

pretation of software of all kinds.2

The examination of obsolete code, whether written, modified, and used by 

hundreds of thousands of hobbyist home computer owners or developed in 

secret for the US nationalist project of space exploration, brings elements 

of the past into the present and reveals how this obscure computational 

past might, to riff on William Faulkner, not even be past. We believe that 

the AGC code is of as much historical and cultural interest, if not more, as 

the memoirs, recordings, and documents that serve to record and shape our 

understanding of the inception and development of the US space program.

Source code appears throughout this book, sometimes with extensive 

commentary that draws out the implications, assumptions, and desires of 

the authors, and other times lines of code appear as suggestions or provoca-

tions. We do not expect the reader to be familiar with the specific language 

used or to have studied computer science. We present code as an interpret-

able object. This is because this particular code text, while restricted to the 

confines of the fixed format dictated by 1960s coding standards and require-

ments, contains a rich set of meta-commentary that explains as it codifies 

– that attempts to account, in a series of remarks, for the many decisions 

made and choices selected within the code. Code, it might surprise you to 

learn, is not written just for a computer; code, as we will show, has many 

audiences and can be shaped into several different forms. Code is not just 

what is executed by the computer, but a language, a discourse, with crea-

tive and functional possibilities. Contrary to the common perception of pro-

gramming, code is not just a set of instructions, it is not just math. Even in 

the earliest and simplest of computer languages, written code is frequently 

imaginative and has the capacity to be wildly playful. Code contains within 

it a poetics of its very own. There is an aesthetics to be found within the 

construction of code but these aesthetic features sometimes exceed their 

functional value. We believe the AGC code to be truly remarkable code.

This book, in part, seeks to provide an introduction to the theory and 

practice of critical code studies. We seek to outline a more capacious ver-

sion of critical code studies that takes up all manner of imaginative de-

codings and recodings of our object of analysis. In introducing some of the 

2	 Nick Montfort et al., 10 PRINT CHR$(205.5+RND(1)); : GOTO 10 (Cambridge: MIT Press, 2013), 5.
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major existing approaches to the study of code and culture, we attempt to 

provide multiple readings of the source code along with an explanation and 

theorization of the way in which the Apollo Guidance Computer code works, 

as both a computational and a cultural text. We tend, however, to privilege 

the cultural rather than technical meanings of the code as we unpack, de-

form, and explicate. There are a number of existing accounts of the AGC 

hardware and software and while we will explore some of the functional 

purposes of this “antique” code, we are finally more interested in the way 

in which the code can become meaningful to its human readers. This is to 

say that we believe the code makes and contains interesting cultural com-

mentary that we can read in relation to the historical moment in which 

the code was developed and used. 

We draw out buried meaning and recode what was punched out through 

several interpretive and creative methods, including erasure. The AGC code 

provides rich source material that is about motion as much as it is about 

communication — complete with scatological jokes in the commentary. 

This code put people on the Moon and continues to inspire discovery. Era-

sure poetry, like the source language that it borrows from, offers itself as a 

way to memorialize or monumentalize while also making something new. 

The erasure method begins with a complete source text — really any sort 

of object — and removes much of it, creating a new text, a poem entirely 

wrought from some other primary textual source. Jen Bervin’s Nets takes 

Shakespeare’s sonnets as its source and erases most of the words, carving 

entirely new poems out of canonical literature. In contrast, Tom Phillips, 

in his art book A Humument, takes an unknown Victorian novel, A Human 

Document by W.H. Mallock, and erases most of it. Phillips makes each page 

into an original work of art, with only a few of Mallock’s original words re-

maining. M. NourbeSe Phillip’s Zong! makes a coherent cacophony of what 

remains from a massacre of one hundred and fifty slaves who were pushed 

off the slave ship Zong, so that the Zong’s investors could re-coup what 

they lost in a failed venture in the form of insurance money. This case left 

behind a legal legacy of barely five hundred words. Phillip’s book-length 

Zong! poem gives voice to those massacred people and distressingly, but cor-

rectly, offers the reader no consolation.3

3	 Jen Bervin, Nets (Brooklyn: Ugly Duckling Presse, 2004); Tom Phillips, A Humument (Lon-

don: Thames and Hudson, 1980); M. NourbeSe Philip, Zong! (Middletown: Wesleyan Univer-
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Poems about space travel crave white space on the page. Here the white 

space represents the unknown cosmos or white light from the stars or per-

haps the white face of the Moon itself. Erasure creates white spaces. Era-

sure creates room to breathe and space to think by finding holes within the 

source text or creating holes by erasing existing marks and larger textual 

structures. It navigates through these gaps, found or created, within the 

source text to bring something new into being. This debris may be of use. 

While there are computational methods for automatically producing era-

sure poetry, the poems in this book follow no program.4 They are human 

responses to code written by other humans. As William W. Cook argues of 

Frederick Douglass’s understanding of learning to write by “writing in the 

spaces left” in a source text: “In the spaces left he finds those uninscribed 

topoi necessary to his own creation. He writes a hand similar to, but not 

identical with, that of his model preparatory to taking full control of the 

text itself. Imitation and repetition lead here to creativity and liberation.”5 

The AGC code itself contains multiple languages, multiple worlds. It con-

tains subroutines to alter our orientation, to translate our coordinates, 

to alter its internal representation of space in terms of the Earth and the 

Moon. Erasure, for Brian McHale, engages in a cycle of “making and un-

making” that, in the case of James Merrill’s work, “structure (and decon-

struct) the world, or rather the worlds in the plural.”6 Applied to this multi-

ple-worlded text at the limits of modernity, erasure reinserts the hand into 

the machine to liberate the poet and this text and in the process, destabi-

lize the inscribed formal relations among the represented bodies. 

The four hundred programmers and engineers working on the Apollo 

Guidance Computer were employed by the Draper Laboratories, later the MIT 

Instrumental Lab, in Cambridge, Massachusetts. The code was not devel-

oped in isolation; it builds upon prior knowledge and expertise, collabora-

sity Press, 2011).

4	 See, for example, The Deletionist program created and theorized by Amaranth Borsuk, 

Jesper Juul, and Nick Montfort, “Opening a Worl in the World Wide Web: The Aesthetics and 

Poetics of Deletionism,” NMC: Media-N 11, no. 1 (2015), http://median.newmediacaucus.

org/the_aesthetics_of_erasure/opening-a-worl-in-the-world-wide-web-the-aesthetics-

and-poetics-of-deletionism/.

5	 William W. Cook, “Writing in the Spaces Left,” College Composition and Communication 44, 

no. 1 (1993): 9–25, at 16.

6	 Brian McHale, “Poetry under Erasure,” in Theory Into Poetry: New Approaches to the Lyric, 

eds. Eva Müller-Zettelmann and Margarete Rubik (New York: Rodopi, 2005), 295.
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tors within other organizations and departments, and the contributions of 

consultants and industry partners. These programmers and engineers de-

veloped the code with instructions from NASA, editing and debugging from 

Cambridge, while astronauts departed from Earth with their code, their 

creation, within the lunar and control modules.

The advent of the digital computers placed in the Apollo Lunar Module 

marked an incredibly important development in the history of digital com-

puting and space flight. In the past few years there has been an increasing 

amount of interest in these systems and the people behind the development 

of this early code. Images of the printed code were scanned and uploaded 

to the information sharing site iBiblio and optical character recognition 

(OCR) software (along with some manual editing) was used to render these 

images of printed text legible in digital form. The archives of the code ena-

bled hobbyists and space enthusiasts to explore and play with the AGC code 

but it remained difficult for browsers to understand the larger code project 

in its entirety until the text of the code was made available in a new form. 

It was, then, in 2016 that an intern at MIT uploaded the AGC code to the code 

repository Github, enabling global and easy access to the code along with 

the collaborative editing, commentary, and revision tracking system pro-

vided by the site. In the process of moving the code into Github, the code 

was segmented into separate files and presented in a form that would work 

with the Github conventions for displaying code, including the transfor-

mation of certain code features that formerly belonged in fixed positions 

into a contemporary, less structured form. 

While the conversion of the AGC code into Github drew our attention to 

this code, our primary driver for exploring the code was the growing atten-

tion to the work of one particular MIT Instrumental Lab staff member that 

coincided with the Github “publication” of the Apollo code. In “compiling” 

our readings and responses into this book we seek, above all, to recognize 

and acknowledge the contributions of Margaret Hamilton, lead program-

mer on the Apollo Guidance Computer project. Hamilton was one of the few 

women working in the nascent field of computer engineering and the only 

female senior staff member. In November 2016, President Obama awarded 

Margaret Hamilton the Presidential Medal of Freedom. In his citation, Oba-

ma wrote of her many contributions, all of which were first imagined and 

explored in the text of the AGC code examined by this book: “Hamilton con-

tributed to concepts of asynchronous software, priority scheduling and pri-

ority displays, and human-in-the-loop decision capability, which set the 



22 MOONBIT

foundation for modern, ultra-reliable software design and engineering.”7 

Hamilton’s work on the Apollo project and that of many others helped to 

establish the field of software engineering and legitimized new discursive 

practices. Her work and imagination inspires our own flights of fancy as 

we produce numerous readings of the code that she committed to the Apollo 

Project. 

7	 President Barack Obama’s citation reads as follows: “Margaret H. Hamilton led the team 

that created the on-board flight software for NASA’s Apollo command modules and lunar 

modules. A mathematician and computer scientist who started her own software com-

pany, Hamilton contributed to concepts of asynchronous software, priority scheduling 

and priority displays, and human-in-the-loop decision capability, which set the foun-

dation for modern, ultra-reliable software design and engineering.” Office of the Press 

Secretary, “President Obama Names Recipients of the Presidential Medal of Freedom,” The 

White House, November 16, 2016, https://obamawhitehouse.archives.gov/the-press-of-

fice/2016/11/16/president-obama-names-recipients-presidential-medal-freedom.
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Code Hermeneutics

“The reasoning behind this part is involved.”

——AGC Source Code
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The Apollo Guidance Computer (AGC) code was primarily designed to be as-

sembled and executed, not read and explored on the page. For those users 

of the several software emulators of the AGC, this is still an executable body 

of code. Yet this collection of code, like almost all code, is also a discur-

sive object that registers and contains within its symbols, language, and 

self-understanding traces of its authorship, of its moment of production. 

Code, despite our ready assumptions of it as a set of concise, minimal, and 

utilitarian instructions, is an interpretable text. Code is a particular kind 

of polyvocal textual object. It is written for and addresses the particular 

software and hardware that define, to borrow a phrase from literary stud-

ies, what we might call its ideal reader. This reader is a particular platform 

with all its attendant affordances and limitations. Code, depending on the 

language and methods of abstraction, may very well run on other platforms 

without the work of porting, the translation of platform-specific code. Al-

gorithms, of course, are generally platform-agnostic and can be reimple-

mented with relative ease. Code speaks, as it were, to multiple audiences 

and in multiple voices. There are multiple active discourses in much com-

puter code and the AGC code provides contemporary readers with a particu-

larly interesting site for examining the co-existence of these discourses. 

But what sort of object is the AGC code? What sort of reading practices do 

we need to disentangle these discourses and interpret them? Should we con-

sider code a text? Computer code, after all, is not — despite the way in which 

it is usually imagined by the public — constructed in ceaseless strings of 1s 

and 0s, but instead written using a standardized lexicon of textual signifi-

ers, supplemented with some language-specific syntax. It is usually quite 

modular and organized into readable chunks with spacing and indentation 

used to enable comprehension. Code is almost always written and edited by 

humans. Almost every programming language borrows the major compo-

nents of its syntax from a source “natural” language (this has been typical-

ly English) and programmers make logical and indeed creative and imagi-

native use of this language within both their code and their commentary. 

Certainly, in the hands of cultural studies scholars, almost any object 

or action can be read as a discursively constructed text, from fashion to 

dance, from television programs to the Sony Walkman. Software, and espe-

cially computer code, can be understood as a cultural text because, as this 

book demonstrates, these texts are always constructed within the cultural 

constraints of the historical moment in which they were created and used. 

These constraints include, but are not limited to, the capabilities of particu-
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lar hardware and supporting software libraries, major programming para-

digms and languages, the so-called best practices of various programming 

communities, previously established methods and algorithms, the choices 

made by the few computer corporations that control the digital computer 

market, and the market available and constructed for the software product. 

For computational critic and theorist David Berry, code is a particularly im-

portant type of cultural text, because it simultaneously participates in sev-

eral different registers. “Code,” Berry writes, “needs to be approached in its 

multiplicity, that is, as a literature, a mechanism, a spatial form (organisa-

tion), and as a repository of social norms, values, patterns and processes.”1 

Software, as the packaged and typically feature-frozen version of a selected 

configuration of code, touches more of these discourses and is under more 

of these constraints than the source code that typically remains hidden or 

obscured through the process by which it is compiled into machine execut-

able software. But both software and source code register these frequently 

conflicting aspects of culture.

As a textually mediated mode of explanation and instruction written by 

a community of programmers and hackers, code shares much with other 

forms of textual expression, including literary texts. One powerful method 

by which we can examine the Apollo Guidance Computer code is through 

what literary scholar and theorist Caroline Levine calls the “new formal-

ism.” Levine’s understanding of formalism is not limited just to the tradi-

tional aesthetic elements of formalism as used for decades within literary 

studies — the familiar practice of close reading that prompts the reader to 

cast her eye to language, lingering and dwelling on the appearance and 

significance of the words on the page — but also to a theoretically informed 

account of what Levine calls the “ordering principles.” She uses this no-

tion of ordering in her gloss of this updated or “new” formalist method that 

examines, broadly, “an arrangement of elements — an ordering, pattern-

ing, or shaping.”2 Levine’s version of formalism pays close attention to the 

affordances of both literary, textual, and social structures — often these 

social structures are external to the text — and understands these various 

forms as not isolated phenomena but co-existing and in an informing re-

1	 David M. Berry, The Philosophy of Software Code and Mediation in the Digital Age (New 

York: Palgrave, 2011), 36.

2	 Caroline Levine, Forms: Whole, Rhythm, Hierarchy, Network (Princeton: Princeton Uni-

versity Press, 2015), 3.
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lation to each other. This is to say that the aesthetic forms used within any 

particular text can have political implications and that political forms may 

contain within them an aesthetic element. 

In the theoretically informed readings of the AGC code that follow, the 

question of relation between social and aesthetic forms will continually re-

appear. In order to understand the AGC code and the multiple possible mean-

ings produced and found within the code, we will have to shift the frame 

back and forth between different hermeneutical registers. This reading 

practice, like the code itself, might be thought of as modular and extensible.

The framework of the emergent field of critical code studies (CCS) pro-

vides, through the tacit agreement of the different possible critical per-

spectives, some possible methods through which we can frame and in-

terpret the code. The close readings of code that follow will unpack and 

explain the purpose and aspirations of the displayed code segments. In so 

doing, the AGC software becomes visible as an important and readable cul-

tural artifact and maybe even a work of art.

Computer software, cultural critic and theorist Lev Manovich tells us, 

is new media. Scholars working in the emergent field of software studies 

bring a range of critical resources, including ideological critique, formal 

analysis, and aesthetic criteria to bear on the design, construction, and 

everyday use of computer software. In several recent books, Manovich, one 

of the primary figures involved in the creation of software studies, asks us 

to take seriously the study of software, because software “mediates peo-

ple’s interfaces with media and other people.”3 More and more, our every-

day interaction with both local and global news, weather reports, text, au-

dio, and video messaging, music, movies, games, directions, and access to 

knowledge itself is fully mediated by an array of personal digital devices 

and the software that presents and shapes these services and experiences. 

Software, in short, is culture. While there are different kinds of software, 

and many different ways of studying software, Manovich examines the use 

of media software. He defends his decision to study the mostly commercial 

creative media software used by cultural workers by pointing to the large 

and mostly anonymous user base of these packages. He argues that he wants 

to analyze what he calls “mainstream cultural practices”4 instead of the 

3	 Lev Manovich, Software Takes Command (New York: Bloomsbury, 2013), 29.

4	 Ibid., 31.
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exception: those developing software or those involved in modifying or 

tinkering with existing software. This approach is roughly analogous to 

the arguments made by some scholars of popular culture. 

While Manovich focuses on the way in which users interact with soft-

ware, in particular those software packages that are used to create and ac-

cess new media, other scholars have begun investigating the internals of 

software, the code that enables software to produce these functions and 

interfaces. Critical code studies (CCS) is an emergent approach to the study 

of software and the code that makes up this software that originates in the 

critical approaches offered by the field of cultural studies. Proponents of 

CCS argue that we can read code as an object for critical analysis; in the way 

in which cultural studies describes images and objects as a text, code may 

also be understood as a text. 

David M. Berry makes an important distinction between code and soft-

ware. He uses the term code

to refer to the textual and social practices of source code writing, test-

ing, and distribution. In contrast ‘software’ (as prescriptive code) will 

refer to the object code, that is, code that has been compiled into an ex-

ecutable format, which includes final software products, such as oper-

ating systems, applications or fixed products of code such as Photoshop, 

Word and Excel.5

Berry’s distinction depends on the division between executable, ma-

chine-readable software or compiled code and the source code that gen-

erates such software. This division is especially important to the commer-

cial packages Berry mentions, Adobe’s Photoshop and Microsoft’s Word and 

Excel. These complex software packages are protected, controlled-access 

products. The code remains proprietary, a corporate secret, in order for the 

vendor — Adobe and Microsoft in the case of the packages mentioned by Ber-

ry — to sell access and, increasingly, automatically expiring subscriptions 

for the right to use the software products. 

If, for David Berry, we should read code because code can give us insight 

into the software creation process, for Mark C. Marino, code is an important 

text in need of interrogation and critique because it offers a site for not 

5	 Berry, The Philosophy of Software Code and Mediation in the Digital Age, 64–65.
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just the analysis of software culture, but for the larger project of cultural 

analysis. Marino argues that code is a layer of discourse — presumably he 

means by this that code exists in some relation to other forms of cultural 

discourse — loaded with significance. It is a particular kind of cultural text, 

one “with connotations that are in conversation with its functioning.”6 

By this Marino means that the language that makes code work — the in-

structions, functions, and assignments — exceeds its instrumental value. 

Descriptive language – in his essay he highlights the naming of variables 

– makes something happen while also providing another type of meaning 

that is in excess of its functional value. While Marino’s variable names are 

an example of natural language — typically they encode meaning within 

their abstraction as pointers to data by naming the pointer itself — within 

code, the particular programmatic choices including spacing and even the 

organization of the code are subject to this form of critique. Extending the 

scope of CCS beyond the formal readings of source code, Marino claims that 

critical code studies “explores existing programming paradigms, but it also 

questions the choices that were made, examining among other aspects the 

underlying assumptions, models of the world, and constraints (whether 

technological or social) that helped shape the code.”7 Scholars making use 

of CCS who work within cultural studies frame code as just another cultur-

al, i.e., social text capable of revealing aspects of the culture that informed 

the writing of the code. 

Because of the above issues involving the intersection of familiar or 

ordinary natural language appearing within code, the majority of debates 

within critical code studies and software studies has tended to discuss the 

philosophical nature of code and the relation between code, language, and 

writing. Alexander Galloway argues that code is different from writing, 

from language, because, in his account, code is a special type of language 

that he calls hyperlinguistic: “Code is a language, but a very special kind 

of language. Code is the only language that is executable.”8 Galloway pro-

vocatively describes code as “the first language that actually does what it 

6	 Mark C. Marino, “Why We Must Read the Code: The Science Wars, Episode IV.” In Debates in 

the Digital Humanities, eds. Matthew K. Gold and Lauren F. Klein (Minneapolis: University 

of Minnesota Press, 2016), 139.

7	 Ibid., 140.

8	 Alexander R. Galloway, Protocol: How Control Exists after Decentralization (Cambridge: 

MIT Press, 2004), 165.
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says — it is a machine for converting meaning into action.”9 Language, one 

might argue contra Galloway’s assertation, can do things, but he wants to 

make a distinction within code by introducing what he calls an executable 

state to his understanding of language:

Code has a semantic meaning, but it also has an enactment of meaning. 

Thus, while natural languages such as English or Latin only have a leg-

ible state, code has both a legible and an executable state. In this way, 

code is the summation of language plus an executable metalayer that 

encapsulates that language.10 

Code, of course, does not always do exactly what it says it will do — it is in-

terpreted, by a compiler or interpreter, and the meaning of the code might 

not be the same meaning as the execution. Galloway concentrates mostly 

on compiled languages such as C and C++, in which the code is transformed 

into executable instructions by a compiler. Compilers (usually) create ob-

ject code or bytecode, an essentially lower-level set of instructions that 

are optimized for system-specific hardware, including central processing 

units (CPUs) or virtualized systems (in the case of Java).11 The notion of code 

as doing what it says becomes more complicated and less and less true as 

we add layers of abstraction and modularity. Because of Galloway’s empha-

sis on compiled rather than interpreted languages, he tends to treat code 

as separable from its instruction. Interpreted languages are one step clos-

er to programmers than the compiled languages critiqued by Galloway; the 

code is interpreted and executed by the interpreter as written, in its ini-

tial state. Interpreted languages are also subject to the critique of complex 

systems that will follow, but in general interpreted languages stay within 

what Galloway terms a legible state. Highly specialized and opaque code, as 

this book demonstrates, needs the supplement of natural language to make 

its meaning legible for human readers. This supplement renders the text of 

9	 Ibid., 165–66.

10	 Ibid., 166.

11	 The target, by which we mean an audience that must be addressed and included for 

compiled code. The target for most compiled “C” code on a modern Linux system is an 

optimized and dynamic stack of libraries. This target platform is described formally by the 

operating system as such: “ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamical-

ly linked (uses shared libs), for GNU/Linux 2.6.18, stripped.”
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the AGC code a complex configuration of writing, a space-age entanglement 

of meaning making that invites the full resources of critical analysis to 

unpack and explore. 

John Cayley, who helped inaugurate critical code studies and code poet-

ics with his essay “The Code is not the Text (unless it is the Text),” helps us 

to think through this complex problem of the audience for code: 

If a codework text, however mutually contaminated, is read primarily 

as the language displayed on a screen then its address is simplified. It 

is addressed to a human reader who is implicitly asked to assimilate the 

code as part of natural language. This reading simplifies the intrinsi-

cally complex address of writing in programmable media. At the very 

least, for example, composed code is addressed to a processor, perhaps 

also addressed to specific human readers (those who are able to ‘crack’ 

or ‘hack’ it); while the text on the screen is simultaneously? asynchro-

nously? addressed to human readers generally. Complexities of address 

should not be bracketed within a would-be creolized language of the 

new media utopia.12 

Cayley is interested in a possible poetics of code and locates his investment 

in complicating the lines between code and text in his naming of the text 

of code “codework.” Cayley positions his codework as addressed simultane-

ously to the machine and the human reader. Doing so enables him to resist 

the separation between what appears on a screen or device and the code 

that brings this digital appearance into being. For Cayley, the audience of 

code must always include the possibility of a human reader.

The question of audience and code legibility persists within CCS. N. Kath-

erine Hayles follows Galloway’s understanding of code as distinct from the 

natural language associated with writing because of its function and its 

primary audience. She argues that despite the possibility of human readers, 

code is written primarily for machines, for a computer:

Although code originates with human writers and readers, once entered 

into the machine it has as its primary reader the machine itself. Before 

any screen display accessible to humans can be generated, the machine 

must first read the code and use its instructions to write messages hu-

12	 John Cayley, “The Code Is Not the Text (Unless It Is the Text),” Electronic Book Review, 

September 10, 2002, http://www.electronicbookreview.com/thread/electropoetics/literal.
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mans can read. Regardless of what humans think of a piece of code, the 

machine is the final arbiter of whether the code is intelligible.13

This difference is what enables her to construct a successive genealogy for 

“the three major systems for creating signification”14: “In the progression 

from speech to writing to code, each successor regime reinterprets the sys-

tem(s) that came before, inscribing prior values into its own dynamics.”15 

For Hayles, this process of reinterpretation does not necessarily obsolete 

the prior regime, but it does produce extensions and alterations that fun-

damentally exceed the capacity of the previous system to describe the new 

world inaugurated by the new regime. “One of Derrida’s critical points,” 

Hayles argues, “is that writing exceeds speech and cannot simply be con-

ceptualized as speech’s written form. Similarly, I will argue that code ex-

ceeds both writing and speech, having characteristics that appear in nei-

ther of these legacy systems.”16 Hayles’s use of “legacy system” produces a 

shift, but it is not as dramatic of an obsoleting shift as it sounds — she calls 

speech and writing “vital partners on many levels of scale in the evolution 

of complexity.”17

In a later work, Hayles doubles down on her argument that code must 

always be considered executable and that is always addressed to a specific 

interpretive community, the machine:

If the transition from handwriting to typewriting introduced a tectonic 

shift in discourse networks, as Friedrich Kittler (1992) has argued, the 

couple of human institution and machine logic leads to specificities 

quite different in their effects from those mobilized by print. On the hu-

man side, the requirement to write executable code means that every 

command must be explicitly stated in the proper form. One must there-

fore be very clear about what one wants the machine to do.18

13	 N. Katherine Hayles, My Mother Was a Computer: Digital Subjects and Literary Texts (Chica-

go: University of Chicago Press, 2005), 50.

14	 Ibid., 39.

15	 Ibid. 

16	 Ibid., 40.

17	 Ibid., 55.

18	 N. Katherine Hayles, How We Think: Digital Media and Contemporary Technogenesis (Chi-

cago: University of Chicago Press, 2012), 42.
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Despite the claims made by Galloway and Hayles, we cannot guarantee that 

the instructions will be executed as written because of the various levels 

and layers of abstraction involved in computing. The expected execution 

of even compiled code can be altered. Depending on the language and sys-

tem used, there are multiple layers of interpretation and transformation 

that take place between the writer of code and the final execution of in-

structions. Modern computing systems are constructed from modular com-

ponents, both software and hardware, and these components continually 

abstract any set of instructions. 

This abstraction, which has been increasing throughout the past few 

decades, enables programmers to write shorter and simpler code — common-

ly used routines and procedures are frequently supplied by the operating 

system. Even if the programmer does not choose to use one of these supplied 

functions, many components of the software might be substituted by the 

operating system or by end users. These can be optimized for specific hard-

ware (such as a device to offload certain operations to a Graphical Process-

ing Unit or GPU) and software configurations. In the case of closed-source 

operating systems such as those supplied by Microsoft, these libraries con-

tain well-known functions that enable software developers to write appli-

cations with a similar look and feel. Open-source platforms also make use 

of these types of libraries but also contain a large collection of libraries 

from other tools that contain these frequently used functions. 

All of this is to say that the programmer cannot have any sort of guar-

antee that the code will be executed as written.19 Code resembles more of 

wish than a command. Wendy Chun has provided one of the most pointed 

critiques of Galloway and Hayles’s position. She takes issue with the re-

duction of software “to a recipe, a set of instructions” and argues that code 

is devious and crafty.20 Chun demonstrates this by pointing to the layering 

involved in complex computer systems and the fact that because of the it-

19	 Rita Raley complicates this understanding by asking us to consider the difference be-

tween code and computation. She does so by analyzing code that is not nor can never be 

executed and raises questions about the “function” of code specifically designed to fail 

or crash, in which its failure becomes precisely its successful function. See Rita Raley, 

“Code.surface || Code.depth,” Dichtung Digital 36 (2006), http://www.dichtung-digital.

org/2006/01/Raley/index.htm.

20	 Wendy Hui Kyong Chun, Programmed Visions: Software and Memory (Cambridge: MIT Press, 

2011), 21.
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erative development cycle of software, “source code only becomes a source 

after the fact.”21 The “fact” of computation, in Chun’s argument, requires 

the successful execution and testing of code. Execution makes and names 

the code that was executed “the source” for the executed code. The source 

code then might be said to retroactively become a re-source. Chun breaks 

with the normative understanding of code to expose what she calls the fet-

ish logic of code:

code as fetish thus underscores code as thing: code as a “dirty window 

pane,” rather than as a window that leads us to the “source.” Code as 

fetish emphasizes code as a set of relations, rather than as an enclosed 

object, and it highlights both the ambiguity and the specificity of code. 

Code points to, it indicates, something both specific and nebulous, both 

defined and indefinable. Code, again, is an abstraction that is haunted, a 

source that is a re-source, a source that renders the machinic — with its 

annoying specificities or “bugs” ghostly.22

Chun calls the belief that the only meaning of code could be what it does 

a form of “sourcery” that is in fact a fetish covering over the deviations 

between execution and code. The retroactive process that makes code a 

source after its “correct” execution leaves marks, leaves traces within the 

code — both within the functions and commands and within the natural 

language found within code comments.

Friedrich Kittler refers to the above referenced hierarchical layering 

of languages and instructions as a “postmodern Tower of Babel” that has 

produced a fog of interpretive confusion that covers over the gaps between 

instruction and execution — so much so that he argues that “we can simply 

no longer know what our writing is doing, and least of all when we are pro-

gramming.”23 While some might take this confusing stack of instructions 

as provocation to examine computation, to turn to the task of translating 

the particularities of a language or machine-specific instructions into a 

common code, one for a universal computer, code (at least successfully ex-

ecuted code) is inscribed with the signs of being run through a configura-

21	 Ibid., 24.

22	 Ibid., 54.

23	 Friedrich A. Kittler, The Truth of the Technological World: Essays on the Genealogy of 

Presence, trans. Erik Butler (Stanford: Stanford University Press, 2014), 221.
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tion of hardware and software and these signs bear the traces of culture, of 

the programmer’s membership within communities of practice. This is one 

that that we can be sure of when we talk about that type of writing called 

programming: when one writes code, one works with conventions. There 

might be only iterations of utterly conventional code to be found or per-

haps when reading code we discover a range of imaginative and creative 

extensions, elaborations, and elegant appropriations. Programming might 

attempt to present itself as a form of wizardry or sorcery but it is ultimately 

the use of a communal language used by a certain type of desiring machine 

that is human, all too human.

The interpretive practices outlined above make the AGC code available 

to a wide range of contemporary readers. Potential readings include an an-

tiquarian desire to take what might call a software archeological dig into 

this historical code or a culture critique that seeks to unpack the ways in 

which the functions, commands, and comments register the conditions 

that made the creation of this particular body of code possible. The esoteric 

and the aesthetic are combined and interleaved throughout the lines of 

this code and this combination invites reading with and against the grain. 

Historicizing, critiquing, and appreciating the language structuring the 

earlier years of programming and digital computers makes it possible to 

shift and ultimately shuttle our attention back and forth through the long 

history of computing, adding insight to both the past and the present of 

digital culture. 

Reading Code

In order to help frame and make more concrete some of the objections and 

questions raised by the above arguments and their claims for the interpre-

tation of the AGC code, we can turn to some contemporary and highly sim-

plified examples of computer code. The following are lines of code written 

in a high-level interpreted programming language called Python. Python 

programs remain (generally) in textual or “source” form. These instruc-

tions are “read” and interpreted by the Python interpreter, itself written 

in the C programming language and compiled for a specific computing plat-

form (for example, macOS running on the x86_64 CPU). This fragment of a 

program defines (def) a function named euclidean_distance. The function op-

erates on two supplied input parameters (input1 and input2). Functions are 

the building blocks or components of well-designed larger programs. They 
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enable more efficient and readable code by bundling together instructions 

that might be used multiple times within a single program. Functions, in 

Python and other programming languages, can be thought of as the addi-

tion of new instructions to the existing language resources. The euclid-

ean_distance function calculates the “distance” between the two supplied 

parameters by taking the square root of the summed squared differences 

between the input objects supplied as the parameters. 

def euclidean_distance(input1,input2):

    d = 0

    for i in range(len(input1)):

        d += (input1[i] - input2[i])**2  

    return d**(.5)

Within the function we first set the value of a new variable d (for distance) 

to 0. Following this, the function will loop (for i) through each component 

or “item” of the supplied input objects adding to the variable d the squared 

differences between the input items. Once the loop is completed and we’ve 

reached the end of the supplied input, we return back to the calling func-

tion the square root of the summed values stored as d.

When the euclidean_distance function is correctly called with the appro-

priate parameters, it returns the distance between these parameters in Eu-

clidean space. Euclidean distance is defined as the shortest straight path 

between two points in a common, uniform geometrical space. As an exam-

ple, first imagine a simple one-dimensional space, a line, with two points. 

One point on the line is 8 and the other 64. To calculate the Euclidean dis-

tance between these two points, we subtract the second point from the first 

and square the result and then take the square root. Using the x**y notation 

in Python to calculate x raised to the power of y, we can find this result 

with: ((8-64)**2)**.5. Using our euclidean_distance function, we can print 

these results with: 

euclidean_distance([8],[64]) 

The basic Python system provides a set of functions embedded within a 

package called “math” that handles some of these calculations with a little 

more grace and enables greater readability. Instead of calculating a square 

root with x**.5 we can ask Python to make the math package available (im-
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port math) and use the now available square root or sqrt function. The same 

goes for calculating squares: we can use pow(x,y) to raise x to y-th power. 

The revised function now reads as such: 

import math

def euclidean_distance(input1,input2):

    d = 0

    for i in range(len(input1)):

        d += pow(input1[i] - input2[i]),2)  

    return sqrt(d)

This trivial example demonstrates that there are many different ways to 

solve the same problem, some more comprehensible and elegant than oth-

ers. Elegance in this case includes using the affordances and norms of the 

programming language — for Python language programs, that means writ-

ing code in a manner playfully termed “Pythonic.” The choice to use pow 

and sqrt signals the author’s participation in a writing and interpretive 

community organized around the use of these Pythonic norms.

We can now use our same euclidean_distance function with two-dimen-

sional data. To calculate the shortest distance between two points in a 

simple x,y coordinate system, we would simply call the function as such: 

euclidean_distance([-2,2],[2,-1]). The function returns “5.0” as the Eu-

clidean distance between these two points. Higher-dimension data can be 

supplied in a similar manner. For example, we can take the measurements 

in centimeters of two Iris flowers that are part of Ronald Fisher’s 1936 Iris 

dataset.24 For each flower, we have the length and width of the sepal (5.1 

and 3.5 for the first flower) and petal (1.4 and 0.2 for the first flower). To 

calculate the distance between these two flowers in this four-dimension-

al common, uniform geometrical space, we would simply call our function 

as such: euclidean_distance([5.1, 3.5, 1.4, 0.2],[4.9, 3.0, 1.4, 0.2])). The 

“distance” in this shared space between these two flowers is returned as 

“0.5385164807134502.” But what does this distance mean? The possible 

meanings this distance might have depend on the rest of the dataset. Are 

these two measurements representative of the phenomena that we wish to 

24	 For an explanation of the dataset, see Ronald A. Fisher, “The Use of Multiple Measure-

ments in Taxonomic Problems,” Annals of Eugenics 7 (1936): 179–88. 
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measure (i.e., a natural distribution)? Did we choose the correct parame-

ters (sepal and petal) and measurement metrics (length and width) to make 

meaningful comparisons? 

These simple lines of Python show just some of the possibilities and 

constraints of programming languages. We have two functions that accom-

plished the same task but used different methods to reach this result. The 

revised function is better and yet can be improved in numerous ways. These 

few lines of code contain within them many assumptions about the input 

parameters. Taken together, this function encapsulates an understanding 

of a geometrical space that is in many ways only an ideal.25 Formally, the 

function produces the results requested but it operates in concert with its 

data. This idealized geometric space is created only through data and thus 

the function cannot be isolated from the “assumptions” held by both the 

formula it renders as code and its data.26 This function would typically be 

used by another that makes use of the returned distances. Euclidean dis-

tance, for example, is often used with classification algorithms, including 

k-nearest neighbor, an algorithm that uses the distances between data la-

beled as members of existing classes of objects of a similar kind to deter-

mine the membership of previously unseen and unlabeled data. The mean-

ing of this code fragment within the implementation of k-nearest neighbor 

would raise new questions. Is Euclidean distance the appropriate distance 

metric for this algorithm? What are we attempting to classify? Do these ob-

jects all belong to the same space? What might that mean? 

Code is created to solve problems. The problem space is cultivated and 

constrained by understandings of how these problems will present them-

selves or be presented, especially in the form of data. We can also add the 

included and instrument-sampled data as another discourse to those men-

tioned above. Much of these data were ephemeral. They are no longer avail-

able, detected and processed in the moment. Some were anticipated and part 

of the exhaustive testing procedures and others were entirely unpredicted. 

When examining code, we read and interpret the instructions, imagine or 

attempt execution. A critical account of the source code of the AGC needs 

25	 On data vectorization in machine learning as an instance of the problem of constructing 

abstract spaces, see Adrian Mackenzie, Machine Learners: Archaeology of a Data Practice 

(Cambridge: MIT Press, 2017): 51–74.

26	 For more about these assumptions, see James E. Dobson, Critical Digital Humanities: The 

Search for a Methodology (Urbana: University of Illinois Press, 2019), 117–19.
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to examine the problem space that gave shape to the code. What were the 

technical and social constraints? How did these limit the functions and 

possibilities of the AGC hardware and software? In examining the code, we 

need to at least attempt to historicize and bring into understanding the ex-

ecution environment, the computational and cultural situation, that ret-

roactively named this particular text the source code that brought humans 

to the Moon. 
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The digital computer that powered the Apollo 11 Command Module and Lu-

nar Module was sophisticated and equipped with many leading-edge and 

advanced features despite its compact size and limited fixed and erasable 

memory capacity.1 While the majority of computing systems in the 1960s, 

including the several computers used to compile and debug the AGC soft-

ware, occupied large spaces in dedicated air-conditioned rooms, the main 

hardware that made up the AGC computer was stored in a package that meas-

ured twenty-four by twelve inches, six inches deep, and weighed a mere 

seventy pounds.2 The complete program or software for the AGC was stored 

in a form of magnetic memory called rope core memory. In this resilient but 

quite limited storage scheme, a network of wires run through small ferrite 

core rings store the instructions for the computer. This was fixed, read-on-

ly memory as any changes to the instructions required extensive rewir-

ing. The computer was hardwired, as it were, with actual wires that, when 

selected, signal the 1s and 0s of the binary instructions required to boot-

strap or bring the computer into operational status. While the programmers 

wrote and edited code in their Cambridge, Massachusetts offices, a large 

group of mostly female workers a few miles away at Raytheon in Waltham 

— the company that held the NASA contract to produce the computers — pro-

grammed and installed the software by twisting and braiding thousands of 

wires through the ferrite rings. 

The transformation of the instructions from symbolic code punched 

line-by-line through stacks of cards to densely packed sets of wires demon-

strates the existence of the multiple shapes and forms — all of which are 

expressions of the language of computing. Throughout the flow of this lan-

guage, from initial composition to contemporary methods of digital pres-

ervation of the AGC code, we see many such transformations taking place. 

The code, through many of these conversions, changes its orientation and 

its form. We might call these code variations versions or perhaps even edi-

tions. Calling our attention to the importance of formal features, including 

style and shape to the interpretation of any digital object, Dennis Tenen 

would have us recognize these variations as distinct formats of the code. 

1	 The best guide to the design and operation of the AGC hardware and software is Frank 

O’Brien, The Apollo Guidance Computer: Architecture and Operation (Chichester: Springer, 

2010).

2	 “Computers in Spaceflight: The NASA Experience,” NASA, https://history.nasa.gov/comput-

ers/Ch2-5.html.
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“Formats,” Tenen argues, “shape the very structure of interpretation. The 

seemingly innocuous formatting layer contains the essence of control 

over the mechanisms of representation. Long a marginal concept in liter-

ary theory, formatting is therefore central to the contemporary practice of 

computational poetics. More than embellishment, formats govern the in-

terface between meaning and matter, thought and page.”3 But it is crucial 

to recognize that these formats do not necessarily operate in a progres-

sive manner in which the appearance of a new format obsoletes the prior 

formats. The temporality of code authorship, in particular the code under 

consideration in this book, is quite complicated; some representations of 

the AGC code predict future, by which we mean post-processed and collated, 

forms and formats, while others alter the overall organization of the code 

and in so doing introduce different meanings to readers and interpreters.

We might understand the multiple formats of the AGC code as a form of 

what Jay David Bolter and Richard Grusin called remediation.4 For Bolter 

and Grusin, remediation is an attribute of media, especially but not limited 

to digital media, in which the cultural imperatives of immediacy and hy-

permediacy meet through the multiplication and erasure of media. New me-

dia borrow and remake old media in order to produce a sense of immediacy. 

We can frame newer presentations of the AGC code through the desire to cut 

out what is now considered extraneous, for example, the line numbers and 

page headers. In cropping the code and making these headers and numbers 

marginal, the code becomes more readable, but it has now lost the sense of 

order that structured the prior format. In producing a remediation of the 

printed pages in order to present the code as if it were authored in a contem-

porary high-level programming language, the contemporary programmers 

have erased the medium-specific features of the earlier code. Of course, the 

printed pages of code were themselves already making use of a remediated 

format that erased the medium-specific features of the punch card by turn-

ing each card into a line of printed code and by creating page headers and 

line breaks to increase the readability of the code for the programmers. 

We might then apply an additional hermeneutical turn and examine yet 

another reformatting of the AGC code as it passed through the assembly line 

3	 Dennis Tenen, Plain Text: The Poetics of Computation (Stanford: Stanford University 

Press, 2017), 130. 

4	 Jay David Bolter and Richard Grusin, Remediation: Understanding New Media (Cambridge: 

MIT Press, 1999), 4–5, 234–36.
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of software production. The instructions on the punched cards were collat-

ed and processed by a set of software programs running on a conventional 

digital computer. The output of the assembler system was the rope wiring 

diagrams that were sent to Raytheon, the company holding the contract to 

produce the AGC hardware. The wiring diagrams reformatted the instruc-

tions and were installed or programmed through the threading, braiding, 

and twisting of small, thin wires through sets of rings (Figure 1). These 

memory ropes were used to preserve and package the software for the AGC 

computer. Each reformatting presents a new material shape for the in-

structions and incorporates another entire set of labor. That this labor, es-

pecially that of the women or “girls” who reformatted the code into twists 

and braids, was the product of what we might want to call “hidden figures” 

is a function of both the valuation structures of the 1960s managerial sys-

tem that unevenly distributed credit and the remediation at the core of all 

reformatting.5 These women, like the programmers at the MIT Instrumenta-

tion Lab, worked collaboratively, passing the delicate wires back and forth 

as they embedded instructions into the hardware (Figure 2). If we want to 

study the definitive text that took the astronauts to the Moon, then the 

proper object of study must include the labor and products of these memory 

rope programmers. The software development cycle was not limited to the 

Instrumentation Laboratory and the code was not produced within a closed 

system of programmers; it required the collaborative work of thousands of 

people found in numerous organizations and it flowed forward and back-

ward through these networks of people, much like an electrical current 

through any integrated circuit. 

The majority of the code shown throughout this book was authored in 

one of two fairly low-level single-purpose symbolic languages, Basic (this 

language has no relation to the much more user-friendly interpreted BA-

5	 I’m borrowing “hidden figures” in order to gesture toward the presence of many figures, 

including the African-American human “computers” described by Margot Lee Shetter-

ly’s Hidden Figures: The American Dream and the Untold Story of the Black Women Who 

Helped Win the Space Race (New York: William Morrow and Company, 2016). A critical 

account of women, and especially women of color, as unacknowledged laborers can be 

found in Lisa Nakamura, “Indigenous Circuits: Navajo Women and the Racialization of 

Early Electronic Manufacture,” American Quarterly 66, no. 4 (2014): 919–41. The term 

“girls” was repeatedly used for the Raytheon workers in a 1965 NASA funded film, Comput-

er for Apollo, directed by Russell Morash (Cambridge: MIT Science Reporter, 1965), availa-

ble at https://www.youtube.com/watch?v=ndvmFlg1WmE.
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Figure 1. A Raytheon employee creating Apollo rope memory. 

Screenshot from Computer for Apollo, directed by Russell Mo-

rash (Cambridge, MA: MIT Science Reporter, 1965).

Figure 2. Teamwork was required to braid the wires through 

the cores. Screenshot from Computer for Apollo, directed by 

Russell Morash (Cambridge, MA: MIT Science Reporter, 1965).
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SIC, or Beginners All-Purpose Symbolic Instruction Code, language that was 

developed contemporaneously at Dartmouth College) and what was called 

Interpretive. The code contains both Basic instructions — the Basic syntax 

contains only forty instructions or “opcodes,” eight of the most common 

are found in Table 1 — and the more flexible but much slower Interpretive 

instructions that were executed by a program called INTERPRETER. Basic was 

also known as “Yul.” It was named Yul by Hugh Blair-Smith because the 

language was developed for the original AGC Model 1A that was planned to 

be completed around Christmas time in 1959 (the 1A, according to Blair-

Smith, was called the “Christmas Computer”), hence Yul for Yuletide.6 Yul 

was not so much a language as a system. It included testing systems and a 

special piece of software known as an assembler that transformed the Yul 

code or text, much like other high-level compiled languages like C, into a 

lower-level machine code and finally produced the wiring diagrams men-

tioned above.

The Yul system was designed to enable the programmers to quickly com-

pose, edit, and test code before it was generated as the read-only, permanent 

instructions stored in the AGC’s rope memory. Like several other program-

ming languages of the period, the two languages used in this code are fixed 

format languages. This means that the format of the code was imagined 

and printed on pages needed to take a specific form in order for conversion 

routines to produce the correct instructions for the digital computer that 

would eventually execute the instructions. The AGC code was written and 

edited under numerous constraints, including the rigidly fixed format re-

quired by the punch card and its associated hardware as well as the limited 

syntax of its major programming languages. 

The AGC software was designed in an era before software as we under-

stand it today was invented. The systems and code were imagined, designed, 

and edited not in a digital environment, with the array of graphical dis-

play devices, easily movable sections of text, searching mechanisms, and 

versioning information, but almost entirely in print and on paper. This 

high-tech digital computer system belonged to the world of print and it 

was thus imagined by the software engineers as an almost literary object. 

6	 Hugh Blair-Smith, “Annotations to Eldon Hall’s Journey to the Moon,” Apollo Guidance 

Computer History Project, February 1997, https://authors.library.caltech.edu/5456/1/hrst.

mit.edu/hrs/apollo/public/blairsmith.htm.
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TC Transfer Control

CCS Count, Compare, Skip

INDEX Modify Next Instruction

XCH Exchange

CS Clear and Subtract

TS Transfer to Storage

AD Add and Count on Overflow

MP Multiply

Table 1. Major Basic or Yul Instructions
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The literary “print” metaphor drives the majority of our thinking about the 

prospects for interpreting the code. For while it was the depositing of the 

digitized code within Github, a collaborative online code repository, that 

initially brought the text of the Apollo Guidance Computer code to our at-

tention, the metaphor of the printed code as an imagined and interpretable 

text remains our doorway into this project and into its historical moment. 

The programmers had to work simultaneously with at least two different 

formats of printed code: collated code listings and punch cards. In his 

memoir, Sunburst and Luminary: An Apollo Memoir (2018), Apollo Guidance 

Computer programmer Don Eyles links the writing of code to the writing of 

prose by reflecting on writing as a process: “Some of us wrote out our pro-

grams fully on paper forms before we sat down. Others programmed as they 

punched. I usually started with rough notes and wrote very much as I am 

writing at this moment.”7 

The AGC code is a highly revised, co-authored text. It was written line 

by line. Each line of eighty-character instructions was entered by hand, 

punched on an IBM 026 keypunch. But the code was imagined, always, and 

edited as a listing — it was collated and printed in page form, after being run 

through (each reading of the code was called a “pass” and several “passes” 

were required to fully format and process the list of instructions) different 

assembler programs. These assembler programs ran on the same larger gen-

eral-purpose computer that processed the stack of punch cards. During the 

time of the Apollo 11 mission, this computer was a Honeywell 800. The final 

pass was known as the “wiring diagrammer” and it produced the wiring 

diagram tapes that were sent directly to Raytheon.8 The AGC code was thus 

produced under numerous constraints, including the rigidly fixed format 

required by the IBM 026 keypunch mechanism along with the Honeywell 

800 card reader and the limited syntax of its major programming languag-

es. The programmers, therefore, had to be flexible in their imagination 

of what the code would look like and how it would function when it was 

transformed into these other formats.

Consider the now iconic image of Margaret Hamilton with the stack of 

AGC code almost reaching her own height (Figure 3). This image referenc-

7	 Don Eyles, Sunburst and Luminary: An Apollo Memoir (Boston: Four Point Press, 2018), 56.

8	 Ramon Alonso, J. Halcombe Laning, Jr., and Hugh Blair-Smith, E-1077: Preliminary MOD 3C 

Programmers Manual (Cambridge: MIT Instrumentation Laboratory, 1961), 50.
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Figure 3. Margaret Hamilton standing next to stack of Apollo Guidance Computer code.  

Courtesy of the MIT Museum.
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es and reworks other depictions of programmers, especially women, with 

the material embodiment of code. Computer company advertising, for many 

years of its early existence, used images of women appearing next to stacks 

of punch cards, storage devices, and other equipment. This photograph of 

Hamilton references and reconfigures the advertising image to position 

her and her body as the signature that authorizes the presented code. The 

code is “embodied” both in the sense of the presentation of the complete 

body of the text, as well as the reference image, the human body, that 

serves to measure the length of the code. The concept of software and the 

engineering of software were essentially being invented at this moment. 

Comparing the code to the body made it concrete by presenting it in a fa-

miliar form and scene.

That code that we see represented as stacks of printed pages or displayed 

as modular functions and routines stored in separate files within the 

Github repository was initially authored in short eighty-column segments 

on 3¼ x 7½ IBM paper punch-cards (referred to simply as “cards” with the 

body of the code). A card reader sorted and compiled the individual cards 

into the text of the complete code for the AGC and it was then printed on 

wide pages on a Honeywell printer. The code authors produced small sets of 

instructions and commentary on the code on individual punch cards, but 

imagined the collaboratively constructed code as a numerically ordered set 

of cards, with each card forming a line of code and eventually printed on 

pages. The code presents and understands itself in paginated terms. There 

are numerous times in which the code references other “paragraphs” and 

pages of the code — there were 1,743 pages of code in the “LUMINARY 1A” 

portion of the AGC code of July 14, 1969. In the imaged scans of the printed 

code that are available, we can see that the text of the code was printed on 

a continuous stream of paper with alternating colored lines. Each printed 

page (see Figure 4) contained a short header that provided metadata about 

the assembly and printing of the code, including the revision, the current 

date and time, and the page number. 

The code and language used throughout the AGC project is simple and 

rather utilitarian. As mentioned above, this was due to the limited memory 

of the AGC computer and the constraints of the coding environment. The 

following table reproduces information from the Programmer’s Manual and 
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Figure 4. AGC Source Code, page 392.
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illustrates the prescribed content for each column or punch card position 

for each line of the AGC code.9

Columns 1–7 Card Number and Card Content Control

Columns 8 Vertical Spacing Control 

Columns 9–16 Location Field

Columns 18–23 Operation Field

Columns 25–40 Address Field

Columns 41–80 Remarks Field

Table 2.1: Punch card organization

The card numbers, columns 2–7, indicated what would become the line 

number of the card when it was collated and printed. Like the line num-

bers used in the popular BASIC programming language, these card and line 

numbers were used to organize code and to enable some basic editing and 

revision. These were incrementing numbers and each card inserted into 

the card reader was required to be a larger number than the previous card. 

It appears that the programmers planned to use four- or five-digit numbers 

(the majority are five digit numbers). If blank, the value of empty columns 

was equivalent to zero, enabling the proper sorting of any number of cards. 

The first card of the Luminary 1A program was numbered R00001 and was fol-

lowed by R00002 and then R000025. The addition of the sixth column for the 

third card demonstrates an important feature of the code: it was designed 

to enable the addition of new code and the minor revision of existing code 

without renumbering and thus repunching the entire body of the code. 

This is enabled projective thinking — the imagination of future revisions 

by leaving possible empty space, an area of expansion and breathing room 

for the existing code. If new code was required to add a feature or extend 

particular instructions, these additional cards using six-column numbers 

9	 Ibid., 54.
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could be inserted between existing cards that used five-column numbers. 

With this scheme, nine lines could be added (XXXXX1–XXXXX9) without intro-

ducing a major revision. To correct a minor error, the programmer would 

just need to revise that single card.  

The cards beginning with the character R were known as “remarks 

cards.” While the Yul language specifications defines specific column 

markers, for free-form explanatory or other forms of commentary in each 

card, these remarks cards mark the entire card space as remarks. These 

cards, like the contents of columns 41–80, lack any explicit requirements 

or standards. Remarks cards, such as the first three cards invoked above, 

were used for various functions. At the most simple level, most code is 

marked by two voices: the code and embedded remarks or commentary. Com-

mentary is a supplement; not necessary for execution but essential for its 

comprehension and future modification.10 Code commentary speaks to the 

past, this is how this works and why we did this, but primarily it addresses 

future readers — reminders, warnings, justifications. The cards that make 

up the page of code in Figure 4 provide explanatory notes about the code 

that appears in the following cards. Cards R0072 and R0073 explain the gen-

eral purpose of the remarks cards throughout the code: REMARKS CARDS PRECEDE 

THE REFERENCED SYMBOL DEFINITION. SEE SYMBOL TABLE TO FIND APPROPRIATE PAGE 

NUMBERS.  With these statements the programmers make reference to two of 

the major forms of the code: the cards that make up the individual lines and 

the transformed and paginated text printed on 11 � 15-inch paper. These 

remarks address future readers of the code and provide them with an in-

troduction or preface to the text that will follow. Remarks cards and the 

remarks columns of the cards are outside of the code — they are assembled 

and printed but never executed, never transformed into wiring diagrams — 

but still contained within the text of the code. The reference or pointer to 

a specialized index or table of contents points to the way in which the pro-

grammers understand their code to be a printed text. The addition of new 

cards, even those making use of six-column card numbers, would alter page 

numbers, thus there are references to abstract pages rather than specific 

page numbers. 

10	 On code commentary, see Amy Hunt, “Not Your Typical Prose: Documenting Software,” 

MALS thesis, Dartmouth College, 2016 and Stuart Mawler, “Executable Texts: Programs as 

Communications Devices and Their Use in Shaping High-tech Culture,” MSc thesis, Vir-

ginia Polytechnic Institute and State University, 2007.
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If we are to understand references to the appearance of the code as ab-

stract, we should read the signs of authorship as even more obscure. Deter-

mining the authorship of any collaboratively edited text is difficult. Be-

cause of the sparseness of the syntax and diction available and the heavily 

edited and revised nature of large projects such as the AGC, code remains 

especially impenetrable to determining authorship. The authorship of code 

might best be theorized in terms of a function or collaborative group. The 

code was written and edited collaboratively, but that did not lend much co-

herence to the organization and form of the code. Fred Martin explains: 

“[We] had no standards. We had no programming standards. Each group or 

each little entity would have a style. I think when we got into project man-

agement, I did try, to some extent, to get some standardization. But it was 

hard. I think people used different expressions for constants in their pro-

grams.”11 At several locations within the code there are self-referential 

comments referring to “the authors” as originators for the commentary 

and code. I will thus follow their lead and unless there are specific mark-

ers, we refer to the AGC code as authored by “the programmers” throughout 

our interpretation and analysis. 

The following code segment tells us that Margaret Hamilton is the au-

thor of this particular program, which itself appears to be four different 

programs:

# PROGRAM NAME: PREREAD, READACCS, SERVICER, AVERAGE G.

# MOD NO. 00 BY M. HAMILTON     DEC. 12, 1966

#

# FUNCTIONAL DESCRIPTION

The code displayed here in these lines has been transformed from the pagi-

nated number lines into a format that corresponds to contemporary coding 

practices. These are lines of code as they appear in the Github repository 

for the Apollo 11 AGC code. Instead of numbered remarks cards, commentary 

appears in lines or sections of lines beginning with the # character. This 

conforms to coding norms in a number of more contemporary programming 

11	 “Different Programming Styles,” Apollo Guidance Computer History Project: Second Con-

ference, September 14, 2001, https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/

apollo/public/conference2/styles.htm.



56 MOONBIT

languages. The text or other characters following the # are not interpreted. 

Each of the above lines would have been a separate remarks card. The first 

line glosses the purpose of this particular section or program within the 

body of the AGC code. We know that this is the first version or modification of 

the code, but the numbering scheme here includes double-digit zeros, a var-

iation of the modification scheme used in other sections and subroutines.

The following lines provide another example of what was a set of re-

marks cards, a set of cards introducing code with a more complex revision 

history:

# SUBROUTINE NAME:  TFFCONIC               DATE:  01.29.67

# MOD NO: 0                                LOG SECTION:  TIME OF FREE FALL

# MOD BY: RR BAIRNSFATHER

# MOD NO: 1 MOD BY: RR BAIRNSFATHER DATE: 11 APR 67

# MOD NO: 2 MOD BY: RR BAIRNSFATHER DATE: 21 NOV 67 ADD MOON MU.

# MOD NO: 3 MOD BY: RR BAIRNSFATHER DATE: 21 MAR 68 ACCEPT DIFFERENT EARTH/ 

MOON SCALES

In the above, we see several modifications or revisions of the code. Each 

of these “mods” is numbered in sequential order, beginning with 0 for the 

first modification (unlike the double-digit mod in the previous example) 

and incremented by one for each major revision. What constitutes enough 

change to introduce a new “mod” is not exactly clear from the code or the 

manuals. How much of the code should change for the mod counter to be 

incremented? Any modification of the code at all? Major changes? 

What we would now call the programming environment for writing 

and editing code was entirely paper-based. Because of the nature of the 

input devices, the punch card system, and the use of other programs to 

pass through and assemble the code, it needed to undergo numerous  runs 

through a transformation that moved and organized stacks of individu-

al cards into paginated, ordered form. The printed pages that provide the 

historical record of the AGC code demonstrate the extent to which the pro-

grammers needed to keep these different forms active in their imagination 

of the code at all times. The AGC code provides a palimpsestic record of this 

process; it bears the traces of its composition and revision. These lines of 

code offer up a snapshot, a frozen image of a collaboratively edited and dy-

namically changing text.
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Tracing Memory and Executing Code

The Apollo Guidance Computer code is complex and frequently difficult to 

understand. It is hard to follow for several reasons. The limited number of 

instructions and the lack of abstracted or higher-level libraries providing 

commonly used subroutines means that the code needed to be as compact 

and minimal as possible. When reading the code, we need to trace the “line” 

of execution and follow instructions and data through numerous obscure 

and abstruse subroutines. In following these instructions, we need to keep 

in mind the current state of the computer and memory and in particular the 

present state of a special location or register known as the accumulator. 

The accumulator was used by the programmers to store the current value of 

the last arithmetic or logical operation. 

The small sections of code shown in this section were compiled, execut-

ed, and inspected using two tools from the open-source Virtual AGC envi-

ronment: yaYUL, the code compiler that generates “core-rope” objects and 

yaAGC, the AGC emulator and debugger that executes compiled core-ropes.12 

The following lines of a fragment of a Basic program for the AGC demon-

strates how one would write a program to add together two simple decimal 

numbers and save the result to a section of erasable memory: 

			   BLOCK		  2

SUM		 EQUALS		 10

A			  EQUALS		 0

			   CA		 VALUE1

			   AD		 VALUE2

			   TS		 SUM

			   TC		 EXIT

VALUE1			  DEC	 5

VALUE2			  DEC	 7

12	 These tools are provided as part of the fantastic resource that is the open-source Vir-

tualAGC environment. The code for these two tools (they were written in C and can be 

compiled on several different platforms) can be found with the rest of the environment 

at: https://github.com/virtualagc/.
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EXIT

The first line contains an instruction to tell the computer where to store 

the code, which block of memory to use. The next two lines assign names 

to specific memory locations. The name A is shorthand for the accumulator. 

The memory location name SUM is used, in this code fragment, as the storage 

location using a 10-bit memory address, to which we will transfer the out-

put from the accumulator. The two numbers to be added are stored as vari-

ables. These variables, VALUE1 and VALUE2, are defined as a particular type of 

number, decimals. The DEC instruction tells the compiler that the variable 

name appearing to the left will contain a decimal and assigns to this vari-

able the value on the right. Decimals, with either single, double, or triple 

precision, are one datatype used by the Basic/Yul programming language, 

and others include tables and vectors. Within the debugger provided by the 

AGC emulator, we can access a list of these variables with the “info varia-

bles” command:

File sum.agc:

var VALUE1;

var VALUE2;

To display the stored or current values of these variables, we can use the 

print command:

print/d VALUE1

$1 = +5

The +5 indicates that VALUE1 was stored as a decimal value with a positive 

value. To add these two variables, we first “Clear and Add” (CA) the value of 

VALUE1 to the accumulator. Executing this code instruction by instruction, 

we watch the value of the accumulator change:

print/d A

$1 = +0

next

print/d A

$1 = +5
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Once the accumulator contains the value of VALUE1, we can Add (AD) the value 

of VALUE2 to the accumulator: 

next

print/d A

$1 = +12

With the value we want available in the accumulator register, we can Trans-

fer to Storage (TS) this value to the storage location SUM and then Transfer 

Control (TC) to a subroutine named EXIT that performs no function:

TS SUM

TC EXIT

We can print the contents of the memory location referenced as SUM and find 

the correct result: 

print/d SUM

$1 = +12	

Building on the above set of instructions, we can see how we might begin to 

implement the Euclidean distance metric mentioned in the previous chap-

ter using a simple set of Basic primitives. In the extended list, the language 

provides an instruction to calculate the square of a number store in the 

accumulator called SQUARE. Using a temporary storage location, we can sub-

tract two numbers and then square the result. This code fragment adds the 

instruction to Subtract (SU), Square (SQUARE), and exchanges the output of 

the L register used to store the result by the SQUARE instruction with another 

erasable memory location (OUTPUT):
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			   BLOCK		  2

OUTP		 EQUALS		 10

A			  EQUALS		 0

TEMP		 EQUALS		 11

			   CA		 VALUE2

			   TS		 TEMP

			   CA		 VALUE1

			   EXTEND

			   SU		 TEMP

			   EXTEND

			   SQUARE

			   LXCH	OUTP

			   TC		 EXIT

VALUE1			  DEC	 8

VALUE2			  DEC	 64

EXIT
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Comanche

Part of the source code
for Colossus 2A, AKA Comanche 055
for the Command Module’s (CM)
Apollo Guidance Computer (AGC), for Apollo 11

Comanche by NASA
entry initialization routine
state +6 startent
# come here #goneby #gonepast

may be noise
return via ref coords
since 1st guessbad
clear clear lunaflag

sequencing is as follows:
huntest the super-circular phase
spacecraft in pitch and yaw
an exit is made

start targeting
come here
go get it
getvel getunitv geteta getangle dad

dad argument is zero
sign may become erratic very near target due to loss of precision
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Pinball Noun Tables

Straight fractional arithmetic
whole hours whole minutes seconds

(ALARM) (STRAIGHT) (ALARM)
interpretation use arithmetic

nautical miles 				   use constant code numbers
velocity							      use noun tables

elevation degrees			  use octal loads
inertia							       use major part

thrust moment					    use minor part
position 6						     use decimal only

drag acceleration			  use display verb
alarm if an attempt is made to load

reading routines
if the noun is mixed or normal

if the noun is mixed
astronaut total attitude

first mixed noun
please perform

time of landing
time to perigee
time of ignition
time of event
time to go
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Of Next Burn

Target								       Each
Azimuth							       Whole

Apogee								       Latitude
Longitude						      Attitude

this vehicle weight		 other vehicle weight

splash error					    heads up

range to splash				   star code

horizon data					    half unit sun or planet

preferred attitude		  each whole yoptics
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Alarm and Abort

Alarm
Alarm 2
Bortent
Larment

Add super bits

is anything in failreg
yes try next reg

returns to the user
from the astronaut

leave L alone
don’t move

whimper
resume
enema

Don’t do poodoo. Do bailout.

mr. klean
curtains inhint

save users
don’t move
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To Load into Smode

Starting verb erasable
memory fixed memory

octal everything 
normal and alarm
in idle loop

the failreg set
turns on the alarm light
the operator
initiated fresh start

three failregs
since the last man
show-banksum
the bugger word
erasable accomplished

exception is a restart
unless there is evidence to doubt
in which case program
equals				    selfret
equals				    is it necessary
equals				    new job

illegal option
go to idle loop

Charley, come in here
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Waitlist

Call a program
(Called a task)
which is to begin
the meaning of these lists

follow		  					    warnings 						      taskover
under interrupt inhibited
time in centiseconds
to task start

twiddle is for eliminating the need
saving a word
twiddle is like waitlist
fresh start 				   endtask 							      all counters ticking

processing time and the possibility
if twiddling task will remain in L
fixdelay and vardelay
saved during delay

distinguishable by its
drift flag					    someone else					    compensate for coefficients
enable every delay
overflow has occurred

thus there need be no concern over a previous or imminent overflow
dummy task					    fixed it							      no room in the inn
can’t get here			  only the first exit		 to the caller of longcall
now exit properly
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Goneby

Gone past target
neg if will fall short

this way for dap
count tinythet enter

scale up factor up storekat
forehunt #initialize huntest

must go after forehunt for restarts
otherwise lewd barely1 fact2

truncated halve push overlapping
final phase range

DAD	 DAD
DAD	 DAD

Getlewd storedlewd #if lewd+dlewd neg
Roll over top, regardless

push up lad ballistic phase
push up here

prefinal came but of
steeroff #precautionary

back table jj cannot be zero
extend extend interpret

and fall into glimiter section
dance		  disk and dance
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Fresh Start

Slap1
Man initiated fresh start
execute startsub

clear fail registers
initialize flagwords
goprog major code change enema

Mr. Klean comes here from pinball
does most of the work
same story

P00KLEAN GOJAM
we are in a restart loop
MASK EXTEND START

(This might happen again)
Enema killed waitlist
and biases thus

Do not use enema without consulting P00H people
Depressed rand reject
standby 

GOTOP00H rendezvous
to continue
from astronaut
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Star Tables

Startab							       X
COUNT stars					     Y
# star 37						      Z

# star 36						      X
# star 35						      Y
# star 34						      Z

# star 33						      X
# star 32						      Y
# star 31						      Z

# star 30						      X
# star 29						      Y
# star 28						      Z

# star 27						      X
# star 26						      Y
# star 25						      Z

# star 24						      X
# star 23						      Y
# star 22						      Z

# star 21						      X
# star 20						      Y
# star 19						      Z

# star 18						      X
# star 17						      Y
# star 16						      Z
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# star 15						      X
# star 14						      Y
# star 13						      Z

# star 12						      X
# star 11						      Y
# star 10						      Z

# star 9							      X
# star 8							      Y
# star 7							      Z

# star 6							      X
# star 5							      Y
# star 4							      Z

# star 3							      X
# star 2							      Y
# star 1							      Z
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Time of Free Fall

Add moon
Accept different earth/moon scales

angular momentum
mu semi latus rectum

it is the user who knows
if earth origin

if moon origin
the user must release

at present it is not deemed necessary
the program will save earth or moon

call yourmu
debris from dad

save keep get store push
not so accurate, but ok

bairnsfather accept different moon
improve a general conic

not meaningful
not defined

correct
alarms: none

near Earth add accept 
the free-fall call call arbitrary
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user must positive flight time 
this option is no longer used

and will be destroyed
not touched

left by user
continue free fall 

otherwise save
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Jet Selection Logic

#				   BIT NO. 11  10   9			   NO. OF ROLL JETS
#
#					    0   0   0									         -2
#			   		 0   0   1									         -1
#			   		 0   1   0									          0
#					    0   1   1									         +1
#					    1   0   0									         +2

Examine the translation
pick up for lem

no lem zero all requests
pitch flag for real quad failures

if failures are present 
look up 

yaw jet commands
rbdfail masks for pitch perform

roll commands
contain the magnitude

an undesireable roll
no failures may be satisfied simultaneously

in which case the astronaut should 
satisfy the roll commands 

facilitate the logic
translations can produce rotations

nevertheless, we must
it is necessary
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Lunar and Solar Ephemerides Subroutines

The sun and the moon relative to the Earth
by the user

in the computer
in the form of 

a 15 day interval
the position vectors of the sun and the moon

velocity vector of the moon
of the sun calling time 

at the center of the range 
erasable data 

of the sun
in meters res
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Erasable Assignments

X equals start
registers included
the nature of permanence
the mission
for one purpose
and cannot be shared
it need not be
active in parallel
probably temporary
out means output
thrust equals 55
rolljets equals 6
flagwords freeflag goneby glokfail
kflag lunaflag quitflag
knownflg rndvzflg
sourceflg stateflg
strikflag targ1flg targ2flg
of state without
solar perturbations 
moon is sphere of earth
is sphere of influence 
Moonbit primary planet 
different same
running not running
initiated not initiated
in time critical
not in time critical
allowed not allowed
two jet rcs burn
four jet rcs burn
compute earth
use fixed moon
sighting landmark
sighting star
disregard radar
steering burn
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Erasable Assignments 2.0

First pass succeeding 
pass thru star 
occulted star not occulted

matrix valid for W
matrix invalid for 
no higher priority

transearth slow down is not slow
is desired
body rates computed

do not terminate
tig has arrived
astronaut has astronaut has not

on lunar surface surfbit			   closure exists
infinity required
inhibited near 360 degrees

moon vicinity earth vicinity
are not equals due to wiring
state erase

interpretive trace
mixnoun fetch
code equals must mixtemp

switch bit within the switch word
erase dynamically
erase location associated with job
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blankset erase
pushloc erase
priority erase

erase present job and work area
erase space craft
erase staralign

Do not share.
If other users materialize
holdflag

low thrust
longexit erase
restart star 

save wango
rollfire slope
rollword last variable

equals zeroed
is zeroed Saturn boost
argument for Polly

body3 body2 body1
oldboy1 oldboy2 oldboy3
return-to-earth
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Antenna

Salt gets 
us here
on and 
aligned
interpret
earth=0
moon=2
move ratt 
to prevent 
wipeout
stable 
member 
zero out
yawang 
transformation
call store R
NoAdjust
Revolutions Scaled
Is Bit 5 still on
MASK BIT5
EXTEND 
ENDEXT

No, we have been answered



Part Two:   
64 Found Bits (8 poems made of 8 octets of erasure)
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ANGLFIND

# Page 399 PICK UP CURRENT CDU ANGLES 
# STORE THE INITIAL S/C ANGLES
# COMPUTE THE TRANSFORMATION FROM $2
								        MIS								        TRANSPOSE
# COMPUTE THE TRANSFORMATION FROM
FINAL TO STABLE 	
# TMIS = TRANSPOSE(MIS) SCALED BY 2
PROCEED ACCORDING TO ITS MAGNITUDE

# CALCULATE AM 
					     DLOAD			   DAD
								        CHECKMAX
					     EXIT		 					     # MANEUVER LESS THAN 0.25 DEG
					     INHINT								       # GO DIRECTLY INTO ATTITUDE HOLD
					     CS			  ONE				    # ABOUT COMMANDED ANGLES
					     TS			  HOLDFLAG	# NOGO WILL STOP ANY RATE AND SET UP 
					     TC			  LOADCDUD	# GOOD RETURN
		
					     TCF		  NOGO
CHECKMAX		 DLOAD			   DSU
								        AM
								        MAXANG
					     BPL		  VLOAD
								        ALTCALC				    # UNIT
								        COFSKEW				    # COFSKEW
								        STORECOF				   # COF IS THE MANEUVER AXIS

SEE IF MANEUVER GOES THRU 
I AM GREATER THAN 
																							                       SCALED B 4
CALCULATE ROOT									        $ ROOT 2		
$ROOT2
																							                       $ROOT 
DETERMINE LARGEST 						    
ADJUST ACCORDINGLY
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					     METHOD1		  LOCSKIRT
METHOD2
										          OCSKIRT
															               SIGN OF UZ OPPOSITE 
					     GOTO				   CSKIRT
METHOD3		  MATRIX OPERATIONS MULTIPLIES 2 3X3 MATRICES 
					     AND LEAVES 
					     DEFINE SKIRT
						    
							       PUSH				 
										          GOTO
MATRIX
															               # ENTER WITH MATRIX IN PD LIST
RETURN WITH 
MINANG					    DEC		  .00069375
MAXANG					    DEC		  .472222
LOCK CONSTANTS

# NGL = BUFFER ANGLE (TO AVOID DIVISIONS BY ZERO) = 2 DEGREES
SD					    DEC	 .433015			   # = SIN(D)										         $2
K3S1				   DEC	 .86603				   # = SIN(D)										         $2
K4					    DEC	 -.25					    # = -COS(D)									         $2
K4SQ				   DEC	 .125					    # = COS(D)COS(D)							       $2
SNGLCD			  DEC	 .008725			   # = SIN(NGL)COS(D)	 					     $2
CNGL				   DEC	 .499695			   # = COS(NGL)									        $2
READCDUK		 INHINT			  # LOAD T(MPAC) WITH THE CURRENT CDU ANGLES

TO COMPUTE DIRECTION 	SET 	STORE		  LOOPS LOAD 		  LOGIC THE SIN
WITH THE SIN SCALED STA R				    PUSH PUSH UP 					    EQUALS
WHERE U IS A UNIT A IS THE ANGLE
CONTAINS THE TERMS 		 PUSH 														              DAD 
CAN BE WRITTEN AS*** 	THE COMPLEMENT
WILL BE LEFT 					    WHERE
QUADRANT 						      TERMINATING
ZEROERROR 						     # GOODEND												            ENDOFJOB
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CM_BODY_ATTITUDE

BODY ANGLES VALID AT PIP TIME 
SAVED DURING 			  READ
LET INTERPRETER SET 		  POSE				 
INTPRET					     # COME HERE 			  VIA 		 AVE 		 EXIT
PROVIDE A STABLE
UN FOR THE END 
OF THE TERMINAL PHASE.
SPVQUIT					     DEC	 .019405						      # 1000/ 2 VS

					     TIX,1	 VLOAD						      # IF V-VQUIT POS, BRANCH
								        CM/POSE2			  # SAME UYA IN OLDUYA
					     OLDUYA								       # OTHERWISE CONTINUE TO USE OLDUYA
CM/POSE2		 STORE	 UYA/2				    #										         REF COORDS
STORE			   OLDUYA								       # RESTORE, OR SAVE AS CASE MAY BE.
					     VXV		  VCOMP
								        UXA/2				    # FINISH OBTAINING TRAJECTORY TRIAD.
															               # NOISE WON’T OVFL

					     TLOAD			   EXIT			  # ANGLES IN MPAC IN THE ORDER
														              # -( (ROLL, BETA, ALFA) /180)/2
								        6D						     # THESE VALUES CORRECT AT PIPUP TIME.
# BASIC SUBROUTINE TO UPDATE ATTITUDE ANGLES
		  INHINT
										          # MUST REMAIN INHINTED UNTIL UPDATE OF BODY
										          # ANGLES, SO THAT GAMDIFSW IS VALID FIRST PASS
										          # INDICATOR.
										        
					     MASK		 BIT11				    # GAMDIFSW=94D BIT11		  INITLY=0
					     EXTEND							      # DON’T CALC GAMA DOT UNTIL HAVE FORMD
														              # ONE DIFFERENCE.
					     BZF		  DOGAMDOT			  # IS OK, GO ON.
					     ADS		  CM/FLAGS			  # KNOW BIT IS 0
					     TC			  NOGAMDOT			  # SET GAMDOT = 0
DOGAMDOT		 CS		 L
					     AD			  GAMA					    # DEL GAMA/360= T GAMDOT/360
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NOGAMDOT		 CA		 ZERO						     # COME HERE INHINTED
					     TS		 EBANK
							       EBANK=					    PHSNAME5
							       EXTEND
				    DCA		  REPOSADR				   # THIS ASSUMES THAT THE TC  PHASCHNG
				    DXCH		 PHSNAME5				   # IS NOT CHANGED IN					    OCT 10035
				    CA			  EBAOG
				    TS			  EBANK

				    EXTEND									        # IGNORE GAMDOT IF LEQ .5 DEG/SEC
				    BZMF		 +3							      # SET GAMDOT=+0 AS TAG IF TOO SMALL
NOGAMDOT	CA			  ZERO						     # COME HERE INHINTED
				    TC			  CORANGOV				   # CORRECT FOR OVFL IF ANY
				    SU			  ROLL/PIP				   # GET INCR SINCE PIPUP
				    AD			  ROLL/180				   # ONLY SINGLE OVFL POSSIBLE.
				    CS			  MPAC +2					     # GET (ALFA EUL/180) /2
				    DOUBLE									        # SAME AS FOR ROLL.  NEEDED FOR EXT

REDOPOSE	EXTEND									        # RE-STARTS COME HERE
				    DCA		  TEMPROLL
				    DXCH		 ROLL/180
				    TC			  INTPRET					     # CAN’T TC DANZIG AFTER PHASCHNG.
CM/POSE3		 VLOAD		  ABVAL				    # RETURN FROM CM/ATUP.
							       VN					    # 2(-7) M/CS
				    STORE			   VMAGI						      # FOR DISPLAY ON CALL.
				    GOTOPOSEXIT						      # ENDEXIT, STARTENT, OR SCALEPOP.

				    INDEX	 A
				    CA			  LIMITS
				    ADS		  L
				    TC			  Q					    # COSTS 2 MCT TO USE.  SEE ANGOVCOR.
-KVSCALE	2DEC		 -.81491944	# -12800/(2 VS .3048)
TCDU			  DEC		  .1					    # TCDU = .1 SEC.
				    EBANK=			  AOG
REPOSADR		 2CADR		  REDOPOSE
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CONIC_SUBROUTINES 

SOLVE VARIOUS PROBLEMS INVOLVING THE TRAJECTORY PRODUCED BY A 
CENTRAL INVERSE-SQUARE FORCE ACTING ON A POINT MASS
A GENERAL USAGE POINT-OF-VIEW WAS TAKEN IN FORMULATING, 
THAT ONLY ONE SET OF CODING IS USED, WHETHER THE
EARTH, MOON, OR ANY OTHER CELESTIAL BODY IS SPECIFIED AS THE CENTRAL 
TO INTERRUPT EACH OTHER.  IT IS UP TO THE USER TO GUARANTEE THIS 
# MOD BY KRAUSE					    ASSEMBLY -- COLOSSUS 103 AND SUNDANCE 222
# MOD NO. -- 2 (AUGUST 1968)

#		 THIS SUBROUTINE, GIVEN AN INITIAL STATE VECTOR AND THE DESIRED 
#		 BE UPDATED ALONG A CONIC TRAJECTORY, COMPUTES THE NEW, 
UPDATED STATE VECTOR.  THE TRAJECTORY MAY BE ANY CONIC
#		 SECTION -- CIRCULAR, ELLIPTIC, PARABOLIC, HYPERBOLIC, OR 
RECTILINEAR WITH RESPECT TO THE EARTH OR THE MOON. THE
											           DLOAD			   DAD
#											          TDESIRED
#											          SOMETIME

# DEBRIS --PARAMETERS WHICH MAY BE OF USE --
RTNLAMB (SP), PLUS PUSHLIST REGISTER 0 THROUGH 41D
#					    ADDITIONAL INTERPRETIVE SWITCHES USED -- INFINFLG, 360SW,
SLOPESW, ORDERSW
# FUNCTIONAL DESCRIPTION --
TRUE-ANOMALY-DIFFERENCE THROUGH WHICH THE
#		 CIRCLE, ELLIPSE, PARABOLA, OR HYPERBOLA WITH RESPECT TO THE 
EARTH OR THE MOON.  THE USE OF THE SUBROUTINE CAN BE

FIRSTIME
					     SR1		  BOFF
								        DELDEP						     # DISREGARD IT TO FIND MIN.
# TRIAL DELINDEP WOULD EXCEED MIN BOUND
								        NEWDEL
FIRSTIME		 DLOAD			   DMP
								        TWEEKIT					     # DLOAD TWEEKIT(40D) SENSITIVE TO
CHANGE.		  PDDL		 DMP				    # S2(41D) SHOULDN’T CONTAIN HI ORDER 
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TARGETV					     DLOAD			   CALL
								        LAMENTER
								        BADR2
					     SQRT		 SIGN
					     SR1		  BOV				    # SCALE BACK DOWN TO NORMAL
								        COMMNOUT
								        INFINAPO
INFINAPO		 DLOAD			   GOTO					    # RETURNS WITH APOAPSIS IN MPAC, 

					     2DEC		 .203966 E-8 B+28	 # 1/MUM
					     2DEC*	 2.21422176 E4 B-15*		 # SQRT(MUM)
					     2DEC*	 .45162595 E-4 B+14*		 # 1/SQRT(MUM)
# GEOMSGN	 ERASE	 +0
# GUESSW								       # 0 IF COGA GUESS AVAILABLE, 1 IF NOT
# COGA						     ERASE	 +1			  # INPUT ONLY IF GUESS IS ZERO.
# 0 IF UN TO BE COMPUTED, 1 IF UN INPUT
# ONLY USED IF NORMSW IS 1

# ONLY USED IF GUESSW IS 0
# AVAILABLE ONLY IF VTARGTAG IS ZERO.
# V1VEC					     EQUALS		 MPAC
# DEBRIS --
# RTNTR					     EQUALS		 RTNLAMB
# RTNAPSE	 EQUALS				   RTNLAMB
# SCNRDOT	 ERASE	 +0
# RDESIRED	ERASE	 +1

# ITERATOR SUBROUTINE
# ORDERSW
MAX				    EQUALS				   14D				    # CLOBBERS 1/MU
MIN				    EQUALS				   8D
TWEEKIT				    EQUALS			  40D
# MORE KEPLER
# MORE LAMBERT
# EPSILONL	EQUALS		 EPSILONT +2		  # DOUBLE PRECISION WORD
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STABLE_ORBIT

#		 ASTRONAUT REQUEST THRU DSKY
#		 (1)	 SOI MANEUVER
#				   DURING THE TRANSFER FROM TIG TO TIME OF INTERCEPT
#				   (C)  DELTAR	 THE DESIRED SEPARATION OF THE TWO VEHICLES
#				   (D)  DELTTIME				   THE TIME REQUIRED TO TRAVERSE DELTA R 
#										         TRAVELING AT A VELOCITY EQUAL TO THE 
#										         VELOCITY OF THE PASSIVE VEHICLE - SAVED FROM
#				   (E)  TINT		  TIME OF INTERCEPT (SOI) - SAVED FROM SOI PHASE

#								       (FOR SOI ONLY)
#		 (5)  POSTTPI	PERIGEE ALTITUDE OF ACTIVE VEHICLE ORBIT AFTER
#								       THE SOI (SOR) MANEUVER
#		 (6)  DELVTPI	MAGNITUDE OF DELTA V AT SOI (SOR) TIME
#		 (7)  DELVTPF	MAGNITUDE OF DELTA V AT INTERCEPT TIME
#		 (8)  DELTA 	 VELOCITY AT SOI (AND SOR) - LOCAL VERTICAL
#		 AVFLAGA			   #		 AVFLAGP			   #		 GOTOP00H
#		 BLANKET			   #		 ENDOFJOB			  #		 MAINRTNE

PREC/TT
UPDATFLG
				    CALL
								        PREC/TT
				    SET			   DAD
				    BOFF			  DLOAD
								        OPTNSW
								        OPTN2
				  
				    CALL
								        S3435.25
TEST3979	BOFF			  BON
								        P39/79SW
#		 ASTRONAUT REQUEST THRU DSKY
#								       SAVED FROM P38/P78
#		 (1)  TRKMKCNT			  NUMBER OF MARKS
#		 (2)  TTOGO		 TIME TO GO
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# OTHER VEHICLE ACTIVE 
								        EXTEND
				    DCA			   PTIGINC
P39/P79A	DXCH			  KT					    # TIME TO PREPARE FOR BURN
				    TC				   P20FLGON		 # SET UPDATFLG, TRACKFLG
				    TC				   INTPRET
				    SET			   CALL
#		 TIMETHET

								        OTHERV
				    CALL
# Page 532
								        CSMPREC
				    GOTO
								        RTRN
OTHERV						     CALL
#		 GOTOP00H

VNDSPLY					     EXTEND						     # FLASH DISPLAY
				    TS				   VERBNOUN
				    CA				   VERBNOUN
				    TCR			   BANKCALL
				    CADR			  GOFLASH
				    TCF			   GOTOP00H		 # TERMINATE
				    TC				   RTRN				   # PROCEED
				    TCF			   -5				   # RECYCLE

V06N33SR	VN				   0633
V06N55SR	VN				   0655
V04N06SR	VN				   0406
V06N57SR	VN				   0657
V06N34SR	VN				   0634
V06N58SR	VN				   0658
V06N81SR	VN				   0681
# *** END OF COMEKISS.020 ***
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PLANETARY INERTIAL ORIENTATION

# PLANETARY INERTIAL ORIENTATION
# ***** RP-TO-R SUBROUTINE *****
# SUBROUTINE TO CONVERT RP (VECTOR IN PLANETARY COORDINATE SYSTEM,
EITHER
# EARTH-FIXED OR MOON-FIXED) TO R (SAME VECTOR IN BASIC REF. SYSTEM)
#			  R = MT(T) * (RP + LP X RP)		 MT = M MATRIX TRANSPOSE
# CALLING SEQUENCE
#			  L 		 CALL

# SUBROUTINES USED
#			  EARTHMX, MOONMX, EARTHL
# 			  ITEMS AVAILABLE FROM LAUNCH DATA
#					    504LM = THE LIBRATION VECTOR L OF THE MOON AT TIME 
TIMSUBL, EXPRESSED
#					    IN THE MOON-FIXED COORD. SYSTEM				    RADIANS B0
#		 ITEMS NECESSARY FOR SUBR. USED (SEE DESCRIPTION OF SUBR.)
#		 MPAC = 0 FOR EARTH, NON-ZERO FOR MOON

					     CALL						     # COMPUTE M MATRIX FOR MOON
								        MOONMX				   # LP=LM FOR MOONRADIANS B0
RPTORA						     CALL					    # EARTH COMPUTATIONS
								        EARTHMX			   # M MATRIX B-1
					     CALL
								        EARTHL				   # L VECTOR RADIANS B0
					     MXV		  VSL1			  # LP=M(T)*L 		 RAD B-0
								        MMATRIX

# SUBROUTINE TO CONVERT R (VECTOR IN REFERENCE COORD. SYSTEM) TO RP
# CALLING SEQUENCE
R-TO-RP					     STQ		  BHIZ
								        RPREXIT
								        RTORPA
					     CALL
								        MOONMX
					     VLOAD				    VXM
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					     GOTO
								        RPREXIT
RTORPA						     CALL					    # EARTH COMPUTATIONS
								        EARTHMX
					     CALL
								        EARTHL
					     GOTO						     # MPAC=L=(-AX,-AY,0) 		 RAD B-0
								        RTORPB

								        AZO
								        WEARTH
					     PUSH		 CALL
								        NEWANGLE
					     SETPD	 PUSH			  # 18-19D=504AZ
								        18D			   #						      COS(AZ)   SIN(AZ)     0
					     COS		  PDDL			  # 20-37D=  MMATRIX=		 -SIN(AZ)   COS(AZ)     
0    B-1
				  

DCOMP			   PDDL
								        504AZ
					     COS		  PDVL
								        HI6ZEROS
					     PDDL		 PUSH
								        HIDPHALF
					     GOTO
						      		  EARTHMXX

AVECTR						     =		 20D				    # 6				    A VECTOR (MOON)
BVECTR						     =		 26D				    # 6				    B VECTOR (MOON)
504F				   =		 6D						     # 2				    F(MOON)
NODDOT					    2DEC		 -.457335121 E-2		 # REVS/CSEC B+28=-1.07047011 
NODIO					     2DEC		 .986209434		 # REVS B-0   = 6.19653663041		 RAD
FSUBO			   2DEC	.829090536		 # REVS B-0	= 5.20932947829		 RAD
BSUBO					     2DEC		 .0651201393		  # REVS B=0		 = 0.40916190299	 RAD
WEARTH			  2DEC	.973561595		 # REVS/CSEC B+23= 7.29211494 E-5  RAD/SEC
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P11

#								       DESIRED ATTITUDE IS AS STORED AT L.O.
#		 B) FROM RPSTART TO POLYSTOP (APPROX. +10 TO +133SECS AFTER LO)
#								       DESIRED ATTITUDE IS SPECIFIED BY CMC PITCH AND ROLL
#				    POLYNOMIALS DURING SATURN ROLLOUT AND PITCHOVER
#								       THE DISPLAY IS RUN AS LOW PRIORITY JOB APPROX.
#								       EVERY 1/2 SEC OR LESS AND IS DISABLED UPON OVFLO OF 
# SUBROUTINES CALLED
#		 CLEANDSP		 DANZIG

# ASTRONAUT REQUESTS (IF ALTITUDE ABOVE 300,000 FT)
#		 IF ASTRONAUT HAS REQUESTED ANY OF THESE DISPLAYS HE MUST
# HIT PROCEED TO RETURN TO NORMAL NOUN 62 DISPLAY.
#		 ASTRONAUT	 VERB 37 ENTER 00 ENTER
# ERASABLE INITIALIZATION
#		 CLEAR ERADFLAG
# DEBRIS
#		 BODY1, BODY2, BODY3

DXCH	-PHASE5					     # INACTIVE GROUP 5, PRELAUNCH PROTECTION
P11+7			   EXTEND
								        LAUNCHAZ
					     DAD		  PDDL
					     TCF		  +2					    # CANNOT GET HERE
		  TC			  POSTJUMP
					     CADR		 NORMLIZE		 # DO NORMLIZE AND ENDOFJOB
		  TCF		  REP11A			  -5			  # T2,T1 NOT YET ZEROED, GO AND DO IT

ATERTASK		 CAF		  PRIO1			   # ESTABLISH JOB TO DISPLAY ATT ERRORS
					     TC			  FINDVAC					     # COMES HERE AT L.O. + .33 SEC
					     EBANK=			  BODY3
					     2CADR			   ATERJOB
					     CS			  RCSFLAGS		 # SET BIT3 FOR
					     MASK		 BIT3				   # NEEDLER
					     TC			  TASKOVER
GETDOWN			   STQ		  SETPD
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					     TC			  ENDOFJOB		 # STAURN STICK ON -- KILL JOB
					     CAF		  BIT10    # CHECK IF S/C CONTROL
		  CCS     SATSW      # IT IS NOT -- WAS IT ON LAST CYCLE
					     DAD		  DSU				    # ASSUMING X(SM) ALONG LAUNCH AZIMUTH,
					     PUSH							      # LET R(RAD) = 2*PI*ROLL(REV)
					     SIN		  PUSH
					     PUSH		 CALL				   #      MGC    OGC
					     DAD		  SR2				    # CHANGE SCALE OF AK TO 2REVS
				  
					     GOTO
					     DMP		  PUSH
					     DAD		  SL1
					     TC			  ATERJOB				    # END OF ATT ERROR DISPLAY CYCLE
TAKEON			  CAF		  BIT9     # ENABLE
				         AMOONFLG
EARTHALT     BDSU
				    EXTEND									        # IS COMPLETED

				    EXTEND
				    EXTEND									        # ROLLOUT COMPLETED
#		 ASTRONAUT MAY REQUEST SATURN TAKEOVER THROUGH
#		 EXTENDED VERB 46 (BITS 13,14 OF DAPDATR1 SET ).
#		 COMMANDS AND IT TRANSMITS THESE TO SATURN AS DC
#		 VOLTAGES.  THE VALUE OF THE CONSTANT RATE COMMAND
#		 IS 0.5 DEG/SEC.  AN ABSENCE OF RHC ACTIVITY RE-
#		 VERB 46 ENTER				   (SEE ASTRONAUT ABOVE)
		
				    CADR			  ZEROJET				    # LEAVE THE T6 CLOCK DISABLED
				    SBANK=			  LOWSUPER
				    SETLOC					    P11FOUR
				    QXCH			  QRUPT
				    RXOR			  CHAN31				   # CHECK IF MAN ROT BITS SAME
				    CADR			  STICKCHK		 # FOR PITCH YAW AND ROLL
				    CADR			  NEEDLER
				    TCF			   RESUME				   # END OF SATURN STICK CONTROL
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# Filename:INTERPRETER.agc

DANZIG						     CA			  BANKSET								        # SET BBANK BEFORE 
DIRADRES		 INDEX	 LOC								        # LOOK AHEAD TO NEXT WORD TO SEE 
					     NOOP
					     MASK		 HIGH4								        # IF ADDRESS GREATER THAN 2K, 
					     EXTEND
					     ADS		  ADDRWD								       # DO AUGMENT, IGNORING AND 
# LIST.  IN MOST CASES THE MODE OF THE RESULT (VECTOR OR SCALAR) OF
THE LAST ARITHMETIC OPERATION PERFORMED

# IS THE SAME AS THE TYPE OF OPERAND DESIRED (ALL ADD/SUBTRACT ETC.). 
EXCEPTIONS TO THIS GENERAL RULE ARE LISTED
#					    RESULT, VXSC WANTS A SCALAR.
					     MASK		 CYR			   # 20, THIS OP REQUIRES SPECIAL ATTENTION.
					     INDEX	 A				   # NO -- THE MODE IS DEFINITE.  PICK UP THE
					     TCF		  UNAJUMP				    # 1-4 OF A (ZERO, EXIT, HAS BEEN 
					     TCF		  DAD			   # 34 -- DP ADD.
					     TCF		  LXA			   # 02 -- LOAD INDEX FROM ERASABLE.

# THE FOLLOWING JUMP TABLE APPLIES TO UNARY INSTRUCTIONS
					     MASK		 LOW8
# SSP (STORE SINGLE PRECISION) IS EXECUTED HERE.
SSP				    INCR		 LOC			   # PICK UP THE WORD FOLLOWING THE GIVEN
					     EBANK=			  1400				   # SO YUL DOESN’T CUSS THE “CA 1400” 
					     READ		 LCHAN					     # DCA 0 OR DCS 0
DAD				    EXTEND
SETOVF				   TC		 OVERFLOW

OVERFLWZ		 TS			  L				   # ENTRY FOR THIRD COMPONENT.
OVERFLWY		 TS			  L				   # ENTRY FOR SECOND COMPONENT.
OVERFLOW		 INDEX	 A				   # ENTRY FOR 1ST COMP OR DP (L=0).
					     TC			  Q				   # NO OVERFLOW EXIT.
					     TCF		  NEWMODE
# THE FOLLOWING IS THE PROLOGUE TO V/SC.  IF THE PRESENT MODE IS 
VECTOR, IT SAVES THE SCALAR AT X IN BUF
SHORTT						     CAF		  SIX				    # SCALAR SHORT SHIFTS COME HERE.  
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TSSR				   INDEX	 SR				   # GET SHIFTING BIT.
					     CCS		  CYR			   # SEE IF A ROUND IS DESIRED.
RIGHTR						     TC		 MPACSRND		 # YES -- SHIFT RIGHT AND ROUND.
					     TS			  MPAC +2				    # AND ROUND.)
# ROUTINE FOR SHORT SCALAR SHIFT LEFT (AND MAYBE ROUND).
					     CA			  MPTEMP					    # SEE IF SHIFT COUNT LESS THAN 14D.
					     BZMF		 VSSR				   # IF SO, BRANCH AND SHIFT IMMEDIATELY.
					     TC			  SETROUND		 # X COMPONENT NOW SHIFTED, SO MAKE UP 

SMPAC+						     AD		 -1/2+2						     # SEE IF ARGUMENT GREATER
					     DXCH		 MPAC				   # WE WILL TAKE THE SQUARE ROOT OF 
ARGHI			   CAF		  SLOPEHI				    # ARGUMENT BETWEEN .25 AND .5, GET 
					     AD			  BIASHI					    # X0/2 = (MPAC/2)(SLOPHI) + BIASHI/2.
ARGLO						      CAF		  SLOPELO				    # (NORMALIZED) ARGUMENT 
					     AD			  BIASLO 
					     EXTEND							      # IF SO, WE LOST (OR GAINED) PI, SO
					     DOUBLE							      # MAGNITUDE.  IF SO, REDUCE IT TO 

					     DOUBLE
					     TCF		  ACOSST				   # START IMMEDIATELY IF POSITIVE.
ACOSST						     CS			  HALF		 # TEST MAGNITUDE OF INPUT.
					     TCF		  ACOSOVF			   # THIS IS PROBABLY AN OVERFLOW 
					     TC			  ESCAPE
					     CCS		  MPTEMP				   # SEE IF UN-NORMALIZATION 
					     CAF		  LBUF2				    # DO FINAL MULTIPLY AND GO TO ANY
LDANZIG					     TCF		  DANZIG

ACOSOVF					     EXTEND							      # IF MAJOR PART WAS ONLY 1 
ACOSABRT		 TC			  ALARM				    # IF OVERFLOW, CALL ANSWER ZERO 
					     INDEX	 FIXLOC				   # SLOW IN THIS CASE, BUT SAVES 
# THE ADDRESS ITSELF IS MADE UP BY THE YUL SYSTEM ASSEMBLER
					     EXTEND							      # DISPATCH SWITCH BIT OPERATION 
					     TS			  STATE				    # NEW SWITCH WORD.
					     MP			  POLISH				   # CODE.
		  +13D		 TCF		  DANZIG				   # 11 -- NOOP.
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# Mod history: 2009-05-13 RSB Adapted from the Colossus249/ file of 
#								       the same name, using Comanche055 page images.

# DEBRIS....
#		 MUCH, SHAREABLE WITH RCS/ENTRY, IN EBANK6 ONLY
# PITCH TVCDAP STARTS HERE....(INCOPORATES CSM/LEM DAP FILTER, MODOR 
PITCHDAP		 LXCH		 BANKRUPT		 # T5 ENTRY, NORMAL OR VIA DAPINIT
PSTROKER		 CCS		  STROKER				    # (STRKFLG) CHECK FOR STROKE TEST
					     TC			  HACK				   # TEST-START OR TEST-IN-PROGRESS
					     TCF		  +2					    # NO-TEST
					     TC			  HACK				   # TEST-IN-PROGRESS

PCDUDOTS		 CAE		  CDUY				   # COMPUTE CDUYDOT (USED BY PITCH AND 
YAW)
					     EXTEND
					     TCR		  RLIMTEST		 #		 RATE TEST
					     CAE		  CDUZ				   # COMPUTE CDUZDOT (USED BY PITCH AND 
					     EXTEND
RLIMTEST		 TS			  TTMP1					     # TEST FOR EXCESSIVE CDU RATES
(GREATER

PERIOD
					     EXTEND
PINTEGRL		 EXTEND								       # COMPUTE INTEGRAL OF BODY-AXIS
PITCH-RATE
					     DCA		  PERRB			   #		 ERROR, SC.AT B-1 REVS
					     CS			  COSCDUZ				    # PREPARE BODY-AXIS PITCH RATE, 
OMEGAYB
					     MP			  COSCDUX

					     EXTEND								       # PICK UP -OMEGAYB (SIGN CHNG, 
PERORLIM		 TCR		  ERRORLIM		 # PITCH BODY-AXIS-ERROR INPUT LIMITER
PFORWARD		 EXTEND								       # 		 PREPARE THE FILTER STORAGE 
					     TCR		  FWDFLTR				    # GO COMPUTE PRESENT OUTPUT
													             # (INCLUDES VARIABLE GAIN PACKAGE)
POFFSET					     EXTEND
POUT				   CS			  PCMD				   # INCREMENTAL PITCH COMMAND
													             #		 PROTECT. SINCE ERROR CNTR ZEROED)
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					     CAF		  BIT11			   # BIT FOR TVCPITCH COUNT RELEASE
PCOPY			   INCR		 TVCPHASE		 # RESTART-PROTECT THE COPYCYCLE.	(1)
													             #		 PACKAGE, SHOULD A RESTART OCCUR
					     DXCH		 PERRB
					     CAE		  CMDTMP					    #		 PITCH ACTUATOR COMMAND
# YAW TVCDAP STARTS HERE....(INCORPORATES CSM/LEM DAP FILTER, MODOR
YAWDAP						     LXCH		 BANKRUPT	# T5 ENTRY, NORMAL
					     QXCH		 QRUPT

					     AUTOPILOT (LOW-
YERORLIM		 TCR		  ERRORLIM		 # YAW BODY-AXIS-ERROR INPUT LIMITER
					     ADS		  TVCYAW					    # UPDATE THE ERROR COUNTER (NO 
# SUBROUTINES COMMON TO BOTH PITCH AND YAW DAPS....
					     MASK		 BIT14
					     TCF		  3DAPCAS				    # LEM ON
					     EXTEND						     # (ALSO, SIGN CHANGE IN FORWARD 
					     MP			  VARK				   # SCALED AT 1/(8 ASCREV) OF ACTUAL VALUE
				  
													             # NOTE -- THERE IS AN INHERENT GAIN OF
					     CS			  DAP1		 +1		 # MULTIPLY OUTPUT BY
					     EXTEND								       # SECOND-ORDER NUMERATOR COEFF.
					     CS			  DAP1		 +1		 # MULTIPLY OUTPUT BY
					     MP			  N10		  +4		 # 		 D12
					     CS			  DAP1
					     MP			  N10		  +4		 #		 D12
2CASFLTR		 CAF		  ZERO				   # **** SECOND CASCADE FILTER **********

					     CA			  DAP1		 +1		 # MULTIPLY INPUT BY
					     CS			  DAP2		 +1		 # MULTIPLY OUTPUT BY
					     CAE		  DAPDATR1		 # TEST FOR LEM ON OR OFF
					     TC			  Q					    # EXIT IF LEM OFF
					     EXTEND
					     EXTEND
					     EXTEND
DAPT5			   GENADR		 DAPINIT					     #(BBCON) ALREADY THERE.



Part Three:  
Moonbit: The 64 Bit Poem Breakdown
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Anglfind

Pick up angles
compute mis compute
from final to stable

transpose proceed calculate Dad
Checkmax exit hint
direct CS One nogo will stop good return

go max load
am maxang vload
altcalc unit skew store is the maneuver

if I am greater than 
scale $ root 2				   $root2 				    $root
large adjust accordingly

locskirt			  ocskirt		  sign of cskirt	
matrix operations multiplies and leaves
define skirt

push go to matrix enter
return minang maxang lock contants
avoid divisions by zero

sin $2 sin $2
cos $2 cos $2
sin(ngl)cos(d)

$2		 read		 hint
with the current
logic the sin

scaled star
where u is a unit a is the angle
Dad complement will be left terminating #goodend
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Body Attitude	

Provide a stable un end of the phase quit 
load branch same uya in olduya
store old uya or save as case may be
finish obtaining trajectory triad

is ok, go on
come here

this assumes that the name is not changed
ignore gam if leq
tag if too small
come here 			  hint

gov correct if any
roll single
get double
same as needed for dop			   e			  extend

re-starts come here
can’t danzig
after phaschng
return store magic pop

limit costs 2 r re red
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Conic Subroutines

Solve various problems produced by a force 
acting on a general usage point-of-view
only one set of coding is used

the earth, moon, or any other celestial body
interrupt each other. It is up to the user
Colossus 103 and Sundance 222 (August 1968)

Desire updated trajectory may be
circular, elliptical, parabolic, hyperbolic, or rectilinear
respect to the earth or the moon

dad desired time
debris may be of use
lamb push fin slope

function true-anomaly-difference
circle, ellipse, parabola, or hyperbola 
with respect to the earth or the moon

Firstime boff 
disregard trial would exceed newdel
firstime sensitive to change. 

Hi
Call lamenter
bad sign

scaled back down
commnout infinapo 
returns
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/MUM 				    (MUM)					     SQRT(MUM)
Erase guess if guess is zero
if input norm

only used if guessw is 0
if vtargtag is zero
equals debris lamb la				   b

erase desire iterator orders
clobber equals tweekit
more kepler	 more lambert	equals double precision
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Stable Orbit

Astronaut request soi maneuver
from tig to time

deltar the desired
the time required

to traverse delta
equal to the saved 

for the soi (sor) maneuver
magnitude time

magnitude of flag 
flag						     gotop00h blanket 

call dad boff dload
call boff bon

astronaut request thru dsky
Saved from marks

time to go
time to prepare for burn

call meth
call other

gotop00h proceed recycle
End of comekiss
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Planetary Inertial Orientation

Either Earth-fixed or Moon-fixed
matrix transpose calling L
EarthMx, MoonMx, EarthL
the libration of the moon expressed
0 for Earth, non-zero for Moon
compute M matrix for Moon
MoonMX Moonraidans
#Earth computations EarthMX
reference sequence bhiz
rprexit call moonmx 
vload rprexit call #Earth computations 
EarthMX call EarthL WEarth push call
Newangle push goto Earth
Avectr Bvectr F(Moon) NoDio WEarth
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P11

Desire after desire
During Saturn rollout and pitchover
run as low priority
disabled called danzig

astronaut requests he must return to normal
astronaut erasable
clear debris
Body1, Body2, Body3

Prelaunch protection
P11 + 7 
launchaz Dad
cannot get here
postjump normlize
go and do it

aftertask find Body3
mask task getdown

kill job
check if
it is not – was it on last cycle Dad
push push push Dad

Goto push Dad
error display cycle
takeon
amoonflg
earthalt

extend extend extend
astronaut may request Saturn takeover
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extended verb 46
it transmits
the value of absence
see astronaut above

Zerojet leave the clock disabled
lowsuper p11four Qrupt
check if man rot bits same
for pitch 
yaw
and roll

needle
end of control
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Interpreter

Danzig look ahead
to next word
to see noop
mask high4 extend
augment the result
last arithmetic 
The general wants a mask
requires special attention
No—the mode is definite
pick up the unajump 
dad erasable
the following jump
low8 is executed here
pick up the word
so YUL doesn’t cuss
read Dad extend overflow
Overflwz Overflwy Overflow index
no exit newmode
the following in the prologue
it saves short shifts
come here
I get a round
desired right and round and round
and maybe round
shift and make up
if argument greater
we will take the square root
arghi slopehi biashi
arglo slopelo biaslo
if so, we lost
if so, reduce it to double
acosst start immediately acosst
half this is probably an escape
un-normalization
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go to Danzig
Extend major alarm
slow in this case, but saves
the YUL system assembler
dispatch switch bit
state new switch word
polish code Danzig
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File of the Same Name

Debris…much, shareable
Pitch TVCDAP Starts Here…Modor
PitchDap Bankrupt Stroker

Hack
Test-start Test-in-progress No-test
Hack

By pitch and yaw extend
Rate test compute extend
Test for excessive greater period extend

Pintegrl pitch-rate SC.AT
Prepare body OMEGAYB COSCDUX
Pick up sign Body-Axis-Error

Pforward Fwdfltr 
Go compute present output
Include Poffsett Pout Protect

Bit for TVCpitch
Protect the Copy
Should a restart occur 

Perrb Pitch starts here
Bankrupt Normal
Qrupt Autopilot (Low-

Yerorlim Errorlim
Update the error
Common to both pitch and yaw daps
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Bit lem on
Also, vark
There is an inherent gain of dap

Second-order numerator 
By D12 Dap D12
Cascade

Multiply input by
Multiply output by
On or off Q exit if

Extend extend extend
Dapinit
Already there.



R00003 
 

Code Poetics

“The practitioner of literate programming can be 

regarded as an essayist, whose main concern is 

with exposition and excellence of style.”

——Donald Knuth, “Literate Programming”
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Despite the limitations of the AGC code, which range from the concise syn-

tax of Yul and AGC’s extended yet still restricted interpretive language, the 

small amount of punch card space available for use in coding each line, 

and the requirement of a compact body of instructions, the AGC code con-

tains a wealth of imaginative and highly creative language. Some of the 

wordplay found in the AGC code resembles what John A. Barry calls “tech-

nobabble”: specific technological metaphors invented to describe and ex-

plain computing that are also frequently used to describe human behav-

iors in computing terms.1 But there are also references and riffs on popular 

culture, contemporary political events, and other textual sources. Perhaps 

in acknowledgment of the poverty of the system’s vocabulary, the AGC pro-

grammers filled the code with rich, descriptive language and cultural and 

literary references. We can find playful use of language from the most vis-

ible elements of the system, the main astronaut interface to the computer, 

to one of the most hidden components, the use of extended literary quotes 

within the remarks section of the code that would never even be processed 

and interpreted by the assembling programs. 

One of the major innovations of the Apollo Guidance Computer project 

was the development of what was essentially real-time computing. In a 

2001 group interview with other MIT Instrumentation Lab AGC programmers, 

Albrecht “Alex” Kosmala remarked on the incredulity he experiences when 

he explains to programmers that this “real-time control computer with an 

event-driven, asynchronous executive” was developed in the 1960s.2 The 

AGC needed to quickly respond to input from instruments and the astronaut 

interface. Rather than operating in a synchronous fashion, meaning the 

linear completion of one computational task after another, the program-

mers wanted to design a system that could very quickly shift from the ex-

ecution of one job to another. The implementation of this system required 

the addition of a significant amount of code but it made possible both the 

asynchronous execution and a powerful form of error recovery. The “exec-

utive” referenced by Kosmala is a distinct program and the major enabling 

technology for these advanced functions. The EXECUTIVE program’s respon-

1	 John A. Barry, Technobabble (Cambridge: MIT Press, 1991), xiii

2	 “Innovations in Software,” Apollo Guidance Computer History Project: Second Conference, 

September 14, 2001, https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/apollo/

public/conference2/innovations.htm.
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sibility is to run jobs and to make sure that it is always running the job with 

the highest priority. 

The EXECUTIVE combined with another program called WAITLIST, which 

managed the queue of smaller bits of code called tasks, provided the AGC 

with the ability to interrupt and resume execution of programs. Together 

WAITLIST and EXECUTIVE provided essentially what we call an operating sys-

tem for the AGC. The WAITLIST program is dated in the code as being written 

on October 10, 1966 and modified four times. The following is slightly refor-

matted code from the scanned images:

L	WAITLIST

R0001 PROGRAM DESCRIPTION							      DATE -- 10 OCTOBER 1966

R0003 MOD NO -- 2							       LOG SECTION -- WAITLIST

R0005 MOD BY -- MILLER					     (DTMAX INCREASED TO 162.5 SEC)

							       ASSEMBLY -- SUNBURST REV 5

R00072 MOD 3 BY KERNAN	 (INHINT INSERTED AT WAITLIST) 2/28/68 SKIPPER REV 4

R00073 MOD 4 BY KERNAN	 (TWIDDLE IN 54) 3/28/68 SKIPPER REV 13.

R000799

This code listing shows that there were major and minor modifications of 

the code as a whole and that these major modifications involved a renum-

ber. The modification that introduced MOD 3 on February 28, 1968 was most 

likely part of the same major modification as MOD 4 on March 28, 1968, as 

the added cards (R00072 and R00073) were not renumbered. MOD 3 introduced 

inhibited interrupt (INHINT) mode during WAITLIST, ensuring that tasks run 

through the WAITLIST were executed to completion. WAITLIST was used, as the 

code reads, TO CALL A PROGRAM (CALLED A TASK). It had a limited list of nine 

tasks that could be in the queue or task list. If the length of tasks exceeded 

the maximum number, the program executes (in other words, TCF or trans-

fers control) the following routine, called WTABORT:
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WTABORT		  TC			  FILLED

					     NOOP		 # CAN’T GET HERE

					     AD			  ONE

					     TC			  WTLST2

					     OCT	 10

...

FILLED			  DXCH		 WAITEXIT

		  TC	BAILOUT1	 # NO ROOM IN THE INN

		  OCT	 01203

WTABORT, again, executes another instruction, this one called FILLED, that 

eventually “bails” out of the program and produces an alarm state. The code 

in this section is concerned with error states and how to address the prob-

lem of running out of space, of not having any rooms in the inn. There are 

checks to make sure that there is truly a “no vacancy” or FILLED state before 

generating an alarm. The WAITLIST “tasks” were required to be short run-

ning — they could run from 0.01 seconds (a centisecond) to 162.5 seconds 

— and thus much of the code for this program concerns waiting, counting 

time, and the timing of the tasks.

The AGC, however, did have some basic interrupt and restart features in 

the form of restart protection prior to the addition of the EXECUTIVE. Restart 

protection depended upon the existence of restart points stored in eras-

able memory that could survive power loss. These restart or checkpoints 

were scattered throughout the code at crucial points. When the AGC was 

restarted, it resumed execution at the restarted point, restoring the pre-

vious saved state. Restarts could be forced by software — a feature part of 

many contemporary operating systems known as a kernel panic — in order 

to protect from overloading and potential corruption of data. We can see an 

example of this in Don Eyles’s explanation of the origin of an oddly named 

instruction known as WHIMPER that appears as such in the Apollo 11 AGC code:
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WHIMPER		  CA					    TWO

					     AD					    Z

					     TS					    BRUPT

					     RESUME

					     TC					    POSTJUMP				    # RESUME SENDS CONTROL HERE

					     CADR				   ENEMA

In a previous version of the code, Eyles explains, WHIMPER appeared in a sim-

ple form with a playful and somewhat helpful remark: “The instruction at 

tag WHIMPER transferred control to the instruction at TAG WHIMPER, whereupon 

TC Trap would detect the endless loop and trigger the restart.”3 The line, 

according to Eyles, appeared as such prior to the Luminary 1A build 099 that 

was used in the Apollo 11 flight:

WHIMPER		  TC					    WHIMPER					    NOT WITH A BANG....		

The remark included in this earlier code quotes, within the designated re-

mark space of the card, part of the final line of T.S. Eliot’s 1925 poem “The 

Hollow Men,” which was preceded by “This is the way the world ends.” The 

AGC programmers allude to these lines in their naming of the condition of 

a forced restart by the TC Trap job. The TC Trap job monitored the progress of 

other programs and was capable of initiating a software (rather than hard-

ware) restart to reestablish a known state for the AGC. The programmers 

explicitly referred to this procedure — an innovation in computer systems 

design — as a software restart. Calling the WHIMPER instruction triggers an 

endlessly looping recursive state which would necessitate a restart — the 

end of the world for the computer, but much better than a possible “bang” 

as a result of an unrecoverable and undetected error or an inoperable AGC. 

Following the revision of the WHIMPER function to no longer produce the 

self-referential trap condition and the removal of the no-longer relevant 

remark, the name stuck “for sentimental reasons” without any markers to 

indicate the original referent. WHIMPER remained in the code as the name of 

the subroutine used as part of a software restart.

3	 Don Eyles, Sunburst and Luminary: An Apollo Memoir (Boston: Four Point Press, 2018), 82.



121CODE POETICS

Far less disruptive to the operation of AGC than a TC Trap software-initiat-

ed restart was the normal process of interruption used by the EXECUTIVE pro-

gram. The AGC programmer’s manual describes the process of interruption:

This means that the normal sequence of instructions of a program may 

be broken into at any point, and that control is transferred to some other 

program. There is a short subroutine which has the net effect of return-

ing control to the original (interrupted) program, with no loss of infor-

mation if certain precautions are taken.4

The occurrence of an interrupt signal stops or breaks the execution of cur-

rently running programs to run a program with a higher priority. These 

occur frequently and are what makes real-time computation possible. The 

notion of an interrupt has found widespread adoption in computing to en-

able multitasking, quick responses to events and triggers, and to address 

the common problem of input devices running at much slower speeds than 

processors. The EXECUTIVE program continuously runs an idling program 

or subroutine known as DUMMYJOB. This subroutine has the lowest priority, 

thus making sure that will only be executed when nothing else needs to 

be computed.

DUMMYJOB				   CS				   ZERO					    # SET NEWJOB TO -0 FOR IDLING.

							       TS				   NEWJOB

							       RELINT

							       CS				   TWO					     # TURN OFF THE ACTIVITY LIGHT.

							       EXTEND

							       WAND			  DSALMOUT

The DUMMYJOB instruction is introduced with a remark that explains that the 

idling process “is not a job in itself, but rather a subroutine of the exec-

utive.” If there are no jobs running, the DUMMYJOB subroutine is executed, 

turning off the activity light and making sure that the EXECUTIVE is availa-

ble for running any jobs. In turning off the activity light, the AGC alerts the 

astronaut that the system is idling, running DUMMYJOB. In the above code, we 

4	 Ramon Alonso, J. Halcombe Laning, Jr., and Hugh Blair-Smith, E-1077: Preliminary MOD 3C 

Programmers Manual (Cambridge: MIT Instrumentation Laboratory, 1961), 17.
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see the instruction RELINT called. This instruction enables interrupts and 

is generally used in combination with INHINT, an instruction that inhibits 

interrupt activity for brief and important tasks that cannot be safely inter-

rupted. The instruction TC RIP is used to Transfer Control to Resume Inter-

rupted Program, which restarts the preserved state of the prior program. 

Military-style acronyms fill the world of the Apollo mission and many 

make their way into the code. Short and concise, these acronyms compress 

language into the smallest amount of space required to communicate a con-

cept. Acronyms were also particularly well suited to the computational en-

vironment because these computers and the devices used to input and store 

the code, the punch card systems, all had limited space and required the 

use of capital letters. Much of the wordplay appearing in the code turns on 

the ambiguities and slipperiness of these otherwise precise, short terms. 

The Lunar Module was abbreviated everywhere in the code as LM, which was 

always pronounced as “Lim.” The main input device for operating the guid-

ance computer was called the “Display and Keyboard.” This name was short-

ened to DSKY, which the programmers and astronauts pronounced as “Dis-

key,” which Don Eyles explains was pronounced to rhyme with whiskey.5 

The program that was responsible for handling the DSKY user interface — 

in other words, responding to the astronaut’s manual input and displaying 

output values, alarms, and present system status — was playfully named PIN-

BALL GAME BUTTONS AND LIGHTS. The DSKY was operated by entering a two-digit 

“verb” to perform an action on another two-digit object or “noun.” A set of 

remarks in the code explains the logic behind this mode of communication 

with the computer:

# THE LANGUAGE OF COMMUNICATION WITH THE PROGRAM IS A PAIR OF WORDS

# KNOWN AS VERB AND NOUN.  EACH OF THESE IS REPRESENTED BY A 2 CHARACTER

# DECIMAL NUMBER.  THE VERB CODE INDICATES WHAT ACTION IS TO BE TAKEN, THE

# NOUN CODE INDICATES TO WHAT THIS ACTION IS APPLIED.  NOUNS USUALLY

# REFER TO A GROUP OF ERASABLE REGISTERS.

On the far left side of the DSKY were the VERB and NOUN buttons. On the far 

right, ENTR and RSET. To operate the DSKY, to perform some task, the astronaut 

pressed VERB and then entered the two-digit program number, then pressed 

5	 Eyles, Sunburst and Luminary, 47.
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NOUN, followed by the two-digit code for the action, and finally pressed enter 

or ENTR. The use of a NOUN was not always required; some programs would be 

run with just a VERB. Figure 5 shows an image of the summary card with the 

NOUN and VERB list used for a subsequent version of the AGC. The language of 

nouns and verbs, one of the most simple yet flexible user interfaces that 

one can imagine, can be found throughout the code. This is a compact but 

powerful method of interaction that continues to present in the inverted 

form of selection (noun) and clicking (noun) in graphical user interfaces.

Despite its functional design imperative and the limited syntax of the 

Yul programming language, we find a real sense of humor and play within 

the AGC code. Perhaps this is because all authors and programmers, when 

exploiting the few given freedoms available in any discourse, have a ten-

dency toward pushing the limits of the existing language. Programming 

is as much of a “language game” as any other language and the tightened 

boundaries of a small syntax give way to a sense of play found within any 

constrained environment. The use of the terms “nouns” and “verbs” with-

in both the hardware and software systems of the AGC invite a playful read-

ing of the code as self-aware of the limits of this particular language. The 

stripped-down syntax invites exploration of the combination of two-digit 

noun and verb codes. In a section of code just below the above, in which 

programmers or “the authors,” as they called themselves, supply lines spo-

ken by Jack Cade in Shakespeare’s King Henry XI.6

# THE FOLLOWING QUOTATION IS PROVIDED THROUGH THE COURTESY OF THE AUTHORS.

#

# “IT WILL BE PROVED TO THY FACE THAT THOU HAST MEN ABOUT THEE THAT

# USUALLY TALK OF A NOUN AND A VERB, AND SUCH ABOMINABLE WORDS AS NO

# CHRISTIAN EAR CAN ENDURE TO HEAR.”

#                                       HENRY 6, ACT 2, SCENE 4

These remarks, the only quoted lines but not the only reference to Shake-

speare found in the code, add some humor to the programmer’s reliance on 

the noun and verb structure.7 The two-digit VERB and NOUN thus provided the 

6	 Ronald S. Burkey has added a note to the code uploaded to Github with the correct citation 

for this passage: King Henry VI, Part 2, Act IV, Scene VII. 

7	 Hugh Blair-Smith provides his interpretation of these lines in “Annotations to Eldon 

Hall’s Journey to the Moon,” Apollo Guidance Computer History Project, February 1997, 
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Figure 5. Apollo 17 Verb and Noun List.
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programmers with the basic naming structure for many of the various pro-

grams contained within the body of the AGC code that required interaction 

with the astronaut. Many of the major programs run by the AGC EXECUTIVE are 

numbered using two-digit codes. 

Don Eyles contributed to the AGC code two routines formally named 

R11 and R13 that he informally called ROSENCRANTZ and GUILDENSTERN. These 

“names from Hamlet,” he writes in his memoir, “swam into my conscious-

ness because Tom Stoppard’s Rosencrantz and Guildenstern Are Dead was 

then playing on Broadway.”8 The code introduces the R13 routine with 

three remarks cards, here transformed and remediated into contemporary 

Github-friendly formatted code:

#*******************************************************************

# GUILDENSTERN:  AUTO-MODES MONITOR (R13)

#******************************************************************* 

The remarks continue: 

HERE IS THE PHILOSOPHY OF GUILDENSTERN: ON EVERY APPEARANCE OR DISAPPEAR-

ANCE OF THE MANUAL THROTTLE DISCRETE TO SELECT P67 OR P66 RESPECTIVELY: ON 

EVERY APPEARANCE OF THE ATTITUDE-HOLD DISCRETE TO SELECT P66 UNLESS THE 

CURRENT PROGRAM IS P67 IN WHICH CASE THERE IS NO CHANGE.

These two routines, as Eyles explains, monitored switches and buttons; 

GUILDENSTERN, which was split into two lines as GUILDEN/STERN, the switch to 

manual mode and ROSENCRANTZ, buttons to abort landing.9 The GUILDRET rou-

tine, riffing on GUILDENSTERN, was also added to this section of code. Eyles’s 

comment addressing the way in which these two names “swam” into his 

consciousness demonstrates how the presence of natural language and ar-

bitrarily named routines and programs links culture to code. The “philos-

ophy of Guildenstern” became embedded within the code and, fittingly for 

Eyles’s dramatic reference, this philosophy was attached to buttons that 

https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/apollo/public/blairsmith2.

htm.

8	 Eyles, Sunburst and Luminary, 105.

9	 There are no references to ROSENCRANTZ remaining within the Luminary099 code used in 

the Apollo 11 flight.
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functioned to remove control from the computer and return it to a human, 

who might know better.
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Cold War Code and  
the Doubled Discourse of Programming

“Does it change anything that Freud did not know 

about the computer? And where should the moment of 

suppression or of repression be situated in these new 

models of recording and impression, or printing?”

——Jacques Derrida, Archive Fever
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The AGC code, as we have shown throughout this book, is an important ar-

chive of mid-twentieth-century computing culture. It speaks to us from this 

vital historical moment and comes to contemporary readers bearing traces 

of its moment of composition. The cultural work of this code is activated 

by the manipulation of a set of discourses that arises from the confluence 

of the languages, authors, and subject positions found operating within 

the code. The operation of the AGC depends on the co-existence of some of 

these discourses and the code explicitly provides the ability to mix modes 

of instruction as one of the main mechanisms. Other of these discourses 

circulating within the larger technological system are entirely external 

to the operation of the AGC. These include the Fordist division of labor that 

separated the distinct activities required to produce the AGC, the gendering 

of some of this labor, the partially implemented hierarchical management 

structures that organized the teams developing the code, and the code re-

view and approval processes. Other discourses might instead be considered 

added on or supplemental — for example, the appearance of the non-func-

tional referential wordplay found within the names of instructions and the 

code remarks. The operational logic of the AGC and these discourses partic-

ipate in more than just computing culture, they also register larger pat-

terns and processes of the modernizing project. As a final justification for 

the exploration and study of this now long obsolete and otherwise useless 

body of code, the recovery and interpretation of these discourses illumi-

nate a crucial moment in the development of twentieth-century strategies 

of management and governing — of computers and people.

The Apollo Project and the associated developments that were produced 

within mid-century American computing were products of American Cold 

War culture. Audra J. Wolfe argues that “the relationships between science, 

technology, and national power built into the Apollo moon-landing pro-

gram make it a quintessential Cold War phenomenon.”1 Similar techniques 

and systems were also heavily used by the U.S. military. Shortly after the 

Apollo 11 landing, beginning in the fall of 1969, large networks of sensors, 

1	 Audra J. Wolfe, Competing with the Soviets: Science, Technology, and the State in Cold 

War America (Baltimore: Johns Hopkins University Press, 2012), 89. See also Paul N. 

Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America 

(Cambridge: MIT Press, 1996) and Stuart W. Leslie, The Cold War and American Science: The 

Military-Industrial-Academic Complex at MIT and Stanford (New York: Columbia Universi-

ty Press, 1993).
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digital computers, and guided bombs, were deployed to Vietnam. These in-

telligent warfare systems were recommended by Harvard University and 

MIT faculty.2 The majority of early artificial intelligence systems were all 

driven by military applications — from automated reconnaissance systems 

to automatons designed for hostile climates — for the war in Vietnam and 

were developed by researchers at MIT and Stanford University. These devic-

es and methods, as Langdon Winner explains, have politics. For Winner, the 

automated reconnaissance systems would be examples of straightforward 

political technologies while the Apollo Project and the AGC in particular 

is an example of an inherently political technology, “man-made systems 

that appear to require, or to be strongly compatible with, particular kinds of 

political relationships.”3 Following Winner, we might think about certain 

software features within the AGC as appearing strongly compatible with 

contemporary strategies for the management and governing of people.

For the philosopher Gilles Deleuze, the middle of the twentieth cen-

tury saw the demarcation of a new moment, a new epoch, in the admin-

istration of everyday life. Up until this point, from at least the middle of 

the nineteenth century, social life in the West was organized according to 

what Michel Foucault termed the disciplinary mode. For Deleuze, follow-

ing Foucault, this mode of management was characterized by the central-

ized yet deeply internalized management of individuals that encouraged 

these people to conform themselves to the norms produced as they moved 

between various institutions or environments. Deleuze, in a short essay 

titled “Postscript on the Societies of Control,” posits that the rapid mod-

ernization that followed World War II instituted a new set of practices or-

ganized around modulation and continuous change. He understands these 

new practices as operating in a control rather than disciplinary mode. 

“Control is short term and of rapid rates of turnover,” Deleuze writes, “but 

also continuous and without limit, while discipline was of long duration, 

infinite and discontinuous.”4 The notion of this shift that still invokes a 

sense of centralized management but adds rapid yet continuous movements 

between sites of management — whereas before one was re-institutional-

2	 Paul Dickinson provides an excellent account of the use of sensors in Vietnam, in par-

ticular those intended for use as part of what was called “McNamara’s Line.” See Paul 

Dickinson, The Electronic Battlefield (Bloomington: Indiana University Press, 1972). 

3	 Langdon Winner, “Do Artifacts Have Politics?” Daedalus 109, no. 1 (1980): 121–36, at 123.

4	 Gilles Deleuze, “Postscript on the Societies of Control,” October 59 (Winter 1992): 3-7, at 6.
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ized, disciplined again, as one passed from site to site — doubles down on 

the already ongoing atomization of people and processes. Deleuze’s concept 

of the control society borrows from the language of computing, suggesting 

that these metaphors and mechanisms have moved from hardware and soft-

ware to governing practices. The implementation of control systems with-

in computers, however, can serve as a site of dialectical exchange in which 

these technologies generate new metaphors and practices that may switch 

contexts from computers to culture but also the technologies themselves, 

through the work of the programmers and the administrators, take up and 

incorporate preexisting ideas and concepts, embedding them within their 

regular operation.

At the operational level, we can see several different ways in which the 

AGC implemented control over multiple discourses through the co-existence 

of multiple modes or methods of execution. The most important Basic/Yul 

instruction was TC, for Transfer Control. The TC instruction, like the col-

loquial “code switch” of language today, caused an immediate change from 

one set of instructions to another. To transfer control means to yield exe-

cution, although with the expectation that control will return. Deleuze’s 

emphasis on the continuity of control finds as its analog the ceaselessness 

of computing, as processors cycle from instruction to instruction with each 

tick of the clock. 

The concept of the interrupt, a core facility that enables the AGC’s EX-

ECUTIVE program to break execution of one job and run another job, illus-

trates how control mechanisms structure the movement between discours-

es within the code and within computing. The introduction of a capacity 

to cut short one line of execution and allow another to take priority pro-

vided a new way to handle complex events involving multiple demands on 

limited resources. Interruption was explicitly understood by the program-

mers as producing an intervention into the running program. It required a 

constantly running program, the EXECUTIVE, to serve as the AGC’s traffic cop. 

This “master” control program makes decisions regarding the running of 

programs, although these are based on predetermined priorities, and thus 

interrupts can only be said to interrupt the execution of other programs, 

not the master discourse that structures the entire system. As each program 

runs, either to its proper conclusion or interrupted by another program, 

the EXECUTIVE maintains order over the program’s access to limited compu-

tational resources.
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The restricted syntax and difficulty of writing Basic/Yul instructions 

inspired the AGC programmers to add support for another more flexible lan-

guage, one they called “Interpretive.” In order to execute code written in 

Interpretive — this code all appeared within segments of Yul — control was 

transferred to the Interpretive program through the instruction TC INTPRET. 

Once control was transferred, the lines that followed up to an instruction 

EXIT that signaled the return back to Yul instructions were all executed by 

the Interpreter program. The co-existence of these two different languages 

is a special instance of transferring control within the AGC. 

TC		  INTPRET

VLOAD	 ABVAL

VN1

STORE	 ABVEL		  # INITIALIZE ABVEL FOR P63 DISPLAY

EXIT

TCF		 ENDOFJOB

The above lines co-mingle two programming languages and simultaneous-

ly produce a jump in execution from one to the other while preserving a 

continuous stream of instructions. The addition of Interpretive instruc-

tions adds new capacities to a limited language while preserving the AGC’s 

larger control structures. This additional language, this additional dis-

course, works side by side with the original and primary language while 

other modes of discourse present within the code understand themselves 

as not stepping aside or subsumed by these methods but in some small way 

in opposition to them or at least registering their protest to pervasive and 

always-on control systems.

The earlier examples of the playful use of language included literary al-

lusion and direct quotation. The programmers introduced some creativity 

into the names of various programs, constants, and subroutines. Leverag-

ing the visual similarity between the zero character and the capital O, the 

programmers introduced a variation on the PXX program name structure to 

render P00 into P00H, which enabled them to add an entire universe of scat-

ological references. The program is defined as such:
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P00H			  TC			  RELDSP			  # RELEASE DISPLAY SYSTEM

				    CAF		  PRIO5			   # SET VARIABLE RESTART PRIORITY FOR

				    TS			  PHSPRDT2		  # P00 INTEGRATION.

				    TC			  CLRADMOD		  # CLRADMOD DOES AN INHINT.

				    CS			  NODOBIT			  # TURN OFF NODOFLAG.

				    MASK		 FLAGWRD2

				    TS			  FLAGWRD2

				    CA			  FIVE				   # SET RESTART FOR STATEINT1

				    TS			  L

				    COM

				    DXCH		 -PHASE2

				    CS			  OCT700			  # TURN OFF P20, P25, IMU IN USE FLAG

				    MASK		 FLAGWRD0

				    TS	F		  LAGWRD0			  #							       REMDFLG

				    CAF		  DNLADP00

The P00 is a Major Mode program and is part of the FRESH AND START RESTART 

section of the code. This program is responsible for resetting the system 

to a known state. The process of resetting the system involves cleaning or 

“flushing” stored data and thus the creation of several routines humorous-

ly known as MR.KLEAN, P00KLEAN, and ENEMA.5 

MR.KLEAN			  INHINT

						      EXTEND

						      DCA		  NEG0

						      DXCH		 -PHASE2

…

5	 A routine called KLEENEX was used to produce a virtual “cleaning” or wiping of anything 

currently appearing on the DSKY display: KLEENEX CLEANS OUT ALL MARK DISPLAYS (ACTIVE AND 

INACTIVE). A RETURN IS MADE TO THE USER AFTER THE MARK DISPLAYS.



134 MOONBIT

P00KLEAN			  EXTEND

						      DCA		  NEG0

						      DXCH		 -PHASE4

…

ENEMA	 I			   NHINT

						      TC			  STARTSB1

						      TCF		  GOPROG2A

These scatological references introduced into the code — users of the DSKY 

would never encounter any of these names — language that did not corre-

spond to the norms of government computing. In turning P00 into a joke that 

was carried through to P00KLEAN and ENEMA, the programmers added levity to 

the serious project of the Space Race. These small jokes, like all successful 

jokes, were passed through the censors. The joke undercuts the force of the 

military-corporate-academic endeavor behind the scenes and undercover, 

but nevertheless still performs the required action. 

The admixture of scatological language to the basic syntax of com-

mand-and-control culture corresponds to the roughly contemporary divi-

sion between figures identified by Stewart Brand as the hackers and the 

planners. Brand is perhaps now best known for his desire to see satellite 

photography of the Earth: his widely distributed buttons that read “Why ha-

ven’t we seen a photograph of the whole Earth yet?” Inspired by the pho-

tographs that were eventually released, Brand would go on to found the 

counter-cultural Whole Earth Catalog, a self-published catalog that first 

appeared in 1968 with a cover image of the Earth and advertised itself as 

providing “access to tools.” Brand helped to introduce and decode comput-

ing culture to the public in “Spacewar: Fanatic Life and Symbolic Death 

Among the Computer Bums,” his 1972 article for Rolling Stone on research-

ers working at California research laboratories, including the Stanford 

Artificial Intelligence (AI) Lab and Xerox PARC.6 Brand understood there to 

be a cultural division at work in computing between those who considered 

themselves members of the counterculture – the heads, computer bums, 

and hackers – and those making use of computation to solve problems. One 

group was interested in the possibilities of computation as such and the 

6	 Stewart Brand, “Spacewar: Fanatic Life and Symbolic Death Among the Computer Bums,” 

Rolling Stone, December 7, 1972, 50–58.
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other saw computers as a means to an end. Fred Turner glosses Brand’s 

characterization of these earlier figures as the planners and the hackers:

The planners were theoreticians, usually of the mind, who thought of 

computers as tools that could be used to generate or model information. 

The hackers focused on the computer systems themselves and on seeing 

what they could do. Within the lab, a culture clash emerged. Theory-ori-

ented graduated students, equipped with well-funded and well-organ-

ized careers but not necessarily with computer programming expertise, 

resented the hackers’ claims for computer time, as well as their free-

wheeling style.7 

The presence of the scatological language as an indicator of “freewheel-

ing style” evinces perhaps some evidence of Brand’s notion of the culture 

clash between these groups. The jokes are allowed to slip through, however, 

because they are ultimately inoffensive. The language remains suppressed, 

at one level, through the difference between code and instruction. While 

the natural language remarks cards and the remarks portion of the indi-

vidual punch cards were ignored by the Yul System, the assembler would 

eventually convert everything into simple instructions for wiring the core 

memory of the AGC and reduce all language to mere signals, to 1s and 0s.

Early computing, nonetheless, had aspirations that participated in both 

the countercultural energy around the new possibilities found in these de-

vices and those aspects of computing that were linked to ends including 

corporate development and military applications. We can see an example 

of these twinned desires in the material construction of Theodor H. Nel-

son’s 1974 Whole Earth Catalog-inspired Computer Lib/Dream Machines. 

This self-consciously doubled text refuses synthesis and integration. Nel-

son writes of his rationale for creating a text with two sides, a book that 

presents itself to the reader with two faces, with two covers: 

This side of the book, Computer Lib proper (whose title is nevertheless 

the simplest way to refer to both halves), is an attempt to explain simply 

and concisely why computers are marvelous and wonderful, and what 

some main things are in the field. The second half of the book, Dream 

Machines, is specifically about fantasy and imagination, and new tech-

7	 Fred Turner, From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Net-

work, and the Rise of Digital Utopianism (Chicago: University of Chicago Press, 2006), 133. 
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niques for it. That half is related to this half, but can be read first; I want-

ed to separate them as distinctly as possible.8

Nelson’s division of the work of the imagination from explanation turns 

on the counter-cultural charge or frisson generated by the appropriation 

of computers for non-instrumental uses. In this moment right before the 

birth of the personal computer, such uses were mostly seen as wasteful and 

inappropriate. 

In a 1971 article on computer programing and the Apollo Guidance Com-

puter project written by Timothy Crouse and appearing in Rolling Stone, 

Don Eyles described himself as smoking marijuana on the job at MIT and 

being one of Charles Reich’s “Consciousness-IIIers.”9 Working within what 

he calls “ye olde military industrial complex,” Eyles presents himself as 

one of several counter-cultural figures, one of the “non-straight minority” 

deploying a minor language to write his way through the major language 

of government-funded academic technocrats. The command-and-control 

language of the Cold War, as mentioned earlier, saturates computer culture 

and the Apollo project. The Apollo project, as Crouse makes clear, existed 

alongside the majority military work of the rest of the Draper Lab: “Half of 

the Lab works full time on perfecting the Polaris and Poseidon missiles. 

Since its inception in 1939, the Lab has worked entirely on military pro-

jects. The one exception is the Apollo project.”10 

If the scatological references slid through the censors, the program-

mers needed the addition of a warning to accompany another creative use 

of language. Introducing a routine with the name or tag of BURNBABY, the 

authors and maintainers (explicitly identified in the code segment as ADLER 

AND EYLES) included a French phrase HONI SOIT QUI MAL Y PENSE, usually trans-

lated as “may he be shamed who thinks badly of it.”11 Eyles recalls that he 

was directing shame toward other readers of the code, those project man-

agers who might disapprove of the “transgressive name […] [an] allusion 

to the 1965 riots in the Watts section of Los Angeles. ‘Burn, baby, burn’ was 

8	 Theodor H. Nelson, Computer Lib/Dream Machines (Chicago: Theodor H. Nelson, 1974).

9	 Timothy Crouse, “Don Eyles: Extra! Weird-Looking Freak Saves Apollo 14!” Rolling Stone, 

March 18, 1971, https://www.rollingstone.com/politics/politics-news/don-eyles-extra-

weird-looking-freak-saves-apollo-14-40737/.

10	 Ibid., 6.

11	 Oxford English Dictionary, s.v. “honi soit qui mal y pense.”
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shouted by the rioters as they set fire to looted storefronts.”12 The program-

mers introduced this phrase to transgress the line between the two cul-

tures of computing. BURNBABY provides a particularly compelling example 

of the movement of language from culture to code and back into popular 

culture, and the term “burn” for firing an engine, Eyles explains, became 

“deeply embedded” and is now fully a part of the language. 

In Timothy Crouse’s article, Don Eyles offered up the following under-

standing of the frustrations he experienced as a result of the limited audi-

ence available for the text that he was writing: 

Eyles and some of his fellow Consciousness IIIers regard computer pro-

gramming as a fine craft that might some day be elevated to the status of 

an art. “It’s possible to envision a time when there are professors of the 

literature of computer programming. Maybe some programmers will be 

minor poets of the 20th Century. The trouble is that programs are writ-

ten in a language there’s no audience for. It’s like Nabokov’s book about 

Gogol where at the end he says that if you really want to know anything 

about Gogol, there’s no way around it, you gotta learn Russian. It’s sort 

of discouraging.”13

In his memoir, Eyles writes of his desire that his book might help revise 

the “foundation myth of the contemporary digital culture” and inspire 

not “the next internet startups or the next social medium” but “idealis-

tic planetary goals. Exploring others. Sustaining this one.”14 He recognizes 

the extent to which corporate culture has found it easy to appropriate the 

idealism of early computing and to turn the enthusiasm of developers like 

himself into the drive for creating profitable technologies. Digital culture 

has always been marked by twin impulses: one a little anarchic and the 

other a bit more corporate. Cyberlibertarian discourses attempt to synthe-

size these, but perhaps we can find other ways to build a usable past from 

computing history. 

One way might be to turn to the resource of the suppressed language 

found in code as a source for poetic language. We can do so by means of a bit 

12	 Eyles, Sunburst and Luminary, 96.

13	  Crouse, “Don Eyles,” 6.

14	  Eyles, Sunburst and Luminary, xviii.
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of a deconstruction of the binary that for the philosopher Martin Heidegger 

structures the difference between what he terms traditional and techno-

logical language. This strategy might help us not just understand the pur-

pose of the AGC, but free the many possible meanings of the AGC code. For 

Heidegger, the difference between technological and traditional rests in 

the capacity of what he calls the “mystery” of traditional language to con-

ceal “the unspoken and what is inexpressible.” We understand the natural 

language appearing in source code to be a variety of traditional language, 

much like poetic language, complete with all the attributes and problems 

of expression. “The handing down in tradition is not a mere passing on,” 

he writes, “it is the preservation of what is original, it is the safeguarding 

of the new possibilities of the already spoken language.”15 He argues that 

“the handing down in the tradition of a language is realized through the 

language itself, and indeed in such a way that, for this, it lays claim to the 

human being to say the world anew from the language that is preserved and 

thus to bring what is not-yet-seen into appearance.”16 Technological lan-

guage, on the other hand — and the instruction-laden discourse of comput-

er code, which would seem to be technological language in its ideal form — 

is dominated by a drive for communication, the clarification of a sequence 

of signs. Rather than just assigning the free form natural language of the 

“Remarks” recorded in the AGC code to the traditional and the instructions 

themselves as technological language, we want to frame the entire text as 

possessing a wealth of opportunities — resources for bringing the not-yet-

seen into language. Code, as this book demonstrates, has poetic possibil-

ities. This technological artifact is truly world changing. Not just func-

tional, not just historical, the AGC code is alive with a captivating language 

that pulls us into an altered relation with possibility as such. Flipping the 

moonbit reorients us. In an instant, our coordinate system has changed 

and we have displaced our center and made the Earth a little uncanny. 

Exceeding mere function and communication, the Apollo Guidance Com-

puter code deploys a whole world of traditional and technological language 

— scatological, comical, literary, self-referential, machinic, and more — 

15	 Martin Heidegger, “Traditional Language and Technological Language,” trans. Wanda 

Torres Gregory, The Journal of Philosophical Research 23 (1998): 129–45, at 142. 

16	 Ibid.
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to give poets and readers the resources to use this body of code to say the 

world, nay, the universe, anew.
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