

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LM CONSOLE HANDBOOK LM-12 PCN 14

F/C POSITION JOB DESCRIPTIONS

SYSTEM CONSOLE PROCEDURES

SYSTEM

NOTES OF

MALFUNCTION

OCTOBER 1, 1972

PREPARED BY LUNAR MODULE SYSTEMS BRANCH

> MANNED SPACECRAFT CENTER HOUSTON, TEXAS

LM CONSOLE HANDBOOK LM-10 AND SUBSEQUENT VEHICLES PCN-14

PREFACE

This document has been prepared by the LM Systems Branch, Manned Spacecraft Center, Houston, Texas, and contains briefs, procedures, position descriptions, notes of interest and malfunction analyses for LM Systems Flight Controllers for LM-10 and subsequent vehicles as of October 1, 1972. PCN-14 will serve as an update for Apollo 17.

Any comments concerning the contents of the document should be directed to Glenn Watkins, FC4, LM Systems Branch, 483-4717.

This document is not to be reproduced without the written approval of the chief, LM Systems Branch.

Approved by:

James E. Hannigan Chief, LM Systems Branch

UNIVERSAL LM CONSOLE HANDBOOK

LM-12

PCN-14

REVISION INSTRUCTION SHEET

Remove	and	replace	pages	as	follows:
ii iia iiaa Front Co	over				
II-i and					
		l II - 1-41			
II-9-7 a			-		
II-9-12					
		u II-11-			
		ru II-11			
		d II-11-			
		ru II-11			
		ru II-11			
	thr	u II-12-	-6		
III-i					
III-ii					
		u III-1-	-		
		u III-2-			
		u III-7-			
		hru III-	12-28		
III-12-3					
		hru III-			
11 1-13- 3	36 a	nd III-1	.3-37		

Notes of Interest Preface and Notes of Interest Index Malfunction Analyses pages:

40 thru 42 44 thru 46 200 221 and 222 267 and 268 271 thru 276 279 thru 280b 281 thru 288 301 and 302 323 and 324 Back Cover

Add

.

II-11-50 thru II-11-52 II-16-1 thru II-16-4

Notes of Interest to be added:

General Section

LM Tracking Versus Telemetry Matrix for Descent/Ascent (9-28-72) LM-12 Comm Plans (10-13-72) Lunar Surface Contingency L/O Procedures (10-10-72)

INST

Failed LM Circuit Breaker Critical Bus Case (10-5-72)

EPS

Lunar L/O Through Impace on One Ascent Battery for Apollo 17 (10-31-72)

Remove:

II-9-13

Notes of Interest to be removed:

General

Tracking Versus Voice/Data for the Apollo 15 Descent (6-2-71) Voice/Tracking and Data Trade Off's for Apollo 15 Ascent, Descent and Descent Aborts (7-7-72)

PROP

Ascent Limit Weight (4-3-72)

LM CONSOLE HANDBOOK LM-10 AND SUBSEQUENT VEHICLES PCN-13

PREFACE

This document has been prepared by the LM Systems Branch, Manned Spacecraft Center, Houston, Texas, and contains briefs, procedures, position descriptions, notes of interest and malfunction analyses for LM Systems Flight Controllers for LM-10 and subsequent vehicles as of April 1, 1972. PCN-13 will serve as an interim change for Apollo 16.

Any comments concerning the contents of the document should be directed to Glenn Watkins, FC4, LM Systems Branch, 483-4717.

This document is not to be reproduced without the written approval of the chief, LM Systems Branch.

Approved by:

Carlo Color James E. Hannigan Chief, LM Systems Branch

Prop Section

Ascent Limit Weight (4-3-72)

Remove and replace the following Malfunction Analyses pages:

41,
42
59
60

UNIVERSAL

LM CONSOLE HANDBOOK

LM-10 AND SUBSEQUENT VEHICLES

PCN-13

REVISION INSTRUCTION SHEET

Update this document in accordance with the following instructions:

Remove and replace pages as follows:

ii iia & iiaa II-1-40 & II-1-41 II-12-1 thru II-12-6 III-1-1 thru III-1-5

Add the following pages:

II-1-49 II-9-12 & II-9-13

Note of Interest Section

Remove the following Notes of Interest:

EPS Section

LM Electrical Configuration for the Loss of One Ascent Battery (11-1-71) Ascent Battery Considerations, Apollo.15 (7-20-71) Addendum to Note of Interest: Ascent Battery Considerations Apollo 15 (7-22-71)

General Section

Apollo 16 Data Management Plan (11-1-71)

Add the following Notes of Interest:

General Section

Apollo 16 Data Management Plan, Rev. "A" (4-11-72 New Chart Recorder Timing (4-4-72)

PGNS Section

LM Platform Drift (2-25-72) Ascent Guidance and Control Modes, Their Priority and Selection (4-10-72) Change to the RR Antenna Parking Position on the Lunar Surface (4-11-72)

iia

LM CONSOLE HANDBOOK LM-10 AND SUBSEQUENT VEHICLES

PCN-12

PREFACE

This document has been prepared by the LM Systems Branch, Manned Spacecraft Center, Houston, Texas, and contains briefs, procedures, position descriptions, notes of interest and malfunction analyses for LM Systems Flight Controllers for LM-10 and subsequent vehicles as of March 1, 1972.

Any comments concerning the contents of the document should be directed to Glenn Watkins, FC4, Lm Systems Branch, 483-4717.

This document is not to be reproduced without the written approval of the chief, LM Systems Branch.

Approved by:

James E. Hannigan 7

UNIVERSAL LM CONSOLE HANDBOOK LM-10 AND SUBSEQUENT VEHICLES PCN-12

REVISION INSTRUCTION SHEET

Update this document in accordance with the following instructions:

Remove and Replace pages as follows:

ii iia II-i, II-ii II-1-5 II-1-7 and II-1-8 and I-1-8 c II-1-11 thru II-1-13 II-1-14 II-1-15, II-1-16 II-1-17 thru II-1-18 II-1-19 II-1-20 and II-1-20a II-1-22 and II-1-23 II-1-24 II-1-33 and II-1-34 II-1-35 and II-1-36 II-1-37 and II-1-38 II-1-40 and II-1-41 II-1-42 and II-1-43 II-3-1 and II-3-2 II-3-5 and II-3-6 II-7-24 and II-7-25 II-7-52 II-8-5 and II-8-6 II-11-37 and II-11-38 II-11-39 and II-11-40 III-1 and III-12 III-5 - 1 - 2 - 3III-12 and III-12 III-13 and III-12 III-13 and III-136 III-14 III-14 III-15 and III-15 III-15 a

Note of Interest Index

Malfunction Analyses Section

Remove and Replace the following pages:

23, 26 and 27, 28, 40, 41 and 42, 43 and 44, 45 and 46, 47 and 48, 49 and 50, 55 and 56, 59 and 60, 61 and 62, 63 and 64, 69 and 70, 71 and 72, 73 and 74, 187 and 188, 200, 201 and 202, 203 and 204, 205 and 206, 209 and 210, 211 and 212, 215 and 216, 217 and 218, 219 and 220, 221 and 222, 223 and 224, 225 and 226, 229 and 230, 235 and 236, 257 and 258, 259 and 260, and 261 and 262.

Remove

II**-**iii

Add New Pages:

iiaa II-3-6a III-2-38 thru III-2-69

Notes of Interest:

"Planned Operation of the LM Descent Cooling Valve", under EPS section. "APS TPI and Depletion", under PROP section.

Malfunction Analyses Section - page 203a

UNIVERSAL

LM CONSOLE HANDBOOK

LM-10 AND SUBSEQUENT VEHICLES

PCN-11

REVISION INSTRUCTION SHEET

Update this document in accordance with the following instructions:

Remove and Replace pages as follows:

ii iia I-12 II-i & II-ii II-1-5 thru II-1-8b II-1-17 thru II-11-19 II-1-25 & II-1-26 II-1-33 thru II-1-36 II-1-39 & II-1-39a II-1-44 & II-1-45 II-2-8 thru II-3-6 II-6-1 & II-6-2 II-6-5 thru II-6-10 II-7-1 & II-7-2 II-7-5 & II-7-6 II-7-14 thru II-7-19 II-8-1 thru II-8-4 II-9-1 thru II-9-7a

II-11-15 & II-11-16 II-11-23 thru II-11-30 II-12-1 thru II-12-4 II-13-1 thru II-13-4 III-i & III-ii III-1-1 thru III-1-5 III-2-1 thru III-2-10 III-5-3 thru III-5-6 III-6-1 thru III-6-6 III-7-3 thru III-7-16 III-9-11 & III-9-12 III-12-18 thru III-12-28 III-12-30 III-13-11 & III-13-12 III-13-17 thru III-13-28 III-13-33 thru III-13-38 III-15-1 thru III-15-6

Note of Interest Section

Malfunction Analyses Section - Pages 45, 46, and 55

Add New Pages:

II-iii II-3-7 thru II-3-9 II-6-11 II-7-22 thru II-7-52 II-8-5 & II-8-6 II-11-16a thru II-11-16c II-11-31 thru II-11-49 III-2-24 thru III-2-37 III-3-1 thru III-3-8 III-7-35 & III-7-36

UNIVERSAL

IM CONSOLE HANDBOOK

IM-10 AND SUBSEQUENT VEHICLES

PCN-10

REVISION INSTRUCTION SHEET

Update this document in accordance with the following instructions:

Pen and Ink changes:

pII-i - Add under "EPS 2-1...", "EPS 2-2, Contingency Translunar Coast IM Battery Management, II-2-8, PCN-10/NEW, 7/26/71"

> Add under "3 - PYRO"..., "PYRO 3-1, Manual Staging on the Lunar Surface, II-3-1, PCN-10/NEW, 7/26/71"

pII-ii Change "PROP 11-15" from "PCN-8/NEW, 6/1/71" to "PCN-10, 7/26/71"

Add under "PROP 11-15", "PROP 11-16, SHe/LOI Abort Chart Update Procedures (IM-10 Only), II-11-28, PCN-10/NEW, 7/26/71"

pIII-i Add under "SCS 9-2", "SCS 9-3, Ascent Engine Adapter Cable Ignition, III-9-12, PCN-10/NEW, 7/26/71"

45

Remove and replace pages as follows:

ii iia II-ll-26 through II-ll-27

46 Note of Interest: "Apollo 15 Data Management Plan"

7/26/71

Add the following new pages:

II-2-8 II-2-9 II-3-1 through II-3-6 II-11-28 through II-11-30 III-9-12

Notes of Interest:*

Pyro Battery Information Ascent Battery Consideration, Apollo 15 Voice/Tracking and Data Tradeoffs for Apollo 15 Ascent, Descent, and Descent Aborts Crew Unsuited Configuration while on the Lunar Surface RCS Thruster Failures and Apollo 15 Analysis of Vehicle Dynamics resulting from Isolation of Critical Jet Failed On during Powered Descent Monitoring Techniques for a Failed APS Inlet Pressure Transducer LOI Abort Subjects IM-10 Non-Throttle Region

and the

iia

21

*See notes of interest index for order of insertion

944-5900

6/25/71

UNIVERSAL

LM CONSOLE HANDBOOK

LM-10 AND SUBSEQUENT VEHICLES

PCN-9

REVISION INSTRUCTION SHEET

Update this document in accordance with the following instructions:

Remove and replace pages as follows:

Note of Interest: Apollo 15 Data Management Plan
T >
Malfunction Analyses:
29 through 40
47
48
59
60
69 through 77
78
89
90
99 through 102
107
108
111
112
115 through 174
17 through 182
187
188
195
196
200 through 319

Add the following new pages:

II-12-1 through II-12-6 Enclosure 1 of "IM Attitude Control Modes during PDI" Note of Interest Note of Interest: PDI Procedure for LR Antenna Switching Note of Interest: PDI Procedure for LR Antenna Switching Addendum Note of Interest: Tracking Versus Voice/Data for the Apollo 15 Descent Note of Interest: .PGNS Automatic Control of GDA's for DPS Thirty Minute Eurns

Malfunction Analyses: 108a through 108h 320 through 346

3

9,

UNIVERSAL

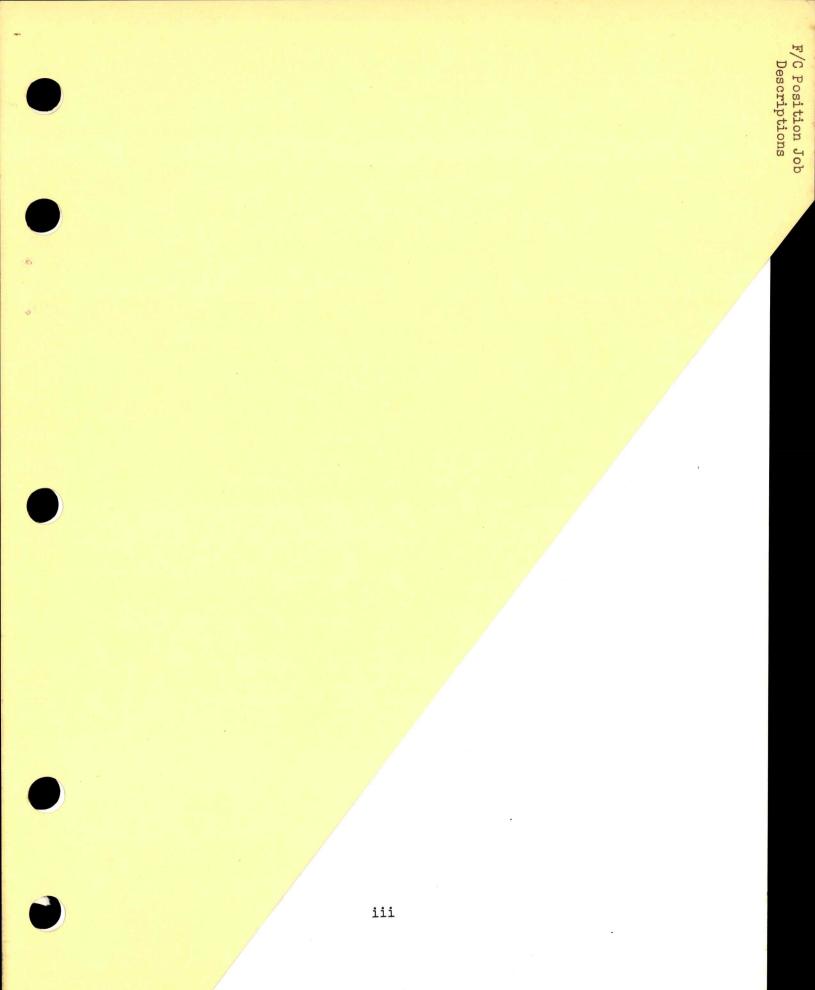
LM CONSOLE HANDBOOK

LM-10 AND SUBSEQUENT VEHICLES

PCN-8

Revision Instruction Sheet

Update this document in accordance with the following instructions:


Remove and replace pages as follows:

ii
iia
iii
I-2
I-3
II-i
II-ii
II-1-1 through II-1-4
II-1-11 through II-1-14
II-1-25 through II-1-48
II-2-1 through II-2-7
II-6-3
II-6-4
II-9-7b through II-9-11
II-10-5
II-11-1 through II-11-8
II-11-11 through II-11-12b
II-11-23 through II-11-25
II-13-1 through II-13-5

Add the following new pages: II-11-26 II-11-27 III-12-30 Malfunction Analyses Section

III-i III-ii III-1-1 through III-1-6 III-2-5 through III-2-23 III-6-9 through III-6-13 III-9-1 through III-9-10 III-11-1 through III-11-9 III-11-12 through III-11-18 III-12-1 through III-12-29 III-13-1 III-13-2 III-13-5 through III-13-12 III-13-17 through III-13-24 III-13-29 through III-13-32 III-14-3 III-14-4 III-15-7 III-15-8 Note of Interest Section

PCN-8

P-8

P-8

LM CONSOLE HANDBOOK

Index

I.	FLIGHT CONTROL POSITION JOB DESCRIPTIONS (FCPJD's)
II.	SYSTEM CONSOLE PROCEDURES (SCP's)
III.	SYSTEM BRIEFS (SB's)
IV.	NOTES OF INTEREST

v. MALFUNCTION ANALYSES

I. FLIGHT CONTROLLER POSITION JOB DESCRIPTION (FCPJD) Index

		PAGE
A.	FCPJD Summary	DELETED
Β.	Individual FCPJD	
	TELMU Engineer	I - 2
	LM ECS Engineer	I - 3
	LM INST Engineer	I - 4
	LM EPS Engineer	I - 5
	CONTROL Engineer	I - 6
	LM PGNS Engineer	I - 7
	LM AGS Engineer	I - 8
	LM PROP Engineer	I - 9
	PLSS ENG 1 and 2	I-11
	PLSS CONSUMABLES	I - 12

•

PCN-6

P-6

THE FLIGHT CONTROLLER POSITION JOB DESCRIPTION (FCPJD) SUMMARY IS DELETED BY PCN-6

I-1

PCN-8 P-3 TELMU Engineer FCPJD POSITION: MOCR Console 9 SYSTEM RESPONSIBILITIES: Electrical Power System (EPS) Instrumentation System (INST) Lunar Surface Equipments (MESA, SEQ BAY, RTG & LRV DPLY) Pyrotechnic System (PYRO) P-8 Lighting System Crew System Environmental Control System (ECS) Thermal System Extravehicular Mobility Unit (EMU) DUTTES: 1. Reports to flight director, and other appropriate MOCR personnel as required, the current status and capability of his assigned system responsibilities. 2. Provides the flight director with systems GO/NO GO recommendations at specific intervals throughout the mission. 3. Maintains cognizance over the status of IM and EMU, H_2O , O_2 , LiOH, and electrical consumables usage P-6 for comparison of the actual system operation against predicted values. Maintains a continual status of lifetime remaining. P-3 4. Monitors trend plots and chart displays on selected system parameters to verify system status and capability. 5. Recommends to the flight director alternate courses of action to accomplish mission objectives commensurate with crew safety. 6. Defines and recommends alternate crew procedures in the event of an onboard systems malfunction. 7. Provides inputs to real-time flight planning and alternate mission activity. 8. Insures that for the systems monitored alternate flight plans are within present systems capability. 9. Maintains cognizance of applicable DTO status and accomplishment. 10. Maintains cognizance over the RTCC TEIMU system computations for the RTCC special processing. P-3 11. Maintains a mission log for assigned system operation. 12. Initiates TELMU RTCC-driven plots and/or displays at prescribed times. P-3 13. Initiates TEIMU summary message transmittal. P-6 14. Initiates RTCC update requests for TELMU system tabs. P-3 15. Initiates RTCC limit sensing enable/disable. 16. Maintains cognizance of network high speed data formats and in conjunction with the CONTROL engineer, recommends appropriate changes to O&P. 17. Requests initiation of tape playback of real-time and dump data from MCC, CIF, and MSFN sites. 18. Requests Delogs and/or other RTCC information printouts as required. P-6 19. Maintains cognizance of PCMGS formats and in conjunction with the CONTROL engineer, recommends appropriate changes.

1-2

		PCN-8	
IM ECS	Engineer FCPJD		
POSITI	CON: SSR Console 21		
SYSTEM	RESPONSIBILITIES:		
E	Environmental Control System (ECS)		
L	unar Surface Equipments (MESA, SEQ BAY, RTG & LRV DPLY)		P-8
С	Crew System		
Т	Thermal System		
DUTIES	3:		
l. Re	ports to TELMU engineer and other appropriate MOCR/SSR personnel, as required, the current stat	us and	P-3
capabi	lity of his assigned system responsibilities.		
2. Pr	ovides the TELMU engineer with systems GO/NO-GO recommendations at specific intervals throughou	t the	P-3
missio	on.		
3. Ma	aintains the status of H ₂ O, LiOH, and O ₂ consumables usage for comparison of the actual system ope	ration	P-6
agains	t predicted values. Maintains a continual status of vehicle lifetime remaining.		
4. Pr	repares and maintains trend plots and chart displays on selected ECS parameters to verify system	status	
and ca	apability.		
5. Re	commends to the TELMU engineer alternate courses of action to accomplish mission objectives com	mensurate	P-3
with c	erew safety.		
6. De	fines and recommends alternate crew procedures in the event of an onboard systems malfunction.		
7. Pr	rovides inputs to real-time flight planning and alternate mission activity.		
8. In	nsures that for the system monitored alternate flight plans are within present systems capabilit	у.	
9. In	nitiates RTCC limit sensing value changes as required for system parameters.		
10. Ma	aintains cognizance of applicable DTO status and accomplishment.		
11. Cr	ross checks ground station readouts against ground displayed values and onboard readouts.		
12. In	puts MED quantities to the RTCC special processing as required.		P- 3
13. Co	pordinates RTCC H_2^0 and $0_2^{}$ consumable computations for the RTCC special processing.		P-3
14. Ma	aintains a mission log for assigned system operation.		
15. Pr	rovides H ₂ O and O ₂ weight updates to LM Prop.		
16. Co	pordinates and prepares consumables budgets for various alternate or aborted missions in real-t	ime.	P-6
17. In	nitiates ECS RTCC-driven plots and/or displays at the appropriate times.		P-8

I-3

PCN-6 IM INST Engineer FCPJD P-3 POSITION: SSR Console 30R SYSTEM RESPONSIBILITIES: Pyrotechnic System (PYRO) P-3 Instrumentation System (INST) DUTIES: 1. Reports to TELMU engineer and other appropriate MOCR/SSR personnel, as required, the current status P-3 and capability of his assigned system responsibilities. 2. Provides the TELMU engineer with system GO/NO-GO recommendations at specific intervals throughout P-3 the mission. 3. Maintains trend plots and chart displays on selected EPS parameters to verify system status and capability. P-3 4. Recommends to the TEIMU engineer alternate courses of action to accomplish mission objectives commensurate P-3 with crew safety. 5. Defines and recommends alternate crew procedures in the event of an onboard systems malfunction. 6. Provides inputs to real-time flight planning and alternate mission activity. 7. Insures that for the systems monitored alternate flight plans are within present systems capability. 8. Initiates RTCC limit sensing value changes as required for system parameters. 9. Maintains cognizance of applicable DTO status and accomplishment.

10. Cross checks ground station readouts against ground displayed values and onboard readouts.

11. Maintains a mission log for assigned system operation.

12. Serves as a focal point for all suspected IM instrumentation malfunctions.

P-6

LM EPS Engineer FCPJD

POSITION: SSR Console 30R

SYSTEM RESPONSIBILITIES:

Electrical Power System (EPS)

Lighting System

DUTIES:

1. Reports to TELMU engineer and other appropriate MOCR/SSR personnel, as required, the current status P-3 and capability of his assigned system responsibilities.

2. Provides the TELMU engineer with systems GO/NO-GO recommendations at specific intervals throughout the mission.

3. Maintains the status of electrical power consumables usage for comparison of the actual system operation against predicted values. Maintains a continual status of vehicle lifetime remaining.

4. Prepares and maintains trend plots and chart displays on selected EPS parameters to verify system status and capability.

5. Recommends to the TELMU engineer alternate courses of action to accomplish mission objectives commensurate P-3 with crew safety.

6. Defines and recommends alternate crew procedures in the event of an onboard systems malfunction.

7. Provides inputs to real-time flight planning and alternate mission activity.

8. Insures that for the systems monitored alternate flight plans are within present systems capability.

9. Initiates RTCC limit sensing value changes as required for system parameters.

10. Maintains cognizance of applicable DTO status and accomplishment.

11. Cross checks ground station readouts against ground displayed values and onboard readouts.

12. Inputs MED quantities to the RTCC special processing as required. P-3 13. Coordinates RTCC amp-hour computations for the RTCC special processing. P-3 14. Maintains a mission log for assigned system operation. 15. Coordinates and prepares consumables budgets for various alternate or aborted missions in real-time. P-6

I-5

P-3

PCN-6

P-3

CONTROL Engineer FCPJD

POSITION: MOCR Console 16

SYSTEM RESPONSIBILITIES:

Primary Guidance & Navigation System (PGNS)	Descent Propulsion System (DPS)
Abort Guidance System (AGS)	Ascent Propulsion System (APS)
Control Electronics System (CES)	Reaction Control System (RCS)
a second	Structures System

DUTIES:

1. Reports to flight director and other appropriate MOCR personnel, as required, the current status and capability of his assigned system responsibilities.

2. Provides the flight director with systems GO/NO-GO recommendations at specific intervals throughout the mission.

3. Maintains cognizance over the status of propellant consumables usage for comparison of the actual system operation against predicted values. Maintains a continual status of vehicle burn time remaining.

4. Monitors trend plots and chart displays on selected system parameters to verify system status and capability.

- 5. Recommends to the flight director alternate courses of action to accomplish mission objectives commensurate with crew safety.
 - 6. Defines and recommends alternate crew procedures in the event of an onboard systems malfunction.
 - 7. Provides inputs to real-time flight planning and alternate mission activity.
 - 8. Insures that for the systems monitored alternate flight plans are within present systems capability.
 - 9. Maintains cognizance of applicable DTO status and accomplishment.
 - 10. Maintains cognizance over the RTCC control system computations for the RTCC special processing.
- 11. Maintains a mission log for assigned system operation.
- 12. Initiates CONTROL summary message transmittal.
- 13. Initiates RTCC update requests for CONTROL system tabs.
- 14. Initiates RTCC limit sensing enable/disable.

15. Maintains cognizance of network high speed data formats and in conjunction with the TELMU engineer, recommends appropriate changes to O&P.

16. Requests initiation of tape playbacks of real-time and dump data from MCC, CIF, and MSFN sites.

17. Maintains cognizance of weight, propellant, and Delta V remaining log, and provides updates to RETRO

after any significant weight change or maneuver.

18. Requests delogs and/or other RTCC information printouts as required.

19. Maintains cognizance of PCMGS formats and in conjunction with the TELMU engineer, recommends appropriate changes.

P-6

PCN-6

P-3

I-6

LM PGNS Engineer FCPJD .

POSITION: SSR Console 294

SYSTEM RESPONSIBILITIES:

Primary Guidance & Navigation System (PGNS) (including DAP)

Rendezvous Radar (RR)

Landing Radar (LR)

DUTIES:

1. Reports to CONTROL engineer and other appropriate MOCR/SSR personnel, as required, the current status and capability of his assigned system responsibilities.

2. Provides the CONTROL engineer with systems GO/NO-GO recommendations at specific intervals throughout the mission.

3. Prepares and maintains trend plots and chart displays on selected PGNS parameters to verify systems status and capability.

4. Recommends to the CONTROL engineer alternate courses of action to accomplish mission objectives commensurate with crew safety.

5. Defines and recommends alternate crew procedures in the event of an onboard systems malfunction.

6. Provides inputs to real-time flight planning and alternate mission activity.

7. Insures that for the systems monitored alternate flight plans are within present systems capability.

8. Initiates RTCC limit sensing value changes as required for system parameters.

9. Maintains cognizance of applicable DTO status and accomplishment.

10. Cross checks ground station readouts against ground displayed values and onboard readouts.

11. Inputs MED quantities to the RTCC special processing as required.

12. Coordinates RTCC IMU resolver angles computations for the RTCC special processing.

13. Maintains a mission log for assigned system operation.

14. Monitors DAP status and performance.

- 15. Determines corrective values of IMU accelerometer and gyro biases, and reports to CONTROL and GUIDO

at appropriate times.

16. Maintains records of preflight loaded LGC eraseable load.

17. Calculates predicted PIPA readings for engine operations.

18. Monitors throttle loop during DPS operation.

I-7

PCN-6

P-6

P-6

LM AGS Engineer FCPJD

POSITION: SSR Console 290

SYSTEM RESPONSIBILITIES:

Abort Guidance System (AGS)

Control Electronics System (CES)

DUTIES:

1. Reports to CONTROL engineer and other appropriate MOCR/SSR personnel, as required, the current status and capability of his assigned system responsibilities.

2. Provides the CONTROL engineer with systems GO/NO-GO recommendations at specific intervals throughout the mission.

3. Prepares and maintains trend plots and chart displays on selected CES or AGS parameters to verify system status and capability.

4. Recommends to the CONTROL engineer alternate courses of action to accomplish mission objectives commensurate with crew safety.

5. Defines and recommends alternate crew procedures in the event of an onboard systems malfunction.

6. Provides inputs to real-time flight planning and alternate mission activity.

7. Insures that for the systems monitored alternate flight plans are within present systems capability.

8. Initiates RTCC limit sensing value changes as required for system parameters.

9. Maintains cognizance of applicable DTO status and accomplishment.

10. Cross checks ground station readouts against ground displayed values and onboard readouts.

11. Inputs MED quantities to the RTCC special processing as required.

12. Maintains a mission log for assigned system operation.

- 13. Monitors DPS gimbal loop, and RCS control loops and engine on/off.
- 14. Calculates DPS gimbal trim angles from c.g. positions for entry into the DSKY.

P-6

P-6

P-6

P-6

I-8

PCN-6

LM PROP Engineer FCPJD

POSITION: SSR Console 29R

SYSTEM RESPONSIBILITIES:

Descent Propulsion System (DPS)

Ascent Propulsion System (APS)

Reaction Control System (RCS)

Structures Subsystem

P-6

P-6

PCN-6

DUTIES:

1. Reports to CONTROL engineer and other appropriate MOCR/SSR personnel, as required, the current status and capability of his assigned system responsibilities.

2. Provides the CONTROL engineer with systems GO/NO-GO recommendations at specific intervals throughout the mission.

3. Maintains the status of propellant consumables usage for comparison of the actual system operation against predicted values. Maintains a continual status of vehicle burn time remaining.

4. Prepares and maintains trend plots and chart displays on selected PROP parameters to verify system status and capability.

5. Recommends to the CONTROL engineer alternate courses of action to accomplish mission objectives commensurate with crew safety.

6. Defines and recommends alternate crew procedures in the event of an onboard systems malfunction.

7. Provides inputs to real-time flight planning and alternate mission activity.

8. Insures that for the system monitored alternate flight plans are within present systems capability.

9. Initiates RTCC limit sensing value changes as required for system parameters.

10. Maintains cognizance of applicable DTO status and accomplishment.

11. Cross checks ground station readouts against ground displayed values and onboard readouts.

12. Inputs MED quantities to the RTCC special processing as required.

13. Coordinates and initiates RTCC propellant and propulsion computations for the RTCC special processing. P-6

14. Maintains a mission log for assigned system operation.

15. Initiates CONTROL RTCC-driven plots and/or displays as prescribed.

16. Determines weight, propellant, and Delta V remaining log, and provides updates to RETRO after any

significant weight change or maneuver.

17. Utilizes the Olivetti and Hewlett Packard desk computer for various real-time calculations.

18. Calculates vehicle c.g. for determination of DPS gimbal location.

19. Coordinates and prepares consumables budgets for various alternate or aborted missions in real-time.

20. Determines correct source to be used for descent hover time remaining callouts to the crew.

I-9

PCN-3

EMU Engineer FCPJD

¥

Deleted by PCN-3

PLSS ENG 1 and 2 FCPJD

POSITION: SSR Console 33R and 33L

SYSTEM RESPONSIBILITIES:

EMU

DUTIES:

1. Reports to TELMU engineer and other appropriate MOCR/SSR personnel the current status and capability P-3

PCN-6

P-6

of his assigned responsibilities.

2. Provides the TELMU engineer with EVA GO/NO-GO recommendations.

3. If necessary, makes recommendations to the TELMU engineer for alternate courses of action to accomplish p-6 mission objectives commensurate with crew safety.

- 4. Initiates RTCC limit sensing changes and inputs MED quantities to the RTCC special processing as required.

5. Cross checks ground station readouts against ground displayed values and onboard readouts.

6. Verifies CCATS and MCC PCMGS TM parameter readouts.

7. Maintains a mission log.

I-11

PLSS CONSUMABLES FCPJD

POSITION: OPAQUE TELEVIEWER - Channel 64 SYSTEM RESPONSIBILITIES:

EMU

DUTIES:

1. Maintains the status of O_2 (POS and OPS), feed H_2O , LiOH and electrical consumables usage for comparison of the actual system operation against predicted values. Maintains a continuous status of PLSS lifetime remaining for all consumables.

2. Prepares and maintain trend plots and graphs on PLSS consumables.

3. Utilizes realtime consumable projections to maintain updated LRV traverse constraint profiles.

4. Maintains a consumables log.


5. Coordinates with Aeromedical Life Support personnel to obtain crewmen metabolic rates for consumable usage rate calculations.

6. Maintains a record of above-nominal heat loads on the EMU's to determine degradations in consumables performance.

PCN-11

P-6

P-11

II-i

PCN-12

II. SYSTEM CONSOLE PROCEDURES (SCP's) INDEX

SCP NO.	SCP TITLE	PAGE	REV	SCP DATE
	<u>l – GEN (General</u>)			
GEN 1-1 GEN 1-2 GEN 1-3 GEN 1-4 GEN 1-5 GEN 1-6 GEN 1-7 GEN 1-6 GEN 1-7 GEN 1-10 GEN 1-10 GEN 1-11 GEN 1-12 GEN 1-13 GEN 1-14 GEN 1-16	Real-Time Commanding (Deleted by PCN-8) Limit Sense Control D/TV Display Discipline. Trend Plotting. Shift Change. Status Lights Comm Loop Usage (Deleted by PCN-8). LM TM Playback Procedures. DPS-1 Burn Logging (Deleted by PCN-6). Rubber Plots. Telemetry Data Flow. Loss of CSM Cabin with LM Available. Telemetry History Report in Formatted Tabulation (THRIFT). Displays (D/TV). Chart Recorder Format Selection. Emergency Mission Control Center (EMCC) Activation.	.II-1-5 .II-1-9 .II-1-9 .II-1-10 .II-1-10 .II-1-10 .II-1-11 .II-1-14 .II-1-14 .II-1-19 .II-1-22 .II-1-25 .II-1-34 .II-1-39 .II-40	PCN-11 PCN-12 ORIG PCN-3 PCN-3 PCN-8 PCN-8 PCN-6 PCN-6 PCN-12 PCN-12 PCN-12 PCN-11 PCN-11 PCN-11 PCN-11 PCN-11	11/1/71 3/1/72 4/11/69 6/20/69 10/27/69 6/1/71 11/1/70 11/1/70 3/1/72 3/1/72 11/1/71 10/1/72 11/1/71
	2 - EPS (Electrical Power Syste	<u>m</u>)		
EPS 2-1 EPS 2-2	LM EPS Ampere Hour (AH) Calculations Contingency Translunar Coast LM Battery Management	.II-2-1 .II-2-8	PCN-8 PCN-14	6/1/71 10 / 1/72
	3 - PYRO (Pyrotechnics)			
PYRO 3-1 PYRO 3-2	Manual Staging on the Lunar Surface Pyrotechnic Relay Troubleshooting Procedures	.II-3-1 .II-3-7	PCN-12 PCN-11/NEW	3/1/72 11/1/71
	<u>4 - COMM (Communications)</u> -	Deleted by	PCN-3	
	5 - INST (Instrumentation)			
INST 5-1 INST 5-2	PCMTEA Cal Voltage Shift Telemetry Failure Analysis (Deleted by PCN-3)	.II-5-1 .II-5-2	ORIG PCN-3	4/14/69 10/24/69
	6 - ECS (Environmental Control Sy	stem)		
ECS 6-1 ECS 6-2 ECS 6-3 ECS 6-4	H ₂ O/O ₂ Rate Calculations MED Determination for RTCC LM H ₂ O Special Processing (Deleted by PCN-8) O ₂ Quantity Calculations Sublimated H ₂ O Rate Calculation	.II-6-3 .II-6-4 .II-6-5	PCN-11 PCN-11 ORIG PCN-6/NEW	11/1/71 11/1/71 3/27/69 11/1/70
ECS 6-5	Conversion of LM-10 Water tank Pressure to Quantity	.II-6-6	PCN-11	11/1/71
DONG G 1	7 - PGNS (Primary Guidance and Navigation			
PGNS 7-1 PGNS 7-2 PGNS 7-3 PGNS 7-4 PGNS 7-5 PGNS 7-6 PGNS 7-7a PGNS 7-7a PGNS 7-78 PGNS 7-8a	IRIG Bias Shift Determination PIPA Bias Determination (Free Fall) Resolver Constraints/TM Bias Predicted PIPA Readings Attitude Model Operation DAP Data Load Interpretation (deleted by PCN-11) Lunar Surface PIPA Bias Calculation (Olivetti Method) Lunar Surface TIPA Bias Calculation (H/P Method) Lunar Surface Tilt and Heading Angles for Manual Staging P52/P57 Irig Bias Shift Determination (Hewlett Packard) Computer)	.II-7-6 .II-7-11 .II-7-12 .II-7-13 .II-7-14 .II-7-15 .II-7-18 .II-7-22	PCN-11 PCN-6 PCN-6 PCN-1 PCN-6 PCN-11 PCN-6/NEW PCN-11/NEW PCN-11/NEW PCN-11/NEW	11/1/71 11/1/71 5/12/69 11/1/70 11/1/71 11/1/71 11/1/71 11/1/71 11/1/71
PGNS 7-8b PGNS 7-8c PGNS 7-8d PGNS 7-9 PGNS 7-10	Surface CDU/DOCKED Noun 20 Torque Angle Calculation Noun 93 Venetian Blind Table Calculation P52/P57 Irig Bias Shift Determination (Olivetti Computer) Load, Monitor and Display LGC Storage Locations Evaluation of Tape Meter Indicated Altitude with Respect to Vehicle Pitch and Antenna Position	.II-7-27 .II-7-29 .II-7-31 .II-7-36	PCN-12 PCN-11/NEW PCN-11/NEW PCN-11/NEW PCN-11/NEW	3/1/72 11/1/71 11/1/71 11/1/71 11/1/71 11/1/71
PGNS 7-11	Temperature and Voltage Effects on IMU Constants with Attendant Velocity and Alignment Errors		PCN-11/NEW	11/1/71
PGNS 7-12 PGNS 7-13	Lunar Surface Tilt and Heading Angles for Manual Staging Platform Parking Angles	II-7-51 II-7-52	PCN-11/NEW PCN-12	11/1/71 3/1/72

II-i

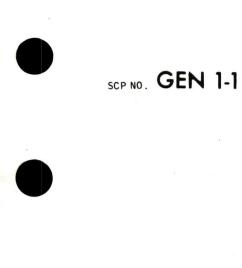
:03

-

-

SCP NO.	SCP TITLE	PAGE	REV	SCP DATE
	8 - RDR (Radar)			
RDR 8-1	RNDZ Radar Antenna Modes	II-8-1	PCN-11	11/1/71
	9 - SCS (Stabilization and Control S	ystem)		
SCS 9-1 SCS 9-2 SCS 9-2a SCS 9-3 SCS 9-4 SCS 9-5 SCS 9-6	DPS Gimbal Trim Alignment RCS Inflight Checkout Test. Lunar Surface RCS Checkout. DAP Set, Gimbal Drive Set, and Throttle Test Rescaling from Lunar to Earth Mission (Deleted by PCN-8). Rescaling from Earth to Lunar Mission (Deleted by PCN-8). Rate Gyro fluctuations during Lunar Surface RCS hot fire.	II-9-2 II-9-6 II-9-7 II-9-8 II-9-10	PCN-11 PCN-11 PCN-5/NEW PCN-14 PCN-8 PCN-8 PCN-8 PCN-14	11/1/71 11/1/71 1/6/70 10/1/72 6/1/71 6/1/71 10/1/72
AGS 10-1	<u>10 - AGS</u> (Abort Guidance System) Decimal to Octal	TT 10 1	ODIA	1/22/10
AGS 10-2 AGS 10-3 AGS 10-4 AGS 10-5 AGS 10-6	DEDA Octal to Decimal Decimal to DEDA Octal, Hand Calculation DEDA Octal to Decimal, Hand Calculation AGS Reference Drift Determination AGS Accelerometer Bias Check (Deleted by PCN-8)	II-10-1 II-10-2 II-10-3 II-10-4	ORIG ORIG ORIG ORIG PCN-8	4/11/69 4/11/69 4/11/69 4/11/69 4/11/69 6/1/71
	11 - PROP (DPS/APS/RCS)			
PROP 11-1	Weight Updates, Propellant Remaining, and ΔV Remaining Determination	II-11-1	PCN-14	10/1/72
PROP 11-2 PROP 11-3 PROP 11-5 PROP 11-6 PROP 11-7 PROP 11-8 PROP 11-9 PROP 11-10 PROP 11-10 PROP 11-11 PROP 11-12 PROP 11-13 PROP 11-14 PROP 11-15 PROP 11-16 PROP 11-17 PROP 11-19 PROP 11-20 PROP 11-22 PROP 11-22 PROP 11-24	Determination Weight and AY Remaining Determination. Determination of AV for a Given Time of Burn. Determination of A Burn Time for a Given AV. RCS Program for Offline RTCC Use. Weight Display Update (SMEK DPS/APS Calc) RTCC Program MED Updates. DPS Blowdown With Thrust. CG and DPS Gimbal Angle Determination. Monitoring GDA Failures. AV Remaining Determination for Blowdown Burns. Initiation of SMEK Controlled Propulsion Functions. DPS PQGS/Low Level Monitoring Procedures. SNe/LOI Abort Chart Update Procedures (Deleted by PCN-LL. Real-Time RCS Propellant Profile Determination. Determination of DPS Engine Erosion. APS P/0.9 PQMD Conversion. RCS Capability after a Helium or Propellant Leak. Optimum LM ASC Stage/CSM Docking Angle Determination. L2 - EMU (Extravehicular Mobility Unity	II-11-3 II-11-4 II-11-6 II-11-6 II-11-10 II-11-13 II-11-13 II-11-15 II-11-17 II-11-17 II-11-23 II-11-23 II-11-23 II-11-33 II-11-33 II-11-34 II-11-41 II-11-49 II-11-49 II-11-50	ORIG ORIG PCN-14 PCN-14 PCN-6 ORIG PCN-14 ORIG PCN-11 PCN-14 PCN-14 PCN-14 PCN-14 PCN-10 PCN-11 PCN-11 PCN-11 PCN-12 PCN-12 PCN-12 PCN-12 PCN-14 PCN-14 PCN-14 PCN-14	4/11/69 4/11/69 10/1/72 11/1/70 4/11/69 10/1/72 4/11/69 11/1/71 10/1/72 4/11/69 11/1/71 10/1/72 7/26/71 11/1/71 11/1/71 11/1/71 11/1/71 11/1/71 11/1/71 11/1/71 11/1/71
EMU 12-1	Apollo 15 EVA Traverse Constraints	.II-12-1	PCN-11	11/1/71
	13 - PLSS (Portable Life Support S	<u>rstem</u>)		
PLSS 13-1 PLSS 13-1a PLSS 13-1b PLSS 13-2 PLSS 13-3	PLSS Feedwater Remaining and Rate Calculation PLSS Feed H ₂ O Quantity and Rate Calculations Using Feed H ₂ O R/R PLSS Feed H ₂ O Quantity and Rate Calculations Using PLSS O ₂ Quantity and Rate Calculations Battery Amp-Hour Calculations	.II-13-1 .II-13-2 .II-13-3	PCN-11 PCN-8 PCN-8 PCN-11 PCN-11 PCN-11	11/1/71 6/1/71 6/1/71 11/1/71 11/1/71
	14 - OPS (Oxygen Purge System)		* ON-II	/ -/ / -
	15 - PGA (Pressure Garment Assemb	oly)		
	<u> 16 - CORO (Corollary)</u>			

CORO 16-1 Heat Flow and Convection (HF and C) Inflight Demonstration.II-16-1 PCN-14/NEW 10-1-72


P-14

4

-

-

*

This SCP is deleted by PCN-8

.

II-1-1 through II-1-4

SCP NO. GEN 1-2

S/C	:	LM	
DATE	:	3-1-72	
REV	:	PCN-12	
ORIGINATOR	:	By Heselmeyer	•
APPROVAL	:	Jame E. Hann	
		Y	fa

P-6

P-6

TITLE : LIMIT SENSE CONTROL

PURPOSE : This SCP explains the implementation of the operational and critical limit sensing capability and the procedures associated with each.

PROCEDURE: A. Limit Sense Enable/Disable

 TELMU and CONTROL have the capability to enable and disable groups of limits by means of the SMEK on each console. Each category affects both operational and critical limits except for the "ALL TELMU CRITICAL," "ALL CONTROL CRITICAL," and "LUNAR SURFACE CRITICAL" categories which affect critical limits only.

2. A list of parameters affected by the enable/disable function is contained in Table I.

3. Enable/Disable Categories

Enable/Disable Categories			
TELMU	CATEGORY	NOTES	
All TELMU	LEMCATECM		P-6
TELMU Critical	LEMCRTECM	Critical Limits only	P-9
Des Stage	LEMCAT 2		
Prelaunch	LEMCAT 3		
Asc Bat Curnt	LEMCAT 4		
EMU	LEMCAT 5		
CONTROL	CATEGORY	NOTES	
All CONTROL	LEMCATCON		P-6
All CONTROL Critical	LEMCRTCON	Critical Limits only	1
Launch Limits	LEMCAT 6		P-9
Coast Limits	LEMCAT 7		1-9
Staged Limits	LEMCAT 8		
Lunar Surface Critical	LEMCAT 10	Critical Limits only	
The category refers to the name	as defined by the TR-170 doc	ument.	
Disabling limits			
Depress the following			
a. "Limits"			
b. "Disable Limits" (TELMU) or "	Disable" (CONTROL)		P-6
C "Frequite"			

c. "Execute"

4.

 Enabling Limits Depress the following

a. "Limits"

- b. "Enable Limits" (TELMU) or "Disable Remove" (CONTROL)

c. "Execute"

B. Inhibiting Limit Sensing (COMPUTER TM FUNCTION)

- COMPUTER TM has control over the IM limit sensing in the RTCC. If limit sensing is DISABLED via the IM INHIBIT/ENABLE switch, all limit sensing for the IM is turned off.
- 2. Only the IM TEIMU or CONTROL MOCR position will request changes to the limit sense INHIBIT/ ENABLE switches. Other MOCR users of the same TM will be notified prior to changing the switch settings. The computer program is initialized with all limit sensing turned on and will not be inhibited until a request is made to Computer TM over the RTCC TM loop.
- 3. Critical limit sensing for an individual parameter can be inhibited by COMPUTER TM. (Note that this capability does not exist for operational limits). Only the IM TEIMU or IM CONTROL MOCR position will request that individual parameter critical limit sensing be disabled.

II-1-5

C. Resetting Limit Sense Lights

- 1. Operational Limits
 - a. The operational limit lights will remain on only when the parameters are out-of-limits. To <u>MOMENTARILY</u> reset <u>ALL</u> operational limit lights (as well as all functions driven by DDD's from the RTCC) depress:
 - 1. "_____ Limits"
 - 2. "RESET LIMIT LIGHTS"
 - 3. "Execute"
- 2. Critical Limits
 - a. Critical limit lights will not illuminate until a specified number of valid frames of data have been processed with the parameter out-of-limits. The number of valid frames of data are counted sequentially in an "AOS CHECK" counter and a "CONSECUTIVE FRAME CHECK" counter. The number of frames of valid data required for each of these counters is medable, may be different for each counter, are independent for each vehicle, and may be within the range of 0 to 30 frames for the IM. For the IM, the computer will be initialized with a value of 3 frames for each of the counters. At every AOS, assuming initialized values, this means 6 frames of data are required before a critical limit light can illuminate. During solid data, only 3 frames must be processed.
 - b. An illuminated critical limit light will stay on until the parameter goes back into limits and the light is manually reset. The associated tone will last for 3 seconds and cannot be interrupted. If a light is reset and the parameter is still out of limits, the light will again illuminate after the number of frames meded into the "CONSECUTIVE FRAME CHECK" counter is satisfied but the tone will not reoccur. Critical limit lights are reset by depressing the MSK "CRITICAL ALARM RESET" on console 9 (TELMU LIMITS) or console 16 (CONTROL LIMITS). It should be noted that if a restart tape is cut during a 3-second period when the alarm tone is on, and the computer is recycled to that time, then the tone will remain on continuously. DISPLAY has the capability to terminate the continuous alarm.
 - c. The "MASTER ALARM" and "ED A/B K1-6" lights on the TELMU critical limits module are actually sample and hold lights and not critical limits. Neither of the valid data frame counters or the tone apply to these lights, and they cannot be individually disabled. These two lights are reset by depressing the "LATCHING EVENT RESET" button on the console 9 MSK (TELMU).

D. Limit value Changes

- 1. Operational or Critical Limits
 - a. Telemetry parameter limit changes may be entered into the mission operations computer and the dynamic standby computer during the prelaunch and orbit phases.
 - b. Requests for operational limit changes will be made by voice to COMPUTER TM on the RTCC TM loop for individual parameter limit changes (maximum of five parameters). This voice request will be followed by the standard Limit Table Change Request Form (Figure 1) via P-Tube to COMPUTER TM. Requests for critical limit changes will be made on the standard Limit Table Change Request Form (Figure 1) and signed by the MOCR operator.
 - c. Requests for limit changes on more than five parameters will be made only on the standard form (Figure 1).
 - d. Tapes The capability exists to place several parameter limits on paper tape.
 IM CONTROL uses this feature, and defines the tapes on a mission by mission basis for math model sims, IMS sims, and for the actual vehicle.

P-6

P-9

P-C

P-6

COMPUTER TM: P-TUBE STATION 31

SCP	NO.	GEN	1-2	
PCN-	-9			
DATE				
TIME				
INIT	IATO	R		

LIMIT TABLE CHANGE SHEET

1. VEHICLE: CSM S-IC S-IVB/IU LM AMD (CIRCLE ONE)

- 2. CRITICAL _____ OPERATIONAL
- 3. DATA: MEASUREMENT NO. LOW LIMIT HIGH LIMIT DISABLE LIMIT
- NOTE 1: INDICATE MINUS SIGN VALUES AND DECIMAL POINTS, IF APPLICABLE. IT IS NOT REQUIRED TO SPECIFY UNITS (E.G., PSI, MMHG, F, ETC.).
- NOTE 2: IF ONLY ONE LIMIT (HIGH OR LOW) CHANGE IS DESIRED, IT IS NOT NECESSARY TO WRITE IN THE UNCHANGED VALUE.

MOCR OPERATOR:

FD APPROVAL:

(ONLY IF CRITICAL LIMITS ARE TO BE CHANGED OR DISABLED)

FIGURE 1

II-1-7

MSC Form 1966 (Rev Jan 71)

TABLE I - TM vs RTCC LIMITS

						ENA	BLE/DISA	BLE CATEGOR	IES			
S	YSTEMS	UNITS	OPR. LIMITS	CRIT. LIMITS	ALL TELMU	ALL TELMU CRITICAL	DES STAGE	PRE- LAUNCH	ASC BAT CURNT	EMU	ALL CONTROL	ABORT STAGED
THE	RMAL SYSTEM		LOW HIGH	LOW HIGH	LEMCATECM	LEMCRTECM	2	3	4	5	LEMCATCON	8
CB0541T CB0542T	MESA 1 TEMP MESA 2 TEMP	oF oF	40 90 40 90	Ξ, Ξ	X X		X X					5
ELECTR	RICAL POWER SYSTEM								4			
GC0071V GC0155F GC0201V GC0202V GC0202V GC0203V	AC BUS VOLT AC BUS FREQ BAT 1 VOLT BAT 2 VOLT BAT 3 VOLT	VOLTS HZ VOLTS VOLTS VOLTS	115.8 118.2 398 402 29 35 29 35 29 35 29 35		X X X X X X		X X X	X X X X X X				-
GC0207V GC0204V GC0205V GC0206V GC0301V GC0302V	BAT L VOLT BAT 4 VOLT BAT 5 VOLT BAT 6 VOLT CDR BUS VOLT IMP BUS VOLT	VOLTS VOLTS VOLTS VOLTS VOLTS VOLTS	29 35 29 35 29 38 29 38 28 32.5 28 32.5	 36.5 38 36.5 38 27 32. 27 32.		X X X X	X X	X X	t.	2		н М СС
GC1201C GC1202C GC1203C GC1207C GC1207C GC1204C GC1205C	BAT 1 CUR BAT 2 CUR BAT 3 CUR BAT 1 CUR BAT 4 CUR BAT 5 CUR	AMPS AMPS AMPS AMPS AMPS AMPS	5 20 5 20 5 20 5 20 5 20 5 20 5 40	0.5 20 0.5 20 0.5 20 0.5 20 0.5 20 0.5 20 1.0 40	X X X X X X	X X X X X X X	X X X X X	X X X X X X X	X	n Kin		
GC1206C GC9965U GC9966U CLC	BAT 6 CUR BAT 5 MAL BAT 6 MAL	AMPS N/A N/A	5 40 N/A N/A N/A N/A	1.0 40 BILEVEL BILEVEL	х	X X X		Х	X			
IM4501C IM4502C IM4503C	TOT CUR DES CUR ASC CUR	AMPS AMPS AMPS	40 80 20 80 10 80		X X X		x		X			
INST	RUMENTATION SYSTEM							1				
GL0401V GL0402V GL0422V GL0423V GL4047X GL4069X	CAL 85 PCT CAL 15 PCT PCM OSC FAIL 2 PCM OSC FAIL 3 BAT MAL MST ALARM	VOLTS VOLTS VOLTS VOLTS N/A N/A	4.24 4.26 .74 .76 3.2 5 3.2 5 N/A N/A N/A N/A	BILEVEL	2	x x		x x	а н м	8	а	
GL8275T ¹ 7L9 L 01U 2 _{GL9402U}	REF: GL9401U SEL RTG/ECA 1T SEL LR ANT/ECA 2T	°F °F	40 160 -15 +150	= =	x x						Х	X

NOTES: 1. GL9401U is the measurement assigned to the combined measurements of GT8275 RTG CASK T and GC6201T ECA 1T. Ground data systems use only GT8275T. 2. GL9402 is the measurement assigned to the combined measurements of GN7563T LR ANT T and GC6202T ECA 2T. Ground data systems use only GN7563T.

					Τ			ENA	BLE/DISA	BLE CATEGO	RIES		1
	SYSTEMS	UNITS		LIMITS		LIMITS	ALL TELMU	ALL TELMU CRITICAL	DES STAGE	PRE- LAUNCH	ASC BAT CURNT	EMU	
ENVI	RONMENTAL CONTROL SYSTEM		LOW	HIGH	LOW	HIGH	LEMCATECM	LEMCRTECM].
* GF0521T GF0584P GF1083X GF1084X GF1281T GF1201P GF1521P	DES 2 H20 TEMP DES 2 02 PRESS SUIT FAN 1 FAIL SUIT FAN 2 FAIL SUIT TEMP SUIT TEMP SUIT PRESS CO ₂ PART PRESS	of PSIA N/A N/A of PSIA MMHG	40 2650 N/A N/A 35 3.6 0	90 3000 N/A N/A 75 5.0 7.6		3000 EVEL EVEL 5.2	X X X X X	X X X X X X	x				P-11 P-9
GF1651T GF2021P GF2531T GF2581T GF2921P	CABIN TEMP PRI GLY PUMP △ P W/B GLY IN T W/B GLY OUT T SEC GLY P	of PSID of ^O F PSIA	60 15 40 32 5.5	90 25 90 95 9.0	 32 7.2	 80 23	X X X X X X	X X		x			P-9
GF3571P GF3582P GF3583P GF3584P	CABIN PRESS ASC 1 0 ₂ PRESS ASC 2 0 ₂ PRESS DES 1 0 ₂ PRESS	PSIA PSIA PSIA PSIA	3.6 800 800 2650	5.0 950 950 3000	4.5 800 800 2650	5.2 950 950 3000	X X X X	X X X X	x				
GF3591P GF3592P GF4101P GF4501P GF4501P GF4500P GF4502P GF4502P GF4503P GF4585T GF4585T GF4586T	U/H RLF PRESS F/H RLF PRESS PRI H ₂ O REG \triangle P DES H ₂ O PRESS PRI W/B H ₂ O TEMP DES 1 H ₂ O TANK PRESS A/1 H ₂ O TANK PRESS A/2 H ₂ O TANK PRESS ASC 1 H ₂ O T	PSIA PSIA PSID PSIA OF % % % oF oF	3.6 3.6 0.5 44 35 30 30 30 40 40		0.4 	 1.9 	X X X X X X X X X X X X X	х	x x	x x	- %-		P-9
GF9986U GF9997U	SEL GLY LOW LVL SEL GLY FUMP PRESS	N/A PSIA	N/A 20	N/A 28	BILE 19	28	х	x x			5		P-9
GF9998U GF9999U CLC IM4611C IM4617C IM4609C	SEL GLY TEMP SEL H ₂ O SEP RATE DES 1 H ₂ O LBS DES 2 H ₂ O LBS ASC 1 H ₂ O LBS	of RPM LBS LBS LBS	34 900 260 260 41	50 3600 270 339 42.5	 250 250 41	270 270 43	X X X X X	x x x	X X	x x			P-9
IM4610C IM4601C IM4603C IM4703C IM4708C IM4708C IM4706C IM4701C IM4707C IM4702C	ASC 2 H ₂ O LES DES 1 02 QTY PCT A/1 02 QTY PCT DES 1 02 Q, LES/HR DES 2 02 Q, LES/HR ASC 1 02 Q, LES/HR ASC 2 02 Q, LES/HR DES 1 H ₂ O Q, LES/HR DES 1 H ₂ O Q, LES/HR ASC 1 H ₂ O Q, LES/HR	LBS % % LB/HR LB/HR LB/HR LB/HR LB/HR LB/HR	41 97 99 99 0.0 0 0 0 0	42.5 100 100 100 0.4 0.4 0.3 0.3 7.0 7.0 3.5	41 	43 	X X X X X X X X X X X X	x	x x x x x				P-9 P-9 F-9

TABLE I - TM vs RTCC LIMITS - Continued

*REFER TO THIS PARAMETER AS GP0543P WHEN COMMUNICATING WITH RTCC. 11

B

11-1-8a

SCP NO. GEN 1-2 PGN-11

			LIMITS	CDTT	LIMITS		1	ENABLE/DI	SABLE CAT	EGORIES	
PLSS 🍺	UNITS			CRIT		ALL	ALL TELMU CRITICAL	DES STAGE	PRE- LAUNCH	ASC BAT CURNT	EMU
		LOW	HIGH	LOW	HIGH	LEMCATECM	LEMCRTECM	2	. 3	4	5
$ \begin{array}{c} {\rm GT8101V/GT8201V} {\rm EVCS} \ {\rm CAL} \ 0 \\ {\rm GT8102V/GT8202V} {\rm EVCS} \ {\rm CAL} \ 5 \\ {\rm GT8110P/GT8210P} \ {\rm PLSS} \ {\rm FEED} \ {\rm H_O} \ {\rm PRESS} \\ {\rm GT814V/GT8241V} {\rm PLSS} \ {\rm FAT} \ {\rm cufr} \\ {\rm GT8154T/GT8254T} \ {\rm LCG} \ {\rm H_O} \ {\rm INI} \ {\rm TEMP} \\ {\rm GT8154T/GT8254T} \ {\rm LCG} \ {\rm H_O} \ {\rm INI} \ {\rm TEMP} \\ {\rm GT816P/GT8254T} \ {\rm LCG} \ {\rm H_O} \ {\rm INI} \ {\rm TEMP} \\ {\rm GT816P/GT8257P} \ {\rm PLSS} \ {\rm SUBL} \ {\rm 0} \ {\rm out} \ {\rm TEMP} \\ {\rm GT816P/GT827P} \ {\rm PLSS} \ {\rm SUBL} \ {\rm 0} \ {\rm out} \ {\rm TEMP} \\ {\rm GT816P/GT827P} \ {\rm PLSS} \ {\rm SUBL} \ {\rm 0} \ {\rm out} \ {\rm TEMP} \\ {\rm GT816P/GT825P} \ {\rm PLSS} \ {\rm 0} \ {\rm PFESS} \\ {\rm GT8196T/GT827P} \ {\rm PLSS} \ {\rm 0} \ {\rm PESS} \\ {\rm GT8196T/GT827P} \ {\rm PLSS} \ {\rm 0} \ {\rm PESS} \\ {\rm GT8196T/GT827P} \ {\rm PLSS} \ {\rm 0} \ {\rm PFESS} \\ {\rm GT8182P/GT825P} \ {\rm PLSS} \ {\rm 0} \ {\rm 2PESS} \\ {\rm GT8196T/GT827P} \ {\rm TLSS} \ {\rm 0} \ {\rm 0} \ {\rm 0} \ {\rm TEMP} \\ {\rm LEM7309C(c120)/LEM7310C(c220)} \ {\rm PLSS} \ {\rm 0} \ {\rm 0$	VDC VDC PSIA AMP VDC oF PSID oF LE/HR LE LE/HR LE/HR LE/HR LE/HR LE/HR	$\begin{array}{c} 0 \\ 4.95 \\ 2.5 \\ 2.4 \\ 16.4 \\ 50 \\ 3.75 \\ 41 \\ 0 \\ 1200 \\ 0 \\ 0.1 \\ 0.37 \\ 60 \\ 3.0 \\ 0.7 \\ 4.5 \end{array}$	0.5 5.0 3.7 2.8 17.6 90 4.05 46 6 1500 10 0.4 1.90 100 25.8 2.0 12.2	2.5 2.0 16 	 4.0 3.0 20.5 50 1500 	x x x x x x x x x x x x x x x x x x x	x x x x x x				x x x x x x x x x x x x x x x x x x x
PYRO											
GY0201X ED RLY A K1-6 GY0202X ED RLY B K1-6	N/A N/A	N/A N/A	N/A N/A		LEVEL						

TABLE I - TM vs RTCC LIMITS - Continued

SCP NO.GEN I-2 PCN-11

	ĉ		- 21					EN	IABLE/DISA	BLE CATEGO	RIES		P- 6
PRIMARY G	UIDANCE AND NAVIGATION SYSTEM	UNITS	1	LIMITS	CRIT		LAUNCH LIMITS	COAST LIMITS	ABORT STAGED LIMITS	ALL CONTROL	LUNAR SURF CRIT	ALL CNTRL CRIT	P- 9
			LOW	HIGH	LOW	HIGH	6	7	8	LEMCATCON	10	LEMCRTCON	1
GG1040V GG1110V GG1201V GG1331V GG2001V	PLS TORQ REF 2.5 VDC TM BIAS IMU 28 VAC 800 HZ IRIG SUSP 3.2 KC X PIPA OUT IN ¢	VDC VDC VRMS VRMS VRMS	105 2.35 26 26 -1	130 2.6 30 30 +1					15	X X X X X			
GG2021V GG2041V GG2107V GG2137V GG2142V	Y PIPA OUT IN ¢ Z PIPA OUT IN ¢ IG SVO ERR IN ¢ MG SVO ERR IN ¢ MG RSVR OUT SIN	VRMS VRMS VRMS VRMS VRMS	-1 -1 -1 -1 0.93	+1 +1 +1 +1 4.07	 0.218	 4.782	X		×	X X X X X X	x	x	
GG2167V GG2219V GG2249V GG2279V GG2300T	OG SVO ERR IN ¢ PITCH ATT ERR YAW ATT ERR ROLL ATT ERR PIPA TEMP	VRMS DEG DEG °F	-1 -5 -5 -5 120	+1 +5 +5 +5 140						X X X X X	'n		P-6
GG3304V GG3305V GG3324V GG3325V LEM 5603C	RR SHFT SIN RR SHFT COS RR TRUN SIN RR TRUN COS IMU/CDU (P)	DEG DEG DEG DEG DEG	-5 -5 -5 -5 -0.5	+5 +5 +5 +5 +0.5	-0.5	0.5	x	-		X X X X X	X	x	
LEM 5604C LEM 5605C LGC 8601C LGC 8602C LGC 8603C	IMU/CDU (R) IMU/CDU (Y) X PGNS/AGS Y PGNS/AGS Z PGNS/AGS	DEG DEG DEG DEG DEG	-0.5 -0.5 -5.0 -5.0 -5.0	+0.5 +0.5 +5.0 +5.0 +5.0	-0.5 -0.5	0.5 0.5	X X X X X			X X X X	X X	X X	
GG9001X GG9002X LCH11B01 LCH33B14 LGC43E	LGC WARN ISS WARN ISS WARN LGC WARN LGC RSTRT										X X X X X	X X X X X	
	RADAR SYSTEM					1			1				
² GN7563T GN7723T	REF GL9402U RR ANT TEMP	DEG	-50	+149						X		-	

TABLE I-TM vs RTCC LIMITS - Continued

 GL9402U IS THE MEASUREMENT ASSIGNED TO THE COMBINED MEASUREMENTS OF GN7563TLR ANT T AND GC6202T ECA 2 T. GROUND DATA SYSTEMS USE ONLY GN7563T. SCP NO.GEN I-2 PCN-12 •

.

.

,							9	E	NABLE/DISA	BLE CATEGOR	RIES	
STAB	BILIZATION AND CONTROL SYSTEM	UNITS		LIMITS	CRI	T LIMITS	LAUNCH LIMITS	COAST LIMITS	ABORT STAGED LIMITS	ALL CONTROL	LUNAR SURF CRIT	ALL CNTRL CRIT
			LOW	HIGH	LOW	HIGH	6	7	8	LEMCATCON	10	LEMCRTCON
GH1247V GH1248V GH1249V GH1311V GH1313V	YAW ERR CMD PITCH ERR CMD ROLL ERR CMD MAN THRUST CMD PITCH GDA POS	VOLTS VOLTS VOLTS PCT DEG	-0.8 -0.8 -0.8 10 -4.0	0.8 0.8 0.8 92.5 +4.0			X X X		X X	X X X X X		
GH1314V GH1331V GH1455V GH1456V GH1457V	ROLL GDA POS AUTO THRUST CMD YAW ATT ERR PITCH ATT ERR ROLL ATT ERR	DEG PCT DEG DEG DEG	-4.0 0 -5.0 -5.0 -5.0	+4.0 82.5 +5.0 +5.0 +5.0			X X X		X X	X X X X X		
GH1461V GH1462V GH1463V GL4026X GL4027X	RGA YAW RATE RGA PITCH RATE RGA ROLL RATE CES AC FL CES DC FL	DEG/SEC DEG/SEC DEG/SEC	-5.0 -5.0 -5.0	+5.0 +5.0 +5.0						X X X	X X	XXX
GL4028X LEM 32E LEM 33E	AGS WARN CB37 FAIL CB69 FAIL										X X	X X X
-	ABORT GUIDANCE SYSTEM	-,										
G13301T	ASA TEMP	°F	115	125			al -			Х		
5-	ASCENT PROPULSION	1										
GP0001P GP0002P GP0018P GP0025P GP0025P GP0021F GP0042P	APS HE 1 PRESS ASP HE 2 PRESS APS HE REG PRESS APS HE REG PRESS APS HE 1 R PRESS APS HE 2 R PRESS APS HE 2 R PRESS	PSIA PSIA PSIA PSIA PSIA PSIA	2970 2970 110 110 2970 2970	3150 3150 130 130 3150 3150	2970 2970 110 110 2970 2970	3150 3150 130 130 3150 3150				X X X X X X		X X X X X X
GP0718T GP1218T GP1501P GP1503P	APS FUEL TEMP APS OX TEMP APS FUEL PRESS APS OX PRESS	°F °F PSIA PSIA	60 60 120 120	80 80 190 190	120 120	 190 190				X X X X		X X
DE	SCENT PROPULSION SYSTEM	5				-					2	
GQ3015P GQ3018P GQ3025P GQ3435P GQ3603Q	DPS START TANK PRESS DPS HE REG PRESS DPS HE REG PRESS DPS HE PRESS DPS FUEL 1 QTY	PSIA PISA PSIA PSIA PCT	1450 40 40 600 55	1750 60 60 800 96				х	X X X X X	X X X X X	3	
GQ3604Q GQ3611P GQ3718T GQ3719T GQ4103Q	DPS FUEL 2 QTY DPS FUEL PRESS DPS FUEL 1 TEMP DPS FUEL 2 TEMP DPS OX 1 QTY	PCT PSIA °F °F PCT	55 120 60 60 55	96 250 80 80 96	120	250		x x	X X X X X	X X X X X		x

11 -1 -8d

SCP NO.GEN I-2 PCN-9

.

.

.

TABLE I-TM vs RTCC LIMITS - Concluded

								E	ABLE/DISA	BLE CATEGOR	RIES	
	DESCENT PROPULSION SYSTEM	UNITS			CRIT		LAUNCH LIMITS	COAST LIMITS	ABORT STAGED LIMITS	ALL CONTROL	LUNAR SURF CRIT	ALL CNTRL CRIT
			LOW	HIGH	LOW	HIGH	6	7	8	LEMCATCON	10	LEMCRTCON
GQ4104Q GQ4111P GQ4218T GQ4219T GQ6806H	DPS 0X 2 QTY DPS 0X PRESS DPS 0X 1 TEMP DPS 0X 2 TEMP VAR INJ ACT POS	PCT PSIA °F PCT	55 120 60 60 10	96 250 80 80 75	120	250		x x	X X X X X	X X X X X		X
LEM5801C LEM5802C LEM5602C LEM5601C	APS FUEL FLOW RATE APS OX FLOW RATE SP THRUST ERR THRTL ERR	LBS/SEC LBS/SEC 	3.8 6.5 -4 -4	4.8 7.3 +4 +4				X X	. X X	X X X X	•	
	REACTION CONTROL SYSTEM											
GR1085Q GR1095Q GR1101P GR1102P GR1201P	RCS PROP A QTY RCS PROP B QTY RCS A HE PRESS RCS B HE PRESS RCS A REG PRESS	PCT PCT PSIA PSIA PSIA	95 95 2950 2950 20	105 105 3150 3150 60						X X X X X		
GR1202P GR2121T GR2122T GR2201P GR2202P	RCS B REG PRESS RCS A FUEL TEMP RCS B FUEL TEMP A FUEL MFLD PRESS B FUEL MFLD PRESS	PSIA °F °F PSIA PSIA	20 50 50 20 20	60 90 90 60 60	20 20	60 60				X X X X X		X X
GR3201P GR3202P GR6001T GR6002T GR6003T	A OX MFLD PRESS B OX MFLD PRESS QUAD 4 TEMP QUAD 3 TEMP QUAD 2 TEMP	PSIA PSIA °F °F °F	20 20 120 120 120	60 60 190 190 190	20 20	60 60		×		X X X X X		X X
GR6004T LEM 5429C LEM 5430C	QUAD 1 TEMP RCS CALC A PROP QTY RCS CALC B PROP QTY	°F PCT PCT	120	190	36 36	105 105				х		X X

▶ LIMIT VALUES SHOWN ARE INITIALIZED VALUES.

> THESE PARAMETERS ARE SAMPLE AND HOLD ONLY, REF PARA C.2.C.

3 limit sensed parameters are shown for plss 1 only. Identical limit sensing is done for plss 2.

SCP NO. GEN I-2 PCN-9

S/C: LM DATE: 4/11/69 REV: Original Origina. 9. L. Gruby Hannigan ORIGINATOR: APPROVAL :C

D/TV DISPLAY DISCIPLINE

TITLE: PURPOSE:

The SCP establishes D/TV Display discipline rules for all MOCR and SSR positions.

PROCEDURE: A. Prelaunch

Displays which are necessary to monitor prelaunch OCP's and consumables loading may be locked on by the SSR consoles.

B. Prepass

All displays required for pass-time activities will be locked on by SSR consoles at a time no later than H-5 minutes. MOCR personnel will always be advised by SSR as to which TV channels and displays are being used.

C. Postpass

All displays will be released during periods when incoming data is not being processed except when history displays are required for trend analysis.

SCP NO. GEN 1-4

TREND PLOTTING TITLE:

PURPOSE:

- This SCP establishes ground rules for trend plotting.
- PROCEDURE: A. Trends will be plotted on yellow or green graph paper of a suitable size and scale so as to be readable on an opaque televiewer.
 - B. Actual values will be plotted with a dashed line.
 - C. Nominal values will be plotted with a solid line.
 - D. Data points will be enclosed in a circle.
 - E. The subsystem engineer should be able to explain any delta in data points from the predicted nominal data points.
 - F. Trends plotted for opaque televiewer presentation will be plotted for time spans of 15 minutes or longer.
 - FD or MOCR briefing.
 - H. Trend plots will normally be made for the following:

 - 3. SHe Press
 - 4. DPS Prop Usage
 - 5. APS Prop Usage
 - 6. Asc 02 Qty
 - 7. Des 02 Qty
 - 8. Asc H20 Qty

 - 12. Mass of 0_2 Remaining (PLSS 1 and 2)
 - 13. Feed H₂O Remaining (PLSS 1 and 2)
 - I. The three available TV channels are:
 - 1. 0058 Life Sys Opaque TV
 - 2. 0064 Veh Sys Opaque TV (PLSS)
 - 3. 0065 Veh Sys Opaque TV

S/C: LM

APPROVAL :

DATE: 6/20/69 REV: PCN-2 ORIGINATOR: C7 L. Gruby

ans

ann

G. At LOS of any site or series of overlapping sites, the trends will be updated within 5 minutes for

- 1. RCS Prop Usage
- 2. RCS Quad Temp

- 9. Des H₂O Qty
- 10. Total Amp-Hrs Remaining Asc and Desc
- 11. Total Amp-Hrs Remaining (PLSS 1 and 2)

TITLE: SHIFT CHANGE

PURPOSE: The SCP defines the LM systems shift change procedures and contents of the briefing and associated documentation.

- PROCEDURE: A. Reporting Time
 - Prelaunch the launch team members will be at their respective consoles for shift change briefing at T - 3:00 hours. Console handover will occur no later than T - 2:00 hours.

S/C: LM

S/C: LM

DATE: REV:

ORIGINATOR:

APPROVAL:

10/27/69

L. Bourgeois

Ha.

PCN-3

DATE:

REV: ORIGINATOR: APPROVAL: 10/27/69

L. Bourgeois

- 2. Routine the relieving team will be at their respective consoles no later than one hour prior to the shift change.
- B. Documentation
 - 1. Console log books
 - 2. TM history tables
 - 3. Systems computer program printouts
 - 4. Information relative to planning mission changes
- C. Contents
 - 1. Present vehicle status
 - a. Switch/circuit breaker configuration
 - b. History of vehicle anomalies
 - c. Consumable status and lifetime capability
 - d. MCC, ALDS, and MSFN support constraints, including console status
 - e. Any other data pertinent to mission progress
- D. Procedure
 - 1. Retiring AFD will summarize mission activities, completed and planned, and give the brief on the vehicle(s) status in general.
 - 2. Relieving team members will review the documentation.
 - 3. Retiring team members will brief their counterparts in detail.
 - 4. MOCR operators will in general brief the Flight Director to insure a common understanding.

SCP NO. GEN 1-6

TITLE: STATUS LIGHTS

PURPOSE: The purpose of this procedure is to define Vehicle Systems SSR and MOCR usage of the Status Lights at their respective consoles.

- PROCEDURE: A. Each TELMU/CONTROL MOCR and SSR console position has three status lights: red, yellow, and green. When the TELMU or CONTROL SSR position depresses his status light button, the same light in the TELMU or CONTROL position will illuminate respectively. Similarly, if any MOCR position depresses any one of his console, the respective light on the Flight Director's console will illuminate. If the MOCR flight Controller depresses the red status light, it illuminates the abort light event on all consoles.
 - B. Meaning of the Status Lights:
 - RED Status Light Indicates an abort type situation or a problem has arisen requiring immediate action.
 - AMBER Status Light Indicates a problem (not abort) situation which may or may not require action.
 - 3. GREEN Status Light Indicates that all systems are functioning properly (no problems).
 - C. Usage of Status Lights:
 - MOCR and SSR will use the appropriate status lights when LM problems warrant as described in Paragraph B.
 - Status lights will also be used as a status check upon direction from the Flight Director/TELMU/ CONTROL as the case may be.
 - Normally the depression of any status light due to a S/C problem will be followed with a short discussion or narrative on the communications loop between the personnel involved.
 - 4. If the requirement exists for immediate communications between the SSR and the respective MOCR position (TELMU/CONTROL), the SSR may use the Amber light to flag the MOCR TELMU/CONTROL.
 - 5. The amber light will be used by the SSR to indicate to the MOCR that the console is not manned.

П-1-10

P-3

P-3

This SCP deleted by PCN-8 (See FCOH SOP 6.3 for comm loop usage)

II-1-11 through II-1-13

S/C: LM DATE: 3/1/72 REV: PCN 12 ORIGINATOR: D. Legler, APPROVAL:

TITLE: LM TM PLAYBACK PROCEDURES

TITLE: PURPOSE:

This procedure defines the method for IM TELMU and CONTROL to initiate tape playbacks of real-time P-3 and dump data from MCC, CIF, and MSFN sites.

CAPABILITIES: A. Data Sources:

- 1. MCC facilities have the capability of processing:
 - a. Individually:
 - (1) Real-time data (live data from spacecraft).
 - (2) Tape playback data (playback of real-time data from ground recorder).
 - (3) Dump data (playback of data from onboard recorder).
 - (4) Dump playback data (playback of dump data from ground recorder).
 - b. Simultaneously:
 - (1) Real-time data and tape playback data.
 - (2) Real-time and dump data.
 - (3) Real-time data and dump playback data.

 MSFN facilities have the capability of processing and outputting data in 2.4 kbps formats. Two 2.4 kbps formats may be interleaved into a 4.8 kbps format:

- a. HBR Data:
 - (1) 51.2-kbps data real-time.
 - (2) 51.2-kbps data tape playback.
- b. LBR Data:
 - (1) 1.6-kbps data real-time.
 - (2) 1.6-kbps data tape playback.
 - (3) 1.6-kbps data during dump from CSM at 51.2-kbps rate (32:1).
 - (4) 1.6-kbps data during dump from CSM at 12.8-kbps rate (8:1).
 - (5) Dump playback data at 32:1, 8:1 or 1:1.

NOTE: When dump data are processed at the 51.2-kbps rate (32:1), displays will be updated each second; however, this corresponds to 32-second intervals of actual recorded data. Correspondingly when processing 12.8-kbps rate data each display update would be at 8-second intervals of recorded data. (Two hours of recorded data could be observed in 3.75 minutes at 32:1 and in 15 minutes at 8:1.)

B. Displays (see Table 1, Display Matrix) - The following options exist to control the display capability:

1. Remoted Site -

- Insert playback bit in individual vehicle status words by selecting the proper PCM ground station format.
- b. Insert dump bit in individual vehicle status words by selecting dump data on the PCM ground station priority switch.

NOTE: If either of these bits are set, the data will be sent on the HSD line that was selected for dump data and in turn appear in CCATS "X" input buffers. CCATS may select these data to drive the PCM ground station with associated analog recorders, event lights and SPC GTO441 (MAP) event pens. These data will drive playback D/TV displays and playback P-5 driven special processing; however, they will not drive the real-time D/TV displays and real-time special processing. They may also be selected by Computer TM to drive event lights including limit sensed lights and event pens.

- 2. CCATS
 - a. Insert playback bit to RTCC. Same capabilities in RTCC as if playback bit is set at remoted site.
 - b. Select real-time or playback/dump data to drive the FCM ground station with associated analog recorders, event lights and event pens.

П-1-14

- c. Select real-time and/or playback/dump data to drive RTCC.
- d. Select HSD format 30 (subformats) to drive the dedicated analog recorder.
- e. Use FM/FM Voice/Data line for FM/FM contingency groups to drive the dedicated recorder.
- f. Change the parameters on analog recorders 20L and/or 33R using "MEDable" capability with precut tapes or individual manual entry.
- 3. RTCC -

Select real-time or playback/dump data to drive event lights including limit sensed lights, and all LM event recorder pens except for SPC GTO441 (MAP).

NOTE: Playback data, dump data, or dump playback could be processed without setting these bits at remoted sites or CCATS; therefore, the data would be treated entirely the same as real-time data. However, special computations, which are normally updated by real-time data only, will be updated by the playback data unless they are disabled by some manual means, that is, SMEK or MED. Conversely, any special computation which is normally updated by playback data only, will <u>not</u> be updated in this mode.

		RTCC	DRIVEN DISPLAYS	3		GROUND STATION DRIVEN DISPLAYS**
TYPE OF DATA WITH OPTIONS	RT D/TV	P/B D/TV	ALL EVENT LIGHTS AND EVENT PENS*	RT SPEC PROC	P/B SPEC PROC	ANALOG RECORDERS, EVENT LIGHTS
Real-time data	х		х	х		х
Tape playback (neither bit set at remoted site or CCATS)	x		х	х		x
Tape playback (bit set at remoted site)		х	х		х	х
Dump or dump playback (bit set at remoted site)		х	х		х	х
Tape playback (playback bit to RTCC set by CCATS)		х	х		х	х

TABLE 1 - DISPLAY MATRIX

*Event lights, both discretes and limit sensed, and RTCC driven event pens may be driven by real-time or playback/ dump as selected by Computer TM. The only event pens driven by the PCM ground station are the two using SPC GT0441 (MAP).

**The PCM ground station with associated displays may be driven by real-time or playback/dump as selected by CCATS TM.

NOTE

It should be recognized that some of the LM parameter pens, on the same event recorder, could be driven by real-time data while other pens are driven by playback/dump data. This is also true of event lights on the same panel.

C. The following is a list of special calculations and data source:

Amp-Hour Calculations	HS	and	P/B	
Current Summations	HS	and	P/B	
Descent/Ascent Oxygen Quantities	HS	and	P/B	
Descent/Ascent Water Quantities	HS	and	P/B	
Oxygen/Water Flow Rates	HS	and	P/B	
APS ŵ FU	HS	and	P/B	
APS $\dot{\omega}$ OX	HS	and	P/B	

P-5 P-12

P-5

APS FU Remaining HS Only APS OX Remaining HS Only T_b FU Remaining HS Only T_b OX Remaining HS Only APS FU Used P/B Only APS OX Used P/B Only HS Only RCS A&B Nominal FU Quantity RCS A&B Nominal OX Quantity HS Only DPS 1&2 OX Quantity HS and P/B DPS 1&2 FU Quantity HS and P/B LM Vehicle Weights HS and P/B

PROCEDURE:

A. Determine which displays are required and select options accordingly.

B. Complete a MCC Data Request Form and submit this request to PROCEDURES.

- C. Select desired time source for analog recorder right-hand timing pen. Generally, this would be LM elapsed GMT (LMEGMT) for real-time pass tape playback and MET for a dump playback.
- D. Select appropriate D/TV display format(s).
- E. PROCEDURES will coordinate the playback with other applicable MOCR personnel and relay the necessary information to TIC. TIC will coordinate the playback and notify PROCEDURES when he is ready to begin the playback. PROCEDURES will then notify the originator.
- F. Subsequent to the completion of the playback, TIC will report to PROCEDURES when the system is ready to process real-time data again.

П-1-16

P-12

1

This SCP is deleted by PCN-6

II-1-17 and II-1-18

GEN 1-10

P-11

P-12

TITLE: RUBBER PLOTS

SCP NO.

PURPOSE: To define rubber plot capabilities and change procedures.

PROCEDURES: A. A series of paper tapes have been generated by computer TM to allow fast callup of predetermined rubber plots. The tapes presently defined are as follows:

TELMU TAPE I

TELMU	TAPE	I			
M	SK	UP NO.	TITLE	PLOT TIME	
1	053	28	Suit/Cab/PGA Press	15 min	
1	054	29	LM Glycol Temps	15 min	
1	055	30	LM CO2 PP & DES O2 P	9 hrs	
	056		DES H ₂ O P & Qty	9 hrs	
1	057	32	Total Current	15 min	
1	058	33	Bat 1 - 4 Currents	3 min	
1	059	34	Bat 5 - 6, Bus Currents	3 min	1
TELMU	TAPE	II			÷
M	SK	UP NO.	TITLE	PLOT TIME	
1	055	30	PLSS Bat Cur/Volts	12 min	
l	056	31	PLSS H20 Press/AT	12 min	
1	057	32	PLSS 1 T vs AT	45 min	
	058		PLSS 2 T vs AT	45 min	
1	059	34	POS P and CO2 PP	3 hrs	
TELMU	TAPE	III	2		
	SK	UP NO.	TITLE	PLOT TIME	
_	055	30	LM CO2 PP & ASC O2 P	6 hrs	
	056	31	ASC H ₂ O P & Qty	6 hrs	
			4		1
TELMU	TAPE	IV			
M	ISK	UP NO.	TITLE	PLOT TIME	
1	430	4	ECA 1 & 2 TEMPS	15 hrs	
CONTR	OL TA	PE I			
M	SK	UP NO.	TITLE	PLOT TIME	
1	180	35	DPS/APS TCP and GDA	15 min .	
1	181	36	DPS/APS Helium Plot	9 min	
1	182	37	Percent Margin Plot	15 min	
1	183	38	PQGS Projection Program	N/A	
1	184	39	Accum on Time	15 min	
1	185	40	RCS Qty	15 min	
1	186	41	RPY PGNS/AGS ERRS	15 min	
CONTR	OL TAI	PE II			
M	SK	UP NO.	TITLE	PLOT TIME	
	180	35	DPS/APS TCP and GDA	15 min	
CONTR	OT. TA	PE III			
	<u>SK</u>	UP NO.	TITLE	PLOT TIME	
_	181	36	DPS/APS Helium Plot	9 min	
				,	
	OL TA		mrmt p		
	SK	UP NO.	TITLE Design to Marcine Dist	PLOT TIME	
1	182	37	Percent Margin Plot	15 min	

CONTROL TAPE V

<u>MSK</u> 1183	<u>UP NO</u> . 38	<u>TITLE</u> PQGS Projection Program	<u>PLOT TIME</u> N/A		
	TAPE VI	- 400 - 10 ¹ 00 01011 - 10 ^{B1} 011			
<u>MSK</u> 1184	<u>UP NO</u> . 39	<u>TITLE</u> Accum on Time	PLOT TIME 15 min		
CONTROL	TAPE VII				
<u>MSK</u> 1185	<u>UP NO</u> . 40	<u>TITLE</u> RCS Qty	PLOT TIME 15 min		
CONTROL	TAPE VIII	х.			
<u>MSK</u> 1186	<u>UP NO</u> . 41	<u>TITLE</u> RPY PGNS/AGS ERRS	<u>PLOT TIME</u> 15 min		
CONTROL	TAPE IX				
<u>MSK</u> 1183	<u>UP NO</u> . 38	<u>TITLE</u> APS AV	<u>PLOT TIME</u> 9 min		P-6
CONTROL	TAPE X				1
<u>MSK</u> 1184		TITLE ACCEL DRIFT	PLOT TIME 15 min		P-12
B. Prem	ission generati	on of additional tapes or cha	nges to present tapes :	should be forwarded	to

B. Fremission generation of additional tapes or changes to present tapes should be forwarded to Ron Mayes, X3212, FS5. Tape generation or change should be done using the TM System Plot Change form (see Figure 1).

- C. When changing a tape's contents or reading in a new tape, only those MSK numbers called out by the change or new tape will be affected. In other words, plots from previous tapes, whose MSK numbers are not specifically called out for change, will continue to plot as normal. Similarly, when changing a single MSK plot, only those items called out will be changed. Therefore, parameters previously assigned to that MSK will continue to plot unless specifically deleted or changed.
- D. The "S/C" and "GND" times displayed on the rubber plots will be a function of what vehicle parameter is selected for the X axis of the plot. The following table lists time as function of vehicle selection.

X AXIS VEHICLE	GND	s/c	1
AMD	MGET	N/A	
LM	LEM7802C	GL0501	P-6
AGS	AGS4103C	GI0001 X 4323	P-0
LGC	LGC4103C	LTIME2 TIME1	1

P-12

Any one of the GND or S/C times may be selected as the X - axis parameter. For EVA simulations where no LM time is available LEMGMTR can be used to run the plots.

- E. Real-time changes to rubber plots are made on the TM System Plot Change form and sent to Computer TM at P-tube Station 31. These real-time changes are not permanent changes to individual tapes, but must be cleared through the appropriate MOCR position. Responsibility for initialization of plots will be as follows:
 - TELMU All plots containing ECS parameters will be initialized from console 21 plots containing EPS parameters will be initialized from console 30. Console 9 has the capability to initialize all TELMU plots.
 - 2. CONTROL All control plots will be initialized from console 29.

Existing rubber plot allocations are as follows: MSK #

34	FDO
35	FDO
36	FDO
653	CSM
Ļ	CSM
671	CSM
1053	TW *
	LM*
1059	IM*
1180	LM*
1	TW *
1186	LM*
1430*	BOOSTER
1431*	BOOSTER
1432	BOOSTER
1433	BOOSTER
1711	AMD
1712	
7170	AMD

* Console 30 rubber plot SMEK capability.

F. To load a tape, simply call Computer TM on the FTCC TLM loop and request the tape by its defined name (i.e., Telmu Tape I, or Control Tape I, etc.).

G. Computer TM can start plots for which a console has no SMEK start capability.

P-12

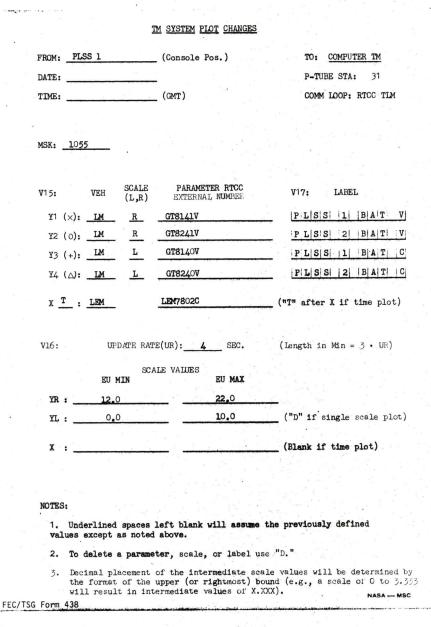


Figure 1. - TV system plot change form

II-I-21

S/C: LM DATE: 3/1/72 REV: PCN 12 APPROVAL: ORIGINATOR:

P-12

TELEMETRY DATA FLOW

TITLE: PURPOSE:

The data flow diagram and description contained in this SCP, although greatly simplified, will provide an outline of the basic capabilities of the ground data systems.

- FACILITIES: A. KSC
 - 1. The data sources for the Central Instrumentation Facility (CIF) are:
 - a. MIL A USB site with video lines to the CIF.
 - b. Pad Hardline A video hardline from the vehicle to the CIF via the MSOB.
 - c. CIF USB Site The CIF has a 3-foot antenna on the roof with video lines to the receivers.
 - 2. The CIF has facilities to discriminate the video data, decommutate in Data Core and route the reformatted data to ALDS. CIF has the capability to route video data to MIL for processing into the 2.4 Kbps HSD format.
 - The ALDS portion of the KSC facilities receives the data from Data Core, processes it into a 40.8 Kbps format for direct transmission to MCC.

The ALDS/CCATS format contains the following characteristics:

- a. 40.8 kbs
- b. 10 bits/word (8 MSB's data, 2 LSB's zeros)
- c. 204 words/frame
- d. 20 frames = 1 data cycle
- e. 1 data cycle/sec
- f. Data is transmitted MSB first
- g. Available sample rates are 1, 2, 4, 5, 10, 20, 40, 60 s/s
- h. Bit 1 = MSB

The first 16 words of each frame are reserved for synchronization pulses, a frame counter, a format status label and the vehicle status words.

- B. Remoted Site
 - 1. The S-band frequencies are received by 30-foot, 85-foot, or 210-foot S-band antennas and routed to the USB receivers which strip out the video consisting of various subcarriers. The PCM information on the 1.024-MHz subcarrier is demodulated and routed to the PCM ground station via the Decommutator Systems Distribution Unit (DSDU). The PCM ground station decommutates the serial bit stream and reformats the PCM data into 30-bit words, which are outputted in parallel to the RSTC. The RSTC processes and reformats the data for output on the dual 2.4 Kbps lines to GSFC. The PLSS PAM FM/FM parameters are discriminated and digitized before being routed to the RSTC. The biomed data may be routed to MCC via the voice data lines or via the 2.4 Kbps lines. When routed via the voice data lines, the biomed data is discriminated and routed to a bank of Voltage Control Oscillators (VCO's). The outputs of the VCO's are mixed and transmitted to MCC via GSFC or the voice data lines. Alternately, the biomed data is discriminated and routed to the RSTC. The biomed data is formated into a 4.8 KBIT format for transmission to GSFC on a 4.8 Kbps line.
 - 2. The high-speed data (HSD) format contains the following characteristics:
 - a. 2.4 Kbps
 - b. 8 bits/word
 - c. 300 words/frame
 - d. 10 frames/data cycle
 - e. 1 data cycle/10 secs
 - f. Data is transmitted LSB first
 - g. Available sample rates are .1, .2, .5, 1, 2, 5, and 10 s/s
 - h. Bit 1 = MSB

SCP NO. GEN I-II PCN-12 /

P-12

P-12

P-12

Two 2.4 KBIT formats are interleaved to form one 4.8 KBIT format.

The remoted sites have the capability to transmit groups of eight parameters over the voice/ voice/data lines. Biomed data is also transmitted over these voice/data lines.

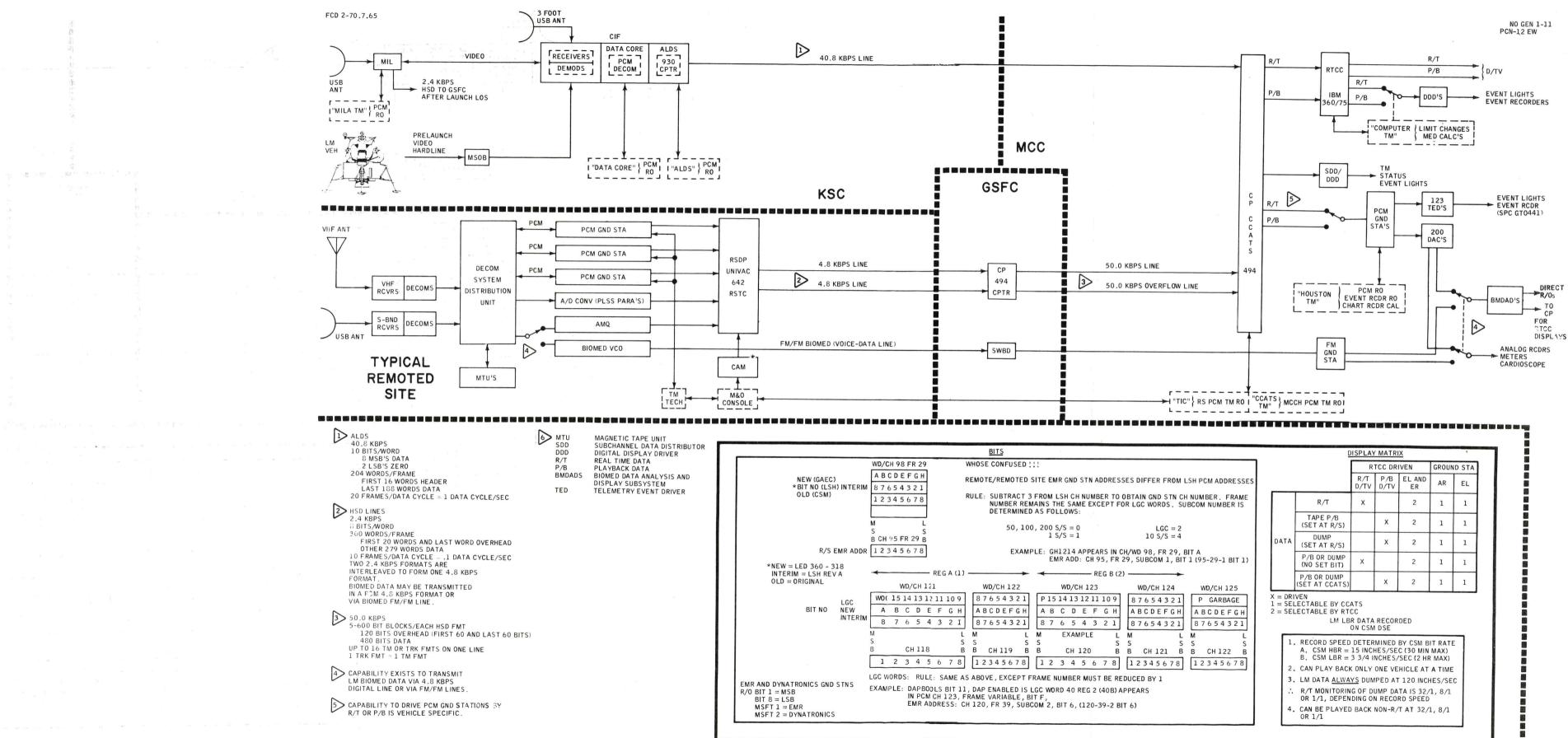
C. GSFC

The 2.4 and 4.8 Kbps data rmats from the remoted sites are received at GSFC, examined for P-12 proper sync, processed in the GSFC 494 communications processor (CP) and reformatted into five 600-bit segments. Each 600-bit segment consists of 480 data bits and 120 overhead bits which are for synchronization, source and destination, format code, message counts and status, error-code control and control bits. The telemetry and tracking formats are combined into a 50.0 Kbps format and transmitted to MCC over dual lines. One line is designated as the primary line which will handle up to 16 TLM/TRK formats, and any excess formats are placed on the second, or overflow, 50.0 Kbps line.

D. MCC

The wide-band data is received at MCC and is converted from a serial bit stream to parallel data by the polynomial buffer terminals (PBT's) or communication line terminals (CLT) and routed to the CCATS communications processor (CP). The CP decommutates, repacks, converts some analogs to percent full scale, performs some truncation, and routes wide-band data to the RTCC and PCM ground stations. There are four interchangeable PCM ground stations - two are required for systems engineering data, one for biomed data and one is a spare.

CCATS has the capability to route either real-time or playback data to the PCM ground stations; hence, the analog chart recorders and TED event lights and meters may be driven by either type of data. The only pen on event recorder number 3, which is driven via the ground station, is SPC GT0441. This is the MAP special processed word. The capability to select either real-time or playback data to drive the ground station is vehicle oriented; hence, the data source can be selected independently for each vehicle.


The analog recorder formats, with the exception of the dedicated recorder, and the MEDable chart recorders may be changed by selection of a specific PCM ground station format. LM data is routed to the analog recorders in ground station formats IV, V, VI, VII of tape 4.

After launch, recorders 20L and 33R are released and a MEDable capability exists to charge the parameters on these two recorders. The parameters may be changed individually or in 8 parameter groups. CCATS TM manually types in the individual parameters or reads in pre-cut tapes for the groups. The LM data groups are 21A-27A for recorder 20L and 21B-26B for recorder 33R.

One of the dedicated recorder capabilities is the high-speed data format 30, which is in reality a number of subformats. Each subformat may contain the following: Four 50 s/s analogs, four 10 s/s analogs, seven 10 s/s bilevels, and two timing sources. The LM data is in subformats 31-47. Each subformat may be selected by TIC, but one of the regular HSD formats must be released to accomodate it. The FM/FM contingency format requirements were deleted by LSB.

Real-time and playback data may be routed to the FTCC simultaneously. Real-time data will be displayed on real-time D/TV and computations only, and playback data on playback D/TV and computations only. However, real-time or playback data may be selected by computer TM to drive MOC driven event lights and event recorders.

II-I-23

SCP NO. CSM - A17 REF: LM GEN 1-12 S/C: IM/CSM DATE: 11-1-71 REV: PCN-11 ORIGINATOR: J. J. Kelly CSB APPROVAL: C. L. Dumis

TITLE: Loss of CSM Cabin Integrity with IM Available / PURPOSE: To provide procedures and guidelines for systems management in the event the CSM cabin integrity is lost. It is assumed that all efforts to restore cabin integrity have failed. This failure has two modes: (1) loss of CSM cabin integrity with IM unstaged (descent stage attached) and (2) loss of CSM cabin integrity after IM staging (ascent stage only). The detailed procedures of this SCP have been placed in the CSM crew checklist. Table IV contains the detailed procedures for IM suit loop configuration for initial IM ingress.

<u>Mission Planning - LM Unstaged</u>: The LM, with its descent stage consumables, will provide a long-term habitable environment for the crew. For the purpose of this SCP, it is assumed that all crew members will ingress to the LM where they will stay after a minimum CSM reconfiguration, and transferring any necessary supplies. The LM will perform all MCC's and crew support up to EI-8 hours. Table II lists the CSM supplies which should be transferred prior to pressurizing the LM.

<u>Mission Planning - LM Staged</u>: After LM staging, the ascent stage has meager consumables remaining. If the decision is made to keep the ascent stage, the crew will stay hardsuited in the CSM with the LM providing at least one rest period for the entire crew. This allows 0.5 lbs of oxygen in the LM ascent tanks for the final IVT (see Table I). Table II lists the CSM supplies which should be transferred prior to pressurizing the LM.

If the ascent stage is manned when CSM cabin integrity is lost, the IM will be powered down until the rest period is required.

In the event the ascent stage is unmanned when CSM cabin integrity is lost, the LM will remain powered up (35 amps) until after TEI when the LMP will ingress the LM and power it down. MCC will isolate all LM jets via uplink to prevent the LM from fighting CSM attitude control. General OPS Information:

1. There are two OPS, each containing 5.78 lbs. of 0₂ at 5,880 psia. Each OPS has a gauge reading from 0 to 6,000 psia, divided into increments of 1,000 psia.

2. When connected to the CMP's suit, the OPS has to be used in the "purge mode" to remove body heat and CO_2 . To use the OPS in this mode, the OPS is connected to the suit inlet and the purge value is connected to the suit outlet.

3. The suit purge valve has two flow positions - 7.4 lb/hr and 3.85 lb/hr. This will provide 41 minutes and 83 minutes of total usage, respectively. The 7.4 lb/hr flow rate provides cooling and CO₂ removal while the 3.85 lb/hr flow rate provides CO₂ removal and limited cooling.

4. The OPS cannot be repressurized from the IM, or CSM. <u>OPS Management</u>: The CMP will perform both IVT's (CSM to IM, then IM to CSM) with use of the OPS and will be assisted during all vacuum transfers by another crewman. Due to the time limitation of the OPS in the "purge mode" operation, each IVT will be started with a full OPS. This will allow sufficient time to complete a transfer should any difficulty arise. P-8

P-8

On the initial IVT. the OPS oxygen remaining in that OPS will be used to support IM cabin pressurization. Consequently, for the "Ascent Stage Only" case, the rest time is governed by the amount of OPS oxygen remaining after IM hatch closeout. To increase the rest time to the maximum, i.e., conserve as much oxygen as possible, the OPS should initially be used in the low (3.85 lb/hr) "purge mode" but may be switched to the high (7.4 lb/hr) "purge mode" as required for body cooling. On the initial transfer, the CMP will use 3.85 lb/hr OPS flow and once in the LM and the hatch is closed, he will place the OPS purge to max flow allowing the IM cabin to pressurize to 3.0 psi. Once the cabin has reached 3.0 psi, the OPS will be turned off and the CMP's helmet removed. The remaining oxygen in that OPS will then be dumped into the LM cabin. LM cabin pressurization will be completed using IM oxygen supply. Table I shows two LM rest times (Ascent Stage Only) as a function of the two "purge modes" and an assumption that the CMP can complete an IVT within 15 minutes after connecting to the OPS.

<u>CSM System Management with Descent Stage Available</u>: The CSM will be left powered up with the exception of equipment that will be placed to standby or turned off for safety and/or nuisance alarm considerations. The G and N, SCS, ECS suit loop, HGA, C and W, and SM RCS quad heaters fall into this category. If this reconfiguration results in an overvoltage condition, fuel cell 2 will be open circuited. It is assumed there are <u>no</u> CSM failures which would require crew action within a 2-hour period. In the event a CSM ingress is required, the CDR or IMP will perform it using

II-1-27

the PLSS (CMP has no LCG), which can be recharged from the LM O₂ supply. The SCE is placed to Aux to disable its under/overvoltage sensing to prevent loss of EPS telemetry. This would normally occur at an overvoltage of 32.5 VDC as opposed to 35.5 VDC when the SCE is in Aux. The SM RCS heaters are placed to OFF because of the crew response time for a failed "ON" quad heater.

The caution and warning system is powered down to prevent transients from activating the system.

<u>CSM System Management with Ascent Stage Only</u>: The major difference between the ascent stage only and descent stage cases is that the CMC and IMU are left powered in the ascent stage only case.

<u>IM Systems Management - Unstaged</u>: The IM will be powered up to a basic configuration which will supply CO₂ scrubbing, equipment cooling, voice communications, onboard caution and warning and downlink TM (Table III). Since the IM will also perform all MCC's necessary prior to EI-8, any additional equipment will be powered up as required. The IM modularized checklist will be used as the baseline for the crew procedures. It is not planned to transfer CSM power to the IM because it would be necessary to ingress the CSM to interrupt CSM power prior to powering up the IM. This is to prevent overloading the two IM power circuit breakers on MDC 5 when the IM is powered up for MCC's, etc. Should IM consumable trends project insufficient IM power, the necessary vacuum IVT to the CSM to provide CSM power can be planned in real-time. <u>IM Systems Management - Staged</u>: With no known requirement to power up the IM beyond the basic configuration, the CSM will be configured to

power the LM buses via the transfer umbilical. Table III shows the power requirements for the basic configuration, which is just within the 10.8 amp capability of the transfer circuitry. Since removing CSM power requires ingressing the CSM, which cannot be done in this situation, powering up the LM would result in overloading the two LM power circuit breakers. Therefore, if it is known that the LM will be powered up beyond the basic configuration at the time of LM ingress, the LM will be configured for internal power only.

TABLE I

IM REST TIME - ASCENT STAGE CASE

IM O2 Available

2 OPS's at 5.1 lb. (Usable)	10.2 lb
Ascent Stabe 02	<u>3.4</u> 1b
(Assumed Quantity Remaining After	13.6
Normal IM Mission)	

0.96 lbs 4.14 lbs 1.0 lbs	Flow (7.4 lb/hr) P-8 1.85 lbs 3.25 lbs 2.0 lbs
4.14 lbs	3.25 lbs
4.14 lbs	3.25 lbs
	3.25 lbs
l.O lbs	2.0 lbs
6.1 lbs	7.1 lbs
TOTAL	TOTAL
l.9 lbs*	0.9 lbs
1.6 lbs	1.6 lbs
3.5 lbs	2.5 lbs
11.6 hours	
	8.3 hours
	3.5 lbs

 $\star 0.5$ lb ascent O_2 reserved for IVT to CSM

II-1-30

TABLE II

CSM TRANSFER ITEMS

- 1. Two CM LiOH cartridges
- 2. Food for three
- 3. Water bag with water
- 4. Crew hygiene equipment
 - Towels
 - Tissue Dispenser
 - Urine Bags (empty)
 - Fecal bags
 - Medical Kit
- 5. Coveralls and comm carriers
- 6. Pens, pencils, scissors, penlights, etc.
- 7. Tape
- 8. Plastic bags for CO2 cannister construction
- 9. Flight data file documents, contingency procedures, etc.

II-1-31

P-8

TABLE III

IM POWER DISTRIBUTION FOR CSM POWER USE

	IM [Bus (Amps)	
	CDR ¹	IMP ¹	
Equipment			
Suit Fan	5.85		
Glycol Pump	1.09		
SCERA 1 & 2	0.45	0.37 P-8	3
Sig Sensor		0.38	
PCM TEA		0.38	
CWEA		0.41	
S-Band Transceiver		1.29	
PMP		0.15	
Audio Centers	0.15	0.15	
CO ₂ Sensor		0.04	
Anun/Dock/Cmpnt		0.07	
Total/Bus	7.54	3.24	

Total IM Current Req for Rest 10.78 Amps.

¹The CSM will be configured to supply power to the CDR Bus and the LMP Bus will be supplied by LM battery power only.

TABLE IV

LM Suit Loop Configuration

Pn1 16 INST: Sig Sensor - Close

ECS: Disp - Close

Verify Suit Press > 3.6 psia

Pn1 11 ECS: Suit Fan 1 - Close

Pnl 16 ECS: Suit Fan 2 - Close

Suit Fan **∆**P- Close

Fwd Dump Vlv - Closed Press Reg A & B - Egress Suit Ckt Rlf - Auto Diverter Vlv - Pull - Egress Cabin Gas Return - Egress Des O₂ - Open (Unstaged Only) Asc 1 O₂ - Open (Staged Only) Suit Fan - 1

After Crewman Connects to Suit Loop:

Suit Isol Vlv - Suit Flow

II-1-33

LM-10 and Subs.

TELEMETRY HISTORY REPORT	IN	FORMATTED	TABULATIONS	(THRIFT)
--------------------------	----	-----------	-------------	----------

Γ	1> AG	S	1 PG	NS	1 PROP	3 ECS	4 EMU	3 EPS
	4305 LM TIME LOOPS	4330 ENG ON/OFF LOOP PAGE 1	4405 ATTITUDE - SM	4450 ISS	4200 DPS PROPULSION SHEET NO.1	4100 LM SUIT LOOP AND CABIN PARAMETERS	4120 PLSS 1 PARAMETERS	4000 LM EPS BAT CURRENT PCT/QD TEMPS
	4310 FAIL STATUS LOOP PAGE 1	4331 ENG ON/OFF LOOP PAGE 2	4410 ATTITUDE - FDAI PAGE 1	4455 PIPAS	4201 DPS PROPULSION SHEET NO.2	4101 LM GLYCOL LOOP AND TEMP PARAMETERS	4121 PLSS 2 PARAMETERS	4001 LM EPS LOAD STATUS NO 2
	4311 FAIL STATUS LOOP PAGE 2	4335 AGS DOWNLINK PAGE 1	4411 ATTITUDE - FDAI PAGE 2	4460 GYROS (VOLTS)	4202 DPS PROP PROJECTION PROGRAM	4102 LM OXYGEN SUPPLY PARAMETER		4002 LM EPS VOLTAGES/AC
	4315 AGS STATUS PAGE 1	4336 AGS DOWNLINK PAGE 2	4415 RATES - BODY (DEG/SEC)	4465 RR OPERATE	4210 ASC PROPULSION SHEET NO.1	4103 LM WATER SUPPLY PARAMETERS		4003 LM EPS AMPERE-HOURS
	4316 AGS STATUS PAGE 2	4337 AGS DOWNLINK PAGE 3	4420 ERRORS - BODY	4470 RR ANT POS	4211 ASC PROPULSION SHEET NO. 2			4004 LM EPS CURRENT
	4320 GDA LOOP	4340 ATCA [.] LOOP	4425 DAP CONFIGURATION	4475 LR - VELOCITY (FPS)	4220 RCS SYSTEM A			4005 LM EPS ASCENT
	4325 THROTTLE LOOP	4345 RCS JET TCP LOOP	4430 DSKY	4480 LR ALTITUDE (FT)	4221 RCS SYSTEM B			4006 LM INST TAB
NOTES:	1> UPDATE	D BY SMEK NO. 71	4435 LGC	4485 DELV/2 SEC	4230 PROPULSION TEMPERATURES			4007 LM EPS BUS CUR BILEVEL INDICATIONS
NOTES.		D BY SMEK NO. 67	4440 CHANNELS (OCTAL)	4490 DELTA V ACCUM/TORQUE TIMES	4240 RCS CONSUMABLES ANALYSIS	2>		4008 LM EPS AVERAGE CURRENT
		D BY SMEK NO. 70 D BY SMEK NO. 79	4445 FLAGWORDS (OCTAL)	e n	4241 PROP CONSUM- ABLE WT HIST SHEET NO. 1	2		4009 LM EPS BATTERY STATUS/MAL
	 5 IF A LETTER LISTED BELOW APPEARS TO THE RIGHT OF THE VALUE ON THE THRIFT PRINTOUT, THE CORRESPONDING MOST SIGNIFICANT DIGIT HAS BEEN TRUNCATED, i.e., 0.00E = 50,00 A = 1 D = 4 G = 7 T = 2 DIGITS TRUNCATED 			SHEET NO. 2	\ge		4054 ** LM EPS DES/ ASC/TOTAL AVERAGE CUR	
	B = 2 C = 3 6 THRIFT I	$\begin{array}{cccc} E = 5 & H = \\ 3 & F = 6 & I = \\ \\ MICROFICHE GROUPI \end{array}$	9 NGS: LM TELMU FO	DRMATS 4000-4121	4243 PROP CONSUM- ABLE WT HIST SHEET NO.3	\geq		
		P FORMATS 4200-4	· · · ·	ЛАТS 4305-4490				

TELEMETRY HISTORY REPORT IN FORMATTED TABULATIONS (THRIFT) SUMMARY

1

ORIC

3

** DENOTES PLOT - NOT UPDATED BY SMEK

	TEIMU Formats vs Pare	ameters
ECS	EMU	EPS/INST
4100 4103 LM SUIT LOOP AND LM WATER SUPPLY PARA CABIN PARAMETERS ETERS LEMTROCC CBT LMMTGOCC CBT GF3571 CAB P GF4500 D1 H20 C GF3571 CAB P GF4500 D1 H20 LE GF3572 CAB P GF4500 D1 H20 LE GF3591 U/H P LEM4611C D1 H20 LE GF3572 CO2 PP LEM4701C D2 H20 RT GF4101 H20 AP GF4501 H20 P GF3073 REG A GF4502 A1 H20 RT GF1202 LBM P S GF4503 A2 H20 RT GF1201 CDR S LEM4703C A2 H20 RT GF1201 LOD AND TEM4703C A2 H20 RT GF2921 SCIY P LEM1201C <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>HQ00 L003 L006 L006 L007 LM EPS LATTERY LM HES ANTERS LM HES TAB LM TRET TAB LM TRET TAB QD TENES LEMPROACC SITE GET LEMPROAC</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HQ00 L003 L006 L006 L007 LM EPS LATTERY LM HES ANTERS LM HES TAB LM TRET TAB LM TRET TAB QD TENES LEMPROACC SITE GET LEMPROAC

NOTES: 1. GB0543 MESA T HAS BEEN REPLACED ON LM-11 BY GF0521 DES 2 H20 T; HOWEVER THE RTCC PROGRAM CONTINUES TO USE GB0543 AS THE MEASUREMENT NUMBER. THE REMOTE SITE PROGRAM USES GF0521.

 OFFICIAL DOCUMENTATION INDICATES GL9401U SELECT RTG/ECA 1 TEMP IS ASSIGNED TO THE COMBINED MEASUREMENTS GL8275U RTG CASK T AND GG6201T ECA 1 TEMP. THE RTG CASK T BECOMES ECA 1 T AFTER LUNAR TOUCHDOWN UPON CREW SWITCHOVER; HOWEVER THE RTCC AND REMOTE SITE FROGRAMS USE ONLY GL8275U AS THE MEASUREMENT NUMBER.

II-I-35

P-12

PCN-12 P-12

P-12

.

•

Prop Formats vs Parameters

4200	4210 ASCENT PROPULSION	RCS SYSTEM B	4241 . PROPULSION CONSUMABLE WEIGHT HISTORY
DESCENT PROPULSION	ASCENT PROPOLISION		
LEM7802C - TIME GET	LEM7802C - TIME GET	LEM7802C - TIME GET	LEM7802C - TIME GET
GQ3435 - SHE PR	GP0001 - HE 1 P	GR1102 - HE P	LEMILOIM - DRY W AS
GQ3015 - ST PR	GPOO41 - HE 1 P	GR1202 - REG P	LEMILO2M - MISC W A
GQ3018 - REG PR	GP0002 - HE 2 P	GR9610 - MAIN P	LEM5803C - APS F RM
GQ3025 - REG PR	GP0042 - HE 2 P	GR2202 - F M P	LEM5804C - APS O RM
GQ3611 - F IN P	GP0318 - R1 POS	GR3202 - 0 M P	LEM5409C - RCS A F R
GQ4111 - O IN P	GP0320 - R2 POS	GR1095 - PROP Q	LEM5410C - RCS B F R
GQ6806 - INJ POS	GP0018 - REG P	LEM5416C - CALC OX	LEM5413C - RCS A O R
GQ6510 - CH PR	GP0025 - REG P	LEM5412C - CALC FU	LEM5414C - RCS B O R
GH1348 - ENG ARM	GP1501 - F IN P	GR9668 - 1B CMD	LEM6601C - ASC T W
GH1301 - DPS ON	GP1503 - 0 IN P	GR9666 - 2B CMD	LEM6603C - LM TOT W
GQ3603 - FU 1 Q	GP2010 - TCP	GR9664 - 3B CMD	LLMMASS - LGC MASS
GQ3604 - FU 2 Q	GH1230 - ENG ARM	GR9662 - 4B CMD	4242
GQ4103 - 0 1 Q	GH1260 - ENG ON	GR9613 - X/F P	PROPULSION CONSUMABLE WEIGHT HISTORY
GQ4104 - 0 2 Q	GP1408 - OX LO	GR9642 - OX A/F	
LGC10200C - CALC Q	GP0908 - FU LO	GR9632 - FU A/F	LEM7802C - TIME GET
GQ4455 - LOW LV	LGC10200C - CALC Q	4230	LEM1103M - DRY W DE LEM5903C - D1 F REM
	4211	PROPULSION TEMPERATURES	
4201	ASCENT PROPULSION		LEM5903C - D2 F REM LEM5904C - D1 0 REM
DESCENT PROPULSION		LEM7802C - TIME GET	LEM5904C - D2 0 REM
LEM7802C - TIME GET	LEM7802C - TIME GET	GQ3718 - DF 1 T	LEM4602C - DES 02 Q
LEMI0701C - PROP REM	LEM5806C - OX BTR	GQ3719 - DF 2 T	LEM4602C - DES 02 Q LEM4611C - DD H20 Q
LEM10702C - DPS MAR	LEM5805C - FU BTR	GQ4218 - DO 1 T	LEM6601C = AS TOT W
LEMIOGOLC - FU MARGIN	LEM5802C - OX FL R	GQ4219 - DO 2 T	LEM6602C - D TOT W
LEM10602C - OX MARGIN	LEM5801C - FU FL R	GP0718 - A F T	LEM6603C - LM TOT W
LGC11303C - LO LEV HT	GP2997 - A A P	GP1218 - A O T	LLMMASS - LGC MASS
LGC11304C - INST HT	GP2998 - Β Δ Ρ	GR2121 - RCS A FT GR2122 - RCS B FT	LCMMASS - LGC MASS
LGC1503L - PROG	LEM5423C - RCSA OQR	GR6004 - Q 1 T	
GI0001 × 0048 - VDX LGC11000C - THRUST CAL	LEM5419C - RCSA FQR	GR6004 = Q I I GR6003 = Q 2 I	4243
	LEM5424C - RCSB OQR	GR6003 = Q 2 T GR6002 = Q 3 T	PROPULSION CONSUMABLES WEIGHT HISTORY
. <u>4202</u>	LEM5420C - RCSB FQR LGC11000G - THRUST CAL	GR6001 = Q 4 T	LEM7802C - TIME GET
DESCENT PROPULSION PROJECTION PROGRAM	4220		LGC10801C - QUAD 1 ON
LEM7802C - TIME GET	RCS SYSTEM A	4240	LGC10802C - QUAD 2 ON
LEM10901C - TIME NOW	LEM7802C - TIME GET	RCS CONSUMABLES ANALYSIS	LGC10803C - QUAD 3 ON
(PDI IGN - SEC)	GRIIOI - HE PR	LEM7802C - TIME GET	LGC10804C - QUAD 4 ON
LEM10902C - F1 P LL	GRIIOI - HE PR GRI2OI - REG PR	LPOSTORKU - +U TORQ	LEM4604C - ASC 1 02 Q
LEM10903C - F2 P LL	GR9609 - MAIN P	LNEGTORKUU TORQ	LEM4606C - ASC 2 02 Q
LEM10904C - 01 P LL	GR9809 - MAIN P GR2201 - FMP	LPOSTORKV - +V TORQ	LEM4609C - ASC 1 H2O Q
LEM10905C - 02 P LL	GR3201 - 0 MP	LNEGTORKVV TORQ	LEM4610C - ASC 2 H2O Q
LEM10910C - F1 CD SEC	GR1085 - PROP Q	LPOSTORKP - +P TORQ	
LEM10911C - F2 CD SEC	LEM5415C - CAL OX	LNEGTORKPP TORQ	
LÉM10912C - 01 CD SEC	LEM5419C - CAL FU	LEM4865L - DEADBAND	
LEM10913C - 02 CD SEC	GR9667 - 1A CMD	GH1621 - PGNS S	
LEM10914C - P PP CD	GR9665 - 2A CMD	GH1643 - P AUTO	
LEM10915C - LL CD SEC	GR9663 - 3A CMD	GH1644 - ATT H	
	GR9661 - 4A CMD	LDBB15 - RATE C	
	GR9613 - X/F V		
	GR9641 - OX A/F		
	GR9631 - FU A/F		
		1	

∏-І-36

SCP NO.GEN 1-13 PCN-8

٠

7

.

P-8

P-8 P-8

the second s	the state of the					
4405	<u>4420</u>	4435	<u>4450</u> ISS	RR OPERATE	LR - ALTITUDE (FT)	
ATTITUDE - SM	ERRORS - BODY	LGC	155	RK OFERATE	III - AHIIIODE (III)	
LEM7802C - TIME GET	LEM7802C - TIME GET	LEM7802C - TIME GET	LEM7802C - TIME GET	LEM7802C - TIME GET	LEM7802C - TIME GET	
LEM5003C - RSVR X	LCH12BO6 - IMU EEC	GG9001 - LGC WARM	GG1513 - IMU	GN7621 - NO TRK	LGC4815L - LR ANT POS	
LACDUX - ACDU X	LEWOB15 - RTS/ERR	LCH33B14 - LGC WARN	LCH30B09 - IMU OPER	LCH33BO4 - DATA GOOD	LCH12B13 - POS 2 CMD	
AGS6102C - AGS X	LFW0B04 - NEEDLES	LCHANNEL 77 - OCTAL	LCH30B14 - T/ON REO	LCH33B02 - RR MODE	LRADARMODES - OCTAL	P-8
LEM5001C - RSVR X	LCH30B12 - ICDUFAIL	GG1523 - LGC OPR	LCH12B15 - T/ON CPT	LCH12B14 - TRACK EN	GN7521 - RNG LCH33B05 - DATA	
LACDUY - ACDU Y	GG2279 - ROLL DAC	LCH33B15 - OSC ALM	GG9002 - ISS	LRADARMODES - OCTAL LCH33B03 - RNG SCALE	LDT11B05 - LR ALT	
AGS6103C - AGS Y	LEM11503C - PGNS R/E R	LREDOCNTR - RESTARTS	LCH11B01 - WARN LCH30B13 - IMU FAIL	LRRANGE - RAW MN	LFW11B01 - LITE	1
LEM5002C - RSVR Z	GI1457 - AGS ER R	LDSPTAB+11 - DSKY LITES LFAILREG - PROG	LCH30B12 - ICDU FAIL	LRRANGE RATE - RAW FPS	LCH33B09 - RNG SCALE	
LACDUZ - ACDU Z AGS6101C - AGS Z	GG2219 - PIT DAC LEM11501C - PGNSR/E P	LFAILREG - PROG LFAILREG+1 - ALRM	GG1331 - 3200 HZ	LRRRANGE - MARK TIME	LLRANGEDES - LR ALT	
LGC8601C - DEL ERR X	GH1456 - AGS ER P	LFAIL+2 - CODES	GG1201 - 800 HZ	LRRRANGERATE - MARK TIME	LDELTAH - LR PNGS	
LGC8602C - DEL ERR Y	GG2249 - YAW DAC	LCH33B12 - DWLNKRAT	GG1040 - 120 VDC	LDELTABETA - SHAFT BIAS	GIOOOlXOOll - AGS ALT	
LGC8603C - DEL ERR Z	LEM11502C - PGNS R/E Y	LCH33B11 - UPLNKRAT	GG1110 - 2.5 VDC	LDELTATHTA - TRUN VIAS	³ GN7563 - LR/ECA2 T	P-12
LCH 12B05 - ICDUZERO	GH1455 - AGSER Y		LCH30B15 - TEMP CAUT			1-12
		4440	GG230 - PIPA T	4470	4485	
4410	4425	CHANNELS (OCTAL)	GF9997 - GLY T	RR ANT POS	DELV/2 SEC	1
ATTITUDE - FDAI PAGE 1	DAP CONFIGURATION					1
		LEM7802C - TIME GET	4455	LEM780C - TIME GET	LEM7802C - TIME GET	1
LEM7802C - TIME GET	LEM7802C - TIME GET	LCHANNEL - OCTAL	PIPAS	LEM9804C - SHFT RSVR	LGC10001C - PGNS DELV X GI0001X0020 - AGS DELV X	1
LGC5101C - ACDU F R	CH1621 - GUID	LCHANNEL12 - OCTAL	TREPOOR TIME OF	LEM9802C - SHFT CDU	LGC9903 - ACT DELV X	
AGS5110C - AGS F R	GH1643 - PGNS AUTO	LCHANNEL13 - OCTAL	LEM7802C - TIME GET LCH33B13 - PIPA FAIL	LEM9803C - TRUN RSVR LEM9801C - TRUN CDU	LGC1002C - PGNS DELV Y	
LGC51054C - ICDU F R	CH1644 - ATT HOLD	LCHANNEL14 - OCTAL	GG2001 - P OUT XV	LEM9001C - IRON CDU LCH30B07 - RCDU FAIL	GIOOOlXOO21 - AGS DELV Y	
LGC5113C - FCDU F R	LIM33BO6 - NO DAP IMU LGC4861L - DAP	LCHANNEL30 - OCTAL LIMODES30 - OCTAL	GG2001 - P OUT YV	GG3304 - S/SIN	LGC10003C - PGNS DELV Z	
LGC5103C - ACDU F P AGS5112C - AGS F P	LGC11100C - DAP LOAD	LCHANNEL31 - OCTAL	GG2041 - P OUT ZV	GG3305 - S/COS	GIOOOLX0022 - AGS DELV Z	1
LGC5106C - ICDU	LDAPBOOLS - OCTAL	LCHANNEL32 - OCTAL	LAPIPAX - CNTS X	GG3324 - T/SIN	LDELVX - DELVXS	1
LGC5115C - FCDU F P	LCHANNEL31 - OCTAL	LCHANNEL33 - OCTAL	LAPIPAY - CNTS Y	GG3325 - T/COS	LDELVY - DELVYS	1
LGC5102C - ACDU F Y	LCHANNEL32 - OCTAL	LIMODES33 - OCTAL	LAPIPAZ - CNTS Z	LCH12B02 - RR EEC EN	LDELVZ - DELVZS	1
AGS5111C - AGS F Y	LCMMASS - CSM LBS	LFLAGWORD11 - OCTAL	LGC8106C - PBIASX	LCH12B08 - DID CMD	LCH33B13 - PIPA FAIL	1
LGC5105C - ICDU F Y	LLMASS - LM LBS		LGC8107C - PBIASY	LRRSHFTERR - DRIVE RATE	1.1.555	
LGC5114C - FCDU F Y	LEM6603	4445	LGC8108C - PBIASZ	LRRTRUNERR - DRIVE RATE	4490	
	RTCC - LBS	FLAGWORDS (OCTAL)	LGC8109C - OCTAL X	GN7723 - RR TEMP	DELTA V ACCUM/TORQUE TIME	
4411			LGC8110C - OCTAL Y	11		
ATTITUDE - FDAI PAGE 2	4430	LEM7802C - TIME GET	LGC8111C - OCTAL Z	<u>4475</u>	LEM7802C - TIME GET LGC9901C - PGNS VEL	
	DSKY	LFLAGWORDO - OCTAL	LTIME2TIME1 - TIME LGC	LR VELOCITY (FPS)	LDVTOTAL - LGC VEL	
LEM7802C - TIME GET		LFLAGWORD1 - OCTAL	4460	LEM7802C - TIME GET	LGC9902C - AGS VEL	P-8
LEM5108C - RSVR X	LEM7802C - TIME GET	LFLAGWORD2 - OCTAL LFLAGWORD3 - OCTAL	GYROS (VOLTS)	GN7557 - VEL	LGC9904C - ACT VEL	
LEM5109C - RSVR Y LEM 510C - RSVR Z	LGC1503L - PROG LGC1502L - VERB	LFLAGWORD'S - OCTAL	GIROB (VOLID)	LCH33B08 - DATA	GIOOOlXOO48 - ASA VEL X	
LEM JICC - ROVE 2	LGC1501L - NOUN	LFLAGWORD5 - OCTAL	LEM7802C - TIME GET	LDT11B03 - LRVEL	GI0001X0049 - ASA VEL Y	
4415	LCH11B06 - VBN FLSH	LFLAGWORD6 - OCTAL	GG2172 - SIN X	LFW11B02 - LITE	LPOSTORKU - JET SEC	
RATES - BODY (DEG/SEC)	LGC1504L - REG 1	LFLAGWORD7 - OCTAL=	GG2173 - COS X	LGC8001C - LRVX ANT	LNEGTORKU - JET SEC	
	LGC1505L - REG 2	LFLAGWORD8 - OCTAL	GG2112 - SIN Y	LGC8002C - LRVX ANT	LPOSTORKV - JET SEC	
LEM7802C - TIME GET	LGC1506L - REG 3	LFLAGWORD9 - OCTAL	GG2113 - COS Y	LGC8003C - LRVZ ANT	LNEGTORKV - JET SEC	
LOMEGAR - DESRATR	LSERVDURN - TLOSS	LFLAGWORD10 - OCTAL	GG2142 - SIN Z	LGC10302C - LRVX SM	LPOSTORKP - JET SEC	
LBODYRATER - DAP RATE R	LGC9535C - DUMLOADS		GG2143 - COS Z	LGC10303C - LRVY SM	LNEGTORKP - JET SEC	POS
GH1463 - RGA R	LGC7900L - DWNLSTID		LCHANNEL14 - OCTAL	LGC10304C - LRVZ SM LGC10401C - PGNS DEL VX		2 P
AGS9712C - RATE R	LCH5MASK - CH 5 MASK		GG2167 - SERVO X	LGC10401C - PGNS DEL VX LGC10403C - PGNS DEL VY		Lz
LOMEGAQ - DES RATE P	LCH6MASK - CH 6 MASK		GG2107 - SERVO Y GG2137 - SERVO Z	LGC10403C - PGNS DEL VI LGC10405C - PGNS DEL VZ		SCP NO. PCN-12
LBODYRATEQ - DAP RATE P	LCHWORK - CHANBKUB		LOGC - C CMD DEG	FROTOROJO - LOND DEL VE	1	G
GH1462 - RGA P AGS9711C - RATE P		1	LIGC - Y CMD DEG			EN
			LMGC - Z CMD DEG			
LOMEGAP - DES RATE Y		4.	LCH12BO4 - C/A CMD			GEN 1-13
LOMEGAP - DES RATE Y LEODYRATEP - DAP RATE Y						
LBODYRATEP - DAP RATE Y			LCH30B11 - CAGE CMD			w
	-					ω

NOTE: 3. Official documentation indicates GL9402U SELECT LR ANT/ECA 2 T is assigned to the combined measurements GN7563T LR ANT T and GC6202T ECA 2 TEMP. The LR ANT T becomes ECA 2 T after lunar touchdown upon crew switchover; however the RTCC and remote site programs use only GN7563T as the measurement number.

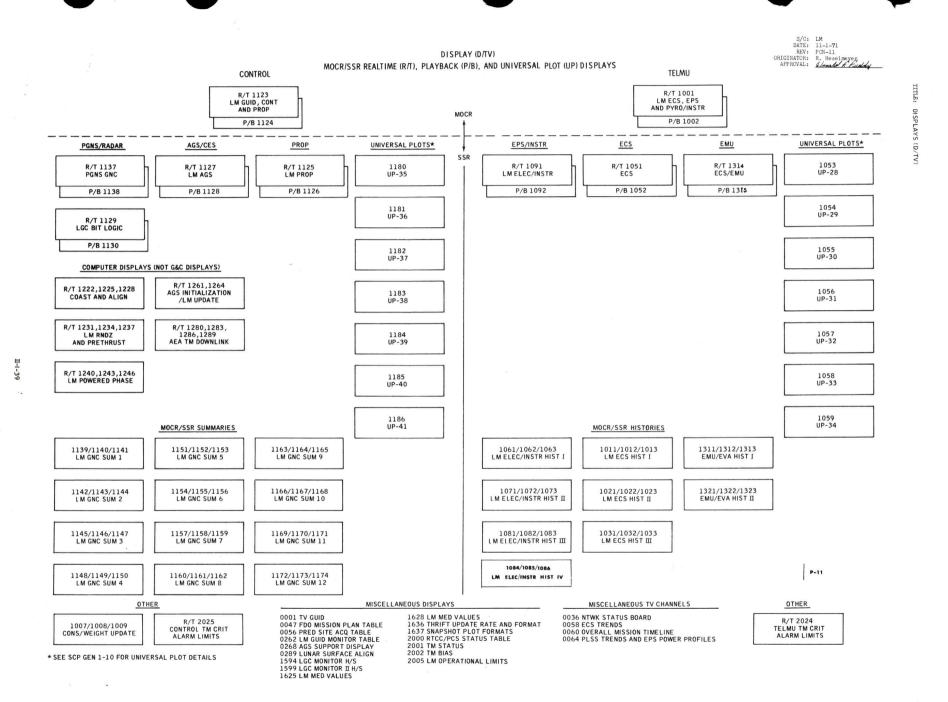
П-1-37

.

.

AGS Formats vs Parameters

				r	Т
LEM TIME LOOPS	AGS STATUS PAGE 1	THROTTLE LOOP	4 <u>335</u> Ags downlink page 1	RCS JET TCP LOOP	
LEM7802C - TIME GET GL0501 - TIME MET LTIMEZTIME1 - TIME LGC GI0001 × 4323 - TIME AGS LKFACTORT - K FACTOR	LEM7802C - TIME GET GI3305 - WARMUP GI3306 - STBY GI3301 - TEMP GL4028 - AGS FL	LEM7802C - TIME GET GH1621 - GD SEL AGS LCH30B05 - AUTO THL GH1348 - DPS ARM LCH14B04 - THR DRV	LEM7802C - TIME GET DMF806 - READUUT AGS1100L - DEDA DATA DCF806 - CLEAR GI0001 × 0004 - All	LEM7802C - TIME GET LCH32B06 - A1 CMD DISABLED GR9667 - A1 CMD DISABLED GH1430 - JD A1U GR5043 - TOP A1U	P-8
LTIG - TIME OF IGN LTGO - TIME TO GO LTOFEVENT - EVENT TIME LTTF8 - TIME IN PHS (SEC) LEMEGMT - TIME GMT	AGSOLE - TEST FL DMFBO6 - READOUT DCFBO6 - CLEAR GIO001 × 0007 - DEDA ADDRESS AGS1100L - REGISTER GH1628 - R FLSD	LGUIDTHRCMD - GUID TH CMD LCMDSDECA - DECA CMDS GH1311 - AUTO TH GH1311 - MAN TH GQ6806 - VAR ACT LEM6002C - TCP × .909	GI0001 × 0005 - Al2 GI0001 × 0006 - Al3 GI0001 × 0007 - DEDA ADDRESS GI0001 × 0008 - A31 GI0001 × 0009 - A32 GI0001 × 0010 - A33	GH1432 - JD AIF GR5045 - TCP AIF LCH32B05 - B1 CMD DISABLED GR9668 - B1 CMD DISABLED GH1431 - JD B1D GR5044 - TCP B1D	P-8
<u>4310</u> <u>FAIL STATUS LOOP PAGE 1</u> LEM7802C - TIME GET GL4069 - M ALARM	GH1629 - P PLSD GH1629 - Y PLSD GH1630 - Y PLSD <u>4316</u> AGS STATUS PAGE 2	GQ6510 - DPS TCP LGC11000C - THRUST CAL <u>4330</u> FNG ON OFF LOOP PAGE 1	4336 AGS DOWNLINK PAGE 2 LEM7802C - TIME GET	GH1433 - JD B1L GR5046 - TCP B1L LCH32B08 - A2 CMD DISABLED GR9665 - A2 CMD DISABLED	P-8
GL ¹ 026 - AC FL GL ¹ 027 - DC FL GL ¹ 028 - AGS FL AGSOIE - TEST FL GI3301 - TEMP GH1323 - P FAIL GH1320 - R FAIL LCH32B10 - TRM FL	LEM7802C - TIME GET GH1603 - MIN DB GH1896 - UNBAL CPLS AGS4836L - WD44 SOO - AGS4837L - AEA TEST LEM4817L - AGS MODE DW1B10 - AUTO	LEM7802C - TIME GET LCH11B14 - ENG OFF GH1217 - AUTO OFF LCH30B03 - ENG ARM LCH30B02 - STAGED LDBB06 - ULLREQST GI0001 × 0031 - ULLAGE	AGS4851L - WD15810 GIO001 × 0020 - DELV X FPS GIO001 × 0021 - DELV Y FPS GIO001 × 0022 - DELV Z FPS GIO001 × 4323 - TIME AGS AGS9710C - WD24 Y DEG/SEC AGS9711C - WD25 P DEG/SEC AGS9712C - WD26 R DEG/SEC	GH1427 - JD A2D GR5040 - TCP A2D GH1428 - JD A2A GR5041 - TCP A2A LCH32B07 - B2 CMD DISABLED GR9666 - B2 CMD DISABLED GH1426 - JD B2U GR5039 - TCP B2U GR5039 - TCP B2U	P-8
LEM34E - CB2 FL LEM35E - CB3 FL LEM32E - CB37 FL LEM33E - CB69 FL LEM15E - CB60 FL	AGS4851L WD15810 DW1B09 - FOLLOWUP GH1204 - OUT DET LCH31B15 - OUT DET LOBB12 - R CMD LDBB15 - MINP	GH1893 - +X O/R LCH11B13 - ENG ON EOFED66 - ENG ON GH1214 - AUTO ON GH1286 - FIRE O/R	GI0001 × 0027 - T BO OI SEC <u>4337</u> <u>AGS DOWNLINK PAGE 3</u> LEM7802C - TIME GET GI0001 × 0044 - S00	GH1429 - JD B2L GR5042 - TCP B2L LCH32B02 - A3 CMD DISABLED GR9663 - A3 CMD DISABLED GH1422 - JD A3U GR5035 - TCP A3U	P-8
4311 FAIL STATUS LOOP PAGE 2 LEM7802C - TIME GET LEM06E - AEA NO AUTO LEM07E - ONLY AEA AUTO LEM08E - AEA NO FU	4320 <u>GDA LOOP</u> LEM7802C - TIME GET LCH32B09 - GDA FWR GH3348 - DPS ARM	4331 ENG ON OFF.LOOP PAGE 2 LEM7802C - TIME GET GH1348 - DPS ARM LCH30B01 - ABORT DW1B13 - ABORT	GI0001 × 0045 - DIS WD 1 GI0001 × 0048 - VDX GI0001 × 0049 - VDY GI0001 × 0050 - VDZ <u>4340</u>	GH1425 - JD A3R GR5038 - TCP A3R LCH32B04 - B3 CMD DISABLED GR9664 - B3 CMD DISABLED GH1423 - JD B3D GR5036 - TCP B3D	P-8
LEMICE - NO AEA ABT LEMILE - AEA CMD ABT LEMILE - NO AEA D ON LEMISE - ONLY AEA ON LEMIGE - NO AEA A ON LEMIGE - ONLY AEA A ON	LMOMENTOFSTQ - P MNTO LCG4834L - P TRIM GH1313 - P POS GH1323 - P FAIL LMOMENTOFSTR - R MNTO LCG4835L - R TRIM	GY0050 - ABORT DW1B11 - DPS ON GH1301 - DPS ON LEM6002C - ENG THRUST GH1230 - APS ARM LCH30B04 - ABT STG	ATCA LOOP LEM7802C - TIME GET GH1240 - X TR CMD GH1241 - Y TR CMD GH1242 - Z TR CMD GH1463 - R BATE	GH1424 - JD B3A GR5037 - TCF B3A LCH32B01 - A4 CMD DISABLED GR9661 - A4 CMD DISABLED GH1419 - JD A4D GR5032 - TCF A4D	P-8
LEMILE - NO A ABT STC LEMILE - NO A ABT STC LEMILE - ONLY AEA AB STG GCOO71 - INV V	GH1314 - R POS GH1330 - R FAIL LCH32B10 - TRIM FAIL LDBB14 - GTS ALW	DWIB14 - ABT STG GH1283 - ABT STG DWIB12 - APS ON GH1260 - APS ON GP2010 - APS TCP	$\begin{array}{rcl} \mathrm{GH1457} &= \mathrm{R} & \mathrm{ATT} & \mathrm{ERR} \\ \mathrm{GH1249} &= \mathrm{R} & \mathrm{ERR} & \mathrm{CMD} \\ \mathrm{GH1462} &= \mathrm{P} & \mathrm{RATE} \\ \mathrm{GH1248} &= \mathrm{P} & \mathrm{ERR} & \mathrm{CMD} \\ \mathrm{GH1461} &= \mathrm{Y} & \mathrm{RATE} \\ \mathrm{GH1455} &= \mathrm{Y} & \mathrm{ATT} & \mathrm{ERR} \\ \mathrm{GH1455} &= \mathrm{Y} & \mathrm{ATT} & \mathrm{ERR} \\ \mathrm{GH1457} &= \mathrm{Y} & \mathrm{ATT} & \mathrm{ERR} \\ \mathrm{GH1247} &= \mathrm{Y} & \mathrm{ERR} & \mathrm{CMD} \end{array}$	GH1421 - JD A4R GR5034 - TOP A4R LCH32B03 - B4 CMD DISABLED GR9662 - B4 CMD DISABLED GH1418 - JD B4U GR5031 - TCP B4U GH1420 - JD B4F GR5033 - TCP B4F	P-8


SCP NO.GEN I-I3 PCN-8

*

•

.

ІІ-І-38

SCP GEN 1-14 PCN-8

LM GNC SUM 1 (1139/1140/1141)	LM GNC SUM 4 (1148/1149/1150)	LM GNC SUM 7 (1157/1158/1159)	LM GNC SUM 10 (1166/1167/1168)
GG1523 LGC OPERATE 931C3009 IMU OPERATE GG1513 IMU STRY/OFF GG901 LGC WARNING GG902 ISS WARNING 942C3315 OSC ALARM 931C3012 IMU CDU FAIL 931C3007 RC CDU FAIL 931C3013 IMU FAIL 942C3313 PIDA FAIL 9202313 PIDA FAIL 9202313 PIDA FAIL 9202313 PIDA FAIL 9202313 PIDA FAIL 9202103 TMU FAIL 9202313 PIDA FAIL 92024104 NO ATTITUDE 931C3015 TEMP IN LIMITS 441F1013 APS FLAG 931C3002 STAGE VENIFY Σ ΔVX ACS FPS Σ ΔVX ACT FPS Σ ΔVX ACT FPS Σ ΔVX ACT FPS	GG2112 IG RSVR SIN GG2113 IG RSVR COS LM5001 IG RSVR (CDA1) LC5103 ACT CDU Y (FDA1) LC5104 AGS CDU Y (FDA1) LC5105 IC DU Y (FDA1) LC5106 I CDU Y (FDA1) LC5106 I CDU Y (FDA1) LC5115 F CDU Y (FDA1) LC5116 I CDU Y (FDA1) GG2142 MG RSVR SIN GG2143 MG RSVR CS LM5007 MG RSVR CSM LM5107 MG RSVR CSM LS5104 I CDU Z (FDA1) LC5104 I CDU Z (FDA1) LS5104 I CDU Z (FDA1) GG2173 GG RSVR COS LM5003 GG RSVR (SM) LM5003 GG RSVR (FDA1) LC5102 ACT CDU X (FDA1) LC5102 ACT CDU X (FDA1) LC5102 I CDU	(1157/1158/1159) 23-43 AGS TIME AGS TAG 091 K 092 FACTOR GY0050 ABORT KTAGE 931C3004 ABORT STAGE 931C3004 ABORT STAGE GH1644 PGNS ATT HOLD GH1643 PGNS AUTO GH1603 SCS DEADBAND GH1604 DETENT 932C3115 DETENT 45 MODE WORD S00 GH1628 ROLL ATT CNTL GH1629 PTCH ATT CNTL GH1629 PTCH ATT CNTL GH1630 COUPLES GH1893 +X TRANS GH1241 Y TRANS GH1241 Y TRANS GH1242 AGS ATT HOLD GH1641 AGS AUTO	251/2 VGX 261/2 VGZ 271/2 VGZ 141/2 T OF EVENT HR MIN SEC 001/2 T OG OSEC 821/2 T OF IGN HR MIN SEC 27 T TO BO SEC RCS SYS A GR1001 HE PRESS PSIA GR1201 HE PRESS PSIA GR1201 FU TEMP °F GR102 FU TAN PR PSIA GR2201 OX MAN PR PSIA GR202 FU TEMP °F GR102 FU ESS PSIA GR202 FU TEMP °F GR102 FU ESS PSIA GR202 FU TEMP °F GR102 FU ESS PSIA GR202 FU TAN PR °F GR202 FU MAN PR °F GR202 FU MAN PR PSIA
LM GNC SUM 2 (1142/1143/1144)	LM GNC SUM 5 (1151/1152/1153)	LM GNC SUM 8 (1160/1161/1162)	LM GNC SUM 11 (1169/1170/1171)
451-501 PROG 451-501 VERB 451-501 NOUN 451-501 R1 451-501 R3 GG1201 28 V 800 HZ GG1311 28 V 3.2 KHZ GG1040 120 VDC GG110 2.5 V TM BIAS GN7521 RR DATA GOOD GN7557 LR VEL GOOD 931C3011 IMU CAGE 93123011 IMU CAGE 93123012 TURN ON RQST 93123015 TURN ON CHET 93123016 DAP DISABLE 64200003 ACCEL N/G 93223114 ATTITUDE HOLD 93223114 ATTITUDE AUTO LGC4884L MWR RATE D/S	GG2107 IG SER ERR VRMS GG2137 MG SER ERR VRMS GG2137 MG SER ERR VRMS GG2001 X PIPA OUT VRMS GG2001 X PIPA OUT VRMS GG2001 X PIPA OUT VRMS GG201 X PIPA OUT VRMS GA7723 RR ANT TEMP °F SHAFT LGC DEG TRUN LGC DEG TRUN LGC DEG TRUN LGC DEG 131 RR RANGE STD NM 132 RNGE RTE STD F/S 091 RR RANGE RATE F/S LC8001 LR VEL X F/S LC8004 LR VEL X F/S LC8004 LR VEL X (ST) F/S 752 LR VEL X (ST) F/S 752 LR RANGE FT	(1160/1161/1162) GH1247 Y ERR CMD VDC GH1248 P ERR CMD VDC GH1249 R ERR CMD VDC GH1249 R ERR CMD VDC GH1313 P GDA POS DEG 912B10 APP TRIM FAIL 931G3009 GIMBAL OFF GH1323 P TRIM FAIL 941B10 APP GDA FAIL 941B10 APP GDA FAIL 941B09 GDA POWER GL4027 CES A VIL GL4027 CES A	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
LM GNC SUM 3 (1145/1146/1147)	LM GNC SUM 6 (1154/1155/1156)	LM GNC SUM 9 (1163/1164/1165)	LM GNC SUM 12 (1172/1173/1174)
64200004 DEADBAND 6420005 ULAGE 6420006 OLLAGE 6420007 RHC SCALING 6420009 UPD PHASE 64200010 JET SYSTEM 64200012 RATE CMD 64200012 RATE CMD 64200013 CSM DOCKED 64200015 MIN IMPULSE FW0B15 NEEDL RATE 6622019 P ATT ERR DEG GH1456 P ATT ERR DEG GH1457 R BODY RT D/S GH1457 R BODY RT D/S GH1451 BODY RT D/S GH1451 BODY RT D/S GH1451 BODY RT D/S	931C3005 AUTO THRTL 991 CMD TO DECA % GH1331 AUTO THRTL CMD % LM6001 CMD THRUST % GQ6806 ACT POS % 281-781 GUID THRUST % GQ6306 ACT POS % 281-781 GUID THR CMD % LM6002 TCP (OPS) % GH1286 ENG FIRE O/R 931C3003 ENG ARMED 911C1114 ENG OFF GH1214 AUTO ENG OFF 31 ULLAGE COUNTS 1506 ENG ON (AGS) 911C1113 ENG ON GH1214 AUTO ENG ON GH1214 AUTO ENG ON GH1350 DPS ON GH1361 DPS ON GH1301 DPS ON GH1230 APS ARM 4512 APS ON GH260 APS ON GP2010 APS TCP PSIA	3187-9 SELF TEST GR9661 ISO 4A (DR) 94181 ISO 4A (DF) 94183 ISO 4B (UF) 94184 ISO 4B (UF) 94185 ISO 4B (UF) 94182 ISO 3A (UF) 94184 ISO 3A (UF) 94185 ISO 3A (UR) GR9664 ISO 3B (DA) 94185 ISO 2A (DA) 94186 ISO 2A (DA) 94187 ISO 2B (UL) 94186 ISO 1A (UF) 94187 ISO 1A (UF) 94186 ISO 1A (UF) 94185 ISO 1B (DL) 94185 ISO 1B (DL) 941/	GQ3718 DPS FU 1 °F GQ3719 DPS FU 2 1 °F GQ4218 DPS OX 1 1 °F GQ4218 DPS OX 1 1 °F GQ4218 DPS OX 1 1 °F GQ4219 DPS OX 2 1 °F GQ3611 DPS TO PR PS1A GQ6510 DPS TO PF GQ4111 DPS OX PR PS1A GQ6510 DPS TO PS GR9610 RCS MAIN A GR9611 ASC FDA PON GR9642 ASC FDB OPEN GR9613 A/B X FEED GP320 APS HE 1 GP320 APS HE 1 GP320 APS HE 1 GP320 APS GP33 A/B VLVS 4 POS GQ7498 A/B VLVS 4 POS GQ7498 A/B VLVS 4 POS

30

.

II-1-39 a

P-8

,

.

SCP NO. GEN 1-15

S/C:	LM
DATE :	10-1-72
REV:	PCN-14
ORIGINATOR:	R. Legler,
APPROVAL:	Jampl Hannjan
<	≤ 1
	1

TITLE CHART RECORDER FORMAT SELECTION

PURPOSE : The SCP defines all LM chart recorder formats and the nominal times they are used. Medable formats are called up on an as required basis.

FROCEDURE: The following schedule defines the nominal selection of ground station formats on the Apollo 17 mission. Format changes are based on mission events and not on a specific GET; hence, the actual GET of switching may vary slightly even during a nominal mission. All format changes should be coordinated with all applicable MCC personnel.* All formats referenced herein are on PCM ground station Tape 4.

		APPROX			
Α.		GET	FORMAT	FORMAT TITLE	1
	PRELAUNCH	10.05	IX	CSM/SLV	
	HK1 -15 min	40:05	V .	ACT/PDI	
	IVT to CSM	42:00	(Release to CSM)		
	HK2 -15 min	60:17	V	ACT/PDI	
	IVT to CSM	61:30	(Release to CSM)		
	ACT - 15 min	107:45	V	ACT/PDI	
	TD/DPS VENT +5 min	113:18	VI	LUNAR SURFACE	
	EVA 1 -45 min	115:55	VII	LUNAR SURFACE + PLSS	
	EVA 1 term + 15	123:55	VI	LUNAR SURFACE	P-14
	EVA 2 -45 min	138:25	VII	LUNAR SURFACE + PLSS	
	EVA 2 term +15	146:25	VI	LUNAR SURFACE	
	EVA 3 -45 min	161:55	VII	LUNAR SURFACE + PLSS	
	EVA 3 TERM +15 min	169:55	VI	LUNAR SURFACE	
	Liftoff -10 min thru Impact	187:53	IV	STAGED	
	Impact	195:58			

B. FORMATS

		CONSOLE 211	-		
Pen	Meas No.	Meas Desc	Pen Meas No.	Meas Des	
(FOR	MAT V, VI, VII)		(FORMAT IV)		
01 02 03 04 05 06 07 08	GF4500P GF3584P GF95999U GF4101P GF1301P GF9997P GF9998T	DES 1 H ₂ O P DES 02 Press CO2 PP SEL H2O Sep Rt PRI H2O Reg AP Suit Press SEL Gly Pmp P SEL Glycol T	01 GF4502P 02 GF3582P 03 GF1521P 04 GF9999U 05 GF4101P 06 GF1301P 07 GF9997P 08 GF9998T	ASC 1 H2O P ASC 1 O2 Press CO2 PP SEL H2O Sep Rt Pri H2O Reg ΔP Suit Press SEL Gly Pmp P SEL Glycol T	P-8
		CONSOLE 291	2		
	Meas No. MAT IX)	Meas Desc	<u>Pen</u> <u>Meas No.</u> (FORMAT V)	Meas Des.	
01 02 03 04 05 06 07 08	GC0302V GC0301V GC1201C GC1202C GC1203C GC1204C GC1204C GC1205C GC1206C	IMP Bus Volts CDR Bus Volts Eat 1 Cur Bat 2 Cur Bat 3 Cur Eat 4 Cur Bat 5 Cur Bat 6 Cur	01 GH1314V 02 GG2279V 03 GH1463V 04 GG2137V 05 GH1313V 06 GH2219V 07 GH1462V 08 GG2107V	Roll GDA Pos Roll DAC Out RGA Roll Rate MG Svo Err In ϕ Pitch GDA Pos Pitch DAC Out RGA Pitch Rate IG Svo Err in ϕ	
		Pen Meas No. (FORMAT IV, VI, VII)	Meas Desc		
		01 GH1457V 02 GG2279V 03 GH1463V 04 GG2137V 05 GH1456V 06 GG2219V 07 GH1462V 08 GG2107V	Roll Att Err Roll DAC Out RGA Roll Rate MG Svo Err in Ø Pitch Att Err Pitch DAC Out RGA Pitch Rate IG Svo Err in Ø		

*See FCOH SOP 4.7 for medable chart recorder parameter change procedures.

P-8

P-8

CONSOLE 30L

<u>Pen</u> (FO	Meas No. RMAT V)	Meas Desc	Pen <u>Meas No.</u> (FORMAT IV, VI, VII)	leas Desc
01	GQ3435P	DPS HE Press	02 GP2010P A 03 GP1501P A 04 GP1503P A 05 GH1455V Yr 06 GG2249V Yr 07 GH1461V R	G Svo Err in Ø
02	GH1311V	Man Thrust Cmd		PS TCP
03	GH1331V	Auto Thrust Cmd		PS Fuel Press
04	GQ6806V	DPS VAR ACT		PS OX Press
05	GQ6510P	DPS TCP		aw Att Err
06	GG2249V	YAW DAC Out		aw DAC Out
07	GH1461V	RGA Yaw Rate		GA Yaw Rate
08	GG2167V	OG Svo Err in Ø		R Ant Temp

CONSOLE 31L

Pen Meas No. (FORMAT VI, VII)	Meas Desc	Pen (FO	<u>Meas No.</u> RMAT V)	Meas Desc
01 GC0302V 02 GC0301V 03 GC1201C 04 GC1202C 05 GC1207C 06 GC1203C 07 GC1204C 08 GC0071V	IMP Bus Volts CDR Bus Volts Bat 1 Cur Bat 2 Cur Bat 2 Cur Bat 3 Cur Bat 4 Cur AC Volts	01 02 03 04 05 06 07 08	GC0302V GC0301V GC1201C GC1202C GC1203C GC1204C GC1205C GC1205C GC1206C	IMP Bus Volts CDR Bus Volts Bat 1 Cur Bat 2 Cur Bat 3 Cur Bat 4 Cur Bat 5 Cur Bat 6 Cur
	Pen Meas No. (FORMAT TV)	Meas	s Desc	

(FO	RMAT IV)	
01	GC0302V	IMP Bus Volts
02	GC0301V	CDR Bus Volts
03	GC0205V	Bat 5 Volts
04	GC0206V	Bat 6 Volts
05	GC1205C	Bat 5 Cur
06	GC1206C	Bat 6 Cur
07	GC0071V	AC Bus Volts
08	GC0155F	AC Bus Freq

CONSOLE 34R

Pen	Meas No.	Meas Desc
(FO	RMAT VII)	
01 02 03 04 05 06 07 08	GT8182P GT8168P GT8110P GT8154T GT8196T GT8170V GT8141V GT8140C	PLSS 1 02 P PGA 1 02 Press PLSS 1 H20 P LGC 1 H20 in T LGC 1 H20 T PLSS 1 02 Subl T PLSS 1 Bat V PLSS 1 Bat C

P-8

P-9 -

P-8

SCP NO. GEN 1-15 PCN-12

C. MEDABLE FORMATS

>

		CONSOLE 20 L				P - 12
Per	Meas No.	Meas Desc	Pen	Meas No.	Meas Desc	
(M	ED Group 21A)		(MEI) Group 22A)		
01 02 03 04 05 06 07 08	GF4500P GF3584P GF1521P GF9999U GF4101P GF1301P GF9997P GF9998T	DES 1 H2O P DES 1 O2 P CO2 PP SEL H2O Sep Rt Pri H2O Reg ΔP Suit Press SEL GLy Pmp P SEL GLycol T	01 02 03 04 05 06 07 08	GF4502P GF3582P GF1521P GF9999U GF4101P GF1301P GF9997P GF9998T	ASC 1 H2O P ASC 1 O2 Press CO2 PP SEL H2O Sep Rt Pri H2O Reg ΔP Suit Press SEL Gly Pmp P SEL Glycol T	P-8
(M)	ED Group 23A)		(MEI) Group 24A)		
01 02 03 04 05 06 07 08	GP2531T GP2581T GP9998T GP4511T GP2021P GP2021P GP49997P GF4101P GF4501P	W/B Gly in T W/B Gly Out T SEL Glycol T Pri W/B H20 T Pri Gly Pmp ΔP SEL Gly Pmp P Pri H20 Reg ΔP DES H20 Press	01 02 03 04 05 06 07 08	GF3591P GF3592P GF3571P GF1301P GF4101P GF3584P GF0584P GF1521P	U/H Rlf Press F/H Rlf Press Cabin Press Suit Press Pri H2O Reg ΔP DES 1 O2 P DES 2 O2 P CO2 PP	P-8
(M)	ED Group 25A)		(MEI	Group 26A)		
01 02 03 04 05 06 07 08	GP3584P GF0500P GF4500P GF4501P GF4101P GF9999U GF2531T GF1521P	DES 1 O2 P DES 2 H2O P DES 1 H2O P DES H2O Press Pri H2O Reg ΔP SEL H2O Sep Rt W/B Gly in T CO2 PP	01 02 03 04 05 06 07 08	GH1463V GH1457V GH1249V GH1462V GH1456V GH1248V GG2279V GG2219V	RGA Roll Rate Roll Att Err Roll Err Cmd RGA Pitch Rate Pitch Att Err Pitch Err Cmd Roll DAC Out Pitch DAC Out	P-8
(MI	ED Group 27A)					
01 02 03 04 05 06 07 08	GF3584P GF0584P GF3582P GF3583P GF4500P GF4500P GF4501P GF4502P GF4503P	DES 1 02 P DES 2 02 P ASC 1 02 Press ASC 2 02 Press DES 1 H20 P DES H20 Press ASC 1 H20 P ASC 2 H20 P				P-8
		CONSOLE 33R				
Per	Meas No.	Meas Desc	Pen	Meas No.	Meas Desc	
(MI	ED Group 21B)		(MED	Group 22B)		
01 02 03 04 05 06 07 08	GC0302V GC0301V GC1201C GC1202C GC1203C GC1204C GC1205C GC1205C GC1206C	IMP Bus Volts CDR Bus Volts Bat 1 Cur Bat 2 Cur Bat 3 Cur Bat 4 Cur Bat 5 Cur Bat 6 Cur	01 02 03 04 05 06 07 08	GC0302V GC0301V GC02071V GC1201C GC1202C GC1207C GC1203C GC1204C	IMP Bus Volts CDR Bus Volts AC Bus Volts Bat 1 Cur Bat 2 Cur Bat L Cur Bat 3 Cur Bat 4 Cur	P-8

SCP NO. GEN 1-15 PCN-9

CONSOLE 33R CONTINUED

Pen	Meas No.	Meas Desc	Pen	Meas No.	Meas Desc		
(MED	Group 23B)		(MEI	Group 24B)			
01 02 03 04 05 06 07 08	GC0302V GC0301V GC0205V GC0205V GC1205C GC1206C GC0071V GC0155F	IMP Bus Volts CDR Bus Volts Bat 5 Volts Bat 6 Volts Bat 5 Cur Bat 6 Cur AC But Volts AC Bus Freq	01 02 03 04 05 06 07 08	GC0207V GC1204C GC1204C GC0155F GC0071V GH1314V GQ6510P	Bat L Volts Bat 3 Cur Bat 4 Cur AC Bus Freq AC Bus Volts Pitch GDA Pos Roll GDA Pos DPS TCP		P-8
(MEI	Group 25B)		(MI	ED Group 26B)			
01 02 03 04 05 06 07 08	GC0201V GC0202V GC0203V GC0204V GC0205V GC0206V GC0301V GC0302V	Bat 1 Volts Bat 2 Volts Bat 3 Volts Bat 4 Volts Bat 5 Volts Bat 6 Volts CDR Bus Volts IMP Bus Volts	01 02 03 04 05 06 07 08	GH1461V GH1455V GH247V GG2249V GG2040V GG2001V GG2021V GG2021V GG2041V	RGA Yaw Rate YAW Att Err YAW Err CMD YAW DAC Out PLSS Torq Ref X PIPA IN Ø Y PIPA IN Ø Z PIPA IN Ø		P-9
(MEI) Group 27B)						
01 02 03 04 05 06 07 08	CT8282P CT8268P CT8210P CT8254T CT8254T CT8296T CT8270T CT8241V CT8240C	PLSS 2 02 P PGA 2 02 Press PLSS 2 H20 P LGC 2 H20 in T LGC 2 H20 Del T PLSS 2 02 Sub T PLSS 2 Bat V PLSS 2 Bat C					P-8

<

.

SCP NO. GEN 1-16

S/C: LM DATE: 11-1-71 REVISION : PCN-11 ORIGINATOR: TD. Perking APPROVAL: // Journation

TITLE: EMERGENGY MISSION CONTROL CENTER (EMCC) ACTIVATION

PURPOSE: To define LM TELMU and CONTROL documentation required for transfer of mission operations to the EMCC.

PARTICIPATION: LM TELMU and CONTROL

- A. In the event of EMCC activation, the following minimum documentation will be required by the LM participants.
 - 1 copy each, of the following:

LM Systems Handbook LM Console Handbook SODB Vol. 2 & 4 LM AOH Vol. 1 & 2 EMU AOH Vol. 1 & 2 Mission Rules Checklist Flight Plan LM Operational Cal Curves LM Measurements Requirements

and Configuration Data (LED 360-360) TDFCB (High Speed Data section) LM Propulsion Skinny Book THRIFT Printouts to date SPAN Requests and Answers to date EPS Consumables (SEENA Printout) LM Olivetti Programs LM Hewlett Packard Programs Console Logs

B. The following individuals will be notified of EMCC activation decision:

J. Hannigan	534-4292
D. Puddy	877-4787
R. Thorsen	488-3856
M. Merritt	665-0228
J. Wegener	488-4117
W. Peters	534-3264

- C. The following Manual Summaries will be generated by the remote site on request from EMCC:
 - LM TELMU MANUAL SUMMARY
 - LM PROPULSION MANUAL SUMMARY
 - LM LGC/AEA MANUAL SUMMARY
 - LM BILEVEL MANUAL SUMMARY

D. The following pages are the Manual Summary formats.

11-1-44

P-11

		and the second and American and
4		SCP NO. GEN 1-16
	LM TELMU MANUAL SUMMARY	PCN-11
GROUND ELAPSED TIME CABIN PRESS SUIT PRESS SUIT TEMP CO2 PART PRESS	GF3571 GF1301 GF1281 GF1521	HRS: MIN: SEC: DECIMAL PCM COUNT
W/B GLY OUT TEMP W/B GLY IN TEMP GLY PUMP PRESS PRI GLY PUMP DELTA P GLY TEMP	GF2581 GF2531 GF9997 GF2021 GF9998	
PRI H20 REG DELTA P H20 SEP RATE PRI W/B H20 TEMP DES 2 02 PRESS DES 1 02 PRESS	GF4101 GF9999 GF4511 GF0584 GF3584	P-8
ASC 1 02 PRESS ASC 2 02 PRESS DES 2 H20 PRESS DES 1 H20 PRESS ASC 1 H20 PRESS	GF3582 GF3583 GF0500 GF4500 GF4502	P-8
ASC 2 H2O PRESS AC BUS VOLT AC BUS FREQ CDR BUS VOLT LMP BUS VOLT	GF4503 GC0071 GC0155 GC0301 GC0302	
BAT 1 CUR BAT 2 CUR BAT 3 CUR BAT 4 CUR BAT 5 CUR	GC1201 GC1202 GC1203 GC1204 GC1205	
BAT 6 CUR BAT L CUR BAT 1 VOLT BAT 2 VOLT BAT 3 VOLT	GC1206 GC1207 GC0201 GC0202 GC0203	P-8
BAT 4 VOLT BAT 5 VOLT BAT 6 VOLT BAT L VOLT DES 2 H20 T	GC0204 GC0205 GC0206 GC0207 GF0521T	♥ P-8 P-11

.

,

94

.

11-1-45

LM PROPULSION MANUAL SUMMARY

GR1101

GR1201 GR2121 GR1085

GR2201 GR3201 GR1102 GR1202 GR2122

GR1095 GR2202 GR3202 GR6004 GR6003

GR6002 GR6001 GP0001 GP0041 GP0002

GP0042 GP0018 GP0025 GP0718 GP1218

GP1501 GP1503 GQ6806 GH1331 GH1311

GH1313 GH1314 GQ3015 GQ3435 GQ3018

GQ3025 GQ3718 GQ3719 GQ4218 GQ4219

GQ3611

GQ4111

SCP NO. GEN 1-16 PCN-6

HRS: MIN: SEC: DECIMAL PCM COUNT

	LAI PROPU
GROUND ELAPSED TIME RCS A HE PRESS RCS A REG PRESS RCS A FUEL TEMP RCS PROP A QTY	
A FUEL MFLD PRESS A OX MFLD PRESS RCS B HE PRESS RCS B REG PRESS RCS B FUEL TEMP	
RCS PROP B QTY B FUEL MFLD PRESS B OX MFLD PRESS QUAD 1 TEMP QUAD 2 TEMP	
QUAD 3 TEMP QUAD 4 TEMP APS HE 1 PRESS APS HE 1R PRESS APS HE 2 PRESS	
APS HE 2R PRESS APS HE REG PRESS 1 APS HE REG PRESS 2 APS FUEL TEMP APS OX TEMP	
APS FUEL PRESS APS OX PRESS VAR INJ ACT POS AUTO THRUST CMD MAN THRUST CMD	
PITCH GDA POS ROLL GDA POS DPS START TANK PRESS DPS HE PRESS DPS HE REG PRESS 1	
DPS HE REG PRESS 2 DPS FUEL 1 TEMP DPS FUEL 2 TEMP DPS OX 1 TEMP DPS OX 2 TEMP	
DPS FUEL PRESS	

c1

, ;

SCP NO. GEN 1-16

PCN-6

ix , Is

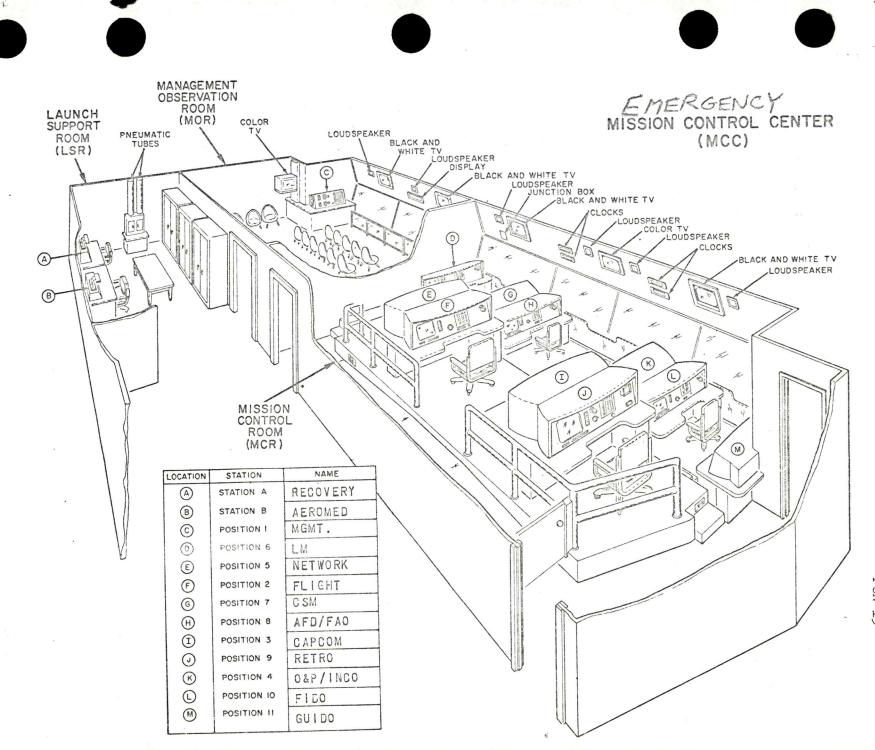
LM LGC/AEA MANUAL SUMMARY

GROUND ELAPSED TIME IMU 28 VAC 800 IRIG SUSP 3.2 KC PIPA TEMP ASA TEMP	GG1201 GG1331 GG2300 GI3301		HRS: MIN: SEC: DECIMAL PCM COUNT
DISCRETE WORD ONE S10 SWITCH/ENG ON SELF TEST/ULLAGE FUNCTION SEL SW LM MASS	GIOOO1X WOR GIOOO1X WOR GIOOO1X WOR GIOOO1X WOR GGOOO1X WOR	D 15 D 31 D 44	OCTAL
FLAGWORD 0 FLAGWORD 1 FLAGWORD 2 FLAGWORD 3 FLAGWORD 4	GGOOO1X WORI	D 39A 39B 40A 40B 41A	
FLAGWORD 5 FLAGWORD 6 FLAGWORD 7 FLAGWORD 8 FLAGWORD 9		41B 42A 42B 43A 43B	
FLAGWORD 10 FLAGWORD 11 I MODES 30 I MODES 33 CHANNEL 11		44A 44B 81A 81B 91A	
CHANNEL 12 CHANNEL 13 CHANNEL 14 CHANNEL 30 CHANNEL 31		91B 92A 92B 93A 93B	
CHANNEL 32 CHANNEL 33 DSPTAB PLUS 11D RADMODES DAPBOOLS		94A 94B 50B 64A 64B	
ACTUAL CDU X DESIRED CDU X ACTUAL CDU Y DESIRED CDU Y ACTUAL CDU Z		37A 35A 37B 35B 38A	
DESIRED CDU X FINAL DESIRED CDU X FINAL DESIRED CDU Y FINAL DESIRED CDU Z		36A 30B 31A 31B	

SCP NO. GEN 1-16 PCN-6

LM BILEVEL MANUAL SUMMARY

AL SUMMARY


GROUND BL730 BL742 BL771 BL772	ELAPSED
BL773 BL774 BL775 BL776 BL777	
BL778 BL779 BL781 BL782 BL783	

TIME

ក្នុ កំ ស

.

HRS: MIN: SEC: OCTAL

II-1-49

SCP No. GEN 1-16 PCN-13

SCP NO. EPS 2-1

S/C: IM DATE: 6/1/71 REV: PCN-8 ORIGINATOR: L. Micholas APPROVAL: William J. Luca

TITLE: LM EPS AMPERE-HOUR(AH) CALCULATIONS

PURPOSE:

PROCEDURE: A. R/T Calculation

Equation: $AH = (t_n - t_{n-1}) (A + XA')$

- 1. t_n = time of present data frame (GMT-hours)
- 2. t_{n-1} = time of previous data frame (GMT-hours)
- 3. A = average current per battery, calculated by taking the average of the last ten data samples. This means that the AH's used during LOS will be averaged into the R/T calculation using the last nine current samples from the previous AOS and the first sample from the present AOS, then the last eight and the first two, et cetera.
- 4. XA' = DA' or AA', Descent or Ascent current bias. These are MED quantities used to correct for obvious differences between actual currents and Current Monitor calibration curves.

To explain the RTCC Real-Time (R/T) and Playback (P/B) AH calculations and the procedure for using them.

B. P/B Calculation

Equation: $AH = (t_n - t_{n-1}) (B + XA')$

- 1. t_n = time associated with present data frame (GMT hours)
- 2. t_{n-1} = time associated with previous data frame (GMT hours)
- 3. B = instantaneous current per battery
- 4. XA' = DA' or AA', Descent or Ascent current bias. These will have the same numeric values as the R/T biases, but are separate MED quantities.
- C. Comparison of R/T and P/B Calculations
 - 1. Both R/T and P/B calculate AH's for each individual battery.
 - 2. The R/T calculation uses average current and the P/B calculation uses instantaneous current.
 - 3. The difference in the type of current used (average and instantaneous) will not affect the value

of the current bias used. The same number should be used for both calculations.

- D. Initial Conditions
 - The initial conditions for the battery calculations are:
 - 1. All R/T calculations disabled
 - 2. All P/B calculations enabled
 - 3. AH used = 0
 - 4. Descent AH available = 2075
 - 5. Ascent AH available = 592
 - 6. Descent and Ascent current bias (DA' and AA') = 0

E. Enabling and Disabling R/T and P/B Calculations

The battery AH calculation enable and disable functions are controlled by the SMEK.

- 1. To enable the R/T calculation:
 - a. Depress desired battery calculation PBI's ("Battery No. 'X', X = 1, 2, ...6).
 - b. Then depress the "BAT CALC" PBI.
 - c. Then depress the "EXECUTE" PBI.

2. When the R/T battery calculation is enabled, the following data will be displayed:

- a. Average current
- b. The sums of average currents (Ascent, Descent, Total)
- c. The individual battery AH consumed (Bat 1, 2, ... 6)
- d. The sums of AH consumed (Ascent, Descent)
- e. The Ascent and Descent AH remaining (difference between initial AH and calculated AH consumed).

P-8

P-8

SCP NO. EPS 2-1 PCN-8

P-8

P-8

P-8

3. To disable the R/T calculation:

- a. Depress desired battery calculation PBI's ("Battery No. 'X', X = 1, 2, ... 6)
- b. Then depress the "BAT CALC" PBI,
- c. Then depress the "EXECUTE" PBI.
- 4. When the $\ensuremath{\mathbb{R}}\xspace/{\ensuremath{\mathbb{T}}}$ battery calculation is disabled, the following data will be displayed:
 - a. "M" (Missing) will be displayed for the affected average currents.
 - b. The sums of the average currents will be that of the enabled battery calculations only.
 - c. The individual battery AH affected will remain static at the last computed value.
 - d. During periods of LOS, the D/TV display will remain static until the next sample of live data, at which time it will be updated to show the disabled status of the selected calculations. The battery calculation status lights indicate the actual status of the battery P-3 calculations at all times.
- 5. All P/B battery calculations are enabled at the same time using the "EAT P/B COMP ENEL/DSEL" P-8 PBI, which works on an enable/disable flip-flop basis. Since the P/B calculations are enabled when the RTCC is initialized, depressing this PBI will disable the calculation. Subsequent depressions of the PBI will alternately enable and disable the P/B calculations.

6. When the P/B calculations are enabled, the following data will be displayed:

- a. The individual battery AH consumed (Bat 1, 2, ... 6)
- b. The sums of the AH consumed (Ascent, Descent)
- c. IMET = time associated with initial data frame
- d. MET = time associated with present data frame
- 7. When the P/B calculations are disabled, all of the above displays will remain static except MET. P-8
- 8. The only other control over the P/B calculations is the "EAT P/B COMP ZERO" PBI. This PBI zeros the following parameters, after which they immediately start being updated again:
 - a. The individual battery AH consumed (Bat 1, 2, ... 6)
 - b. The sums of AH consumed (Ascent, Descent)
 - c. IMET
- F. Mission Data Management
 - 1. Premission through TD&E (EPS SSR responsibility):
 - a. The AH's consumed per battery from activation through TD&E should be hand calculated, based on the following data sources:
 - (1) SODB power requirements and/or TM currents
 - (2) Observed percent battery sharing
 - (3) Heater duty cycles observed prelaunch and at TD&E
 - (4) Data received from SPAN
 - b. The most accurate result as agreed upon and understood by all shifts should then be MED into the RTCC program just prior to the first IM powerup.
 - c. The RTCC AH calculation will not be enabled prelaunch.
 - 2. R/T Pass (EPS SSR responsibility)
 - a. The following items should be logged in the console log book.
 - (1) AOS GET, AH's used and average currents.
 - (2) LOS GET, AH's used and average currents.
 - b. These data shall be used to verify that the RTCC program calculates the correct amp-hours for each LOS.

P-8

P-8

P-8

P-3

-3

3. P/B Data (EPS SSR responsibility)

a. LM data is normally recorded by the CSM during periods of LOS, and is transmitted to a ground station. These data are not normally played back to MCC-H.

When time permits, the data should be played back at the 1/1 rate for accuracy. The 8/1 playback rate is acceptable when time is critical. There is no intention of using the 32/1 playback rate, but the capability does exist.

If the 8/1 rate is used the numbers for amp-hours used must be multiplied by 8 to correct for the playback rate. A factor of 32 should be used for the 32/1 playback rate. The time used in the amp-hour calculations is R/T GMT and is not keyed to the playback rate.
b. Before P/B data is received, "zero" the P/B calculations.

- c. Input "Tape P/B Request Form" to O&P, giving the following information:
 - (1) Site/REV
 - (2) PCM Playback (DSE)

(3) Vehicle

- (4) Formats (HSD and MCC Events)
- (5) Start/Stop Time (MET)
- (6) P/B bit--set
- (7) P/B speed

TIC will make all necessary arrangements and notify originator when P/B is ready, and will report when P/B is complete.

NOTE

It should be emphasized that P/B data should always

be played with the P/B bit set at either the remote site or MCC. Otherwise P/B data will invalidate R/T

AH calculations.

d. At the completion of P/B data, log the AH's used and the time covered by the P/B.

- e. There are no plans to use P/B data to correct R/T amp-hour calculations.
- 4. General
 - a. The R/T calculation will only be enabled after L/O and then immediately after the first acquisition of R/T data from the IM.
 - b. During the IM power up sequences, there will be short periods of time during which the IM is on internal power with no TM data (R/T or P/B) available. For these instances, a hand-calculated AH available must be MED into the R/T calculation to account for the power used. This applies to both prelaunch and orbit phases.
 - c. The AH calculations in the R/T program can be disabled for an entire LOS period by disabling the R/T calculation anytime during the LOS period and enabling the R/T calculation after acquisition of R/T IM data. If the R/T AH calculations are disabled and enabled during the same LOS period, the AH will be computed for the entire LOS period.
 - d. When a battery is turned off, the appropriate R/T calculation should be disabled to prevent noise from introducing inaccuracy into the total AH calculation (descent, ascent).
 - e. The P/B calculation will be disabled whenever someone requests a tape playback from which AH information is not wanted.
 - f. Whenever a MED is made or a R/T calculation is enabled or disabled the time and appropriate b-8 data must be entered in the EPS console log book.

SCP NO. EPS 2-1 PCN-8

These pages deleted by PCN-8

SCP NO. EPS 2-2

S/C: LM DATE: 11/1 /71 REVISION: PCN-11 ORIGINATOR: L. N1CHO APPROVAL: William 5

LM 11/1 /71 PCN-11 L. Nicholas

TITLE: CONTINGENCY TRANSLUNAR COAST LM BATTERY MANAGEMENT

PURPOSE: The purpose of this SCP is to describe the use of the LM descent batteries during translunar coast if power could not be supplied from the CSM.

PROCEDURE: As soon as possible after TD&E, a crewman should enter the LM and open the following circuit breakers:

- CB (11) LTG: ANNUN/DOCK/COMPNT OPEN EPS: DES ECA - OPEN DC EUS VOLT - OPEN
- CB (16) LTG: FLOOD OPEN EPS: DC BUS VOLT - OPEN DES ECA - OPEN

The LCA has 9 hour thermal constraint and the ECA's have a 31 hour thermal constraint.

After approximately 10 - 15 ampere-hours have been consumed from each battery 1 and 4, these batteries should be switched to high taps.

At GET of 58 hours, it is desirable to switch batteries 2 and 3 on and 1 and 4 off to keep the state of charge equal and to limit the temperature rise on batteries 1 and 4. Since there are no low taps available on batteries 2 and 3 to prevent over voltage at the bus, it is necessary to detusk these batteries. The LM will be powered up, batteries 2 and 3 switched on and 1 and 4 switched off. The LM will remain powered up until 10 - 15 ampere-hours are removed from each battery. The power up procedure is to use the PDI day portion of the activation checklist up through the ACTIVATION FWR UP CB charts.

Omit any descent battery switching in this checklist and the CDR and LMP CONNECT TO LM ECS. Batteries 2 and 3 are switched on at the end of this power up and 1 and 4 switched off. Thirty to forty minutes before power down water will be shut off to the sublimator. The LM will be powered down to the configuration at the beginning of this power up.

11-2-8

This sheet deleted by PCN-11

¥

.

SCP NO. PYRO 3-1

S/C:	LM
DATE:	3/1/72
REV:	PCN 12
ORIGINATOR:	Conwell/Heselmeyer
APPROVAL:	William Z. Piter

TITLE

: MANUAL STAGING ON THE LUNAR SURFACE

- REFERENCES: 1. MSC Internal Note No. 71-FM-198, "Manual Staging on the Lunar Surface for LM-10 and Subsequent Vehicles"
 - 2. Memo FM 37 (71-90), "IM Attitude Constraints for Safe Manual Staging from the Lunar Surface and Equations for Interpreting Real-Time Data"

PURPOSE

: To explain the constraints and procedures associated with manual staging on the lunar surface.

BACKGROUND: Manual staging on the lunar surface will be performed if one pyro system is lost because of the large number of possible single point failures in the remaining system that would preclude proper vehicle staging. If a problem with the staging sequence is discovered, corrective action can then be taken prior to lifting off the lunar surface.

> The LM must be in a safe attitude before manual staging will be attempted. The constraint depends on vehicle attitude and the descent $\mathbf{0}_{\!\mathcal{O}}$ line pressure that appears at the high pressure interstage quick disconnect. The descent 0_p line pressure will be reduced, if required, to insure safe manual staging by means of a special vent adapter carried onboard in the right hand side stowage console.

PROCEDURE : Figures 1, 2, & 3 show the magnitude and direction of the LM tilt angles which are safe for manual staging with maximum pressure, 400 psi, and a depressurized high pressure O_{2} line (200 psi constitutes a depressurized line). The LM tilt angle information is calculated by the LM PGNS SSR position immediately after touchdown using the Hewlett Packard 9100B computer and passed to the LM INSTR/PYRO SSR position, which is responsible for properly plotting the point on the attitude constraint chart (Figures 1, 2, & 3).

P-12

The following assumptions are made pertaining to the tilt angle calculation:

- a. The platform was aligned to be local vertical at the landing site.
- b. The LM landed at the planned landing site.
- c. The platform had no drift since the last alignment.

Using data from Apollo 11, 12, and 14, it was found that a 0.5° error in pitch or roll causes no greater error than $\pm 0.5^{\circ}$ in the magnitude and $\pm 7.0^{\circ}$ in the direction of the tilt angle. A 0.5° error in yaw causes no error in the magnitude and $\pm 0.5^{\circ}$ error in the direction of the tilt angle. In general, the maximum drift in each platform axis will be 0.1° which will cause a maximum error of $\pm 0.1^{\circ}$ in the magnitude and $\pm 1.4^{\circ}$ in the direction of the tilt angle. (After any P57, the Guidance Officer can project gimbal angles back to touchdown to give accurate touchdown angles if confidence was lost in the touchdown angles).

The Hewlett Packard Program is executed as follows:

- 1. Obtain gimbal angles in stable member coordinates from PGNS real-time D/TV display at touchdown or use angles supplied by the Guidance Officer after a P57.
- 2. Switch configuration for Hewlett Packard
 - o Degrees
 - o Fixed Point
 - o Power ON
 - o Run
 - o Printer ON with X, Y, and Z button depressed

SCP NO. PYRO 3-1 PCN-12

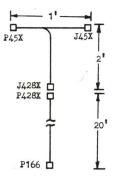
3. Set decimal wheel to 5 4. Go to - 00 5. Enter side A of card No. 12 6. Go to - 00 7. Continue 8. Clear 9. Enter Roll 1 10. 11. Enter Pitch 1 12. 13. Enter Yaw 14. Continue 15. Printout will be as follows: Roll Pitch Input Yaw Tilt Angle Magnitude Tilt Angle Direction Output

0

Should the IM tilt angle be such that manual staging cannot be safely performed with the high pressure 0_2 line fully pressurized, then the line will be vented to the recommended tilt angle constraint. For a failed armed pyro system, any necessary venting will be performed as soon as practical and the lunar stay continued within the consumables capability. In this case, minimum 0_2 venting is highly desirable, and the maximum tilt angle constraint will be used. If a better resolution than that provided by Figures 1, 2, or 3 on the 0_2 line pressure for the particular vehicle attitude P-12 is required, MPAD will be requested to perform that analysis real-time via SPAN. Time for such an analysis is estimated to be a maximum of 2 hours.

Manual staging due to the loss of a pyro system will be performed as close to liftoff as practical, while allowing sufficient time to verify staging. Three to five minutes before the planned liftoff is sufficient time for this verification. Any associated 0_2 line venting required can be performed whenever it is convenient to do so. Figure 4 shows line pressure vs time to vent to that pressure.

Only partial verification of the staging function can be accomplished. Those functions that can be monitored are:

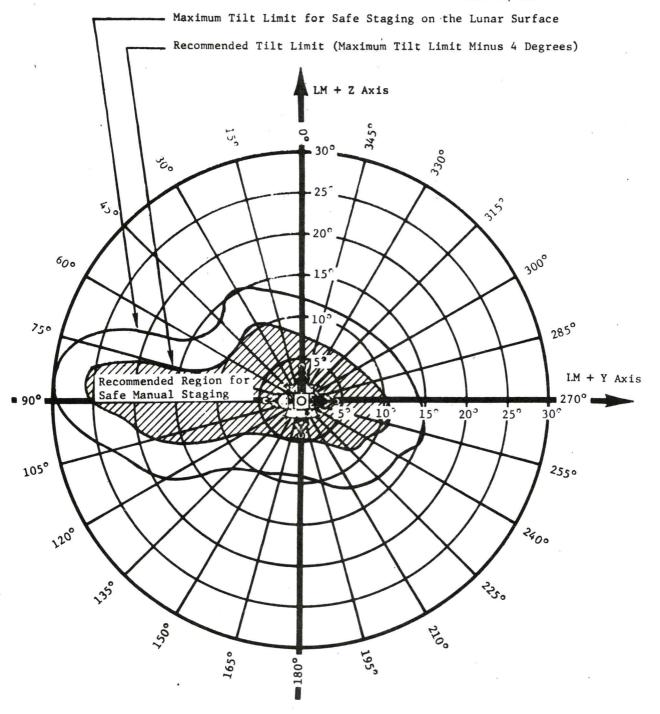

a. ECI operation via the loss of descent parameters

b. Guillotine operation via Descent H₀O pressure decay (measured in the ascent stage)

Another possible cue could be a slight rise in the glycol pump pressure if the vehicle dynamics are such that the glycol interstage quick disconnects are separated and glycol no longer flows to the descent stage.

Verification of incomplete staging after the loss of a pyro system results in using the jumper cable provided for backing up the staging function as well as for an emergency ascent engine on capability. This jumper is configured as shown on the following page.

P-12

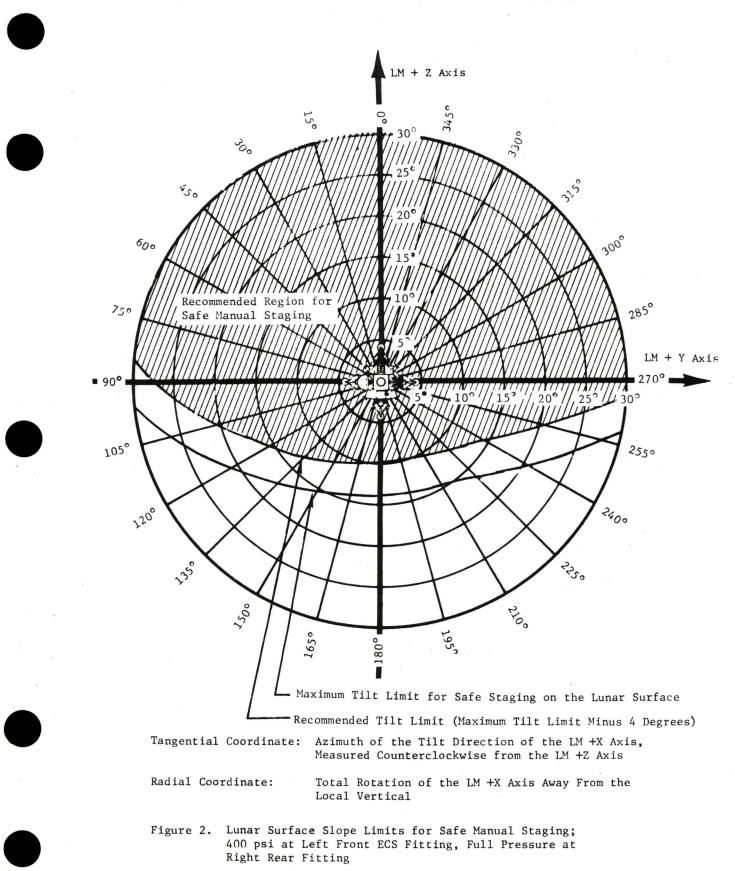

Both parts of the jumper are stowed in the left hand side midsection. For this purpose of backing up an incomplete staging the 20 foot portion of the jumper is used.

The special crew procedure for using this jumper is documented in the AOH, Volume II. In general, the 20 foot cable is connected from the IMP Bus GSE connector in the IM cabin to the GSE connector on top of the Pyro System A relay box in Quad IV of the descent stage (Ref. LSH DWG. 4.1.1).

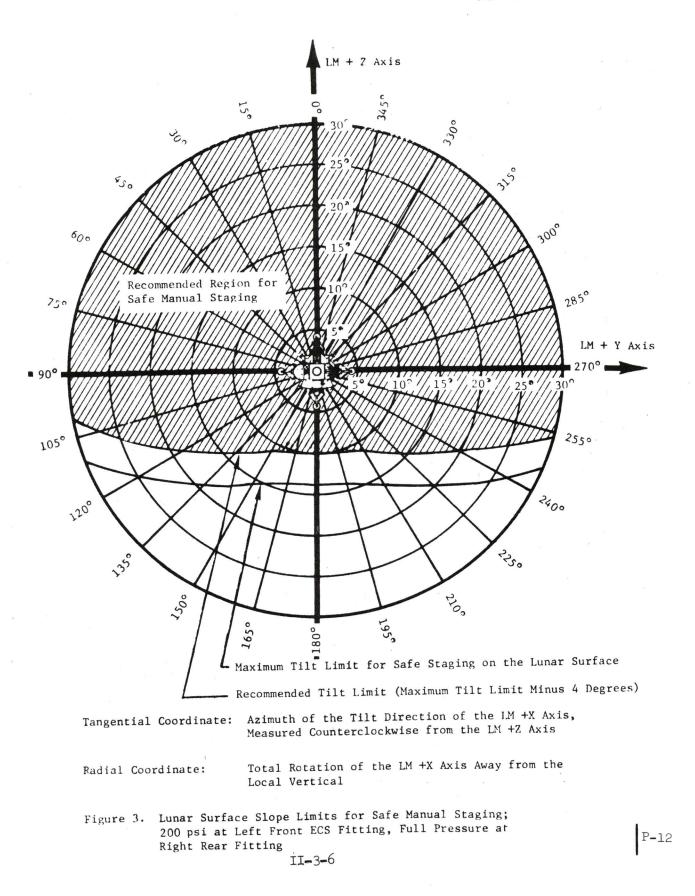
This connection completes an electrical path from the LMP bus to Pyro Bus A, bypassing Pyro Battery A and the system A Master Arm relay. Staging may then be performed using the stage switch. The only failures for which this procedure is ineffective is the inability to close the Logic Power A circuit breaker or a stage switch failure that precludes energizing the System A stage relay. For those failures the staging sequence cannot be initiated by Pyro System A unless the jumper is spliced to each pyro function individually at the relay box.

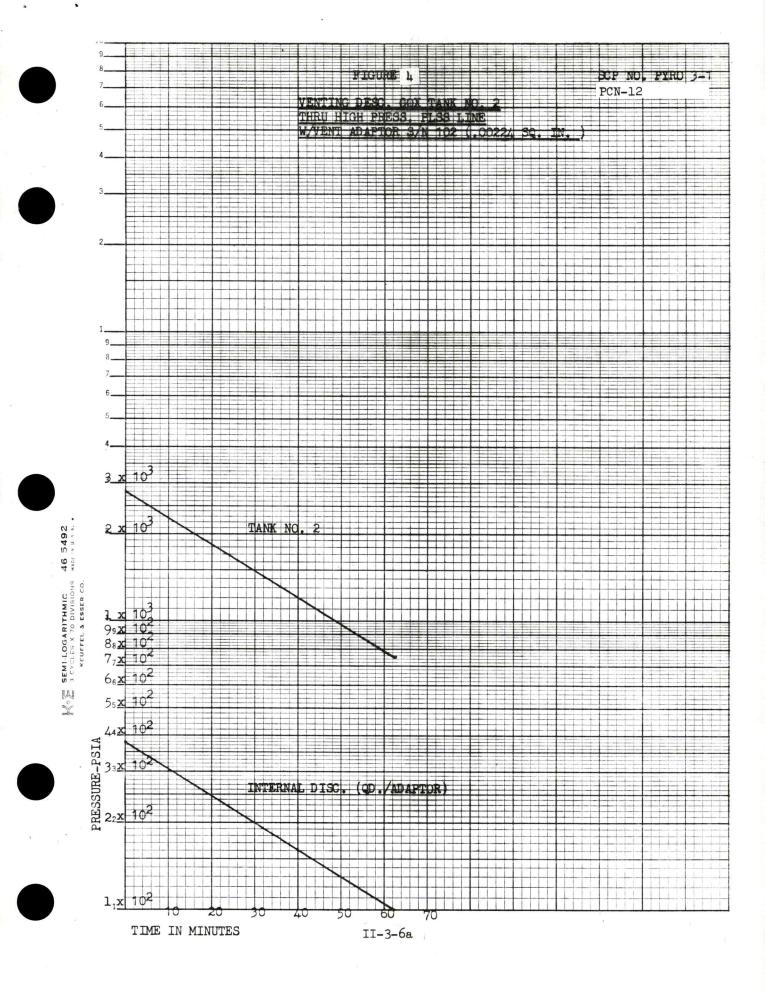
The jumper cable procedure cannot be used with Pyro System B because the System B relay box is inaccessible to the crew.

SCP NO. PYRO 3-1 PCN-10/NEW



Tangential Coordinate: Azimuth of the Tilt Direction of the LM +X Axis, Measured Counterclockwise from the LM +Z Axis


Radial Coordinate: Total Rotation of the LM +X Axis Away from the Local Vertical


Figure 1. Lunar Surface Slope Limits for Safe Manual Staging; Fully Pressurized ECS Lines

SCP NO PYRO 3-1 PCN-12

SCP NO. PYRO 3-1 PCN-12

PYRO 3-2 SCP NO.

TITLE: PYROTECHNIC RELAY TROUBLESHOOTING PROCEDURES

INTRODUCTION: The purpose of this SCP is to clarify troubleshooting procedures pertaining to indications associated with an inadvertent closure of pyrotechnic relays K1 through K6.

BACKGROUND:

The following are basic facts and assumptions which are pertinent to subsequent discussion of actions to be taken in the event a pyro relay failure is indicated.

- A. Each pyro system is 100 percent redundant to the other in the ability to perform all required functions.
- B. Each pyro system has 2 screened latching relays (Kl & K2). Each of these relays can be manually reset.
- C. The remaining relays (K3, K4, K5, K5a, K6) in each system are nonlatching. There is no known failed closed failure mode of nonlatching relays.
- D. In all pyro relays, separate contacts are used for the function and the instrumentation indication.
- E. It is reasonable to assume that contamination within a relay will affect only one relay contact. For pyro relays, then, contamination affecting the instrumentation contacts is physically removed from the functional contacts, and the probability of the contamination bridging both the functional and instrumentation contacts is considered very small.
- F. The functional actuation of each relay except K3 (STAGE SEQ.), K4 (GUILLOTINE), K5 and K5a (NUTS OR BOLTS) is verifiable should it occur inadvertently.
- G. The telemetry and component caution lights are driven by the same signal. The ED RELAYS caution light is also driven by this signal but from a different signal conditioner location.
- H. In general, no troubleshooting action will be taken if the action could result in a NO GO situation that could otherwise have been avoided.
- I. The pyrotechnic systems will always be maintained so as to be able to withstand one more failure without catastrophic consequence.
- J. Instrumentation indications of relay anomalies are insufficient to make a GO/NO GO decision. Anomalies must be confirmed by some action.

OPERATIONS:

- A. Pre-PDI
 - 1. Should telemetry and/or a STAGE SEQ. component caution light indicate inadvertent actuation of a relay without the ED RELAYS caution light, the following will be performed:
 - (a) LAMP/TONE TEST SW C/W 4 to verify ED RELAYS light bulb (also check CMPNT position if TM indication only to check comp light bulb).
 - (b) Verify: CB ED: LOGIC PWR ____ - Closed
 - MASTER ARM Off
 - (c) STAGE RELAY Reset
 - (d) Attempt a pyro function, if feasible, with the MASTER ARM SW Off

The symptoms are indicative of an instrumentation problem (II-G), and steps (c) and (d) check for double failures only. The consequence of this failure is that the disarmed status of the applicable system will be functionally verified after the first time it is used to verify proper system operation. If the system were to remain armed, the mission would be NO GO.

- 2. If all applicable indications, i.e. the telemetry, the caution light, and the component light, show inadvertent acutation of a pyro relay, perform the following:
 - (a) Verify: CB ED: LOGIC PWR ____ Closed
 - MASTER ARM Off
 - (b) STAGE RELAY Reset

- (c) Attempt a pyro function
- (d) Ascent Bats 5 & 6 On Don helmets and gloves MASTER ARM - On

SCP NO. PYRO 3-2 PCN-II/NEW

The symptoms indicate that at least the instrumentation contacts on a relay have been closed. Step (c) above tests the functional contacts of K1. If closed, PDI is NO GO as documented in the mission rules. Step (d) tests the functional contacts of K2 & K6. If either is closed, the staging function or the ECI function will occur and PDI is impossible. This test is justified by the fact that if the functional contacts on either relay are closed, PDI is NO GO anyway. If the above procedure produces no function, then a problem with the instrumentation contacts of one of the pyro relays is assumed. This assumption is made in spite of the fact that the functional contacts K3, K4, K5 and K5a have not been verified, but this action is justified in view of the facts listed in paragraphs II-C, II-D, and II-E.

Again, the consequences of an instrumentation failure require verification of system disarming after the first time the system is used.

B. During Powered Descent

- 1. Same as III.A.1
- 2. With all three indications of a pyro relay closure:
 - (a) Verify: CB ED: LOGIC PWR ____ Closed
 - MASTER ARM Off
 - (b) STAGE RELAY Reset
 - (c) Attempt a pyro function with the MASTER ARM SW Off
 - (d) CB ED: LOGIC PWR ____ Open

This procedure manually resets the two K2 latching relays and tests the functional contacts of K1. For this mission phase, a test of the functional contacts of K2 - K6 (except for K3, K4, K5, & K5a - see II-F) is unacceptable because, if actually closed, the vehicle could stage without an ascent engine "ON" signal or descent engine control could be lost. Therefore, these functions cannot be tested. This situation is acceptable because the manual reset of the latching relays has been exercised, and the probability of functional contacts actually being closed is considered very small (Ref II-C, II-D, II-E).

Because of step (d), if abort staging is required for any reason, the additional step of closing this CB must be performed prior to the abort staging sequence.

After touchdown, DPS venting should be performed with the logic power CB in the questionable system open.

1. LM within safe manual staging constraints (Ref SCP PYRO 3-1)

If the LM is within the landing attitude/descent oxygen tank pressure constraints that permit a safe manual (or inadvertent) staging, no troubleshooting is required and the mission will be continued. For this case inadvertent staging is the acceptable consequence of the next worst case failure.

2. LM not within safe manual staging constraints (Ref SCP PYRO 3-1)

Troubleshooting should be performed as in III.A.l or III.B.2 depending on the symptom. If Kl or K2 is confirmed closed and descent oxygen tank 2 can be vented to put the LM within the safe staging constraints, then the venting should be performed and the mission continued. With Kl or K2 closed and no possibility of getting within the safe staging constraints, lunar liftoff must be performed at the next best opportunity since the next worst case failure would be a catastrophic inadvertent staging

11-3-8

C. Lunar Stay

SCP NO. PYRO 3-2 PCN-II/NEW

Note that no detectable pyro system failure will be cause for EVA termination. Even if the LM is not within the safe staging constraints, the probability of a second failure staging the vehicle before the EVA is terminated is considered acceptably small.

×

SCP NO. COMM 4-1

This SCP is deleted by PCN-3

II-4-1 through II-4-4

SCP NO. INST 5-1

S/C: IM DATE: 4/14/69 REV: Original ORIGINATOR: D. Whittle APPROVAL: Denald H. Kudder

TITLE:

PURPOSE:

PCMTEA CAL VOLTAGE SHIFT

The purpose of this SCP is to define the procedure to be followed if the PCMTEA calibration parameters GL0401V and GL0402V demonstrate a linear shift on the telemetry downlink.

Normal operating limits for subject parameters are:

GL0401V	CAL 85 PCT	4.25(±one PCM cnt = .02 volts)
GL0402V	CAL 15 PCT	$0.75(\pm \text{one PCM cnt} = .02 \text{ volts})$

PROCEDURE:

Should the above parameters degrade beyond the given limits, the following action is recommended.A. Choose a random sampling of analog parameters and ascertain if they are reading the expected normal for the particular phase of the mission the problem occurs. Suggested parameters would be:

GC0071 AC BUS VOLT GC0155 AC BUS FREQ GF4101 PRI H20 AP GF2021 GLY PUMP P GF3582 ASC 1 02 PRESS GF3583 ASC 2 02 PRESS GH1311 MAN THRUST CMD GP0001 APS HE 1 PRESS GP0002 APS HE 2 PRESS GP0025 APS HE REG PRESS GP1501 APS FUEL PRESS GP1503 APS OX PRESS DPS HE REG PRESS GQ3018 GQ3603 DPS FUEL 1 QTY GQ3604 DPS FUEL 2 QTY GQ4103 DPS OX 1 QTY 604104 DPS OX 2 QTY GR1085 RCS PROP A QTY GR1095 RCS PROP B QTY

- B. If the suggested parameters are reading normal, then there is a possibility that the calibrator reference power has deviated. The reference power is regulated via a zener diode within the calibrator box. A simple voltage divider provides the calibrator outputs. Therefore, <u>no</u> action is required to bias all analog parameters.
- C. If the suggested parameters are not reading normal, then there is a very definite possibility that the coder has degraded. Two possibilities exist here. One is that reference current for the entire eight summing resistors has deviated. The action in this case would be to bias all analog parameters the appropriate plus or minus percent deviation from the expected normal. This bias will, of necessity, be a "best guess" and should be tied to the calibrator voltage output percent deviation. The second type of failure would be a summing resistor in the decoding lattice to open or shift value. In this case all analog parameters would be biased but by varying percentages depending upon the analog level being encoded. In this case, it would be impossible to determine the failure mode and the respective amount of shift in other analog measurements. The analog portion of the PCMTEA would be considered failed.

II-5-1

SCP NO. INST 5-2

an.

This SCP is deleted by PCN-3

SCP NO. ECS 6-1

S/C
DATE
REV
RIGINATOR
ADDDOUAT

0

11-1-71 PCN-11

J. Knight

P-11

TITLE: H20/02 RATE CALCULATIONS

PURPOSE:

This SCP defines the time and method used for ${\rm H_20}$ and rate calculations.

- PROCEDURE: A. Time H20 and 02 calculations will be hand calculated:
 - 1. Anytime the ECS is initially turned ON
 - 2. Before and after any engine burn

NOTE

Consumables predictions should be calculated in advance of engine burns and transferred to SSR PROP position for c.g. and burn time calculations.

- 3. Following staging
- 4. Following Demand Reg checks to determine amount required
- 5. Following PLSS fills to determine amount required
- 6. Following PGA integrity checks to determine the amount required
- 7. Following cabin repressurization

NOTE

Observations should be taken exactly on the PCM count change for maximum accuracy of rate computations. Consumables Sheet should be updated at least once every 30 minutes. If use rates are larger than expected, observation/notation rate shall be increased accordingly.

B. H₂O Rate Method

- t₁ = Time Base Reference in minutes
- t_2 = Time at which period ends in minutes

 $Q_1 = Quantity in lbs at T_1$

 Q_2 = Quantity in lbs at T_2

1.
$$\frac{Q_1 - Q_2}{t_2 - t_1} = \frac{1 \text{bs}}{\text{min}}$$
2.
$$\frac{1 \text{bs}}{\text{min}} (60) = \frac{1 \text{bs}}{\text{hr}}$$

C. 02 Rate Method

t₁ = Time Base Reference in minutes

t₂ = Time at which period ends in minutes

 $P_1 = Pressure in psia at t_1$

 P_2 = Pressure in psia at t_2

 $W_1 = Quantity in lbs at t_1$

 W_2 = Quantity in lbs at t_2

 $V_1 = 2.985 \text{ ft}^3 \text{ for descent tank}$

 $V_2 = 0.495$ ft³ for ascent tank $D_2 = 10.495$ ft³ for ascent tank

$$R = 1544 \frac{10 - 10}{\circ R} Mole$$

M = 32 lb/Mole

TR (°R) = Temperature °F + 460* $\dot{W} = O_2$ lbs/hr 1.

1. For Descent
$$O_2$$

a. $K = \frac{M}{R} V_1 = 8.9 \text{ in}^2 - {}^{\circ}R$
b. $W_1 = \frac{P_1}{T_R} K = 1\text{bs}$
c. $W_2 = \frac{P_2}{T_R} K = 1\text{bs}$
d. $\frac{W_1 - W_2}{t_2 - t_1} 60 = 1\text{bs/hr}$
2. For Ascent O_2

a.
$$K = \frac{M}{R} V_2 = 1.48 \text{ in}^2 - {}^{\circ}R$$

. b. Then proceed as steps b, c, and d above

*1. °F for pad operations = 70°.
2. °F for flight operations = 68°.
3. During cabin repress, the 0 tank temperature will decrease to approximately 48°F and requires 2 to 3 hours to return to normal.

This SCP deleted by PCN-8

SCP NO. ECS 6-3

S/C: LM DATE: 3/27/69 REV: Original ORIGINATOR: Smith APPROVAL: Small Alfuddy

TITLE: 02 QUANTITY CALCULATIONS

PURPOSE: This SCP describes the method for determining 02 quantities in pounds from telemetered pressure and temperature.

PROCEDURE: A. General - The mass of a body of gas can be determined by using the modified gas law formula

 $M = \frac{KP}{T_R Z}$

where M = mass to be determined in pounds

K = 8.91 for descent tank

- = 1.48 for a single ascent tank
- P = Pressure in psia (GF3584P, GF3583P, GF3582P)
- $T_{R} = (70 + 460)$
- Z = Compressibility Factor obtained from Table 1 or from a chart of generalized
- compressibility factors. Z is inserted into the RTCC as a MED.

B. The LM ECS Engineer will insert the compressibility factor from TABLE 1 into the RTCC as

required. The factor for $70^{\circ}F$ is considered adequate for the expected range of temperatures.

TABLE 1 - 0, QUANTITY CALCULATION INPUTS

PRESSURE (PSIA)	QUANTI at 60°F	TY (POUND at 70°F	s) at 80°F	COMPRESSIBILITY (Z) at 70°F
2900	53.92	52.44	51.47	0.930
2700		48.83		0.930
2500	46.48	45.16	43.85	0.931
2300		41.42		0.934
2100	38.75	37.73	36.64	0.936
1900		33.99		0.940
1700	31.00	30.22	29.38	0.946
1500		26.44		0.954
1300	23.39	22.77	22.24	0.960
1100		19.15		0.966
900	15.94	15.57	15.21	0.972
700		12.00		0.981
500	8.66	8.49	8.33	0.990
300		5.05		0.998
100	1.71	1.68	1.65	1.00

DESCENT TANK

ASCENT TANK

PRESSURE (PSIA)	QUANTI at 60°F	TY (POUND at 70°F	at 80°F	COMPRESSIBILITY (Z) at 70°F
900	2.64	2.58	2.52	0.972
700		1.99		0.981
500	1.44	1.41	1.38	0.990
300		0.84		0.990
100	0.28	0.28	0.27	1.00

S/C		LM
DATE	:	11/1/70
REV	:	PCN-6/NEW
ORIGINATOR	:	Jack Knight
APPROVAL	:	2.2. Marill

ECS 6-4 SCP NO.

SUBLIMATED H20 RATE CALCULATION

1. Subsequent to the LM-3 mission, the WQMD's in the LM water system began to experience accuracy problems and a method was sought to circumvent the loss of one of them.

2. A possible method is to measure the change in temperature across the coolant sublimator. This method makes use of the EPS bus voltage, glycol pump ΔP , and the estimated glycol bulk temperature to determine the glycol flow rate (m) which, when multiplied by the specific heat of glycol (C_p) and the change in temperature $(\bigtriangleup T),$ produces the quantity of heat (Q) removed from the glycol:

$Q = \mathbf{m} C_p \Delta T$

Now, in a sublimator, about 1040 BTU are removed by 1 pound of H₂0. Therefore, the water usage rate (WR) is:

$$WR = \frac{Q}{1040} = \frac{m}{100} \frac{C_{P} \Delta T}{100}$$

3. An equation of this form with an additive constant has been loaded in the AS-509 RTCC program:

Where

 $WR = \hat{m} K \Delta T + C$ \mathbf{m} = MED, glycol flow rate (~290 LB/HR) K = Constant = $\frac{CP}{1040} = \frac{0.86}{1040} = 0.0008269$ C = MED, Constant

These MED constants will be modified and entered, as required, by the ECS SSR engineer. This latter constant, C, is initialized at zero; but may be used if one of the two temperatures (GF2531T, W/B inlet, and GF2581T, W/B outlet T) used to determine $\triangle T$ (= GF2531-GF2581) is in error. For example, if during the prelaunch count, one parameter indicates a temperature different from the other, then C should be chosen to be equal to, but opposite in sign from, the product of $\stackrel{\circ}{m} \frac{Cp\Delta T}{1040}$ where ΔT is the static loop ΔT during

this period.

Additionally, since the basic equation gives only the H_2^{0} boiled, C may be further modified through use of the SODB information to account for the estimated water lost due to crew metabolic use (urine loss, etc.).

Suppose, for example, GF2531T and GF2581T are reading 75°F and 73.5°F respectively during prelaunch and we assume a metabolic load of 500 BTU/HR for the period under consideration. C, then, will be made up of two factors:

Therefore, $C = C_1 + C_2 = -0.225 \text{ LB/HR}$

PLSS refills and water lost during EVA's must be accounted for by modifying the MED for water loaded (See paragraph 5 below) by the amount of PLSS refill and the product of 0.76 and the number of hours for the EVA.

4. The RTCC then, in effect, integrates this rate over time and displays the quantity of water comsumed:

$$WC = \sum WR \cdot t$$

The computation operates any time live data is present, however, a PBI is provided to set WC to zero upon depression.

5. Finally, the RTCC performs a simple subtraction to display the water remaining:

 $W_{\text{REM}} = W_{\text{L}} - WC$

Where W_L is an MED and is equivalent to the amount of water loaded in the tank (s) under consideration .

SCP NO. ECS 6-5

CONVERSION OF LM: WATER TANK PRESSURE TO QUANTITY

SPACECRAFT: L DATE : 1 REVISION : F ORIGINATOR: J Approval :

LM 11-1-71 PCN-11 Jack Knight 12 tour

- 1. On LM-10 and subsequent, the water tank WQMD's will be replaced with pressure transducers to measure the N_2 gas pressure in the tank. These transducers have a range of 0 60 PSIA. Additionally, there is a 0 25 PSIA transducer in the H_2 0 line.
- 2. This means that the RTCC will act as the WQMD and has been programmed as such. This program is based on the following equation derivation:

- $T_{G} = T_{emperature of gas}, {}^{\circ}R$ k = Constant (= $\frac{28(144)}{1546}$ = 2.608)
- $W_W = Weight of H_2^{0}$, lbs.
- A = Ratio of water volume to tank volume = $\frac{V_W}{V_T}$

The basis for these derivations is that the volume of water is equal to the difference between the volume of the tank and the volume of the gas.

$$V_{w} = V_{T} - V_{G} \qquad (1)$$
where $V_{G} = \frac{Q_{G} T_{G}}{P_{k}}$ and $Q_{G} = \frac{P_{I} V_{GI} k}{T_{GI}}$
therefore, assuming $T_{G} = T_{GI} = \text{constant}$,
$$V_{G} = \frac{P_{I} V_{GI}}{P} \qquad (2)$$
and $V_{w} = V_{T} - \frac{P_{I} V_{GI}}{P} \qquad (2)$
and $V_{w} = V_{T} - \frac{P_{I} V_{GI}}{P} \qquad (3)$
dividing by the volume of water loaded:
$$W_{Z} = \frac{1}{A} - (\frac{1}{A} - 1) \frac{P_{T}}{P} \qquad (4)$$
multiplying equation (3) by 62.32:
$$W_{W} = 62.32 V_{T} - \frac{62.32 P_{I} V_{GI}}{P} \qquad (5)$$
The equation of the form $W_{W} = C_{I} - \frac{C_{2}}{P}$, is loaded into the RTCC with C_{I} and C_{2} as MED's.
$$C_{I} = 62.32 V_{T} \text{ where } V_{T} = 7.13 \text{ for the descent tank and 0.910 for the ascent tanks}$$

$$= 444.34 \text{ descent}$$

$$= 56.71 \text{ ascent}$$

$$C_{2} = 62.32 (P_{I} V_{GI}) \text{ where } P_{I} = \text{ initial pressure prior to use}, V_{GI} = (1 - A) V_{T}$$
The above analysis is based on a constant temperature; the same as at launch. Although the tanks are not

P-11

P-11

П-6-6

P-11

insulated, there is a large mass of H_2^0 which tends to maintain the temperature within 5 or 10 R⁰ of the predicted and the error involved in assuming constant temperature will be discussed below.

At any instant of time, the error in water volume due to pressure error is:

$$d\mathbf{V}_{\mathbf{W}_{\mathrm{T}}} = \frac{P_{\mathrm{I}}}{P} \frac{dP}{P} \mathbf{V}_{\mathrm{GI}}$$
(6)

Similarly, the error in water volume due to temperature error is:

Applying an RSS technique:

The above represents the error equation (in terms of water volume vs gas pressure) applicable to a single tank or to the total water when using the 0 - 25 psia transducers. If both tanks are treated using their 0 - 60 psia transducers these must be RSS'd together.

$$dV_{wT} = \sqrt{(dV_{w1})^2 + (dV_{w2})^2}$$
(9)

From the above equations the water volume error clearly varies with the gas volume, i.e., the larger the gas volume, the lower the gas pressure and the larger the absolute error. As the gas eventually is to fill the entire tank, the worst case error is at the bottom of the tank. The most convenient format for this error is to graph the above equation (equation 8) after expressing it in percent error vs percent remaining.

Dividing equation (8) by V_{W} and substituting $P = \frac{(\frac{1}{A} - 1)}{(\frac{1}{A} - W_{g})} P_{I}$ from equation (4):

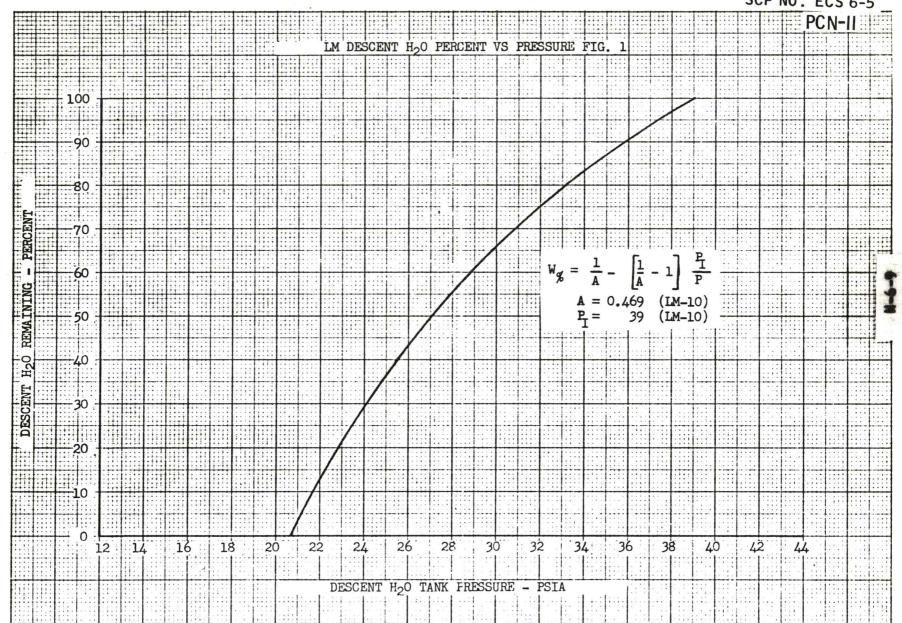
$$\Delta W_{g} = \frac{dV_{w}}{V_{w}} = \frac{V_{GI}}{V_{w}} \left(\frac{\frac{1}{A} - W_{g}}{\frac{1}{A} - 1}\right) \sqrt{\left(\frac{dP_{P_{I}}}{\frac{1}{A} - 1}\right)^{2} \left(\frac{1}{A} - W_{g}\right)^{2}} + \left(\frac{dT}{T}\right)^{2}$$

and since $\frac{V_{GI}}{V_{W}} = \frac{1}{A} - 1$; we obtain the equation on Figure 3. (The curves in Figure 3 are illustrative

only and indicate the consequences of a 2 percent of full scale pressure error and a 5°R temperature error.)

3. Now, should it become apparent that the temperature has in fact decayed, C₂ may be modified to account for this change. This modification may be accomplished simply by multiplying C₂ by the ratio of the present estimated temperature of the gas and the original temperature of the gas expressed in ^oR, i.e., T_G

4. The RTCC will also calculate the percentage of $H_{2}O$ remaining relative to the initial loading.

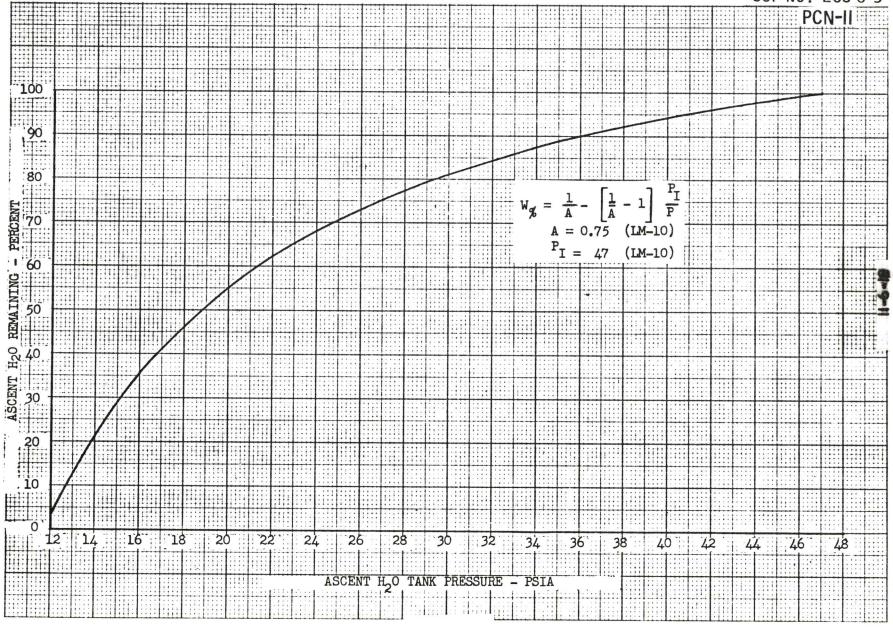

 $W_{gg} = \frac{W_{W}}{W_{L}}$ where $W_{gg} = \text{percent H}_{2}0$ remaining $W_{L} = \text{amount of H}_{2}0$ loaded (MED)

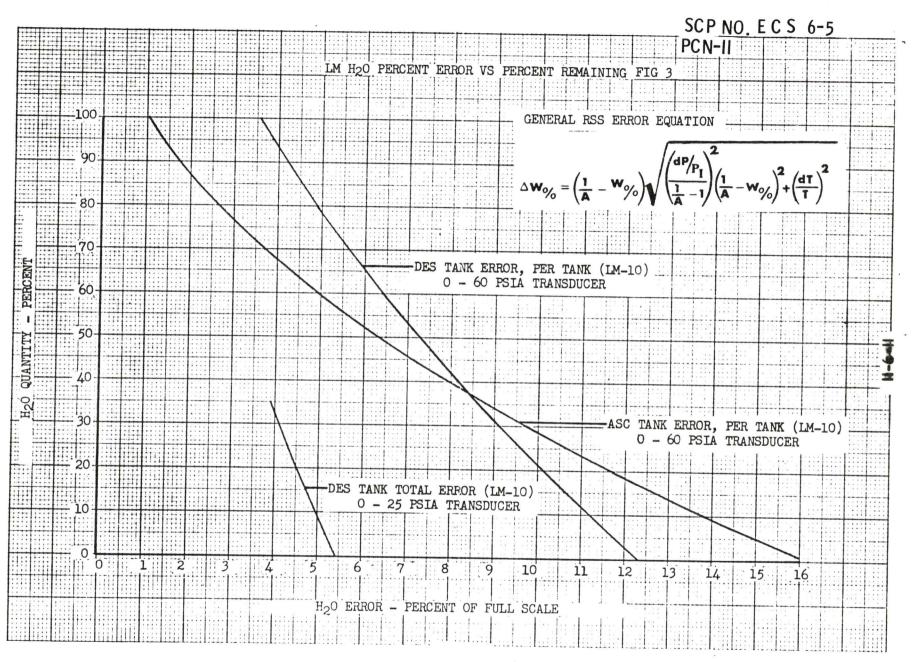
П-6-7

SCP NO. ECS 6-5 PCN-II

5. The onboard meter responds to a 0 - 5 volt input from the pressure transducers. This now corresponds to 0 - 60 psia but since the N₂ pressure in the H₂0 tanks should not exceed 48 psia nor fall below 12 psia for an "A" ratio of 0.75 or 24 psi for an "A" ratio of 0.47, the corresponding maximum and minimum readings will be approximately 80% and,20% or 40%. Since the meter readout is linear with respect to pressure (see Figures 1 and 2), a special decal is constructed for overlay on the meter in the LM.

P-11




SCP NO. ECS 6-5

LM ASCENT H_2^{O} PERCENT VS PRESSURE - FIG. 2

-

)

SCP NO. PGNS 7-1 ORIGINATOR: J. Nelson APPROVAL: Hand a. Sole IRIG BIAS SHIFT DETERMINATION TITLE: PURPOSE: The purpose of this SCP is to describe the Manual Irig Bias Shift Determination method using the SSR irig bias measurement log to record the data. PROCEDURE: See SB PGNS 7-2 IRIG Bias Drift for a brief description of gyro drift. The use of the SSR Irig Bias Measurement Log (see page II-7-4) is described below: COLUMN DESCRIPTION 1.....Contains the time (GET) of the second P-52 if the REFSMMAT option is selected by the astronaut. 2.....Contains the time (GET) of the first P51 or P52. 4, 5, & 6.....Gyro torquing commands of the second alignment in R55: FL V06N93 R1 = X GYRO (OGC) XX.XXX Deg R2 = Y GYRO (IGC) XX.XXX Deg R3 = Z GYRO (MGC) XX.XXX Deg "PROCEED" enables torquing. OGC, IGC, MGC will count down to zero. These commands can be voiced down by the astronauts, copied from a DSKY display, or taken from any display which contains LGC downlink words 65, 66, and 67 (OGC, IGC, MGC). If site coverage is available during fine align, a good procedure is to update the LGC Summaries (1200 series) before gyro torquing begins. OGC, IGC, and MGC appear in COAST/ALIGN and LUNAR SURF ALIGN downlinks only. 7.....Remarks (How torquing commands obtained) 8 thru 13.....Bias shift calculated from torquing commands (DEG) divided by delta time (HRS). Also DEG/HR converted to MERU. (DEG/HR / .015 = MERU) 14 thru 19.....If the bias shift exceeds mission rule values, new bias compensation values are calculated according to the following equations: NBDX_{New} = NBDX_{Old} -X bias shift NBDY_{New} = NBDY_{Old} -Y bias shift NBDZ_{New} = NBDZ_{Old} +Z bias shift To convert the new NBD values to octal see attached OCTAL vs DRIFT conversion charts. Note that Table I is for positive NBD values and Table II is for negative values. If an update is to be made, an IRIG/PIPA BIAS UPDATE REQUEST must be filled out and sent to GUIDO. (See page II-7-5). 20.....Time (GET) that new NBD terms were inserted into the LGC.

P-11

S/C: LM DATE: 11/1/71

PCN-11

DATE: REV:

TABLE I

OCTAL UPDATE VS. GYRO DRIFT (POSITIVE)

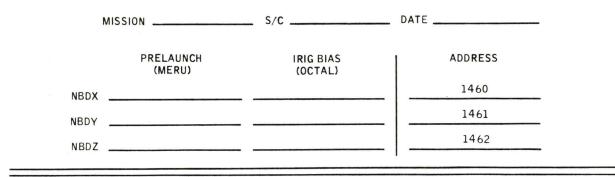
For octal update of NBDX, Y, Z, (address 1460, 1461, 1462). NBD is scaled B-5 pulses per centisecond. One pulse = .61798 arc seconds.

MER	U	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7 .	0.8	0.9
	(DEG/HR) X 10-3)	000	. 1.5	3.0	4.5	6.0					
00.	000	00000	00015	00031	00046	00063	7.5 00100	9.0 00114	10.5	12.0 00146	13.5
01.	15	00177	00214	00231	00245	00262	00100	00314	00131 00330	00146	00163
02.	30	00377	00413	00430	00245	00262	00211	00513	00330	00345	00362
03.	45	00576	00613	00430	00644	00401	00470	00712	00330	00544	00561 00760
04.	60	00775	01012	01026	01043	01060	01075	01111	01126	01143	01160
							10-10				
05.	75	01174	01211	01226	01242	01257	01274	01311	01325	01342	01357
	90 105	01374	01410	01425	01442	01456	01473	01510	01525	01541	01556
07.	105	01573	01610	01624	01641	01656	01672	01707	01724	01741	01755
00.		01772	02007	02024	02040	02055	02072	02106	02123	02140	02155
	135	02171	02206	02223	02240	02254	02271	02306	02322	02337	02354
10.	150	02371	02405	02422	02437	02453	02470	02505	02522	02536	02553
11.	165	02570	02605	02621	02636	02653	02667	02704	02721	02736	02752
12.	180	02767	03004	03021	03035	03052	03067	03103	03120	03135	03152
13.	195	03166	03203	03220	03235	03251	03266	03303	03317	03334	03351
14.	210	03366	03402	03417	03434	03451	03465	03502	03517	03533	03550
15.	225	03565	03602	03616	03633	03650	03665	03701	03716	03733	03747
16.	240	03764	04001	04016	04032	04047	04064	04100	04115	04132	04147
17.	255	04163	04200	04215	04232	04246	04263	04300	04314	04331	04346
18.	270	04363	04377	04414	04431	04446	04462	04477	04514	04530	04545
19.	285	04562	04577	04613	04630	04645	04662	04676	04713	04730	04744
20.	300	04761	04776	05013	05027	05044	05061	05076	05112	05127	05144
21.	315	05160	05175	05212	05227	05243	05260	05275	05312	05326	05343
22.	330	05360	05374	05411	05426	05443	05457	05474	05511	05525	05542
23.	345	05557	05574	04610	05625	05642	05657	05673	05710	05725	05741
24.	360	05756	05773	06010	06024	06041	06056	06073	06107	06124	06141
05	075										
25.	375	06155	06172	06207	06224	06240	06255	06272	06307	06323	06340
26.	390 405	06355	06371	06406	06423	06440	06454	06471	06506	06523	06537
27.		06554	06571	06605	06622	06637	06654	06670	06705	06722	06737
20.	420 435	06753	06770	07005	07021	07036	07053	07070	07104	07121	07136
		07152	07167	07204	07221	07235	07252	07267	07304	07320	07335
30.	450	07352	07366	07403	07420	07435	07451	07466	07503	07520	07534
31.	465	07551	07566	07602	07617	07634	07651	07665	07702	07717	07734
32.	480	07750	07765	10002	10016	10033	10050	10065	10101	10116	10133
33.	495	10150	10164	10201	10216	10232	10247	10264	10301	10315	10332
34.	510	10347	10364	10400	10415	10432	10446	10463	10500	10515	10531
35.	525	10546	10563	10577	10614	10631	10646	10662	10677	10714	10731
36.	540	10745	10762	10777	11013	11030	11045	11062	11076	11113	11130
37.	555	11145	11161	11176	11213	11227	11244	11261	11276	11312	11327
38.	570	11344	11361	11375	11412	11427	11443	11460	11475	11512	11526
39.	585	11543	11560	11575	11611	11626	11643	11657	11674	11711	11726
40.	600	11742	11757	11774	12011	12025	12042	12057	12073	12110	12125
41.	615	12142	12156	12173	12210	12224	12241	12256	12273	12307	12324
42.	630	12341	12356	12372	12407	12424	12440	12455	12472	12507	12523
43.	645	12540	12555	12572	12606	12623	12640	12654	12671	12706	12723
44.	660	12737	12754	12771	13006	13022	13037	13054	13070	13105	13122

II-7-2

TABLE II

•


×

OCTAL UPDATE VS. GYRO DRIFT (NEGATIVE)

For octal update of NBDX, Y, Z (address 1460, 1461, 1462). NBD is scaled B-5 pulses per centisecond. One pulse = .61798 arc seconds.

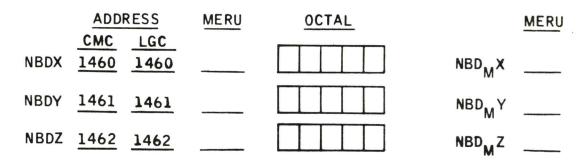
MERU		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	$\begin{pmatrix} DEG/HR \\ X 10-3 \end{pmatrix}$	000	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	13.5
-00.	-000	00000	77762	77746	77731	77714	77677	77663	77646	77631	77614
-01.	-15	77600	77563	77546	77532	77515	77500	77463	77447	77432	77415
-02.	-30	77400	77364	77347	77332	77316	77301	77264	77247	77233	77216
-03.	-45	77201	77164	77150	77133	77116	77102	77065	77050	77033	77017
-04.	-60	77002	76765	76751	76734	76717	76702	76666	76651	76634	76617
0.5	75				76525	76520	76503	76466	76452	76435	76420
-05.	-75 -90	76603 76403	76566 76367	76551 76352	76535 76335	76321	76304	76261	76252	76236	76221
-06.		76403	224, 22	N	76136	76121	76105	76070	76053	76036	76022
-07.	-105 -120	76204	76167 75770	76153 75 7 53	75737	75722	75705	75671	75654	75637	75622
			100000 00000 Di	200-0 1010-0.00		75523	75506	75471	75455	75440	75423
-09.	-135	75606	75571	75554	75537			A			
-10.	-150	75406	75372	75355	75340	75324	75307	75272	75255	75241	75224
-11.	_165	75207	75172	75156	75141	75124	75110	75073	75056	75041	75025
-12.	_180	75010	74773	74756	74742	74725	74710	74674	74657	74642	74625
-13.	- 195	74611	74574	74557	74542	74526	74511	74474	74460	74443	74426
-14.	-210	74411	74375	74360	74343	74326	74312	74275	74260	74244	74227
-15.	-225	74212	74175	74161	74144	74127	74112	74076	74061	74044	74030
-16.	_240	74013	73776	73761	73745	73730	73713	73677	73662	73645	73630
-17.	_255	73614	73577	73562	73545	73531	73514	73477	73463	73446	73431
-18.	-270	73414	73400	73363	73346	73331	73315	73300	73263	73247	73232
-19.	- 285	73215	73200	73164	73147	73132	73115	73101	73064	73047	73033
-20.	- 300	73016	73001	72764	72750	72733	72716	72701	72665	72650	72633
-21.	- 315	72617	72602	72565	72550	72534	72517	72502	72465	72451	72434
-22.	- 330	72417	72403	72366	72351	72334	72320	72303	72266	72252	72235
-23.	- 345	72220	72203	72167	72152	72135	72120	72104	72067	72052	72036
-24.	- 360	72021	72004	71767	71753	71736	71721	71704	71670	71653	71636
-25.	- 375	71622	71605	71570	71553	71537	71522	71505	71470	71454	71.437
-26.	- 390	71422	71406	71371	71354	71337	71323	71306	71271	71254	71240
-27.	- 405	71223	71206	71172	71155	71140	71123	71107	71072	71055	71040
-28.	- 420	71024	71007	70772	70756	70741	70724	70707	70673	70656	70641
-29.	- 435	70625	70610	70573	70556	70542	70525	70510	70473	70457	70442
-30.	- 450	70425	70411	70374	70357	70342	70326	70311	70274	70257	70243
-31.	- 465	70226	70211	70175	70160	70143	70126	70112	70075	70060	70043
-32.	- 480	70027	70012	67775	67761	67744	67727	67712	67676	67661	67644
-33.	- 495	67627	67613	67576	67561	67545	67530	67513	67476	67462	67445
-34.	- 510	67430	67413	67377	67362	67345	67331	67314	67277	67262	67246
-35.	- 525	67231	67214	67200	67163	67146	67131	67115	67100	67063	67046
-36.	- 540	67032	67015	67000	66764	66747	66732	66715	66701	66664	66647
-37.	- 555	66632	66616	66601	66564	66550	66533	66516	66501	66465	66450
-38.	- 570	66433	66416	66402	66365	6 63 50	66334	66317	77302	66265	66251
-39.	- 585	66234	66217	66202	66166	66151	66134	66120	66103	66066	66051
-40.	- 600	66035	66020	66003	65766	65752	65735	65720	65704	65667	65652
-41.	- 615	65635	65621	65604	65567	65553	65536	65521	65504	65470	65453
-42.	- 630	65436	65421	65405	65370	6535 3	65337	65322	65305	65270	65254
-43.	- 645	65237	65222	65205	65171	65154	65137	65123	65106	65071	65054
- ¹ + ¹ +•	- 660	65040	65023	65006	64771	64755	64740	64723	64707	64672	64655

.

SSR IRIG BIAS MEASUREMENT LOG

BIAS SHIFT DETERMINATION

ſ	GET	GET	ΔT	GYF	RO TORQUING C	MDS	REMARKS
	2ND P-52	1ST P51/52	(HRS)	X GYRO (OGC) (DEG)	Y GYRO (IGC) (DEG)	Z GYRO (MGC) (DEG)	ILMARKS
1	-						
2			la -				
3							
4		-					
5		Ψ.					
6							


			BIAS CO	MPENSATION UPDATE	
BIAS SHIFT	DEG .	NDDY V	-NRDY V	-OCC ICC NBDZ	-NRD7

	DIA	5 5111 1	H	$\frac{\alpha}{R} \div .01$	5 - MI	ERU	NBDX,	^Y NEW ^{≕N}	BDX, YO	LD -OGC	, IGC; NI	BDZNEW	= NBDZOLD +MGC
		GYRO GC)		GC)		GC)	NB	D X	NB	DY	NBDZ		GET
	DEG HR	MERU	DEG HR	MERU	$\frac{\text{DEG}}{\text{HR}}$	MERU	MERU	OCTAL	MERU	OCTAL	MERU	OCTAL	UPDATED
1													
2													
3													
4													
5													
6													

IRIG/PIPA BIAS UPDATE REQUEST

то:	GUIDO	CET			
INFO:	LGC/CMC SUPPORT	GET	:	:	
FROM:	CONTROL/GNC	CONTROL/GNC			

IRIG DRIFT COMPENSATION

PIPA BIAS

	PULSES/SEC	OCTAL		PUL/SEC
CMC LGC PBIASX 1452 1452			ΔΡΒΙΑSΧ	
PBIASY 1454 1454			ΔΡΒΙΑΣΥ	
PBIASZ 1456 1456			ΔPBIASZ	

NBDX (Y,Z) = REQUIRED COMPENSATIONNBD_MX (Y,Z) = MEASURED DRIFT OF IRIG'S WITH PRESENT COMPENSATIONPBIASX (Y,Z) = NEW PIPA BIAS $\Delta PBIASX (Y,Z) = DIFFERENCE BETWEEN PRESENT LOADED PIPA BIAS$ AND MEASURED PIPA BIAS

II-7-5

11

.

FEC/TSG Form 312 (Oct. 68)

S/C:	LM
DATE :	11/1/71
	PCN-11
ORIGINATOR:	J. Nelson
APPROVAL:	Hawld a. Laten

P-11

P-11

TITLE: COASTING FLIGHT PIPA BIAS DETERMINATION

PURPOSE: The purpose of this SCP is to describe the manual and RTCC automated methods used to determine FIPA bias in freefall.

PROCEDURE: I. Manual Method

Periodically, the PIPA bias terms (Bias X, Bias Y, and Bias Z) should be determined and compared to those presently stored in the LGC erasable memory locations for possible updating. The procedure is as follows (refer to the enclosed IM PIPA Bias Worksheet):

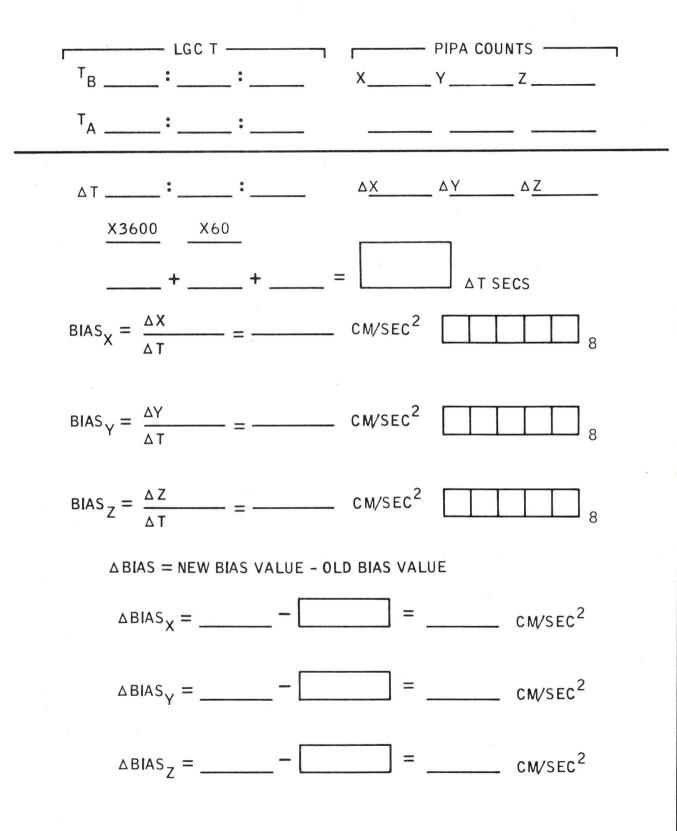
- A. Record the X, Y, and Z PIPA counts at LGC time A.
- B. Wait a minimum of 2 minutes and note any overflow of the PIPA counters that may occur.
- C. Record the PIPA counts and time at LGC time B.
- D. Calculate the new PIPA bias terms.
- E. Calculate the delta bias terms from comparison of the new and previous PIPA bias terms.
- F. If the delta bias terms exceed <u>0.100</u> cm/sec², use the IRIG/PIPA BIAS UPDATE REQUEST form (see SCP No. PGNS 7-1) to notify GUIDO of the required PIPA BIAS UPDATE. The enclosed
- . tables (IM PIPA BIAS TO OCTAL) can be used to convert from cm/sec² (pulses/sec) to the LGC octal load.
- G. Notify CONTROL and GUIDO of measured bias values and delta bias terms. Advise the Flight Director anytime that the absolute value of any bias term approaches the considered "broke" value of the PIPA of 5.0 cm/sec².
- H. The capacity of the erasable memory locations for the PIPA bias terms is 12.5 ${\rm cm/sec}^2$.

II. RTCC Automated Method

In order to speed up the PIPA bias computation time and limit computational errors, an RTCC program was developed to automatically calculate PIPA bias in basically the same manner as described in the manual method above.

A SMEK panel on the PROP console contains PEI's labeled PIPA EIAS, EXECUTE and CLEAR. These PEI's are used to start and stop the RTCC PIPA bias calculations. The output (PIPA bias in cm/sec^2 and equivalent octal values) is displayed on MSK 1137.

The procedure for using the RTCC method follows:


- A. PIPA bias output on MSK 1137 must either be blank (computation not yet initiated) or contain values (previous computation completed) before a new PIPA bias computation can be initiated.
- B. The RTCC computation is started by depressing the PIPA EIAS PEI on the PROP SMEK panel followed by depressing the EXECUTE PEI. The execute causes the time and PIPA counts to be stored by the RTCC and M's to be displayed in the PIPA bias location on MSK 1137.
- C. The CLEAR PEI should be depressed to disable the PIPA BIAS PEI so that an unintentional EXECUTE will not prematurely cause the PIPA bias computation to be completed.
- D. After an appropriate length of time from the first execute (usually 2 to 5 min) the PIPA BIAS and EXECUTE PBI's are again depressed, causing the RTCC to again store time and PIPA counts.
- E. The RTCC calculates X, Y, and Z PIPA bias (delta counts \div delta time) and displays PIPA bias in cm/sec² and equivalent octal on MSK 1137.
- F. As in part I.F. above, if a PIPA bias update is required, the IRIG/PIPA BIAS UPDATE REQUEST form (see SCP No. PGNS 7-1) should be used.

11-7-6

LM PIPA BIAS WORKSHEET

SCP NO. PGNS 7-2

PCN-3

SCP NO.PGNS 7-2 PCN-3

P-3

TABLE I.- LM PIPA BIAS TO OCTAL (POSITIVE)

For octal update of PBIASX, Y, Z (address 1452, 1454, 1456). PBIAS is scaled B - 3 pulses per centisecond.

CM/SEC	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0	15	32	47	64	102	117	134	151	166
0.1	203	220	235	252	270	305	322	337	354	371
0.2	406	423	440	455	473	510	525	542	557	574
0.3	611	626	643	661	676	713	730	745	762	777
0.4	1014	1031	1047	1064	1101	1116	1133	1150	1165	1202
0.5	1217	1234	1252	1267	1304	1321	1336	1353	1370	1405
0.6	1422	1440	1455	1472	1507	1524	1541	1556	1573	1610
0.7	1626	1643	1660	1675	1712	1727	1744	1761	1776	2013
0.8	2031	2046	2063	2100	2115	2132	2147	2164	2201	2217
0.9	2234	2251	2266	2303	2320	2335	2352	2367	2405	2422
1.0	2437	2454	2471	2506	2523	2540	2555	2572	2610	2625
1.1	2642	2657	2674	2711	2726	2743	2760	2776	3013	3030
1.2	3045	3062	3077	3114	3131	3146	3164	3201	3216	3233
1.3	3250	3265	3302	3317	3334	3351	3367	3404	3421	3436
1.4	3453	3470	3505	3522	3537	3555	3572	3607	3624	3641
1.5	3656	3673	3710	3725	3743	3760	3775	4012	4027	4044
1.6	4061	4076	4113	4130	4146	4163	4200	4215	4232	4247
1.7	4264	4301	4316	4334	4351	4366	4403	4420	4435	4452
1.8	4467	4504	4522	4537	4554	4571	4606	4623	4640	4655
1.9	4672	4707	4725	4742	4757	4774	5011	5026	5043	5060
2.0	5075	5113	5130	5145	5162	5177	5214	5231	5246	5263
2.1	5301	5316	5333	5350	5365	5402	5417	5434	5451	5466
2.2	5504	5521	5536	5553	5570	5605	5622	5637	5654	5672
2.3	5707	5724	5741	5756	5773	6010	6025	6042	6060	6075
2.4	6112	6127	6144	6161	6176	6213	6230	6245	6263	6300
2.5	6315	6332	6347	6364	6401	6416	6433	6451	6466	6503
2.6	6520	6535	6552	6567	6604	6621	6637	6654	6671	6706
2.7	6723	6740	6755	6772	7007	7024	7042	7057	7074	7111
2.8	7126	7143	7160	7175	7212	7230	7245	7262	7277	7314
2.9	7331	7346	7363	7400	7416	7433	7450	7465	7502	7517
3.0	7534	7551	7566	7603	7621	7636	7653	7670	7705	7722
3.1	7737	7754	7771	10007	10024	10041	10056	10073	10110	10125
3.2	10142	10157	10175	10212	10227	10244	10261	10276	10313	10330
3.3	10345	10362	10400	10415	10432	10447	10464	10501	10516	10533
3.4	10550	10566	10603	10620	10635	10652	10667	10704	10721	10736
3.5	10754	10771	11006	11023	11040	11055	11072	11107	11124	11141
3.6	11157	11174	11211	11226	11243	11260	11275	11312	11327	11345
3.7	11362	11377	11414	11431	11446	11463	11500	11515	11533	11550
3.8	11565	11602	11617	11634	11651	11666	11703	11720	11736	11753
3.9	11770	12005	12022	12037	12054	12071	12106	12124	12141	12156
4.0	12173	12210	12225	12242	12257	12274	12312	12327	12344	12361
4.1	12376	12413	12430	12445	12462	12477	12515	12532	12547	12564
4.2	12601	12616	12633	12650	12665	12703	12720	12735	12752	12767
4.3	13004	13021	13036	13053	13071	13106	13123	13140	13155	13172
4.4	13207	13224	13241	13256	13274	13311	13326	13343	13360	13375
4.5	13412	13427	13444	13462	13477	13514	13531	13546	13563	13600
4.6	13615	13632	13650	13665	13702	13717	13734	13751	13766	14003
4.7	14020	14035	14053	14070	14105	14122	14137	14154	14171	14206
4.8	14223	14241	14256	14273	14310	14325	14342	14357	14374	14411
4.9	14427	14444	14461	14476	14513	14530	14545	14562	14577	14614
5.0	14632	14647	14664	14701	14716	14733	14750	14765	15002	15020
5.1	15035	15052	15067	15104	15121	15136	15153	15170	15206	15223
5.2	15240	15255	15272	15307	15324	15341	15356	15373	15411	15426
5.3	15443	15460	15475	15512	15527	15544	15561	15577	15614	15631
5.4	15646	15663	15700	15715	15732	15747	15765	16002	16017	16034

P-3

TABLE I.- LM PIPA BIAS TO OCTAL (POSITIVE) - Concluded

For octal update of PBIASX, Y, Z (address 1452, 1454, 1456). PBIAS is scaled B - 3 pulses per centisecond.

CM/SEC	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
5.5	16051	16066	16103	16120	16135	16152	16170	16205	16222	16237
5.6	16254	16271	16306	16323	16340	16356	16373	16410	16425	16442
5.7	16457	16474	16511	16526	16544	16561	16576	16613	16630	16645
5.8	16662	16677	16714	16732	16747	16764	17001	17016	17033	17050
5.9	17065	17102	17117	17135	17152	17167	17204	17221	17236	17253
6.0	17270	17305	17323	17340	17355	17372	17407	17424	17441	17456
6.1	17473	17511	17526	17543	17560	17575	17612	17627	17644	17661
6.2	17676	17714	17731	17746	17763	20000	20015	20032	20047	20064
6.3	20102	20117	20134	20151	20166	20203	20220	20235	20252	20270
6.4	20305	20322	20337	20354	20371	20406	20423	20440	20455	20473
6.5	20510	20525	20542	20557	20574	20611	20626	20643	20661	20676
6.6	20713	20730	20745	20762	20777	21014	21031	21047	21064	21101
6.7	21116	21133	21150	21165	21202	21217	21234	21252	21267	21304
6.8	21321	21336	21353	21370	21405	21422	21440	21455	21472	21507
6.9	21524	21541	21556	21573	21610	21626	21643	21660	21675	21712
7.0	21727	21744	21761	21776	22013	22031	22046	22063	22100	22115
7.1	22132	22147	22164	22201	22217	22234	22251	22266	22303	22320
7.2	22335	22352	22367	22405	22422	22437	22454	22471	22506	22523
7.3	22540	22555	22572	22610	22625	22642	22657	22674	22711	22726
7.4	22743	22760	22776	23013	23030	23045	23062	23077	23114	23131
7.5	23146	23164	23201	23216	23233	23250	23265	23302	23317	23334
7.6	23351	23367	23404	23421	23436	23453	23470	23505	23522	23537
7.7	23555	23572	23607	23624	23641	23656	23673	23710	23725	23743
7.8	23760	23775	24012	24027	24044	24061	24076	24113	24130	24146
7.9	24163	24200	24215	24232	24247	24264	24301	24316	24334	24351
8.0	24366	24403	24420	24435	24452	24467	24504	24522	24537	24554
8.1	24571	24606	24623	24640	24655	24672	24707	24725	24742	24757
8.2	24774	25011	25026	25043	25060	25075	25113	25130	25145	25162
8.3	25177	25214	25231	25246	25263	25301	25316	25333	25350	25365
8.4	25402	25417	25434	25451	25466	25504	25521	25536	25553	25570
8.5	25605	25622	25637	25654	25672	25707	25724	25741	25756	25773
8.6	26010	26025	26042	26060	26075	26112	26127	26144	26161	26176
8.7	26213	26230	26245	26263	26300	26315	26332	26347	26364	26401
8.8	26416	26433	26451	26466	26503	26520	26535	26552	26567	26604
8.9	26621	26637	26654	26671	26706	26723	26740	26755	26772	27007

II-7-9

SCP NO. PGNS 7-2 PCN-3 NEW PAGE

TABLE II.- LM PIPA BIAS TO OCTAL (NEGATIVE)

For octal update of PBIASX, Y, Z (address 1452, 1454, 1456). PBIAS is scaled B - 3 pulses per centisecond.

CM/SEC	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-0.0	0	77762	77745	77730	77713	77675	77660	77643	77626	77611
-0.1	77574	77557	77542	77525	77507	77472	77455	77440	77423	77406
-0.2	77371	77354	77337	77322	77304	77267	77252	77235	77220	77203
-0.3	77166	- 77151	77134	77116	77101	77064	77047	77032	77015	77000
-0.4	76763	76746	76730	76713	76676	76661	76644	76627	76612	76575
-0.5	76560	76543	76525	76510	76473	76456	76441	76424	76407	76372
-0.6	76355	76337	76322	76305	76270	76253	76236	76221	76204	76167
-0.7	76151	76134	76117	76102	76065	76050	76033	76016	76001	75764
-0.8	75746	75731	75714	75677	75662	75645	75630	75613	75576	75560
-0.9	75543	75526	75511	75474	75457	75442	75425	75410	75372	75355
-1.0	75340	75323	75306	75271	75254	75237	75222	75205	75167	75152
-1.1	75135	75120	75103	75066	75051	75034	75017	75001	74764	74747
-1.2	74732	74715	74700	74663	74646	74631	74613	74576	74561	74544
-1.3	74527	74512	74475	74460	74443	74426	74410	74373	74358	74341
-1.4	74324	74307	74272	74255	74240	74222	74205	74170	74153	74136
-1.5	74121	74104	74067	74052	74034	74017	74002	73765	73750	73733
-1.6	73716	73701	73664	73647	73631	73614	73577	73562	73545	73530
-1.7	73513	73476	73461	73443	73426	73411	73374	73357	73342	73325
-1.8	73310	73273	73255	73240	73223	73206	73171	73154	73137	73122
-1.9	73105	73070	73052	73035	73020	73003	72766	72751	72734	72717
-2.0	72702	72664	72647	72632	72615	72600	72563	72546	72531	72514
-2.1	72476	72461	72444	72427	72412	72375	72360	72343	72326	72611
-2.2	72273	72256	72241	72224	72207	72172	72155	72140	72123	72105
-2.3	72070	72053	72036	72021	72004	71767	71752	71735	71717	71702
-2.4	71665	71650	71633	71616	71601	71564	71547	71532	71514	71477
-2.5	71462	71445	71430	71413	71376	71361	71344	71326	71311	71274
-2.6	71257	71242	71225	71210	71173	71156	71140	71123	71106	71071
-2.7	71054	71037	71022	71005	70770	70753	70735	70720	70703	70666
-2.8	70651	70634	70617	70602	70565	70547	70532	70515	70500	70463
-2.9	70446	70431	70414	70377	70361	70344	70327	70312	70275	70260
-3.0	70243	70226	70211	70174	70156	70141	70124	70107	70072	70055
-3.1	70040	70023	70006	67770	67753	67736	67721	67704	67667	67652
-3.2	67635	67620	67602	67565	67550	67533	67516	67501	67464	67447
-3.3	67432	67415	67377	67362	67345	67330	67313	67276	67261	67244
-3.4	67227	67211	67174	67157	67142	67125	67110	67073	67056	67041
-3.5	67023	67006	66771	66754	66737	66722	66705	66670	66653	66636
-3.6	66620	66603	66566	66551	66534	66517	66502	66465	66450	66432
-3.7	66415	66400	66363	66346	66331	66314	66277	66262	66244	66227
-3.8	66212	66175	66161	66143	66126	66111	66074	66857	66041	66024
-3.9	66007	65772	65755	65740	65723	65706	65671	65653	65636	65621
-4.0	65604	65567	65552	65535	65520	65503	65465	65450	65433	65416
-4.1	65401	65364	65347	65332	65315	65300	65262	65245	65230	65213
-4.2	65176	6 5161	65144	65127	65112	65074	65057	65642	65025	65010
-4.3	64773	64756	64741	64724	64706	64671	64654	64637	64622	64605
-4.4	64570	64553	64536	64521	64503	64466	64451	64434	64417	64402
-4.5	64365	64350	64333	64315	64300	64263	64246	64231	64214	64177
-4.6	64162	64145	64127	64112	64075	64060	64043	64026	64011	63774
-4.7	63757	63742	63724	63707	63672	63655	63640	63623	63606	63571
-4.8	63554	63536	63521	63504	63467	63452	63435	63420	63403	63366
-4.9	63350	63333	63316	63301	63264	63247	63232	63215	63200	63163
-5.0	63145	63130	63113	63076	63061	. 63044	63027	63012	62775	62757
-5.1	62742	62725	62710	62673	62656	62641	62624	62607	62571	62554
-5.2	62537	62522	62505	62470	62453	62436	62421	62404	62366	62351
-5.3	62334	62317	6230 2	62265	62250	62233	62216	62200	62163	62146
-5.4	62131	62114	62077	62062	62045	62030	62012	61775	61760	61743

P-3

,

.

II-7-9a

TABLE II.- LM PIPA BIAS TO OCTAL (NEGATIVE) - Concluded

For octal update of PBIASX, Y, Z (address 1452, 1454, 1456). PBIAS is scaled B - 3 pulses per centisecond.

CM/SEC	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-5.5	61726	61711	61674	61657	61642	61625	61607	61572	61555	61540
-5.6	61523	61506	61471	61454	61437	61421	61404	61367	61352	61335
-5.7	61320	61303	61266	61251	61233	61216	61201	61164	61147	61132
-5.8	61115	61100	61063	61045	61030	61013	60776	60761	60744	60727
-5.9	60712	60675	60660	60642	60625	60610	60573	60556	60541	60524
-6.0	60507	60472	60454	60437	60422	60405	60370	60353	60336	60321
-6.1	60304	60266	60251	60234	60217	60202	60165	60150	60133	60116
-6.2	60101	60063	60046	60031	60014	57777	57762	57745	57730	57713
-6.3	57675	57660	57643	57626	57611	57574	57557	57542	57525	57507
-6.4	57472	57455	57440	57423	57406	57371	57354	57337	57322	57304
-6.5	57267	57252	57235	57220	57203	57166	57151	57134	57116	57101
-6.6	57064	57047	57032	57015	57000	56763	56746	56730	56713	56676
-6.7	56661	56644	56627	56612	56575	56560	56543	56525	56510	56473
-6.8	56456	56441	56424	56407	56372	56355	56337	56322	56305	56270
-6.9	56253	56236	56221	56204	56167	56151	56134	56117	56102	56065
-7.0	56050	56033	56016	56001	55764	55746	55731	55714	55677	55662
-7.1	55645	55630	55613	55576	55560	55543	55526	55511	55474	55457
-7.2	55442	55425	55410	55372	55355	55340	55323	55306	55271	55254
-7.3	55237	55222	55205	55167	55152	55135	55120	55103	55066	55051
-7.4	55034	55017	55001	54764	54747	54732	54715	54700	54663	54646
-7.5	54631	54613	54576	54561	54544	54527	54512	54475	54400	54443
-7.6	54426	54410	54373	54356	54341	54324	54307	54272	54255	54240
-7.7	54222	54205	54170	54153	54136	54121	54104	54067	54052	54034
-7.8	54017	54002	53765	53750	53733	53716	53701	53664	53647	53631
-7.9	53614	53577	53562	53545	53530	53513	53476	53461	53443	53426
-8.0	53411	53374	53357	53342	53325	53310	53273	53255	53240	53223
-8.1	53206	53171	53154	53137	53122	53105	53070	53052	53035	53020
-8.2	53003	52766	52751	52734	52717	52702	52664	52647	52632	52615
-8.3	52600	52563	52546	52531	52514	52476	52461	52444	52427	5241 2
-8.4	52375	52360	52343	52326	52311	52273	52256	52241	52224	52207
-8.5	52172	52155	52140	52123	52105	52070	52053	52036	52021	52004
-8.6	51767	51752	51735	51717	51702	51665	51650	51633	51616	51601
-8.7	51564	51547	51532	51514	51477	51462	51445	51430	51413	51376
-8.8	50361	51344	51326	51311	51274	51257	51242	51225	51210	51173
-8.9	51156	51140	51123	51106	51071	51054	51037	51022	51005	50770

P-3

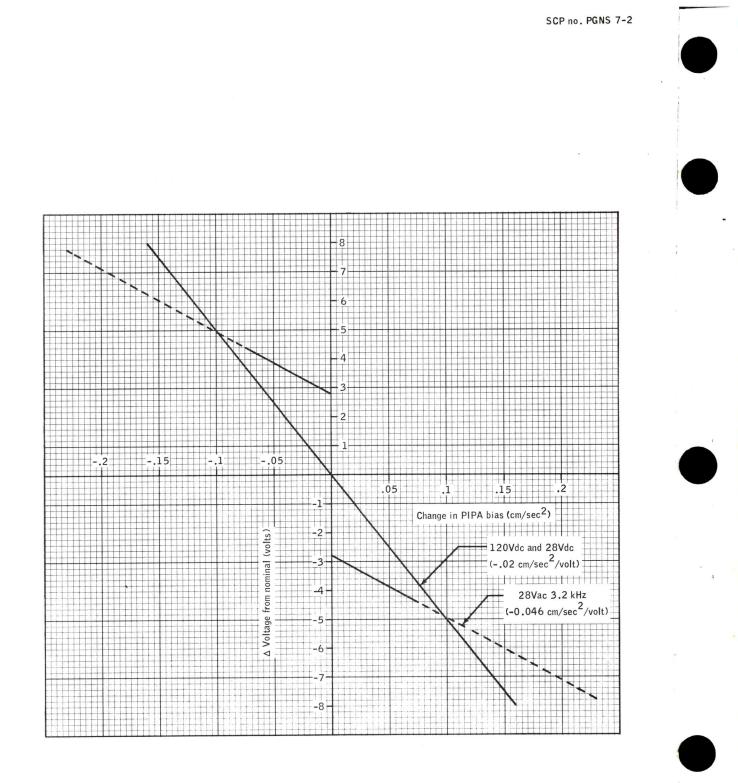


Figure 1. - Change in PIPA bias versus change in PGNS power supply voltages.

PGNS 7-3 SCP NO.

DATE: ORIGINATOR: APPROVAL:

S/C: LM 11/1/70 REV: PCN-6 J. Nelso orte

P-6

P-6

TITLE: **RESOLVER CONSTANTS/TM BIAS**

PURPOSE: Describe resolver constants and TM bias as used by RTCC.

PROCEDURE: Resolver Constants

Rendezvous radar gimbal angles and ISS gimbal angles are calculated in the RTCC using the following equations:

	ISS	RR
	$\sin X = \frac{f_1 - C}{H_1}$	$\sin X = \frac{f_1 - \kappa}{A_1}$
	$Cos X = \frac{f_2 - C}{H_2}$	$\cos X = \frac{f_2 - K}{A_2}$
where:	f ₁ → f ₆ =	where: $f_1 \rightarrow f_4 = \begin{bmatrix} GG3304, & GG3305 \\ GG3324, & GG3325 \end{bmatrix}$
	$H_1 \rightarrow H_6$ = resolver constants C = TM bias	$A_1 \rightarrow A_4$ = resolver constants K = TM bias

For each sin and cos winding of the resolver, a value for H (ISS resolvers) and A (RR resolvers) is calculated from resolver angles versus voltage from the signal conditioner. The initial values presently used by the RTCC are $H_{1-6} = 3.26$ and $A_{1-4} = 3.26$. Prior to each mission, MCRB calculates these resolver constants and supplies them to the RTCC. If the occasion arises during a mission where the resolver angles differ by more than 3.5 degrees from CDU actual* and the TM bias is believed not to be the culprit, a MED update of the H or A constants may be in order.

The resolver constants may be calculated by using the above listed equations and letting C or K equal the current TM bias, letting f equal the resolver voltage output, and letting X be the appropriate resolver angle.

TM Bias

As noted above, GG1110V (TM bias) is used in RR and ISS gimbal angle calculations. TM bias is also used in a so called G&N bias calculation (TR170 6.4.69) which corrects the following TM parameters as shown:

Y = X + (128 - P)

where: P = GG1110V (TM bias) in PCM counts X equals the following TM parameters:

GG1040
GG2001
GG2021
GG2041
GG2107
GG2137
GG2167
GG2219
GG2249
GG2279
-

After a parameter is corrected from any deviation in TM bias, calibration curves are employed to display values in engineering units. The three TM bias values used by RTCC (C for ISS Resolvers, K for RR resolvers, and P for other LM TM parameters) are initialized to zero which causes each of the above calculations to use the current value of GG1110 (TM bias). If the TM bias parameter is in error, a MED value for C, K and P can be made, in which case the MED value will be used rather than GG1110.

*The 3.5 degree value was arrived at by applying a 3 percent accuracy to the resolver voltage output from the signal conditioner.

S/C: LM DATE: 5/12/69 REV: PCN-1 ORIGNIATOR: B.A. Durand APPROVAL: H.a. Loden

PREDICTED PIPA READINGS TTTLE :

- The purpose of these readings is to give to flight controllers, prior to any burn, the nominal maximum PURPOSE: or average PIPA readings expected during that burn for comparison with actual readings.
- PROCEDURE: A. The maximum or average delta V (or PIPA) readings expected along the stable member X, Y, and Z axes can be obtained by using a navigation base to stable member transformation matrix with the following inputs:
 - 1. The maximum or average delta V for a 2 second period along the LM X body axis expected during a burn (which can be obtained from a nominal mission timeline prior to the mission or from the propulsion console position during the mission) in ft/sec.
 - 2. The actual inner and middle gimbal angles just prior to the burn.
 - B. Assuming all of the delta V is applied along the IM X body axis, the following equations perform the transformation:
 - 1. $VX_{SM} = VX_B Cos (IGA) Cos (MGA)$
 - 2. $VY_{SM} = VX_B^D$ Sin (MGA)
 - 3. $VZ_{XM} = -VX_B$ Sin (IGA) Cos (MGA)
 - C. During the mission, a program card with brief but explicit directions will be provided so the Olivetti-Underwood Programma 101 Computer can be used for the above computations. The program will output the X, Y and Z stable member change in velocity, first in ft/sec, then in cm/sec.

S/C: IM DATE: 11/1/70 REV: PCN-6 ORIGINATOR: B. A. Durand APPROVAL: H.C. Soch-

P-6

TITLE : ATTITUDE MODEL OPERATION

PURPOSE : The purpose of this SCP is to describe the method in which the PGNS attitude model may be aligned in order to yield sun impingement angles and local horizontal/local vertical attitude of the LM with respect to the earth or moon.

PROCEDURE: A. For near earth operation:

- Obtain from MSK 1222 (IM coast and Align Downlink Summary Page 1) the following REFSMMAT values: R₁C₁, R₁C₂, R₁C₃, R₂C₁, R₂C₂, R₂C₃. Use the AIR ALMANAC to determine the Greenwich Hour Angle (GHA) of the first point of Aries (the number of degrees west from the Greenwich Meridian). Use the REFSMMAT and GHA values as inputs to Hewlett Packard Program Card NO. 007. The program will output four values, LONGY, LATY, LONGZ, LATZ.
- 2. Place the +Y axis of the stable member (marked +Y_{SM} on the outermost ring inside the globe) at LONGY (west if positive); then rotate +Y_{SM} LATY degrees - north if LATY is positive, south if LATY is negative - and mark this point +Y_{SM} on globe.
- 3. Holding +Y_{SM} at the point just reached, rotate the stable member (outermost ring) until the +Z axis of the stable member (marked +Z_{SM} on the outermost ring) is at LONGZ (west if positive). To check, +Z_{SM} should be LATZ degrees north or south of the equator. (North if LATZ is positive).
- 4. Rotate the central shaft (yaw), the innermost ring (roll), and the middle ring (pitch) until the appropriate outer, middle, and inner gimbal angles (respectively) are reached, as indicated by the pointers and compass roses.
- 5. To determine the local horizontal/local vertical attitude of the IM, mark a spot on the globe corresponding to present latitude and longitude of the IM and view the IM from the exact opposite point on the globe.
- 6. To determine sun impingement angles on the IM, mark the spot on the globe which the sun is directly overhead, and view the IM from that point. The AIR AIMANAC lists the GHA and DEC (declination) of the sun at any GMT. GHA is the number of degrees west of Greenwich Meridian, and DEC is the number of degrees north or south of the equator. If the present latitude/longitude of the IM is on the opposite side of the globe from the latitude/longitude of the sun, the IM, of course, is in the shade.
- B. For near lunar operation:
 - 1. Determine the lunar latitude and longitude of the lunar landing site and mark it on the globe.

II-7-13

- Rotate the central shaft (yaw), the innermost ring (roll), and the middle ring (pitch) until the outer, middle, and inner gimbal angles (respectively) are zero, as indicated by the pointers and compass roses.
- 3. Holding the gimbal angles steady, rotate the stable member (outermost ring) until the top of the LM (+X axis) is directly underneath the landing site and the +Z axis is in the direction of the CSM orbital velocity (when over the landing site).
- 4. Now holding the stable member steady, enter the appropriate gimbal angles.
- 5. To determine the local horizontal/local vertical attitude of the LM, mark a spot on the globe corresponding to present latitude and longitude of the LM and view the LM from the exact opposite point on the globe.

SCP NO.

PGNS 7-6

This SCP deleted by PCN-11

TITLE

PURPOSE

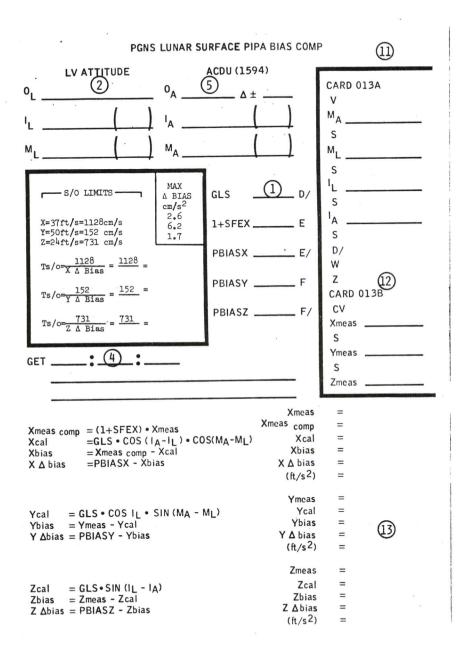
REV: PCN-11 ORIGINATOR: C. L. Gruby APPROVAL: LUNAR SURFACE PIPA BIAS CALCULATION (OLIVETTI METHOD) : : The purpose of this SCP is to describe the method used to compute pipa bias on the lunar surface using Olivetti program Ol3A and B. BACKGROUND : The amount of lunar gravity expected in each of the IM stable member axis is calculated by using the current landing site lunar gravity constant (GLS), IMU gimbal angles at the time of the measurement and the Guidance Officer's determination of local vertical attitude. The calculated value is then differenced from the measured value (obtained from the pipa counters) to determine pipa bias. The equations for the computations are programed on an Olivetti Underwood Magnetic card (Card 013) and requires that both sides be used in the proper order. DESCRIPTION: Card No. 013A NAME: Lunar Surface Pipa Bias Calculation INPUT: MGA ACTUAL CDU MGA LOCAL VERTICAL IGA LOCAL VERTICAL IGA ACTUAL CDU NOTES: Angle input must be 0 to $\pm 90^{\circ}$. For angles > 270°, subtract from 360° and apply a minus P-11 (-) sign. (i.e., $359.1^{\circ} = 360.0 - 359.1 = -0.09^{\circ}$ CONSTANTS: D = 0.0174532925 (2 $\pi/360$ Deg to radius) Card No. 013B NAME: Continuation of Side 013A INPUT: X Measured Pipa Bias Y Measured Pipa Bias

S/C: LM DATE: 11/1/71

Z Measured Pipa Bias

- CONSTANTS: D/ GLS (from MPAD)
 - E 1 + SFEX
 - E/ PBIASX
 - F PBLASY
 - F/ PBIASZ

PROCEDURE :


1. Obtain Constants and record on form

(a) GLS = gravity at landing site (MPAD)

II-7-15

- (b) 1 + SFEX, PBLASX, PBLASY and PBLASZ obtained premission from the eraseable load or in real time from "AGC Support".
- Obtain local vertical attitude from GUIDO and record. If angle is >270°, subtract from 360
 and apply a minus (-) sign. Record final value in the parenthesis ().
- 3. Obtain PIPA BIAS measurement from MSK 1137 and record.
- 4. Record GET
- 5. Obtain ACDU from MSK 1137 and record. If angle >270°, subtract from 360 and apply a minus (-) P-11 sign. Record the final value in the parenthesis ().
- 6. Transfer the data in the parenthesis (), obtained in 2. and 5. to the proper locations
 - ' under "CARD 013A."
- 7. Turn on the Olivetti and GEN RESET.
- 8. Decimal Wheel = 8
- 9. Record Constants on side B by the following:
 - Insert Side B
 - ENTER: D/ GLS
 - E 1 + SFEX
 - E/ PBIASX
 - F PBIASY
 - F/ PBIASZ
 - PUSH RECORD BUTTON
 - INSERT SIDE B (data now recorded on Card 013B)
- 10. Push GEN RESET
- 11. Insert Side A
- 12. Follow the steps under Card O13A. Do not proceed to the next step until the computer activity light goes out. This will be apparent as the keyboard will be locked.
- After doing subroutine Z and the computer activity light goes out, enter Side B and follow the steps.
- 14. After completing all of the steps under Card O13B, tape the printout to the form in the space provided. This will be retained as a permanent record and serve to annotate the printout.

SCP NO. PGNS 7-7a PCN-6/NEW

11-7-17

S/C: DATE: REV: ORIGINATOR: APPROVAL:

IM 11/1/71 PCN-11 L. Gruby

TITLE PURPOSE

: LUNAR SURFACE PIPA BIAS CALCULATION (H/P METHOD)

: The purpose of this SCP is to describe the method used to compute PIPA BIAS on the lunar surface using the Hewlett Packard 9100B computer.

BACKGROUND : The amount of lunar gravity expected in each of the LM stable member axes is calculated by using the current landing site lunar gravity constant (GLS), IMU gimbal angles at the time of the measurement and the Guidance Officer's determination of local vertical attitude. The calculated value is differenced from the measured value (obtained from the pipa counters) to determine pipa bias. The equations for the computations are programed on a Hewlett Packard 9100B MAGNETIC card and require that both sides be used in the proper order. The Hewlett Packard method is preferred over the Olivetti method in that the equations are exact and have not been reduced to meet the limited capability of the computer as in the case of the Olivetti.

DESCRIPTION : NAME: Lunar Surface Pipa Bias Calculation

INPUT: OL Outer gimbal angle (local vertical)

- IL Inner gimbal. angle (local vertical)
- ML Middle gimbal angle (local vertical)
- OA Outer gimbal angle (actual
- IA Inner gimbal angle (actual)
- MA Middle gimbal angle (actual)
- X Measured (X Pipa Counts)
- Y Measured (Y Pipa Counts)
- Z Measured (Z Pipa Counts)

CONSTANTS: + 9 = SFEX

- + 8 = SFEY
- +7 = SFEZ
- + 6 = GLS
- + 5 = PBIASX
- f = PBIASY
- e = PBIASZ

PROCEDURE

S : The following procedure utilizes the PGNS LUNAR SURFACE PIPA BIAS WORKSHEET on page II-7-21

1. Obtain constants and record on worksheet

(a)(b)(c) SFEX, SFEY, SFEZ - obtained premission from the eraseable load or in real time

from "AGC Support".

P-11

P-11

P-11

(d) GLS - Gravity at the landing site obtained both premission and real-time from MPAD

(e)(f)(g) PBIASX, FBIASY, PBIASZ - Obtained premission from the eraseable load or if updated during the mission, the PGNS log.

- 2. Obtain local vertical attitude from the Guidance Officer and record.
- 3. Obtain PIPA BIAS (PIPA COUNTS) Measurement from MSK1137 and record.
- 4. Record GET
- 5. Obtain ACDU angles in stable member coordinates from MSK 1137
- 6. Switch Configuration

. Degrees

Fixed Point

Power ON

Run

Printer ON "X" BUTTON IN

- 7. Clear
- 8. Set Decimal wheel to 7

9. Go to () () - 00

```
10. Enter Side A and B
```

11. Load Constants as follows:

```
SFEX X (\rightarrow) + 9

SFEX X (\rightarrow) + 8

SFEZ X (\rightarrow) + 7

GLS X (\rightarrow) + 6

FBIASX X (\rightarrow) + 5

FBIASX X (\rightarrow) - f

FBIASZ X (\rightarrow) - f

Go to ()() - 00

Insert Side A

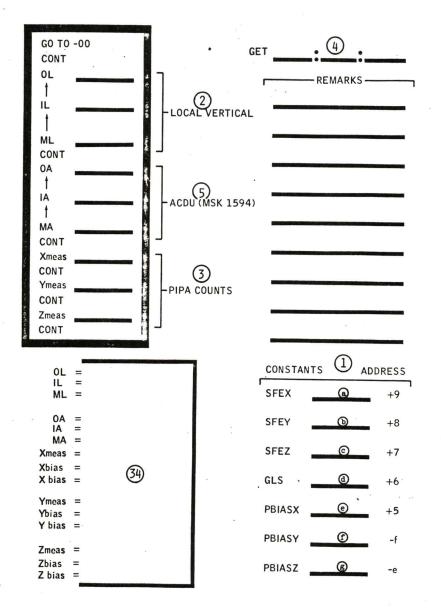
Record

Insert Side B

Record
```

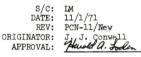
```
12. Check Constants as follows:
```

SFEXX (\rightarrow) + 9PRINTSFEYX (\rightarrow) + 8PRINTSFEZX (\rightarrow) + 7PRINTGLSX (\rightarrow) + 6PRINT


SCP NO. PGNS 7-7b PCN 6/NEW

	PBIASX X () + 5 PRINT
	PBIASY X () - f PRINT
	PBIASZ X () - e PRINT
13.	CONT
14.	PRINTER X, Y & Z BUTTONS IN
15.	ENTER OL
16.	T .
17.	ENTER IL
18.	1
19.	ENTER ML
20.	CONT
21.	ENTER OA
22.	1
23.	ENTER IA
24.	1
25.	ENTER MA
26.	CONT
27.	PRINTER Y & Z BUTTONS OUT
28.	ENTER X MEAS
29.	CONT
30.	ENTER Y MEAS
31.	CONT
32.	ENTER Z MEAS
33.	CONT

34. TAPE THE PRINT OUT TO THE FORM FOR ANNOTATION AND TO MAINTAIN A PERMANENT RECORD.



SCP NO. PGNS 7-7b PCN-6/NEW

PGNS LUNAR SURFACE PIPA BIAS WORKSHEET (HEWLETT PACKARD)

II-7-2I

TITLE: P52/P57 IRIG BIAS SHIFT DETERMINATION (HEWLETT PACKARD COMPUTER)

PURPOSE: The purpose of the SCP is to describe the P52/P57 method of calculating irig bias using the Hewlett Packard 9100B Computer. The LM irig bias worksheet (see page II-7-23) is used with this method.

BACKGROUND: There are two primary methods of IMU alignments; P52 and P57. P52 is used during coasting flight and P57 is used on the surface When the second P52 or P57 is complete, Noun 93 torquing angles are displayed on the DSKY. Using these angles and the time between alignments, the irig bias shift can be determined.

PROCEDURE: This procedure is the same for two P52's as it is for two P57's.

- 1. Switch configuration for Hewlett Packard degrees
 - Fixed decimal point
 - . Program run switch to run
 - Power ON Decimal wheel at 5

2 End

3. Enter side A and then B of card No. 10

4. End

- 5. Enter the following constants:
 - NBDX \rightarrow a NBDY \rightarrow b
 - NBDZ \rightarrow c

If these constants are loaded on the card then this step can be deleted.

6. Enter the time of first alignment as follows:

- Hours
- 1

Minutes

- 1
- Seconds
- 7. Continue
- 8. Enter the time of second alignment as follows:

Hours

1 Minutes

t

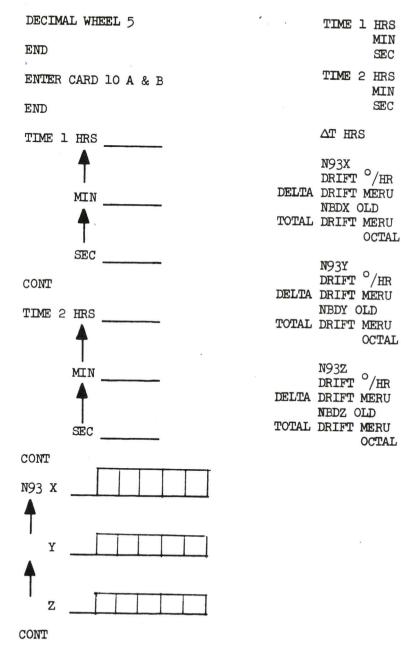
Seconds

- 9. Continue
- 10. N93X

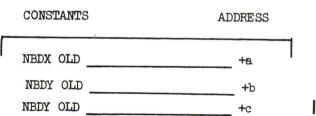
Ť

- N93Y
- 1
- N93Z

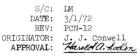
11. Continue


12. Printout will be as shown on the right-hand side of LM irig drift worksheet.

11-7-22


SCP NO. PGNS 7-8a PCN-II/New

LM IRIG DRIFT WORKSHEET


(HEWLETT PACKARD)

1

11-7-23

TITLE: SURFACE CDU/DOCKED NOUN 20 TORQUE ANGLE CALCULATION

- FURPOSE: The purpose of this SCP is to describe the method used to calculate torquing angles for the IMU using the CDU method on the surface and using the Noun 20 method while the IM is docked to the CSM after an alignment has been performed. The surface/docked align torquing angles worksheet (see page II-7-26) and the Hewlett Packard 9100B computer are used with this method.
- BACKGROUND: Reference MSC Internal Note No. 71-FC4-1 for the surface CDU method. On the lunar surface after the first P57 is performed, CDU angles are calculated for liftoff using present CDU angles. At a later time, using new CDU angles, a new liftoff attitude is calculated using the RTCC. Any difference between the liftoff attitude is due to drift of the platform. During the docked case, a similar method is used. The IM is aligned to the CSM using the same **REFSMAT.** At a later time, IM and CSM CDU angles are compared at the same time. If the angles differ any, then it is due to a drifting IM platform considering that there is no drift in the CSM platform. The CDU angles are displayed on the DSKY under a Noun 20. These two methods give a set of torquing angles or Noun 93 angles which are indicative of drift. If the octal update was needed, these N93 angles and delta times could be used on the P52/P57 method described in PGNS 7-1A.

PROCEDURE 1: This procedure is for the Surface CDU Method.

1.	Switch configuration	
degrees		
	fixed decimal point	
	Power ON	
	Decimal wheel at 5	
-		

- 2. End
- 3. Enter side A & B Card No. 1
- 4. Continue
- 5. The IM PGNS position gives the Guidance Officer the first set of IM CDU angles. The Guidance Officer using these angles and RTCC calculates the first set of liftoff CDU angles. Enter first set of liftoff CDU angles as follows:
 - OG or X 1
 - IG or Y
 - MG or Z
- 6. Continue
- 7. The IM PGNS position gives the Guidance Officer the second set of IM CDU angles. The

Guidance Officer, using these angles and RTCC, calculates the second set of liftoff CDU angles. OG or \boldsymbol{X}

- Ť
- IG or Y
- 1
- MG or Z
- 8. Continue
- 9. Enter side A of Card No. 2
- 10. Continue

PCN-12

11. Enter side B of Card No. 2

- 12. Continue
- 13. Enter the time between the two sets of liftoff angles as follows:

Hours

ſ

Minutes

- 14. Continue
- 15. Print out is shown on the right side of the Surface/Docked Align Torquing Angles worksheet.

PROCEDURE 2: This procedure is for the Docked N20 Method. The steps in this procedure will be exactly

- as in Procedure 1 except for the following steps:
- 5. The first set of angles to be entered are the CM CDU angles converted into IM CDU angles. These are obtained from AGC SUPPORT POSITION or from the astronauts.

OG or X = 300 + RC - CMX ↑ IG or Y = 180 + CMY ↑

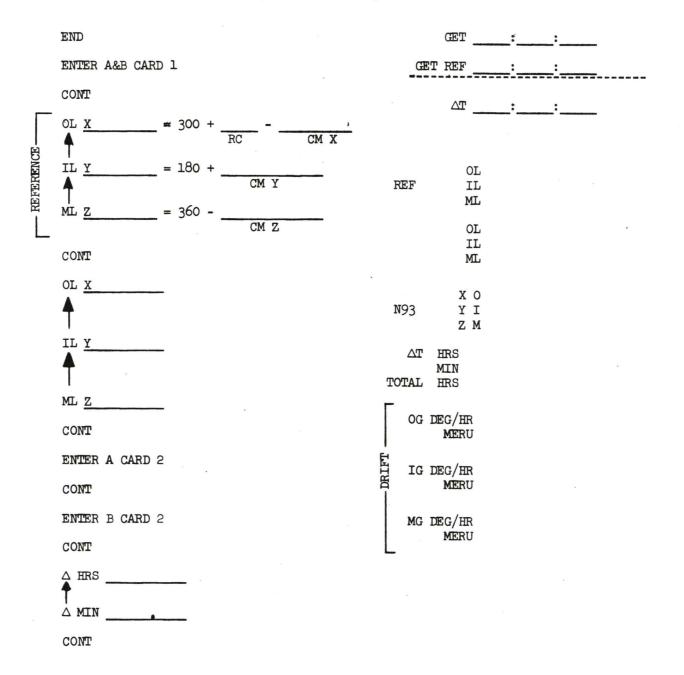
- MG or Z = 360 CMZ
- 7. The second set of angles are the LM CDU angles that are read at the same time as the CM angles are read. These are obtained from AGC SUPPORT POSITION or from the astronauts.

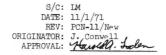
OG or X

f
IG or Y

f
MG or Z

- 13. Tape printout to surface/docked align torquing angles worksheet.
- 14. Repeat steps 1 thru 13 with second set of N2O angles to obtain second set of N93 angles.
- 15. Subtract set 1 N93's from set 2 N93's to determine actual N93 angles. These angles can be used to determine drift using P52/P57 irig bias shift determination (Hewlett Packard) procedure.


P-12


SURFACE CDU/DOCKED N20 TORQUING ANGLE CALCULATION

PCN-II/New

(HEWLETT PACKARD)

1

TITLE: NOUN 93 VENETIAN BLIND TABLE CALCULATION

REFERENCE: SCP No. 7-1

PURPOSE: The purpose of this SCP is to describe the method used to calculate the Noun 93 table.

BACKGROUND: After each P57 or P52, Noun 93's are displayed on the DSKY. Using these gyro drifts, the PGNS position computes the new NED updates. The purpose of the Noun 93 table is as a check that the PGNS position has made the right computation. The CONTROL can use this table to determine the new update if he is given the N93 torquing angles and the time between alignments.

PROCEDURE: 1. Set decimal wheel at 1

- 2. Set degrees/radians switch to degrees
- 3. End
- 4. Enter sides A & B card No. 11
- 5. Enter desired parameters as follows:

	NBDX	-	А
	NBDY	-	В
	NBDZ	-	С
	START TIME (HRS)	-	-D
	A TIME (HRS)	-	-C
	STOP TIME (HRS)	-	-B
	START N93	-	-A
	∆ N 93	-	-9
	STOP N93	-	-8
6.	Set Print Y		

- 7. End
- 8. Continue
- 9. Print out for each N93 for each time
 - Drift (MERU) +X Update (OCTAL) -X Update (OCTAL) +Y Update (OCTAL) -Y Update (OCTAL) +Z Update (OCTAL) -Z Update (OCTAL)

10. See next page for example of printout. If an update to any of the NED values is made, then a new venetian blind table needs to be made. The following values were used to compute the table. NEDX = 1.4

NEDY = 1.7 NEDZ = - 1.5 START TIME = 1 HR \triangle TIME = 1 HR STOP TIME = 2 HRS ORIGINAL N93 = .05 \triangle N93 = .05 FINAL N93 = .30

11-7-27

SCP NO. PGNS 7-8c PCN-II /New

№93 ↓ .05

DRIFT (MERU) +X UPDATE

-X UPDATE

+Y UPDATE -Y UPDATE +Z UPDATE -Z UPDATE

1

4

.10

.15

.20

.25

.30

TIME = 1 HR

3.3		1.7
77411.		77736.
1132.		606.
77460.		4.
1200.		. 654.
351.		25.
76630.		77155.
6.7		3.3
76541.		77411.
2002.		1132.
76607.		77460.
2050.	· .	1200.
1221.		351.
75760.		76630.
12100.		10030.
10.0		E O
75671.		5.0
		77065.
2652.		1456.
75737.		77134.
2720.		1524.
2071.		675.
75110.		76304.
13.3		6.7
75021.		76541.
3522.		2002.
75067.		76607.
3571.		2050.
2741.		1221.
74240.		75760.
		191001
16.7		8.3
74151.		76215.
4373.		2326.
74217.		76263.
4441.		
		2374.
3612.		1545.
73370.		75434.
20.0		10.0
73300		75671.
5243.		2652.
73347.		75737.
5311.	TIME = 2 HR	2720.
4462.		2071.
72517.		75110.

S/C:	LM
DATE:	11/1/71
REV:	PCN-11/New
APPROVAL:	J. J. Conwell Hauser a. Lodon

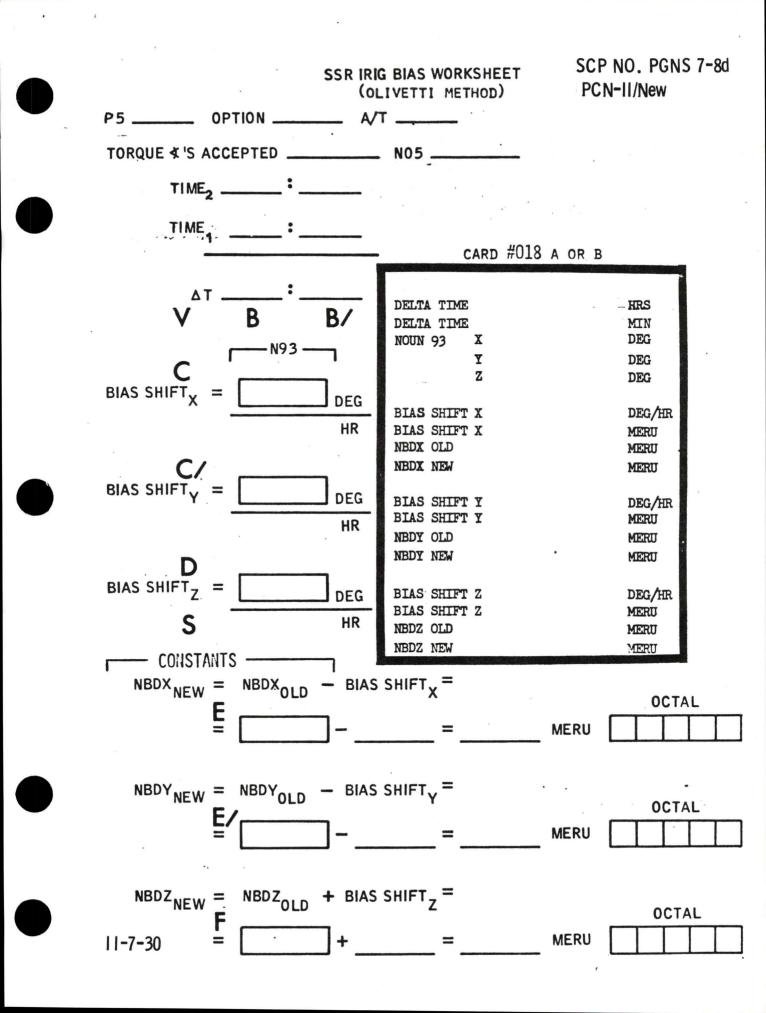
TITLE: P52/P57 IRIG BIAS SHIFT DETERMINATION (OLIVETTI COMPUTER)

PURPOSE: The purpose of this SCP is to describe the method used to determine gyro drift during coasting flight using the Olivetti Desk Computer. The SSR Irig Bias Worksheet (Olivetti Method) is used with this method (Page II-7-30).

PROCEDURE:

1. Turn on Olivetti and push General Reset

- 2. Set decimal wheel to 4
- 3. Record and Print button out
- 4. Load Card No. 18 Side A
- 5. Press V
- 6. Enter the following constants
 - NBDX E
 - NBDY E/
 - NBDZ_{old} F


,

If these constants are stored on the card then this step can be deleted.

7. Enter the following inputs

8. Press S

9. Print out will be as in the box on the right on SSR Irig Bias Worksheet

S/C: LM DATE : 11/1/70 REV: PCN-11/New ORIGINATOR: J Conwel Harold a. Loden APPROVAL:

SCP NO. PGNS 7-9

TITLE: LOAD, MONITOR AND DISPLAY LGC STORAGE LOCATIONS

- REFERENCES: A. MIT GSOP Section 2
 - B. MIT GSOP Section 4
 - C. MIT E-2260 Vol'I (Jan 69)

BACKGROUND: Several methods are available to the astronauts and the ground to load, monitor, and display the values contained in various LGC erasable core locations. The purpose of this console procedure is to describe these methods and identify special applications and procedures associated with them.

A. LGC Program 27 (P27)

The primary means of loading or updating data contained in the LGC erasable core locations is through P27. This program may be entered via the DSKY in the LM or via uplink through MSFN. The program has four basic modes of operation dictated by the verb configuration associated . with the program selection (Verb 70 to 73). The verb configuration specifies the type update capability which is desired. Associated with this program is the ability to monitor and validate the update data before it is actually loaded into the specified storage locations.

The following modes of operation are available via the specified verb configuration:

- 1. Verb 70 To increment or decrement the LGC clock, LM and CSM State Vector times, and TEPHEM time.
- 2. Verb 71 To update from 1 to 18 consecutive registers in the same bank (Contiguous Block Update). This werb is normally used to update state vectors and other E-memory location (i.e. REFSMMAT).
- 3. Verb 72 To update from 1 to 9 nonconsecutive registers in the same or different memory banks (Scatter Update). (This format is described in detail in MIT-GSOP 557 Section 2, 2.1.3).
- 4. Verb 73 To increment or decrement the LGC clock with a double precision octal time (see MIT GSOP 557, Section 2, 2.1.4).

The use of P27 by either the ground or the astronaut must conform to the following limitations: a. LGC must be operating.

- b. LGC must be in POO.
- c. LM communication uplink must be configured with the "UP DATA LINK" C/B (Panel 11, Row 4) set and "UP DATA LINK" switch (Panel 12) set to the "DATA" position.

The program is entered by selecting POO and entering the appropriate verb code for the desired mode of operation, e.g., V37E00EV70E.

B. Loading, Monitoring and Display LGC Values

Although P27 is the primary mode of updating LGC parameters and is the most efficient means of doing so for certain "standard" updates (LGC REFSMMAT, STATE VECTOR, etc.) mentioned previously, certain verb-noun instructions to the LGC permit modification and monitoring LGC storage values and are more operationally expeditious than through P27. The following matrix describes the various instructions available to load, monitor and display LGC parameters:

11-7-31

SCP NO. PGNS 7-9 PCN-II/New

	0	CTAL	DECIMAL		
	VERB NOUN		VERB	NOUN	
LOAD	21 to 25 25	01 to 03 07			
DISPLAY	01 to 05	01 to 03	06-07	01 to 03	
MONITOR	11 to 15	01 to 03	16-17	01 to 03	

Various special operating instructions which may be used to update LGC storage parameters through the use of these verb-noun instructions are described below:

1. Erasable memory locations may be updated as follows:

a. KEY V37E OOE

,

- b. KEY V21 NO1E (Start update)
 - c. KEY XXXXX E (ECADR address)
 - d. KEY XXXXX E (update data; octal configuration of bits or scaled data, see paragraph 5 below)

If more than one nonsequential address is to be loaded, perform step e and repeat steps c and d for each address to be loaded.

- e. KEY E (to reinitialize V21N01)
- If a number of sequential addresses are to be loaded, after the first data load:
- f. KEY N15E
- g. KEY XXXXX E E (update data, each component; the second E reinitializes V21N15)
- 2. To verify the update load:
 - a. KEY VOLNOLE
 - b. KEY XXXXXE (address)
 - c. VERIFY DATA IN R1

If a number of nonsequential addresses are to be monitored - Key ENTER and repeat step b and c.

- If the data in a number of sequential addresses is to be verified:
- d. KEY N15E
- e. VERIFY SECOND DATA WORD IN RL
- f. ENTER
- g. VERIFY THIRD DATA WORD IN R1, REPEAT f AND g AS DESIRED.
- 3. Procedure to isolate a single RCS jet is as follows:
 - a. KEY V25N07E
 - b. KEY 1257E to isolate + (U-V) Jets 1260E to isolate + P Jets

 - c. Verify Rl 1257/1260
 - d. KEY XXXE Octal Bit Configuration of Jet
 - e. Verify R2 OOXXX
 - f. KEY LE to isolate
 - E to enable (NOTE: Cycling Jet thruster disable switches will also enable the desired jet).
 - g. Verify R3 0000x
 - h. KEY V48E
 - i. Monitor FVOlN46
 - j. KEY PROCEED (Required to update the DAP)
 - k. KEY V34E

	OCTAL BIT CONFIG	Isolate A System			
	<u>+</u> (U-V) Jets		<u>+</u> (P Je	ts)	1257E 146E
AlU BlD B2U A2D A3U B3D B4U A4D	100 200 20 40 4 10 1 2	Alf BlL A2A B2L B3A A3R B4F A4R	4 200 10 20 1 40 2 100	ž	146E 1E 1260E 154E 1E <u>Isolate B System</u> 1257E 231E 1E 1260E
					223E 1E

4. Procedure to configure specified bits in a specified erasable core address:

a. KEY V25 NO7E

b. KEY XXXXE (ECADR of register)

c. Verify ECADR in Rl

d. KEY XXXXXE ("1's" for bits to be changed, octal configuration)

e. Verify bit configuration in R2

f. KEY 1E (to set bits)

or E (to reset bits)

g. Verify bit changes in R3

5. Procedure to load output channels

- a. KEY V21N1OE
- b. KEY XXE (Address of channel)
- c. KEY XXXXXE (Entire channel must be loaded)

OR use procedure in 4. above.

- 6. To monitor input/output channels
 - a. VII NIDE
 - b. KEY XXE (channel address)
 - c. Rl equals octal contents of desired channel

7. The above procedures describe various means of loading or reconfiguring data in the LGC erasable core registers. It is necessary, however, to remain cognizant of the proper bit configuration and scaling of the binary information loaded into these registers.

Fundamentally, the configuration of the LGC registers takes two basic forms: <u>Unscaled</u>, for bi-level type information, i.e., Flagwords and channels. <u>Scaled</u>, for registers which require the entire word (or possibly two or three words for double and triple precision) to define the information it contains.

In the case of scaled registers, the desired value must be scaled to the proper register scaling and converted to octal before being loaded into the register.

In some cases, a noun instruction is provided to accomplish this scaling process automatically in the LGC; thus the desired value may be loaded directly in decimal.

SCALED REGISTERS	,	ECADR
PBIASX	-	1452
PBIASY		1454
PBIASZ		1456
PIPASCFX		1453
PIPASCFY		1455
PIPASCFZ		1457
NBDX		1460
NBDY		1461
NBDZ		1462
ADIAX		1463
ADIAY		1464
ADIAZ		1465
ADSRAX		1466
ADSRAY		1467
ADSRAZ		1470
HIASCENT		03000
DKDB		03011
UNSCALED REGISTERS	E	CADR
RADMODES		0110
DAPBOOLS		0111
FLAGWORD O		0074
FLAGWORD 1		0075
FLAGWORD 2		0076
FLAGWORD 3		0077
FLAGWORD 4		0100
FLAGWORD 5		0101
FLAGWORD 6		0102
FLAGWORD 7		0103
FLAGWORD 8		0104
FLAGWORD 9		0105
FLAGWORD 10		0106
FLAGWORD 11		0107
RCS FLGS		1262
CH5 MASK		1257
CH6 MASK		1260
IMODES 30		1277
IMODES 33		1300

The following is a list of selected erasable core registers and their respective ECADR's:

4

8. The following procedure may be used to convert a decimal number to octal, scaled for direct input into E-memory by the methods described above:

1. Switch Configuration for 9100B Hewlett Packard Computer

Power On Run Mode

Fixed Decimal point

Decimal wheel at 5

- 2. End
- 3. Enter side A and then B of Card No. 15
- 4. End
- 5. Continue
- 6. Enter decimal or octal number
- 7. 1
- 8. Enter scale factor
- 9. If octal to decimal conversion then Continue
- · If decimal to octal conversion then Press Set Flag Continue
- Print out will be as follows: Scale Factor Original Number

Converted Number

SCP NO. PGNS 7-10

s/c:	LM
DATE :	11/1/71
REV:	PCN-11/New
ORIGINATOR:	C. L. Gruby
APPROVAL:	Haister Frelon
T TO VEHI	CIE

EVALUATION OF TAPE METER INDICATED ALTITUDE WITH RESPECT TO VEHICLE PITCH AND ANTENNA POSITION

PURPOSE: To determine indicated altitude on the Altitude/Altitude Rate Meter as a function of actual altitude above the terrain and vehicle Pitch angle.

EACKGROUND: The LR altitude data displayed on the Altitude/Altitude Rate Meter does not represent true altitude for the following reasons:

- 1. The LR altitude beam is not positioned along the antenna X axis (20.33° aft)
- 2. LR antenna positions and mounting (X-axis)
 - a. Pos 1 23.85° aft of LM X axis
 - b. Pos 2 parallel with IM X axis
 - c. Antenna rotated toward the LM + Y axis 6°
- 3. The Altitude/Altitude Rate Meter multiplies LR altitude data by the cosine of 15° (.96593)
- 4. Vehicle Pitch attitude varies the altitude beam impingment angle on the lunar surface.

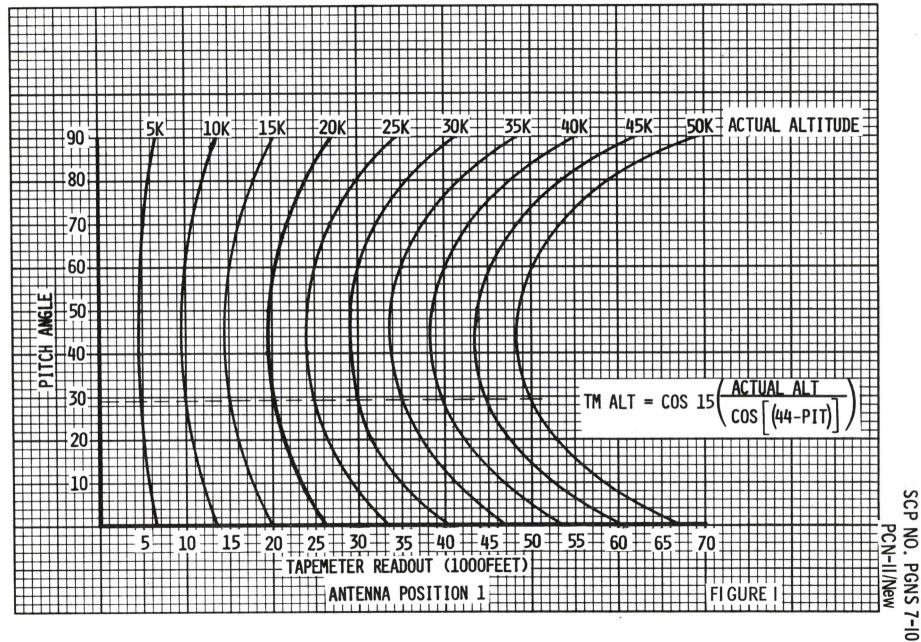
To simplify the method of computation only vehicle pitch attitude was considered. The Yaw and Roll attitude were assumed to be zero. The antenna rotation toward the CM + Y axis was also neglected which introduces 0.5 percent error.

METHOD:

ALT BEAM $= 20.33^{\circ}$ ANT POS 1 $= 23.85^{\circ}$ ANT POS 2 $= 0.0^{\circ}$

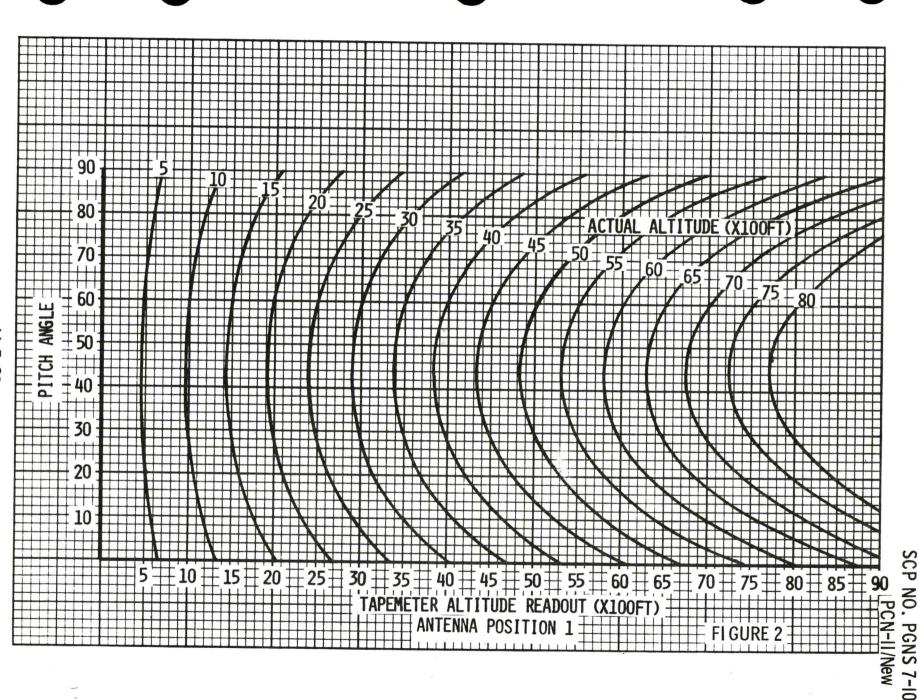
TAPEMETER ALT = COS 15° (BEAM ALT)

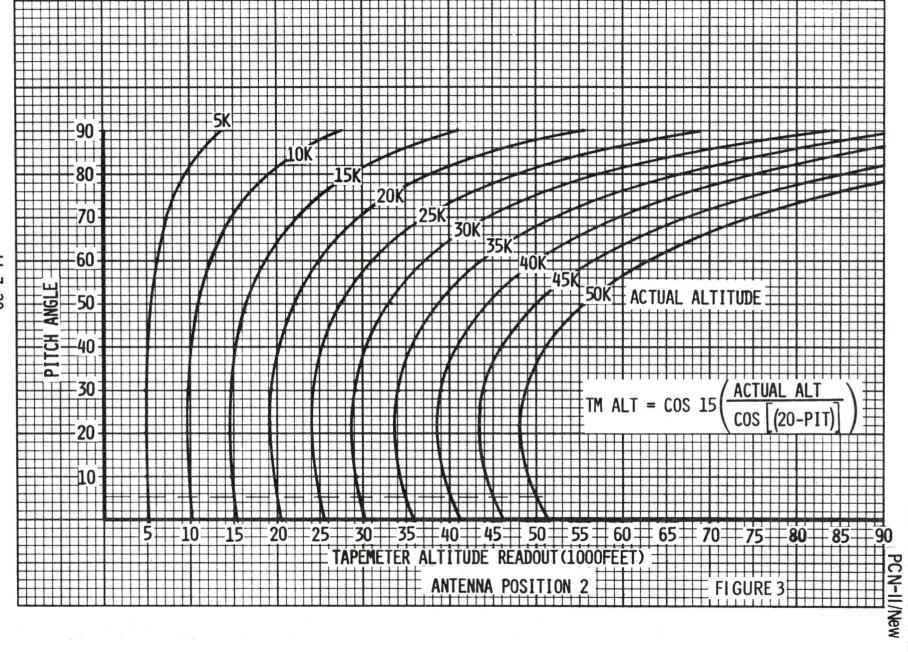
TRUE ALT = COS (HEAM * + ANT POS * - PITCH *) BEAM ALT

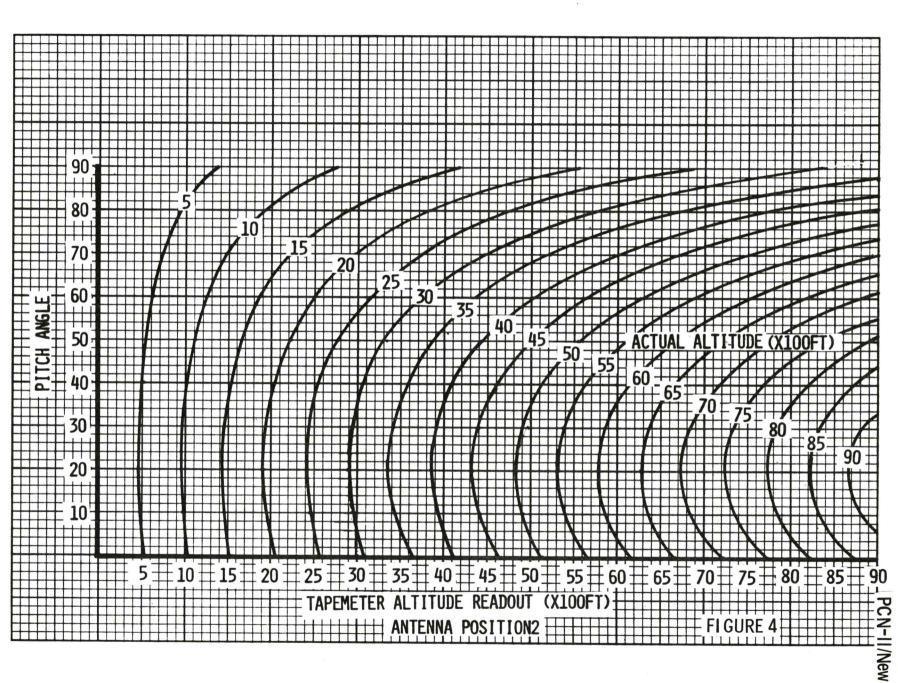

BEAM ALT =

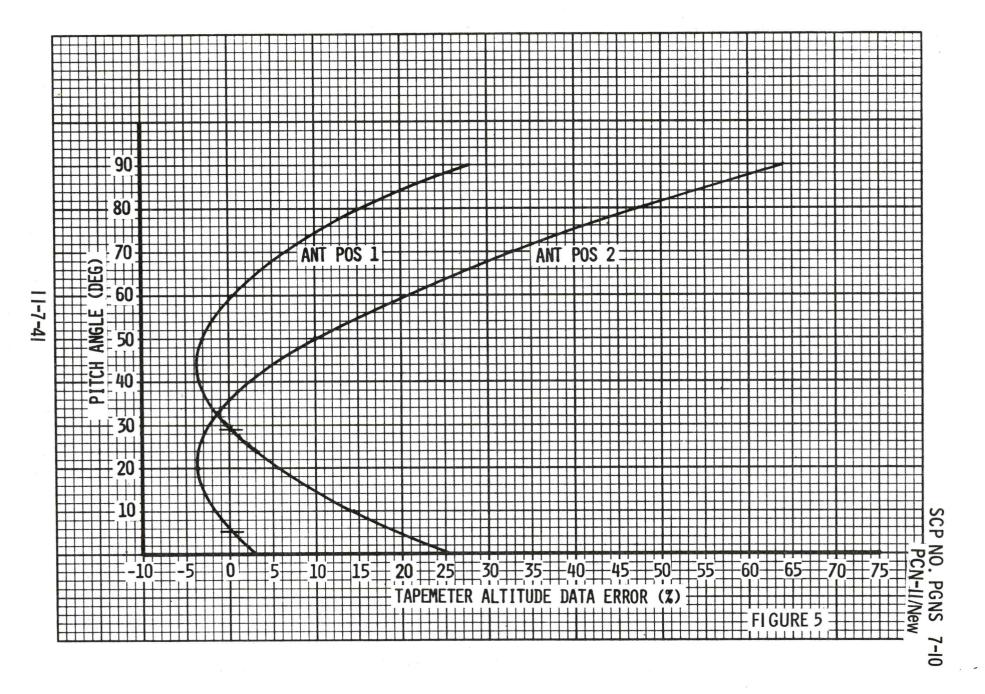
TRUE ALT COS (BEAM ★ + ANT POS ★ - PITCH ★)

TAPEMETER ALT = $\frac{\cos 15^{\circ} \text{ true alt}}{\cos (\text{Heam} \neq \text{ ant } \text{pos } \neq \text{ pitch } \neq)}$


Figures 1 through 4 are plots of tapemeter indicated altitude with respect to vehicle pitch angle. The curves are true altitude lines. Figures 1 & 2 represent antenna position 1 and Figures 3 & 4 represent position 2.


Figure 5 is a plot of vehicle pitch angle with respect to Tapemeter indicated altitude error expressed in percent. Antenna positions 1 and 2 are shown.


NO.



SCP NO. PGNS 7-10

SCP NO. PGNS 7-10

SCP NO. PGNS 7-11

S/C:	
DATE:	11/1/71
REV:	PCN-11/New
ORIGINATOR:	J. Conwell & J. Nelso
APPROVAL:	J. Conwell & J. Nelso: Harolda. Julin

TITLE: TEMPERATURE AND VOLTAGE EFFECTS ON IMU CONSTANTS WITH ATTENDANT VELOCITY AND ALIGNMENT ERRORS

PURPOSE: The purpose of this SCP is to show the effects of the IMU temperature changes and power supply

changes on:

- 1. IRIG Constants
 - (a) Acceleration Drift along the Spin Reference Axis (ADSRA)
 - (b) Acceleration Drift along the Input Axis (ADIA)
 - (c) Null Bias Drift (NBD)
- 2. PIPA Constants
 - (a) PIPA bias
 - (b) PIPA Scale Factor Error

PROCEDURE: 1. IRIG Constants

 (a) ADSRA - Acceleration sensitive drift along the spin reference axis is affected by temperature. Figure 1 shows the change in ADSRA as the temperature varies about nominal. The slope of the curve is .5 MERU/g/^OF.

The maximum value on the graph is a change of 2.5 MERU/g for a 5° F change in temperature. This is one-half of the one sigma value of 5 MERU/g. If the entire ascent or descent burn were made in one stable member axis, then the following table would give the error caused in the platform alignment by a 1 σ value and a 3 σ value.

TYPE BURN	ADSRA ERROR	PLATFORM MISALIGNMENT			
Descent	5 MERU/g (1 ~)	.00468 deg			
Descent	15 MERU/g (30)	.01404 deg			
Ascent	5 MERU/g (1 <i>•</i>)	.00393 deg			
Ascent	15 MERU/g (3 ~)	.01176 deg			

Table 1 could be used to update the ADSRA terms if a change in temperature occurred. An update would probably never be accomplished since the values are within the one sigma value. The table can also be used to check the values that are loaded in erasable storage in the LGC.

(b) ADIA - Acceleration sensitive drift along the input axis is affected by temperature. Figure 1 shows the change in ADIA as the temperature varies about nominal. The slope of the curve is .5 MERU/g/^OF. The maximum value on the graph is a change of 2.5 MERU/g for a 5^oF change in temperature. This is within the one sigma value of 8 MERU/g. If the entire ascent or descent burn were made in one stable member axis, the following table gives the error caused in the platform alignment.

TYPE BURN	ADIA ERROR	PLATFORM MISALIGNMENT
Descent	8 MERU/g (1 ~)	.00748 deg
Descent	24 MERU/g (30)	.02244 deg
Ascent	8 MERU/g (1σ)	.00627 deg
Ascent	24 MERU/g (30)	.01881 deg

11-7-42

Table 1 could be used to update the ADIA terms if a change in temperature occurred. An update would probably never be accomplished since the values are within the one sigma value.

- (c) NBD Normal bias drift changes with a change in temperature from nominal at the rate of .2 MERU^O/F as shown by Figure 1. Figure 2 shows NED platform drift versus platform error versus time. If the temperature had changed by 5^oF, the total NED change would be 1 MERU. This is less than the one sigma NED compensation value of 1.2 MERU. Therefore, this number would probably not be updated.
- 2. PIPA Constants
 - (a) FIPA Bias Figure 3 shows change in FIPA bias with changes in the 120 VDC, 28 VDC and 28 VAC 3.2 KHZ power supplies. FIPA bias changes at the rate of -.046 cm/sec²/volt for the 28 VAC 3.2 KHZ case. For the 120 VDC and 28 VDC case, the FIPA bias changes at the rate of ≈ .02 cm/sec/volt. FIPA bias does not change with FIPA temperature in the range of ± 4.5°F about nominal FIPA temperature. Figure 3 also shows FIPA bias versus total accumulated velocity error for various burn times. Figure 4 is similar to Figure 3 and shows FIPA bias versus velocity error over a larger FIPA bias error range. FIPA bias shifts can be measured directly as described in SCP No. PCNS 7-2.
 - (b) FIPA Scale Factor Error Figure 5 shows changes in FIPA bias scale factor with changes in the 120 VDC, 28 VDC, and 28 VAC 3.2 KHZ power supplies and FIPA temperature. Figure 5 also shows FIPA scale factor error versus percent accumulated velocity error. To find the total velocity error for any given burn, multiply the percent error by the total delta velocity expected for the burn maneuver. Table 2 is a FIPA scale factor to octal conversion chart that can be used for loading new scale factors in the LGC. Based on the small velocity errors caused by FIPA scale factor error, it is not expected that realtime updates will be necessary.

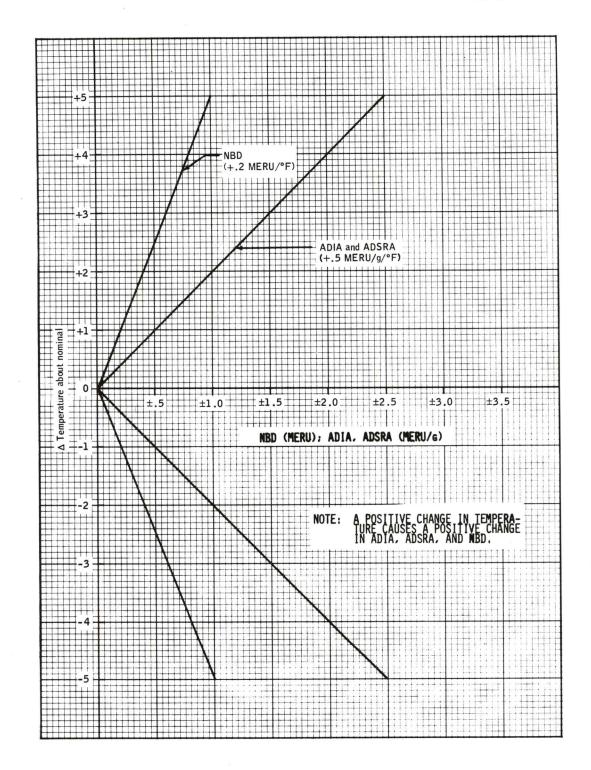


Figure 1. - Change in gyro drift terms vs change in temperature.

NBD PLATFORM DRIFT (MERU)

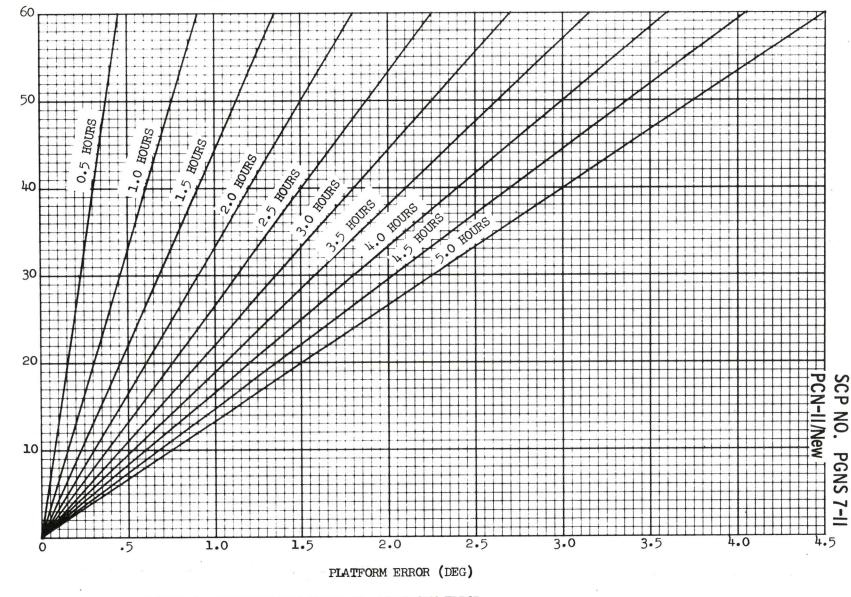
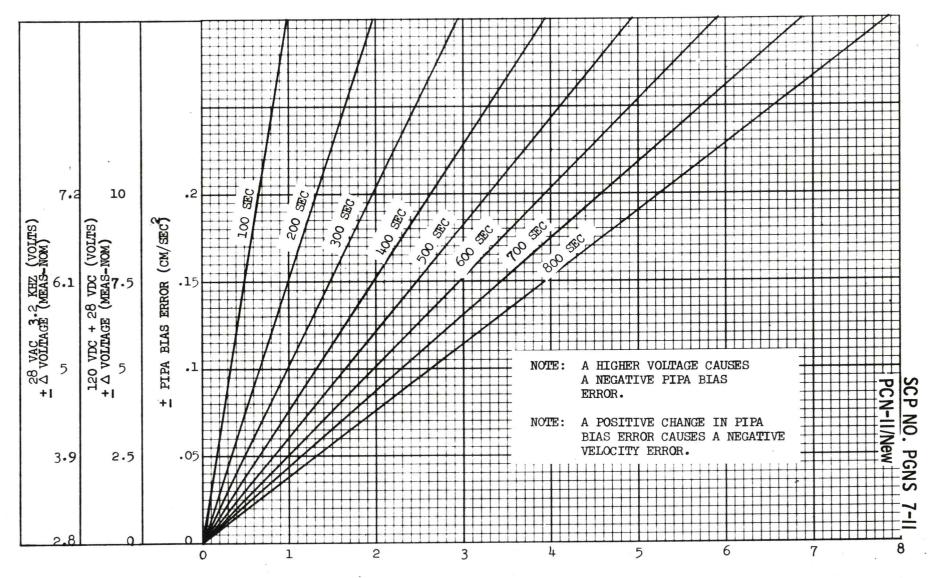
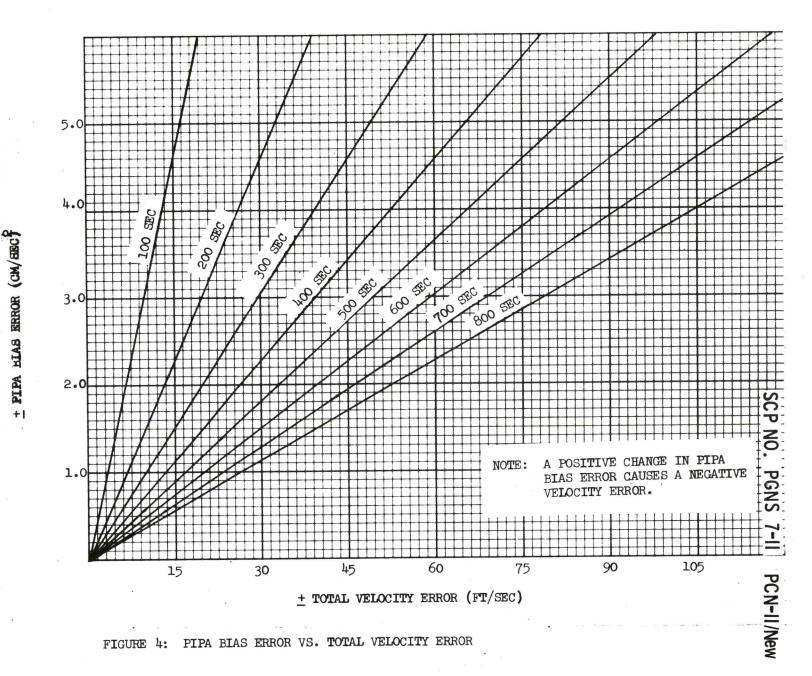



FIGURE 2: NBD PLATFORM DRIFT VS. PLATFORM ERROR


||-7-45

+ TOTAL VELOCITY ERROR (FT/SEC)

FIGURE 3: VOLTAGE VS. PIPA BIAS ERROR VS. TOTAL VELOCITY ERROR

11-7-46

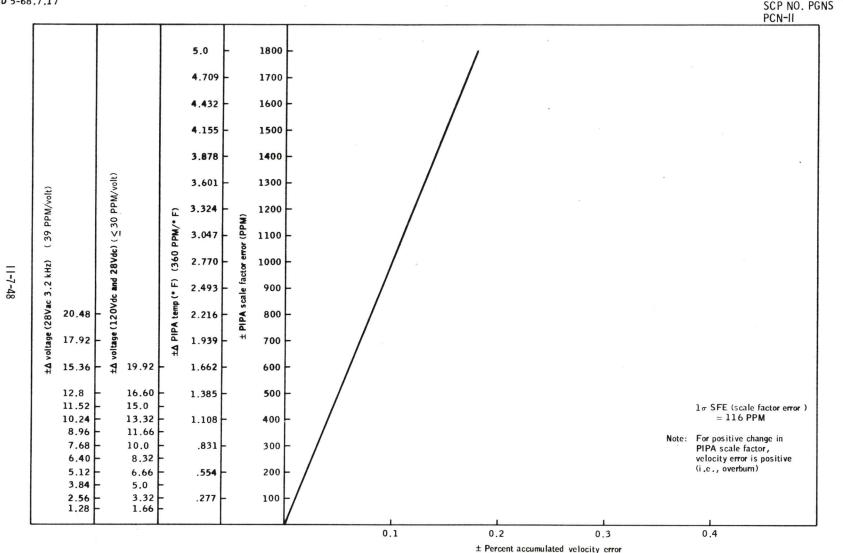


Figure 5. - PIPA scale factor error vs velocity error.

FCD 5-68.7.17

SCP NO. PGNS 7-II

SCP NO. PGNS 7-II PCN-II 4

TABLE I.- LM ADIA AND ADSRA TO OCTAL

For octal update of ADIAX, Y, Z and ADSRAX, Y, Z (address 1463, 1464, 1465, 1466, 1467, 1470 respectively). ADIA and ADSRA are scaled B-6 gyro pulses/cm/sec².

MERU/g	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0 ·	9.0
0000.0	00000	00032	00064	00116	00150	00202	00234	00266	00320	00352
0010.0	00404	00436	00470	00522	00554	00606	00640	00672	00724	00756
0020.0	01010	01042	01074	01126	01160	01212	01244	01276	01330	01362
0030.0	01414	01446	01500	01532	01564	01616	01650	01702	01734	01766
0040.0	02020	02052	02104	02136	02170	02222	02254	02306	02340	02372
0050.0	02424	02456	02510	02542	02574	02626	02660	02712	02743	02775
0060.0	03027	03061	03113	03145	03177	03231	03263	03315	03347	03401
0070.0	03433	03465	03517	03551	03603	03635	03667	03721	03753	04005
0080.0	04037	04071	04123	04155	04207	04241	04273	04325	04357	04411
0090.0	04443	04475	04527	04561	04613	04645	04677	04731	04763	05015
0100.0	05047	05101	05133	05165	05217	05251	05303	05335	05367	05421
0110.0	05453	05505	05537	05571	05623	05655	05707	05741	05773	06025
0120.0	06057	06111	06143	06175	06227	06261	06313	06345	06377	06431
0130.0	06463	06515	06547	06601	06633	06665	06717	06751	07003	07035
0140.0	07067	07121	07153	07205	07237	07271	07323	07355	07407	07441
0150.0	07473	07525	07557	07611	07643	07675	07727	07761	10013	10045
0160.0	10077	10131	10163	10215	10247	10301	10333	10365	10417	10451
0170.0	10503	10535	10566	10620	10652	10704	10736	10770	11022	11054
0180.0	11106	11140	11172	11224	11256	11310	11342	11374	11426	11460
0190.0	11512	11544	11576	11630	11662	11714	11746	12000	12032	12064
0200.0	12116	12150	12202	12234	12266	12320	12352	12404	12436	12470
0210.0	12522	12554	12606	12640	12672	12724	12756	13010	13042	13074
0220.0	13126	13160	13212	13244	13276	13330	13362	13414	13446	13500
-0000.0	00000	77745	77713	77661	77627	77575	77543	77511	77457	77425
-0010.0	77373	77341	77307	77255	77223	77171	77137	77105	77053	77021
-0020.0	76767	76735	76703	76651	76617	76565	76533	76501	76447	76415
-0030.0	76363	76331	76277	76245	76213	76161	76127	76075	76043	76011
-0040.0	75757	75725	75673	75641	75607	75555	75523	75471	75437	75405
-0050.0	75353	75321	75267	75235	75203	75151	75117	75065	75034	75002
-0060.0	74750	74716	74664	74632	74600	74546	74514	74462	74430	74376
-0070.0	74344	74312	74260	74226	74174	74142	74110	74056	74024	73772
-0080.0	73740	73706	73654	73622	73570	73536	73504	73452	73420	73366
-0090.0	73334	73302	73250	73216	73164	73132	73100	73046	73014	72762
-0100.0	72730	72676	72644	72612	72560	72526	72474	72442	72410	72356
-0110.0	72324	72272	72240	72206	72154	72122	72070	72036	72004	71752
-0120.0	71720	71666	71634	71602	71550	71516	71464	71432	71400	71346
-0130.0	71314	71262	71230	71176	71144	71112	71060	71026	70774	70742
-0140.0	70710	70656	70624	70572	70540	70506	70454	704 22	70370	70336
-0150.0	70304	70252	70220	70166	70134	70102	70050	70016	67764	67732
-0160.0	67700	67646	67614	67562	67530	67476	67444	67412	67360	67326
-0170.0	67274	67242	67211	67157	67125	67073	67041	67007	66755	66723
-0180.0	66671	66637	66605	66553	66521	66467	66435	66403	66351	66317
-0190.0	66265	66233	66201	66147	66115	66063	66031	65777	65745	65713
-0200.0	65661	65627	65575	65543	65511	65457	65425	65373	65341	65307
-0210.0	65255	65223	65171	65137	65105	65053	65021	64767	64735	64703
-0220.0	64651	64617	64565	64533	64501	64447	64415	64363	64331	64277

For Table I interpolation, add the octal number for positive ADIA or ADSRA values and subtract the octal number for negative values.

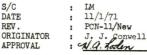
MERU/g	.05	.1	.2	.3	.4	.5	.6	.7	.8	.9
OCTAL NO.	l	3	5	10	12	15	20	22	25	27

PCN-II

TABLE II.- LM PIPA SCALE FACTOR TO OCTAL

.

54 .


> For octal update of PIPASCFX, Y, Z (address 1453, 1455, 1457). PIPASCF is scaled B-9 PIPA counts per PIPA count.

PPM	00.0	10.0	. 20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
0000.0	00000	00124	00250	00374	00520	00643	00767	01113	01237	01363
0100.0	01507	01633	01757	02103	02226	02352	02476	02622	02746	03072
0200.0	03216	03342	03465	03611	03 7 35	04061	04205	04331	04455	04601
0300.0	04725	05050	05174	05320	05444	05570	05714	06040	06164	06310
0400.0	06433	06557	06703	07027	07153	07277	07423	07547	07673	10016
0500.0	10142	10266	10412	10536	10662	11006	11132	11256	11401	11525
0600.0	11651	11775	12121	12245	12371	12515	12640	12764	13110	13234
0700.0	13360	13504	13630	13754	14100	14223	14347	14473	14617	14743
0800.0	15067	15213	15337	15463	15606	15732	16056	16202	16326	16452
0900.0	16576	16722	17046	17171	17315	17441	17565	17 71 1	20035	20161
1000.0	20305	20430	20554	20700	21024	21150	21274	21420	21544	21670
1100.0	22013	22137	2226 3	22407	22533	22657	23003	23127	23253	23376
1200.0	2 35 22	23646	23772	24116	24242	24366	24512	24636	24761	25105
1300.0	25231	25355	25501	25625	25751	26075	26221	2 6 344	26470	26614
1400.0	26740	27064	27210	27334	27460	27603	27727	30053	30177	30323
1500.0 1600.0 1700.0 1800.0 1900.0	30447 32156 33665 35373 37102	30573 32302 34011 35517 37226	30717 32426 34134 35643 37352	31043 32551 34260 35767 37476	31166 32675 34404 36113 37622	31312 33021 34530 36237 37746	31436 33145 34654 36363	31562 33271 35000 36507	31706 33415 35124 36633	32032 33541 35250 36756
-0000.0	00000	77653	77527	77403	77257	77134	77010	76664	76540	76414
-0100.0	76270	76144	76020	7567 4	75551	75425	75301	75155	75031	74705
-0200.0	74561	74435	74312	74166	74042	73716	73572	73446	73322	73176
-0300.0	73052	72727	7 2 603	72457	72333	72207	72063	71737	71613	71467
-0400.0	71344	71220	71074	70750	70624	70500	70354	70230	70104	67761
-0500.0	67635	67511	67365	67241	67115	66771	66645	66521	66376	66252
-0600.0	66126	66002	65656	65532	65406	65262	65137	65013	64667	64543
-0700.0	64417	64273	64147	64023	63677	63554	63430	63304	63160	63034
-0800.0	62710	62564	62440	62314	62171	62045	61721	61 5 75	61451	61325
-0900.0	61201	61055	60731	60606	60462	60336	60212	60066	57742	57616
-1000.0	57472	57347	57223	57077	56753	56627	56503	56357	56233	56107
-1100.0	55764	55640	55514	55370	55244	55120	54774	54650	54524	54401
-1200.0	54255	54131	54005	53661	53535	53411	53265	53141	53016	52672
-1300.0	52546	52422	52276	52152	52026	51702	51556	51433	51307	51163
-1400.0	51037	50713	50567	50443	50 317	50174	50050	47724	47600	47454
-1500.0 -1600.0 -1700.0 -1800.0 -1900.0	47330 45621 44112 42404 40675	47204 45475 43766 42260 40551	47060 45351 43643 42134 40425	46734 45226 43517 42010 40301	46611 45102 43373 41664 40155	46465 44756 43247 41540 40031	46341 44632 43123 414_4	46215 44506 42777 41270	46071 44362 42653 41144	45745 44236 42527 41021

INTERPOLATION TABLE

PPM	0.5	1	2	3	4	5	6	7	8	9
OCTAL (for plus values add; for negative substract)		10	21	31	42	52	62	73	103	114

SCP NO. PGNS 7-12

TITLE . LUNAR SURFACE TILT AND HEADING ANGLES FOR MANUAL STAGING

PURPOSE : The purpose of this SCP is to describe the method used to compute tilt and heading angles after touchdown.

BACKGROUND: On the lunar surface, it may sometimes be necessary to manually stage. The safety of the procedure depends upon the tilt and heading angles of the spacecraft. Once the tilt and heading angles are computed they are given to TELMU who then references MSC Internal Note No. 71-FM-198 to determine if manual staging is safe.

> The following assumptions are made: the platform was aligned local vertical to the landing site, the LM landed at the landing site, and the platform had no drift. Using data from Apollo 11, 12 and 14, it was found that a 0.5° error in Pitch or Roll would cause no greater error than $\pm 0.5^{\circ}$ in tilt and ± 7.0 degrees in heading. A 0.5° error in yaw caused no error in tilt and $\pm 0.5^{\circ}$ error in heading. In general, the maximum error will be 0.1° in each axis which will cause a maximum error of $\pm 0.1^{\circ}$ in tilt and $\pm 1.4^{\circ}$ in heading

After the first P57, the guidance officer can project the angles back to touchdown to give good local vertical angles at touchdown if confidence was lost in the touchdown angles.

PROCEDURE:

E: 1. Obtain gimbal angles in stable member coordinates from PGNS real-time console display at touchdown. (MSK 1137)

- 2. Switch configuration for Hewlett Packard.
 - o Degrees
 - o Fixed Point
 - o Power On
 - o Run

o Printer ON with X, Y, & Z button depressed.

- 3. Set decimal wheel to 5
- 4. GO TO OO
- 5. Enter side A of card No. 12
- 6. GO TO OO
- 7. Continue
- 8. Clear
- 9. Enter Roll
- 10.
- 11. Enter Pitch
- 12.

13. Enter Yaw

- 14. Continue
- 15. Printout will be as follows: Roll

Pitch	INPUT
Yaw)
Tilt	
Heading	OUTPUT
0	

16. Give these angles to LM EPS

11-7-51

SCP NO. PGNS 7-13

S/C: IM DATE: REV: PCN-12 ORIGINATOR: J. Conwell APPROVAL. Harolda. Laten

PLATFORM PARKING ANGLES TITLE:

PURPOSE: The purpose of this procedure is to describe the method used to calculate gimbal angles for parking the platform on the lunar surface using the Hewlett Packard 9100B computer.

EACKGROUND: On Apollo 15, a large shift was observed in the PIPA bias terms between power down and power up on the lunar surface. By parking the platform with all output axes of the accelerometer perpendicular to the gravity vector, the PIPA bias shift is expected to be reduced. The platform will be parked with the $\boldsymbol{Y}_{\rm SM}$ input axis up and parallel to the gravity vector. Using the direction cosines of the gravity vector the gimbal angles for the platform can be computed.

$$\overrightarrow{g} = \text{gravity vector}$$

$$-\overrightarrow{g} = \alpha \overrightarrow{\chi}_{NE} + \beta \overrightarrow{\Psi}_{NE} + \gamma \overrightarrow{Z}_{NE}$$
IGA = 0.00
MGA = $\sin^{-1}\alpha$
OGA = $\begin{cases} \sin^{-1}\left(\frac{-\gamma}{\cos \text{ MGA}}\right) \\ \cos^{-1}\left(\frac{\beta}{\cos \text{ MGA}}\right) \end{cases}$

PROCEDURE: 1. Obtain direction cosines α , β , and γ from MSK 1599 and record.

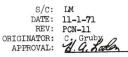
2. Switch configuration for Hewlett Packard X printer on

- Degrees
- Power On

Run Mode

- Decimal wheel at 5
- 3. End
- 4. Enter Side A Card No. 16
- 5. End
- 6. Enter α
- 7. **1**
- 8. Enter β
- 9. ↑

10. Enter γ


- 11. Continue
- 12. Printout will be as follows:
 - α
 - ß
 - γ OGA

 - IGA MGA

P-12

SCP NO RDR 8-1

TITLE: RNDZ RADAR ANTENNA MODES

PROCEDURE: The following equations are to be used to interpret the RR shaft and trunnion angles in terms of RR antenna line of sight azimuth and elevation angles:

MODE I

360⁰ - Resolver trunnion angle = azimuth angle Resolver shaft angle = elevation angle

MODE II

Resolver trunnion angle - $180 + X_1$ = azimuth angle Where: $X_1 = 0^\circ$ When: $180^\circ \leq \text{Resolver trunnion angle} < 270^\circ$ Where: $X_1 = 360^\circ$ When: $90^\circ \leq \text{Resolver trunnion angle} < 180^\circ$ X + <u>Resolver shaft angle</u> = elevation angle Where: X = 180° When: $0^\circ \leq \text{Resolver shaft angle} \leq 180^\circ$ and Where: X = -180° When: $180^\circ \leq \text{Resolver shaft angle} \leq 360^\circ$

Figure 1 represents graphical solutions of the above equations for trunnion and shaft respectively, in antenna modes I and II.

When communicating these angles to the astronauts, the sequence of presentation shall be first, azimuth (trunnion), and second, elevation (shaft).

Figures 2 and 3 show the software and hardware stops respectively. The software stops are those limits outside of which the LGC will reposition the antenna along the +Z (Mode I) or along the +X (Mode II) axis. The hardware stops show the mechanical limits beyond which the antenna cannot physically be positioned.

RR COARSE ALIGN PROCEDURE (V41 N72)

CB(11) RR(2) - CLOSE RR MODE - LGC IF POSITIONING OUTSIDE OF SOFTWARE LIMITS SET NORRMON FLAG: V25 NO7E 101E, 10E, 1E V41 N72E F 21 73 R1 XXX.XX E LOAD TRUN R2 XXX.XX E LOAD SHAFT P-11

SCP NO.	RDR	8-I
PCN-II		

P-11

F 04 12 R1 00066 SPECIFY RR FUNCTION R2 00001 LOCK ON CSM 00002 CONTINUOUS DESIGNATE

PRO

V41 (STATIC)

v16 N72E MONITOR ANTENNA DRIVING TO DESIRED POSITION FOR PARKING: CB(ll) RR(2) - OPEN

V44E TERMINATE

RR LOS AZIMUTH AND ELEVATION DISPLAY (V16 N56)

RNDZ RADAR SEL - LGC

V85E (RR LOS CALCULATION ROUTINE)

F 16 56 R1 AZIMUTH XXX.XX^O + 000.00^O TO 360.00^O ABOUT + Z . R2 ELEVATION XXX.XX^O + 000.00^O TO 360.00^O ABOUT + Y R3 BLANK TO TERMINATE

PRO

RR ANTENNA SLEW RATES

	HIGH	LOW
SHAFT UP	9.19 ⁰ /SEC	1.05°/SEC
DOWN	9.19 ⁰ /SEC	1.01°/SEC
TRUN RIGHT	9.22°/SEC	0.967 ⁰ /SEC
LEFT	9.27°/SEC	1.04°/SEC

RR ANTENNA DRIFT RATES

1	PRI	SEC
SHAFT	NOT MEASURED	
TRUN	1.04°/MIN LEFT	0.58°/MIN LEFT

ALL VALUES ARE SUBJECT TO VARIATION BETWEEN DIFFERENT SERIAL NUMBERED RADARS. CHECK SODB FOR UPDATES.

POSITIONING RR ANTENNA FOR LOCK-ON DURING ASCENT ASSUMPTIONS:

- A. Onboard and Ground TM readouts of RR position are unavailable during Ascent.
- B. Desired RR lock-on time with CSM is known to obtain proper LOS angle.
- C. Optimum RR antenna position for liftoff is:

SHAFT = 0°; TRUNNION = 180°

- 1. Rationale: Minimum antenna movement due to:
 - (a) Gas forces at staging
 - (b) Acceleration dynamics

2. Disadvantages:

(a) LGC cannot designate to the desired angles due to software limitations.

SCP NO. RDR 8-1 PCN-II

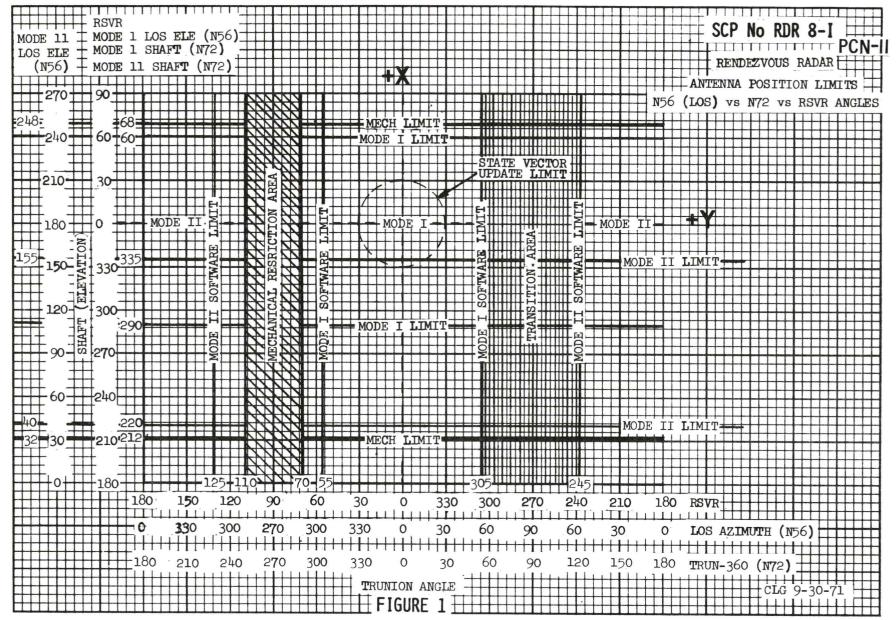
PROCEDURE (PRE-LIFTOFF)

.

- A. Select secondary gyros for minimum trunnion drift.
- B. Designate RR antenna (V41 N72) to:
 - SHAFT (R2) = 333° TRUNNION (R1) = 180°
- C. Slew up (hi rate) for 3 seconds. Antenna should be at : TRUNNION = 180° SHAFT = 0°
- D. Crew may read RR angles (ground also) if the NORRMON flag is set prior to P12.

PROCEDURE (ASCENT)

At liftoff + 4 minutes:


- A. Slew up (hi rate) for 24 seconds. This will ensure antenna against + 68° hardstop (mechanical limitation).
- B. Slew down (hi rate) for <u>TED</u> seconds stopping short of desired LOS. EX: (using Apollo 15 LOS for shaft = 275^o)

 $360^{\circ} - 275^{\circ} + 68^{\circ}$ -1 = 15.6 SEC = 15 SEC at hi slew rate. 9.18

- C. Slew dn (low rate) until AGC meter indicates signal strength.
- D. Maximize signal strength if desired then select auto track.
- E. Possible trunnion drift error of:

57 SEC at 0.58° /Min = 0.5° error

P-11

11-8-4

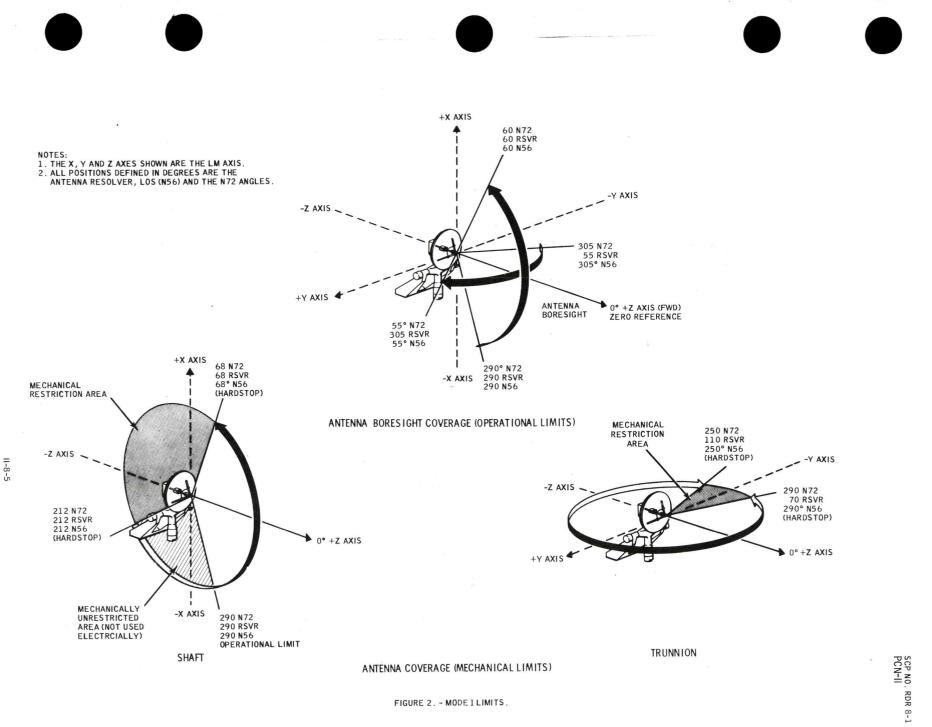
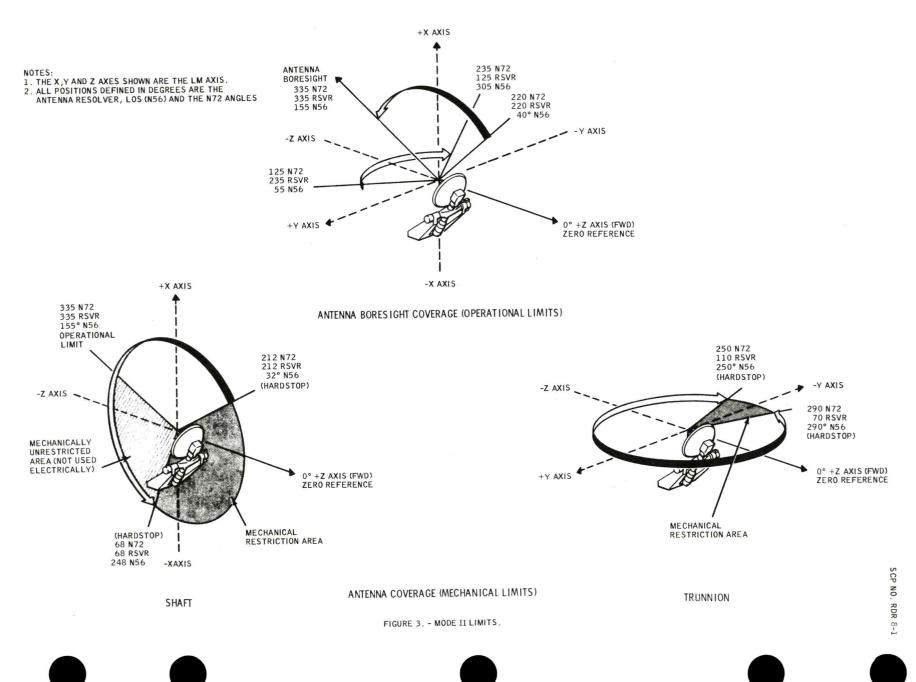



FIGURE 2. - MODE I LIMITS.

+

SCP NO. SCS 9-1

S/C: IM DATE: 11-1-71 REV: PCN-11 ORIGINATOR: J. Com APPROVAL: **M.Q.S**

P-11

P-6

P-11

TITLE: DPS GIMBAL TRIM ALIGNMENT

PURPOSE: The purpose of this SCP is to give corrected inputs to the LGC gimbal trim routine (R03) to account for off nominal drive rates and hard stop position. Dependent on the equipment available, the inputs may be calculated by any of the following procedures: A. Olivetti Underwood Programma 101, B. Arithmetic, and C. Hewlett-Packard 9100B.

PROCEDURE: A.L. Use Olivetti "Bias of IM- DPS Gimbal Trim" program

- 2. Turn on Olivetti.
- 3. Set decimal wheel to 7.

4. Record and Print button out.

5. Push General Reset.

6. Enter side A or B.

- 7. Push Z for roll or Y for pitch.
- 8. . Enter deg +X°, push S. (Obtain desired gimbal trim angles from propulsion).
- 9. Read answer.
- B.1. Obtain desired gimbal trim angles from IM propulsion $\pm P^{\circ}$ in pitch and $\pm R^{\circ}$ roll.
 - 2. Obtain hard stop position Y (measured from center) and gimbal drive rate RATE from SODB.
- 3. Obtain corrected LGC trim input by: $W_{PTT}^{0} = \text{new pitch entry} = \frac{.2}{RATE} \left[Y (\pm P^{0}) \right]$

 $W_{ROLL}^{O} = \text{new roll entry} = \frac{.2}{RATE} \left[Y - (+R^{O}) \right]$

4. Give W_{PIT}^{0} and W_{ROLL}^{0} to CONTROL for transmission to crew.

5. After crew inputs angles, check TM for roll and pitch within 0.5^o for AGS GO. For IM-_ Pitch Y = _____ Roll Y = _____ See SODB, IM-_ appendix

 Image: Pitch Y = ______
 Roll Y = ______
 See SODB, Image append.

 Rate = ______
 Rate = ______
 for this data.

C.l. Use Hewlett-Packard Calculator 9100B Program card 6, GDA Angle Input from PROP INPUTS.

- 2. Switch positions: DEGREES, FIXED POINT, POWER ON, RUN, and DECIMAL DIGIT 6.
- 3. With ENTER switch, enter A and B, push CONT (program is now entered).
- 4. Set printer X and Y switches.

NOTE

If negative number, use CHG SIGN on the desired gimbal trim angles from propulsion.

- 5. Push + X.XXX (pitch angle), CONT
- 6. Push + X.XXX (roll angle), CONT

7. Read answer.

SCP NO. SCS 9-2

S/C:	LM
DATE:	11-1-71
REV:	PCN-11
ORIGINATOR:	D. Clark
APPROVAL:	Hig. John
	P-5

P-11

TITLE: RCS INFLIGHT CHECKOUT TEST

PURPOSE:

The RCS checkout test is performed to:

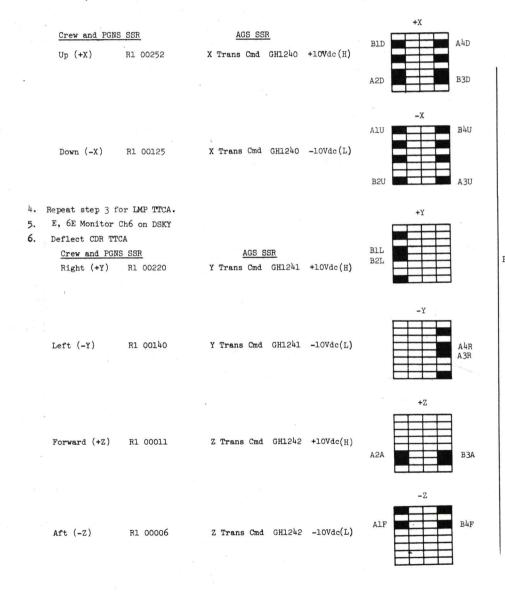
- A. Provide a PGNS and AGS TTCA cold fire check on the interface circuits between the thrust/ translation controller assembly (TTCA) and the LGC/AGS-CES circuitry.
- B. Provide a PGNS Rate Cmd cold fire check on the interface circuits between the attitude controller assembly (ACA) and the LGC.
- C. Provide an AGS Rate Cmd and Pulse cold fire check on the interface circuits between the ACA and the CES circuitry.
- D. Provide an end-to-end hot fire check of the RCS secondary coils, using 4-jet hardover.
- E. Provide a hot fire test of the primary preamps and primary RCS coils via PGNS minimum impulse firings.

PROCEDURE: A. Vehicle configuration for test:

- 1. The RCS system has been pressurized.
- 2. CSM wide deadband and attitude hold.
- 3. Att-translation 4 jets
- 4. Verify RCS Sys A and B Quad 1, 2, 3, 4 CB's Open
- 5. Guid cont PGNS Pin 100 not present
- 6. Mode Cont: PGNS Att hold Pin 97
- 7. Mode Cont: AGS Att hold Pin 99
- 8. Attitude Control (3) Pulse
- 9. ACA/4-Jet (CDR) Disable

. .

- 10. TTCA/Transl Enable
- 11. TTCA (Both) Jets
- 12. Verify high bit rate with MSFN


TI-9-2

SCP NO. SCS 9-2 PCN-II

B. Perform PGNS and AGS TTCA cold fire check.

- 1. V76E Minimum Impulse
- 2. VIINIOE, 5E Monitor Ch5 on DSKY
- 3. Deflect CDR TTCA:

Commanded jet driver indication which provides jet driver indication of quad pair due to open QUAD TCA C/B.

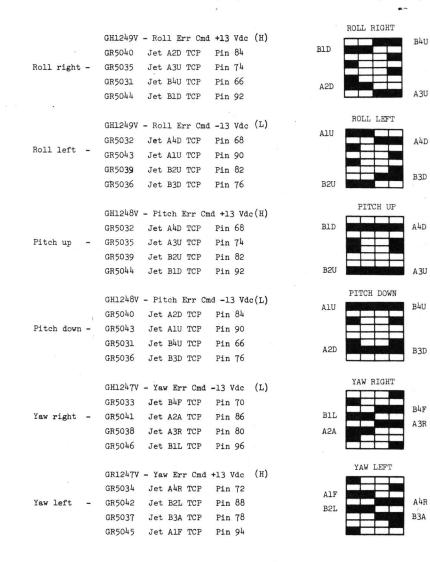
P-11

Commanded jet driver indication which provides P-11

- C. Perform PGNS Rate Cmd cold fire check and AGS Pulse cold fire check.
 - 1. CB(11) Att Dir Cont Close pins 101, 102, 103 (PLSD)
 - 2. V77E Rate Command
 - 3. V15N01E 42E Octal readout of roll, pitch, yaw counters
 - 4. Deflect CDR ACA (to soft stop, pause 2 sec at null) Pin 64

jet driver indication of quad pair due to open QUAD TCA C/B. ROLL RIGHT AGS SSR B4U Crew and PGNS SSR BlD Roll right R3 00051 Roll Err Cmd (GH1249V) +2Vdc A2D A3U ROLL LEFT AlU A4D Roll Err Cmd (GH1249V) -2Vdc Roll left R3 77726 100 m B3D B2U PITCH UP A4D BlD Pitch Err Cmd (GH1248V) +2Vdc Pitch up R1 00051 B2U A 3U PITCH DOWN AlU B4U Pitch Err Cmd (GH1248V) -2Vdc Pitch down Rl 77726 A2D B3D YAW RIGHT B4F Yaw Err Cmd (GH1247V) -2Vdc BlL Yaw right R2 77726 A3R A2A YAW LEFT AlF A4R Yaw Error Cmd (GH1247V) +2Vdc Yaw left R2 00051 B2L B3R

D. Perform AGS Rate Cmd cold fire test and RCS secondary coil hot fire test.


1. Verify CMC Mode - Free

2. Guid Control - AGS Pin 100

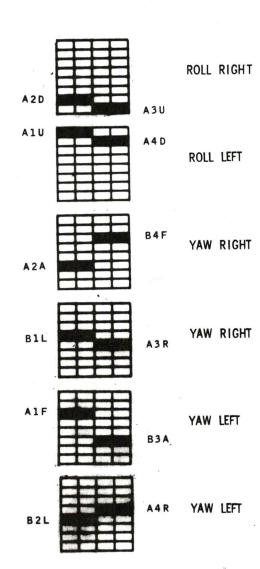
3. Att Control (3) - Mode Control Pins 101, 102, 103 not present

4. ACA/4-Jet (CDR) - Enable

5. CDR ACA (Deflect slowly to hardover, pause 2 sec at null) Pin 64 (Quad flags and RCS TCA warning lights - ON) Pin 6 not present (Master Alarm)

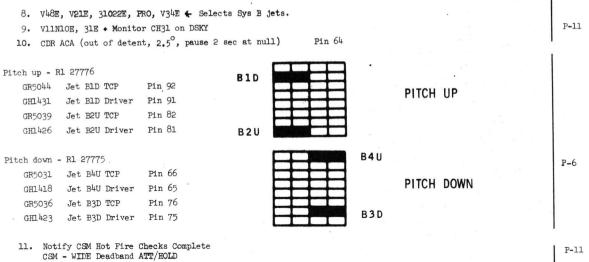
P-11

SCP NO. SCS 9-2 PCN-II


P-11

P-6

E. Perform PGNS Minimum Impulse hot fire check and change DAP configuration


- 1. Guid Control PGNS Pin 100 not present
- 2. V76E Minimum Impulse
- 3. CB(11) RCS Sys A: Quad TCA (4) Close
- 4. CB(16) RCS Sys B: Quad TCA (4) Close
- 5. CB(16) Inst: Cwea Open and Close Pin 6
- 6. VIINIOE, 31E R1 67777 Monitor CH31 on DSKY and R1 Att Hold
- 7. CDR ACA (out of detent, 2.5°, pause 2 sec at null) Pin 64

Roll right -	R1 27757	
GR5040	Jet A2D TCP	Pin 84
GH1427	Jet A2D Driver	Pin 83
GR5035	Jet A3U TCP	Pin 74
GH1422	Jet A3U Driver	Pin 73
Roll left - 1	R1 27737	
GR5043	Jet AlU TCP	Pin 90
GH1430	Jet AlU Driver	Pin 89
GR5032	Jet A4D TCP	Pin 68
GH1419	Jet A4D Driver	Pin 67
	wice) - Rl 27767	
GR5041	Jet A2A TCP	Pin 86
GH1428	Jet A2A Driver	Pin 85
GR5033	Jet B4F TCP	Pin 70
GH1420	Jet B4F Driver	Pin 69
CREOLE	Jet BLL TCP	Pin 96
GH1433	Jet BLL Driver	Pin 95
GR5038	Jet A3R TCP	Pin 80
GH1425	Jet A3R Driver	Pin 79
GILL 42)	bet Aut Diivei	1111 ()
Yaw left (tw	ice) Rl - 27773	
GR5045	Jet ALF TCP	Pi n 94
GH1432	Jet AlF Driver	Pin 93
GR5037	Jet B3A TCP	Pin 78
GH1424	Jet B3A Driver	Pin 77
Contraction of the contraction o	Jet B2L TCP	Pin 88
GH1429	Jet B2L Driver	Pin 87
GR5034	Jet A4R TCP	Pin 72
GH1421	Jet A4R Driver	Pin 71

II-9-5a

SCP NO. SCS 9-2 PCN-II

....

SCP NO. SCS 9-2a

S/C:	LM
DATE:	11-1-71
REV:	PCN-11
ORIGINATOR:	E. F. Marzanc
APPROVAL	H.a. Joden

P-11

TITLE: LUNAR SURFACE RCS CHECKOUT

PURPOSE:

The lunar surface RCS checkout is performed to:

- A. Provide a hot fire test of the primary preamps and primary RCS coils via PGNS Rate Cmd.
- B. Provide an end-to-end hot fire check of the RCS secondary coils, using 4-jet hardover coils, ACA cold fire CES voltage, minimum impulse check of CDR ACA to LGC.

PROCEDURE: A. Vehicle configuration for test:

- 1. Att-translation 4 jets
- 2. Verify RCS Sys A and B Quad TCA 1, 2, 3, 4 CB's Open
- 3.. CB (16) inst: CWEA Open and reclose
- 4. GUID CONT PGNS Pin 100 not present
- 5. MODE CONT: PGNS ATT HOLD
- **Pin** 97 **Pin** 99
- 6. MODE CONT: AGS ATT HOLD7. ATTITUDE CONT (3) MODE CONT
- Pins 101, 102, 103 not present
- 8. ACA/4-jet (CDR) Enable
- 9. Verify high bit rate with MSFN

B. Perform PGNS Rate Cmd hot fire check ACA to jets:

- 1. V48, 12102, PRO, + XXXXX IM, PRO
- 2. V77E
- 3. V15N01E 42E Rate Cmd hot fire check ACA to jets
- 4. CB (11 and 16) quad TCA (8) Close
- 5. CDR ACA (out of detent, pause 2 sec at null)

Pin 64

SCP NO. SCS 9-2a PCN-II

Jet A2D TCP	Pin 84	
Jet A2D Driver	Pin 83	
Jet A3U TCP	Pin 74	
Jet A3U Driver	Pin 73	
Jet BID TCP	Pin 92	
Jet BlD Driver	Pin 91	
Jet B4U TCP	Pin 66	
Jet B4U Driver	Pin 65	
Jet AlU TCP	Pin 90	
Jet AlU Driver	Pin 89	
Jet A4U TCP	Pin 68	
Jet A4U Driver	Pin 67	
Jet B2U TCP	Pin 82	
Jet B2U Driver	Pin 81	•
Jet B3D TCP	Pin 76	
Jet B3D Driver	Pin 75	
Jet BID TCP	Pin 92	
Jet BlD Driver	Pin 91	
Jet B2U TCP	Pin 82	
Jet B2U Driver	Pin 81	
Jet A4U TCP	Pin 68	
Jet A4U Driver	Pin 67	
Jet A3U TCP	Pin 74	
Jet A3U Driver	Pin 73	
Jet B4U TCP	Pin 66	
Jet B4U Driver	Pin 65	
Jet B3D TCP	Pin 76	
Jet B3D Driver	Pin 75	
Jet AlU TCP	Pin 90	
Jet AlU Driver	Pin 89	
Jet A3U TCP	Pin 74	
Jet A3U Driver	Pin 73	
Jet A2A TCP	Pin 86	
Jet A2A Driver	Pin 85	
Jet B4F TCP	Pin 70	
Jet B4F Driver	Pin 69	
Jet BlL TCP	Pin 96	
Jet BlL Driver	Pin 95	

GR5040 GH1427

GR5035

GH1422

GR5044

GH1431

GR5031 GH1418 GR5043 GH1430

GR5032

GH1419 GR5039

GH1426

GR5036 GH1423 GR5044

GH1431 GR5039

GH1436

GR5032

GH1419

GR5035 GH1422 GR5031

GH1481

GR5036 GH1423

GR5043

GH1430 GR5035 GH1422 GR5041 GH1428 GR5033

GH1420

GR5046

GH1433

GR5038

GH1425

GR5045

GH1432

GR5037

GH1424

GR5042

GH1429

GR5034

GH1421

Jet A3R TCP

Jet AlF TCP

Jet B3A TCP

Jet B2L TCP

Jet A3R Driver

Jet AlF Driver

Jet B3A Driver

Jet B2L Driver Jet A4R TCP

Jet A4R Driver

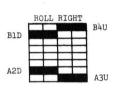
Roll right -R3 000XX

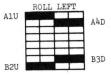
Roll left -

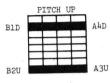
Pitch up -Rl 000XX

Pitch down -

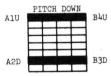
Yaw right -

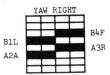

Yaw left -

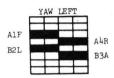

R2 000XX


R2 777XX

R1 777XX


R3 777XX





P-11

Pin 80

Pin 79

Pin 94 Pin 93

Pin 78

Pin 77

Pin 88

Pin 87

Pin 72

Pin 71

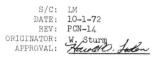
SCP NO. SCS 9-2a PCN-II

C. Perform minimum impulse check of CDR ACA to LGC, ACA cold fire CES Voltage, and RCS secondary coil hot fire using 4-jet in AGS 1. CB (11 & 16) QUAD TCA (8) - OPEN 2. V76E. 3. VIINIOE, 31E, RI 67777 4. GUID CONT - AGS Pin 100 5. ATTITUDE CONT (3) - MODE CONT Pins 101, 102, 103 not present 6. CDR ACA (Deflect slowly to hardover, pause 2 sec at null) Pin 64 ROLL RIGHT GH1249V - Roll Err Cmd +13 Vdc B4U GR5040 Jet A2D TCP Pin 84 BID Roll right Jet A3U TCP Pin 74 GR5035 R1 27757 Jet B4U TCP Pin 66 GR5031 A2D GR5044 Jet BID TCP Pin 92 A3U ROLL LEFT GH1249V - Roll Err Cmd -13 Vdc AlU A4D Jet A4D TCP Pin 68 GR5032 Roll left GR5043 Jet AlU TCP Pin 90 R1 27737 Jet B2U TCP Pin 82 GR5039 B3D B2U Jet B3D TCP Pin 76 GR5036 PITCH UP GH1248V - Pitch Err Cmd +13 Vdc BID A4D Jet A4D TCP Pin 68 GR5032 Pitch up GR5035 Jet A3U TCP Pin 74 R1 27776 Jet B2U TCP Pin 82 GR5039 Jet BLD TCP Pin 92 B2U A 3U GR5044 PITCH DOWN GH1248V - Pitch Err Cmd -13 Vdc B4U AlU GR5040 Jet A2D TCP Pin 84 Pitch down Jet AlU TCP Pin 90 GR5043 Jet B4U TCP Pin 66 R1 27775 GR5031 A2D B3D GR5036 Jet B3D TCP Pin 76 RIGHT GH1247V - Yaw Err Cmd -13 Vdc GR5033 Jet B4F TCP Pin 70 B4F Yaw right Jet A2A TCP Pin 86 BlL GR5041 A 3R R1 27767 A2A Jet A3R TCP Pin 80 GR5038 GR5046 Jet BlL TCP Pin 96 GH1247V - Yaw Err Cmd +13 Vdc Jet A4R TCP Pin 72 GR5034 AlF Yaw left A4R Jet B2L TCP Pin 88 GR5042 B2L R1 27773 B3A Pin 78 GR5037 Jet B3A TCP GR5045 Jet AlF TCP Pin 94

D. Reconfigure

Guidance control - PGNS
 Mode control (AGS) - AUTO

Pin 100 not present


Pin 98, pin 99 not present

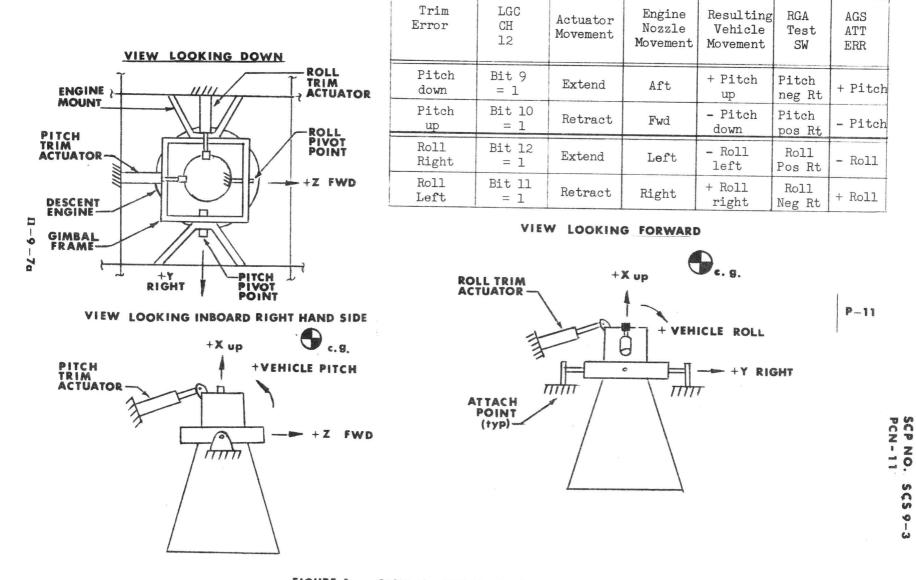
3. Cycle CB (16) CWEA.

P-11

P-11

SCP NO. SCS 9-3

TITLE: DAP SET, GIMBAL DRIVE CHECK, AND THROTTLE TEST


PURPOSE: The Dap Set, Gimbal Drive Check and Throttle Test is performed to provide the LM crew assurance that the descent engine gimbal trim system and manual throttle system will function properly during the descent engine burns. Due to an RCS impingement constraint, the RCS system U-V axis jets are inhibited during a docked descent engine burn. Hence, steering commands and vehicle attitude control are performed by the descent engine gimbal trim system during the burn, which means that this system is mandatory for performance of this type of burn. (See Figure 1 for gimbal dynamic information.)

P-5

書

PROCEDURE: A. MCCH Test Setup Requirements

- This test requires high speed data from the spacecraft in order that the SSR personnel can confirm satisfactory equipment performance. The LM crew does not have the onboard capability to confirm the position of the descent engine gimbals or the position of the throttle actuator valve.
- The analog recorders are required to be in format VII for this test to be documented properly.
 - a. Analog Recorder Console 29 left
 - Pin Ol Roll GDA Pos Pin O5 - Pitch GDA Pos
 - b. Analog Recorder Console 30 left
 - Pin 02 manual throttle cmd
 - Pin 03 auto throttle cmd
 - Pin 04 variable injector act pos
- B. Spacecraft Configuration for Test
 - 1. Verify RCS SYS A&B QUAD 1, 2, 3, 4 TCA CB's Open
 - 2. Throttle control sw manual
 - 3. Manual throttle sw CDR
 - 4. TTCA (CDR) Throttle (minimum position)
 - 5. Verify mode control sw: PGNS auto
 - 6. Verify MSFN contact
 - 7. Verify Engine gimbal sw enable
 - V48E request DAP data load routine (R03) F0146 DAP configuration R1 32012
 - 9. ENG ARM-DES
 - 10. Proceed
- C. SSR Responsibility during Test
 - 1. LM PROP position uses SCP No. PROP 11-11, CG and DPS Gimbal Angle Determination, to calculate | P-14 the roll and pitch descent engine gimbal positions for the present vehicle weight.
 - 2. LM AGS position uses SCP No. SCS 9-1, DPS Gimbal Trim Alignment, to take the roll and pitch gimbal positions calculated by the PROP position and converts these into angles that the LM crew enters into the DSKY to drive the gimbals to their new location. The AGS position verifies at the completion of the test that the descent engine gimbal trim system has functioned satisfactorily. The AGS position also verifies that the descent engine has been dearmed at the completion of this test.
 - 3. The LM PGNS position monitors the descent engine throttle portion of the test to confirm the manual throttle commands of minimum, softstop (53%), maximum, and minimum, agreeing with the throttle actuator position movement.
 - 4. At completion of the test, a voice report to the LM crew that the equipment responded properly is required.

\$

t

1

SCS 9-3

S/C:	LM
DATE:	10-1-72
	PCN-14
ORIGINATOR:	D.E. Stamper / /
APPROVAL:	D.E. Stamper

SCP NO. SCS 9-6

PURPOSE:

TITLE: RATE GYRO FLUCTUATIONS DURING LUNAR SURFACE RCS HOT FIRE

This procedure is designed to verify the operational integrity of the Rate Gyro Assembly (RGA). This can be accomplished if the RGA senses jet firings during the lunar surface RCS hot fire. Two recording methods are to be used to verify an RGA detection of thruster activity. They are as follows:

- A. A real-time recording of Format 30 Subformat 32
- B. A near real-time delog of Format 30 Subformat 32

PROCEDURE: A. MCC TEST SETUP REQUIREMENT

Approximately 10 minutes prior to the lunar surface RCS hot fire, CONTROL will verify that PROCEDURES has LM high speed Format 30 Subformat 32 entering MCC. CONTROL will also request that Subformat 32 data is placed on CRS-4 located in Rm. 311.

- B. SSR RESPONSIBILITY DURING TEST
 - 1. After verifying Subformat 32 is entering MCC, AGS will inform DISPLAY on his loop that analog recorders in Rm. 311 need to be adjusted for the required sensitivity and pen position.
 - The recorders that need adjustment are CRS-4 (analog channels 1-3 at 0.05 v/div, pen position center) 29L (pens 3 and 7 to 0.1 v/div, pen position at maximum) 30L (pen 7 to 0.1 v/div, pen position at maximum).
 - 3. AGS will then inform TIC on the CCATS TM loop the hot fire test is upcoming and that TIC must coordinate the logging of Format 30 data during the hot fire.
 - AGS will inform TIC immediately prior to the hot fire to start his logging tape. The time at which AGS calls TIC will be copied down by TIC as a reference (GMT) for starting delog process.
 - 5. On completion of the hot fire test, AGS will inform TIC to stop the logging tape. TIC will then inform the appropriate personnel to begin the delog process.
 - 6. AGS will then advise the DISPLAY personnel to readjust the analog recorders and to strip the recording off SCR-1
 - At this time, AGS will inform CONTROL that Format 30 Subformat 32 is no longer required. CONTROL can then inform PROCEDURES of such and that CRS-4 can be reconfigured to its proper data source.
 - AGS will send a messenger to the TIC console to pick up the delog and return it to the AGS console in the Vehicle Systems SSR (Rm. 311).

SCP NO. AGS 10-1

S/C: LM DATE: 4/11/60 ORIGINATOR: Marzano APPROVAL: 2.0.200

REV: Original

TITLE: DECIMAL TO OCTAL

PURPOSE .

To change decimal to DEDA octal for entry into DEDA.

A. Turn on Olivetti. PROCEDURE.

- B. Set decimal wheel to 7.
- C. Record and Print button out.
- D. Push General Reset.
- E. Load "Decimal to AGS Octal" card, side A or B.
- F. Push C W.
- G. Enter number (0.XXXS). (NOTE: A zero must precede any number <1).
- H. Enter scale factor (for B + X enter -X; for B X enter XS).
- I. If output is <1, proceed; if not, wrong scale factor is entered. Do not proceed; recycle to step F with correct SF.
- J. Enter last Olivetti output, to 5 decimal places only. (XX.XXXXS)
- K. If in step G the number is positive, last output is answer; if negative, continue.
- L. Do 8's complement $(77777 N^2 + 1) = XXXXX = answer$
- M. As a check, enter this number in the "AGS DEDA to Decimal" procedure.

SCP NO. AGS 10-2

S/C:	LM
DATE:	4/11/69
REV:	Original
ORIGINATOR:	Marzano
APPROVAL.	Zagl.

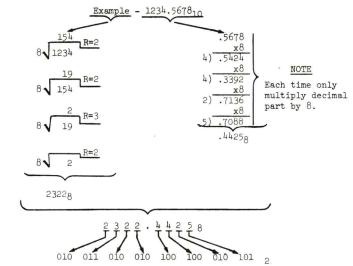
DEDA OCTAL TO DECIMAL TITLE:

- To change DEDA octal to decimal. PURPOSE:
- PROCEDURE A. Turn on Olivetti.
 - B. Set decimal wheel to 7.
 - C. Record and Print button out.
 - D. Push General Reset.
 - E. Load "AGS Octal to Decimal" cord, side A or B.
 - F. If negative, do .8's complement (77777 N^o + 1).
 - G. Push C W.
 - H. Enter № (5 digit number) XXXXXS.
 - I. Enter scale factor (for B + X enter XS; for B X enter -XS.
 - J. Output is decimal answer; number is negative if you did 8's complement in step F.
 - K. If red light appears, go back to step G and reduce decimal wheel one unit.
 - L. As a check enter this number in the "Decimal to DEDA Octal" procedure.

SCP NO. AGS 10-3

S/C:	LM
DATE:	4/11/69
REV:	Original
ORIGINATOR:	Marzano
APPROVAL:	H.a. Lolan

TITLE: DECIMAL TO DEDA OCTAL, HAND CALCULATION


PURPOSE:

: Use in event of inability to use AGS 10-1.

PROCEDURE:

A. Convert number to binary.

B. Scale binary number.

OCTAL +

BINARY →

If binary scaling is positive, move decimal point to the left If binary scaling is negative, move decimal point to the right Example: Bll and our binary number from step A.

> 10011010010 . 100100010₂ Scale Bl1

> > .100110100101001000102

C. If number is negative do 2's complement. This is done by inverting all bits and adding 1 bit to the LSB.


D. Convert to DEDA octal.

-.011 001 011 010 110 111 100₂

-.3 1 3 2 6₈ — —

E. -31326 is the DEDA octal number for -1234.5678 sealed at Bll.

Table of Powers of Two

4

SCP NO. AGS 10-4

S/C: LM DATE: 4/11/69 REV: Originator ORIGINATOR: Marzano APPROVAL: 4/0. foden

TITLE: DEDA OCTAL TO DECIMAL HAND CALCULATION

PURPOSE: Use in the event of inability to use AGS 10-2.

PROCEDURE: A. Convert to binary.

+LSB

Example: -313268

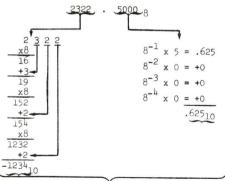
-.011 CO1 O11 010 1102

.100 110 100 101 0012

-.100 110 100 101 0102

+1

B. Complement if negative.-.011 001 011 010 1102


Binary no. Complement of binary no.

2's complement of binary no.

- C. Scale binary number.
 - -.100 110 100 101 0102 B11

If binary scaling is positive, move decimal point to the right. If binary scaling is negative, move decimal point to the left. $-100 \ 100 \ 100 \ 100 \ 101$ for Bll scaling.

- D. Convert to octal.
 - -010 011 010 010 . 101
 - -2322.58
- E. Convert to decimal.

F. Combine two parts.

 $-1234.625_{10} = -31326_8$ Bll -1234.625 is the decimal value.

-1234.62510

-1254.029 IS the decimal value

SCP NO. AGS 10-5

S/C: LM DATE: 4/11/69 REV: Original ORIGINATOR: Marzano APPROVAL: <u>4.0. meden</u>

TITLE: AGS REFERENCE DRIFT DETERMINATION

PURPOSE: The purpose of this SCP is to determine the AGS inertial drift with reference to the PGNS inertial reference.

PROCEDURE: A. Once per revolution on the CONUS pass during a non-thrusting non-maneuvering phase, make a hardcopy of 1127. (At least two separate passes are needed.)

- B. Find the difference between roll, pitch, and yaw attitude per hour.
 - l. Roll_{PGNS} Roll_{AGS} = ΔRoll₁ -----@ GET #1
 - 2. Roll_{PGNS} Roll_{AGS} = ΔRoll₂ _____ @ GET #2

3.
$$\frac{\Delta \text{Roll}_1 - \Delta \text{Roll}_2}{(\text{GET}_2 - \text{GET}_1)_{\text{hr}}} = \Delta \text{Roll}^\circ/\text{hr} = _$$

4. Repeat for pitch and yaw.

∆Yaw^o/hr = ____

C. If drift rate exceeds 2° per hr in any axis, recalibrate ASAP.

This SCP deleted by PCN-8

1

S/C: LM DATE: 10-1-72 REV: PCN-14 ORIGINATOR: G. Watkins APPROVAL: UMlean L. P.Le

WEIGHT UPDATES, PROPELLANT REMAINING AND AV REMAINING DETERMINATION

TITLE:

PURPOSE: This SCP defines the method used in determining vehicle weight, propellant remaining, and AV remaining.

PROCEDURE: A. Time - These calculations are performed whenever there is a significant change in vehicle weight (1% of total vehicle weight).

- B. Method Use the Olivetti Programma 101 program for "Vehicle Weight."
 - 1. The inputs to this program are:***

Ъ	WI	(15 _m)	Initial weight prior to burn (Total including propellant)
*B	ώı	(lbm/sec)	Flow rate 1
*c	tı	(sec)	Burn time at w,
*C	ώ ₂	(lb _m /sec)	Flow rate 2 (0 for APS)
*d	t2	(sec)	Burn time at $\dot{\omega}_{2}$
D	PR	(lb _m)	Prop at start of burn or initial loaded if no burn has yet been
			accomplished. (system being used)
е	PQMD	(on card)	RCS loaded (total)
**E	PQMDu	(%)	% PQMD used since last weight update (use decimal, i.e., $10%$ = 0.10)
			(Average of systems A and B)
f	$\operatorname{PQMD}_{\operatorname{rem}}$	(%)	% usable remaining (total - unusable) (use decimal)
**F	WATER	(lb _m)	Water or other non-propulsive consumables used since last weight
			update.

The program is started by depressing "V."

When the PQGS method is applicable, the following changes to the inputs should be made.

в W_L (1b_m) Total prop if PQGS could read 100% (18,642 lb) P-8 $\%_{\rm UDB}$ C (%) % of PQGS used during burn (use decimal, i.e., 10% = 0.10) С 0

d 0

2. The outputs of this program are:

- Ъ 🔕 New vehicle weight (1b_m)
- В 🔕 Propellant remaining (1b_m)
- RCS usable remaining (lb_m) A 🔕
- C. In order to get ΔV remaining, use the above outputs and the Olivetti Programma 101 program for " ΔV Remaining."****

1. The inputs to this program are:

****b W_N (1b_) New vehicle weight (from above)

		14	m	and a set of the set o
***	*B	W _P	(15 _m)	Propellant remaining (from above) (must be input every time program
				is rerun)
	С	Isp	(sec)	Specific impulse at FTP
	Ε	Кl	(on card)	Constant
	d	К2	(on card)	Constant
	D	К3	(on card)	Constant
	е	g	(on card)	Gravitational constant
The	prog	gram is sta	arted by depres	ssing "V."

2. The output of this program is:

 ΔV remaining (ft/sec).

*The PQGS is sometimes more accurate than the flow rate times the time method. The PQGS method, as noted above, should be used if more than 30% of the propellant was consumed during the burn or if over four throttle changes were made during the burn.

**If more than one iteration of this program is used at one time (i.e., four throttle changes), input a zero for E

***All numbers must be reinput except b, E, and e every time program is run.

****Depressing a "Z" and not clearing the vehicle weight program will automatically hold and input the new vehicle weight and propellant remaining in the ΔV Remaining program when it is inserted.

~

D. Input Variables

*

1. Vehicle Weight Program

QUANTITY	NOM VALUE	UPDATE VALUE	SOURCE	
13% Flow Rate	4.6			PCN-14
15% Flow Rate	5.4			
20% Flow Rate	7.2			
25% Flow Rate	9.0			
30% Flow Rate	10.7			
35% Flow Rate	12.5			
40% Flow Rate	14.3			
45% Flow Rate	16.0			
50% Flow Rate	18.0			
55% Flow Rate	20.0			
60% Flow Rate	21.5			
FTP	32.5		Б. 	
APS w ₁	11.3			
PQMD (1bm)	631.2		e.	PCN-14
RCS (4 Jet)	1.47			1

2. Delta V Remaining

QUANTITY	NOM VALUE	UPDATE VALUE	SOURCE	
DPS Isp (ave.)	305.8			-
DPS Isp 10%	298.5			
DPS Isp FTP	306.5			Davis
APS Isp	309.5			PCN-14
(with no RCS inter)				
APS Isp	309.1			
(with intercon- nect during de- pletion burn)				
RCS steady State	281.0			
ĸl	2.0	None	In Prog	
K ₂	0.666667	None	In Prog	
K ₃	0.4	None	In Prog	
g (ft/sec)	32.17			

E. Special Cases

 Staging - put the initial ascent weight (with full load RCS and water) in b₁, % PQMD used thus far in E, and total ascent water used thus far in f and calculate current ascent weight.

 Interconnect - put 1 in C and number of pounds of APS used in inconnect in d and all other inputs should be their normal value.

TITLE:

PURPOSE:

WEIGHT AND DELTA V REMAINING UPDATE TO RETRO

This SCP defines the procedure used in updating RETRO with vehicle weights and ΔV remaining.

- PROCEDURE: A. Time These updates are performed whenever there is a significant change in vehicle weight (1% of total vehicle weight).
 - B. Method Use SCP No. 11-1 to determine vehicle weight, propellant remaining and ΔV remaining. Use SCP No. 11-3 to determine APS burn time remaining. Enter these on FEC/TSG Form 1990 (Rev Dec 67) making a copy for LM propulsion, LM consumables, and two copies for LM CONTROL. Send the two copies to LM CONTROL through the P-tube, and he will initial one copy and send it to RETRO. CONTROL and PROP will enter a note in the console log of weight update to RETRO. CONTROL will also maintain copies of all weight updates in a separate file.

SCP NO. PROP 11-3

S/C: LM 4/11/69 DATE: REV: Original ORIGINATOR: R. S. Nance APPROVAL: H.a. Loden

S/C: LM

ORIGINATOR: R. S. Nance APPROVAL: 2.9. Julia

DATE:

4/11/69

REV: Original

3

BURN TIME REMAINING DETERMINATION TITLE:

PURPOSE:

This SCP defines the procedure used in determining burn time remaining for the APS.

- PROCEDURE: A. Time These calculations are performed whenever there is a significant change in APS propellant remaining.
 - B. Method Use SCP No. 11-1 to determine the APS propellant remaining and divide this by the average integrated flow rate of the APS yielding the burn time remaining.
 - C. INPUT VARIABLES

QUANTITY	NOM VALUE	UPDATE VALUE	SOURCE
APS Flow Rate (No interconnect)	11.3		
APS Flow Rate (Manned with interconnect)	11.5		
APS Flow Rate (Unmanned with interconnect)	11.7		

S/C: LM DATE: 10 REV: PC ORIGINATOR: R. APPROVAL:

LM 10-1-72 PCN-14 R. S. Nance William L. Lerry

TITLE: DETERMINATION OF $\triangle V$ FOR A GIVEN TIME OF BURN

PURPOSE:

This SCP determines a delta velocity for a given burn time.

- PROCEDURE: A. Time A ΔV for a given burn time will be calculated by use of the Olivetti Programma 101 when any burn is accomplished that is not of a nominal burn time and a total ΔV accomplished is desired.
 B. Method Use the Olivetti Programma 101 program for "ΔV Program (given burn time)."
 - Method Use the Olivetti Programma 101 program for "AV Program (
 The inputs to this program are:

+ •	THE	rub	uus	00	curs program are:		
		b	WI		(15 _m)	Initial weight prior to burn	
		В	ώ		(lb _m /sec)	Flow rate	
		С	t		(sec)	Time burned at flow rate	
		С	KAV		(sec x ft/sec)	Isp x g	
		d	Kl		On Card	Constant	
		D	К2		On Card	Constant	
		e	К3		On Card	Constant	
	The	pro	gram	is	started by depres	ssing "V."	
2.	The	out	puts	of	this program are		

$$\begin{split} &\mathbb{E} \diamondsuit \left(\begin{matrix} \frac{W_{\underline{1}}}{W_{\underline{1}} - \dot{\omega}t} \end{matrix} \right) \\ &\mathbb{F} \diamondsuit \ \mathrm{LN} \ \left(\begin{matrix} \frac{W_{\underline{1}}}{W_{\underline{1}} - \dot{\omega}t} \end{matrix} \right) \\ &\mathbb{A} \diamondsuit \ K_{\Delta V} \quad \mathrm{LN} \ \left(\begin{matrix} \frac{W_{\underline{1}}}{W_{\underline{1}} - \dot{\omega}t} \end{matrix} \right) = \Delta V \ \mathrm{ft/sec} \end{split}$$

II-11-4

*

~

-

QUANTITY	NOM VALUE	UPDATE VALUE	SOURCE	
DES Flow Rate				
13%	4.6			
15%	5.3			
20%	7.0			
25%	8.7			
30%	10.4			
35%	12.1			P-8
40%	13.8			
45%	15.5			
50%	17.2			
55%	19.4			-
60%	20.6			P-14
FTP	32.3			P-14
APS Flow Rate (No interconnect)	11.3			
APS Flow Rate (Interconnect manned)	11.5			
APS Flow Rate (Interconnect unmanned)	11.7			
DES K _{AV} (Ave)	9,837.6			
DES K _{AV} (13%)	9,602.7			P-14
DES $K_{\Delta V}$ (FTP)	9860.1			
ASC K _{AV}	9956.6			
ASC $K_{\Delta V}$ (Interconnect)	9943 .7			
Кl	2.0	None	In Prog	
К2	0.666667	None	In Prog	
к _а	0.4	None	In Prog	
RCS Flow Rate	1.47			
RCS Steady State I _{sp}	281.0			
RCS K	9039.77			

C. Input Variables

S/C: LM

DATE: 10-1-72 REV: PCN-14 ORIGINATOR: G. Watking APPROVAL: Watking

DETERMINATION OF A BURN TIME FOR A GIVEN ΔV TITLE:

PURPOSE: This SCP determines a burn time for a given $\Delta V.$

- PROCEDURE: A. Time A burn time for a given AV will be calculated by use of the Olivetti Programma 101 when any burn is planned which is not a nominal burn.
 - B. Method Use the Olivetti Programma 101 program for "Burn Time (given $\Delta V)."$

1. The inputs to this program are:

	b	W _I	(1b _m)	Weight of vehicle prior to burn
	В	ώ	(lb_/sec)	Flow rate
	С	ΔV	(ft/sec)	AV desired
	С	^K ∆V	(sec x ft/sec)	Isp x g
	d	K1	On Card	Constant
	D	К2	On Card	Constant
	е	К3	On Card	Constant
The	prog	ram is	started by depre	essing "V."
102211-7				

2. The outputs of this program are:

 $E \diamondsuit \frac{\Delta V}{K \Delta V}$

f
$$\Diamond$$
 Antilog of $\frac{\Delta V}{K_{\Lambda V}}$

A \diamondsuit Burn time required to achieve AV desired (sec)

C. Input Variables

*

QUANTITY	NOM VALUE	UPDATE VALUE	SOURCE
ES Flow Rate			
13%	4.6		
15%	5.3		
20%	7.0		
25%	8.7		
30%	10.4		
35%	12.1		
40%	13.8		
45%	15.5		
50%	17.2		
55%	19.4		
60%	20.6		
TP	32.3		
PS Flow Rate (No interconnect)	11.3		
PS Flow Rate (Interconnect manned)	11.5		
PS Flow Rate Interconnect unmanned)	11.7		
ES K _{AV} (Ave)	9,837.6		
es k _{av} (13%)	9,602.7		
es $k_{\Delta V}$ (ftp)	9,860.1		
SC K _{AV}	9,956.6		
SC $K_{\Delta V}$ (Interconnect)	9,943.7		
1	2.0	None	In Prog
2	6.0	None	In Prog
3	120.0	None	In Prog
CS Flow Rate	1.47		
CS Steady State I _{sp}	281.0		
CS KAV	9039,77		

PCN-14

P-14

S/C : LM DATE : 11/1/70 REV : PCN 6 ORIGINATOR: G. Watkins APPROVAL :

Title : RCS PROGRAM FOR OFFLINE RTCC USE

Purpose : This SCP defines the procedure to be followed in initiating the RCS Program to be run on the offline RTCC.

Procedure: A. The LM RCS Budget Input Sheet is filled out.

- B. Computer Command is informed that you are requesting an RCS run to be made.
- C. The LM RCS Budget Input Sheet is submitted to Computer Command.
- D. At the completion of the RCS run, Computer command informs the LM Prop SSR that the run is ready.
- E. Specific procedures are as follows:
 - Time These calculations are performed whenever it is desirable to develop an alternate mission plan and validate the RCS capabilities.
- P-6

 Method - This procedure utilizes the RTCC (Offline Computers) for all calculations. The inputs to this program are defined as follows:

- (a) Deck Mumber deck found in alternate mission matrix in the LM Consumable book which matches the alternate mission more closely, ie. deck A-1.
- (b) Propellant Used Totals The RCS System A and B, APS used through interconnect, and the APS and DPS propellants used previously to start of run.
- (c) GET of Run Initiation.
- (d) Variations of Timeline deviations from deck noted in (1) such $as \Delta V's$, maneuvers, deadbands, et cetera, or a completely new timeline if none of the decks in the alternate mission matrix are applicable.
- (e) Additional Comments any additional instructions such as title changes or mass property constant changes.

SCP NO. PROP 11-6 PCN 6

The information on this page has been deleted by PCN-6

S/C:	LM
DATE:	4/11/69
REV:	Original
ORIGINATOR:	Hopkins
APPROVAL:	Ha. Sode

.

WEIGHT DISPLAY UPDATE (SMEK DPS/APS CALC)

· TITLE: PURPOSE:

This SCP defines the method and procedure in validating the real-time weight display, MSK No. 1007/08/09

- PROCEDURE: A. Time The vehicle weight shall be verified at the end of each burn or after any significant weight change (more than 50 pounds).
 - B. Method
 - 1. Calculate the vehicle weight using SCP 11-1.
 - 2. Determine if a discrepancy of greater than 1/2 of 1% exists between display and calcs. If no discrepancy exists, no further action is required.
 - 3. If the calculated weight varies by more than 1/2% from the display, check all systems inputs as follows:
 - a. DPS
 - b. APS
 - c. RCS
 - d. Water
 - e. 02
 - 4. Correct defective portion of weight computation in accordance with appropriate SCP.

S/C: LM DATE: REV: ORIGINATOR: APPROVAL:

10-1-72 PCN-14 G.W. WATKINS Willion L. Paters

TITLE : RTCC PROGRAM MED UPDATES

- PURPOSE : This procedure establishes the method to be used in entering or changing propulsion RTCC program MED quantities update.

PROCEDURE: A. Any MED quantity changes during the mission shall be the responsibility of the SSR Propulsion position. All changes shall be sent to the RTCC Computer TM position. Five or less changes may be voiced to RTCC Computer TM using the RTCC TM communications loop. More than five changes should be written and sent to RTCC Computer TM via the pneumatic tube. Computer TM $\ensuremath{\mathsf{TM}}$ should be notified by voice prior to sending them in the pneumatic tube.

- B. The MED quantities
 - 1. APS Flow Rate Program

QUANTITY	NOM VALUE	UPDATE VALUE	NOTES	
K _F K _o Fu REM Ox REM IM PREDICTED L/O	0.086708 0.109470 1997.6 3181.0 183:00:00		Usable Fuel Usable Oxidizer	P-14

2. LM DPS Propellant Quantities

QUANTITY	NOM VALUE	UPDATE VALUE	NOTES	P-6
LM DPS MAS	18,642.0			
LM DPS QTY	104.5			
LM DPS MR	1.597			P-14
				IP

P-6

*

3. LM Vehicle Weights

QUANTITY	NOM VALUE	UPDATE VALUE	NOTES	
DW ASC	4661.5 LB			P-14
MISC ASC	2.7 LB			
DW DES	5666.3 LB	<i>й</i>		P-14

4.	RCS	Ground	Program
4.	RUD	Ground	Program

QUANTITY	NOM VALUE	UPDATE VALUE	NOTES
RCS A FU Temp	0°F		
RCS A He Press	O psi		
RCS A REG Press	188 psi		
RCS B FU Temp	O°F		
RCS B REG Press	188 psi		
T.s.a	530 ⁰ r		
W _{fa}	107.4 LB		
Woa	208.2 LB		
*H _{ia}	2975 psi		
Mla	1.93		
Nfa	0,9621		
Noa	0.9652		
Eoa	12.55		
E _{fa}	6.45		
T _{sb}	530°R		
W _{fb}	107.4 LB		
W _{ob}	208.2 LB		
*H _{ib}	2975 psi		
MR _{lb}	1.93		
N _{fb}	0.9621		
N _{ob}	0.9652		
E _{fb}	6.45		
E _{ob}	12.55		

* The System A and System B programs will start calculating when these MED's are input the first time. These inputs should not be made until after pressurization.

∏-11-12

SCP NO. PROP 11-8 PCN-14

5. DPS/APS Quantities

(•			P-6
	QUANTITY	NOM VALUE	UPDATE VALUE	NOTES	
	DPS Prop S Prop M2	17,192.9 LB 18,642 LB			P-14

6. RCS ON Time

QUANTITY	NOM VALUE	UPDATE VALUE	NOTES
ULL A	0.0		
ULL B	0.0		
COOL T	100,000.0		

7. DPS Projection Program

NOM VALUE	UPDATE VALUE	NOTES	P-
112:47:00			1
l		Number of Samples Discarded	
10		Number of Projections Averaged	Р-
5.795 percent		PQGS Reading at low level	
91 SEC			2
14 SEC			P-
	112:47:00 1 10 5.795 percent 91 SEC	112:47:00 1 10 5.795 percent 91 SEC	112:47:00 Number of Samples Discarded 10 Number of Projections Averaged 5.795 percent PQGS Reading at low level 91 SEC PQGS Reading at low level

8. Hover Time Program

QUANTITY	NOM VALUE	UPDATE VALUE	NOTES	
*DEL CD W _{INERT} W _{FROP} G _{LUNAR} A B C ABORT FAD TIME A	14 17,280.0 LBS 945.5 LBS 5.3152 FT/SEC ² - 0.00000006783 0.00377436 - 0.7396739 20 SEC 1 SEC		3σ Low Propellant at low level CONVERTS THRUST TO FLOW RATE Time Δ which assumes a con- stant thrust for computing hover time remaining	P-14

* Also used in projection program

1

.

			-
QUANTITY	. NOM VALUE	UPDATE VALUE	NOTES
А	- 0.021763		
В	0.068246		
С	0.013898		
D	0.135404		
Е	7.4426633		
к _н	19.154		
A _{FF}	5.28034		
ADOT	0.0431736		
$\Delta V_{\rm FD}$	- 77.0 FPS		
Kl	18642 LBS		
К2	0		
EXVEL	- 9568.098		
5			

9. Margin Plot

10. LM DPS Thrust

 QUANTITY	NOM VALUE	UPDATE VALUE	NOTES
ĸ _M	0		K_{M} is a bias (+ or -) value to correct the
			LGC mass

S/C: IM DATE : 4/11/69 REV: Original ORIGINATOR: R. S. Nance APPROVAL: H.a.

NOON'N BURNS DPS BLE

PURPOSE:

TITLE:

This SCP defines the method used to predict DPS blowdown burns.

PROCEDURE: A. Time - This calculation should be made when a DPS burn in a blowdown mode becomes a possibility.

- B. Method Use the Olivetti Programma 101 programs "DPS Blowdown 10% to 65%" and "DPS Blowdown -FTP." Every thrust level should be handled like a separate program. When the desired number of seconds in any thrust level has been accomplished, the program should be stopped by depressing the Reset button. Every time a new thrust level is desired, the data from the output of the previous thrust level program should be input to the new thrust level program.
 - 1. The inputs to the "DPS Blowdown 10% to 65%" are:

b		Thrust	Thrust in decimal percent (0-1.0)
В	Pu	psi	Ullage pressure
с	vu	ft ³	Ullage volume
C	Т	sec	Time after first ΔT
d	$\Delta \mathbf{T}$	sec	Time between output calculations
D	K	On Card	Constant (184)
e	к2	On Card	Constant (43,190)
Е	K2	On Card	Constant (0.000566)

The program is started by depressing "V."

2. The outputs for the "DPS Blowdown 10% to 65%" are:

- C**O** Time (sec)
- B§ P_{u} (ullage pressure in psi)
- A P_i (inlet pressure)
- AØ Thrust
- $c \diamond V_u$ (ullage volume)
- 3. The inputs for the "DPS Blowdown FTP" are:

ъ	К	0.021723	Constant
В	Pu	psi	Ullage pressure
с	Vu	ft ³	Ullage volume
C	T	sec	Time after first ΔT
d	$\Delta \mathbf{T}$	sec	Time between output calculations
D	K ₁	On Card	Constant (0.5772)
е	К2	On Card	Constant (43,872.3)
Е	к3	On Card	Constant (0.000349)

The program is started by depressing "V."

4. Outputs for the "DPS Blowdown - FTP" are:

- CØ Time (sec)
- BO P_u (ullage pressure in psi)
- A P (inlet pressure)
- AØ Thrust
- c◊ V_u (ullage volume)

ORIGINATOR: R. S. Nance APPROVAL: 7. Q. John

S/C: LM DATE: 4/11/69 REV: Original

TITLE: **APS BLOWDOWN WITH THRUST**

PURPOSE:

This SCP defines the method used to predict APS blowdown burns.

PROCEDURE:

A. Time - This calculation should be made when a burn in a blowdown mode becomes a possibility. B. Method - Use the Olivetti Programma 101 program for "APS blowdown with variable AT." -

1. The inputs to this program are:

Ъ	K	(0.0012)	Constant
В	Pu	(psi)	Ullage pressure
с	v	ft3	Ullage volume
С	т	sec	Time after first AT
đ	ΔT	∆ sec	Time between output calculations
D	ĸı	On Card	Constant (22.575)
е	К2	On Card	Constant (44,788)
Е	кз	On Card	Constant (0.000561)

The program is started by depressing "V."

- 2. The outputs of this program are:
 - C 👌 Time (sec)
 - $_{B} \Diamond P_{u}$ (ullage pressure in psi)
 - A P_i (inlet pressure)
 - A **〈** Thrust (1b)
 - $c \diamond V_u$ (ullage volume in ft³)
- C. The program will continue to iterate until P_u is less than zero unless the Reset button is depressed or the Print button is depressed. The Reset button will destroy the stored program and stored constants, and the Print button will only stop the calculation.

DATE: REV: ORIGINATOR: APPROVAL:

S/C: IM NATE: 11/1/71 REV: PCN-11 TOR: R. S. Nance VAL: A. G. Wagenes

P-11

TITLE: CG AND DPS GIMBAL ANGLE DETERMINATION

PURPOSE:

This SCP defines the methods used in determining cg location and/or DPS GDA gimbal angle position.

- PROCEDURE: A. Time A cg location and gimbal angle position is required prior to each DPS burn to insure proper alignment of the DPS gimbal and prior to either an APS or RCS burn to calculate predicted RCS consumption during the burn.
 - B. Method One This method is designed for use on the Olivetti Programma 101. It is constrained to IM/CSM docking angles of 0 to 90 degrees. Step 1 converts cg from CSM coordinates to IM coordinates. It allows conversion of CSM cg in CSM coordinates to IM coordinates which can be used in Step 2 to calculate docked cg. Step 2 corrects nominal IM cg in IM coordinates for abnormal weight distribution and docked configuration. For docked configuration, the CSM cg obtained from Step 1 is handled as an additional delta weight. Step 3 converts vehicle cg to GDA pitch and roll gimbal angles. Step 4 alters the GDA pitch and roll gimbal angles to account for structural compliance. These steps are as follows:
 - Conversion of CSM cg in CSM coordinates or docked cg in CSM coordinates to LM coordinates. Use Olivetti Programma 101 program entitled "CSM Coord Transformation to LM Coord."
 - a. Inputs*:

- F							
	ъ	(in.)	X cg (CSM or docked cg in CSM coord)				
	в	(in.)	Y cg (CSM or docked cg in CSM coord)				
	с	(in.)	Z cg (CSM or docked cg in CSM coord)				
	С	(degrees)	θ (Angle between LM -Z axis and CSM +Z axis)				
	d	(0.166666)	Constant (On Card)				
	D	(0.008333)	Constant (On Card)				
	е	(57.29577)	Constant (On Card)				
	Е	(in.)	CSM Docking Interface Station No. plus LM Interface				
			(1422.75 in.) (On Card)				

(90.0) Constant (On Card)

This program is initiated by depressing "V."

b. Outputs:

f

- AØ X cg in LM coord (in.)
- A Z cg in LM coord (in.)
- A Y cg in LM coord (in.)

*Every time this program is rerun, all registers must be input (b - f), of if card is re-input constants (d - f) will be restored.

- LM cg calculation for delta weight changes from nominal. Docked cg can be calculated by using nominal LM cg and using CSM cg in LM coord (obtained from Step 1). Use Olivetti Programma 101 program for "cg calculation."
 - a. Inputs:

Ъ	(in.)	Nominal X cg	
В	(in.)	Nominal Z cg	
с	(in.)	Nominal y cg	
С	(16)	Total LM Weight (include all delta weights)	
d	(1b)	Delta Weight (+ for additional weight, - for less weight)

II-11-15

D	(in.)	Y cg of AW
е	(in.)	Z cg of ΔW
Е	(in.)	X cg of AW
f	Ón Card	Constant (154)

This program is initiated by depressing the "V" button.

b. Outputs:

b♦ New X cg (in.)

B♦ New Z cg (in.)

o∲ New Y cg (in.)

After all delta weights are taken account, if the operator desires a DPS gimbal angle corresponding to this new cg depress "Z" and the new cg will be stored for the Gimbal Angle program in Step 3. After "Z" is depressed <u>do not</u> depress any buttons until after the Gimbal Angle program is inserted.

3. GDA gimbal angles can be calculated by using the Olivetti Programma entitled "Gimbal Angles."

a. Inputs:

	₩Ъ	(in.)	(X cg - 154) distance from gimbal axis to cg			
	*B	(in.)	Z cg (must be input every time program is rerun)			
	*c	(in.)	Y cg (must be input every time program is rerun)			
	E	On Card	Constant (0.333333)			
	d	On Card	Constant (0.2)			
	D	On Card	Constant (0.14285)			
	е	On Card	Constant (57.29577)			
This program is activated by pressing the "V" button.						

b. Outputs:

A Pitch Angle (degrees)

A Roll Angle (degrees)

*These will automatically be stored in the Olivetti from step 2 if "Z" is depressed and transferred when the Gimbal Angle program card is inserted. Otherwise, they must be put in just like any other number.

4. Structural compliance of the DPS engine mount results in a change in thrust vector direction

and can be calculated by using the Olivetti programma entitled "GDA Conversion Due to Structural Torquing."

button.

a. Inputs:

	Ъ	(degrees)	GDA pitch angle		
	В	(degrees)	GDA roll angle		
	С	(percent)	Thrust (0-100)		
	d	(On Card)	Constant (0.105)		
	D	(On Card)	Constant (0.033229)		
This	progra	am is activated	by pressing the "V" b		

b. Outputs:

C**O** Thrust (percent)

A Compliance corrected GDA pitch angle position

A Compliance corrected GDA roll angle position

SCP NO. PROP II-II PCN-II

C. Method Two - This method is designed for use on the Hewlett-Packard Calculator. There is no constraint on the IM/CSM docking angle. Step 1 converts a cg from CSM coordinates to IM coordinates through the appropriate docking angle. Step 2 corrects the nominal IM cg in IM coordinates for abnormal weight distribution and docked configuration. For docked configurations, the CSM cg obtained from Step 1 is handled as an additional delta weight. This step can also be used to calculate a CSM cg in CSM coordinates prior to performing Step 1. Step 3 converts vehicle cg to GDA pitch and roll gimbal angles. Step 4 alters the GDA pitch and roll gimbal angles to account for structural compliance and calculates the proper DAP load for the GDA.

The Hewlett-Packard Program "CSM ROTATION, C.G., GDA, GDA with COMPLIANCE and DAP LOAD" is loaded in the Hewlett-Packard calculator by selecting run and depressing "GO TO, +, 0, 0" and entering side A and B.

Conversion of CSM cg in CSM coordinates or docked cg in CSM coordinates to LM coordinates.
 Enter the data as follows:

DATA	UNITS		PROGRAM INSTRUCTION
INPUTS			END
			CONT
X _{cg CSM}	XXX•XX	in.	CONT
Y _{cg CSM}	X•XX	in.	CONT
^Z cg CSM	X•XX	in.	CONT
Θ (docking angle)	XXX•X	degrees	CONT
OUTPUTS			

X_{cg} IN LM COORDINATES Y_{cg} IN LM COORDINATES

Z_{cg} IN LM COORDINATES

 LM or CSM cg calculation for delta weight changes from nominal. Docked cg can be calculated by using nominal LM cg and using CSM cg in LM coordinates as obtained from Step 1. Enter the data as follows:

data as iollows:			
DATA	UNITS		PROGRAM INSTRUCTION
INPUTS			
			GO TO
			+
			6
			0
			CONT
X _{cg IM}	XXX•XX d	in.	CONT
Y _{cg} IM	X.XX i	in.	CONT
^Z cg IM	X.XX	in.	CONT
WEIGHT ON LM	XXXXX	lb.	CONT
*WEIGHT OF \triangle WT.	XXXXX	lb.	CONT
X _{cg ΔW}	XXX•XX :	in.	CONT
^Y cg ∆W	X.XX :	in.	CONT
$^{\rm Z}$ cg ΔW	X•XX :	in.	CONT

P-11

SCP NO. PROP II-II PCN-II

	DATA	UNITS	PROGRAM INS	TRUCTION		
4	OUTPUTS					
	X _{cg LM} + ΔW					
	$Y_{cg} LM + \Delta W$					
	$z_{cg LM} + \Delta W$.				. • 	
	*Program will loo	op back to this point for	additional Δ weights	•		
3.	GDA gimbal angles	•				

а.	If coming	from	Step 2,	use th	e following:		
	DATA			UN	ITS	PROGRAM INSTRUCTION	
INF	UTS		• • [×]			GO TO	
						- 1	
						5	
						CONT	

OUTPUTS PITCH GDA

ROLL GDA

b. If \underline{not} coming from Step 2, use the following inputs:

DATA	UNITS	PROGRAM INSTRUCTION
INPUTS X _{cg LM}	XXX.XX in.	x → () f
Ycg LM	X.XX in.	x → () e
X _{cg LM}	X.XX in.	x → () a
		GO TO
		-
		4
		5

CONT

OUTPUTS PITCH GDA ROLL GDA P-11

SCP NO. PROP II-II PCN-II

4. Structural compliance of the DPS engine mount and DAP LOAD.

a. If coming from Step 3, use the following inputs:

DATA	UNITS	PROGRAM INSTRUCTION
INPUTS		
*THRUST	XX.X PERCENT	CONT

OUTPUTS

Pitch GDA with compliance Pitch DAP Load Roll GDA with compliance Pitch DAP Load

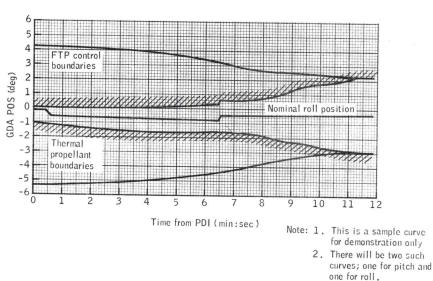
· *Program will loop back to this point for alternate thrust inputs.

b. If not coming from Step 3, use the following inputs:

DATA	UNITS	PROGRAM INSTRUCTION
INPUTS		
PITCH GDA	x.xx ^o	x → ()
		a
ROLL GDA	x.xx°	x 🔶 ()
		b
		GO TO
		-
		7
		2
*THRUST	XX.X PERCENT	CONT

OUTPUTS

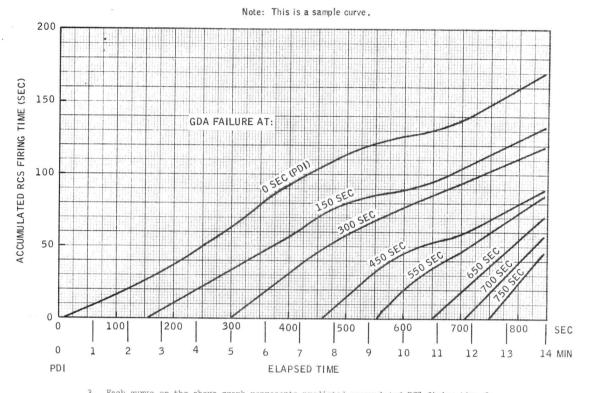
Pitch GDA with compliance Pitch DAP Load Roll GDA with compliance Pitch DAP Load


*Program will loop back to this point for alternate thrust inputs.

S/C: LM DATE: 10-1-72 REV: PCN-14 ORIGINATOR: R.S. Nance APPROVAL: Lillion J. Letur

TITLE: MONITORING GDA FAILURES

PURPOSE: To define methods to be used in monitoring GDA failures.


- PROCEDURE: A. Time Whenever a GDA failure occurs, it is necessary to determine if the mission can be completed or must be aborted.
 - B. Method The initial analysis and monitoring of a GDA failure is broken down into the following steps:
 - 1. When the GDA fails, the time of the failure and the failed position in degrees will be recorded and plotted on a curve similar to the example curve given below. There will be two such curves; one for pitch as well as one for roll. These curves will be updated for each specific mission using data from the SUDB, Vol II and III.

2. If the failed GDA position falls outside the boundaries indicated on the SODB curve, then either a thermal boundary, propellant usage boundary, or FTP control boundary has been violated. Violation of this boundary means the nominal MDC can not be completed. Before an abort is requested by MSFN, a secondary cue showing that a landing is impossible must be obtained. (Secondary cues will be discussed later.)

If the GDA position fails within the acceptable boundary, then the nominal mission can be completed; however, continued evaluation must be maintained to reassess that the capability to land still exists. This continuous evaluation is conducted by application of SODB Figure 4.8 - 89. An example of this curve appears on the next page.

P-14

3. Each curve on the above graph represents predicted accumulated RCS firing time for a GDA failure on the boundary line of the first graph. Each curve also corresponds to a GDA failure at a given time into powered descent. For real-time application, the accumulated RCS firing time can be obtained from the LM propulsion display and plotted on the curve. A new point should be plotted every thirty seconds using the worst case accumulated on time number with its corresponding time into powered descent. If the data points fall below the curve under consideration, then powered descent may continue. But if the point falls above the curve, then a thermal or propellant boundary will be exceeded before landing and an abort will be requested. After aborting, an overlay is available which can be placed over Figure 4.8 - 89 and used to calculate the duty cycle of the RCS to determine if any impingement constraints are being violated (see SODB Section 4.8.6 for impingement constraints).

- 4. Additional methods of monitoring the duty cycle are available and listed as follows:
 - a. Use of a stop watch and on times from propulsion display can give a very accurate calculation of the RCS duty cycle over a measured interval.
 - b. An on-time plot of 10 minutes duration is also available. Accumulated RCS firing time for thrusters B1D and B3D are plotted versus time. This provides a pictorial history of particular jet firings and can be used in determining past and present duty cycles.

Pages below were reserved for figures to be added, which are now no longer applicable to this SCP.

S/C: LM DATE: 4/11/69 REV: Original ORIGINATOR: R. S. Nance APPROVAL: 74.0.4000

TITLE: AV REMAINING DETERMINATION FOR BLOWDOWN BURNS

PURPOSE: This SCP defines the method used in determining AV remaining in blowdown modes.

PROCEDURE: A. Time - These calculations are performed whenever there is a requirement to calculate a ΔV remaining in blowdown.

B. Method - Use Olivetti Programma 101 program for "AX² + BX + C curve fit." 1. The inputs to this program are:

ъ	Υı	(1b)	Thrust at a point l
В	x ₁	(sec)	Time at a point 1
с	Y ₂	(lb)	Thrust at a point 2
С	X,	(sec)	Time at a point 2
d	Y ₃	(lb)	Thrust at a point 3
D	X2	(lb)	Time at a point 3
This pr		started by	depressing "V."

2. The outputs to this program are

e 🔷 A

- D**¢** B
- c 🔷 C

Next use the Olivetti program titled " ΔV for blowdown." 3. The inputs to this program are:

b	А	A from previous output
В	В	B from previous output
с	С	C from previous output
С	T _{final} (sec)	Time at end of blowdown
đ	T _{initial} (sec)	Time at start of blowdown
D	ISP (sec)	Nominal ISP
е	W, (lb)	Weight at T _{initial}
Е	(On Card)	32.2
f	(On Card)	3
This pro	gram is started by dep	ressing "V."

4. The outputs to this program are:

b (lb, X sec)

A♦ ∆V in ft/sec

C. If several thrust levels are desired, i.e. DPS, then each thrust level will have to be handled separately.

D. Note that for ΔV remaining calculations, the blowdown calculations are valid only until the minimum inlet pressure or maximum ullage volume (propellant depletion) is reached.

II-11-22

S/C : LM DATE : 10-1-72 REVISION : PCN-14 ORIGINATOR: G. W. Watkins APPROVAL : *Milianx P.T*

TITLE : INITIATION OF SMEK CONTROLLED PROPULSION FUNCTIONS

PURPOSE : This SCP defines the procedure to be used in initializing SMEK-controlled propulsion functions.

BACKGROUND: A. General

- 1. Two SMEK panels are provided for IM CONTROL and IM PROP use. One is located at
 - the CONTROL position in the MOCR, and the other is located at the PROPULSION position in
 - the SSR. The following functions are provided on the PROPULSION SMEK:
 - a. APS CALC START/STOP
 - b. ON TIME START/STOP
 - c. PQGS PROG START/STOP
 - d. GQ3603Q INHIBIT, GQ3604Q INHIBIT, GQ4103Q INHIBIT, and GQ4104Q INHIBIT
 - e. LO LVL CD ARM/DEARM
 - f. UP-35 THRU 41 START PLOTS

P-14

P-6

- A brief description of these functions is discussed below. The CONTROL SMEK does not contain the functions listed above. The CONTROL SMEK does contain many other functions which will not be discussed in this SCP.
- 8. Description of Prop Functions
 - APS Calc Start/Stop Initial depression/execution will enable the computer to calculate APS flow rate and burn time. Subsequent depression/execution will disable these computations.
 - 2. On Time Start/Stop Initial depression/execution will enable the computer to calculate the firing time on each down firing RCS thruster. Subsequent depression/execution will disable these calculations.

SCP NO. PROP 11-14 PCN-14

P-14

P-8

P-6

- 3. FQGS FROG Start/Stop Initial depression/execution will enable the computer to calculate the point when the DPS low level should be reached. The second SMEK depression/execution will stop and hold the last good data point. The next SMEK depression/execution will reinitialize the program and start it over.
- GQ3603Q Inhibit, GQ3604Q Inhibit, GQ4103Q Inhibit, GQ4104 Inhibit Initial depression/ execution of any of the above SMEKS will inhibit that parameter from being used in the DPS
 Propellant Margin Flot program and the DPS FQGS Program. A second SMEK depression/execution would allow that parameter to be used in the DPS Propellant Margin Flot program and the DPS FQGS Program.
- 5. LO LVL CD ARM/DEARM Initial depression/execution will arm the low level countdown, the PQGS Projection Program countdown, and the hover time countdown. The second depression/execution will stop the programs and hold the last data. The next depression/execution will reinitialize P-14 and arm the countdown programs.
- 6. UP-35 THRU 41 START PLOTS Each individual universal plot can be started by initial depression/execution of its associated SMEK. The plot will continue to plot up to the max capability (180 points) unless a second depression/execution is made, which sets the plot back to zero and restarts the plot.

PROCEDURES: A. General

- The SSR Propulsion position will be responsible for initialization of the APS Calc, On Time, PQGS Prog, GQ3603Q Inhibit, GQ3604Q Inhibit, GQ4103Q Inhibit, GQ4104Q Inhibit, LO LVL CD, and UP-35 thru 41 PLOTS.
- 2. The clear PBI must be depressed immediately after each SMEK Execution.
- Those SMEK functions which are time critical will be "set up" not sooner than one minute prior to required execution and cleared immediately after execution.
- 4. IM Propulsion will advise CONTROL when he has "set up" these functions.

B. Specific

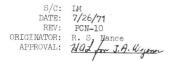
- 1. APS Calc Start/Stop
 - a. The Start function will be executed at the initiation of each APS burn to enable calculation of APS flow rate and quantity. The SMEK status light will illuminate when the calculations are being performed.
 - b. The Stop function will be executed at the termination of each APS burn. The SMEK status light will go out when the APS calculations are stopped.

2. On Time Start/Stop

a. The start function will be executed at the initiation of each main propulsion burn.

b. The stop function will be executed at the termination of each main propulsion burn. The On Time plot will also be reinitialized during PDI if a DPS engine gimbal problem arises.

- 3. PQGS PROG Start/Stop
 - a. The start function will be executed at 12 percent PQGS quantity. The first projection P-14 point will not be displayed for one to ten seconds depending on the value of MED (y).
 - b. The stop function can be executed after the DPS low level point has been reached. If the stop function is executed after the hover time countdown has started, the countdown will not be affected. The SMEK status light will go out when the stop function is executed.
- 4. Inhibit SMEKS for GQ3603Q, GQ3604Q, GQ4103Q, and GQ4104Q.


P-6

During PDI, if anyone of the DPS PQGS quantities are malfunctioning, then it should be inhibited by its appropriate SMEK. Once an Inhibit SMEK is executed, then a SMEK status light is illuminated for the associated parameter.

- 5. LO LVL CD ARM/DEARM
 - a. The arm function will be executed at 9 percent PQGS quantity.
 - b. The dearm function can be performed anytime after the DPS low level has been reached. The SMEK status light goes out when the dearm function is executed.
- 6. UP-35 THRU 41 START PLOTS

At the initiation of a DPS burn, the following universal plots should be started: - UP 35 (DPS/AFS TCP and GDA), UP 36 (DPS/AFS HELIUM PLOT), UP 37 (PERCENT MARGIN PLOT) - UP 39 (ACCUM ON TIME, UP 40 (RCS QTY/DPS INLETS), UP 41 (RPY PGNS/AGS ERRS). At approximately 12 percent PQGS quantity, UP 38 should be initialized. The following universal plots should be started at the initiation of an APS burn: - UP 36, UP 38, UP 39, and UP 40.

P-14

TITLE : DPS PQGS/LOW LEVEL MONITORING PROCEDURES

FURPOSE : To define the realtime procedures used in evaluating the propellant available during all phases of powered descent

PROCEDURE: A. Time - These procedures should be initiated at the start of powered descent and continued until a safe landing is accomplished.

B. Definition and abl reviations -

1. Definitions:

Margin Plot to P64 - This is a realtime program which predicts the propellant margin in PQGS percent (propellant available at any instant minus propellant required for an automatic landing from this instant) at touchdown. This program is valid during the Braking Phase (P63).

Margin Plot in P64 - This is the realtime program which predicts the propellant margin in PQGS percent at touchdown. This program is valid during the approach phase (P64).

Proj. Prog. - The PQGS projection program smooths the PQGS data and predicts when the low level discrete (GQ4455X) will occur.

LL CD ARM - The low level countdown is a series of realtime clocks which countdown from the low level point. One clock counts down from the low level discrete (GQ4455), another clock counts down from the first time the projection program reaches the predicted low level point. Still another clock counts down from a valid low level discrete or a valid projection program low level (if the low level discrete came on early) and corrects for manual throttle.

Bingo - The point in powered descent where 20 sec of hover time remains and the crew must assess whether they can land or use the remaining propellant for an abort.

2. Abbreviations:

MR - Mixture Ratio

LL CD - Low Level Countdown

PP CD - Projection Program Countdown

HT - Hovertime Remaining to Bingo based on program that takes manual throttle into account.

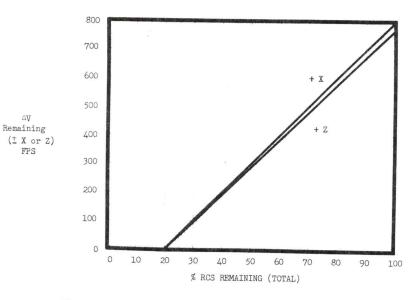
C. Flow -

(Continued on next page)

PROP 11-18 SCP NO.

11/1/71 P-11/New R. Nance illi-

DETERMINATION OF RCS CAPABILITY TO PERFORM LM TWEAK TITLE:


PURPOSE: This SCP defines the method used in determining the capability of the LM RCS to perform a TWEAK maneuver. The procedure is designed so that this determination can be made rapidly so a "GO" or "NO GO" can be made prior to the maneuver.

PROCEDURE:

ΔV

A. Time - This procedure should be performed immediately upon ascent insertion.

B. Method - Immediately upon insertion the delta velocity available for TWEAK is calculated using a curve of ΔV remaining versus RCS remaining. An example of this curve is given below. There are two curves: one for $\frac{1}{2}$ X maneuvers and one for $\frac{1}{2}$ Z maneuvers. The curves are shown on the same graph below.

 ${\bigtriangleup} V$ REMAINING AS A FUNCTION OF RCS REMAINING

The above curves have already taken out sufficient RCS to perform LOS to Docking, Docking, 2.5% OPS Reserve and unusable propellants. The curves also assumes a nominal insertion weight. Should an abnormal condition exist where the weight was off nominal, there are similar curves for this condition.

The user averages the RCS System A and B propellant remaining together and reads off the delta velocity available. The LM Propulsion Flight Controller should report the Delta V available in \pm X and \pm Z to the LM CONTROL Flight Controller. It should be made clear that the Delta V available is either XXX FPS $\stackrel{+}{-}$ X or XXX FPS $\stackrel{+}{-}$ Z.

The LM CONTROL should pass the above data to FIDO if either number is less than 60 FPS, and FIDO will determine whether the TWEAK exceeds the LM RCS capability.

S/C: 10-1-72 DATE: REVISION: PCN-14 ORIGINATOR: W. APPROVAL:

Stephens Wilkin L. Peter

TITLE: DETERMINATION OF DPS ENGINE EROSION

REFERENCES: 1. SODB, Vol II, Part I

2. LSB Note of Interest: IM-10 Non-Throttle Region, July 12, 1971

PURPOSE: This SCP establishes the procedures for monitoring DPS erosion resulting from off-nominal operation. PROCEDURE:

A. TIME

This procedure will be applicable if the DPS operates in the non-throttling range, or if excessive engine erosion occurs.

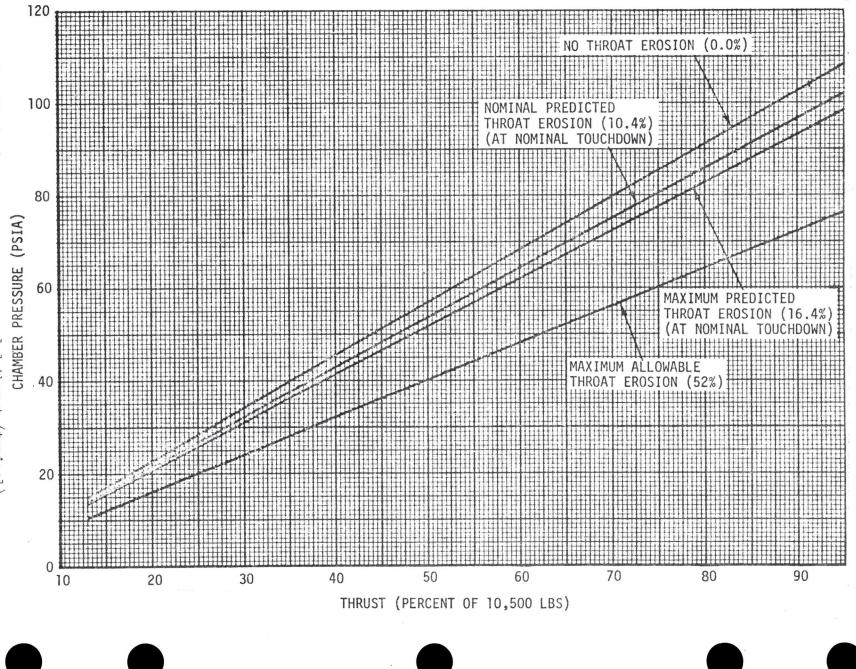
B. Method

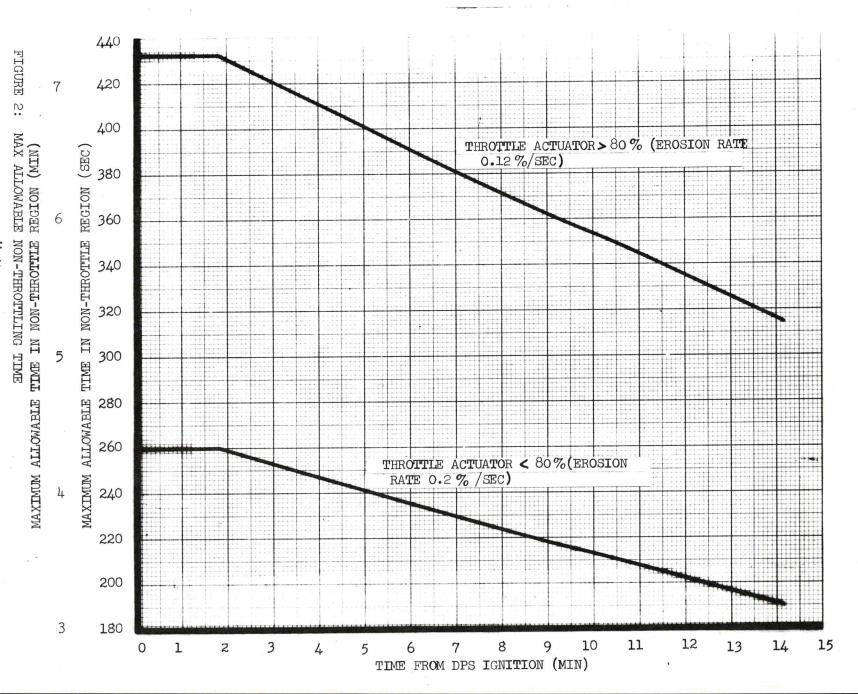
The procedures used by IM PROP for monitoring and determining engine erosion are divided into two groups: (1) excessive engine erosion from other than operation in the non-throttling range (Throttle Actuator Nominal) and (2) operation in the non-throttleable region (Throttle Actuator OFF-Nominal). These two groups will be discussed below.

- 1. Excessive engine erosion from other than operation in the non-throttling range
 - (a) When excessive engine erosion is suspected, the thrust chamber pressure (TCP) will be noted and monitored for decay. Correspondingly, the thrust will also be monitored as an indication of throat erosion. PROP malfunction analysis for GQ6510P gives procedures for detecting throat erosion.
 - (b) If the excessive erosion is noticed while at full throttle position (FTP), the decaying TCP will be compared to the TCP noted at the start of FTP.
 - (1) The decaying TCP will be plotted as a function of FTP on a figure similar to Figure 1. Figure 1 is a typical curve of chamber pressure versus thrust (percent of 10,500 lbs), and is obtained for each vehicle from the appropriate vehicle appendix of the Spacecraft Operational Data Book (SODB), Vol II, Part I.
 - (2) As TCP is plotted at a thrust of 92.5 percent (FTP), the approximate throat erosion can be determined by interpolating between the NO THROAT EROSION (0.0 percent) curve and the MAXIMUM ALLOWABLE THROAT EROSION (52 percent) curve.
 - (3) The TCP decay will continue to be monitored to insure the TCP doesn't drop below the MAXIMUM ALLOWABLE THROAT EROSION (52 percent) curve. From the typical curves in Figure 1, it can be seen at a chamber pressure of approximately 74 psia for 92.5 percent, 52 percent erosion is predicted. However, to complete the nominal PDI mission duty cycle with 52 percent erosion, a TCP decay of only 23 psia can be P-14 permitted (not shown on Figure).
 - (c) Also after FTP throttledown, chamber pressure and thrust will be the key to the amount of engine erosion sustained, and will be monitored in the following way:
 - (1) Plot TCP as a function of percent thrust on Figure 1.
 - (2) Determine approximate amount of erosion by interpolating between no erosion curve and 52 percent erosion curve for the plotted TCP points.
 - (3) Continue to monitor TCP and verify 52 percent erosion is not exceeded using Figure 1.
- 2. Operation in the non-throttleable region
 - (a) When the DPS has been confirmed to be operating in the non-throttleable region, the time of failure or entry into the non-throttling range will be recorded.

(b) With the time from ignition, the maximum allowable time for DPS non-throttling operation is determined from a curve similar to Figure 2. This time is the maximum time the DPS can be operated in the non-throttling region without exceeding 52 percent erosion. As shown in Figure 2, two curves are given. The curve labeled throttle actuator greater than 80 percent will be used should operation in the non-throttleable region be caused by loss of manual command voltage from the DECA. The second curve will be used for all other failures. Erosion rates used in the derivation of these curves are also given.

(c) While operating in the non-throttling range, DPS performance (thrust, TCP, throttle actuator position, etc.) will be analyzed, and the time in the range monitored. Depending on whether non-throttling occurs during Descent or alternate mission aborts, the non-throttling time which will allow mission completion may be less than maximum allowable time discussed in paragraph B.2.b. These non-throttling times are outlined as follows:


- For aborts, the time in the non-throttling region may be equal to the maximum time in Figure 2.
- (2) To complete the nominal mission duty cycle, however, the permitted time must be less than the maximum time, and is dependent on the reason for non-throttling operation. For the case of loss of 10 percent manual command voltage, approximately 295 seconds can be sustained at the non-throttling range. But for all other cases, only approximately 177 seconds can be allowed and still complete powered Descent. These times are applicable for the IM-11 DPS engine, but are only typical for IM-12. The permissible time in the non-throttleable region is evaluated for each engine based on engine ablative characteristics.
- (d) During Descent, the following steps will be followed if throttle recovery (FTP operation) or automatic throttle down prior to high gate target conditions can be achieved within the times mentioned above which will allow mission completion. It should be mentioned, however, that guidance constraints could be exceeded by the low DPS thrust prior to these times being reached.
 - At FTP throttledown, the TCP will be compared with the TCP noted at start of FTP. A TCP decay of 23 psi corresponds to the maximum allowable throat erosion of 52 P-14 percent for the nominal mission duty cycle.
 - (2) The procedures discussed under paragraph B.l.c will also be followed.
- (e) For alternate mission DPS burns (e.g. LOI aborts) if throttle recovery is obtained prior to exceeding 52 percent erosion, monitoring procedures will simply consist of noting chamber pressure decay. Again this procedure consists of using Figure 1 as an indication of throat erosion. DPS operation will be continued if the MAXIMUM ALLOWABLE THROAT EROSION (52 percent) curve is not exceeded.
- (f) If throttle recovery can not be achieved and continued engine operation is required to support an abort (PDI or LOI), DPS operation will be permitted for the maximum allowable time determined from Figure 2 (as discussed in paragraph b above).


11-11-35

P-14

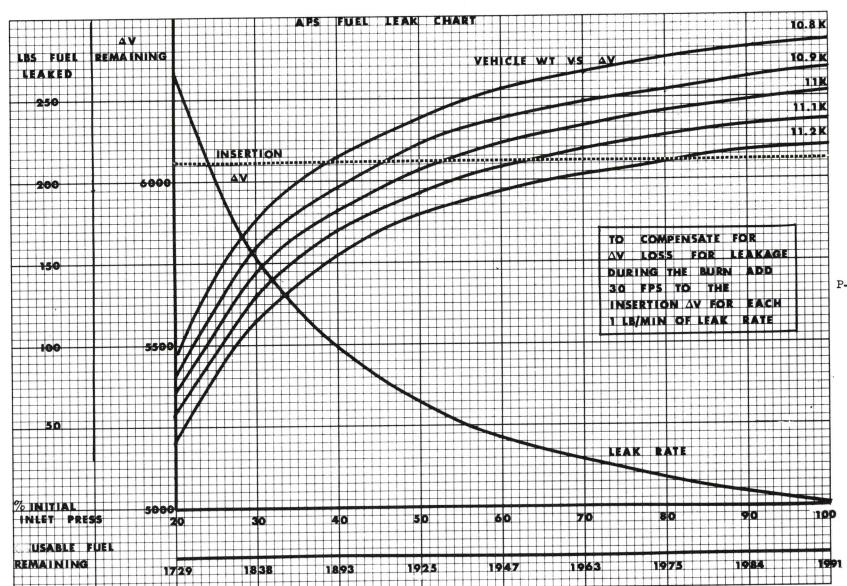
The Assessment of the

S/C: LM DATE: 3-1-72 REV: PCN-12 ORIGINATOR: E. Keesler APPROVAL: Q.(.)00

TITLE: APS PROPELLANT LEAK

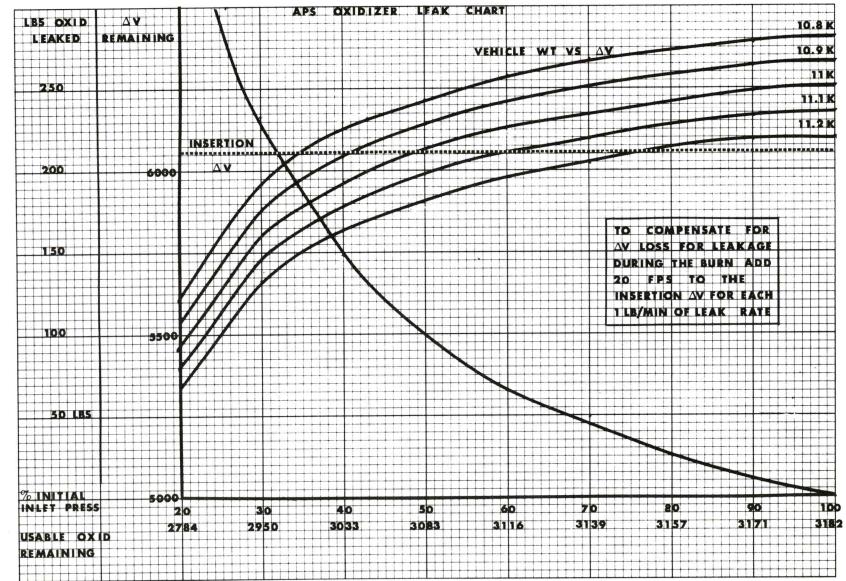
PURPOSE: This SCP defines the method of determining APS propellant leak rate and time vehicle may remain on the surface before insertion capability is lost.

PROCEDURE:


- A. TIME
 - Lunar Stay

B. CHARTS

A fuel and oxidizer chart are provided, by LM Propulsion, showing delta v remaining and lbs. propellant lost vs percent initial inlet pressure.


C. METHOD

- 1. Leak Rate
 - (a) Determine the time required for inlet pressure to drop 3 to 5 percent of initial inlet pressure.
 - (b) Use propellant lost vs percent initial inlet pressure curve to determine propellant lost.
 - (c) Leak rate = propellant lost time.
- 2. ΔV required for insertion.
 - (a) ΔV required for insertion line on the charts assumes no leak rate during flight.
 - (b) For each l-lb per min leak rate add 30 feet per second for fuel and 20 feet per second for oxidizer to the insertion ΔV line.
- 3. Time remaining on surface.
 - (a) Use weight curve that represents weight of vehicle when leak started. Find the point where weight line crosses new insertion △V line. Read percent initial inlet pressure and weight of propellant remaining. This is the lowest percent of initial inlet pressure where insertion capability exists.
 - (b) Subtract propellant remaining at insertion point from propellant remaining now. Divide by leak rate to determine time, vehicle may remain on surface.

11-11-39

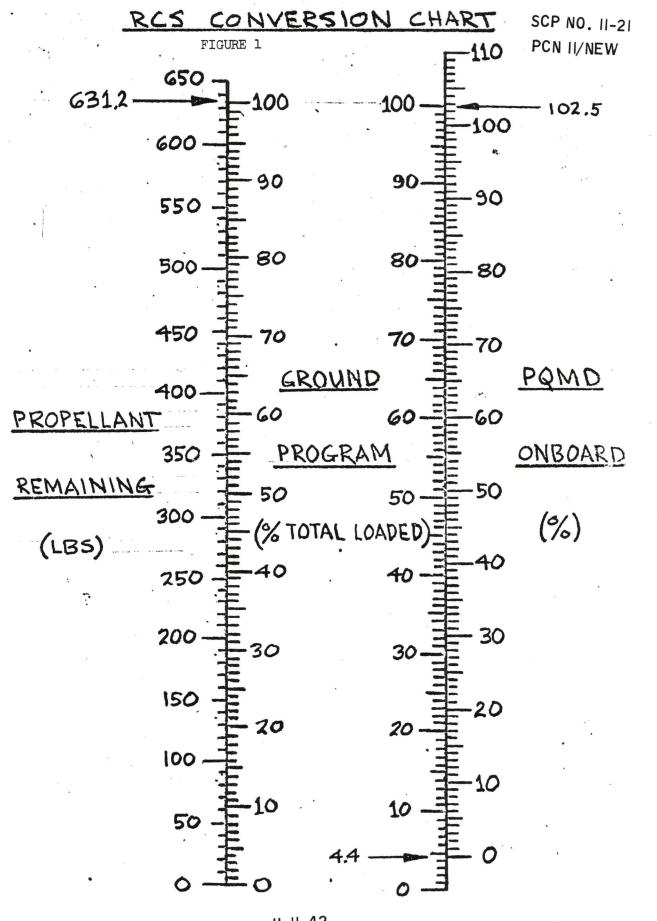
P-12

11-11-40

S/C: LM-l1 DATE: 11/1 /71 REV: PCN-l1 /New ORIGINATOR: G. Watkins APPROVAL

TITLE: RCS P/V, PQMD CONVERSION

PURPOSE: The purpose of this SCP is to define conversion and bias techniques between onboard and ground systems for determining RCS propellant available.


BACKGROUND: The LM RCS propellant is gaged by two independent systems (ground and onboard). The ground system is the RCS P/V (pressure/volume) ground computer program. The onboard system is the PQMD (reference SE FROP 11-6). A conversion technique is needed because the two programs differ in several aspects. The aspects are as follows: The RCS P/V ground program calculates <u>total</u> propellant remaining in terms of percent, the PQMD measures RCS tanked propellant remaining in terms of percent. A bias technique is needed for the following reasons: The PQMD can have an initial error or bias, also the PQMD assumes a mixture ratio whereas the P/V ground program can correct for a mixture ratio change.

PROCEDURE: A. .TIME:

This procedure should be followed anytime the ground interfaces with the crew for the following RCS consumables updates: nominal, GO/NO GO's, and Redlines.

B. METHOD:

Figure 1 (RCS Conversion Chart) is used for conversion between the RCS P/V ground program and the PQMD. For example, a reading of 90 percent on the RCS P/V ground program would correspond to a reading of 92 percent on the PQMD using the right-hand vertical scale. The left-hand scale will convert the percent reading to total pounds remaining. If the PQMD reading does not correspond to the converted value from Figure 1, then a bias (plus or minus) is present. Therefore, the bias must be taken into account when using the PQMD real-time. To get the actual reading for a known bias you must subtract a positive bias or add a negative bias from the telemetered PQMD value. To convert an actual value to an expected reading, the opposite is true, you must add a positive bias to the actual value and subtract a negative bias from the actual value.

11-11-42

S/C:	LM
DATE:	11-1-71
REV:	PCN-11/New
ORIGINATOR:	E. L. Keesler
APPROVAL:	Q. a. Wegenes
	7

TITLE: RCS CAPABILITY AFTER A HELIUM OR PROPELLANT LEAK

PURPOSE: This SCP defines the method of determining RCS capability after substaining either a helium or propellant leak.

PROCEDURE: A. Time

Pre-Press or Post-Press.

B. Data

Helium Tank Volume at 3000 PSIA = 920 in.³ Fuel Tank including line volume at 185 PSIA = 3307 in.³ Oxid tank including line volume at 185 PSIA = 4117 in.³ Fuel ullage volume (initial) = 164 in.³ Oxid ullage volume (initial) = 281 in.³ Volume Fuel trapped in tank at Depletion = 65 in.³

. Volume Oxid trapped in tank at Depletion = 77 in.³

Helium Pressure required to expel all propellant = 2200 PSIA

Fuel Density 56.3 lb/ft³

- Oxid Density 90.24 lb/ft³
- C. Method Prior to Press

1. Helium Source Leak

a. Use H.P. leak program to predict time for pressure to decrease to 2200 PSIA. At this point capability to expel total propellant is lost. RCS blowdown capability may be created after pressurization. (Ref. D.l.d.).

2. Leak between SQUIB valves and main SOVS.

a. Leak may be either propellant or helium. Assume a propellant leak and determine leak rate. System must be pressurized to isolate leak to either helium or propellant.

$$\frac{P_1V_1}{P_2} = V_2$$

b.

Where: $P_1 = initial Reg.$ Pressure

 V_1 = initial ullage volume

 $P_{o} = \text{Reg pressure now}$

V₂ = Volume Now

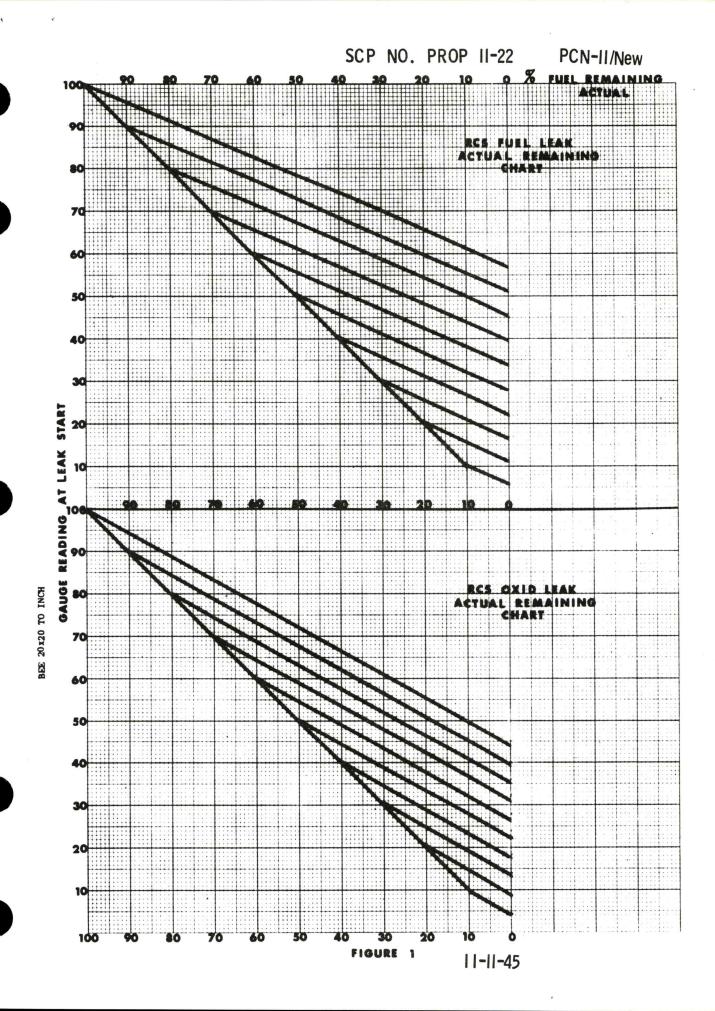
c. $\left(\frac{V_2 - V_1}{T}\right)d = leak rate$

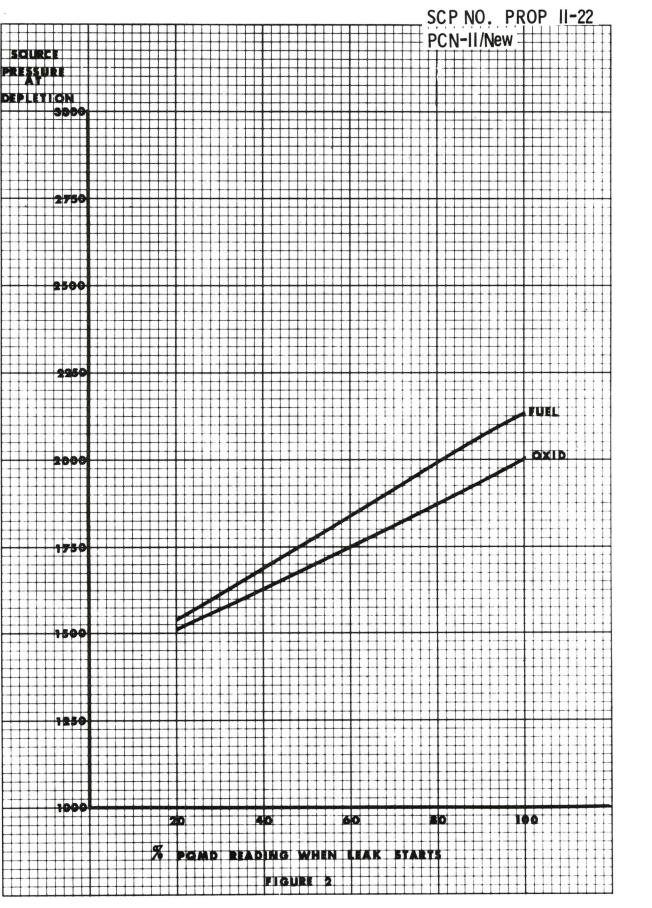
Where: d = density T = Time

- 3. Leaks downstream of main SOVS must be analized after Press.
- D. Method Post Press.
 - 1. Helium Source Pressure decreasing
 - a. Leak may be either helium or propellant upstream of main SOV.
 - b. First consider the worst case which is a Fuel or Oxid leak. Use Figure 1 which plots PQMD reading against actual percent propellant remaining to determine depletion quantity PQMD reading and leak rate.

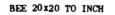
11-11-43

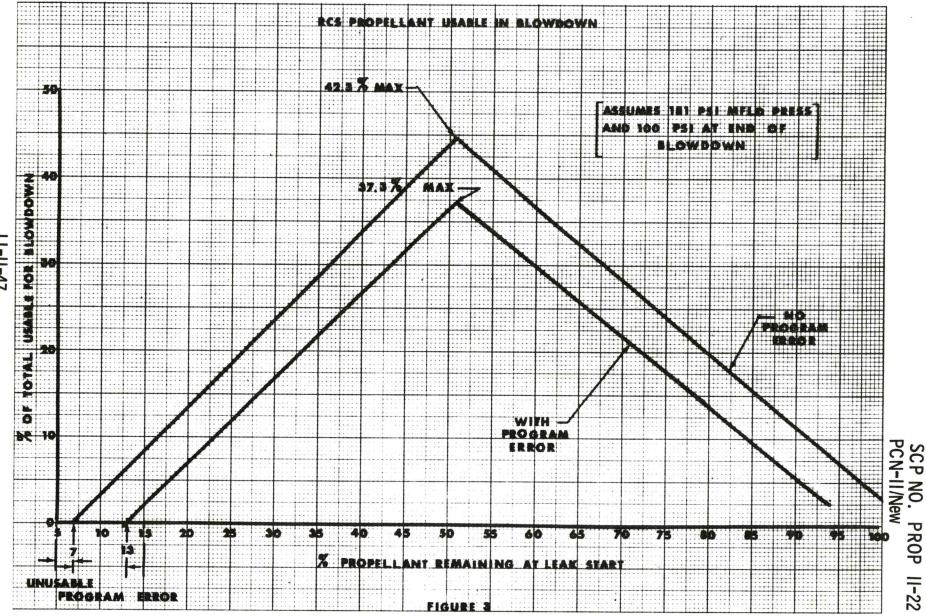
SCP NO. PROP II-22 PCN-II/New

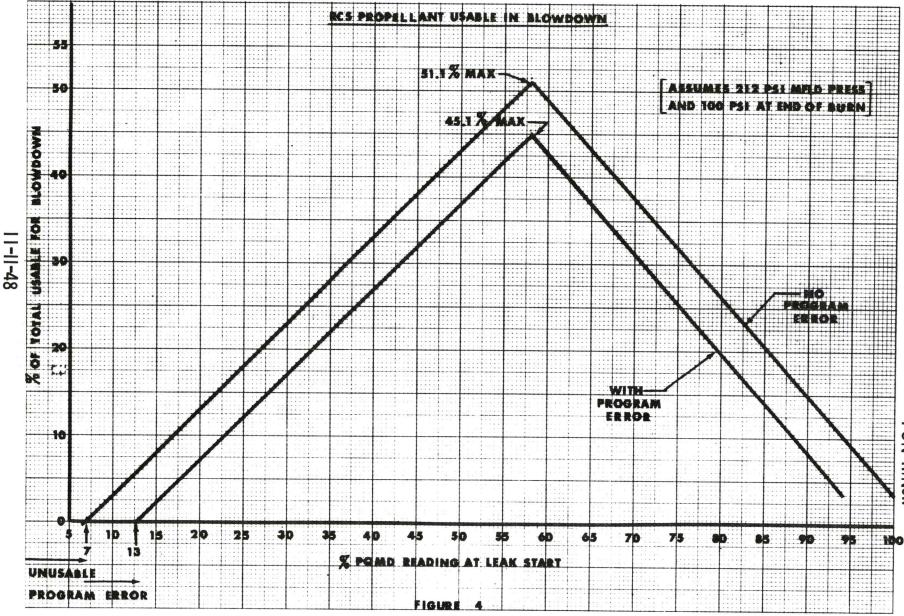

- c. If the leak is propellant the source pressure will stabilize when propellant is depleted. Use, Figure 2, Plot of PGMD reading when leak starts vs. source press at propellant depletion to verify if leak is propellant or helium.
- d. If leak is helium, some blowdown capability exists. The amount of propellant available in blowdown varies with the propellant remaining at the start of blowdown. Figure 3 is a plot of percent of total useable propellant in blowdown vs. propellant remaining at start of blowdown.


Figure 4 is a plot of percent of total useable propellant in blowdown vs. propellant remaining at the start of blowdown, for the special case where a reg has failed open and the initial ullage pressure is 212 PSIA.

2. Propellant leak downstream of main SOVS.


Use Figure 1, Actual percent remaining vs. PQMD reading to determine PQMD reading where propellant will deplete if leak continues. This will be conservative. Since any system usage during leak will lower depletion point.


System may be conserved by opening main SOV only during Critical Control Periods.



||-||-46

11-11-47

SCP NO. PROP II-22 PCN-II/New

S/C: LM 11/1/71 DATE: REV: PCN-11/New ORIGINATOR: R. Mance APPROVAL: ene

TITLE: OPTIMUM LM ASC STAGE/CSM DOCKING ANGLE DETERMINATION

PURPOSE: This SCP defines the method used in determining the optimum IM Ascent Stage/CSM docking angle to minimize RCS propellant consumption.

PROCEDURE: A. Time - This procedure should be performed if there is a situation where sufficient RCS or Ascent propellant is not available to control a docked APS burn.

> B. Method - Two steps of the Hewlett-Packard program "CSM ROTATION, C.G, GDA, GDA with Compliance and DAP LOAD" are used for this procedure. The procedures for the use of these steps are described in SCP PROP 11-11 under Method Two. Step 1, "Conversion of CSM cg in CSM coordinates", and Step 2, "IM or CSM cg calculation for delta weight changes from nominal", are used. The two steps should be used in an iteration process to solve for the docking angle that makes the docked Y cg in LM coordinates go to zero and has a positive docked Z cg in LM coordinates. The CSM is rotated in step one and added to the LM in step 2. If the proper conditions are not met, another docking angle is chosen and the docked cg is recalculated. By using pre-mission curves, the approximate optimum docking angle can be located to facilitate this process.

P-11

S/C:	LM
DATE:	10-1-72
REV:	PCN-14
ORIGINATOR:	G. Watkins
APPROVAL:	W. Hemet, Pities

TITLE: ASCENT LIMIT WEIGHT DETERMINATION

PURPOSE:

The purpose of this SCP is to establish a method of determining the ascent limit weight margins in real time and to determine the effect of trading off ascent feed and/or balance couples during ascent.

BACKGROUND: DEFINITION

The ascent limit weight is defined as the maximum weight that will allow the ascent stage to achieve insertion orbit utilizing APS propellant. The following assumptions are defined pre-mission by the Apollo Spacecraft Program Office (ASPO) affecting propellant utilization.

- 1. APS propellant will be allocated for the TPI burn.
- 2. The LM will be required to perform a $1/2^{\circ}$ plane change.
- 3. Three sigma dispersions on performance will be considered in the propellant budget.
- APS propellant will be utilized for moment control by ascent feeding the RCS for the duration of the burn.
- 5. An APS engine valve pair malfunction will be considered.
- 6. The RCS engines will be assumed to operate in the balance couple mode for controlling attitude during the insertion burn. This means that the RCS will contribute nothing towards the AV during the burn.
- 7. A pad (99.999 percent probability of propellant nondepletion) will be considered for the propellant budget.
- Unusable and propellant allocated for outage will not be considered available for the APS engines to burn.
- 9. A nominal ΔV of 6055 is assumed for insertion.
- 10. Nominal lunar sample return and stowage is assumed.

Feasibility of Exceeding Limit Weight

Even under nominal conditions the ascent limit weight could be exceeded for some periods. Also, the EVA's are getting longer which allows more time to collect additional rock samples. This can cause the lunar surface weight to increase. Lower than expected RCS usage during descent can drive the lunar surface weight up. These factors make it more feasible that the ascent limit weight can be exceeded.

Premission Determination of Ascent Limit Weight Margins

Prior to each mission, Mission Planning and Analysis Division (MPAD), utilizing the ASPO defined assumptions, publishes a memo establishing the ascent limit weight margins for various phases on the lunar surface. These phases include touchdown abort, before and after each EVA, as well as the nominal liftoff. These pre-mission margins are valid unless the vehicle mass properties change "real-time" and/or any of the assumptions are changed.

TIME:

This procedure is to be used anytime on the lunar surface that the ascent center of gravity changes from the nominal, or different assumptions are made for ascent feed or balance couple operation as outlined in the definition. Either of these conditions requires a new ascent limit weight determinations.

PROCEDURE: ASCENT LIMIT WEIGHT CALCULATION

When the ascent limit margin is negative, certain assumptions can be traded off to increase the limit weight. These trade off items and their priority are covered by an ASPO memo (Ascent Limit Weights, PD12/241-71, dated November 18, 1971). the value of the trade off items (1, 2, and 7) is determined by the pre-mission ascent limit weight memo published by MPAD. If the margin is still negative, it may be desireable to consider trading off items 4 and 6. The following procedure will outline how to determine the ascent limit weight as a function of vehicle cg. The method of determining the trade off value of items 4 and 6 (ascent feed and balance couple) will also be discussed.

1. Changes to Ascent Weight

Any changes to the expected lunar surface weight or stowage is monitored and reported per FCOH SOP 2.16 (Lunar Surface Weight Updates).

2. <u>Vehicle Weight and "wet cg"</u>

Ascent vehicle weight and "wet cg" is determined per FCOH 2.5 (S/V Weight Updates). LM Prop runs a parallel determination of "wet cg" utilizing LM Console Handbook SCP PROP 11-11 (cg and DPS Gimbal Angle Determination). The "wet cg" represents the cg of the ascent stage with the APS and RCS propellant.

The following steps (3 thru 6) are to be performed after the new cg is determined. Data that is used in these steps is found in the SODB Vol. II RCS Section.

3. Determine the "dry CG"

The "wet cg" is transformed into the "dry cg" of the vehicle utilizing the SODB curve entitled Ascent Wet to Dry CG Conversion and found in the SODB Vol. II RCS Section. The "dry cg" represents the cg of the ascent stage with the APS propellant and tanked RCS propellant removed.

4. Determine the "Delta Limit Weight"

The "dry cg" is used for the limit weight curve to determine the effects of balance and unbalance couple operation as well as ascent feed. Four curves for the following conditions are listed in the SODB Vol. II RCS Section under Delta Ascent Limit Weight during Moment Control. versus dry vehicle cg.

- (a) Balance couple with ascent feed (nominal configuration)
- (b) Balance couple without ascent feed
- (c) Unbalance couple with ascent feed
- (d) Unbalance couple without ascent feed

Entering these curves with the Y and Z "dry CG" coordinates will yield a positive or negative number for the configuration desired termed the ascent stage delta limit weight. Curve (a) represents the nominal configuration and is normally used in determining the ascent stage delta limit weight. To determine trade off capability for no ascent feed and/or balance ccuples off, curves (b), (c), and (d) are used.

5. Determine the New Ascent Stage Limit Weight

After the ascent stage delta limit weight for the configuration desired is determined from step (4), it is added (positive or negative value) to the value used for the <u>reference limit weight</u>, which is defined in the specific vehicle appendix of the SODB. Therefore, the new ascent stage limit weight for the configuration desired = $\frac{1}{2}$ ascent stage delta limit weight + ascent stage reference limit weight.

6. Determination of Trade Off Value

Trade off value of ascent feed and/or balance couple operation is determined as follows:

SCP NO. PROP 11-24 (cont)

(a) Balance Couple Trade Off

Determine the limit weight for the nominal configuration (balance couple with ascent feed open), and subtract that value from the case for unbalance couple with ascent feed. This difference is the trade off value for balance couple.

(b) Ascent Feed Effect

Determine the limit weight for the nominal configuration (balance couple and ascent feed open), and subtract that value from the case for balance couple and ascent feed closed. This difference is the trade off value for ascent feed.

(c) Balance Couple and Ascent Feed

Determine the limit weight for the nominal configuration (balance couple and ascent feed open) and subtract that value from the case for unbalance couple and ascent feed closed. This difference is the trade off value for balance couple and ascent feed.

S/C: EMU DATE: REV: PCN-14 ORIGINATOR: L. Minter APPROVAL: *JATA Manutt*

SCP NO. EMU 12-1

TITLE: APOLLO 17 EVA TRAVERSE CONSTRAINTS

PURPOSE: The purpose of this SCP is to explain Apollo 17 EVA traverse constraints and the technique employed in updating and utilizing these constraints in real-time. Prior to an EVA, traverse constraint profiles will be constructed to assure that the crewmen have sufficient consumables (OPS 0₂, PLSS 0₂, electrical power, and feedwater) to allow a safe return to the LM in case of a PLSS or LRV failure at any time during a traverse. Following is an explanation of typical constraint curves and how they are constructed pre-mission and updated in real-time. Also attached are some typical calculations using present consumable values (reference enclosure 1).

PROCEDURE: I. EVA Constraint Line Definitions (reference Figure 1).

- The LRV/BSLSS/OPS(L) limit line (D_{ROPS(L)}) is drawn at the maximum LRV traverse distance for which a safe LRV return can be conducted utilizing the BSLSS, OPS (low flow), and LRV, considering a PLSS failure. This line is found by multiplying the return travel time (as afforded by the OPS) by the LRV contingency rate. Below is the equation for this line:
 - (1) LRV/BSLSS/OPS(L) = D_{ROPS(L)} = [<u>(OPS Loading Residual) (1bs)</u> 100 M Walkback to LRV Time (hrs) - ESLSS Hookup Time (hrs) - Ingress Time (hrs)] · [LRV Contingency Rate (km/hr)]

Inserting present values into equation (1) gives:

$$D_{\text{ROPS}(L)} = \left(\frac{5.55 \text{ lbs}}{3.9 \text{ lbs/hr}} - 0.025 \text{ hr} - 0.083 \text{ hr} - 0.217 \text{ hr}\right) \cdot \left(7.3 \frac{\text{km}}{\text{hr}}\right) = (1.098) \cdot \left(7.3 \frac{\text{km}}{\text{hr}}\right) = 8.01 \text{ km}$$

Assuming the OPS lifetime has not changed, a new OPS low flow limit line can be determined for any LRV contingency rate by multiplying that rate by 1.098 hr.

2. If the BSLSS is not available (such as on a one-man EVA) or is inoperable for some reason, then the OPS must be used for crewman heat removal in the event of a PLSS failure. This results in the LRV/OPS (L,H) constraint of Figure 1. For this case the OPS low flow is used for 2 minutes to return to the LRV (133 meters), 2 minutes for LRV prep, and the LRV return drive time. OPS high flow is used for the ingress time. An arbitrary 10 minute pad is subtracted from the available drive time.

The equation for this line is:

Inserting present values gives:

$$D_{\text{ROPS}(L,H)} = \left[\frac{5.37 \text{ lbs} - (.217) (7.55) \text{ lbs}}{3.9 \text{ lbs/hr}} - 0.233 \text{ hr}\right] \cdot \left[7.3 \text{ km/hr}\right]$$

 $D_{ROPS(L,H)} = (0.723 \text{ hr}) (7.3 \text{ km/hr}) = 5.28 \text{ km}$

3. The Walking/BSLSS/OPS(L) constraint is applicable if the LRV is inoperable. For this walking traverse, the constraint is found by simply multiplying the contingency walk rate by the available OPS time in low flow.

 $D_{WOPS(L)} = (1.123 \text{ hr}) \cdot (3.6 \text{ km/hr}) = 4.04 \text{ km}$

- 4. The Walking/OPS(H) constraint line is to be used if both the LRV and the BSLSS are inoperable. The limiting factor for the WALKING/OPS(H) constraint is crewman heat storage instead of OPS lifetime. Considering an initial heat storage of 100 BTU and a maximum heat storage of 300 BTU, the D_{WOPS(H)} line is at 0.9 km.
- 5. The PLSS Consumable Constraint line is drawn to assure the crewmen will have sufficient PLSS consumables (oxygen, electrical power, feedwater) to conduct a contingency walkback to the LM in case of an LRV failure, allowing time for LRV equipment assembly and LM ingress. (There are actually three consumable constraint lines although only one is indicated). The method for determining the consumable constraint line is as follows:
 - (a) First find the constraint line intersection with the absissa (T_{max}) .

The equation for
$$T_{max}$$
 is as follows:
 T_{max} (hrs) = $\frac{Q}{\dot{M}_{N}}$ (hrs) - LRV Equipment Assy Time (hrs) - Ingress time (hrs)

Where Q = Consumable quantity usable for EVA

 \dot{M}_{N} = Normal average consumable usage rate

(b) Next find the slope of the consumable constraint line.

Slope (km/hr) =
$$\begin{pmatrix} \dot{M}_{N} \\ \dot{M}_{CW} \end{pmatrix}$$
 · (Contingency Walk rate)

Where M_{CW} = Contingency walking consumable usage rate (see (d)).

(c) Next find the time at which the consumable constraint line intersects the LRV/BSLSS/OPS(L) line (T_{T}).

$$T_{I}$$
 (hrs) = T_{max} (hrs) - $\frac{\hat{D}_{ROPS}(L) (km)}{Slope (km/hr)}$.

- (d) The constraint line is now found by drawing a straight line between the intersection (T_I) and T_{max}. If the crewmen are less than 1 hour walk time from the LM, their average contingency walk rate will be higher because of less fatigue (3.6 km/hr versus 2.7 km/hr). This causes the change of slope in the PLSS Consumable Constraint line. As seen in Figure 1, the upper portion of the PLSS Consumable Constraint line intersects the abissa at T_{max}. The slope and intersection point of the lower portion are found by the same equations as above ("b" and "c"), but by using the contingency walk and metabolic rates for walk times less than 1 hour, and substituting 3.6 km for D_{ROPS(L)}.
- 6. For the LRV/BSLSS/OPS(L) distance, the crewmen may walk only 100 m from the LRV since only 1½ minutes is included for walking back to the LRV in case of a PLSS failure. For progressively closer distances to the LM, the crewmen may traverse farther from the LRV, up to the LCRU communications range (approximately 1 km). This is illustrated by the Walking/LRV constraint line of Figure 1. If the distance from the LRV is greater than 670 meters, the BSLSS must be carried by the crewmen to insure not exceeding 300 BTU stored heat by a crewman operating in OPS low flow. To construct this line, D'_{ROPS(L)} is found, and a line drawn between this point and the LRV/BSLSS/OPS(L) line for the specific LRV contingency return rate being considered. The equation for D'_{ROPS(L)} is

$$D_{ROPS(L)}^{\prime} = \left(LRV \text{ Contingency Rate}\right) \cdot \left(Usable OPS time - \frac{l \ km}{Contingency \ Walk \ Rate}\right)$$

II-12-2

SCP NO. EMU 12-1 PCN-14

After the Walking/LRV Constraint line is determined, the distance the crew can be away from the LRV is simply read from this line as a function of LRV distance from the LM (see Figure 1).

II. Real Time Constraint Line Updates

During Apollo 17 EVA's, PLSS Consumables (PC) will construct real-time plots of feedwater remaining, oxygen remaining, and amp-hours remaining versus EVA elapsed time. The profiles will enable PC to predict the possible EVA time remaining as constrained by consumables. If the real-time consumable plots indicate an abnormal consumable usage rate, PC will update the premission PLSS Consumable Constraint lines. The procedure used to accomplish this will now be discussed.

1. Considering the planned activities, PC will extend the real-time plot for the most constraining consumable to obtain the predicted EVA termination time (see Figure 2).

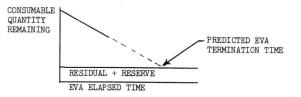


Figure 2: Real-time PLSS Consumable Projection

2. Subtracting 0.167 hour (10 minutes) for LRV equipment assembly and 0.217 hour (13 minutes) for LM ingress from the predicted EVA termination time gives the new T_{max} (see Figure 3).

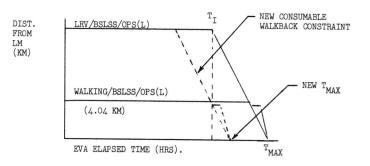


Figure 3: Altered Traverse Constraint Curve

3. The remainder of the constraint lines can now be constructed using the equations in Section I, paragraph 5.

SCP NO. EMU 12-1 PCN-14

A. Using example values, the PLSS O_2 walkback constraint line for EVA 1 can be calculated as follows:

(1)
$$\dot{M}_{NO2} = \text{Normal } 0_2 \text{ usage rate (lb/hr)}$$

= $\left(1.627 \text{ X } 10^{-4}\right) \cdot (\text{Average Met Rate}) + \text{Leakage}$
= $\left(1.627 \text{ X } 10^{-4} \frac{1\text{ b}}{\text{BTU}}\right) \cdot (984 \frac{\text{BTU}}{\text{hr}}) + 0.020 \text{ lb/hr}$
 $\dot{M}_{NO2} = 0.18 \text{ lb/hr}$

(2) \dot{M}_{CO2} = Contingency O₂ usage rate (lb/hr)

$$= \left(1.627 \times 10^{-4}\right) \cdot (1290) + 0.02$$

 \dot{M}_{CO2} = 0.23 lb/hr for 2.7 km/hr

(3)
$$T_{max}(O_2) = \frac{Q_{O2}}{\dot{M}_{NO2}} - LRV$$
 Equip. Assy Time - Ingress Time
= $\frac{1.403 \text{ lb}}{0.18 \text{ lb/hr}} - 0.167 \text{ hr} - 0.217 \text{ hr}$

 $T_{max(0_2)} = 7.42 \text{ hr} = 7 \text{ hr} 25 \text{ min}$

(4)
$$\operatorname{Slope}(>1 \operatorname{hr}) = \frac{\dot{M}_{NO2}}{\dot{M}_{CO2}}$$
 (Contingency Walk Rate for walk time greater than 1 hr)
= $\left(\frac{0.18}{0.23}\right) \cdot (2.7)$
 $\operatorname{Slope}(>1 \operatorname{hr}) = 2.113 \operatorname{km/hr}$

(5)
$$T_{IO2} = T_{maxO2} - \frac{D_{ROPS(L)}}{Slope}$$

= 7.42 hr - $\frac{8.01 \text{ km}}{2.113 \text{ km/hr}}$
 $T_{IO2} = 3.63 \text{ hr} = 3 \text{ hr} 38 \text{ min}$

(6) Now the PLSS 02 walkback constraint for distances less than an hour away from the LM must be found $\dot{M}_{CO2} = (1.627 \times 10^{-4}) \cdot (1560) + 0.02 = 0.274 \text{ lb/hr}$ Contingency walk rate for walk time <1 hr = 3.6 km/hr

Slope(\left(\frac{\dot{M}_{NO2}}{\dot{M}_{OO2}}\right). (Contingency Walk rate)
=
$$\left(\frac{0.18}{0.274}\right)$$
. (3.6 km/hr)
Slope(< l hr) = 2.365 km/hr

11-12-4

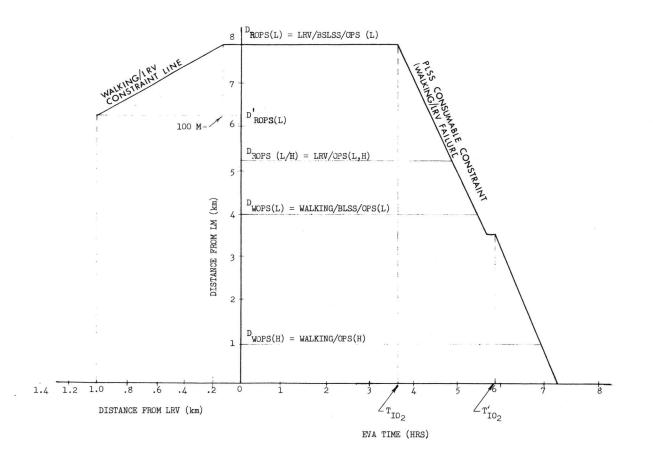
SCP NO. EMU 12-1 PCN - 14

(7) For 3.6 km (1 hour walk time),

$$T'_{IO2} = T_{maxO2} - \frac{3.6 \text{ km}}{\text{Slope} (< 1 \text{ hr})}$$

= 7.42 hr - $\frac{3.6 \text{ km}}{2.365 \text{ km/hr}}$
= 7.42 hr - 1.52 hr
 $T'_{IO2} = 5.9 \text{ hr} = 5 \text{ hr} 54 \text{ min}$

- B. The distance the crew can be away from the LRV is determined as follows:
 - (1) Given a distance from the LRV of 1000 meters, ${\rm D}_{\rm ROPS(L)}$ is found by,


$$D_{ROPS}^{'}(L) = \left[LRV \text{ Contingency Rate}\right] \cdot \left[\frac{(OPS \text{ Loading - Residual) (lbs)}}{(OPS \text{ Low Flow Rate}) (lbs/hr)} - BSLSS Hookup Time (hrs) - Ingress Time (hrs) - $\frac{Distance \text{ from LRV}}{Contingency Walk Rate}\right]$

$$D_{ROPS}^{'}(L) = (7.3 \text{ km/hr}) \cdot \left(1.123 \text{ hr} - \frac{1.0 \text{ km}}{4.0 \text{ km/hr}}\right)$$

$$= (7.3) (0.873) \text{ km}$$

$$D_{ROPS}^{'}(L) = 6.37 \text{ km}$$$$

(2) Now using the Walking/LRV Constraint line and assuming an LRV distance of 7.0 km from the LM, the distance the crew can be away from the LRV is 670 meters (from curve).

SCP NO. EMU 12-1 PCN-14

,

SCP NO. PLSS 13 -1

S/C: IM DATE: 11/1/ REVISION: PCN-1 ORIGINATOR APPROVAL:

TITLE: PLSS FEEDWATER REMAINING AND RATE CALCULATION

PROCEDURE: PLSS feedwater remaining and water usage rates are calculated in the RTCC utilizing the output from

the metabolic rate computation, which is based on the LCG inlet and delta temperatures. These computations will be controlled from the SSR Aeromed console. PLSS Consumables (PC) will verify the MEDS for the initial feedwater quantities (LEM3811M/LEM3812M) and the heat leaks (LEM3815M/LEM3816M) with SURGEON/ETU. PC will also update the feedwater remaining trends for televiewer display on channel 64. Equations for usage rate and feedwater remaining are as follows:

FEEDWATER USAGE RATE (lbs/hr) (LEM9309C/LEM9311C)

$$\dot{M}_{fw} = \frac{(1.26) \cdot (MR) + EP + HL}{1038}$$

by

FEEDWATER REMAINING (1bs) (LEM9310C/LEM9312C)

$$FW REM = FW_{i} - \left[(1.26) \cdot (MR) + EP + HL \right] \cdot \left[\frac{\Delta t}{3600 \cdot 1038} \right]$$
 lbs,

where:

- 1. FW₁ = initial feedwater quantity (lbs) (LEM3811M/LEM3812M).
 The first valid FW REM computed will become FW₁ for the next FW REM computation. This
 same process will continue for the successive feedwater computations.
- 1.26 = constant to account for heat generated by LiOH, which is based on a respiratory quotient of 0.90.
- 3. MR = crewman metabolic rate (ETU/hr) (LEM7305C/LEM7306C).
- 4. EP = PLSS battery electrical power = (battery current) · (battery voltage) · (3.413) ETU/hr (LEM9313C/LEM9314C).
- 5. HL = EMU heat leak rate (BTU/hr) (LEM3815M/LEM3816M).
- 6. $\Delta t = \text{computation update interval (sec) (AMD3000M)}$. This Δt is the same as that used for computing metabolic rates.
- 7. 3600 = time conversion factor (sec/hr).
- 1038 = heat removal capability of water (BTU/lb), assuming 85 percent sublimation and 15 percent vaporization.

SCP NO. PLSS 13-1b

This SCP deleted by PCN-8

SCP NO. PLSS 13-2

P-11

TITLE

: PLSS 02 QUANTITY AND RATE CALCULATION

PROCEDURE : PLSS 1/2 will verify the initial 0₂ temperature (^oF) MED input with TELMU and request implementation by voice to COMPUTER TM on the RTCC TM loop. PLSS 1/2 will verify that TELEMU has SMEK P-6 initiated the RTCC special processing which includes the PLSS 0₂ Quantity Calculation. PLSS CONSUMABLES will follow up with the standard MED change request form via P-tube to COMPUTER TM (Station 31). PLSS 1/2 will verify the imitial change in pressure ΔM (PSIA) MED input with ETU. SURGEON/ETU will have complete control over SMEK initiation and termination of the PLSS 0₂ Rate Calculation RTCC special processing.

PLSS 1/2

CILQ/C21Q PLSS 02 QTY (LEM 9301C/LEM 9305C)

- 1. Calculated values
 - $WO_2R = mass of O_2$ remaining (lbs)
- 2. Telemetered inputs $P = GT8182P/GT8282P PLSS O_2 PRESS (psi) P-6$ 3. Constants $R = Gas \text{ constant} = 48.28 \text{ ft} - 1b_{f} P-6$ $Z = Compressibility factor = 1.006-3.7(10^{-5})P (psi) P-8$
 - $V = 0_2$ bottle volume (0.214 ft³)

4. MED values

 $T = Temperature (^{\circ}F) (LEM3801M/LEM3806M)$

K = Equation constant (ft² - ^oR) (LEM3802M/LEM3807M)

Equation for 1, 2, 3, and 4.

$$WO_2R = \frac{P_fV}{ZRTO_R} = \frac{P_fK}{ZTO_R}$$

Conversion before computation:

P_f (lbs/ft²) = (144) P (psi) To_R = 459.69 + T (^oF)

P-8

C12Q/C22Q PLSS 02 Consumption (LEM 7309C/LEM 7310C)

1. Calculated Values

W02= Mass flow rate (lbs/hr)

 $Z = Compressibility Factor = 1.006-3.7(10^{-5})P (psi)$

 ΔT = Elapsed time between average pressure computations (seconds)

 ΔP = Difference in averaged pressures (PSIA)

- $P_B = Pressure base basic average allocation for comparison (PSIA) updated each time computation updates.$
- 2. Telemetered Inputs

P = GT8182P/GT8282P PLSS 0₂ PRESS (PSIA)

3. Constants

 $C_1 = Conversion from PSIA to LBS MASS (1.23 x 10⁻³)$

- C_2 = Conversion of time from seconds to hours $\left(\frac{1}{3600}\right)$
- 4. MED Values

 ΔM = Pressure difference used for regulating computation update rate (PSIA) (LEM 5521M)

5. SMEK Operations

To = Initial GET from MET * RATE * START * EMU 1/MET * RATE * START * EMU 2 (HR:MIN:SEC) P-6 Equation for 1 through 5

$$P_{B} = \frac{\sum_{i=1}^{P} T_{B}}{10 \text{ sec.}} \text{ at } T_{B} \text{ (LEM 7311C/LEM7312C)}$$

Where $\sum P_1$ = the summation of pressure values from PLSS 0₂

PRESS telemetry information (GT8182P/GT8282P), and

 $\mathbf{P}_{\mathbf{B}}$ = initial pressure average based on a 10 second time frame, and

 $T_B = GET$ at which P_B is calculated.

Each P_i , where P_i = individual inputs from GT8182P/GT8282P, is then compared to P_B by the following:

 $|P_B - P_i| < 3 \Delta M$ (ΔM initially = 15.0 PSIA)

The P_i 's that satisfy $|P_B - P_i| < 3 \Delta M$ in a 10 second period are used to calculate P_C , the current pressure average, and T_C , the GET corresponding to P_C .

When P_C and T_C are calculated, then $\Delta P = P_B - P_C$ is computed and compared to ΔM . When $\Delta P \ge \Delta M$ ($\Delta M = LEM 5521M$)

then $T_{C} - T_{B} = \Delta T$

SCP NO. PLSS 13-2 PCN-8

P-6

P-6

Each time $\Delta P \ge \Delta M$ and ΔT is determined, P_B is replaced with the value of the current P_C and T_B is replaced with the value of the current T_C .

From this information,

$$\dot{W}_{0_{2}} = \frac{c_{1}}{Z} \frac{\Delta P}{\Delta T} c_{2}^{2} = \frac{1.23 \times 10^{-3} (\Delta P) 3600}{\left[1.006 - 3.7 \times 10^{-5} (P_{e})\right] \Delta T} (LEM 7309 c/LEM 7310 c)$$
P-8

An additional check is provided on this output as only those values \preceq 0.66 LB/HR are utilized to update the real-time displays.

NOTE

All MED values may be referenced on MSK 1628.

SCP NO. PLSS 13-3

TITLE: BATTERY AMP-HR CALCULATIONS

PURPOSE: This SCP defines the procedure for determining the amp-hr remaining by special processing.

PROCEDURE: A. PLSS 1/2 will verify the amp-hr MED input with TELMU and request implementation by voice to COMPUTER TM on the RTCC TM loop. PLSS 1/2 will verify that TELMU has SMEK initiated the RTCC special processing. PLSS 1/2 will follow up with the standard MED change request form via P-tube to COMPUTER TM (Station 31).

B. PLSS 1/2 will update consumable trends for televiewer display on channel 64.

C. C16Q/C26Q AMP-HR REM (LEM9304C/LEM9308C)

1. Calculated values

 $AH_R = AMP HR-REM (amp-hrs)$

2. Telemetered inputs

A = GT8140C/GT8240C PLSS BAT CUR (amp)

3. Constants - None

4. MED values

AHT = AMP-HRS TOTAL (amp-hrs) (LEM3805M/LEM3810M-LIVE) (LEM3813M/LEM3814M-P/B)

5. SMEK operations

 t_0 = Initial GET from EMU 1 * CALC * START or EMU 2 * CALC * START (hrs)** Equation for 1, 2, 3, 4, and 5

 $AH_R = AH_T - (A)(\Delta t)$

The value for AH_T is updated once per second by replacing it with the previous (one second earlier) value for AH_R [i.e., $AH_T(N+1) = AH_R(N)$].

NOTE

All MED values may be referenced on MSK 1628.

**Δt = .0002783 hrs GET (1 second).

P-3

SCP NO.CORO 16-1

S/C: CSM 114 11/1/72 DATE: REVISION: PCN-14/New ORTGINATOR: L. Hirsh APPROVAL: and M. Janer

TITLE: HEAT FLOW AND CONVECTION (HF AND C) INFLIGHT DEMONSTRATION

PURPOSE: The purpose of this SCP is to specify an operational support plan for the Apollo 17 HF&C Inflight Demonstration and present a single source reference of operational data.

BACKGROUND: The Apollo 14 HF&C Demonstration performed during January 1971 resulted in identifying surface tensiondriven convection in one test, and apparent convection in a heated gas. The Apollo 17 HF&C Demonstration is designed to provide qualitative data which can be used to characterize the convection observed in the previous demonstration. Improved hardware, control and instrumentation are used on the Apollo 17 HF&C to achieve the qualitative information.

1. Operational Concept

The Apollo 17 HF&C Demonstration will be performed during translunar coast by the CMP. The primary test sequence, prior to PTC, is presently flight planned for 42:50 GET. The spacecraft rates will be nulled in all three axes (\leq 0.005 degrees per second) in the manner normally accomplished prior to setting up PTC. The telemetry will be configured in the HER mode and the high gain antenna (HGA) will be used. The HF&C hardware will be mounted to the left of panel 122 on the lower equipment bay along the X axis of the CM using bungee straps. The HF&C power cable will be connected to the utility outlet on panel 100 and the CM 16 mm Maurer DAC power cable will be connected to the utility outlet on panel 16. Preparation and performance of the primary test will take approximately 50 minutes and will be completed by 43:40 GET.

The secondary test sequence, during PTC, is flight planned from 45:20 to 46:00 GET. The test set-up is essentially the same as the primary test sequence. It is highly desirable to obtain HER data during the HF&C Demonstration during PTC. INCO has agreed to accomplish this by using the 210 ft antenna at GDS to acquire HER or using the DSE during the demonstration and later dumping the data. HER is required to obtain high sample rate data on the SCS Body Rates and associated systems data for post mission data reduction.

The 150 ft, 16 mm sequenced film magazine and the small reference tab of liquid crystals taped to it will be stowed in the CM for return and it is planned to off-load the HF&C in the LM prior to LM jettison.

2. Constraints

- 1. Prior to PTC (attitide hold) Spacecraft rates < 0.005 degrees per sec.
- 2. Liquid dumps inhibited
- 3. RCS jets inhibited
- 4. Crew motion minimized

PROCEDURES:

- 1. The HF&C prime MOCR operator will be TELMU.
- 2. The HF&C prime SSR operator call sign will be INFLIGHT DEMO.
- The SSR personnel will be located in the vehicle systems SSR at Console 33 (Booster Support Specialist Console)
- 4. The SSR personnel will use CCS positions 3084 and 3085 on Console 33 and will communicate with TELMU on either SSR*VEH SYS*2 or LM 1*TELCOM 1.
- 5. PI support personnel will be located at Console 33 also, and will be available to support the prime SSR operator.
- 6. Select MSK 690 to monitor CDU Body Rates.

SCP NO. CORO 16-1 PCN-14

7. Timeline

20:00 GET, 1653 CST - INFLIGHT DEMO, check with TELMU on next days flight activities with reference to HF&C on the flight plan.
36:00 GET, 0853 CST - INFLIGHT DEMO and PI support personnel - on console.
42:50 GET, - *Perform HF&C primary test
45:20 GET, - *Perform HF&C secondary test
47:00 GET, 1953 CST - INFLIGHT DEMO and PI obtain release from TELMU

"Follow crew checklists and monitor GOSS CONF

SYSTEMS DESCRIPTION: The HF&C demonstration concept is to observe the thermal behavior of fluids in specially selected "cell" configurations in low gravity by time-lapse photography. Each cell contains a small electric heater to heat the fluid being tested. Power for heating is obtained from the 28VDC spacecraft system. Data will be recorded by the onboard 16 mm DAC attached to the unit operating at a rate of one frame per second.

1. Radial Test Cell

The radial cell is a circular cell filled with argon gas used to test radial heat flow. The cell is a cylindrical dish with a small electric heater mounted in its center and the cell is covered by a plastic film coated with a liquid crystal material that changes color as it is heated. This film is divided into eight sectors, and different sectors are sensitive in different temperature ranges. The changing color patterns indicate the temperature distribution as it develops and is recorded by the camera.

2. Flow Pattern Test Cell

The flow pattern cell is designed to test the convective flow pattern induced in an oil film by thermally caused changes in surface tension. The cell consists essentially of a shallow aluminum dish with a heated bottom, into which thin layers of heavy oil, called Krytox, is introduced. The oil contains a suspension of aluminum powder which enable the oil flow patterns to be viewed. The window to this cell is opened during the tests so that the heat from the oil can be dissipated into the spacecraft atmosphere. The cell contains special baffles to properly distribute the fluid in a uniform layer over the pan.

3. Lineal Test Cell

The lineal cell on the right side of the unit is a transparent cyclinder with an electric heating element located in the end of the cylinder. This cell also contains Krytox. Strips with liquid crystal materials are located along the cylinder. The presence or absence of convection will be determined by the changing color pattern observed in the strips as heat flows in both directions from the heated zone. A few small particles are immersed in the Krytox for indication of any flow patterns that occur in the cell.

OPERATIONAL DATA:

1. Mechanical

	SN 002 (FLIGHT)	SN 003 (BACKUP FLIGHT)
SIZE	9" x 9" x 3.8"	9" x 9" x 3.8"
WT.	7 lb 14 oz.	7 lb 13.25 oz.

11-16-2

A. HF&C Equipment

EXP/HEAT SELECT	CURRENT (AMPS)	POWER (WATTS)
ROTARY POSITION	AT 28 VDC	AT 28 VDC
Light 1	0.183 ± 10 percent	5.13 ± 10 percent
Light 2	0.183 ± 10 percent	5.13 ± 10 percent
Light 3	0.183 ± 10 percent	5.13 ± 10 percent
Radial and Lineal	1.05 ± 10 percent	29.40 ± 10 percent
Light 4	0.183 ± 10 percent	11.60 ± 10 percent
Flow Patt Lo	0.413 ± 10 percent	13.30 ± 10 percent
Flow Patt Hi	0.473 ± 10 percent	5.13 ± 10 percent
Light 5	0.183 ± 10 percent	5.13 ± 10 percent
Light 6	0.183 ± 10 percent	5.13 ± 10 percent

*Initial value - current decreases to 0.89 \pm 10 percent after 5 minutes heating, power - 24.90 watts.

B. <u>DAC Load</u> - 0.6 amps at 28 VDC, REF: ODB

- C. Panel 100 UTILITY OUTLET 2A breaker MB
- D. Panel 16 UTILITY OUTLET 2A breaker MA

3. Temperature - Liquid Crystal Sensors

A. Cabin Temp

CODE NO.
1
2
3
4

B. Panel Temp

		-	
1	2	2	1 11
-	-	5	4

TEMP RANGE C	CODE NO.
16.5 - 21.5	1
21 - 28	2
20 - 23	3
23 - 25.75	4

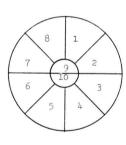
11-16-3

^{2.} Electrical (characteristics the same for SNOO2 and OO3) Ref: HF&C - ATP

SCP NO. CORO. 16-1 PCN-14

.

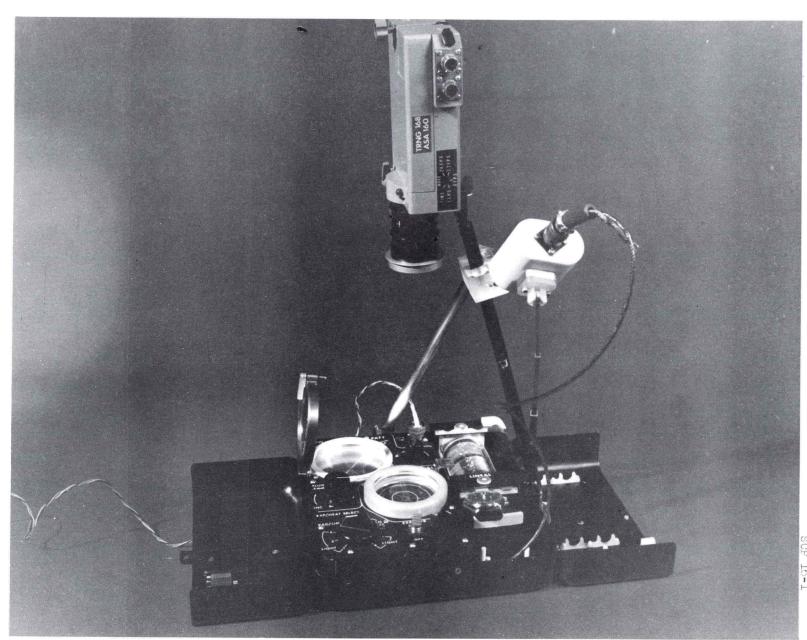
.


C. Lineal Unit

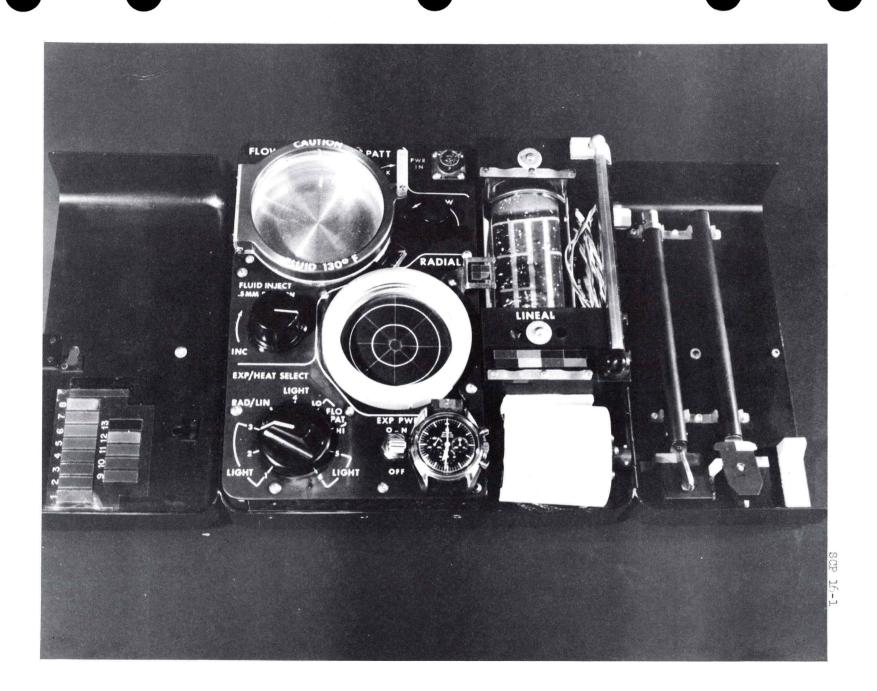
1		2
	3	
4	5	6
7	8	9

TEMP RANGE °C	CODE NO.
27 - 30	1
23 - 25.75	2
29.5 - 36.25	3
35 - 44	4
27 - 30	5
24 - 28.5	6
40 - 46.5	7
34.75- 37.75	8
32 - 35	9

D. Radial Unit


TEMP RANGE ^O C	CODE NO.
16.5 - 21.5	l
21 - 28	2
29.5 - 36.25	3
35 - 44	4
23 - 25.75	l
34.75 - 37.75	2
24 - 28.5	3
27 - 30	4
32 - 35	5
34.75 - 37.75	6
35 - 44	7
40 - 46.5	8
29.5 - 36.25	9
40 - 46.5	lo
	1 1

E. Flow Patt

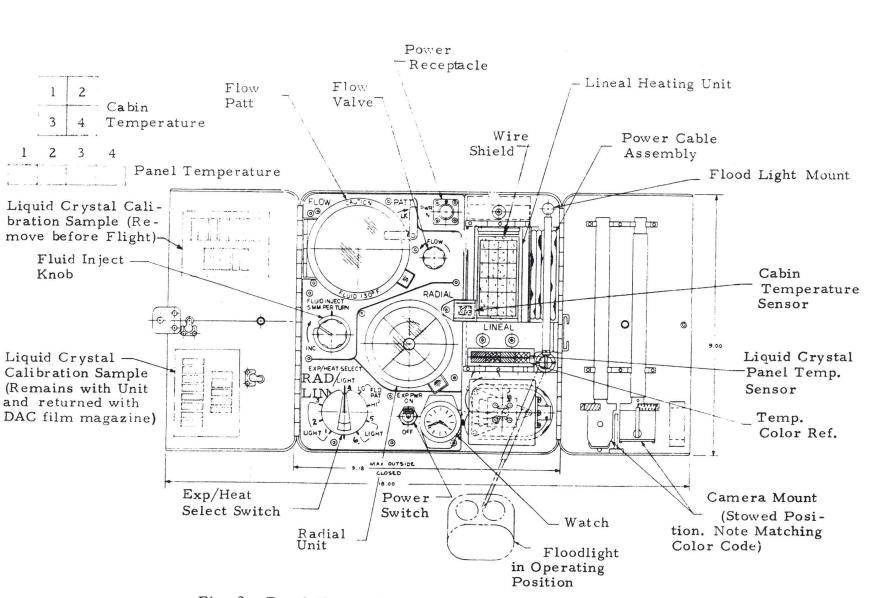

С	ASE		
l	2	3	4

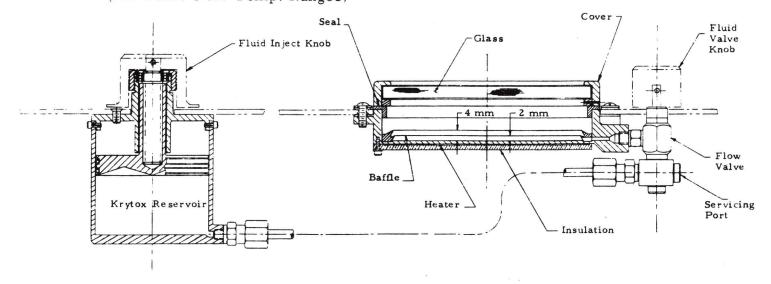
TEMP RANGE ^O C	CODE NO.
16.5 - 21.5	1
21 - 28	2
29.5 - 36.25	3
35 - 44	4

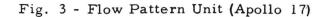
11-16-4

di US 16-1

. .




Fig. 2 - Panel Face of Heat Flow and Convection Apparatus (Apollo 17)


SCP 16-1

Liquid Crystal Temperature Sensor Code:

(Viewed from Overhead) (See Table 3 for Temp. Ranges)

SCP 16-1

SCP 16-1

Fig. 4 - Radial Heating Unit (Apollo 17)

liquid Crystal Temperature Sensor Code (See Table 3 for Temp. Ranges)

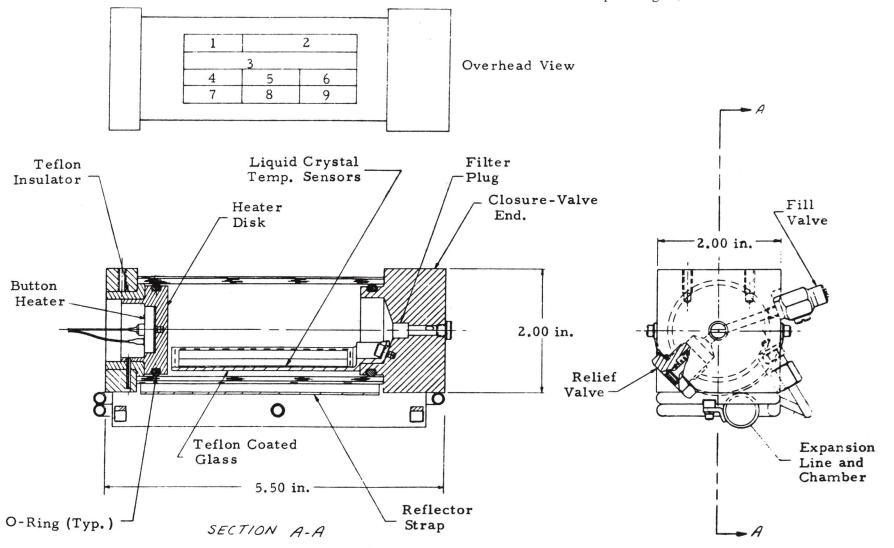
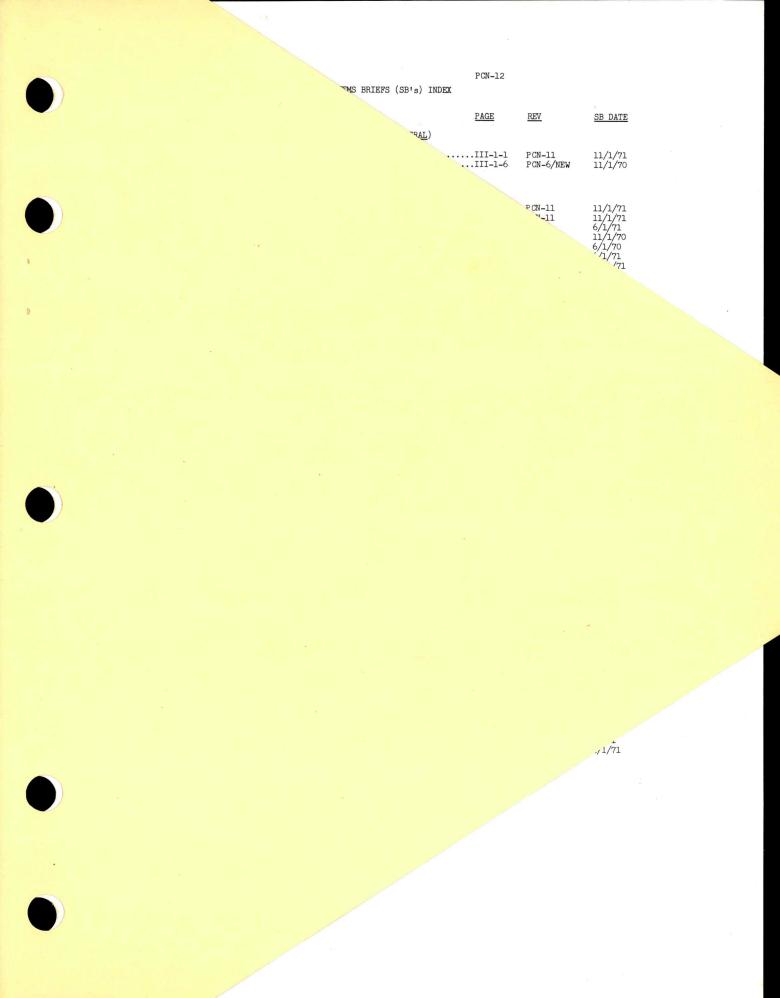



Fig. 5 - Lineal Uniting Unit (Apollo 17)

NASA - MSC

SCP 16-1

SB's

PCN-12

III. SYSTEMS BRIEFS (SB's) INDEX

SB NO.	SB TITLE	PAGE	REV	SB DATE
	<u>l – GEN (GENERAL</u>)			
GEN 1-1 GEN 1-2	TELMU Consumables Pressure Definitions	III-1-1 III-1-6	PCN-11 PCN-6/NEW	11/1/71 11/1/70
	2 - EPS (ELECTRICAL POWER SUBSYSTEM)			
EPS 2-1 EPS 2-2 EPS 2-3 EPS 2-4 EPS 2-4 EPS 2-5 EPS 2-6 EPS 2-7 EPS 2-8	LM Inverter Configuration and Loads CM/LM Power Interface EPS Overcurrent Protection. LM/GSE and LM/SLA Interface. Ascent Battery Paralleling Requirements and Procedures Descent Battery Switching. Abnormal Ascent Battery GO/NO GO Considerations Minimum Electrical Power Requirements Necessary to Accomplish a Direct Rendezvous	III-2-6 III-2-11 III-2-12 III-2-15 III-2-23 III-2-24 III-2-35	PCN-11 PCN-11 PCN-8 PCN-6 PCN-8 PCN-8/NEW PCN-11/NEW PCN-11/NEW	11/1/71 11/1/71 6/1/71 11/1/70 6/1/70 6/1/71 11/1/71 11/1/71
EPS 2-9	LM Electrical Configuration for the Loss of One Ascent Battery	III-2-38	PCN-12/NEW	3/1/72
EPS 2-10 EPS 2-11	Descent Cooling Valve and ECA Temp Vehicle Modifications Everything You Wanted to Know About Ascent Batteries But were Afraid to Ask	III-2-48 III-2-55	PCN-12/NEW PCN-12/NEW	3/1/72 3/1/72
EPS 2-12	Maximum Electrical Power Rendezvous Lifetimes for	III-2-67	PCN-12/NEW	3/1/72
	3 - PYRO (Pyrotechnics)			
PYRO 3-1	PYRO Battery Open Circuit Voltage (OCV) Analysis	III-3-1	PCN-11/NEW	3/1/72
	<u>4 - COMM (Communications) - Del</u>	leted by F	CN-3	
	5 - INST (Instrumentation)			
INST 5-1 INST 5-2	PCMTEA Crosstalk	III-5-1 III-5-4	PCN-12 PCN-11	3/1/72 11/1/71
	6 - ECS (Environmental Control System	<u>n</u>)		
ECS 6-1 ECS 6-2 ECS 6-3 ECS 6-4	CO ₂ BuildupI Torn Suit ProtectionI Water Sublimator/EvaporatorI Water Quantity Measuring Device (WQMD) ConversionI (Deleted by PCN-8)	III - 6-3	PCN-11 PCN-11 PCN-3 PCN-8	11/1/71 11/1/71 10/24/69 6/1/71
	7 - PGNS (Primary Guidance and Navigation S	System)		
PGNS 7-1 PGNS 7-2 PGNS 7-3	Coordinate SystemsI IRIG Bias DriftI Operation of the PGNS for Various Battery Bus VoltagesI	TT-7-/	PCN-14 PCN-14 PCN-14	10/1/72 10/1/72 10/1/72
PGNS 7-4 PGNS 7-5 PGNS 7-6 PGNS 7-7	Sun AnglesI Temperature (Deleted by PCN-12I Determination of Velocity Errors (Deleted by PCN-12)I Load, Monitor, and Display LGC Storage LocationsI (Deleted by PCN-12)	III-7-16 III-7-20 III-7-25	PCN-14 PCN-12 PCN-12 PCN-12 PCN-12	10/1/ 7 2 3/1/72 3/1/72 3/1/72
PGNS 7-8 PGNS 7-9	Range/Range Rate MeterI Lunar Surface PIPA Bias CalculationI	II - 7 - 27 II - 7 - 32	PCN-3 PCN-6/NEW	10/3/69 11/1/70
	$\underline{8} - RDR$ (Radar)			a 2
	9 - SCS (Stabilization and Control Syst	em)		
SCS 9-1 SCS 9-2 SCS 9-3	Engine Thrust MeterI Operational Aspects of DECA K26I Ascent Engine Adapter Cable IgnitionI	II-9-9	PCN-8 PCN-8 PCN-11	6/1/71 6/1/71 11/1/71

10 - AGS (Abort Guidance System)

Ш-i

PCN-12 PAGE REV SB DATE SB TITLE SB NO. (DPS/APS/RCS) 11 - PROP Throttle Actuator Control Assy.....III-11-1 4/1/69 ORIG PROP 11-1 PROP 11-2 RCS/APS Interconnect......III-11-1 RCS Thruster Heaters......III-11-2 ORIG 4/1/69 1/26/70 PCN-5 PROP 11-3 6/1/71 4/1/69 3/1/72 Supercritical Helium.....III-11-2 PCN-8 PROP 11-4 ORTG PROP 11-5 PCN-12 PROP 11-6 10/10/69 PCN-3 PROP 11-7 PROP 11-8 TBA 6/1/71 PROP 11-9 11/1/70 PROP 11-10 12 - EMU (Extravehicular Mobility Unit) 6/1/71 6/1/71 6/1/71 6/1/71 6/1/71 Documentation.....III-12-1 PCN-8 EMU 12-1 PCN-8 EMU 12-2 PCN-8 EMU 12-3 LM and CSM Lighting (Deleted by PCN-8).....III-12-10 PCN-8 EMU 12-4 PCN-8 EMU 12-5 6/1/71 PCN-8 EMII 12-68 6/1/71 10/1/72 10/1/72 EMU Consumables (Deleted by PCN-8).....III-12-18 PCN-8 EMII 12-6b PCN-14 EMU Pressure Regulators.....III-12-28 EMU 12-7 EMU 12-8 13 - PLSS (Portable Life Support System) 6/1/71 Contaminant Control Assembly.....III-13-1 PCN-8 PLSS 13-1 6/1/71 11/1/71 PCN-8 PLSS 13-2 PCN-11 PLSS 13-3
 PLSS Fump/Motor Assembly.
 III-13-14

 Fan/Motor Assembly.
 III-13-14

 PLSS Battery.
 III-13-17

 Communications (Deleted by PCN-3).
 III-13-18

 Microphones and Earphones.
 III-13-19
 2/25/70 PCN-5 PLSS 13-4 10/1/72 PCN-14 PLSS 13-5 10/24/69 11/1/71 10/1/**7**2 PCN-3 PLSS 13-6 PCN-11 PLSS 13-7 PCN-14 PLSS 13-8 11/1/71 PLSS 13-9 14 - OPS (Oxygen Purge System) 9/29/69 PCN-3 OPS Thermal Control.....III-14-1 OPS 14-1 OPS Battery (Deleted by PCN-8).....III-14-3 6/1/71 PCN-8 OPS 14-2 PCN-8 6/1/71 OPS Heater Controller (Deleted by PCN-8).....III-14-4 OPS 14-3 (Pressure Garment Assembly) 15 - PGA 11/1/71 6/1/71 6/1/71 PCN-11 PGA 15-1 PCN-8 PGA 15-2 A7LB and A7LB-CMP PGA's.....III-15-8 PCN-8

PGA 15-3

SB NO. GEN 1-1

S/C: LM DATE: 10-1-72 REV: PCN-14 ORIGINATOR: J. Knight APPROVAL:

TITLE : TELMU CONSUMABLES

REFERENCE : Descent Battery Spec: LSP 390-22B, 8-25-66

Ascent Battery Spec: LSP 390-21B, 8-29-66

BACKGROUND: A. Electrical Power

1. Total Loaded:

- a. Descent Each descent battery shall be capable of a discharge of 25 amps at 28.0 volts minimum for 16.6 hours at 80°F, or 415 ampere-hours total. With five descent batteries, the total minimum guaranteed descent power is 2075 ampere-hours.
- b. Ascent Each ascent battery shall be capable of a discharge of 50 amps at 28.0 $\,$ volts minimum for 5.92 hours at $80^{\rm o}{\rm F},$ or 296 ampere-hours. With two ascent batteries, the total minimum guaranteed ascent power is 592 ampere-hours.
- c. Data pertaining to the variations of descent and ascent battery capacity due to different discharge rates and temperatures is available in the SODB.
- 2. Unusables:

Because the ampere-hours consumed are calculated on the ground from the TM currents, there is an inherent source of error which is the TM inaccuracy of the current measurement.

There are two factors which must be considered when computing descent ampere-hour unusables which are attributed to TM inaccuracy. These two factors are the current measurement range and the internal ECA temperature. The TM inaccuracy associated with individual descent batteries is 0.3 amperes in the 3-12 ampere range for an internal ECA temperature of less than 75° F, and 0.55 amperes in the 3-12 ampere range for an internal ECA temperature of greater than 75° F. The TM inaccuracy is 0.95 amperes for any measurement outside the 3-12 ampere range regardless of the ECA temperature. The TM inaccuracy associated with the individual ascent battery is 1.9 amperes.

The descent and ascent TM inaccuracies are computed independently by RSSing the individual TM inaccuracy based on the number of descent and/or ascent batteries on line. The TM inaccuracy for each configuration is shown in Table I.

TABLE I - DESCENT TM INACCURACY

No. of Descent Batteries on line	TM (3-12 <u><75°F</u>	Inaccuracy Ampere Range) >75°F	TM Inaccuracy Outside 3-12 amp range
1 2 3 4 Asce	0.3 0.42 0.52 0.60	0.55 0.78 0.95 1.10	0.95 1.34 1.64 1.90
No. of As Batteries o	scent	TM Inaccuracy	
1		1.9 2.69	

The descent and ascent unusable is determined by multiplying the TM inaccuracy for each battery configuration by the number of hours in the respective configuration.

111-1-1

P-6

P-8

P-12

SB NO. GEN 1-1 PCN -14

3. Example calculation for unusable:

DAH a. 1 hour with 2 descent batteries on line - $1 \times 0.42 = 0.42$ b. 48 hours with 3 descent batteries on line - 48 X 0.52 = 24.96 c. 30 hours with 4 descent batteries on line - 30 X 0.60 = 18.00TOTAL 43.38 AAH

d.	8 hours with 2 ascent batteries on line	-	8 X 2.69 = 21.52
e.	l hour with 1 ascent battery on line	-	1 X 1.9 = 1.90
			TOTAL 23.42

4.

Margin:

It is undesirable to plan use of the entire expected available electrical power since there are other factors which affect the mission requirements. While extreme effort is exercised to detail the Flight Plan and Crew Checklists, there are frequent deviations from the planned timeline due to a variety of unforeseen circumstances. These factors result in delays and additional time is devoted to a portion of the checklist, and in some instances a specific phase may be completed earlier to permit additional time for another phase of the mission, i.e., reduce the rest period to allow for more EVA preparation time. A margin of approximately 10% of total electrical energy is utilized in mission planning to allow for deviations. There is no fixed margin constraint and each mission plan is individually judged adequate or inadequate. P-9

Β. Environmental Control

- 1. Total Loaded
 - a. Descent
 - (1) The descent $\rm H_{2}O$ tanks will be loaded to predetermined values to provide water for P-8 crew consumption, evaporative cooling, fire fighting, and PLSS resupply. The exact amount loaded is mission dependent and is based on MPAD mission analysis.

(2) The descent GOX tanks will be loaded to approximately 45 pounds each.

- b. Ascent
 - (1) Each of the two ascent $\rm H_{2}O$ tanks will be loaded with 42.5 pounds of $\rm H_{2}O$ for a total of 85.0 pounds of ascent H_2O .
 - (2) Each of the two ascent GOX tanks will be loaded with 2.4 pounds of 0_2 , for a total of 4.8 pounds of ascent 02.
- 2. Unusables

The unusables for ${\rm H_{2}O}$ consist of tank residuals, loading error and TM inaccuracy, of which the latter two are mission dependent. The unusables for 0_2 are residuals and TM inaccuracy P-11 with an additional possible unusable based on spec tank leakage. These values are shown below.

	TABLE II - H20 and 02 UNUSABLES						
	DESCENT	TOTAL	ASCENT TOTAL				
	н ₂ 0	0 ₂	н ₂ 0	02			
Loading Error			0.72				
Residual	8.07 lbs	1.68 lbs	1.7 lbs	0.28			
TM Inaccuracy	**	*1.09 lbs/tank	*4.8 lbs	0.114 lbs			
Tank Leakage		2.64 lbs		0.34 lbs			
* RSS values: to obtain single tank value, divide by 1.414.							

** See SCP 6-5 for descent H₀0 TM inaccuracy.

3. Dispersion

For premission planning computations, an arbitrary 5 percent of the total 0_0 and H_00 used is considered necessary to account for high metabolic loads, inflight checkouts of pressure regulators, slightly high leak rates, and for unexpected structural/thermal loads.

4. LM/EMU Consumables

Table II gives a detailed breakdown of LM ECS/EMU consumables.

P-12

P-8

P-8

FCD 5-68.7.29C

1

4

TABLE II. - LM/EMU ECS CONSUMABLES

, .

					LC3 CONSOMABLES				
CONSUMABLE	LOCATION	VOLUME /TANK	DESIGN LOADED /TANK	NORMAL LOADED /TAN	K TM ERROR	UNUSABLE (TM + RESIDUAL)	USABLE	FLOW RATE	TM
	2 DESCENT TANKS QUAD 3, QUAD 4 LUNAR MODULE	2.981 FT ³	3000 PSIA	46.7 LBS EACH AT 2610 PSIA, 70° F	1.09 LBS/TANK	I. 93 LBS /TANK	44.77 LBS	CABIN MODE 0.25 TO 0.37 LB/HR EGRESS MODE 0.25 LB/HR	GF0584P GF 3584P
OXYGEN	2 ASCENT TANKS AFT EQUIPMENT BAY LUNAR MODULE	0. 495 FT ³	1000 PSIA	2. 43 LBS AT 854 PSTA, 70° F	0.057 LBS/TANK	. 257 LBS/TANK AT 50 PSIA	2.17 LBS/TANK	CABIN MODE 0.25 TO 0.37 LB/HR EGRESS MODE 0.25 LB/HR	GF3582P GF3583P
(0 ₂)									
	PRIMARY OXYGEN SUBSYSTEM (POS) O PLSS	0. 219 FT3	1410 ±30 PSIA	1,860 LBS AT 1420 PSIA, 70° F LM RECHARGE: 1,810 LBS AT 1395 PSIA, 70° F	0.060LBS 48 PSIA AT 70 ⁰ F	0.240 LBS AT 193 PSIA 70° F	④ EVA 1 = 1.498 LBS EVA 2 and 3 = 1.448 LBS	EMU 0.07 TO 2.0 LBS/HR (REGULATED) 0.18 LBS/HR NOMINAL	GT8182P GT8282P
	2 DESCENT TANKS QUAD 2, QUAD 4 LUNAR MODULE	7.13 FT ³	GN2 PRECHARGE - 50 PSIA AT 100°F H ₂ 0 - 333LB;		Δ	Δ + 4.04 LBS/TANK:	Δ	3-8 LBS/HR	GF0500P GF4500P
WATER (H ₂ 0)	2 ASCENT TANKS I R/H 2 L/H LUNAR MODULE	0.91 FT ³	GN2 PRECHARGE - 50 PSIA AT 100 ⁰ F H20 - 42.5 LB	42.5 LBS	3.39 LBS/TANK 4.8 LBS TOTAL RSS	4.24 LB/TANK 6.5 LBS TOTAL RSS	38,26 LB/TANK 78,5 LBS TOTAL	3-8 LBS/HR	GF4502P GF4503P
	PLSS FEED WATER O SUPPLY	0.191 FT ³ (0.136 + 0.055)	12.05 ±0.25 LBS	12.2 LBS MAX 3 12.2 LBS 7	NA	1.04 LBS 10 0.91 LBS	11.16 LBS 3	0.75 TO 3.0 LBS/HR	GT8110 GT8210
	LM PRIMARY CARTRIDGE	NA	NA	5.25 LBS	NA	NA	CO2 EXTRACTION LIFETIME - 41 MAN-HRS	NA	GF1521P CO2 PARTIAL PRESS LEVEL
LIOH	LM SECONDARY/ PLSS CARTRIDGE	NA	3.25 ±0.13LBS	3.22 LBS	NA	NA	CO2 EXTRACTION LIFETIME LM - 18 MAN-HRS PLSS 8.5 HRS AT 1050 BTU	NA	LM SECONDARY SELECT GF1241X GT8175P GF1521P GT8275P
OXYGEN PURGE SYSTEM	SRC STOWAGE COMPARTMENT	0. 186 FT ³	5880 ± 500 PSIA	5.78 LBS AT 5880 PSIA, 70° F	0.312 LBS 300 PSTA (GAGE ERROR)	0.106 LBS (1) 0.353 LBS 0.166 LBS (8)	5.61 LBS	240 LBS/HRS 0,07 TO 8.0 LBS/HR (REGULATED)	NA
ONFIGURATION	VOLUME	NORMAL PRESSURE	LEAK/RATE	REPRESSURIZATION TIME	DEPRESSURIZATION TIME	METABOLIC CONSUMPTION	METABOLIC RATE	NORMAL TEMPERATURE	TM
CABIN MODE	195.0 FT ³	4.8 ±.2 PSIA	0. 20 LB/HR SPEC	0 TO 4.6 PSIA 2 MIN> 350 PSIA (DESCENT 02 TANKS 0NLY)	ONE VALVE 240 SEC TWO VALVES 105 SEC FILTER	0. 085 LBS <i>I</i> MAN-HR	520 BTU/MAN-HR	55° - 70° F	GF1651T GF3571P
SUIT LOOP	0. 58 FT ³ W/O SUITS		SUIT LOOP 0.01 LBS/HR	SUIT CIRCUIT		SUIT O ₂ FLOW	520-560 BTU/MAN-HR		
	2.9 FT3 W/SUITS	EMU 3.7±.3 PSIA	SUITS 0. 035 LBS/HR-SUIT	<2 MIN (MAX) ONE REGULATOR	NA	EGRESS MODE 30 LB/HR CABIN MODE 42 LB/HR	• 1050 BTU/MAN-HR • EVA	55° - 70° F	GF1281T GF1301P
MISSION DEPENDEN		1 DELETE ALLOWANCE FOR VI 2 DELETED	S 12.5_B	TAL H2O AVAILABLE BS WHICH INCLUDES FT OVER SLAVE H2O	(4) MAKE UP (100 PS (5) HIGH PURGE MODE AT -40°F (SPEC)	IA AT 70°F) 6) UNRESTRICTED (OPS) FL AT 5880 PSIA) LOW PURGE MODE 300 AT -40°F (SPEC)	RECHARGE H	TING 12.8 LBS 120 IS REQUIRED
					() 0.122 LBS (9		BTRACTED FOR EMU PRES		AND LM REPRESS (25 PSIA)
					10 1.04 LBS II	NCLUDES 0.13 LBS TRANSF	ORT LOOP MAKEUP FOR EV	A 1.	PCN-14

111-1-3

These pages intentionally left blank

٩

111-1-4 through 111-1-5

SB NO. GEN 1-2

PRESSURE DEFINITIONS

1. All enclosed volumes which are to be subjected to delta pressure environments are tested to pressure envelopes based on the maximum expected operating pressure (MEOP) or, as sometimes referred to, maximum working pressure.

2. There are several terms which are associated with the testing of these vessels:

a. <u>MEOP or Maximum Working Pressure</u> - The maximum pressure the vessel (tank, pipe, regulator, etc) will be subjected to during ground testing and flight.

b. <u>Proof Pressure</u> - Generally, but not always equal to 1.33 times the MEOP. Some components have proof pressures of anywhere from 1.5 to 20 times the MEOP. This value is imposed on the components during acceptance testing prior to flight. Proof pressure is generally maintained for 1 to 2 minutes and does not result in any deformation of the component.

c. <u>Burst or Ultimate Pressure</u> - Generally, but not always equal to 2 times the MEOF. Some components have burst pressures of anywhere from 1.5 to 35 times the MEOP. This value is imposed on one or more of a type of component; it means only that the component may be deformed; structural failure at this pressure is not acceptable. These vessels are not, of course, used for flight purposes.

DUDG

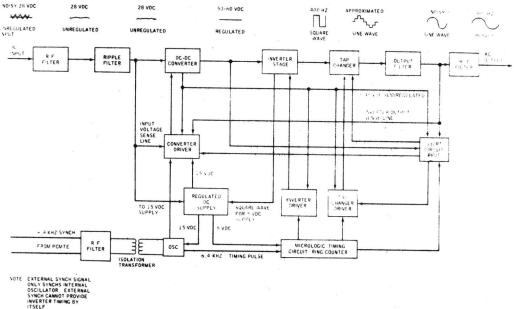
3. Examples

SUIT CIRCUIT ASSEMBLY	MEOP	PROOF PRESSURE	BURST PRESSURE
Gas	4.8 PSIG	6.4 PSIG	9.6 PSIG
H ₂ 0	7.2 PSIG	10.6 PSIG	14.5 PSIG
GLYCOL	47.5 PSIG	60.0 PSIG	90.0 PSIG
°2	1100.0 PSIG	1465.0 PSIG	2200.0 PSIG
GLYCOL LOOP	47.5 PSIG	60.0 PSIG	90.0 PSIG
GOX TANK			
Ascent	1000.0 PSIG	1330.0 PSIG	1500.0 PSIG
Descent	3000.0 PSIG	4120.0 PSIG	4700.0 PSIG
H ₂ O TANK			
Ascent	50.0 PSID	64.0 PSID	96.4 PSID
Descent	50.0 PSID	64.0 PSID	96.4 PSID
CABIN	4.8 PSIG	7.8 PSIG	11.6 PSIG
DPS			11.0 1010
SHe	1710 PSIG	2274 PSIG	3420 PSIG
Ambient He	1750 PSIG	2325 PSIG	2622 PSIG
Prop	253 PSIG	360 PSIG	405 PSIG
APS		200 1010	409 1510
He	3250 PSIG	4660 PSIG	5250 PSIG
Prop	203 PSIG	333 PSIG	375 PSIG
RCS			575 1510
He	3500 PSIG	4655 PSIG	7000 PSIG
Prop	194 PSIG	333 PSIG	375 PSIG
the second			

4. Fracture Mechanics is also a term frequently encountered in discussions of proof and burst pressures. Briefly, fracture mechanics consider an assumed flaw size in the vessel, the specific fluid contained in the vessel, the number of pressure cycles imposed on the vessel (Vessel History), and statistically relates these with a pressure-temperature relationship to predict the point at which the tank will fail. The examples given above are specification values at ambient or near-ambient temperatures (up to 160°F) and therefore do not necessarily reflect fracture mechanics limits.

s/c DATE 11/1/70 REV PCN -6/NEW ORIGINATOR: Jack Knight APPROVAL :

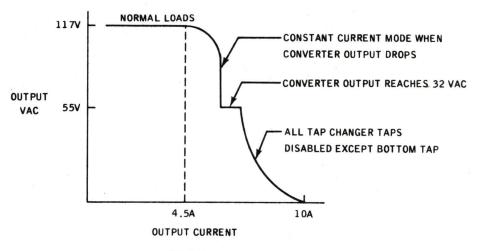
SB NO. EPS 2-1


S/C: LM DATE: 11-1-71 REV : PCN-11 ORIGINATOR: R. Heselmeyer APPROVAL: William

P-11

TITLE: LM INVERTER CONFIGURATION AND LOADS

REFERENCES:	Α.	EPS Level III Drawings: LDW 390-54000	F.	LSP-370-2H 9-4-70
	Β.	ASPO-RQAD Problem Tracking List 1/12/68	G.	LSP-350-201C 5-5-67
	с.	Inverter Spec: LSP 390-6D 11/4/66	н.	LSP-350-401C 12-16-66
	D.	FCR J-11 1/26/66	I.	LSP-350-307D 9-24-67
	E.	LLR 390-91 6/6/66	1	


- BACKGROUND: A. Every LM has two identical, independent inverters onboard. Either Inverter 1, powered from the CDR Bus, or Inverter 2, powered from the LMP Bus, can be selected by the Inverter Switch on Panel 14 to power the split ac buses. Both inverters, however, cannot be selected simultaneously. Each inverter accepts a 28 Vdc input and is capable of supplying ll7 Vac, 400 Hz to a 350-watt continuous load, or 525 watts for 10 minutes. The inverters will also automatically limit the maximum current to a short circuit to approximately 10 amps for 20 seconds without internal damage. Maximum warmup time is 5 seconds; however, testing has shown nominal outputs immediately after an inverter has been placed online.
 - B. Also supplied as an input is a 6.4 kHz timing pulse from the PCMTEA to sync an oscillator in each inverter. With this timing signal present, the output frequency will be 400 Hz + 0.1 percent. If the timing signal is lost, the oscillator will be in the free running mode, and the output frequency may vary as much as 400 + 10 Hz. Test results indicate, however, that in general the frequency in the free running mode will be 400 + 1 Hz.
 - C. A block diagram of an inverter is shown below,

INVERTER - BLOCK DIAGRAM

III-2-1

- RF Filters Used to eliminate RF noise. The dc and synch inputs, and the ac output interface with the inverter at the same physical location. The three RF filters shown are actually located in the same housing. RF filters have experienced numerous quality control failures during testing due to capacitors with high dissipation losses. This problem has been corrected, and all inverters now have acceptable filters.
- 2. Ripple Filter Consists of a high series and low shunt impedance. Its function is to prevent the 6.4 kHz converter ripple current from appearing on the dc input lines.
- 3. De-de Converter The de input is switched on and off into an L-C circuit at a basic rate of 6.4 kHz which produces a regulated output of from 53 Vdc to 60 Vdc. The 39-45 Vdc semi-regulated output is tapped off of the coil in the dc-dc converter. In the past, the dc-dc converter has experienced failures, resulting in an output of approximately 90 V peak. In these cases the converter failed to boost the input voltage to the proper 53-60 Vdc level, and the 28 Vdc bus voltage resulted in the 90 V peak output. These failures have also been corrected.
- 4. Converter Driver Compares the input and output voltages of the inverter to determine the exact switching rate of the dc-dc converter. Basic timing is supplied by the oscillator. The 15 Vdc and 39-45 Vdc drive the control circuitry.
- 5. Inverter Stage The dc input is switched back and forth across the primary of a transformer to produce a 400 Hz square wave.
- 6. Inverter Driver Drives the switching in the inverter stage at exactly 400 Hz through its input from the timing circuit. The 39-45 Vdc drives the associated circuitry.
- Tap Changer Samples the secondary of the transformer in the inverter stage at predetermined levels in an exact sequence resulting in an approximated 400 Hz sine wave.
- Tap Changer Driver Drives the tap changer through its input from the timing circuitry. The 39-45 Vdc drives the associated circuitry.
- 9. Output Filter Smoothes the simulated sine wave output by the tap changer.
- 10. Oscillators The free-running unijunction oscillator is synched to the timing signal from the PCMTE and provides the basic timing pulse for the timing circuitry. The 15 Vdc is used to drive the associated circuitry.
- ll. Micrologic Timing Circuit Two ring counters in series used to count down the 6.4 kHz timing pulse to 400 Hz.
- 12. Regulated dc Supply Uses the input dc voltage to supply a regulated 15 Vdc; and a sample of the inverter stage square wave which is rectified to produce a regulated 5 Vdc used for driving the timing circuitry.
- 13. Short Circuit Protection Monitors the inverter output for a heavy overload condition. When such a condition exists, the normal constant voltage mode of the inverter maintained by the converter driver is overridden by a constant current mode of operation maintained by the short circuit protection. Normal tap changer operation is disabled, and a portion of the tap changer is driven directly by the short circuit protection. The output VI characteristic is shown below.

III-2-2

D. The inverter loads are configured such that they are tied to one of two split ac buses, "A" or "B". Bus A loads are primarily associated with PGNS operation, and Bus B loads with AGS operation. The loads, according to bus, are as follows:

AC Bus A	Watts	AC Bus B	Watts
Integral Lighting	46.2	Numeric Lighting	4.0
Rendz Radar .	13.8	He/PQGS Display	6.7
DECA	82.6	S-Bnd Antenna	3.5
DSEA	2.7	AGS	3.5
CDR FDAI	4.0	LMP FDAI	4.0
AOT Lamp	9.3	AOT Lamp	9.3
CDR Window Htr	61.8	LMP Window Htr	61.8
GASTA	12.5	ORDEAL	3.5
Range/Alt Mtr	10.5		
AC Voltmeter		- 1	

The maximum load for Bus A alone is 241 watts, and for Bus B, 96.3 watts. The maximum possible ac load, with all equipment on at the same time, is 328 watts. (The AOT lamp was considered a load for both individual bus totals; for the total combined load, therefore, 9.3 watts must be subtracted.) During nominal operation, therefore, the inverter should be well within its operating limits. The only load unique to burn phases is the DECA. The remaining loads are periodic, depending on mission phase or necessity.

E. The two ac buses are tied together through three different paths, each path having two circuit breakers in series, as shown in Figure 2.

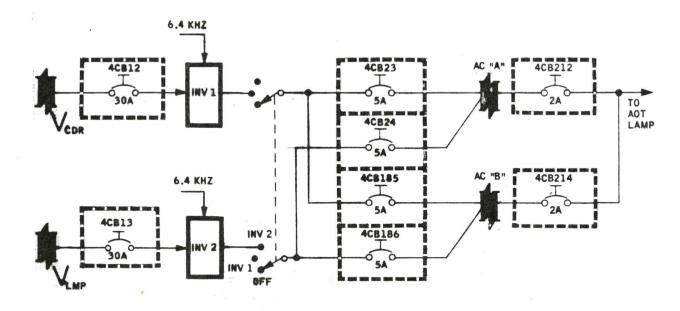


FIGURE 2.- INVERTER CIRCUIT BREAKER CONFIGURATION.

All four circuit breakers between the inverters and ac buses are normally closed. Therefore, to completely isolate the ac buses from each other, at least two circuit breakers must be pulled. The AOT lamp is the only ac load supplied by both ac buses. This was done to optimize power to a crew safety device in the event of an ac bus failure; however, there is only one feeder to the lamp, and several single point failures in the lamp assembly itself. Normally only one AOT lamp breaker will be closed at one time.

SB NO. EPS 2-1 PCN-II

MALFUNCTION DETECTION:

A. On the ground, two PCM parameters monitor inverter activity: GC0071V AC Bus Volt, and GC0155F AC Bus Freq. Both of these parameters are measured on AC Bus A only. Onboard, GC0071V is displayed on a meter when the "AC" position is selected by the POWER/TEMP MONITOR switch on Panel 14. In addition, the <u>Inverter</u> caution light will illuminate for: 398>F>402 Hz and V<112 Vac.</p>

B. On IM-1 it was noted that during DECA operation the ac voltage varied from 112 to 124.5 Vac without detrimental effect to the equipment. Subsequent investigation of this problem revealed that the signal conditioning calculates the average dc voltage of the rectified ac output. This calculation,

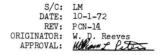
$$V_{AVE} = V_{PEAK} \left(\frac{2}{\pi} - \frac{4}{3\pi} \cos 2 \omega t - \frac{4}{15\pi} \cos 4 \omega t - \dots\right)$$

allows harmonics to distort the final dc output. Also, the pulsed input to the gimbal drive motors caused very short duration (<300 ms) voltage spikes on the inverter output which could have been sampled by the signal conditioning, thus giving a false impression of the overall value of the output voltage. It has been postulated that these were the causes of the fluctuating voltage reading on IM-1. Tests have shown that heavier ac loading on IM-3 will alleviate this spiking, and the flight performance of the IM-3 inverters verified that the problem no longer exists.

In the event of the loss of the ac parameters, equipment characteristics must be used as an indication of off-nominal inverter output. A brief summary of ac equipment and the effect of voltage and frequency variations on that equipment follows:

	Circuit Breaker		Critical Limits Vac Hz			~	
	4 CB	Equipment	Low	High	Low	High	Failure Mode
Bus A		AC BUS VOLTS MEAS AC BUS FREQ MEAS	NO	1E	NONE		NONE - THIS IS PARAMETER SENSE LINE.
	144	CDR WINDOW HTR	112.5	117.5	390	410	LOSS OF CDR WINDOW HTR.
	201	GASTA	112.5	117.5	390	410	LOSS OF FDAI ATTITUDE INDICATIONS.
		DSEA	112.5	117.5	390	410	LOBS OF DSEA.
	204,	RNG/ALT METER	112.5	117.5	390	410	LOSS OF TAPE DRIVE MOTOR. THEREFORE, LOSS OFP-11
	206	RENDZ RDR	112.5	117.5	399.6 400.4		RNG/ALT METER. LOSS OF GYRO SPIN MOTORS AND SOME REFERENCE P-11 VOLTAGES. SEVERE DEGREDATION OF RENDZ RDR PERFORMANCE.
	207	DECA GIMBAL	REF SB NO	SCS 9-2	TBD		
							REF SB NO SCS 9-2
	209 211 212	CDR FDAI INTGL LTG AOT LAMP	112.5 15 TB	117.5 117.5 D	390 390 TI	410 410 3D	LOSS OF SPHERE DRIVE MOTOR. DEGRADED OR LOST INTEGRAL LIGHTING. LOSS OF USE OF AOT (4CB214 IS REDUNDANT).
Bus B	34 152 169	S-BAND ANT SE WINDOW HTR HE/PQGS DISP	103.5 112.5 112.5	126.5 117.5 117.5	360 390 390	440 410 410	LOSS OF SLEW CAPABILITY OF S-BAND ANT. LOSS OF SE WINDOW HTR. LOSS OF 10M1 and 10M5 - DPS HE PRESS AND PROP P-1 QTY, AND APS HE TEMP AND PRESS.
	200 203	NUMERIC LTG AGS	20 TB	117.5 D	390 TI	410 BD	DEGRADED OR LOST NUMERIC LIGHTING. LOSS OF SIN AND COS ATTITUDE SIGNALS TO FDAI'S AND ORDEAL.
	210 214	SE FDAI AOT LAMP	112.5 TE	117.5 D	390 T	410 BD	LOSS OF SPHERE DRIVE MOTOR. LOSS OF USE OF AOT (4CB212 IS REDUNDANT).
	226	ORDEAL	112.5	117.5	390	410	LOSS OF ORDEAL.

- C. Should a short circuit occur on the ac distribution system, the inverter output is automatically limited to 10 amps maximum by the short circuit protection (see Background, C.13). The distribution system is configured such that these 10 amps will be divided between the parallel 5 amp circuit breakers. These circuit breakers could take an hour or more to open, depending on their temperature. Therefore, the problem can be detected via the inverter light and trouble-shooting can be completed before the circuit breakers open.
- D. The inverters are mounted on a cold rail in the aft equipment bay, and will operate safely at all glycol temperatures between 35 and ll2^oF. Inverter thermal problems will be impossible to detect because the inverters will malfunction due to overheating long before enough heat is given off to the glycol to be reflected in the glycol temp measurement.


MISSION IMPACT:

- A. Normally, Inverter 2 will be used to supply ac power to the vehicle at all times except for DPS burns. The use of Inverter 2 has the advantage of powering the ac loads from the normally more lightly loaded IMP Bus. For DPS burns, however, using Inverter 1 avoids shutting down the engine if the IMP Bus is lost. Should either inverter fail during the mission, the other inverter may be switched online immediately and the normal mission continued. If both inverters fail, IM solo flight will have to be curtailed due to difficulties associated with flying the IM without any ac equipment.
- B. Loss of either ac bus may require modifying certain mission phases, depending on the mission phase and equipment required.
- C. In the event that there is a loss of cooling, the inverters can safely supply a 350-watt load for approximately 25 minutes. Since the ac load should never be this high, inverter life can be extended indefinitely by switching inverters every 30-40 minutes.
- D. There is no constraint against powering the inverter and the AC loads at the same time via the DC inverter circuit breaker (reference SPAN chit 66-Apollo 13).

CORRECTIVE ACTION:

- A. Other than switching the other inverter online in the event of a failed inverter, no corrective action can be taken.
- B. It should be noted that in the event of a failed open inverter bus tie circuit breaker, the affected ac bus will be powered from the other ac bus with no interruption of power. This is due to the fact that all applicable circuit breakers are normally closed. For example, if Inverter 2 is on and 4CE186 fails open, AC Bus B will be powered from AC Bus A through 4CE23 and 4CE185 in series. Even during maximum nominal ac loading there is no danger of the bus tie breakers opening, because the current demands of both ac buses do not exceed the circuit breaker ratings.

SB NO. EPS 2-2

TITLE: CM/LM POWER INTERFACE

REFERENCE: MHO1-05273-414, MHO1-05048-116, MHO1-05059-216, V28-420107, V28-420108, V34-945523, LDW 390-53000, AOH Volume 2, and EPS, SA&I and equipment lines groups at GAC, Bethpage.

BACKGROUND: A. The CM/LM power interface supplies power to the LM from the CM via a pair of electrical umbilicals from TD&E until LM activation in lunar orbit.

The electrical umbilicals consist of two separate cables, each having nineteen 22-gauge wires. Eighteen of these wires are used in each cable, leaving the others as spares. Eight of the wires in each cable are for electrical power transfer between the CM and LM. The remaining ten active wires in each cable connect the CM pyrotechnic system through the LM to LM/SLA separation devices on the LM outriggers and the LM/SLA umbilical guillotine.

The cables are stowed in the LM docking tunnel area and are held to the walls of the tunnel by velcro strips. In the stowed position, the ends of the cables that are to be attached to the CM are plugged into two dummy receptacles located near two of the drogue mounts, between the drogue periphery and the LM tunnel walls. Upon docking the LM and CM, a crewman can crawl partially into the docking tunnel, unplug the cables from their stowage receptacles, and plug them into the receptacles in the CM. These receptacles have covers which are opened when connecting the umbilicals, then closed over the plugs to prevent them from being disconnected accidentally upon IVT. This can all be done without removing the probe or drogue and without the use of any tools.

- B. The plugs have 19 pins with only 18 being used. They also have a master key to align them in their receptacles, each one being keyed differently so that it will fit only its respective socket in the CM. This precludes the possibility of connecting the wrong cable and socket. Each plug and socket is painted universal orange 180° around its circumference such that when a plug is inserted in its socket, there will be one continuous orange line. The plugs themselves are of the type that lock upon pushing them into their receptacles, and they must be turned approximately 30° before they can be disengaged. They require a maximum of 20 pounds of force to engage or disengage them.
- C. Upon connecting the umbilicals, there will be no power on them due to the OFF position of the LM PWR switch in the CM. By placing this switch in the CSM position, power will be transferred from the CM main DC bus to the LM CDR's bus via three wires in each umbilical (see Figure 2). Simultaneously, power will be applied via one wire in each umbilical to the descent battery reset coils to turn the descent batteries off. The five descent batteries may be left in any configuration other P-8 than batteries 1, 2, 3, and 4 on high voltage taps prior to performing this switchover to prevent a relay race between relays 4K3, 4K4, and the descent battery reset coils, possibly resulting in CSM power and LM batteries being paralleled. Three negative return leads are also provided in each umbilical which connect the LM translunar bus to the CM Negative DC bus. In addition to this function, the negative return wires pass through a LM power shunt connected to a signal conditioner in the CSM, permitting monitoring of the current to the LM both on TM and onboard (CC2962 LM HTR Current). The onboard meter and TM have a range of 0 to 10 amps. The LM translunar ground is a negative return isolated from the LM structure ground. Without this isolation, the electrical return when on CM power would be made via the structure, thus causing the current monitoring technique to become ineffective. This would prevent detecting loss of any critical heaters in the LM or abnormal heater cycling which could result in loss of LM activities.

Prior to switching from internal LM power to CM power, the loads on in the LM will be the RR HTR, LR HTR, IMU HTR, S-BAND ANT HTR, MESA HTR, DES ECA's, docking light, meter power fail lights, C/W |P-11 PWR caution light, and lighting on the DEDA and DSKY panels. The heaters are cyclic loads and should not all be on at once (reference the XLUNAR LOADS TABLE in the SODB Vol II appendices for

Ш-2-6

SB NO. EPS 2-2 PCN-14

peak loads and average loads due to cycling per vehicle). The other loads listed above amount to an extra 1.63 amps, most of which is due to the docking lights (1.07amps). When relays 4K3 and 4K4 are operated at power switchover, all of the loads listed above are turned off except the heater loads, the floodlights, and relays 4K3 and 4K4. If all of the heaters should be on at once with the floodlights, the total load would be 333 watts. Based on 28 Vdc, this requires a current of 11.5 amps, which is divided between two 7.5 amp breakers in the CM and among three 22 gauge wires P-11 in each umbilical. It also flows through the switch contacts of the LM PWR switch and through the parallel relay contacts of 4K3 and 4K4 in the LM (see Figure 2). The LM PWR switch is capable of supplying 23 amps continuously; the contacts of 4K3 and 4K4 are rated at 10 amps each; and a 22gauge wire is rated at 11.7 amps in a vacuum. The wire ratings are based on the amount of steady current necessary to raise the wire temperature to 400°F. Based on these data, the trip limits of the breakers in the CM are being approached; however, this is for the unrealistic worst case condition of all heaters on at once. Also, with a nominal 28 Vdc on the CSM bus, approximately 25 Vdc will appear at the LM bus due to line losses in the umbilicals. Therefore, the current drawn by these loads will be less than that based on 28 Vdc, and it may be concluded that the CM will be capable of supplying the LM power. The current should be approximately the same as it has been in past missions which is shown in Figure 1. The ASA HTR has been turned off during the TLC since a heater failed on during prelaunch testing on Apollo 14 and it was discovered that it was not necessary during TLC. The ASA heater is composed of two heater systems, a fine temperature control heater and a fast warm up heater. The fine temperature control heater is always on during LM active phases to maintain the ASA temperature at its operating level of $120 + 1.2^{\circ}$ F while the fast P-11 warm up heater is a 200 watt heater which comes on any time the temperature of the ASA falls below 116 +2°F.

- D. At the time of LM activation, the LM batteries 1 and 4 will be put back on the LM bus by use of the $|_{P-8}$ LM PWR switch in the CM. There is one wire in each umbilical which supplies power to the LM descent P-8 battery 1 and 4 low voltage set coils upon placing the LM PWR switch in the RESET position and maintaining it for a minimum of 300 miliseconds. Whenever the low voltage contacts close, the CM power is removed from the LM bus by relays in the LM which prevent the LM and CM power from being on the LM bus simultaneously. During power switchover, the transient voltage limits will be 21 to 32 volts with recovery to steady state within one second. The LM will be placed on internal power after manning the LM, then switched to CSM power prior to IVT back to the CSM.
- E. On LM 10 and subsequent, the capability has been incorporated to allow CSM/LM power transfer after staging. This was accomplished by making a wiring modification such that upon firing the P-8 electrical circuit interrupters at staging, the circuit from the CSM interface to 4K3 and 4K4 is completed (see Figure 2).

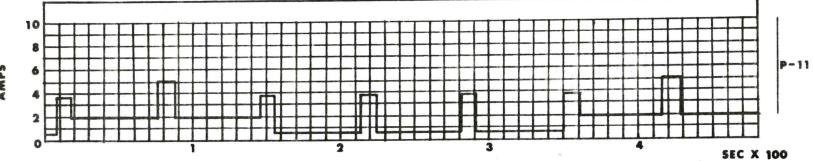
MALFUNCTION DETECTION and MISSION IMPACT

2.

A. There exist two areas of single point failure in the CM/LM electrical interface. First, a failed open contact of either relay 4K3 or 4K4 in the descent battery reset line would prevent the descent batteries from being turned off, therefore preventing switchover. Should this occur, the switchover could be performed from within the LM. The procedure would be as follows:

```
1. CB(16) EPS: EPS DISP - close
                 DES ECA CONT - close
                 X LUNAR BUS TIE - close
                 CROSS TIE BAL LOAD - open
          INST: SIG CONDR 2 - close
    NOTE
```

The next step will cause a momentary loss of lighting LMP BAT 1 HI VOLT - OFF/RESET then ON. tb - HI CDR BAT 4 LO VOLT - OFF/RESET; tb - BP


3. Coordinate power transfer with CSM crewman LM POWER - CSM

SB NO. EPS 2-2 PCN-14

4.	NOTE:			í.
	The next ste	p will cause loss of vehicle lighting until step 5.		
	LMP BAT 1 HI	VOLT - OFF/RESET, tb - BP		
5.	CB(16) EPS:	CROSS TIE BAL LOAD - close		P-14
	INST:	SIG CONDR 2 - open		
	EPS:	DISP - open	,	
		DES ECA CONT - open		
		XLUNAR BUS TIE - open		ł

Second, if any of the low voltage relay contacts in the line to power relays 4K3 and 4K4 fail to close when the descent batteries are turned off (see Figure 2), power switchover from the CM cannot be performed unless the vehicle is staged.

B. Inability to connect at least one umbilical would result in a shorter alternate mission, for it would be impossible to remove the LM from the SLA or to supply power to the LM from the CSM.

AMPS

2

FCD 5-68.7.24

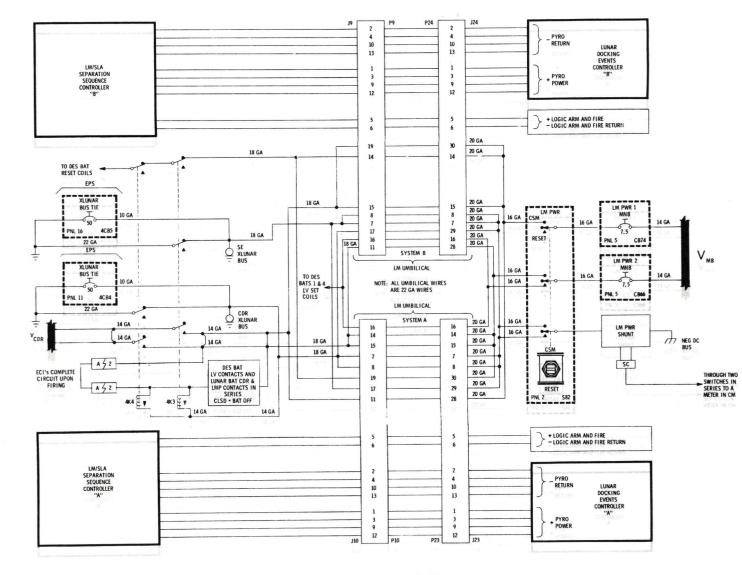


FIGURE 2. - CMALM POWER INTERFACE (LM 10 AND SUBSEQUENT).

1987 You and an Privace and and street and

Số NO. EPS 7-7

۴

-

Ш-2-10

SB NO. EPS 2-3

S/C: IM DATE: 6/1/71 REV: PCN-8 ORIGINATOR: L, Nicholas APPROVAL: Villamit, C.t.

TITLE: EPS OVERCURRENT PROTECTION

BACKGROUND: A. The sections of this brief cover:

- 1. EPS behavior under short-circuit conditions.
- 2. The feeder system maximum current rating.
- 3. Circuit breaker ratings.

B. Short Circuits

For the three possible EPS dc circuit configurations, the following would occur under shortcircuit conditions.

- 1. Balanced load cross tie circuit breakers closed (30A).
 - a. If a short occurred on either bus or either bus feeder, one of the cross tie breakers would open and the ECA's associated with the shorted bus or feeder would trip. The battery feed tie circuit breakers would not open.
 - b. If a short occurred on the cross tie, both cross tie circuit breakers would open. No other circuit breakers or ECA's would trip.
- 2. Bus cross tie circuit breakers closed (100A).

It is not possible to definitely predict what would open first under short-circuit conditions because of the ratings of the circuit breakers and ECA's. It is possible that one of the cross tie breakers would open, and all ECA's would open leaving the entire vehicle unpowered.

3. All cross tie circuit breakers open. If a short occurred on the bus or feeder, the ECA's associated with the bus or feeder would trip. The battery feed tie circuit breakers would not open.

C. Maximum loads

The maximum load on a bus is limited by the current rating of the feeder. A feeder for a bus consists of two number 6 wires. The current carrying capacity of each wire is limited to 45 amps because at this current, the wire reaches its maximum design temperature of 212°F. Therefore, the load on a bus is limited to 90 amps. The cross tie wire consists of one number 4 wire. The maximum current for a number 4 wire is 62 amps with the same maximum design temperature.

D. Circuit Breaker Ratings

- Circuit breakers will trip at varying percentage values of the nameplate rating depending on the breaker's environmental temperature and pressure. Specifically,
 - a. A breaker is designed to carry 115 percent of nameplate rating at an external temperature of $77^\circ F$ and atmospheric pressure, and
 - b. A breaker is designed to carry 60 percent of nameplate rating at an external temperature of $180^\circ F$ and $10^{-4}~\rm mm~Hg.$

Derating occurs for normal operation because of temperature and pressure conditions prevalent in orbit, that is, approximately 70 to $180^\circ F$ structural temperature and either 5 psia or vacuum pressure.

2. IM circuit breakers are thermally activated and are therefore effected by the environment's ability to increase, decrease, or sustain heat loads. A circulating atmosphere or even a stagnant atmosphere will transfer enough heat away from the breaker to greatly effect the rating. Since the bi-metallic strips or "hot wires" in the circuit breakers are heated by the current passing through them, it follows that a higher current operates a breaker more rapidly than a lower current. Even when the current just barely reaches the breaker trip level, the time to trip should not be over 60 seconds for the largest breakers and much less time for the smaller breakers.

SB NO. EPS 2-3 PCN-8

P-8

DETECTION. MISSION IMPACT, AND CORRECTIVE ACTION

MALFUNCTION A. The astronaut can observe the condition of the DC BUS warning light, DC FEEDER fault light, BATTERY caution light, flood lights, and display power fail lights to determine if a short has occurred in the EPS feeder/bus system. The EPS voltmeter can be used to verify the bus and battery voltages and the battery flag indicators can be used to determine if the batteries are on or off.

- B. If the CDR bus has failed because of a short, the Master Alarm, DC EUS warning, EATTERY caution, DC FEEDER fault, CDR cross-pointer and Thrust display power fail lights will come on. The batteries associated with the CDR bus will be off and the cross tie breakers will be open.
- C. If the LMP bus has failed because of a short, the DC EUS warning, BATTERY caution, DC FEEDER fault and RCS, ECS, PROP PRESS IMP and cross-pointer display power fail lights will come on. The batteries associated with the IMP bus will be off and the cross tie breakers will be open.
- D. Once it has been determined the short has occurred on a feeder/bus system by verifying the battery voltages are normal, the short can be isolated to the bus or feeder. Verify the batteries on the affected bus are off then open the EPS BAT FEED TIE circuit breakers for that bus. If the DC FEEDER FAULT light is on, the feeder is shorted; if the light is off, the bus is shorted. If the bus was not shorted, the bus can be powered from the other bus by closing the EPS BUS CROSS TIE circuit breakers (100A).
- E. If a bus is shorted, then all equipment utilizing this bus as the only source of power will be inoperative. The caution and warning lights associated with this equipment may not necessarily be operational.

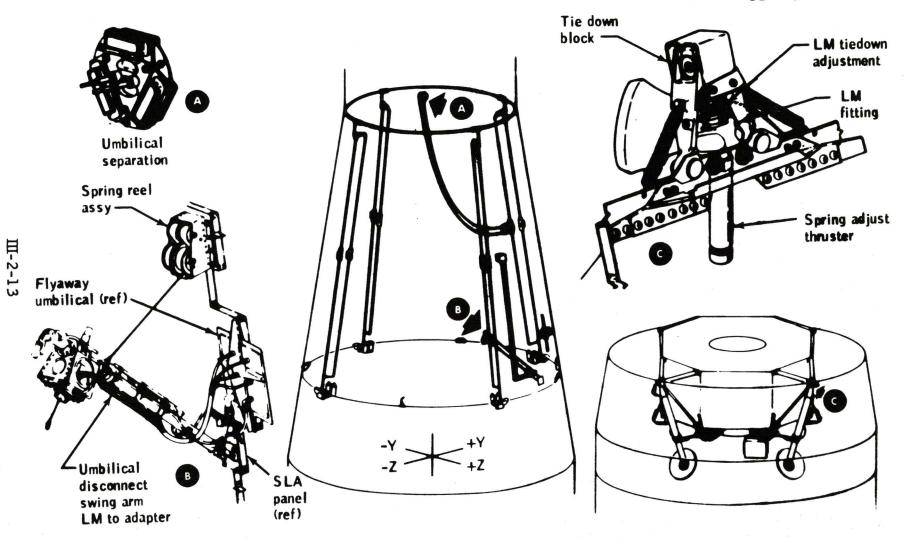
The crew malfunction procedures should be consulted for exact details of malfunction analysis.

S/C: 11/1/70 DATE: REV: PCN-6 ORIGINATOR: William Re APPROVAL: William L. Pates

SB NO. EPS 2-4

LM/GSE AND LM/SLA INTERFACE TITLE:

REFERENCE:


A. MH01-05136-124, MH01-05601-224, MH01-05213-124, MH01-05074-124, LED-561-5 B. Discussion with EPS and ECS groups at Cape Kennedy.

- BACKGROUND: A. The LM/GSE interface from approximately T-7 hours to liftoff consists solely of the LUT fly-away umbilical which is made up of three dc electrical cables and one gaseous nitrogen $({\tt GN}_2)$ hose. Table I gives a complete listing of the wires and their functions which are routed through this umbilical. Some of these functions include electrical power transfer, PCM data transfer, and all switching from GSE. The GN_2 hose is a safety requirement for purging the aft equipment bay after the loading of propellants.
 - B. The LUT umbilical connects via quick disconnects to a plate located on the SLA just above the panel hinge points on the +Y side of the LM. A swing-arm device (Figure 1B) on the inside of the panel carries the three cables and the ${\rm GN}_2$ hose of the LUT umbilical from the SLA panel to a junction box on the LM. The junction box is located on the right, aft, main structural strut of the LM connecting the ascent and descent stages. The ${\rm GN}_{\rm O}$ hose is connected to a plate in this junction box using a quick disconnect; however, the electrical cables pass through a pyrothechnic guillotine located on the end of the swing arm and into the LM through the junction box mentioned above.
 - C. At liftoff, the LUT umbilical is unplugged and pulled away as the launch vehicle leaves the pad. If the PCM equipment should happen to be on at this time, it would automatically be turned off when the umbilical is unplugged.
 - D. The signal for CSM/S-IVB separation will be manually sent from the CSM as scheduled in the Flight Plan. This signal ignites a CDF (Confined Detonating Fuse) which in turn causes three events to occur. First, it ignites an MDF (Mild Detonating Fuse) which burns around each of the SLA panels separating them from each other and from the CSM allowing the panels to deploy. Second, the CDF initiates an exploding plug on the umbilical between the CSM and S-IVB, completely separating the CSM from the S-IVB. And third, the CDF initiates the pyrotechnic guillotine, mentioned earlier, on the swing-arm device between the SLA panel and the LM. This cuts all of the electrical cables to the LM which were used for LM/GSE functions. At the same time, this cutter cuts a cable between the swing arm and the LM allowing a reel device on the SLA panel to reel in this arm as the SLA panels deploy. The LM is now attached to the bottom part of the SLA by a hold-down device on each of the four LM outriggers (Figure 1C). There is also a LM/SLA umbilical running down the +Y outrigger of the LM through a pyrotechnic guillotine bolted to the SLA wall below the hinge point, and into the lower SLA area. This umbilical carries several wires for LM/SLA pyrotechnic functions.
 - E. After the CSM has gone through transposition and docking, the two CM/LM umbilicals are connected between the CSM and LM.* The LM/SLA separation signal is then sent via a switch in the CSM. This signal passes down through the LM, down the +Y outrigger, through the pyrotechnic guillotine on the SLA wall to the LM/SLA Separation Sequence Controller (LSSC) in the SLA. The LSSC directs this signal to the hold-down devices on the four outriggers of the LM releasing them. Then after a 30-millisecond delay the signal fires the pyrotechnic guillotine in the SLA severing the last connection between the LM and SLA.

DETECTION AND MISSION IMPACT:

MALFUNCTION A. For CSM/S-IVB separation there is a CSM TM event SS0140X, SLA/CM SEP A (there is no SLA/CM SEP B); however, for SLA panel deploy which occurs at the same time, there is no TM and it will have to be detected visually by the astronauts. Three other parameters in the CSM, CD0132 EDS ABORT VOTE 1, CD0133 EDS ABORT VOTE 2, and CD0134 EDS ABORT VOTE 3, are part of the emergency detection system and may be used to verify CSM/S-IVB separation. Accompanying CSM/S-IVB separation and SLA panel deployment, the docking lights on the LM will come on verifying proper deployment of *Refer to System Brief "EPS 2-2, CM/LM Pwr Interface".

SB NO. EPS 2-4

SB NO.EPS 2-4 PCN-6

the swing-arm device between the SLA panel and the LM. If for any reason CSM/S-IVB separation cannot be achieved, the mission will have to be altered, and should CSM/SLA separation occur without proper deployment of the SLA, an alternate mission must be followed using solely the CSM.B. LM/SLA separation will be a visually detected event by the crew since LM telemetry will be

turned off at this time. If this cannot be achieved, an alternate mission will be required.

TABLE I.- MAKE-UP OF THE LUT UMBILICAL

<u>PLUG</u> J92	PIN 4 5 10 31 15 16 21 22	WIRE P120 P120 P120 P120 P119 P119 P119 P119	<u>MEASUREMENT</u> JC9515V JC9515V JC9515V JC9515V	WIRE FUNCTION GSE DC POWER TO THE LM GSE DC POWER TO THE LM GSE DC POWER TO THE LM GSE DC POWER RETURN GSE DC POWER RETURN GSE DC POWER RETURN GSE DC POWER RETURN
J93	12 34 17 37 6 28 1 25 50	D4190 D4236 D4192 D4191 D4191 D4193 D4193 D4189 D4235 D6000		51.2/1.6 KBIT SYNC FROM DATA XFER BUFFER 51.2/1.6 KBIT SYNC RETURN 512 KHZ SYNC FROM DATA XFER BUFFER 512 KHZ SYNC RETURN 1 P/SEC SYNC FROM DATA XFER BUFFER 1 P/SEC SYNC RETURN PCM HARDLINE RZ DATA PCM HARDLINE RZ DATA RETURN SCHIELD GROUND
J95	29 30 5 4 2 25 28 56 57 27	D4187 D4188 P400 P224 P125 P121 P122 P123 P124 P443 P443 P443 N613	JL9793 JC9891 JC9892 JC9893 JC9894 GC9520 GC0020 GG9006	HARDLINE RZ DATA ENABLE (9.5 VDC) HARDLINE RZ DATA ENABLE RETURN (9.5 VDC) POWER TO RELAY 4K6 TO TURN PCM ON DES BATS LV/HY COIL RESET CONTROL DES BATS LV TAPS ON CONTROL * LDA AND LDR RELAYS SET CONTROL LDA AND LDR RELAYS SET CONTROL RAND LDA RELAYS RESET CONTROL GSE POWER MONITOR LUT UMBILICAL RELEASE MONITOR UMBILICAL RELEASE MONITOR IMU TEMP OUT OF LIMITS MONITOR

* LDR ENABLES GSE DC POWER TO BE DELIVERED TO THE LM. LDA ENABLES THE VOLTAGE MONITORING OF GSE POWER TO THE LM.

NOTE

Any wires and pins in the LUT umbilical not mentioned above are spares.

P-6

SB NO. EPS 2-5

S/C: IM DATE: 6/1/71 REV: PCN-8 ORIGINATOR: W. D. Reeves APPROVAL: William L. P. Starry

TITLE: ASCENT BATTERY PARALLELING REQUIREMENTS AND PROCEDURES

REFERENCE:

A. Test Report for Ascent Battery Transient Test: LTR 396-86, 10-2-67.

- B. Ascent Battery G & N Interface Transient Voltage Test: LTR 390-87, 10-20-67.
- C. IM Ascent Battery Parametric Tests: LTR 390-104, 2-21-68.
- D. Ascent Battery Transient Test: LTR 390-128, 10-10-69.
- E. IM-8 Bus Inrush Current Test: LTR 390-128, 7-20-69.
- F. PGNS Prime Power Requirements and Characteristics: LTS 390-10002, Rev A, 8-2-65.
- G. IRN LIS 390-10002A to Reference E.
- H. Note of Interest: A Couple of Mission Rules About Descent, by G. D. Griffin
- I. Apollo Engineering Memorandum, AP-71-00251, April 27, 1971: Variations of X Accelerometer Characteristics vs +28 VDC on the G&N Learner System for Apollo 14.

BACKGROUND:

The stage and abort stage functions were originally incorporated into the LM design to provide the capability of instantaneously separating the ascent and descent stages at any time during a mission. This capability, however, has been severely restricted because the ascent batteries cannot, at any arbitrary time, assume the entire LM electrical load. The batteries must first be preconditioned by placing them on line with the descent batteries for a sufficient period of time to condition the plates chemically and allow them to warm up for efficient battery performance. Preconditioning time is dependent on the amount of step load expected which varies for the four possible staging conditions; two-ascent battery abort stage from powered descent, one-battery/two-bus abort stage from powered descent, two-ascent battery lunar lift-off, and one-ascent battery/two-bus lunar liftoff. Should proper preconditioning not be performed and the ascent batteries subjected to the step load at staging, severe voltage transients occur which could be detrimental to LM equipments. The most critical equipments are the LGC, IMU, and AEA. These equipments all have a critical input voltage below which degraded operation or total failure occurs (see figures 1-4).

Violation of the LGC input voltage will cause the LGC to perform a restart. This simply means that when the voltage recovers, the LGC will retreat back in the program it was in at the time of the transient and re-enter the program at the nearest built-in restart point. The LGC will have lost track of what happened during the transient, but will become updated when it restarts. The LM Systems Branch, Flight Control Division G & N personnel state that the program is believed to be restart protected in the burn programs but as a very worst case failure during a voltage transient, the LGC may lose track of where it was in a program resulting in loss of the LGC for that burn.

The failure mode of the IMU for violation of the input critical voltage limit is a biasing of the PIPA's and GYRO's. This was believed to cause a permanent shift in these components but recent tests, prior to and during the Apollo 14 mission, indicate that (1) no drastic attitude changes may come about due to low voltage, (2) no large drift rates of attitude will be noted, (3) both accelerometer and stab servo loops remain closed, and (4) observable and significant changes of accelerometer bias and scale factor do occur; however, the changes are not permanent and seem to correct themselves when the voltage is restored.

If the AEA critical voltage is violated, the AEA memory may either be dropped or scrambled. In any case, the AEA will be lost.

Factors other than transient voltages also affect the amount of preconditioning time such as ascent consumable redlines. At all times, each ascent battery is required to have enough energy remaining to be capable of performing a one-battery/two-bus lift-off and rendezvous. Excessive and unnecessary preconditioning

P_8

Ш-2-15

is prohibited for this reason. Crew reconfiguration time and the particular reconfiguration of the system also affect the amount of preconditioning required when considering an abort stage. For example, if one ascent battery has been lost and both buses are to be maintained after staging, then obviously more preconditioning must be performed than would have to be done should only one bus be required.

Now that the general requirements for preconditioning have been discussed the specific conditions must be considered. The first case is in preparation for a two-ascent battery/two-bus abort stage from powered descent. The buses will be isolated at this time and staging occurs following an Abort and DPS burn to depletion. The step load seen by each ascent battery will be caused by dropping from three batteries per bus to one battery with the loads changing from a burning DPS to ascent stage only operation with a burning APS; however, in the sequence of events beginning with initiation of an abort stage, the DPS shutdown occurs first, immediately followed by the turn-off of the descent batteries. Therefore; considering worst case in determining the precondition time, the time between these events is considered negligible and the step load which will be considered is as if the switchover to ascent power occurred while the DPS was burning. With the assumption that all batteries share equally when paralleled, and the above assumptions, the step load on IMP BAT 5 will be 7.5 to 32.4 amps and on CDR BAT 6, it will be 13.8 to 51.5 amps. In the step loads just mentioned, 10 amps have been added to the step on each bus to account for the very likely possibility of two thrusters per bus and maybe a heater coming on at staging. Many battery tests have been performed using flight ascent batteries under simulated flight conditions to determine if the LGC, IMU, and AEA fail voltages can be avoided when the battery with various amounts of preconditioning is subjected to the above steps. Figure 1 presents the data obtained from one of the tests which best fits the conditions under investigation. As can be seen, the battery on the IMP bus feeding the AEA could pass the AEA fail voltage with zero amp-hours out; however, with 2.5 amp-hours the voltage response is much more stable. The battery feeding the CDR bus with the IMU and LGC must have at least 5.0 amp-hours removed prior to staging to prevent violation of the IMU critical voltage. As mentioned previously, the IMU is believed to be capable of tolerating lower voltages than this ICD voltage as a result of testing during the Apollo 14 mission.

The second case to investigate is the one-battery/two-bus abort stage. Voltage transients at the guidance equipment vary slightly depending on the configuration of the remaining ascent battery. That is, whether the two buses are fed directly via the normal and backup feeds of the remaining battery, or whether the remaining battery feeds one bus directly and the other via the crossties. There is less voltage drop when both buses are fed directly through the normal and backup feeds; therefore, this configuration has been chosen as the best method to use after loss of one ascent battery. The step load associated with staging now becomes 12.78 amps to 83.9 amps or a 71.12 amp step. This includes the same assumptions used in the previous case where all batteries share evenly before staging; however, now the step is from five batteries to one. Figures 2 and 3 show the voltages expected at the guidance equipment for this step load and various amounts of preconditioning. As demonstrated by the curves, the IMU appears to be the piece of equipment whose critical voltage is most seriously threatened and this is for 5 amp-hours removed. A point of interest here is the behavior of the batteries at this large a current step versus discharge. For high states of charge (0, 2.5, and 5 amp-hours removed), the voltage is bad, but at 10 amp-hours removed, it becomes satisfactory; at 15 amp-hours, it becomes bad again and at 20 amp-hours, good again. One test was carried out to 45 amp-hours removed in 5 amp-hour increments and this inconsistant battery performance continued making it virtually impossible to predict how much preconditioning is required to protect the IMU for this current step. However, as mentioned earlier, testing prior to and during Apollo 14 indicated that the IMU critical voltage as stated in the ICD, LIS 390-10002, could be violated without drastically affecting the vehicle. With the type voltage responses expected as shown in the figures and the newly acquired data on the IMU, it appears that the errors in the IMU would be acceptable with 2.5 amp-hours removed from the ascent battery. Voltage conditions could be improved even more by turning descent batteries off one at a time to decrease the current step on the ascent battery if crew reconfiguration time permits.

P-8

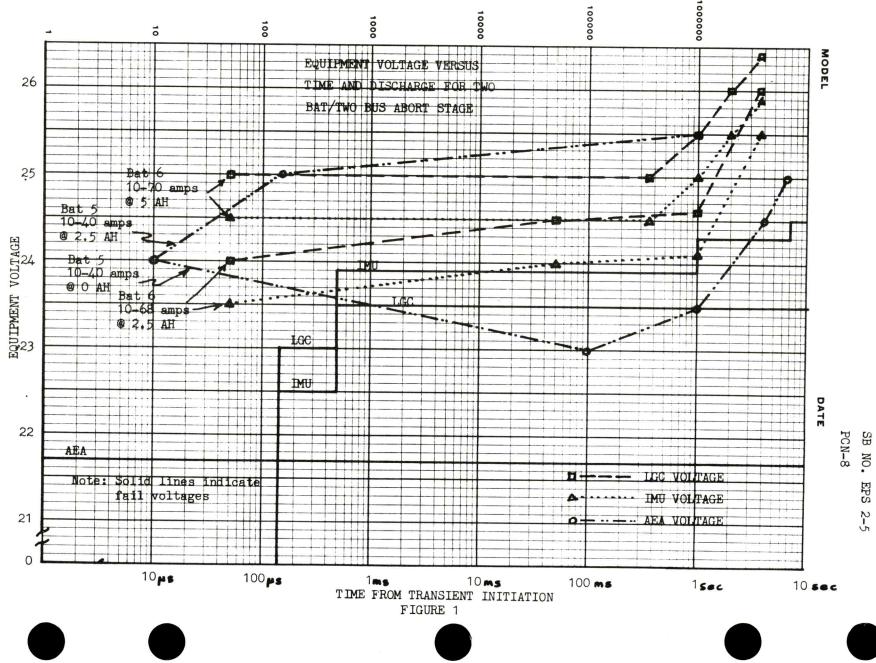
The third case is that of the normal two-ascent battery lunar lift-off. The step for this case if allowed to occur at staging without turning any descent batteries off first would be from 8.0 to 36.9 amps on battery five and 7.7 to 35.9 amps on battery six. Figure 4 presents the data from one of the battery tests which best represents the case under discussion. With no conditioning at all, the voltage response was marginal; however, by removing 2.5 amp-hours the response was very satisfactory. To improve the response even further, the descent batteries are manually stepped off two at a time with approximately 15 minutes between switchings, thus reducing the current step seen by the ascent batteries even further. The step is then from two batteries to one per bus or 12 to 36.9 amps for battery five and 11.6 to 35.9 amps on battery six.

The fourth and final case to analyze is that of a one-battery/two-bus lunar lift-off. The current step seen by the one-ascent battery would now come from switching from five batteries to one if the switchover occurred at staging. This means the current step would be from 9.4 to 72.8 amps or a 63.4 amp step. The test data which simulates best the above conditions is presented in Figures 2 and 3. As can be seen, this is the same data used for case 2 which demonstrated the inconsistent battery behavior for various discharges at this large a current step. However, for this particular case, the current step can be reduced by manually stepping off the descent batteries such that the largest step appears on the ascent battery when the last descent battery is turned off, 28 amp step from 28 to 56 amps, and at ignition, a 16.8 amp step from 56 to 72.8 amps. Figure 4 displays the test data supporting this step load and indicates 2.5 amp-hours is sufficient with 5 amp-hours being very conservative.

MISSION IMPACT AND CORRECTIVE ACTION:

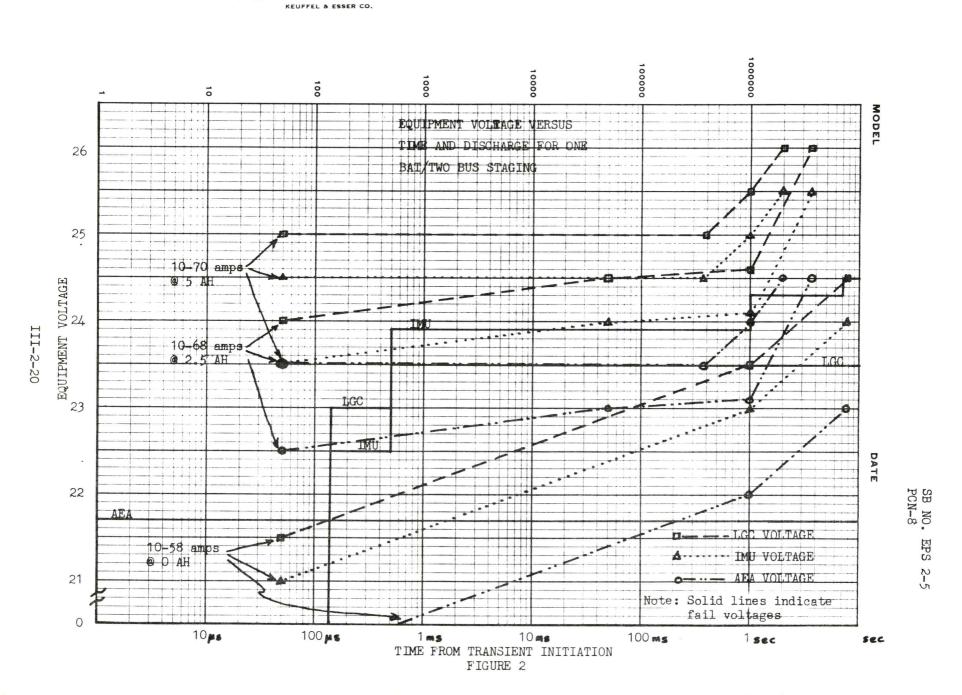
A. <u>Two-ascent battery/split bus abort stage from powered descent</u>. Remove 2.5 amp-hours from the battery on the IMP bus (normally battery 5) and 5 amp-hours from the battery on the CDR bus (normally battery 6) immediately prior to abort staging. To insure that these preconditioning requirements have been met in the event of an abort stage from powered descent, it will be standard procedure to satisfy them prior to PDI by paralleling the ascent and descent batteries for a sufficient amount of time. In the event an ascent battery fails just after staging, the capability of tieing the buses together does not exist because of very large inrush currents to the dead bus. These inrush currents, based on test data, are several orders of magnitude larger than the normal bus steady state load and if subjected to the remaining ascent battery would seriously affect the only remaining guidance system by dropping the input voltage.

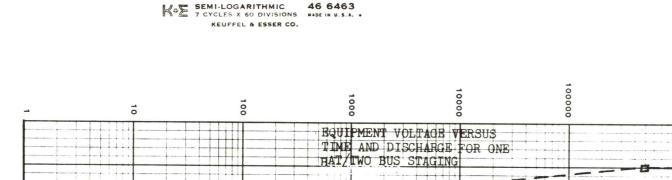
B. One-ascent battery/two-bus abort stage from powered descent. This is the most complex and controversial of the abort stage situations due to the high activity period under discussion and the many possible actions which could be taken. Basically, powered descent is separated into three phases: PDI to descent insertion capability (DIC), DIC to high gate, and high gate to touchdown. During PDI to DIC, the IM still has descent engine insertion capability and presents no great problem. The second phase, DIC to high gate, requires an abort stage to attain insertion; however, it is felt that there will be sufficient time to detect and verify a failed ascent battery and configure the vehicle properly for a one-battery/two-bus abort stage. Therefore, an abort will be initiated for an ascent battery failure during this phase. The third phase, high gate to touchdown, is the controversial one. The problem arises because to get into this situation, an ascent battery must fail after high gate, be detected and verified as a failed battery, the landing must be aborted due to some reason other than the battery failure because this alone will not abort the landing, the vehicle must be reconfigured to one-battery/two-bus operation, and the abort stage initiated. As can be seen, this is a great deal to do especially while trying to fly the vehicle during the last two minutes of the burn. Also, based on all data and testing to date there is no reasonable amount of battery preconditioning which can be performed to completely protect the guidance equipment without stepping the descent batteries off one at a time. The whole issue was finally settled by program management and the Apollo 14 crew based on what the crew felt they would have time to do and what risks management felt were acceptable. The outcome was as follows:

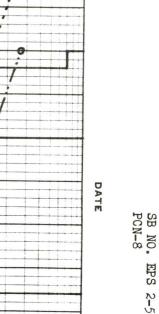

P-8

For an ascent battery failure after high gate, the crew will configure the vehicle by opening the Panel 11, DES ECA cb and closing the Cross-Tie Bus (100A) cb's. This means that a landing will be attempted with both electrical buses in the IM tied together subjecting the IM to a single point short which would be catastrophic; however, management felt the probability of a short at this time is much less than having to abort for some other reason where two buses would be preferred. Also, after high gate the crew will seldom have time to confirm a battery loss; therefore, the best thing to do is to put the vehicle in the best configuration for a subsequent abort should the cause arise, and continue the landing. In the event a subsequent abort becomes necessary, the crew must open the Panel 16 DES ECA cb to prevent the failed ascent battery from being placed on a bus automatically at staging. If time permits, the crew will attempt to place the remaining ascent battery also on its backup feedpath and turn the descent batteries off one at a time with a five-second interval between each switch action to decrease the step load on the remaining ascent battery prior to staging. If time does not permit, the chance will be taken on a low bus voltage transient and its effect on the guidance systems.

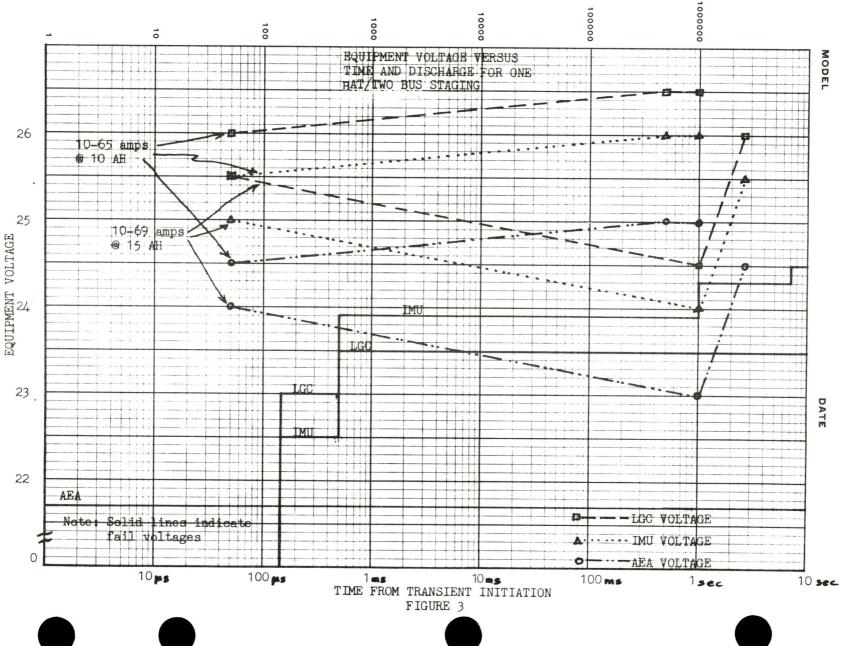
C. <u>Two-ascent battery lunar lift-off or staging during coasting flight</u>. Remove 2.5 amp-hours from each ascent battery immediately prior to staging. Any combination of ascent and descent battery paralleling is acceptable as long as the 2.5 amp-hours criterion is met. Nominally, the ascent batteries will be placed on line and two descent batteries taken off-line approximately 30 minutes before staging, followed by the other two descent batteries taken off-line 15 minutes before staging. Should a battery fail after staging, certain key circuit breakers on the unpowered bus must be pulled prior to tieing the buses together because of the large inrush currents described previously. The worst current step seen by each ascent battery during the above switching of batteries occurs when the last descent battery is switch off of each bus.

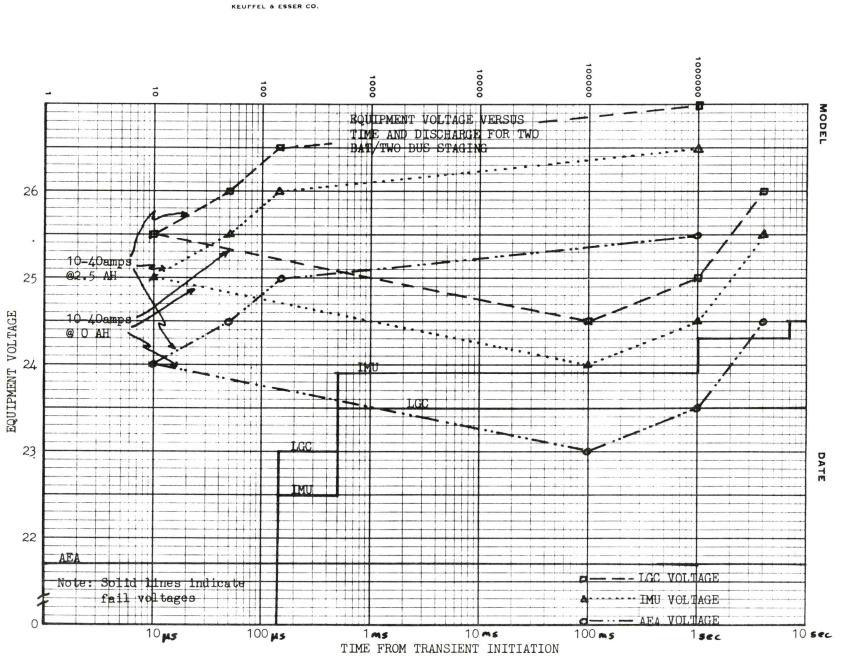

D. <u>Lunar lift-off or staging during coasting flight with one ascent battery/two-bus operation</u>. The remaining ascent battery should be placed on both normal and backup feeds with the crossite circuit breakers closed and all descent batteries turned off five seconds apart except one. When five amp-hours have been removed from the ascent battery, approximately 10 to 15 minutes, the last descent battery may be removed and staging performed.




III-2-19

0


KAN TOTAL SEMI-LOGARITHMIC 46 6463



EPS

2-5

III-2-21

KAR SEMI-LOGARITHMIC 46 6463

SB NO. PCN-8

EPS

2-5

III-2-22

SB NO. EPS 2-6

S/C: IN DATE: 6, REV: PO ORIGINATOR: R APPROVAL:

TITLE: LM DESCENT BATTERY SWITCHING GROUNDRULES

REFERENCES: ASPO Memo, subject: IM Emergency Oxygen Smoke Masks dated 12 March 1971

BACKGROUND:

A. Purpose

There is a need to establish ground rules for IM descent battery switching to insure proper battery management with a minimum impact to crew activities. The battery management plan attempts to maintain state-of-charge divergence between any two descent batteries to less than 100 ampere-hours and to reach equal battery state-of-charges at the end of the planned mission.

- B. Ground Rules and Rationale
 - Keep the state-of-charge of all five descent batteries as equal as practical: This ground rule minimizes the worst failure case of ampere-hour capacity loss should a battery be lost for any reason. Maintaining the state-of-charge relatively equal tends to limit the divergence of batteries connected to different feeders but supplying power to common loads.
 - 2. Battery pair 1 and 2 or battery pair 3 and 4 will be switched on and off in pairs: Switching in pairs maintains the same battery temperatures and state-of-charge for batteries on the same feeder. If the battery temperature and state-of-charge were different when two batteries were connected to the same feeder, the state-of-charge would probably become more divergent.
 - 3. The lunar battery will be used only on lunar surface. Crew activities may be too high to do battery switching prior to touchdown and it is not 'necessary to discharge the lunar battery at this time to maintain relative state-of-charge at a satisfactory level.
 - 4. The IMP bus will not be operated with only one battery connected with the crossties open unless the crew is in the cabin and awake or secondary S-band xmtr/rcvr is selected.

If the one battery should become disconnected from the LMP bus, there would be no audible indication to the crew that the bus had failed and no communications would exist with the ground. (The master alarm, FMP and primary S-Band are connected to the LMP bus).

5. Crossties will be closed whenever possible but always closed during EVA.

Keeping crossties closed tends to balance the discharge of batteries. During EVA this will maintain redundant power sources to each bus when there is no crewman to correct single point failures which cause a loss of power.

6. Do not perform EPS switching immediately before or after a sleep period or pre-EVA while the crew is working with the PLSS's.

Wherever possible, switching will not be accomplished within 30 minutes before or after an EVA or sleep period to reduce the interruptions to these sequences.

7. Battery switching will be accomplished while the crew is suited, when possible.

This procedure is consistent with the desire to reduce electrical transitions and potential ignition sources while the crew is unsuited.

SB NO. EPS 2-7

TITLE:

ABNORMAL ASCENT BATTERY GO/NO GO CONSIDERATIONS

REFERENCES:

- A. NASA Memorandum, PE-DMC-M11-71, March 2, 1971: LM Ascent Battery Anomaly, Apollo 14
- B. Test Report, Battery Testing In Support of LM-8 Ascent Battery Anomaly: LMO 390-1370, 3-15-71

s/c

DATE

REVISION

ORIGINATOR:

APPROVAL :

LM 11/1/71

PCN-11 /New

Ates

- C. Note of Interest: Minimum LM Electrical Power Requirements Necessary to Accomplish a Short Rendezvous
- D. Thermochemical Test Branch, Power and Propulsion Division, NASA MSC Test Data
- E. LM Console Handbook, Systems Brief EPS 2 5, Ascent Battery Paralleling Requirements and Procedures

BACKGROUND:

As a result of a suspected bad cell in one ascent battery on Apollo 14, a study was launched to determine under what abnormal ascent battery conditions a mission could be continued. Three questions were answered:

- 1. What type of failure exists in the battery and can be identified in flight, eg. one or more cells shorted or a light short on the whole battery?
- 2. Can a battery with such a condition satisfy all possible transient conditions with normal preconditioning?
- 3. Can a battery with such a condition support the full mission and a lunar liftoff and rendezvous assuming the good ascent battery is subsequently lost?

The method of detection and analysis of an ascent battery problem in flight is to monitor the open circuit voltage (OCV). Nominally unused ascent batteries should read 37.0 or 37.2 VDC and definitely should not read any less than their installation OCV. A decreasing OCV is indicative of either a parasitic load draining the whole battery or one or more cells having developed internal shorts. As a result of discharge tests at various rates on a limited number of test cells, a family of voltage versus time curves was generated, (Figure 1). A suspected short in a battery can be approximated by utilizing this graph. A drop in OCV of greater than 1.85 VDC indicates more than one cell is affected since this is the voltage of one cell. Any OCV drop of less than 1.85 VDC is very obscure and requires several data points to distinguish between one or more cell shorts or a parasitic load on the battery. Obviously, the more readings which can be obtained the closer the approximation.

To best explain how to utilize Figure 1, an example will be followed. The assumptions used are:

- (a) The short occurred immediately prior to its detection (to provide worst case).
 - (b) The magnitude of the short will not change.

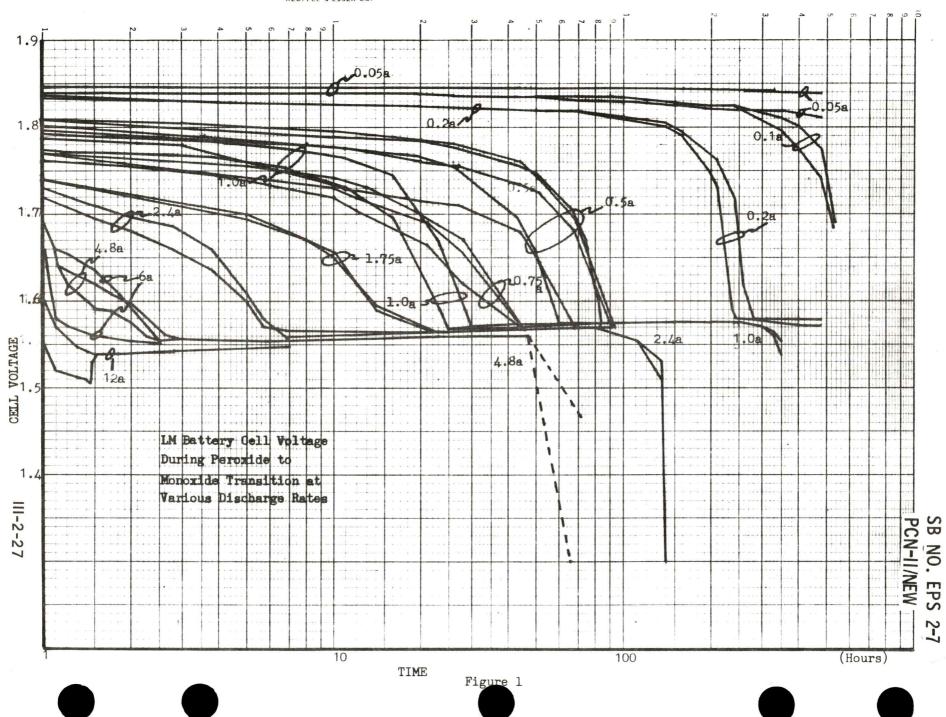
For an example, assume the first abnormal ascent battery OCV of 36.8 VDC occurred at the first housekeeping around 34 hours GET. Because of the digital nature of the LM telemetry system, a reading of 36.8 VDC could represent an actual battery voltage of from 36.759 VDC to 36.917 VDC which reflects a one cell OCV from 1.609 VDC to 1.767 VDC. These two cell voltages are then plotted on Figure 1 at time zero. The next set of data points are obtained at the second housekeeping around 56 hours GET. Assuming this reading is still 36.8 VDC, and plotting the same data points at 22 hours on Figure 1, it can be seen that the current must be greater than 0.5 amps and less than 1.0 amp. The next data point is at activation around 96:40 GET. Assume the OCV has dropped another data bit to 36.7 VDC which could reflect a cell voltage of 1.451 to 1.609 VDC. Plotting these data points on Figure 1 at 64 hours, it appears that the problem was a single cell short and a GO will be given since this is an acceptable condition. If the last reading at 96:40 GET had been 36.8 VDC, the short could not have been in a single cell because no curve of Figure 1 fits the data points. However, by splitting the voltage drop between two cells it can be seen that the short appears to be 0.5 amps in two cells. Docking occurs at 175:13 GET and the short occurred at 34:00 GET resulting in (175:13 - 34:00) (0.5) =

70.6 AH lost to the 0.5 amp short. Based on the aforementioned assumptions, this too is a GO condition because sufficient consumables, greater than 119 AH, will remain in the bad battery to perform a liftoff and rendezvous should the good battery fail. The above procedures have been followed for most cases and the results are presented in Table I.

There is one additional case which must be covered and that is an OCV reading of exactly 35.1 VDC. This reading could be indicative of any of the conditions listed in Table II. As can be seen for six or more lightly shorted cells, their voltage is very near the monoxide plateau and could have almost any state of charge on this plateau. Therefore, a stable reading of 35.1 OCV could be indicative of either one cell completely discharged to zero volts or six or more cells lightly shorted. However, a load of approximately 25 amps can be placed on the battery and the load voltage will be pulled down by 1.5 to 1.9 VDC if one cell is dead; whereas, if the failure was six or more cells lightly shorted, there will be no detectable voltage suppression under load.

A limited number of experiments have been performed to determine the characteristics of an ascent battery with a failed cell. Figure 2 presents data at various discharges of such batteries showing what happens to the voltage across the dead cell. It can be seen that the voltage reverses immediately and stabilizes at approximately -0.4 VDC for a period of time which will cause the overall battery voltage to be down by -1.9 VDC (-1.5 VDC due to loss of the loaded cell voltage plus -0.4 VDC cell reversal). This loss of battery voltage immediately brings up the question of "Can a battery with a dead cell support all of the staging transients it is required to meet with normal preconditioning?" To answer this, reference the systems brief EPS 2 - 5, Ascent Battery Paralleling Requirements and Procedures. By biasing all of the curves of Figures 1 through 4 of that brief by -1.9 VDC for the dead cell, the voltages at the guidance equipment may be determined. Tables III and IV of this brief summarize the findings and it can be seen that the only case which must be altered is a one battery, two bus abort stage from PDI. An extra 5 AH must be removed for this case to achieve the best conditions and even then the IMU ICD will be violated. Further preconditioning does not improve the situation. A battery with more than one bad cell will not meet any of the transient situations.

Continuous use of a battery with one bad cell results in the bad cell being driven more and more negative causing the battery voltage to drop as demonstrated in Figure 2. The criteria for continuing a mission with such a battery is that the ascent battery with one dead cell must be capable of maintaining good bus voltage throughout lunar liftoff and rendezvous, should the one good battery be lost. Tests were run under these conditions and recorded in enclosure (4) of LMO 390-1370. The conclusion was that a one battery/two bus liftoff and rendezvous could be completed with one cell dead in the ascent battery and still maintain the voltage at the PGNS equipment above 25.5 VDC. These tests assumed worst case where the bad cell was completely dead at liftoff. A note of interest dated June 9, 1971 titled, "Minimum LM Electrical Power Requirements Necessary To Accomplish A Short Rendezvous," lists several alternate equipment configurations for rendezvous which decrease the power level. These configurations improve the voltage at the bus throughout the rendezvous.


MISSION IMPACT AND CORRECTIVE ACTION

Several important points which anyone using the above methods of battery capacity prediction should be aware of is that the whole scheme is based on the assumption that the short within the battery will remain constant. Testing at GAC and Boeing have shown that in some instances the short has increased in magnitude and in others has decreased. In no instance has the short remained unchanged. Also, Figure 1 is not a statistical representation but rather a total compilation of all cells run to date, two for each current level. All of the tests were run at room temperature rather than flight simulated conditions and it is well known that temperature drastically affects cell performance. In addition, once a GO is given on an abnormal battery and it is placed on line, all further use of the OCV to determine the nature of the battery problem is lost. Considering all of the above uncertainties, management has decided all of the risks are acceptable and the procedures to be used follow.

Open circuit voltage readings of the ascent batteries will be obtained during the first housekeeping period early in translunar coast. Should there be an abnormal reading, the additional readings obtained at the second housekeeping and LM activation with the long time duration in between will permit determination of the nature of the battery problem. In order to continue the mission, it must be confirmed that only one cell in the battery is bad or that it is a parasitic load small enough such that the ascent battery consumable redline will not be violated.

If the first abnormal OCV occurs at LM activation and is less than 35.1 VDC, the mission will be terminated because more than one cell is bad. For readings between 35.1 and 36.8 VDC, a hold will be called and the LM powered down somewhat to conserve consumables. The OCV of the affected battery will be monitored for a voltage change in order to use Table I, Table II and Figure 1 to determine the particular battery problem. Should the OCV hold at exactly 35.1 VDC for two hours, then the load check described earlier must be applied to distinguish one bad cell from six or more shorted cells. The amount of time available to do this checkout is limited in order to meet sun angle and trajectory constraints for landing.

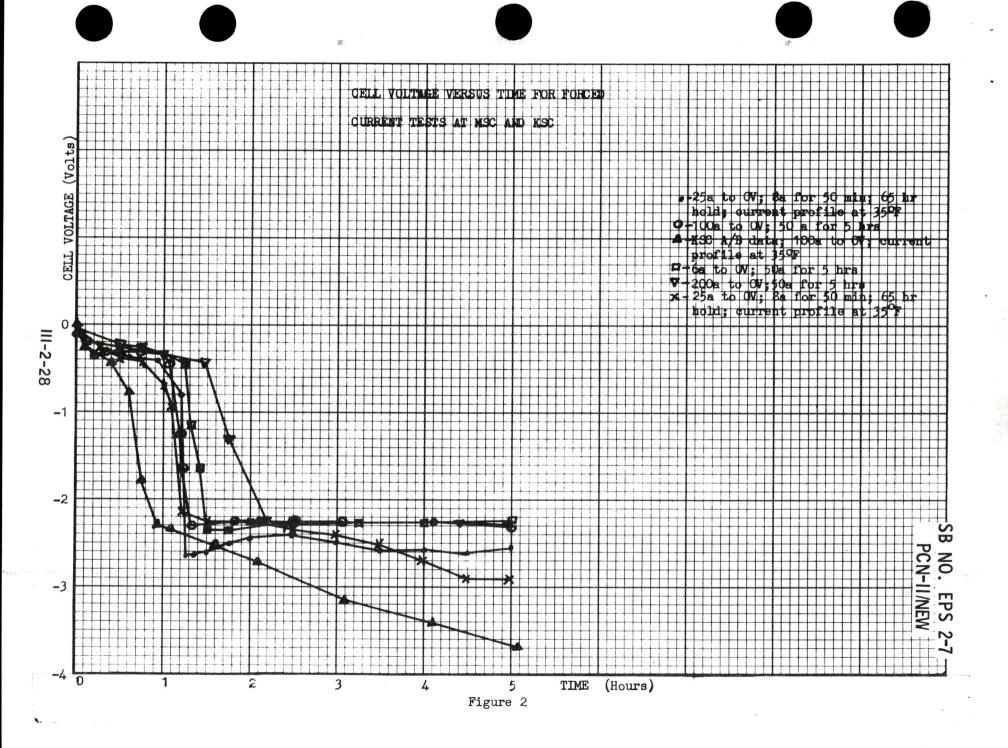


TABLE I

EFFECTS OF CELL SHORT CIRCUITS ON LM ASCENT BATTERY OCV READINGS

* THIS TABLE TO BE PROVIDED AT A LATER UPDATE

TABLE II

1 1

CAUSE AND EFFECTS OF 35.1 VDC OCV OF AN ASCENT BATTERY

NO. OF CELLS SHORTED	EACH SHORTED CELL'S VOLTAGE TO PROVIDE 35.1 VDC OCV	MINIMUM TIME IN MINUTES FOR THE NEXT BIT DROP IN OCV
1	0	~
2	0.925	10
3	1.233	20
4	1.39	60
5	1.48	90< t <120
≥ 6	≥ 1.54	>>120

TABLE III

NOMINAL ASCENT BATTERY PRECONDITIONING

General Considerations:

- Ascent and descent batteries share equally
- Voltage drops from the battery
 - to LGC = 1.5Vto IMU = 2.0Vto AEA = 3.0V

CONDITION	LGC	IMU	AEA	ASSUMPTIONS
Two-Bat/Two-Bus Abort Stage	Passes ICD	Passes ICD	Passes ICD	• Split bus configuration
2.5 AH from Bat 5 5.0 AH from Bat 6				 Bat 5 (IMP) Step = 7.5 to 32.4 amps Bat 6 (CDR) Step = 13.8 to 51.5 amps
				o 10 - 40 amp step data @ 40 ⁰ F and 2.5 AH used for Bat 5
				10 - 70 am p step data @ 40 ⁰ F and 5 AH used for Bat 6
				o Step is from 3 Bats (2 des, 1 asc) to 1 asc plus 10 amps/bus for RCS thrusters and cyclic loads.
One-Bat/Two-Bus Abort Sta g e	Passes ICD	Fails ICD	Passes ICD	o Battery connected on both normal and backup feed paths
2.5 AH Removed		Between 500 µs to 15 ms and between 1 sec and 1.5 sec.		 Bat Step Load = 12.78 amps to 83.9 amps 10 - 70 amp step data @ 40°F and 2.5 AH used
	°. ∞	Lowest V = 23.5 at 50 µs .		 10 - 70 amp step data @ 40°F and 2.5 AH used Step is from 4 des and 1 asc to 1 asc plus 10 amps/bus

SB NO. EPS 2-7 PCN-II/NEW

TABLE III Cont'd

CONDITION	LGC	IMU	AEA	ASSUMPTIONS
One-Bat/Two-Bus Abort Stage 5 AH Removed	Passes ICD	Passes ICD	Passes ICD	o Same assumptions as previous case except 10 - 70 amp step data @ 400F and 5.0 AH used.
Two-Bat/Two-Bus Lunar Liftoff 2.5 AH from Bat 5 2.5 AH from Bat 6	Passes ICD	Passes ICD	Passes I CD	 Split bus configuration Bat 5 (IMP) Step = 12.56 to 25.13 ampsed bat 6 (CDR) Step = 10.08 to 20.15 ampsed 10 - 40 amp step data @ 40°F and 2.5 AH used. Step occurs when last descent is removed from each bus. Time permits turning Des Bats off one at a time.
One-Bat/Two-Bus Lunar Liftoff 2.5 AH Removed	Passes ICD	Passes ICD	Passes ICD	 Battery connected on both normal and backup feedpaths with 100-amp crosstie C/B's closed. Same assumptions as previous case except step is from 22.64 to 45.28 amps 10 - 40 amp step data @ 40°F and 2.5 AH used.

SB NO. EPS 2-7 PCN-II/NEW

TABLE IV

ASCENT BATTERY PRECONDITIONING IF ONE CELL FAILED

General Considerations:

- Ascent battery carries 11% of total load when paralleled with one or more descent batteries if polarity has reversed.
- Voltage drops from the battery to guidance equipments same as for nominal battery.
- Voltage drop due to loss of one cell considered to be 1.9 VDC
- Battery/bus configuration and rationale for steps same as for nominal battery.

CONDITION	LGC	IMU	AEA	ASSUMPTIONS
Two-Bat/Two-Bus Abort Stage 2.5 AH from Bat 5 5.0 AH from Bat 6	Fails ICD from 150 µ sec to 2 sec Lowest volt- age is 22.6 50 µ sec	Fails ICD from 500 µ sec to approx 3 sec Lowest volt- is 23.1 at 50 µ sec.	Passes ICD	 Bat 5 (IMP) step 7.5 to 32.4 amps Bat 6 (CDR) step 13.8 to 51.5 amps 10 - 40 amp step data @ 40°F and 2.5 AH used for Bat 5 10 - 70 amp step data @ 40°F and 5 AH used for Bat 6
One-Bat/Two-Bus Abort Stage 5 AH Removed	Fails ICD Same as previous step	Fails ICD Same as previous step	Fails ICD between 50µ sec and 500 ms. Lowest volt- age is 21.6 at 50µ sec.	o Step load = 7.0 amps to 83.9 amps o 10 - 70 amp data @ 40°F and 5 AH used
One-Bat/Two-Bus Abort Stage 10 AH Removed	Passes ICD	Fails ICD between 500 µ sec - 10 ms and between 1 sec unknown. Lowest volt- age is 24.1 at 50 µ sec.	Passes ICD	^O Same assumptions as previous case except 10 - 70 amp step data @ 40°F and 10 AH used.

SB NO. EPS 2-7 PCN-II/NEW

4

TIDIN IN OUTLE	TABLE	IV	CONT	D
----------------	-------	----	------	---

CONDITION	LGC	IMU	AEA	ASSUMPTIONS
Two-Bat/Two-Bus Lunar Liftoff	Passes ICD	Passes ICD	Passes ICD	<pre>o Bat 5 step = 2.76 to 25.13 amps Bat 6 step = 2.22 to 20.15 amps</pre>
2.5 AH from Bat 5 2.5 AH from Bat 6				° 10 - 40 amp step data @ 40°F and 2.5 AH used.
One-Bat/Two-Bus Lunar Liftoff 2.5 AH Removed	Passes ICD	Passes ICD	Passes ICD	 Same assumptions as previous case except step is from 4.98 to 45.28 amps. 10 - 40 amp step data @ 40°F and 2.5 AH used.

SB NO. EPS 2-8

S/C: LM DATE: 11-1-71 REV: PCN-11/New ORIGINATOR: R. D. Legier APPROVAL: Million L. Fotors APPROVAL: Haulton John

TITLE: MINIMUM LM ELECTRICAL POWER REQUIREMENTS TO ACCOMPLISH A RENDEZVOUS

<u>PURPOSE</u>: The purpose of this systems brief is to define the minimum LM electrical power requirements using the various acceptable combinations of G & N Systems needed for a rendezvous.

BACKGROUND: The basic philosophy adopted by Data Priority is that one primary onboard TPI solution is required to select the direct rendezvous. The acceptable combinations of G & N systems needed for a rendezvous are defined below. Loss of all three of these techniques will result in execution of the coelliptic sequence rendezvous.

REQUIRED G&N SYSTEMS NEEDED FOR DIRECT RENDEZVOUS						
PRIMARY RENDEZVOUS			SYSTEMS REQUIREMENTS			
NAVIGATION TECHNIQUE	COMPUTER	SENSOR/OPTICS	SENSOR/COMPUTER INTERFACE SUPPLYING:	TRACKER LIGHT	PLATFORM	
LGC/RR	LGC	RENDEZVOUS RADAR	RANGE, RANGE RATE, SHAFT and TRUNNION ANGLES		LM IMU	
AGS/RR	AEA	RENDEZVOUS RADAR LM COAS	TAPEMETER: RANGE and RANGE RATE	CSM	ASA	
CMC/SEXTANT	CMC	USEABLE SEXTANT	SEXTANT SHAFT and TRUNNION ANGLES	LM	CSM IMU	

The Apollo 15 SEENA program was used as a basis for these alternate G & N combinations and typical ascent battery requirements are as follows:

	BAT	BAT 6	AAH
Pre-PDI to Lunar Surface PWR down	14	10	24
ASC Bats on to Liftoff	12	10	22
Liftoff to Insertion	3	3	6
Insertion to Docking	51	40	91
	80	63	143

For the purposes of developing additional power profiles, the total ampere-hours of 6 from liftoff to insertion and 91 from insertion to docking will be used as a reference.

<u>G & N OPTIONS</u>: The following combinations of G & N Systems have been selected as options for an electrical power contingency case:

- 1. LGC with RR, Direct Rendezvous.
- 2. AGS with RR, Direct Rendezvous.
- 3. CMC with Sextant, Direct Rendezvous, with LM track light
- 4. CMC with Sextant, coelliptic rendezvous, with LM track light.
- 5. CMC with Sextant, coelliptic rendezvous, with VHF ranging.

ASSUMPTIONS: 1.

In all options, the LM will be fully powered up with both PGNS and AGS through insertion.

- 2. Cabin fan is on at insertion.
- 3. Suit fan is turned off at insertion plus 10 minutes.
- 4. If PGNS is to be used, the AGS will be turned off at insertion.
- 5. If AGS is to be used, the PGNS and GASTA will be turned off at insertion.

111-2-35

SB NO. EPS 2-8 PCN-II/New

- The track light will be on only during the dark side (approximately 50 minutes) and then only 6. when the CMC with Sextant is used for the solution.
- 7. All floodlights will be turned off at insertion.
- VHF voice Vox Mode with CSM has been retained without ranging for all solutions. 8.
- 9. Eight ampere-hours is assumed for the preconditioning of the remaining ascent battery prior to liftoff.

10. The computations below are made by taking the deltas from the following numbers:

one battery pre-conditioning	5	
DES BATS off to L/O	3	
L/O to Insertion	6	
Insertion to Docking	<u>91</u> 105	

11. If the ampere-hours during powered descent are to be considered, 14 AH must be added to the 105 giving a total reference of 119 AH.

S-Band PA and transceiver will be turned off during lunar LOS. 12.

OPTIONS:

1.

LGC with RR, direct rendezvous

	EQUIPMENT OFF	AH DELTA
After Insertion	Floodlights	-4.32
	AGS	-9.63
Insertion + 10 minutes	Suit Fan	-9.36
During Lunar LOS	S-Band	-3.22
Not Required	Track Light	-4.07
	VHF XMTR A VC/RNG	-2.51
		-33.11

105 AH minus 33 = 72 AH Pre-liftoff through docking.

2. AGS with RR, direct rendezvous

	TOTAL	-43.70
	VHF XMTR A VC/RNG	- 4.07 - 2.51
Not Required	Track Light	- 4.07
During Lunar LOS	S-Band	- 3.22
Insertion + 10 minutes	Suit Fan	- 9.36
	GASTA	- 1.19
	Floodlights	- 4.32
After Insertion	PGNS	-19.03
	EQUIPMENT OFF	AH DELTA
wron int, urrect rendezvous		

105 AH minus 44 = 61 AH pre-liftoff through docking

3.

CMC with SEXTANT, DIRECT RENDEZVOUS with LM TRACK LIGHT:

The LM is configured to the Apollo 13 power down (11.3 amperes) after insertion except that RCS heaters would be enabled (no power would be required for RCS heaters, since temperatures would be elevated from ascent thruster activity). The LM track light is required during the dark side only. From insertion through docking 24 AH are required which includes 4 AH for the LM track light.

Pre-liftoff L/O to insertion Insertion to docking	6	AH AH AH			
	38	AH	pre-liftoff	through	docking

4.

Pre-1

CMC with SEXTANT, COELLIPTIC RENDEZVOUS with LM TRACK LIGHT: If a coelliptic rendezvous is required, 23 AH must be added to the above case or a total of

61 AH required for pre-liftoff through docking. 5. VHF Ranging may be substituted in lieu of the tracklight when using the CMC with sextant on a

coelliptic rendezvous. WHF tracking is required for CSI, TPI, MCC/TPF and results in 1 AH saving for a total of 60 AH pre-liftoff through docking.

111-2-36

SB NO. EPS 2-8 PCN-II/New

SUMMARY:

1.	LGC with RR, Direct Rendezvous	72	AH
2.	AGS with RR, Direct Rendezvous	61	AH
3.	CMC with SEXTANT, direct rendezvous, LM track light	38	AH
4.	CMC with SEXTANT, coelliptic rendezvous, LM track light	61	ÀH
5.	CMC with SEXTANT, coelliptic rendezvous, VHF Ranging	60	AH

Fourteen ampere-hours must be added to the above totals for ascent battery usage during powered descent.

SB NO. EPS 2-9

s/c: DATE: REV: PCN 12/NEW ORIGINATOR: R. Legler/ W APPROVAL: William , P

I.M 3-1-72

TITLE:

IM ELECTRICAL CONFIGURATION FOR THE LOSS OF ONE ASCENT BATTERY

REFERENCE:

A. Test Report for Ascent Battery Transient Test: LTR 396-86, 10-2-67

- B. Ascent Battery G & N Interface Transient Voltage Test: LTR 390-87, 10-20-67
- C. LM Ascent Battery Parametric Tests: LTR 390-104, 2-21-68
- D. Ascent Battery Transient Test: LTR 390-128, 10-10-69
- E. Apollo Data Submittals: GAEC-S-57, 2-6-69, GAEC-S-61, 4-14-69
- F. IRN LIS 390-10002A to Reference E
- G. Memorandum No. E68-69-359

BACKGROUND:

The subject, "loss of one ascent battery", is an extremely controversial topic which has been discussed in great detail, since the loss of the remaining ascent battery capability would be catastrophic. The battery and bus configuration affects the susceptibility to different types of failures. This system configuration is contained in the mission rules, malfunction procedures, and other documentation, all of which must be changed each time this configuration is modified. The various configurations and their merits will be discussed in this systems brief. The ultimate goal of this systems brief is to establish the best configuration and to insure that all mission documentation are in agreement.

CONSIDERATIONS:

Some of the factors that must be considered when establishing the most desired configuration are:

- 1. Effect on EPS system as a result of a short on a feeder or bus:
 - a. Will short isolate itself?
 - b. Can short be isolated manually?
- 2. Are there any single point failures that can be bypassed in another configuration?
- 3. Will the configuration result in reduced capability or reduced protection to voltage sensitive equipment under static and transient conditions?

SWITCHING CAPABILITIES:

- 1. Place battery on NORMAL FEED only.
- 2. Place battery on BACKUP FEED only.
- 3. Place battery on both NORMAL and BACKUP FEEDS.
- 4. Close CROSSTIE BAL LOAD (30 amp) circuit breakers.
- 5. Close CROSSTIE BUS (100 amp) circuit breakers.
- 6. Leave both BATTERY FEED TIE (100 amp) circuit breakers closed on LMP bus.
- 7. Open one BATTERY FEED TIE (100 amp) circuit breaker on LMP bus.
- 8. Leave both BATTERY FEED TIE (100 amp) circuit breakers closed on CDR bus.
- 9. Open one BATTERY FEED TIE (100 amp) circuit breaker on CDR bus.

CONFIGURATIONS

Assuming that both buses are to be fed from the remaining battery, there are four different configurations which may be used (see attached schematics):

- 1. Connect remaining battery via the NORMAL FEED with the CROSSTIE BUS circuit breakers closed.
- 2. Connect remaining battery via the BACKUP FEED with the CROSSTIE BUS circuit breakers closed.
- 3. Connect remaining battery via both the NORMAL and BACKUP FEED with the CROSSTIE cbs open.
- 4. Connect remaining battery via both the normal and backup feeds with the CROSSTIE cbs closed.
- 5. Several minor variations have been considered but they are less desirable:
 - a. One variation ties the buses via the CROSSTIE BAL LOAD (30A) cb's VICE the CROSSTIE BUS (100A) cb's. The disadvantage is that a BAL LOAD cb may open under normal rendezvous bus current

111-2-38

SB NO. EPS 2-9 PCN-12/NEW

if an open developed in a feed path.

b. Another variation opens one BATTERY FEED TIE cb on a feeder. This configuration results in a loss of redundancy. It could result in an unpowered LM in some configurations if the other BATTERY FEED TIE cb opened, VICE a CROSSTIE BUS cb, as a consequence of a short.

FAILURES:

Three types of failures have been identified - Controlled Shorts, Hard Shorts and Open Circuits.

- 1. <u>Controlled Short</u> is generally considered to be a short whereby the current is limited such that it will not be automatically isolated and does not cause an alarm or serious degradation of the voltage (< 115 amps). This type of short is power consuming but does not create an emergency situation. The crew must take action to clear them as soon as practical. This type of short is not considered to be a likely prospect.</p>
- 2. <u>Hard Short</u> is generally considered to be extremely high currents that would normally cause an alarm and automatically be isolated if both buses were independently powered. If only one ascent battery is powering both buses, it may or may not be automatically isolated. A hard short requires immediate action by the crew, if it does not automatically isolate itself, since it is an emergency situation causing serious voltage degradation and possible damage to wiring or equipment. In the case of the LM being powered by one ascent battery, it could easily result in a voltage reduction that would render all equipment inoperative. Furthermore, if the short were on a feeder, it could result in voltage degradation to the point that it would be impossible to operate the reset coils of the ECA main and backup feed relays.
- 3. <u>Open Circuit</u> This type of failure could result in a completely unpowered LM. The only open circuit considered possible when on ascent power is for an ECA contact to open because all feeders and Bat feed tie circuit breakers are redundant.

VOLTAGE DROP:

The loss of one ascent battery is a critical failure, but a LM active rendezvous may be performed under nominal conditions. However, there would be little margin in the power available to complete a rendezvous. Failure to successfully complete a burn, at the specified time, could require a LM power down and a CSM rescue. The risk of a computer problem, due to a low voltage transient, is primarily during these critical maneuver periods. Therefore, every possible precaution should be taken to protect against low voltage transient during this critical situation.

The voltage drop between buses, when feeding one bus via the crossile during normal coasting flight, is approximately 0.2 volts with a bus current of 20 - 30 amperes. This is based on a crossile resistance of approximately 7 milliohms. During thruster and engine firings, in conjunction with the other transient loads, the voltage drop could be several times this amount. The voltage drop can be kept to a minimum by feeding both buses directly vice feeding one bus via the crossiles.

To analyze the voltage conditions that will exist at the PGNS and AGS computers, a worst case condition of an APS abort at Tl with one ascent battery two bus operation has been assumed. Figure 1 exhibits the circuit used in this analysis with all resistances as set forth in the Apollo Data Submittals GAEC-S-57 and GAEC-S-61, dated February 6, 1969 and April 14, 1969 respectively. The currents used were derived from the LM SEENA Program for a nominal lunar landing mission and the battery voltage response from the LM Ascent Battery Voltage Transient tests (LTR 390-128).

Three different battery/bus configurations were analyzed using the following assumptions:

- 1. Step load seen by battery due to APS ignition is from 46.4 to 52 amps.
- 2. Assume four thrusters come on adding 16 amps to the step, making it 46.4 to 68 amps.
- 3. Run No. 11 of LTR 390-128 best represents the battery transient.

The results of the analysis are presented in Tables I, II, and III. It should be noted, that all of the above figures were hand calculated and no transients other than those mentioned were considered.

SB NO. EPS 2-9 PCN-12/NEW

By comparing Tables I, II, and III, it can be seen that maximum voltage protection is afforded by feeding both buses directly with the crossties closed.

FAILURE RESULTS:

- For purpose of this section a short is considered to be a hard short. The following steps taken after a failure are functionally correct; however, the malfunction procedures describe the entire sequence. (See the attached schematics for configurations and cases).
 - <u>CONFIGURATION 1</u> Battery on NORMAL FEED with CROSSTIE BUS cb's closed and BATTERY FEED TIE cb's open on the opposite feeder.
- <u>CASE 1</u> A short on the opposite bus would be isolated by the CROSSTIE BUS cb opening. The voltage on the adjacent bus probably would drop below the critical level until a CROSSTIE BUS cb opened. The voltage would return to normal resulting in a one-bus operation.
- <u>CASE 2</u> A short on the opposite feeder is already isolated since the BATTERY FEED TIE cb's were opened during configuration.
- <u>CASE 3</u> A short on the adjacent bus would result in the voltage on both buses dropping below the critical level until the BATTERY FEED TIE circuit breakers opened, at which time the LM would be unpowered. Power could be restored to the opposite bus by opening the CROSSTIE BUS cb's, closing the BATTERY FEED TIE cb's on the opposite feeder and placing the battery on BACKUP FEED. Then the NORMAL FEED should be turned off. This would permit a one-bus operation.
- <u>CASE 4</u> A short on the adjacent feeder or battery terminal would cause the voltage to drop below the critical level and could not be isolated. Hence the LM would essentially be unpowered and the crew would be unable to isolate the short.
- <u>CASE 5</u> An open in the crosstie cabling would result in a temporary loss of the opposite bus which could be recovered by placing the battery on BACKUP FEED and closing the BATTERY FEED TIE circuit breakers.
- <u>CASE 6</u> An open in the feed path being used would result in an unpowered LM until the crew placed the battery on BACKUP FEED and closed the BATTERY FEED TIE cb's which would permit recovery of both buses.
- <u>CASE 7</u> An open on the battery terminal would result in an unpowered LM and is an unrecoverable situation.
- <u>CASE 8</u> Closed contacts in the overcurrent relay may result in the battery being removed from the line and the LM would be unpowered until the crew placed the battery on BACKUP FEED and closed the BATTERY FEED TIE cb's.
- <u>CONFIGURATION 2</u> Battery on BACKUP FEED with CROSSTIE BUS cb's closed and BATTERY FEED TIE cb's open on opposite feeder.

Results would be identical with the battery on NORMAL FEED with the crossties closed except the overcurrent relay does not interrupt the BACKUP FEED (See Case 8, configuration 1).

- CONFIGURATION 3 Battery on both NORMAL and BACKUP FEEDS with the CROSSTIE BUS circuit open and all BATTERY FEED TIE cb's closed.
- <u>CASE 1</u> A short on either bus would cause both bus voltages to drop below the critical limit until the BATTERY FEED TIE circuit breakers on the faulted bus open, at which time the nominal voltage would be restored to the good bus.
- <u>CASE 2</u> A short on either feeder would result in the voltage dropping below the critical limit and the LM would be essentially unpowered since the crew would be unable to isolate the short.
- <u>CASE 3</u> An open in either feed path would result in the loss of one bus; however, the opposite bus would still be functional. The other bus could be recovered by closing the CROSSTIE BUS cb's.
- <u>CASE 4</u> An open on the battery terminal would result in an unpowered LM, and is an unrecoverable situation.

111-2-40

CONFIGURATION 4 - Battery on both NORMAL and BACKUP FEEDS with the CROSSTIE BUS circuit breakers closed.

- <u>CASE 1</u> A short on either bus would cause the bus voltages to drop below the critical limit, one CROSSTIE BUS cb would open, and then the BATTERY FEED TIE cb's would open. This would isolate the short and the voltage on the good bus would return to normal.
- <u>CASE 2</u> A short on either feeder would result in the bus voltages dropping below the critical limit and one CROSSTIE cb would open. However, the short could not be isolated and the LM would be essentially unpowered.
- <u>CASE 3</u> An open in either feed path would not result in loss of a bus since the bus is fed alternately via the CROSSTIE BUS cb.

COMPARATIVE ADVANTAGES/DISADVANTAGES:

<u>CONFIGURATION 1</u> - Battery on NORMAL FEED with CROSSTIE BUS cb's closed, and BATTERY FEED TIE cb's open on the opposite feeder:

a. <u>Advantages</u>:

A short on the opposite feeder does not affect the vehicle, since the BATTERY FEED TIE cb's and the ECA relays are open.

- b. Disadvantages:
 - An open on the adjacent feed path would result in an unpowered LM until the crew could close the BATTERY FEED TIE cb's on the opposite feeder and place the battery on BACKUP FEED.
 - (2) The voltage drop during transients may be several volts which could lead to a computer problem.
 - (3) Closed contacts in overcurrent relay possibly could trip the battery off-line.

<u>CONFIGURATION 2</u> - BATTERY on BACKUP FEED with CROSSTIE cb's closed, and BATTERY FEED TIE cb's open on the opposite feeder. The characteristics are the same as with the battery on NORMAL FEED except that the overcurrent relay does not interrupt the BACKUP FEED path.

CONFIGURATION 3 - BATTERY on both NORMAL and BACKUP FEED with the CROSSTIE BUS cb's open:

a. Advantages:

- The voltage drop on both buses would be minimal since both buses are fed directly.
- (2) An open on either feed path would interrupt power to only one BUS.
- b. Disadvantages:
 - A short on either feeder results in a condition wherein the short can not be isolated and is a catastrophic failure. (Note: In configurations 1 and 2, a short on the powered feeder would have similar results).
 - (2) An open on either feed path would interrupt power to one bus.

CONFIGURATION 4 - Battery on both NORMAL and BACKUP FEEDS with the CROSSTIE BUS cb's closed:

The characteristics are the same as for configuration 3 except that additional voltage transient protection is offered by closing the CROSSTIE BUS cb's, and an open on either feed path will not interrupt power to either bus.

SUMMARY:

In summary, two configurations appear to be most advantageous (No. 2 and No. 4):

Battery on BACKUP FEED with the CROSSTIE BUS cb's closed and the BATTERY FEED TIE cb's open on the unused feeder (configuration 2).

Battery on NORMAL and BACKUP FEEDS with the CROSSTIE BUS cb's closed (configuration 4).

TRADE OFF:

4

In Configuration 2 - a short on the unpowered feeder will not result in a catastrophic situation.

VERSUS

<u>In Configuration 4</u> - an open in either feed path does not interrupt power to either bus. Both buses are fed directly which reduces the voltage drop; thereby, lessening the possibility of a voltage transient causing a computer problem.

CONCLUSION:

The LM E & ISS is of the opinion that the additional protection from a shorted feeder, afforded in configuration 2, does not warrant the risk of a computer problem due to a voltage transient or the loss of a bus due to an open feed path. Hence, our recommendation is to plan use of configuration 4 - Battery on NORMAL and BACKUP FEEDS with the CROSSTIE BUS cb's closed.

TABLE I

Voltage Response for Tl Liftoff for one Ascent Battery Feeding LMP Bus directly and CDR Bus via Crossties.

TIME FROM STEP	0 - 100 µs	100 - 500 µs	After 500 µs
Bat Voltage	26.5	26.75	27.3
CDR Bus Voltage	25.927	26.177	26.727
LGC Voltage	25.645	25.895	26.445
*LGC Fail Voltage	0	23.00	23.85
LMP Bus Voltage	26.208	26.458	27.008
AEA Voltage	24.152	24.402	24.952
*AEA Fail Voltage	21.7	21.7	21.7

TABLE II

Voltage Response for Tl Liftoff for one Ascent Battery Feeding CDR Bus directly and LMP Bus via Crossties.

TIME FROM STEP	0 - 100 µs	100-500µs	After 500 µs
Bat Voltage	26.5	26.75	27.3
CDR Bus Voltage	26.21	26.458	27.008
LGC Voltage	25.928	26.176	26.726
*LGC Fail Voltage	0	23.00	23.85
LMP Bus Voltage	25.976	26.224	26.774
AEA Voltage	23.92	24.168	24.718
*AEA Fail Voltage	21.7	21.7	21.7

III-2-43

TABLE III

.

TIME FROM STEP	0-100 µs	100-500 µs	After 500 µs
Bat Voltage	26.5	26.75	27.3
CDR Voltage	26.391	26.64	27.187
LGC Voltage	26.109	26.358	26.905
*LGC Fail Voltage	0	23.00	23.85
LMP Bus Voltage	26.409	26.658	27.206
AEA Voltage	24.353	24.602	25.150
*AEA Fail Voltage	21.7	21.7	21.7
	÷		

Voltage Response for Tl Liftoff for One Ascent Battery Feeding both Buses directly with the Crossties Closed.

* The LGC fail voltage was derived from ICD NO. LIS 390-10002, REV A and the AEA fail voltage from memorandum NO. EG8-69-359.

SB NO. EPS 2-9 PCN-12/NEW a,

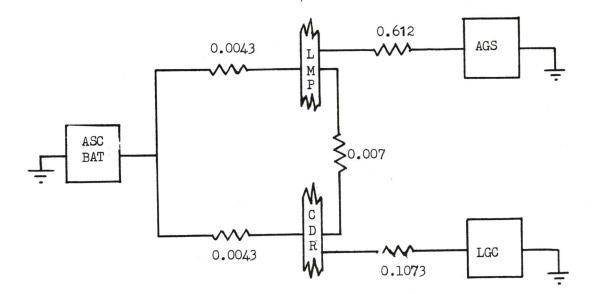
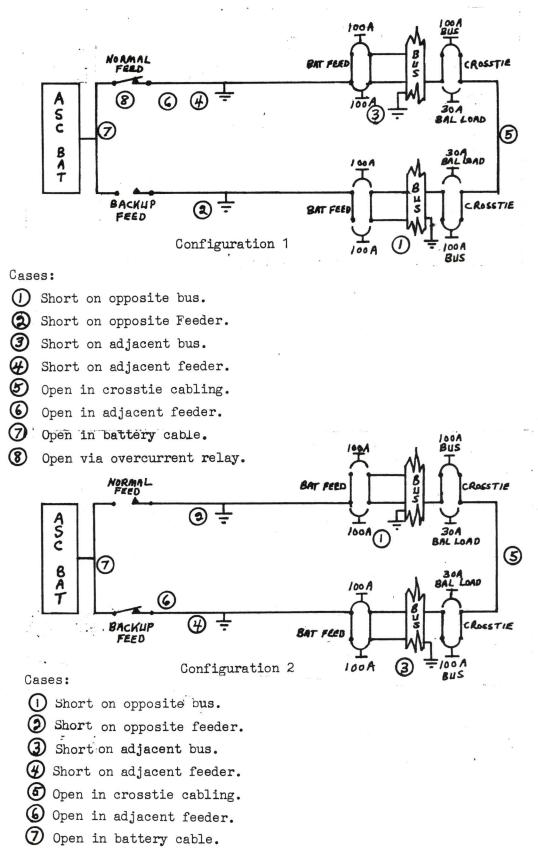
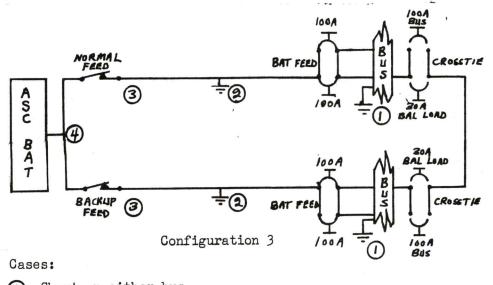
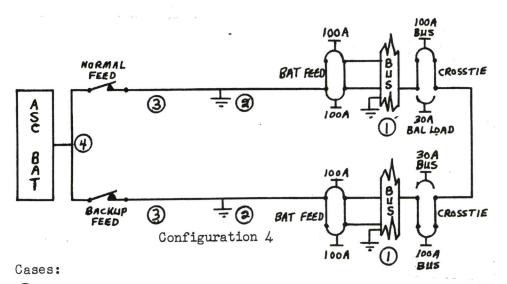




FIGURE 1.



III- 2-46

SB NO. EPS 2-9 PCN-12/NEW

- O Short on either bus.
- Short on either feeder.
- Open in either feeder.
- Open in battery cable.

- Short on either bus.
- (2) Short on either feeder.
- (3) Open in either feeder.
- Open in battery cable.

S/C: DATE: REV: ORIGINATOR: APPROVAL:

LM 3-1-72 PCN-12/NEW R. Heselmeyer W. Hyang L. Fr

TITLE: DESCENT COOLING VALVE AND ECA TEMP VEHICLE MODIFICATIONS

PURPOSE:

Explanation of the total effect of the glycol shutoff valve and ECA temperature vehicle modifications on the spacecraft, crew procedures, and ground operations.

BACKGROUND:

After the Apollo 15 mission a series of descent battery discharge tests revealed that the batteries were not delivering their rated capacity. Of the several possible causes of this problem (including wet stand time, discharge rate, negative plate limiting), the test data shows that battery temperature is a major factor in determining battery capacity. Based on this data the decision was made to install a valve in the glycol line to provide the capability of limiting or stopping glycol flow to the descent batteries. Thus the capability is provided of increasing the descent battery temperatures to help increase capacity should it become necessary.

The new glycol valve is located behind some netting in the extreme rear corner of the LM cabin on the LMP side. Rerouting of the glycol line was required to interface with the valve, resulting in two new cabin pressure vessel penetrations. With respect to glycol flow, the valve is located downstream of the equipment cooled in the descent stage.

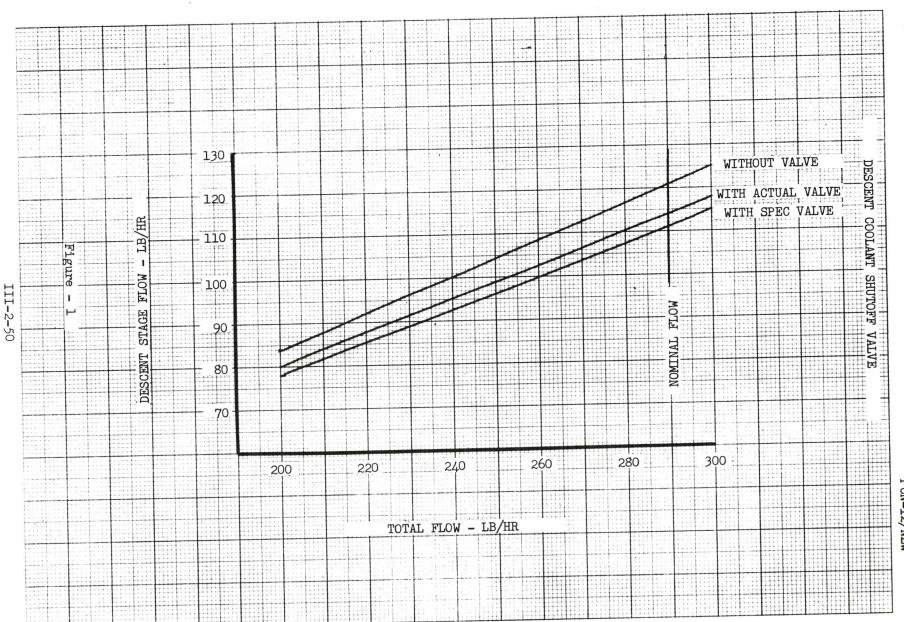
The valve itself is the same as the Suit Temp Control Valve, which is a three port valve. Flow cannot be completely stopped between the inlet and the outlet ports, but can be stopped between the inlet and heat exchanger ports. For this application the inlet and heat exchanger ports will be used with the outlet port capped to enable completely shutting off glycol flow. The additional capability \uparrow^r modulating glycol flow is also available. Figures 1 through 4 show information pertinent to glycol loop operation with the valve installed.

All equipment on the cold rails in the descent stage is affected by the new valve. This equipment is all descent batteries, the descent ECA's, the battery control relay assembly (BCRA), and the Pyro System A battery. A recent test conducted by GAC indicates that the battery and ECA temperature rise rates without cooling, at 7 amps per battery, are approximately 3.2 and 3.9 degrees per hour respectively. Because the maximum allowable nominal operating temperature of the batteries is 100° F and the critical ECA temperature is 132° F, it is questionable whether the batteries or ECA's will reach their temperature limit first. Pertinent results of this and subsequent tests will be documented in the SODB. Figure 5 shows battery temperature versus coolant flow, and is based on current SODB information.

To protect against overheating the most critical equipment when glycol flow is shut off, a temperature transducer has been added to the flange of each ECA. These two temperatures have been wired to a newly installed switch in Quad II of the descent stage. The existing RTG Cask temperature and Landing Radar Antenna temperature measurements have been rewired through this same switch. With this configuration the RTG Cask temperature will be received on telemetry and the Landing Radar Antenna temperature will be available onboard and on telemetry exactly as in previous missions until sometime during the first EVA. At that time a crewman will throw the switch, and in so doing will replace the RTG Cask and Landing Radar Antenna temperatures with the two ECA temperatures. The ECA 1 temperature uses the same instrumentation path previously used by the RTG Cask temperature, and will therefore be available on telemetry. Likewise the ECA 2 temperature uses the same instrumentation path used by the Landing Radar Antenna temperature and will therefore be available on telemetry and onboard on the temperature meter on panel 3 when the "LDG" position is selected with the Temp Monitor switch, also on panel 3.

111-2-48

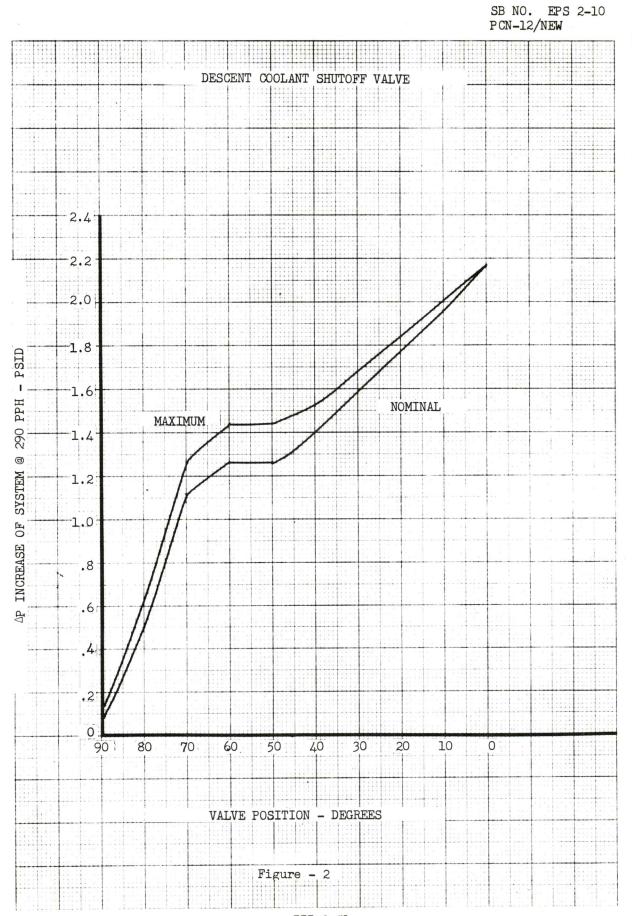
SB NO. EPS 2-10 PCN-12/NEW


MISSION IMPACT:

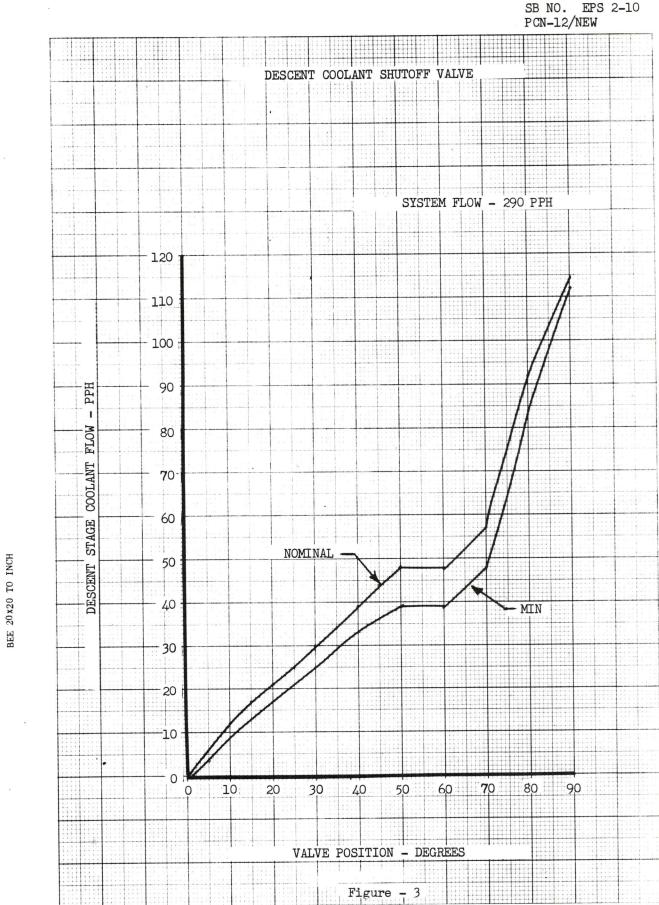
Several alternate methods for using the glycol valve have been considered. These included a modulated but constant glycol flow, an on/off duty cycling of the valve, or normal flow until late in the lunar stay when flow would be inhibited for the remainder of the stay. The first two methods are unacceptable because of systems or procedural considerations. If required, the last method will be implemented with cooling terminated approximately 16 hours before battery depletion. Use of the valve must be carefully placed in the crew timeline because of its relative inaccessibility. Use of the valve should not be required when the location of crew equipment (PLSS's, OPS, PGA's) is such that easy access is prohibited.

Officially the new ECA temperature measurement numbers are GC6201T and GC6202T for ECA's 1 and 2 respectively. The RTG Cask and Landing Radar Antenna temperature measurement numbers, GL8275U and GN7563T, still apply to those measurements. However, since these measurements are now switchable such that the same instrumentation path is used by each pair of parameters, new measurement numbers have been assigned for the combined measurements. The displayed measurements, onboard and on telemetry, are GL9401U, Sel RTG/ECA 1 Temp, and GL9402U, Sel LR/ECA 2 Temp. Because the transducers used for the ECA 1 and RTG Cask temperatures are the same, and the transducers used for the ECA 2 and Landing Radar Antenna temperatures are the same, one calibration curve can be used for each of these measurements. This configuration eliminates the need to switch calibration curves in the RTCC when the parameters are switched. The applicable curves will be published under the combined parameter numbers, GL940IU and GL9402U.

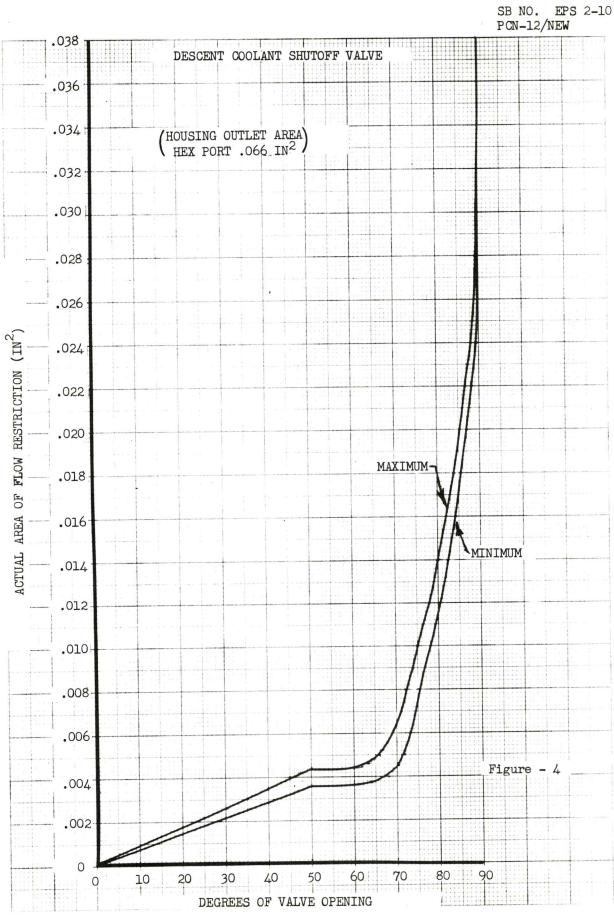
Because the ECA temperatures, GC6201T and GC6202T apply from the temperature transducers to the switch only, they will not appear in documentation pertaining to onboard and telemetry displayed information, and are mentioned here for information only. Normally the same would be true for the RTG Cask and the Landing Radar Antenna temperatures. However, constraints associated with ground processing prevent incorporation of the new combined measurement numbers, GL9401U and GL9402U, and therefore the RTG Cask and Landing Radar Antenna temperature numbers, GL8275U and GN7563T, must be used when information is requested from ground processing presonnel, both at Houston and at the sites.


A minor operational implication of the glycol modification is the increase in descent ECA measurement inaccuracy at higher operating temperatures. The TM inaccuracy associated with individual descent batteries is 0.3 amps in the 3 - 12 amp range for an internal ECA temperature of less than 75° F, and 0.55 amps in the 3 - 12 amp range for an internal ECA temperature of greater than 75° F. (The TM inaccuracy is 0.95 amps for any value outside the 3 - 12 amp range regardless of ECA temperature). This change in ECA measurement inaccuracy will not be a factor when formulating the glycol valve management plan.

BEE 20x20 TO INCH

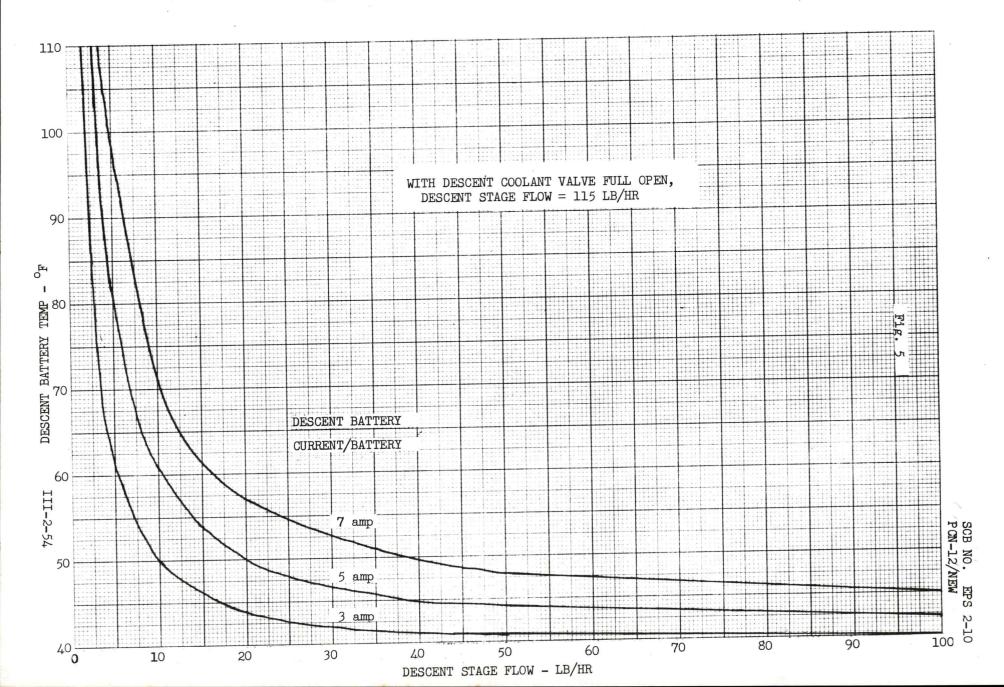

SB NO. EPS 2-10 PCN-12/NEW •

Ъę.



BEE 20x20 TO INCH

III-2-51



III-2-52

BEE 20x20 TO INCH

BEE 20x20 TO INCH

SB NO. EPS 2-11

S/C: LM DATE: 3-1-72 REV: PCN-12/NEW ORIGINATOR: D. R. Puddy W. D. Reeves APPROVAL: Withau K. Fitter

EVERYTHING YOU WANTED TO KNOW ABOUT ASCENT BATTERIES BUT WERE AFRAID TO ASK

TITLE: REFERENCE:

- A. Test Report for Ascent Battery Transient Test: LTR 396-86, 10-2-67
- B. Ascent Battery G & N Interface Transient Voltage Test: LTR 390-87, 10-20-67
- C. LM Ascent Battery Parametric Tests: LTR 390-104, 2-21-68
- D. Ascent Battery Transient Test: LTR 390-128, 10-10-69
- E. Apollo Data Submittals: GAEC-S-57, 2-6-69, GAEC-S-61, 4-14-69
- F. IRN LIS 390-10002A to Reference E
- G. Memorandum No. EG8-69-359
- H. Battery Testing In Support of LM-8 Ascent Battery Anomaly: LMO 390-1370, 3-15-71

BACKGROUND:

This systems brief summarizes available data concerning the ascent battery testing that resulted from an investigation of the Apollo 14 inflight anomaly (decrease in ascent battery 5 OCV of 0.3 VDC). The specific subjects that will be covered are as follows:

Summary of Ascent Battery Testing Battery Load Voltage Response with One Cell Shorted PGNS and AGS Voltage Sensitivities Ascent Battery Preconditioning

Summary

We emphasize that this Systems Brief is based on our understanding of test data and the assumptions listed herein. Any disagreement in these areas probably invalidates the conclusions.

<u>Summary of Ascent Battery Testing</u> - Listed below are the ascent battery test conclusions. Table I gives a more detailed description of the tests.

a. GAC Tests

A stabilized voltage of 36.7 VDC could not be maintained with a total load in the range of 4.2 to 10 milliamps.

An ascent battery with one depleted cell will share approximately 11% to 20% of the total current when paralleled with one or two descent batteries.

Exposing the intercell connector area of a battery to free electrolyte can result in battery shorting and possible battery loss.

b. KSC Tests

A typical silver zinc battery with one dead cell is capable of supporting a substantial constant load.

An ascent battery with one dead cell will cause the IMU ICD voltage limit of 24.5 VDC to be violated by 0.8 VDC at docking during a nominal l_2^1 -hour rendezvous.

c. Eagle-Picher Tests

If one cell is depleted and current is continually drained from an ascent battery, the battery voltage will eventually be 4.0 volts less than nominal. This voltage drop is made up of 1.5 VDC due to loss of cell potential and approximately 2.5 VDC due to polarity reversal.

Oxygen and hydrogen are generated at explosive mixture ratios at any load and independent of cell polarity.

111-2-55

d. Boeing Tests

A cracked cell can result in a significant short.

Cell shorts as a result of cracked cells tend to stay small and variable but runaway shorts have been observed.

Significant heating occurs in the area of a cracked cell short which can result in cell case melting.

<u>Battery Load Voltage Response with One Cell Shorted</u> - Figure 1 is a curve showing cell voltage response with respect to time at a constant drain of 50 amps. Of interest is the amount of time required to move from 0 VDC potential to less than 0.4 VDC reverse polarity. This occurs when approximately 25 - 50 amp-hours have been removed from the battery.

<u>PGNS and AGS Voltage Sensitivities</u> - ICD values of PGNS and AGS voltage sensitivities are shown in Figures 2 through 5. Prior to Apollo 14, test data was requested on PGNS equipments at lower voltages. The results of these tests are summarized below:

The computer would restart at the 20.3 \pm 0.3 volt level. Since the burn programs are restart protected, a restart results in the loss of delta V accumulated calculations during the time of the restart.

No drastic loss of attitude would be noticeable during the whole time of ascent.

IRIG drifts would be negligible during the time of ascent.

Accelerometer bias and scale factor changes would be insignificant at steady state voltages greater than 23.5 VDC, but would increase at lower values. At a steady state voltage of 22.5 VDC, scale factor errors would be \approx +6450 PPM and bias would have increased to \approx +5.081 cm/sec². Even with these errors, insertion conditions are acceptable. Transients, while causing the same affects as steady state voltages, do not result in permanent errors. Return to nominal value will occur as the voltage returns to normal.

<u>Ascent Battery Preconditioning</u> - Battery preconditioning requirements are based on providing acceptable voltage responses for the guidance equipments at the current step loadings for the following conditions:

Two-battery/two-bus abort staging One-battery/two-bus abort staging Two-battery/two-bus lunar liftoff One-battery/two-bus lunar liftoff

An evaluation of the critical guidance equipments for each of these conditions is shown in Tables 2 and 3.

SUMMARY:

- a. An ascent battery with an open circuit voltage ≥36.7 VDC either has a very small short which may clear itself or only one cell is shorted and has been discharged to its monoxide plateau. The latter case is the most likely especially if 36.7V is maintained for a long period of time. A large short would be distinguishable in that the voltage would continuously degrade.
- b. An open circuit voltage ≥35.1 VDC but < 36.7 could represent a multitude of failures. The only way to discern anything about such a battery would be to wait until the voltage dropped to 35.1 VDC and stabilized for a couple of hours. At this time, the battery should be placed on a bus alone supplying at least 25 amps. The voltage reading thus obtained should be compared to the reading obtained by placing the good ascent battery under the same load. If the load voltage of the battery with the bad OCV is suppressed ≥1.5 VDC from the good battery it can be concluded that only one cell is shorted. A smaller voltage suppression indicates more than one cell affected.</p>

- c. An open circuit voltage reading <35.1 VDC indicates that several cells of the battery are shorted.
- d. A battery with a single shorted cell is considered acceptable since testing has indicated that it is still capable of supporting the entire spacecraft load alone throughout a 1.5 hour direct rendezvous. The voltage will be lower than nominal assuming the shorted cell was completely dead at liftoff. Referring to Figure 1, it can be seen that the voltage would first fall off by 1.9 V, 1.5 V due to loss of the cell plus 0.4 V due to the first plateau of the reversal. As the discharge continued, the voltage would fall off by a total of 4.0 V, 1.5 V due to loss of the second plateau of the reversal. At docking, the battery voltage should be down to approximately 25.7 V which will still meet the voltage constraints of the guidance equipment. However, because of the voltage constraints on the guidance equipment ten amp-hours must be removed from this battery prior to PDI to provide maximum voltage protection to the guidance equipment in the event of an abort stage from powered descent.

SB NO. EPS 2-11 PCN-12/NEW

TABLE I

+

.

÷

NO.	DATE	LOCATION	DOCUMENT	TEST DESCRIPTION	TEST RESULTS
1.	8-24-70	GAC	LTR 390-136	The cell tops and terminals of a descent battery were wet with 20 cc's of KOH to attempt to produce an inter- nal short. A current shunt was placed between the nega- tive terminal and case to detect leakage current.	Within 4 hours after KOH introduction, current spikes between 0.1 and 1.0 amp, lasting a few miliseconds, and repeating every 10 to 20 seconds appeared. After 10 hours, the spikes were between 7.3 and 10 amps with a steady 0.6 to 0.9 amp be- tween spikes. At 23.2 hours, the spikes increased to 18 amps; at 24.2 hours, the spikes were 44 to 48 amps; and at 24.8 hours, they were 100 to 140 amps. By 25 hours, the battery 20th cell terminal strap to HV terminal fused open.
2	6-8-70	MSC .	MSC 03894	Two stainless steel plates were separated by a $1/16"$ thick teflon plate with a 1/4" square window cut in it. This window was filled with a KOH solution and 28 volts applied between the plates.	When the voltage was applied to a 36% KOH solution, the current initially surged to between 35 and 50 amps and decayed to zero in 30 to 40 milliseconds.
3	7-23-71	Boeing	5-2710-HOU- 515	A silver electrode was placed next to a magne- sum plate and a voltage applied between them. The voltage was varied and the current monitored.	Lowest current seen was 0.002 amp at 1.0 volt and the highest was 2.54 amps at 5.0 volts. There was a steady increase in current as the voltage increased.
3a	7-23-71	Boeing	5-2710-HOU- 515	Same as No. 3, except a zinc electrode was used.	Lowest current seen was 0.004 amp at 1.0 volt and the highest was 0.045 amp at 6.0 volts. The current bounced up and down inconsistently as voltage was steadily increased to 37 volts.
4	7-23-71	Boeing	5-2710-HOU- 515	A simulated 2.1" long, 0.012" gap crack was cut in a cell. A 2.4" x 0.43" magnesium plate was placed over the crack. The voltage varied by a power supply connected between the negative termi- nal of the cell and the magnesium plate.	The lowest current was 0.040 amp at 1.0 volt and the highest was 1.40 amps at 25.0 volts. The current steadily increased as the voltage increased up to 25.0 volts then decreased slightly when the voltage was increased from 25 to 30 and 35 volts. The cell was warm at test completion (30-minute test).
5	7-23-71	Boeing	5-2710-HOU- 515	Same No. 4 except the magnesium plate was 0.2" x 0.2".	The lowest current was 0.008 amp at 2.0 volts. The current steadily increased as the voltage inceased to 25.0 volts and fell to 0.7 amp when the voltage was increased from 25 to 30 volts. At test completion, the cell was hot and the case crazed and melted locally.
6	7-23-71	Boeing	5-2710-HOU- 515	The corner of a cell was sawed off and the cell placed in close proximity to a small unprotected patch of magnesium. A voltage was applied between the cell negative and the magnesium patch. The volt- tage was varied and then maintained at 15 volts.	The current increased as the voltage was increased to 25 volts then decreased when the voltage was increased further. When the voltage was held steady the current continued to vary with the lowest reading =0 and the highest = 2.6 amps. The test lasted about 35 minutes and the cell case was melting.
7	7-23-71	Boeing	5-2710-HOU- 515	This test is similar to test No. 3 except the magnesium is exposed through a slit O.1 inches long penetrating the insulation and located over the simulated cell crack.	While the voltage was varied the current did not appear to follow any particular pattern. When the voltage was held con- stant at 15 volts, the current steadily increased for about 18 hours then decreased for 4 hours before the test was terminated Zinc was deposited at the slit on the mag- nesium. Highest current seen was 0.06 amp and lowest was 0.011 amp.

SB NO. EPS 2-II PCN-I2/NEW

TABLE I (Continued)

NO.	DATE	LOCATION	DOCUMENT	TEST DESCRIPTION	TEST RESULTS
8	7-23-71	Boeing	5-2710-HOU- 515	A simulated crack was made in a cell case and this crack placed adjacent to a Mag- nesium case with a simulated defect. The defect was a pinhole in the Magnesium simulated by drilling a small hole. The power supply was connected between the cell and Magnesium and the voltage varied.	As the voltage was increased the current increased in the milliamp region. The highest current was .78 Ma at 38 volts. The voltage was then held constant at 15 v for 20 hours and the current steadily increased from 0.39 ma to 5.5 ma. The voltage was then varied again and the current increased with increased voltage. After this the voltage was held con- stant at 4.0 V and the current increased steadily from 0.7 amps to 4.5 amps when the test was terminated.
9	7-23-71	GAC	TELECON · NOTES	A .040" diameter hole was drilled in the center of two cells and they were placed in contact with bare magne- sium with KOH in the inter- face. Leakage current and cell voltage were monitored for 24 hours.	Cell No. 1 had an initial leakage. Cur- rent of 1.2 milliamps which decayed to zero in 21 hours. Occasionally, the current spiked to 1.8 milliamps. Cell No. 2 has an initial leakage of 0.18 milliamps, but decayed to zero in an hour. In both tests cell voltage remained at 1.85 volts.
10	7-23-71	GAC	TELECON NOTES	Same set up as test No. 9 but an "O" ring was placed between the cell and magne- sium plate to contain KOH spillage. A power supply was placed in series and set at 16.7 volts to simu- late a crack in Cell No. 10.	Initial current was 0.2 milliamps; cur- rent after 1 hour was 0.2 milliamps; cur- rent after 24 hours was 0.05 milliamps.
11	7-23-71	GAC	TELECON NOTES	Same set up as Test No. 10 but magnesium plate was finished with Dow 7 and PT 401 paint. This coating was then damaged with a center punch in "0" ring area.	Initial current was 0.5 milliamps; cur- rent at 1 hour was 0.56 milliamps; cur- rent at 24 hours, was 0.92 milliamps.
12	7-23-71	GAC	TELECON	Same set up as Test No. ll except instead of a hole drilled in the cell, a crack was cut in it $l\frac{1}{2}$ " long.	Initial current was 100 milliamps; cur- rent after 1 hour was 19 miliamps; cur- rent after 24 hours was 5.6 milliamps.
13	7-23-71	GAC	TELECON NOTES	Same set up as Test No. 12 except the negative plate was damaged accidentally in preparation.	Initial current was 50 milliamps; cur- rent after 3 minutes was 3 amps. Test was terminated early.
14	3-15-71	GAC	LMO 390-1370	A potentiometer was used to attempt to set a discharge rate which would stabilize the voltage of an ascent battery 0.3 vdc below OCV.	No stabilized voltage could be attained.
15	3-15-71	GAC	LM0390-1370	An ascent battery with a de- pleted cell was placed in parallel with two descent batteries and subjected to a powered descent profile.	The ascent battery shared 20% of the total load.
16	3-15-71	GAC	LM0390-1370	An ascent battery with a de- pleted cell was placed in parallel with the descent batteries, then one, and then alone to simulate a one bat- tery one bus abort.	The ascent battery shared 17% of the load with two descent and 11.5% with one ascent. Once the depleted cell reversed, the voltage was 25.45amps under 26.5 amp load.
17	3-15-71	KSC	LMO 390-1370	An ascent battery with a de- pleted cell was subjected to a one battery two bus powered ascent abort.	The voltage at the battery remained above 25.5 V through docking.

4

•

TABLE I (Continued)

NO.	DATE	LOCATION	DOCUMENT	TEST DESCRIPTION	TEST RESULTS
18	3-15-71	KSC	LMO 390-1370	A descent battery with a depleted cell was subjected to a continuous 35 amp load.	Approximately 11 hours into the test the voltage dropped to 25.0 v and to 24.0 v one hour later
19	3-15-71	KSC	LMO 390-1370	18 depleted ascent battery cells had current forced through them at 25 and 50 amp rates.	All cells went through a polarity re- versal and after 8 hours had reached -2.23 v to -2.55 v.

TABLE II

NOMINAL ASCENT BATTERY PRECONDITIONING

General Consideration:

.

2

o Ascent and descent batteries share equally

o Voltage drops from the battery

T

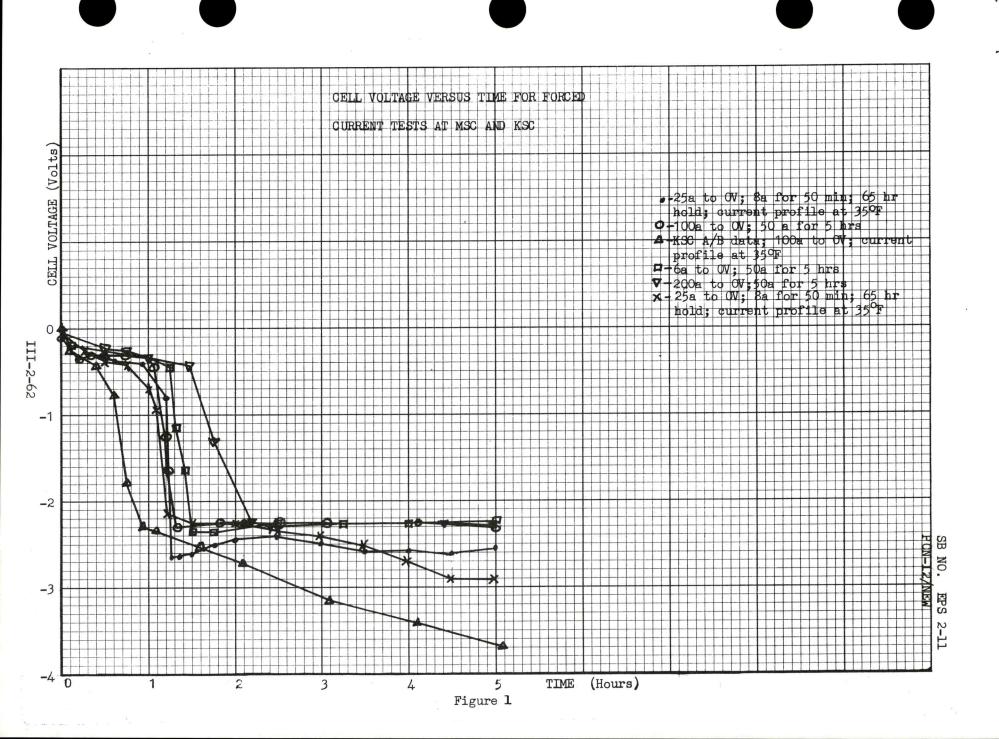
to LGC = 1.5V

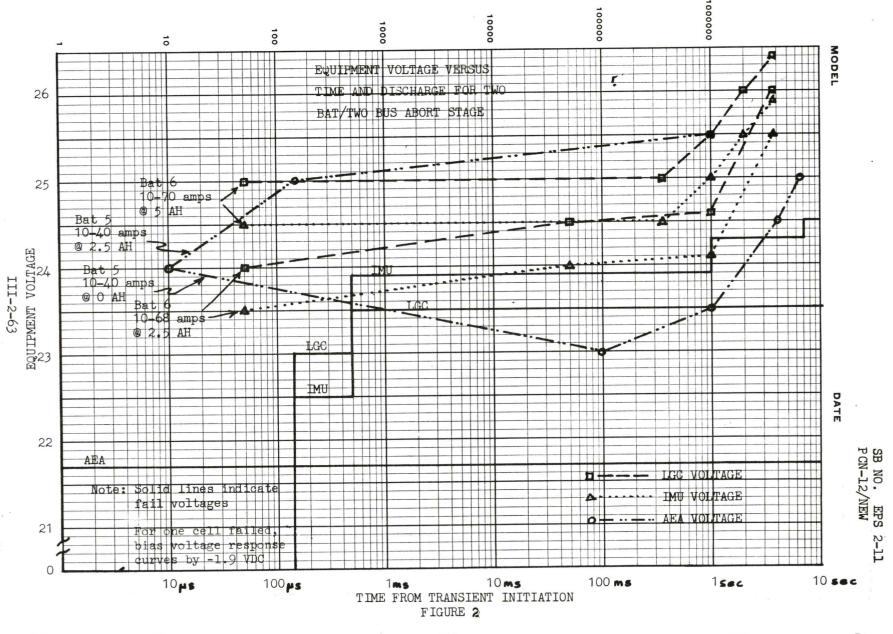
to IMU = 2.0V

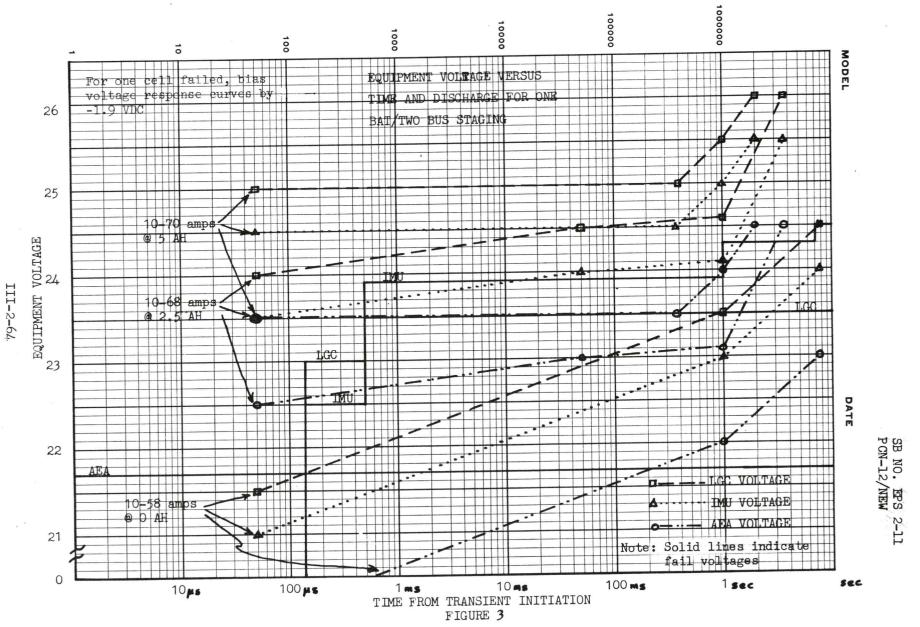
to AEA = 3.0V

CONDITION	LGC	IMU	AEA	ASSUMPTIONS
Two-Bat/Two-Bus Abort Stage 2.5 AH from Bat 5 5.0 AH from Bat 6	Passes ICD	Passes ICD	Passes ICD	 Split bus configuration Bat 5 (LMP) Step = 7.5 to 32.4 amps Bat 6 (CDR) Step = 13.8 to 51.5 amps 10 - 40 amp step data @ 40°F and 2.5 AH used for Bat 5 10 - 70 amp step data @ 40°F and 5 AH used for Bat 6 Step is from 3 Bats (2 des, 1 asc) to 1 asc plus 10 amps/bus for RCS thrusters and cyclic loads.
One-Bat/Two-Bus Abort Stage 2.5 AH Removed	Passes ICD	Fails ICD Between 500µs to 15 ms and between 1 sec and 1.5 sec. Lowest V = 23.5 at 50µs		 Battery connected on both normal and back-up feed paths Bat Step Load = 12.78 amps to 83.9 amps 10 - 70 amp step data @ 40°F and 2.5 AH used Step is from 4 des and 1 asc to 1 asc plus 10 amps/bus
One-Bat/Two-Bus Abort Stage 5 AH Removed	Passes ICD	Passes ICD	Passes ICD	 Same assumptions as previous case except 10 - 70 amp step data @ 40°F and 5.0 AH used.
Two-Bat/Two-Bus Lunar Liftoff 2.5 AH from Bat 5 2.5 AH from Bat 6	Passes ICD	Passes ICD	Passes ICD	 Split bus configuration Bat 5 (LMP) Step = 12.56 to 25.13 amps Bat 6 (CDR) Step = 10.08 to 20.15 amps 10 - 40 amp step data @ 40°F and 2.5 AH used. Step occurs when last descent is removed from each bus. Time permits turning Des Bats off one at a time.
One-Bat/Two-Bus Lunar Liftoff 2.5 AH Removed	Passes ICD	Passes ICD	Passes ICD	 Battery connected on both normal and back-up feedpaths with 100 - amp crosstle C/B's closed. Same assumptions as previous case except step is from 22.64 to 45.28 amps. 10 - 40 amp step data @ 40°F and 2.5 AH used.

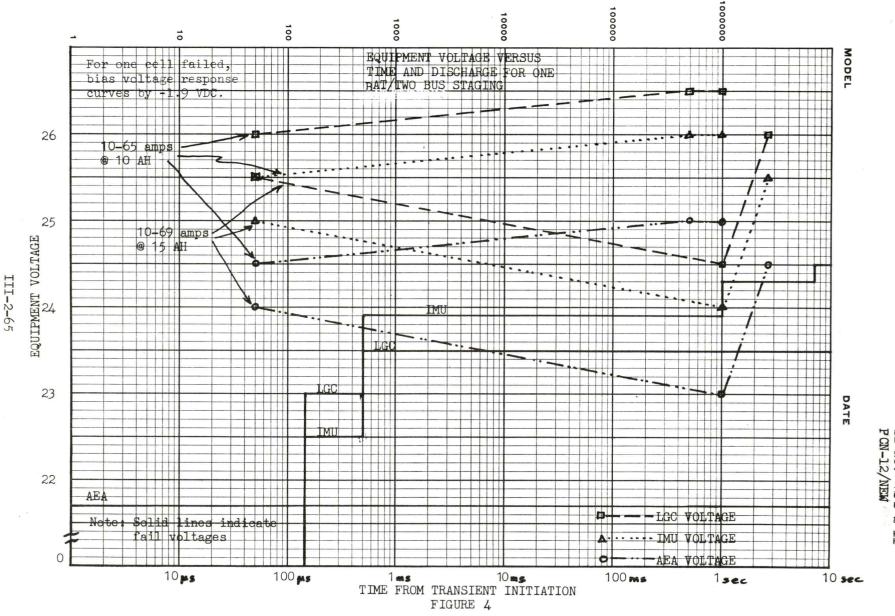
SB NO. EPS 2-11 PCN-12/NEW

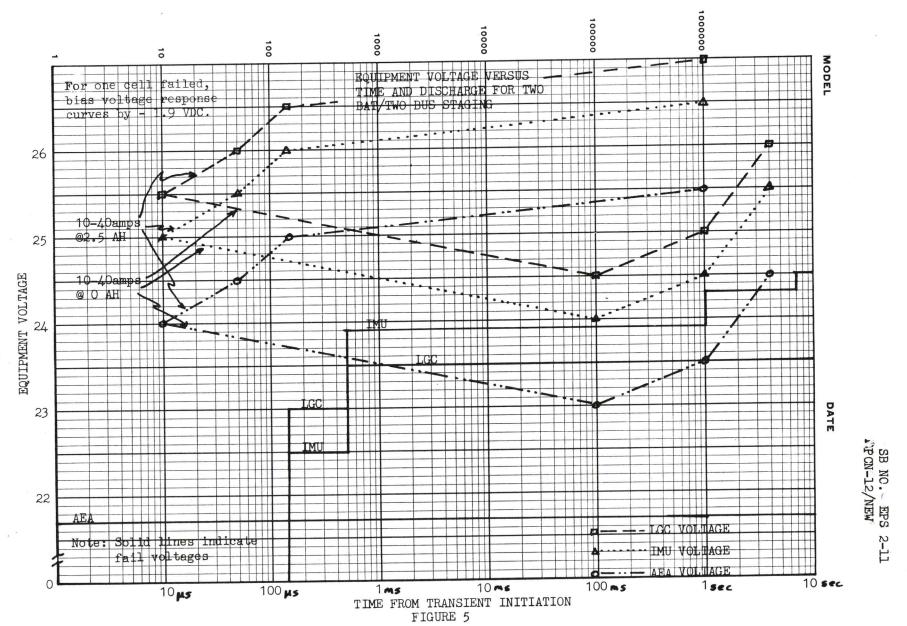

TABLE III


ASCENT BATTERY PRECONDITIONING IF ONE CELL FAILED


General Considerations:

- ${\tt c}$ Ascent battery carries ll% of total load when paralleled with one or more descent batteries if polarity has reversed.
- o Voltage drops from the battery to guidance equipments same as for nominal battery.
- o Voltage drop due to loss of one cell considered to be 1.9 VDC.
- o Battery/bus configuration and rationale for steps same as for nominal battery.


CONDITION	LGC	IMU	AEA	ASSUMPTIONS
Two-Bat/Two-Bus Abort Stage 2.5 AH from Bat 5	Fails ICD from 150 µ sec to 2 sec	Fails ICD from 500µ sec to approx 3 sec	Passes ICD	 Bat 5 (LMP) step 7.5 to 32.4 amps Bat 6 (CDR) step 13.8 to 51.5 amps 10 - 40 amp step data @ 40°F and 2.5 AH used for Bat 5 10 - 70 amp step data @ 40°F and 5 AH
5.0 AH from Bat 6	Lowest volt- age is 22.6 50μ sec.	Lowest volt- is 23.1 at 50µ sec.		o 10 - 70 amp step data @ 40 r and 5 An used for Bat 6
One Bat/Two-Bus Abort Stage 5 AH Removed	Fails ICD	Fails ICD	Fails ICD between 50μ sec and	 Step load = 7.0 amps to 83.9 amps 10 - 70 amp data @ 40°F and 5 AH used
) All Removed	previous step	previous step	500 ms. Lowest volt- age is 21.6 at 50μ sec.	
One-Bat/Two-Bus Abort Stage 10 AH Removed	Passes ICD	Fails ICD between 500 sec - 10 ms and be- tween 1 sec unknown.	Passes ICD	o Same assumptions as previous case except 10 - 70 amp step data @ 40°F and 10 AH used.
Two-Bat/Two-Bus Lunar Liftoff	Passes ICD	Passes ICD	Passes ICD	o Bat 5 step = 2.76 to 25.13 amps Bat 6 step = 2.22 to 20.15 amps
2.5 AH from Bat 5				o 10 - 40 amp step data @ 40 ⁰ F and 2.5 AH used.
2.5 AH from Bat 6				
One-Bat/Two-Bus Lunar Liftoff	Passes ICD	Passes ICD	Passes ICD	 Same assumptions as previous case except step is from 4.98 to 45.28 amps. 10 - 40 amp step data @ 40⁰F and 2.5 AH
2.5 AH Removed				o 10 - 40 amp step data @ 40 r and 2.5 An used.


?

SB NO. EPS PCN-12/NEW

TPS 2-11

100000

III-2-66

SB NO. EPS 2-12

S/C:	LM
DATE:	3-1-72
REV:	PCN-12/NEW
ORIGINATOR:	L., E. Nicholas
APPROVAL:	L. E. Nicholas

TITLE: MAXIMUM ELECTRICAL POWER RENDEZVOUS LIFETIMES FOR ASCENT BATTERIES

PEFFRENCES.

ES: 1. MSC Memorandum FM64 (72-5), "Maximum Available LM Ascent Stage Lifetime with a Failed Ascent

Battery, dated, 1-24-72

2. System Brief EPS 2 - 8, dated 11-1-71

BACKGROUND:

This study was performed to establish the maximum electrical rendezvous lifetimes for one and two ascent batteries. Of the three G & N configurations studied, two were LM active and one was CSM. active. Maximum electrical lifetimes were computed for each G & N configuration using two different suit fan duty cycles. When determining one lifetime, the suit fan was operated continuously and when determining the other lifetime the suit fan was operated 20% of the time after insertion plus 10 minutes. The cases for two batteries were analyzed to provide a maximum lifetime guide line when performing an off nominal rendezvous other than a Tl or T2 liftoff.

The following G & N configurations were used in performing this study:

- 1. LM active LGC with Rendezvous Radar
- 2. LM active AGS with Rendezvous Radar
- 3. CSM active CMC with Sextant, VHF Ranging and LM tracking light.

LM spacecraft current levels for configurations 1 & 2 were determined by the LM - SEENA computer program. The LM current level for configuration 3 was determined by Apollo 13 real-time data. A list of assumptions used in performing this study may be found in Table 1.

Ascent power usage prior to insertion + 10 minutes is itemized in Table 2. For the one battery case, 26.4 ampere-hours are consumed at insertion + 10 minutes and the unusable due to telemetry inaccuracy is 2.1 A-H. Using a one battery capacity of 286 A-H leaves 257.5 A-H usable after this point. For the two battery case, 31.9 ampere-hours are consumed at insertion + 10 minutes and unusable due to telemetry inaccuracy is 3 A-H. Using a capacity of 296 A-H per battery leaves 557.1 A-H total usable after this point. Note that the time from liftoff to insertion + 10 minutes is 17 minutes.

Table 3 & 4 presents the maximum lifetime data, average current and amp-hours consumed for one and two ascent battery cases respectively. Table 3 also indicates the margins for a one ascent battery rendezvous and a liftoff time at Tl or T2.

MISSION IMPACT:

This study indicates adequate power is available from one or two ascent batteries to perform a Tl liftoff for all G & N and suit fan configurations which have been presented here. This abort requires 5.5 hours from liftoff to docking.

With the suit fan operating continuously, the power available from one ascent battery is marginal to perform a T2 liftoff and rendezvous operating in the PGNS/RR configuration. All other T2 cases have adequate margins. This abort requires 7.5 hours from liftoff to docking.

The maximum lifetime for two batteries varies from 16 hr 8 min to 36 hr 39 min.

SB NO. EPS 2-12

TABLE 1

.

<

1.	All rendezvous cases are coelliptic.
2.	The single ascent battery capacity is 286 A-H.
3.	The usable amp-hours is zero at docking
4.	The tracking light and VHF ranging were not used for configurations 1 and 2.
5.	The VHF B data mode was never used.
6.	All floodlights were off after insertion.
7.	The S-Band equipment was off during LOS periods.
8.	TM unusables were computed using a telemetry measure- ment uncertainty of 1.9 amperes for the one battery cases and 2.69 amperes for the two battery cases.
9.	For the PGNS/RR configuration, the AEA and ASA were turned off after insertion.
10.	For the AGS/RR configuration, the LGC, DSKY, IMU and GASTA were turned off after insertion.
11.	The rendezvous radar was operated a total of 2 hours during the latter part of the rendezvous for con- figuration 1 and 2.
12.	No LM platform was used after insertion for con- figuration 3.
13.	For configuration 3 the VHF ranging was used from insertion to CSI minus 45 minutes and the tracking light was used from then to docking during each dark side pass.
14.	The cabin fan was not used.
15.	The buses were tied together for the one and two

The buse	es were	tied	roße ruet.	101	one	0116	and	OWO
battery	cases.							
		battery cases.						The buses were tied together for the one and battery cases.

TABLE 2

Summary of LM Ascent Power Usage Prior to Insertion + 10 min.								
Event	Relative Time	Total Ascent A -H	A - H BAT 5	A - H BAT 6				
Ascent Batts Parallel	PDI - 28	1.4	.7	.7				
PDI	PDI + 0	11.1	6.5	4.6				
Bat 6 Failed	PDI + 6	13.8	8.3	5.5				
Touchdown	PDI + 12	15.5	10.0	5.5				
Liftoff	PDI + 21	18.7	13.2	5.5				
Insertion	PDI + 28	24.8	19.3	5.5				
Insertion + 10 min.	PDI + 38	31.9	26.4	5.5				

SB NO. EPS 2-12 PCN-12/NEW .

,

TABLE	3
-------	---

ONE ASCENT BATTERY MAXIMUM LIFETIME

1				Inser	tion + 10	-			
Cor	nfiguration	% Operation of Suit Fan	Max Time L/O to Dock	Max Time Ins +10 min To Dock	AVG Current	Amp-Hour Used	TM Unusable	Tl Margin	T2 Margin
1.	PGNS/RR	20%	8hr 58min	8hr 41min	27.77	240.9	16.6	3hr 28min	lhr 28min
		100%	7hr 46min	7hr 29min	32.45	243.2	14.3	2hr 16min	Ohr 16min
2.	AGS/RR	20%	llhr 18min	llhr lmin	21.46	236.5	21.0	5hr 48min	3hr 48min
	2	100%	9hr 28min	9hr llmin	26.14	240.0	17.5	3hr 58min	lhr 58min
3.	CMC/SXT	20%	17hr 59min	17hr 42min	12.63	223.7	33.8	12hr 29min	10hr 29min
		100%	13hr 41min	13hr 24min	17.31	231.9	25.6	8hr llmin	6hr llmin

m	1 DT	11	1

TWO ASCENT BATTERY MAXIMUM LIFETIME

A. 40			Insertion + 10 min to Docking			
Configuration	% Operation of Suit Fan	Max Time L/O To Dock	Max Time Ins +10 min to Dock	AVG CURRENT	Amp-Hour Used	TM Unusable
1. PGNS/RR	20%	18 hr 34 min	18 hr 17 min	2777	507.9	49.2
1. 1 0.0/100	100%	16 hr 8 min	15 hr 51 min	32.45	514.5	42.6
2. AGS/RR	20%	23 hr 21 min	23 hr 4 min	21.46	495.0	62.1
	100%	19 hr 36 min	19 hr 19 min	26.14	505.1	52.0
3. CMC/SXT	20%	36 hr 39 min	36 hr 22 min	12.63	459.3	97.8
	100%	28 hr 8 min	27 hr 51 min	17.31	482.2	74.9

PYRO 3-1 SB NO.

s/c: DATE: REVISION: ORIGINATOR: APPROVAL:

11/1/71 PCN-11/New Whitt1 William L. Peters

PYRO BATTERY OPEN CIRCUIT VOLTAGE (OCV) ANALYSIS TITLE:

BACKGROUND: Discharge tests run on pyro batteries have demonstrated that the magnitude of parasitic battery loads can be approximated by analysis of the terminal voltage rate of decrease during the transitition from the peroxide to the monoxide plateau. The time on the peroxide plateau is greatly dependent upon the charge cycle of the batteries after their formation discharge (part of the activation process). When batteries have been charged together, their discharge characteristics will be very similar. Figure 1 shows the discharge curve for 4 batteries that went through their charge cycle together. Two of the batteries had a 1200 OHM load (27.5 and 31.0 ma), one had a 600 OHM load (63 ma), and one had a 300 OHM load (120 ma). These curves fall as expected in that the greater the load current the less time the battery stays on the peroxide plateau, the greater the initial voltage suppression, and the faster the transition between plateaus. Figure 2 demonstrates the same relationship between 3 more batteries which were charged together. Loads on these batteries were 300 OHMs (93 ma), 450 OHMs (80 ma) and 600 OHMs (48.7ma). Two marked differences between these batteries and the 4 batteries of Figure 1 are: (1) greater voltage suppression and (2) less energy on the peroxide plateau. Figure 3 shows dv/dt vs. time for the batteries whose voltage characteristics are shown in Figures 1, & 2. These curves were plotted using data points gathered every hour during discharge to simulate what might be a realistic inflight data frequency. The result for the dv/dt vs. time curve results in an interesting comparison for the four discharge rates. As expected the peak of the dv/dt curve falls in the center of the battery's transition from peroxide to monoxide plateau. The distinguishing characteristics are that as the discharge rate increases the peak of the dv/dt curve becomes greater and the general shape of the curve narrows. Exactly where the dv/dt peak falls on the time scale is a function of energy on the peroxide plateau and not important in comparing batteries from different charge cycles. Figure 4 shows the dv/dt vs. time curves for the batteries whose discharge curves are shown in Figures 1 & 2 with 30 minute data rates. As a comparison with Figure 3 will show, the greater data rate more clearly defines the curve peak, but the general curve shape peak position in time remain relatively the same. The conclusion from these curve comparisons is that although a 30 minute data rate is best for curve resolution a 60 minute data rate would probably be sufficient for pyro battery load estimations.

> Once a pyro battery has reached the monoxide plateau an accurate estimate of the battery load current is impossible based on data gathered thus far. Similarly once a battery has begun to roll off its monoxide plateau the energy remaining in the battery and therefore time remaining is unpredictable, as shown in Figure 5.

To estimate an unknown load requires that a dv/dt plot of the battery voltage be calculated (see APP. A) and then a curve peak and shape comparison be made with the seven known battery discharges. If, for instance, the unknown curve's peak is less than that of SN304 and if the general curve shape is more broad in nature than that of SN304 then the unknown current is probably less than the 120 ma of battery SN304. Similarly if the unknown curve's peak is greater than that of SN288 and the general curve shape is more narrow in nature, then the unknown load is probably greater than the 27.5 ma of battery SN288. Using the above described technique a general estimate of the battery's discharge rate may be attained.

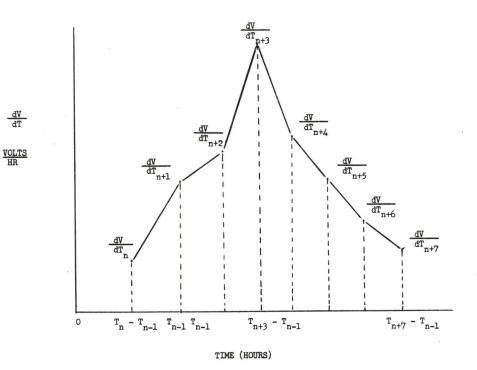
Without sufficient data to define the dv/dt curve peak an estimate of the batteries' load could be in gross error. In general, confidence is maintained in this technique only when enough data is available to define the curve peak as well as a general curve shape. The dv/dt curve peak has in the past come when the terminal voltage is in the 32 - 34 volt region, therefore if the voltage is 32 volts when data is initially gathered, it is unlikely sufficient data will be available for a load estimation. It is obvious from looking at the data in Figures 1 & 2 that if the terminal voltage reaches the mono-

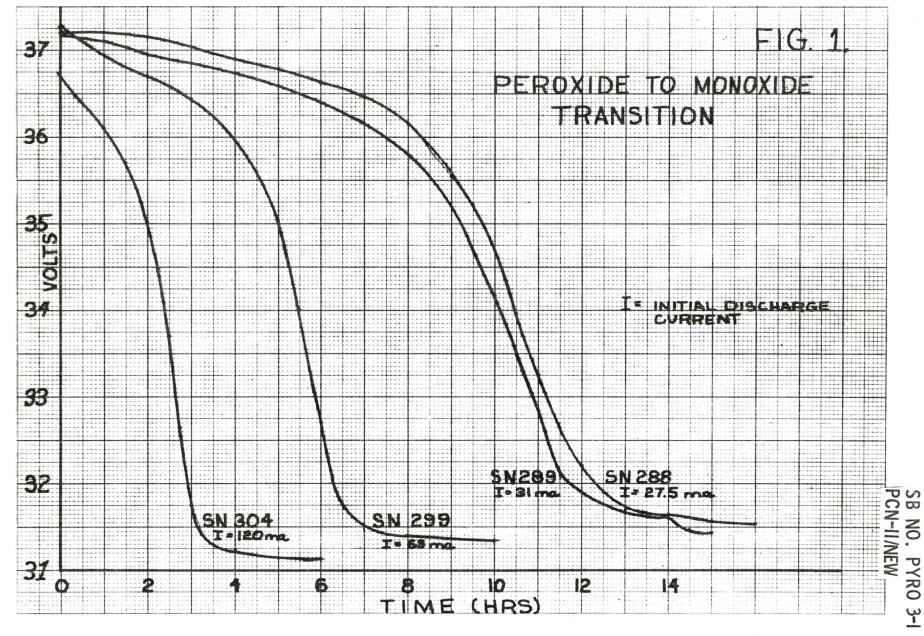
SB NO. PYRO 3-I PCN-II/NEW

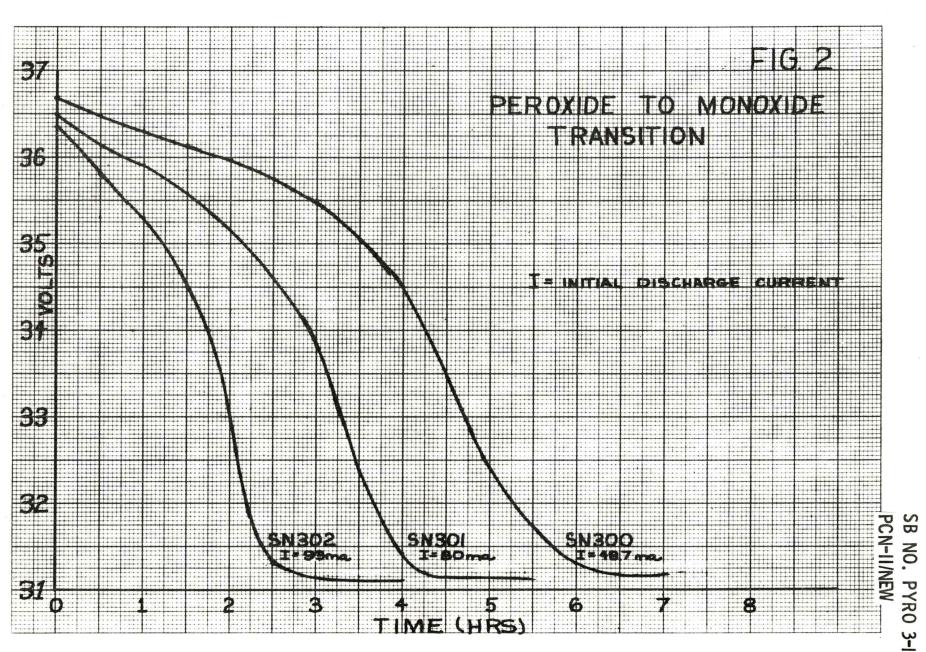
oxide plateau in less than 3 hours the terminal load is probably greater than 100 mm resulting in a battery life of less than the 25 hours expected with a 100 mm short. Similarly if the terminal voltage falls to the monoxide level in greater than 16 hours then the drain is probably less than 25 mm and expected lifetime probably greater than 100 hours.

The following table is based on the seven data points in this brief and lists acceptable parasitic loads as a function of when the problem was discovered and minimum Lunar Stay Times. These values also assume that the parasitic load remains constant in value, and that TD occurs at approximately 100:00 GET.

TIME PROBLEM	MINIMUM LUNAR STAYTIME			
DISCOVERED	10 HR	24.5 HR		
l st Housekeeping Assumes Problem Developed LM Cabin Closeout (-29:30)	None Acceptable	None Acceptable		
2 nd Housekeeping Assumes Problem Developed Immediately after 1 st Housekeeping (≈36:00 GET)	31 ma Maximum (S/N 289)	31 mA Maximum (S/N 289)		
Activation Assumes Problem Developed Immediately after 2^{nd} Housekeeping ($\approx 60:00GET$)	63 ma Maximum Based on in- terpolation of S/N 289 and S/N 299	31 MA Maximum (S/N 289)		

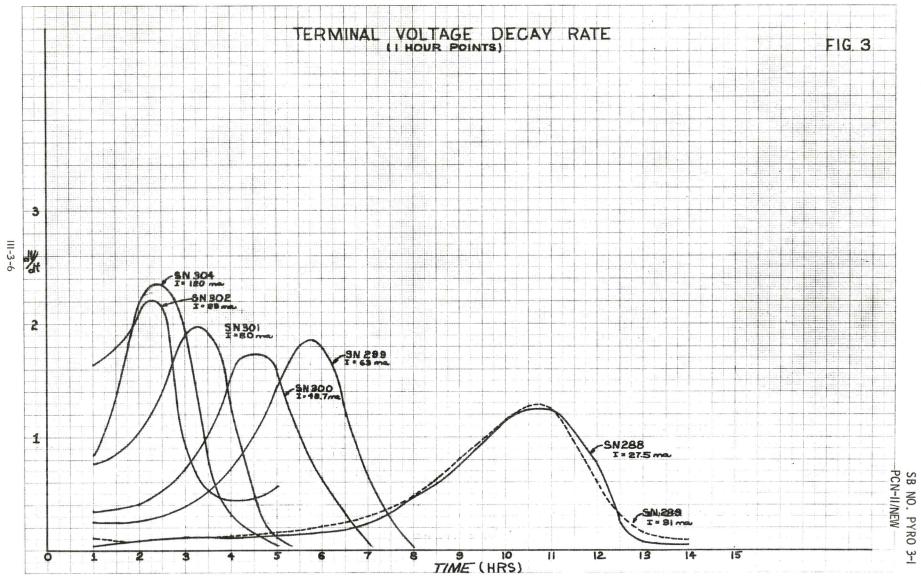

APPENDIX A

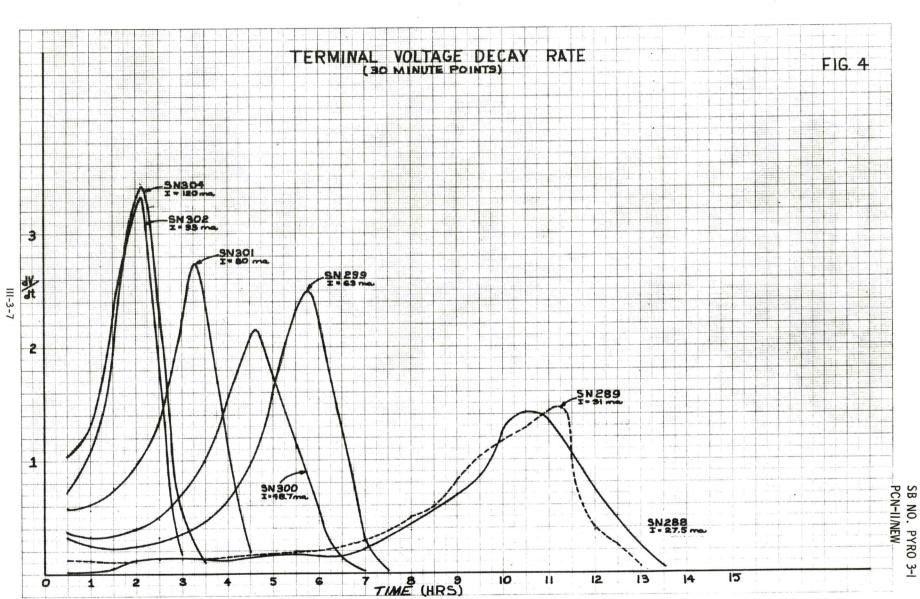

Given a Table of Data Points evenly spaced in Time such as:


V₁ Tl V₂ ^T2 Where V₁ = Pyro Battery OCV reading V₃ т3 Time of OCV reading in hours T₁ = ¥4 Т4 And n = The number of the Data Point in the series of Points 1 through X Then $\frac{dV}{dT_n} = \frac{\left(V_{n-1} - V_{n+1}\right)}{\left(T_{n+1} - T_{n-1}\right)}$

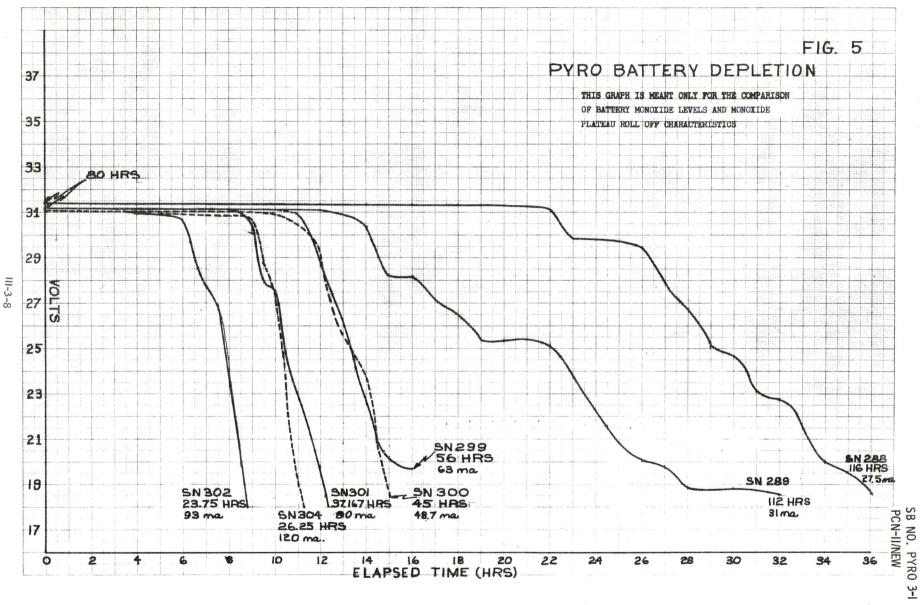
(note that this calculation cannot be performed for the first and last data points in the series)

Plotting this data will take the form:

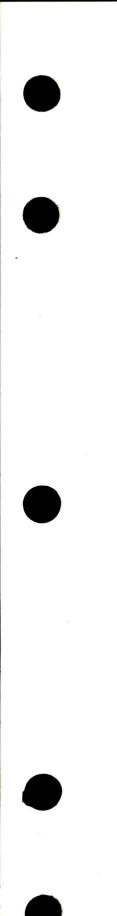



BEE 20x20 TO INCH

111-3-5



47 1510 THE CENTIMETER


10 X 10 TO 1

47 1510 A TO X TO THE CENTIMETER

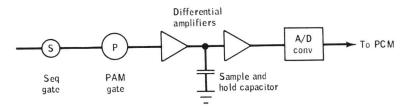
47 1510 METER THE CENTI

SB NO. COMM 4-1,4-2,4-3

All Communications SB'S are deleted by PCN-3

Ⅲ-4-1 through Ⅲ-4-5

SB NO. INST 5-1


S/C:	LM
DATE:	3/1/72
. REV:	PCN 12
ORIGINATOR:	D. WHIJTLE/
APPROVAL:	James Houngan
\	

TITLE: PCMTEA CROSSTALK

BACKGROUND:

A. For telemetry purposes, crosstalk occurs whenever information on one telemetry channel appears on another telemetry channel by virtue of some unintended means. Inductive or capacitive coupling may both give rise to a crosstalk situation. Due to the possibility of improper impedance matching in the analog multiplexer, FCM crosstalk is a possibility. In instances where the MIT signal conditioning has been powered down, FCM crosstalk has been seen on LM-3. With this type of crosstalk, the information is transferred only to adjacent channels in the bit stream.

B. The diagram below shows basically how the analog-to-digital conversion is accomplished.

The problem occurs in the sample and hold circuitry. The differential amplifier forces the sample and hold capacitor to the voltage level sampled by the PAM gate. This capacitor then holds this voltage level for the A/D converter to work with until a new sample of data forces the capacitor to some new value corresponding to a different measurement. In order for the voltage impressed upon the sample and hold capacitor to be an accurate representation of the sampled voltage, the sampled channel should have a purely resistive impedance of 5K ohms.

- C. Due to the sampling characteristics of the sequencer gates, should the impedance seen in a particular gate become capacitive in nature, then that channel will tend to track the previously sampled analog channel. The degree of tracking depends on the sample rate of the channel. For a 1 s/s channel, the bleed-off between measurements is about 50 percent, for a 200 s/s channel, the bleed-off is only 27 percent of the previously sampled level.
- D. Presently there are two ways that the afore-described conditions may exist. Should a wire to an analog channel be broken or opened, the capacity of the cabling and harnessing is such that this crosstalk could occur. The second method is for the MIT signal conditioning to be turned off. This equipment, in the off configuration, is such that the impédance it presents is almost purely capacitive.

MALFUNCTION DETECTION:

MISSION

IMPACT:

In most cases PCM crosstalk can be recognized in real time. A measurement which is affected by crosstalk will not under normal circumstances retain a value in the region it would normally be in; therefore, an abnormal reading of the affected channel would indicate that a problem was present. Then a check to see if the measurement in the bit stream previous to the effected measurement is an analog measurement, and if so, if the effected measurement tracks the previous measurement at some percentage lower value. If tracking is taking place, then crosstalk is occurring. Table 1 (PCM Crosstalk Matrix) lists all analog parameters preceded by an analog parameter in the bit stream. This should be a useful real-time tool for spoting crosstalk.

For PCM crosstalk to occur, either a channel wire is broken so the measurement is lost anyway or the MIT signal conditioner is powered down, in which case the flight controller is not worried about the readout of these parameters. Crosstalk should be readily recognized in real time; however, there is a remote possibility that crosstalk could be of such a value so as to elude immediate real time evaluation.

CORRECTIVE ACTION: None

Ш-5-1

SB NO. INST 5-1

4

.

PCN-I2

TABLE 1 - PCM CROSSTALK MATRIX

MEASUREMENT IDENTIFICATION	PRIM OR SEC	PRECEDING PARAMETER	MEASUREMENT IDENTIFICATION	PRIM OR SEC	PRECEDING PARAMETER
GB0541 MESA TEMP 1 GB0542 MESA TEMP 2 GC0071 AC BUS VOLT GC0155 AC BUS FREQ GC0155 AC BUS FREQ	S P	FRAME COUNT FRAME COUNT GH1455 YAW ATT ERR GP0041 APS He 1R P IN SH	GF4502 ASC 1 H ₂ 0 PRESS GF4502 ASC 1 H ₂ 0 PRESS GF4503 ASC 2 H ₂ 0 PRESS GF4503 ASC 2 H ₂ 0 PRESS GF4503 ASC 2 H ₂ 0 PRESS GF4511 PRI W/B H ₂ 0 TEMP	S P S P	GL0501 MET FRAME COUNT GG3324 RR TRUN SIN FRAME COUNT IN SH
GC0201 BAT 1 VOLT GC0202 BAT 2 VOLT GC0203 BAT 3 VOLT GC0204 BAT 4 VOLT GC0205 BAT 5 VOLT		DISCRETE GH1456 PITCH ATT ERR GH1456 PITCH ATT ERR DISCRETE GH1331 AUTO THRUST CMD	GF4,511 PRI W/B H ₂ O TEMP GF4,585 ASC 1 H ₂ O TEMP GF4,585 ASC 1 H ₂ O TEMP GF4,586 ASC 2 H ₂ O TEMP GF4,586 ASC 2 H ₂ O TEMP	S P S S	GG2249 YAW DAC OUT DISCRETE GG2219 PITCH DAC OUT GH1314 ROLL GDA POS FRAME COUNT
GC0206 BAT 6 VOLT GC0207 BAT L VOLT GC0301 CDR BUS VOLT GC0302 LMP BUS VOLT	Р	GG2142 MG RSVR OUT SIN GL0501 MET GH1247 YAW ERR CMD IN SH	GF9997 SEL GLY PUMP P GF9997 SEL BLY PUMP P GF9998 SEL GLY TEMP GF9998 SEL GLY TEMP GF9999 SEL H ₂ O SEP RATE	S P S P	GH1247 YAW ERR CMD DISCRETE GH1314 ROLL GDA POS FRAME COUNT GH1455 YAW ATT ERR
GC1201 BAT 1 CUR GC1201 BAT 1 CUR GC1202 BAT 2 CUR GC1202 BAT 2 CUR GC1203 BAT 3 CUR	P S P S P	OPEN GH1247 YAW ERR CMD GH1455 YAW ATT ERR GL0402 CAL 15 PCT GH1455 YAW ATT ERR	GG1040 PLS TORQ REF GG1040 PLS TORQ REF GG1110 2.5 VDC TM BIAS GG1201 IMU 28 VAC 800	P S P	GPO041 APS He 1R P GL0402 CAL 15 PCT GH1314, ROLL GDA POS FRAME COUNT GG3324, RR TRUN SIN
GC1203 BAT 3 CUR GC1204 BAT 4 CUR GC1204 BAT 4 CUR GC1204 BAT 4 CUR GC1205 BAT 5 CUR GC1205 BAT 5 CUR	S P S S P	GG2249 YAW DAC OUT OPEN GH1247 YAW ERR CMD GH12455 YAW ATT ERR GL0202 CAL 15 PCT GH1455 YAW ATT ERR DISCRETE GH1247 YAW ERR CMD IN SH GH1455 YAW ATT ERR GL0202 CAL 15 PCT IN SH	GG1331 28VAC 3.2KHZ GG2001 X PIPA OUT IN Ø GG2001 X PIPA OUT IN Ø GG2021 Y PIPA OUT IN Ø GG2021 Y PIPA OUT IN Ø	P S P	GG3324 RR TRUN SIN GG2021 Y PIPA OUT IN Ø GQ6806 DPS VAR INJ ACT POS IN SH GG2001 X PIPA OUT IN Ø
GC0302 LMP BUS VOLT GC1201 BAT 1 CUR GC1202 BAT 2 CUR GC1202 BAT 2 CUR GC1202 BAT 2 CUR GC1203 BAT 2 CUR GC1203 BAT 2 CUR GC1203 BAT 3 CUR GC1204 BAT 4 CUR GC1205 BAT 4 CUR GC1204 BAT 4 CUR GC1205 BAT 5 CUR GC1205 BAT 5 CUR GC1206 BAT 6 CUR GC1206 BAT 6 CUR GC1206 BAT CUR GC1207 GC1207 BAT L CUR GF0500 DES 2 H ₂ 0 GF0521 DES 2 H ₂ 0 TEMP	P S P S	GL0402 CAL 15 PCT GG3324 RR TRUN SIN FRAME COUNT CH1/55 YAL ATT FRE	GG2041 Z PIPA OUT IN Ø GG2107 IG SVO ERR IN Ø GG2107 IG SVO ERR IN Ø GG2112 IG RSVR OUT SIN GG2113 IG RSVR OUT COS	S P S	GG2001 X PIPA OUT IN Ø DISCRETE GQ3603 DPS FUEL 1 QTY DISCRETE GH1457 ROLL ATT ERR
GF0500 DES 2 H20 TEMP GF0584 DES 2 02 PRESS GF1281 SUIT TEMP GF1301 SUIT TEMP GF1301 SUIT PRESS GF1521 C02 PART PRESS	S P P	GG2142 MG RSVR OUT SIN GG3324 RR TRUN SIN GL0501 MET FRAME COUNT GG2219 PITCH DAC OUT	$\begin{array}{cccc} GG2137 & MG SVO ERR IN \not 0 \\ GG2137 & MG SVO ERR IN \not 0 \\ GG2142 & MG RSVR OUT SIN \\ GG2142 & MG RSVR OUT SIN \\ GG2143 & MG RSVR OUT COS \\ \end{array}$	P S P S S	OPEN IN SH GH1241 Y TRANS CMD GH1245 YAW ATT ERR GQ6806 DPS VAR INJ ACT POS
			GG2143 MG RSVR OUT COS GG2167 OG SVO ERR IN Ø GG2167 OG SVO ERR IN Ø GG2173 OG RSVR OUT SIN GG2173 OG RSVR OUT COS	P P S S	GG2249 YAW DAC OUT IN SH IN SH GG2279 ROLL DAC OUT DISCRETE
GF2021 PRI GLY PUMP AP GF2531 W/B GLY IN T GF2581 W/B GLY IN T GF2921 SEC GLY PRESS GF2921 SEC GLY PRESS	S P S	GH1456 PITCH ATT ERR GL0501 MET GL0402 CAL 15 PCT FRAME COUNT GG3324 RR TRUN SIN	GG2173 OG RSVR OUT COS GG2219 PITCH DAC OUT GG2249 YAW DAC OUT GG2279 ROLL DAC OUT GG2300 PIPA TEMP	P	GG2249 YAW DAC OUT GH1463 RGA ROLL RATE GG2112 IG RSVR OUT SIN GPO0.2 APS He 2R P GH1247 YAW ERR CMD
GF2021 PRI GLY PUMP AP GF2031 W/B GLY IN T GF2581 W/B GLY IN T GF2921 SEC GLY PRESS GF2921 SEC GLY PRESS GF3571 CABIN PRESS GF3571 CABIN PRESS GF3582 ASC 1 02 PRESS GF3582 ASC 1 02 PRESS GF3583 ASC 2 02 PRESS	S P S P	GIOGAI ALO NE INT GH1456 PITCH ATT ERR GL0501 MET GL0402 CAL 15 PCT FRAME COUNT GG3324 RR TRUN SIN GPO041 APS He 1R P GG2249 YAW DAC OUT GH1331 AUTO THRUST CMD FRAME COUNT GL0501 MET	GG2300 PIPA TEMP GG3304 RR SHFT SIN GG3305 RR SHFT COS GG3324 RR TRUN SIN GG3325 RR TRUN COS	P	GG2249 YAW DAC OUT GQ6806 DPS VAR INJ ACT POS GG2142 MG RSVR OUT SIN GG3305 RR SHFT COS GH1461 RGA YAW RATE
GF3583 ASC 2 0 ₂ PRESS GF3584 DES 1 0 ₂ PRESS GF3584 DES 1 0 ₂ PRESS GF3591 U/H RLF PRESS GF3592 F/H RLF PRESS	P S P	FRAME COUNT GH1455 YAW ATT ERR DISCRETE IN SH GG2249 YAW DAC OUT	GH1240 X TRANS CMD GH1241 Y TRANS CMD GH1242 Z TRANS CMD GH1247 YAW ERR CMD GH1247 YAW ERR CMD	PS	DISCRETE GG2172 OG RSVR OUT SIN GHL456 PITCH ATT ERR
$\begin{array}{c} \text{GF4101} \text{PRI} \ \text{H}_2\text{O} \ \text{REG} \ \text{\DeltaP} \\ \text{GF4101} \text{PRI} \ \text{H}_2\text{O} \ \text{REG} \ \text{\DeltaP} \\ \text{GF4500} \text{DES} \ 1 \ \text{H}_2\text{O} \ \text{RESS} \\ \text{GF4500} \text{DES} \ 1 \ \text{H}_2\text{O} \ \text{RESS} \\ \text{GF4501} \text{DES} \ 1 \ \text{H}_2\text{O} \ \text{RESS} \\ \end{array}$	P S P S	GL0402 CAL 15 PCT GH1456 PITCH ATT ERR GL0501 MET FRAME COUNT GG2219 PITCH DAC OUT	GH1248 PITCH ERR CMD GH1248 PITCH ERR CMD GH1249 ROLL ERR CMD GH1249 ROLL ERR CMD GH1249 ROLL ERR CMD GH1311 MAN THRUST CMD	P S P S	GG3304 RR SHFT SIN DISCRETE GT0441 DUA STATUS DISCRETE FRAME COUNT

SB NO. INST 5-1 PCN-I2

2

.

MI IDF	EASUREMENT ENTIFICATION	PRIM OR SEC	PRECEDING PARAMETER			PRIM OR SEC	PRECEDING PARAMETER	
GH1313 GH1313 GH1314 GH1314 GH1314 GH1331	PITCH GDA POS PITCH GDA POS ROLL GDA POS ROLL GDA POS AUTO THRUST CMD	S P S P S	GH1462 RGA PITCH RATE GH1456 PITCH ATT ERR GH1313 PITCH GDA POS GL0402 CAL 15 PCT GG3325 RR TRUN COS	GQ3611 GQ3718 GQ3718 GQ3719 GQ3719	DPS FUEL PRESS DPS FUEL TEMP DPS FUEL TEMP DPS FUEL 2 TEMP DPS FUEL 2 TEMP	P S P S	IN SH GH1331 AUTO THRUST CMD FRAME COUNT GL0501 MET FRAME COUNT	
GH1331 GH1455 GH1455 GH1455 GH1456	AUTO THRUST CMD YAW ATT ERR YAW ATT ERR YAW ATT ERR PITCH ATT ERR	P S P S	GH1247 YAW ERR CMD GH12463 RGA ROLL RATE GG2113 IG RSVR OUT COS GG22429 YAW DAC OUT GL0401 CAL 85 PCT	GQ4103 GQ4103 GQ4103 GQ4104 GQ4104	DPS 0X 1 QTY DPS 0X 1 QTY DPS 0X 1 QTY DPS 0X 1 QTY DPS 0X 2 QTY DPS 0X 2 QTY	S P P S	GH1331 AUTO THRUST CMD FRAME COUNT IN SH OPEN GG2142 MG RSVR OUT SIN	
GH1456 GH1456 GH1457 GH1457 GH1457	PITCH ATT ERR PITCH ATT ERR ROLL ATT ERR ROLL ATT ERR ROLL ATT ERR	P S S P S	IN SH GH1456 PITCH ATT ERR DISCRETE GG2143 MG RSVR OUT COS DISCRETE	GQ4104 GQ4111 GQ4111 GQ4111 GQ4218	DPS OX 2 QTY DPS OX PRESS DPS OX PRESS DPS OX PRESS DPS OX 1 TEMP	S P S S	FRAME COUNT GH1247 YAW ERR CMD GQ3611 DPS FUEL PRESS GQ3611 DPS FUEL PRESS GH1247 YAW ERR CMD	
GH1461 GH1461 GH1462 GH1462 GH1463	RGA YAW RATE RGA YAW RATE RGA PITCH RATE RGA PITCH RATE RGA ROLL RATE	P S P S P	GH1242 Z TRANS CMD GH1456 PITCH ATT ERR GG2173 OG RSVR OUT COS DISCRETE GH1457 ROLL ATT ERR	GQ4218 GQ4219 GQ4219 GQ6510 GQ6510	DPS OX 1 TEMP DPS OX 2 TEMP DPS OX 2 TEMP DPS TCP DPS TCP	P S P S	GH1456 PITCH ATT ERR IN SH DISCRETE GQL111 DPS OX PRESS GH1247 YAW ERR CMD	
GH1463 GI3301 GI3301 GL0401 GL0401	RGA ROLL RATE ASA TEMP ASA TEMP CAL 85 PCT CAL 85 PCT	S P S P	GH1248 PITCH ERR CMD GH1314 ROLL GDA POS FRAME COUNT GQ6806 DPS VAR INJ ACT POS DISCRETE	GQ6510 GQ6806 GQ6806 GQ6806	DPS TCP DPS VAR INJ ACT POS DPS VAR INJ ACT POS	S S S S	DISCRETE GG2142 MG RSVR OUT SIN GG2041 Z PIPA OUT IN Ø IN SH GH1455 YAW ATT ERR	•
GL0402 GL0402 GL0422 GL0423 *GL9401	CAL 15 PCT CAL 15 PCT PCM OSC FAIL 2 PCM OSC FAIL 3 SEL RTG/ECA 1 T	P S	DISCRETE GLO401 CAL 85 PCT DISCRETE GH1331 AUTO THRUST CMD FRAME COUNT	GR1095 GR1095 GR1101 GR1101	RCS PROP A QTY RCS PROP B QTY DPS PROP B QTY RCS A He PRESS RCS A He PRESS	S P S P S	DISCRETE GHL247 PITCH ERR CMD GHL456 PITCH ATT ERR GHL331 AUTO THRUST CMD FRAME COUNT	PCN-12
**GL9402 **GL9402 GN7723 GN7723 GN7723	SEL LR/ECA 2 T SEL LR/ECA 2 T RR ANT TEMP RR ANT TEMP RR ANT TEMP	S P S S	GH1314 ROLL GDA POS FRAME COUNT GPO041 APS He 1R P FRAME COUNT GG2142 MG RSVR OUT SIN	GR1102 GR1102 GR1201 GR1201 GR1202	RCS B HE PRESS RCS B HE PRESS RCS A REG PRESS RCS A REG PRESS RCS B REG PRESS	S P S P	GH1331 AUTO THRUST CMD FRAME COUNT GG2219 PITCH DAC OUT FRAME COUNT FRAME COUNT	
GP0001 GP0001 GP0002 GP0002 GP0018	APS He 1 PRESS APS He 1 PRESS APS He 2 PRESS APS He 2 PRESS APS He REG PRESS	S P P S	GG2142 MG RSVR OUT SIN GH1456 FITCH ATT ERR GG2142 MG RSVR OUT SIN FRAME COUNT GH1314 ROLL GDA POS	GR2121 GR2122 GR2201 GR2201	RCS A FUEL TEMP RCS B FUEL TEMP A FUEL MFLD PRESS A FUEL MFLD PRESS B FUEL MFLD PRESS	P S S	GH1331 AUTO THRUST CMD GG2142 MG RSVR OUT SIN GG2219 PITCH DAC OUT GG2249 YAW DAC OUT GH1455 YAW ATT ERR	
GP0025 GP0041 GP0042 GP0718 GP1218	APS HE REG PRESS APS HE 1R P APS HE 2R P APS FUEL TEMP APS OX TEMP	S	IN SH OPEN GQ6806 DPS VAR INJ ACT POS IN SH GH1314 ROLL GDA POS	GR3201	B FUEL MFLD PRESS A OX MFLD PRESS A OX MFLD PRESS B OX MFLD PRESS B OX MFLD PRESS	P P S S P	OPEN GPO041 APS He 1R P OPEN GG2219 PITCH DAC OUT DISCRETE	
GP1218 GP1501 GP1501 GP1503 GP1503	APS OX TEMP APS FUEL PRESS APS FUEL PRESS APS OX PRESS APS OX PRESS	P P S S P	FRAME COUNT GG3324, RR TRUN SIN FRAME COUNT GH1331 AUTO THRUST CMD FRAME COUNT	GR6001 GR6002 GR6003 GR6004 GT0441	QUAD 4 TEMP QUAD 3 TEMP QUAD 2 TEMP QUAD 2 TEMP QUAD 1 TEMP DUA STATUS		FRAME COUNT FRAME COUNT FRAME COUNT FRAME COUNT DISCRETE	
GP2010 GP2010 GP2010 GQ3015	APS TCP APS TCP APS TCP DPS START TANK P DPS REG PRESS	P S S	GQ6510 DPS TCP GPO041 APS He 1R P GG2142 MG RSVR OUT SIN GPO041 APS He 1R P FRAME COUNT	GT0625 GT0625 GT0992	S-BAND ANT TEMP VHF B AGC VHF B AGC S-BAND ST PH ERR S-BAND ST PH ERR	P S P	GL0402 CAL 15 PCT GG2219 PITCH DAC OUT GG2249 YAW DAC OUT GH131 AUTO THRUST CMD GH1240 X TRANS CMD	
GQ3435 GQ3435 GQ3603	DPS He REG PRESS DPS He PRESS DPS He PRESS DPS FUEL 1 QTY DPS FUEL 1 QTY	P S S S	FRAME COUNT GH1455 XAW ATT ERR GL0402 CAL 15 PCT GL0501 MET FRAME COUNT	GT0993 GT0994 GT0994	S-BAND XMTR PO S-BAND RCVR SIG S-BAND RCVR SIG	S P	DISCRETE GG3324 RR TRUN SIN FRAME COUNT	
GQ3604 GQ3604 GQ3604	DPS FUEL 1 QTY DPS FUEL 2 QTY DPS FUEL 2 QTY DPS FUEL 2 QTY DPS FUEL 2 QTY DPS FUEL PRESS	P S P S S	DISCRETE GG3324 RR TRUN SIN OPEN FRAME COUNT IN SH					
GQ3611	DPS FUEL PRESS * THIS PARAMETER	S REPLACES (DISCRETE SL8275 RTG CASK TEMP					
			GN7563 LR ANT TEMP					

,

NOTE

ALL GG PARAMETERS ARE MIT SIGNAL-CONDITIONED.

P INDICATES PRIMARY LOADING SLOT S INDICATES SECONDARY LOADING SLOT

SB NO. INST 5-2

S/C: LM DATE: PEV: ORIGINATOR: APPROVAL:

11/1/71 PCN-11 Perkin 11 2 Poters

TITLE: LM CALIBRATION CURVES

REFERENCES: A. Operational Calibration Curves MSC

B. General Electric Technical Info Release 580-5-574-6147

C. IM Calibration Data

DISCUSSION: A. General - Calibration data are available in the FCD at T-90 days or upon spacecraft delivery to KSC, whichever occurs first. Updated information is provided at T-60, T-30, and T-20 days. Commencing at T-20 days until liftoff, calibration updates will be provided to Computation and Analysis Division (CAD) on an "as-occurred" basis from KSC. Upon receipt of this information, the CAD will immediately make it available to the FCD and the ASPO Test Division to update calibration documents and RTCC tapes.

- B. Data Definitions
 - 1. Linear Analog Measurements Calibration data derived from the design control specification that define a theoretical straight line representing zero output at low scale and full scale output at the high scale input. Hardware identification is not mandatory for these measurements since component replacement can be accomplished without affecting the calibration.
 - 2. Non-Linear Analog Measurements Calibration data derived from the design control specification that describe the curve over the operating measurement range. Hardware identification is not mandatory for these measurements.
 - 3. Associate Contractor (AC) Measurements Calibration data supplied to GAEC by AC Electronics. All GGXXXX measurements are in this category. Hardware identification is mandatory for these measurements since the data are derived from tests on specified hardware components.
 - 4. Raw Data Measurements Calibration data which are derived from observed tests. All GTXXXX measurements are in this category. Hardware identification is mandatory for these measurements since the data is derived from tests on specific hardware components.
- C. Calibration Curve Format Figure 1 is a typical calibration curve format. The letters in the circle are described as follows:
 - 1. Vehicle Number The numeric number assigned to the vehicle.
 - 2. Measurement Name The measurement name or description is GAEC assigned brief title given to each measurement. Standard abbreviation is used where applicable.
 - 3. Calibration Date Approximate vehicle shipment date. If measurement is recalibrated at KSC, the date is the latest calibration date.
 - 4. Hardware Calibration Number Not applicable.
 - 5. Serial Number The NASA, Vendor, or GAEC serial number is used for tracibility of the particular instrument. If only one number appears, this is the sensor or transducer serial number and no signal conditioning is required. If a second number appears below the first, this is the serial number of the signal conditioning hardware.
 - 6. Document Reference Section of the Calibration Data Book in which the parameter appears.
 - 7. Range The range of the input valve (Y-axis) in engineering units (EU).
 - 8. Equation Coefficients The polynominal equation coefficients denoted by (A₀, A₁, A₂, A₃, A₄, A₅) which determine the curve as follows:

 $Y = A_0 + A_1 X + A_2 X^2 + A_3 X^3 + A_4 X^4 + A_5 X^5$

In this equation, X is in volts dc, and Y is the equivalent value in engineering units determined by the Vdc entry into the equation.

> NOTE E Ol is the computer coding for positioning of the decimal point.

> > Ш-5-4

SB NO.INST 5-2 PCN-II

- 9. AL DEV (allowed deviation percent) represents the maximum allowable deviation of a data point | P-11 from the best fit curve expressed as a percentage of the absolute range. This value is always 0.5 percent.
- MAX D/Range This is the greatest deviation of any data point from the best fit curve expressed as a presentage of the absolute range.

NOTE

On some older calibration formats, the word "Sigma" may appear in place of MAX D.

- 11. Measurement Number The unique number assigned to a particular location of the vehicle where the measurement is taken. The measurement number is ten characters long. The first character
 - (module code) is a letter which designates the measurement location by spacecraft. The second character (functional system code) is a letter which denotes the system within which the measurement originates. Characters three through six are numbers assigned sequentially or grouped for clarity within each system. The seventh character, a letter, denotes measurement classification. Character eight is a dash, and characters nine and ten denote the number of times the measurement has been calibrated (example: GQ3719T - 01).
- Measurement Loading Number The measurement loading number gives all the information required to
 process and locate the data.
 - Link associated with GSE and flight response equipment (always 5 for operational TM).

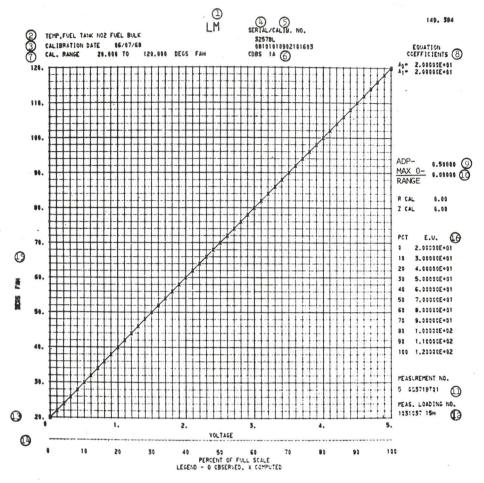
Interleaver channel number (always 1 for operational TM).

First word position (time slot) within the first frame it appears.

First frame where measurement appears (1-50).

Number of zeros that follows the first digit in sample rate.

First digit of sample rate.


037

- DC Volts Output The PCM output in Vdc. Zero Vdc corresponds to 1 PCM count, and 5 Vdc corresponds to 254 counts.
- 14. Percent of Full Scale The PCM output in PFS. Zero PFS corresponds to 1 PCM count, and 100 PFS corresponds to 254 PCM counts.
- Engineering Units The EU value of a parameter corresponding to the volts/PFS intersection of the curve.
- 16. PFS/EU PFS values with the corresponding computed EU values in increments of 10 percent.

NOTE

E Ol is the computer code for positioning the decimal point.

SB NO. INST 5-2

D. Measurement Accuracy

1. Normalized Curves

Measurement accuracies are listed in the Measurement Requirement and Configuration Data Book LED 360-318 and Measurements List LED 360-22 (LM-3) and for normalized calibration curves is derived from the following "Root Sum Square" (RSS) equation.

ACC =
$$(T)^{2} + (SC)^{2} + (PCM)^{2} + (\frac{MAX D}{RANGE})^{2}$$

Where: T = Specification Transducer Accuracy

SC = Specification Signal Conditioner Accuracy

PCM = PCM Encoding Accuracy

MAX D/Range = Greatest deviation of any data point from the best fit curve

The true maximum inaccuracy of a measurement is the sum of all inaccuracies in the measurement link; that is, Transducer + Signal Conditioner + PCM Encoding + Curve Fit. RSS is a method which takes into account the high probability that errors will not be maximum or in the same direction and defines an error band about the computed calibration curve which is considerably smaller than if the errors were numerically summed. Since the distribution of errors within the specification values for the transducers and signal conditioners are not known, no degree of certainty or guarantee can be attached to the error bands connected with normalized calibration curves.

SB NO. INST 5-2 PCN-II

2. Actual Curves:

GAEC will provide so called actual calibration data on 24 FCD selected parameters (see measurements below) with an 89% certainty that the actual measurement will remain within the error band throughout the range; that is, 0 to 100 PFS. This error band could conceivably be larger than the error that is derived for the same measurement using specification values.

The method for generating an actual calibration curve is quite complex; but basically a calibration curve and error band are statistically generated for the transducer stage of a measurement using appropriate actual data. This data is then married with the signal conditioner and PCM encoding spec data to form an end-to-end or actual calibration curve and associated error band.

The accuracy of a transducer is established by taking data from calibration runs and statistically establishing an error band. If there is a limited number of runs or if the repeatability of runs is poor, the statistical approach will probably cause the error band to increase. In some cases this will cause the actual curve to have a larger error band than the specification error band for the same measurement.

The inaccuracies of the signal conditioner cannot be reduced by statistical methods due to the lack of test data. Likewise the inaccuracy of the PCM cannot be reduced due to the nature of its operation.

a. Actual calibrations are provided on the following parameters:

GC1201	BAT 1 CUR	GP1501P	APS FU PRESS
GC1202	BAT 2 CUR	GP1503P	APS OX PRESS
GC1203	BAT 3 CUR	G P2010P	APS TCP
GC1204	BAT 4 CUR	GQ3025P	DPS He REG PRESS
GC1207	BAT L CUR	GQ3603Q	DPS FU 1 QTY
GF3582P	ASC 1 0, PRESS	GQ3604Q	DPS FU 2 QTY
GF3584P	DES O PRESS	GQ4103Q	DPS OX 1 QTY
GF4501P	DES HO PRESS	GQ4104Q	DPS OX 2 QTY
GF4502P	ASC 1 HO PRESS	GQ3611P	DPS FU PRESS
GF4503P	ASC 2 HO PRESS	GQ4111P	DPS OX PRESS
GF 9997U	GLY FUMP PRESS	GR2201P	A FU MFLD PRESS
GF9998U	GLY TEMP	GR2202P	B FU MFLD PRESS
GPOOOLP	APS He 1 PRESS	GR3201P	A OX MFLD PRESS
G POOO2P	APS He 2 PRESS	GR3202P	B OX MFLD PRESS
G P0025P	APS He REG PRESS		

P-11

SB NO. ECS 6-1

S/C: DATE: REV: ORIGINATOR: APPROVAL:

T.M 11-1-71 PCN-11

TITLE: CO, BUILDUP

REFERENCES: A. Atmosphere In Space Cabins and Closed Environments, Karl Kammermeyer, 1966

- B. GAEC FMEA LED-550-37B, March 21, 1966
- C. GAEC LED-360-318, October 13, 1967
- D. MPAD Memo 68-FM74-464, Lunar Module CO2 Study
- BACKGROUND: A. Toxic gases are normally present only in small amounts and represent both a nuisance and a potential hazard in long-time exposure. The removal of CO₂, which is the most lethal of these toxic gases, may be accomplished by the following methods:
 - 1. Algae systems, which are presently in the developmental stage.
 - 2. Gaseous diffusion, for which the power and area requirements still appear excessive.
 - Regenerable absorbents, which are suitable for medium-duration flights using space vacuum for regeneration of absorbent.
 - 4. Absorption, which for short flights is the best available method.

B. The latter method, using lithium hydroxide as the absorbent, is the system used in LM spacecraft. It can be shown mathematically that when a steady-state has been achieved, and the rate of contaminant disposal is equal to the rate of contaminant generation, the cabin will accumulate a contaminant concentration given in parts-per-million (PPM) by

$PPM = (10^6) (\mathbf{R}_G/R_L) (M_M/M_C)$

where R_{G} is the contaminant generation rate in pounds-per-hour, R_{L} the rate of gas mixture leakage to space, M_{M} the mixture molecular weight, and M_{C} the contaminant molecular weight. Thus when the leakage rate is sufficiently high with respect to the contaminant generation rate, a low concentration of contaminant is sustained.

C. Although the primary purpose of the lithium hydroxide is to remove the carbon dioxide produced within the spacecraft, it is also effective in absorbing certain acid gases present in trace quantities. In operation, the cabin and/or suit atmosphere is circulated through a bed of solid, anhydrous lithium hydroxide granules, where the carbon dioxide is chemisorbed:

$CO_2 + 2 \text{ LiOH} = \text{Li}_2 CO_3 + H_2O$

Lithium hydroxide has a capabity in most applications approaching the stoichemetric value of 0.917 pounds of carbon dioxide per pound of lithium hydroxide. Once its capacity has been attained, however, it cannot be regenerated practicably. Activated charcoal is used in the cartridges to remove those toxic gases and odors not removed by either leakage or the lithium hydroxide. Many such contaminants are removed by physical absorption on the extended surface of the charcoal.

- D. The LM has three large cartridges and seven smaller cartridges. Filtering provisions are provided to P-11 prevent the escape of LiOH and/or activated charcoal. Both cartridges are similar in construction and operation; however, the larger contains approximately 5.2 pounds of LiOH and 0.5 pounds of charcoal providing 41 man-hours before requiring replacement. The smaller cartridge contains 3 pounds of LiOH and 0.3 pounds of activated charcoal providing a maximum endurance of 16 man-hours at 520 Btu per man-hour when used in the LM vehicle. There is a non-linear relationship between the lifetimes of the PLSS cartridges since they operate at different temperatures when used in the PLSS versus when used in the LM. The lifetime versus maximum operating temperature. The LM canister operates at approximately 30°F below the PLSS canister. The cartridges cansist of a perforated inner tube, surrounded by concentric layers of activated charcoal, screening, lithium hydroxide, and orlon felt. The gas enters the cartridge at the end of the perforated tube which passes through the center of the cartridge. The gas flows radially through the holes in the tube, passes over the bed of activated charcoal, through a screen, the lithium hydroxide, orlon felt, and out of the assembly via elongated slots cut in the outer shell.
- E. For average metabolic loads, CO₂ builds up at a rate of 5.0 mmHg per hour. The crew can tolerate P-11 19 mmHg for periods up to approximately 3 hours. The normal CO₂ level is maintained at <7.6 mmHg.</p>

SB NO. ECS 6-1 PCN-11

Under normal metabolic load (500/700 Btu), the CO_2 meter should read almost zero for approximately 10 hours. The reading will then exponentially increase until reaching 7.6 mmHg, at which time the canister should be changed. In comparison, the stressed $\rm CO_2$ level is 7.6 to 15 mmHg, and the emergency CO, level is approximately 40 mmHg. The effect of a high CO, level is to suppress the respiration control centers in the brain such that the crewmen will pass out and subsequently stop breathing.

DETECTION:

MALFUNCTION The indications provided for $\rm CO_2$ buildup detection are the $\rm CO_2$ component caution light and $\rm CO_2$ partial pressure indicator. The latter readout is telemetered as GF1521P. In addition, there is an input to Caution and Warning which will trigger the ECS caution light when the level of CO, is 5.3 to 12.6 mmHg @ 3.7 psia and 4.2 to 9.2 mmHg @ 5.0 psia.

ACTION:

CORRECTIVE In the event a high level of CO₂ is indicated, the crewmen should go to "SEC" position on the canister select handle. This will allow uninterrupted suit flow while the large canister is replaced. Following replacement, the handle is returned to the "PRIM" position. Evidence that this procedure has decreased the CO₂ level is by visual observation of the extinguished Caution and Warning light and the component caution light. Also, the meter reading will have returned to zero.

MISSION IMPACT: A. In the event the procedure is successful, there is a negative mission impact; however, if unsuccessful, it is advised that the mission be terminated due to the possibility of loss of the crew.

B. As a last resort, crew members could remove their helmets and "breath the cabin down." It takes approximately 4 hours to build up to a 20 mmHg level after a cabin "blowdown."

P-11

ECS 6-2

TTTLE:

SB NO.

TORN SUIT PROTECTION

REFERENCES:

BACKGROUND:

Α. The LM ECS provides for protection of the crew in the event of an unexpected cabin, suit loop (ARS), or PGA depressurization. The torn suit protection section of the ECS is a completely automatic system once the necessary valves and circuit breakers are configured properly. With the descent stage attached and at least 540 psia in the descent oxygen tank, corresponding to approximately 20 percent (10 pounds) O_2 quantity, the cabin will be repressurized within 90 seconds. Due to the very small total ascent 0, quantity available (approximately 4.4 pounds), : P-5 this latter feature is not provided during ascent stage operation.

S/C: LM DATE:

REV:

APPROVAL:

ORIGINATOR:

11-1-71

. Patin

P-3

P-5

P-5

P-3

P-5

P-5

P-5

PCN-11

в. The following table depicts the valve and circuit breaker configuration for staged and unstaged torn suit protection. It assumes both hatches are closed.

	UNSTAGED	STAGED	
DES 02 shutoff vlv	OPEN	CLOSE	
CABIN REPRESS vlv	AUTO	CLOSE	
CABIN REPRESS cb	CLOSE	CLOSE	. P
SUIT/FLOW CONT cb	CLOSE	CLOSE	

C. Reference Figure 1 for the electrical schematic demonstrating this automatic circuitry.

D UNSTAGED OPERATION - "CABIN PRESSURIZED"

If the ECS is configured to the cabin mode and cabin pressure drops below 4.07 ± 0.37 psia (these and other figures below are spec bands; individual vehicles may vary slightly), any 2 of 3 baro switches closing will provide a ground path for the CABIN REPRESS valve automatic solenoid operation. The solenoid opens the valve allowing 0_2 at 900 \pm 25 psia into the cabin at approximately 4 pounds per minute. This flow will stop automatically when the cabin pressure rises above 4.70 ± 0.30 psia or the CABIN REPRESS C/B is opened. In addition, the CABIN warning light will illuminate and the SUIT DIVERTER valve will move to the EGRESS position. Should the leak be of a magnitude that the suit loop pressure drops below 2.9 psia, the actions described below will occur.

- UNSTAGED OPERATION "CABIN DEPRESSURIZED" E.
 - This assumes the hatches are closed, the cabin is depressurized, the CABIN REPRESS valve is 1. closed and the CABIN REPRESS C/B is open. P-5
 - 2. If the suit loop pressure as sensed by the suit loop pressure switch, which is a 2-of-3 voting logic aneroid switch, falls below 2.9 psia, the SUIT ISOLATION valve solenoids are energized thereby allowing the SUIT ISOLATION valve solenoids to actuate and return to the SUIT DISC position, isolating both suits from the suit loop.
 - If the PGA's are isolated from the suit loop (assuming the crew is suited), the cognizant crewman should immediately configure for cabin mode by depressing the CABIN REPRESS circuit breaker. In addition, there will be about 1 minute to reconfigure the SUIT ISOLATION valve P-5 to regain 0, flow before CO, level in the helmet builds to dangerous levels.

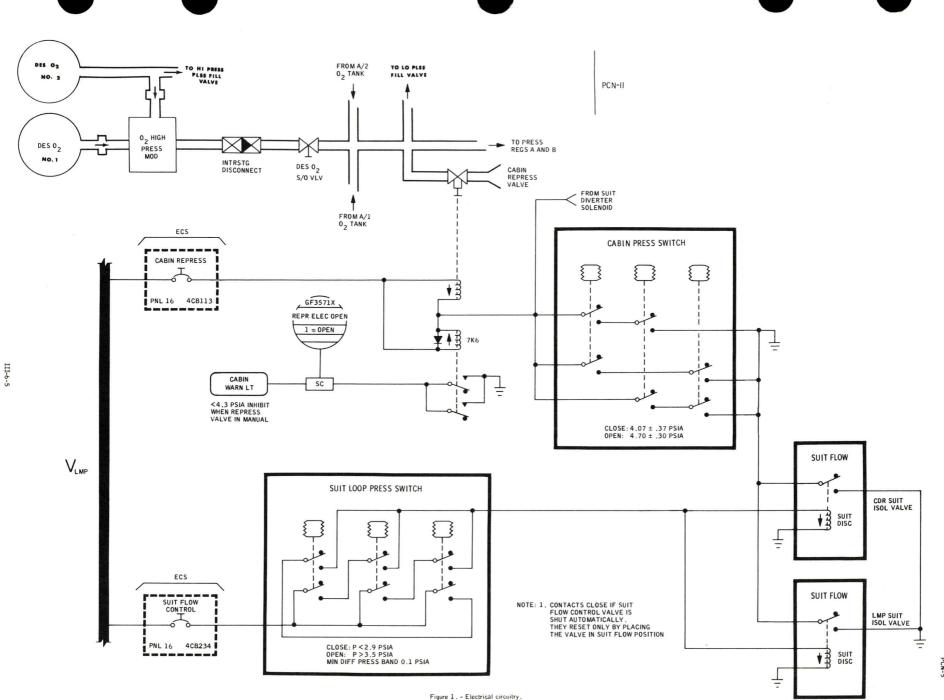
STAGED OPERATION

Staged operation is identical to unstaged operation except the CABIN REPRESS valve is manually P-5 closed such that no repressurization can occur.

MALFUNCTION DETECTION:

The circuitry is all automatic and triggers on cabin pressure below 4.07 ± 0.37 psia. The CABIN and/or SUIT/FAN warning lights will illuminate to indicate this malfunction.

MISSION IMPACT


- There are several single-point failures which could cause actuation of this circuitry: Α. 1. Temporary cabin leak
 - Temporary suit loop/PGA leak 2.
 - Cabin puncture 3.

SB. ECS 6-2 PCN-5 ÷

- 4. Suit loop puncture (depressurized cabin)
- 5. Torn PGA (depressurized cabin)
- B. Failures 1 and 2 will not compromise the mission. Failures 3, 4, and 5 would compromise the mission.

CORRECTIVE ACTION:

Corrective action is dependent on the failure mode. Reference ECS 2, 2a, and 4, AOH malfunction procedures for specific procedures.

SB NO. ECS 6-3

S/C: LM DATE: 10/24/69 REV: PCN-3 ORIGINATOR: F. Frere APPROVAL: Original funded

TITLE: WATER SUBLIMATOR/EVAPORATOR

REFERENCE: HSER 2997 Porous-Plate Water Boiler Design Study, Phase II Report, May 25, 1964

BACKGROUND: A. The LM ECS uses a porous-plate sublimator as the heat sink for the glycol loop. The porous-plate sublimator cools the glycol through the sublimation of ice and/or the evaporation of water.

> B. The sublimator is constructed of four center sections and two end sections. A center section is sandwich construction which consists of a porous plate, a finned water passage, a finned glycol passage, another finned water passage, and another porous plate. The water side is separated from the glycol passage by a metal plate but is exposed to the vacuum of space through the porous plate. An end section is similar to a center section except that there is only one porous plate and one water passage.

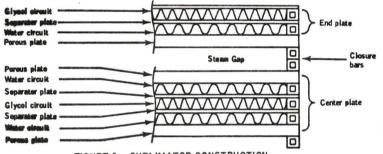


FIGURE 1 - SUBLIMATOR CONSTRUCTION

- C. The thermodynamic cycle of the sublimation/evaporation process is based upon the fact that the water is exposed to an environment where the pressure drops below the "triple point" pressure (defined as the combination of pressure and temperature which permits the existence of all three states - liquid, solid, and gas -- of a substance simultaneously). See Figure 2. For water, the triple point pressure is 0.0885 psia, and temperature is 32°F. To properly treat the thermodynamic cycle, we must define the property of water called enthalpy. For our purposes, it may be defined as the inherent heat energy of a pound of water; the pound is chosen as a unit since we are to speak in terms of Btu's. The enthalpy of water in various states is given below:
 - 1. Enthalpy of water at $32^{\circ}F$, 0.0885 psia = h_p = 0.00 Btu
 - 2. Enthalpy of water at $67^{\circ}F$, 5 psia = h_{f1} = 35 Btu
 - 3. Enthalpy of ice at 32° F, 0.0885 psia = h_{fi} = -143 Btu
 - 4. Enthalpy of steam at 32° F, 0.0885 psia = $h_{fs} = 1075$ Btu
- D. There are several factors which influence the mechanism of the heat removal process: sublimator heat load, porous-plate hole size, vapor pressure drop across the porous plate, and water pressure on the inlet side of the plate (2.5 to 8.5 psia). Let us assume that all these factors are properly balanced for normal operation. Since the porous plate has holes of varying sizes, it has been found that under medium or high heat loads, the sublimator will operate in both the sublimative and the evaporative modes. Therefore, there are two mechanisms in operation to remove heat. To properly define the operation, boundary conditions are established as follows:
 - 1. Water at inlet to sublimator is 67°F, 5 psia.
 - 2. Ice at porous plate is 32°F.
 - 3. Steam exhausted at vacuum side of porous plate is 32°F.
 - 4. Water at porous plate is 32°F, 0.0885 psia.
- E. Observing that the enthalpy of steam is 1075 Btu, the question is where did the energy originate? The only sources, excluding external structural heat, is from the water itself and the glycol. Assuming the evaporation mode to be in effect, we must first decrease the temperature of the incoming water to $32^{\circ}F$. This requires the removal of some 35 Btu ($h_{fl} h_{f}$) from the water. The hot glycol therefore

P-3

must provide another 1040 Btu which is sufficient when added to the 35 Btu from the incoming water to change the water at 32°F, 0.0885 psia, to steam at the same temperature and pressure $(h_{fs} - h_f = 1075 \text{ Btu})$. Now, assuming the sublimation mode is in effect, we will arrive at the same conclusion but by a more torturous route. Again we begin with water at 67°F, 5 psia, and reduce it to $32^{\circ}F$, 5 psia, for a net heat transfer of 35 Btu $(h_{f1} - h_f)$. Next, there is another transfer of heat energy as the water changes state to ice of 143 Btu $(h_{p} - h_{pi})$. Since we are postulating a sublimation mode, all the previous discussion has taken place on the pressurized side of the ice layer. On the vacuum side of the ice layer, we are faced with the problem of adding 1218 Btu $(h_{fs} - h_{fi})$ to the ice to change it to steam. We have available the 178 Btu resulting from the previously discussed changes and, again, 1040 Btu from the glycol loop is required. Therefore, regardless of the mode of operation, that is, sublimation or evaporation, the efficiency is about the same. That is, 1 pound of water will remove approximately 1040 Btu from the glycol loop.

- F. There are two possible failure modes of the sublimator: freezeup and breakthrough. The former is basically a result of too low a heat load (<800 Btu on the LM primary, and 755 Btu on the secondary). The latter may result from either too great a water feed pressure, too high a heat load, too high a pressure on the steam vent side, or too high a water flow at startup. Assuming no mechanical failures, these are rather remote possibilities with the present hardware.
- G. A related failure which produces similar results is loss of water feed. This may be caused by:
 - 1. A primary regulator failing closed
 - 2. A leak in the water system
 - 3. The water feedlines becoming blocked
 - 4. The water regulator reference pressure (suit loop) dropping to a value <1.5 psia.
- H. Sublimator Operations
 - 1. Initial Conditions:

a.	Suit Temp	65 - 70 deg
b.	Glycol Temp	69 deg
с.	W/B H ₂ O Temp	65 - 70 deg
d.	PRI W/B GLY IN Temp	68 - 70 deg
e.	PRI W/B GLY OUT Temp	68 - 70 deg
f.	PRI H ₂ O REG	ΔP - off scale high

- 2. Activation
 - a. Initial indication of PRI FLOW NO. 1 to "Open"; PRI, $\rm H_{2}O$ REG ΔP drops from OFF scale high to OFF scale low for 30 seconds, at which time it should return to 0.75 \pm .25 psi. If this indication goes off scale high again and remains there for > 120 seconds, the primary regulators have failed open.
- 3. Postactivation
 - a. PRI W/B Glycol Inlet Temp increase to 74°
 - b. PRI W/B Glycol Outlet Temp decrease to $36^{\circ} 42^{\circ}$ c. Glycol Temp 40° - 46°
 - d. Suit Temp 48° - 52° 67° - 71° e. W/B H_O Temp

DETECTION:

MALFUNCTION A. A frozen sublimator may crack and result in loss of glycol. Should this occur, the result will be reflected in a glycol low discrete and a drop in pump pressure and ΔP .

B. A sublimator experiencing breakthrough will manifest itself in a high water usage rate and an oscillation in glycol temperature. The cyclical nature of the temperature is a function of the causation factors and may have cycles as short as 3 minutes or as long as 20 minutes. Occasionally, the sublimator will appear to recover and the oscillations will dampen but it is unrealistic to assume the problem has disappeared if the causation factors have not been removed.

C. Loss of water feed can be detected by an otherwise unexplained rise in glycol temperature accompanied by a rise in primary sublimator water temperature and perhaps a drop in $\rm H_2O~\Delta P$. Loss of the reference pressure will result in at least severely restricted water feed to the sublimator.

MISSION Loss of the primary loop, worst case. Rapid depletion of consumables may be experienced if IMPACT: breakthrough should occur.

CORRECTIVE ACTION: A frozen water sublimator is difficult to detect with present instrumentation. Therefore, little can be done to correct it; however, if sufficient heat load is maintained, there is little probability of this failure.

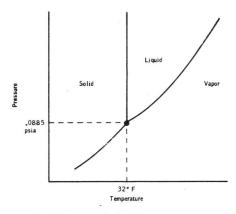


FIGURE 2.- EQUILIBRIUM PHASE DIAGRAM FOR WATER.

This SB deleted by PCN-8

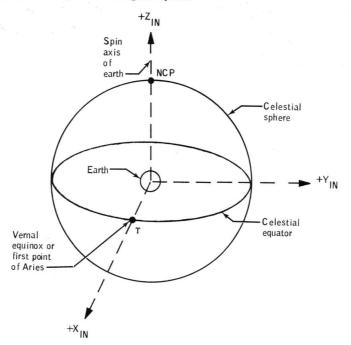
111-6-9 through 111-6-13

SB NO. PGNS 7-1

s/c:	LM
DATE :	3/27/69
REV:	Original
ORIGINATOR:	B. Durand
APPROVAL:	H.a. John

COORDINATE SYSTEMS

REFERENCES:


TITLE:

BACKGROUND: In general the IM attitude is determined by reference to the inertial platform (stable member), which in turn may be aligned or referenced to one of several available coordinate systems. The IM attitude is displayed to the astronaut by the "8 Ball" which is mechanized to use a unique coordinate system called the FDAI coordinate system. Since the astronaut normally reads 8-ball coordinates, ground processing is also implemented to display spacecraft attitudes in the FDAI 8-ball coordinates. The following will define the method for interpreting the FDAI coordinate system and its application to the various other coordinate systems.

A. Introduction and Earth-Centered Coordinate System

 In order for the LGC to continually and accurately update the spacecraft state vector it must have an original position and an original velocity vector, and then keep track of the changes in these vectors via the changes in the IMU resolver and PIPA readings. To facilitate this "tracking" procedure the computer resolves all vectors into one coordinate system - the earth-centered coordinate system which is shown in Figure 1 and defined as follows:

The Z-axis of this system is parallel to the spin axis of the earth and is positive in the direction from the center of the earth to the north celestial pole on the celestial sphere. The X-axis lies in the plane defined by the celestial equator and is positive in the direction from the center of the earth to the first point of Aries on the celestial sphere. The Y-axis also lies in the plane of the celestial equator and completes the right-hand orthogonal system.

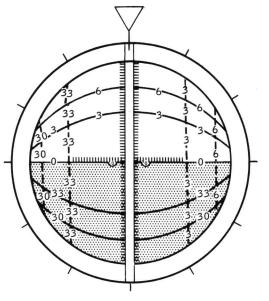


FIGURE 1 - EARTH-CENTERED COORDINATE SYSTEM

- Now, no matter which orientation the IMU stable member axes are aligned or referenced to nominal, preferred, landing site, or any other "known" orientation - a vector in stable member coordinates can be transformed into a vector in reference coordinates via REFSMMAT (the reference to stable member transformation matrix).
- B. Spacecraft Coordinate System

In this system the X-axis is defined by the line joining the point formed by the crossed diagonals of the landing pads (gear extended) and the center point of the docking hatch, positive up. The Z-axis extends perpendicular from the X-axis through the center point of the forward hatch, positive forward. The +Y-axis completes the right-hand orthogonal system.

- C. FDAI Coordinate System and Method for Interpreting the FDAI Total Attitude
 - The FDAI coordinate system may be better understood by considering that the three angles in this system are constrained by the manner in which the 8 ball is mechanized. Figure 2 shows the front and back of the 8 ball.

Front

Back

FIGURE 2 - EIGHT BALL

As can be seen from the above figure, the 8-ball yaw angle is limited to ±90 degrees (270 degrees < yaw < 90 degrees). The amount of roll is indicated by the position of the roll bug.

- 2. The FDAI coordinate system has three uses:
 - a. Displays the spacecraft attitude with respect to the IMU stable member axes,
 - b. Displays the spacecraft attitude with respect to a local horizontal/local vertical reference system,
 - c. Communicates to the astronaut a desired orientation or line-of-sight with respect to the present spacecraft orientation (Body Coordinate System).

If the IMU is aligned to some specific orientation, such as nominal, preferred, or landing site (i.e., the IMU stable member axes are parallel to the specific coordinate system axes), then the FDAI will display the spacecraft attitude with respect to that coordinate system. If the IMU is aligned to a "known" but not specific orientation (i.e., REFSMMAT), then the FDAI merely displays the spacecraft attitude with respect to the stable member. If ORDEAL is in operation, then the FDAI displays the spacecraft attitude with respect to a rotating local horizontal/local vertical coordinate system.

3. The astronaut may interpret the FDAI angles in the following manner: Consider himself to be in the center of a sphere and pointing the +Z spacecraft axis at a point on the sphere defined by the three FDAI angles. When pointing at the 0,0,0 point of the sphere, 90 degrees pitch is straight up and

Ш-7-2

270 degrees straight down, 90 degrees yaw directly right and 270 degrees directly left, and positive roll clockwise. Although only two parameters are necessary to define a point on a sphere, a third parameter is necessary to define rotation about the line joining the center of the sphere and a point on its surface. From the 0,00 orientation, a plus vehicle yaw (left) will cause the 8-ball to move right as viewed by the astronaut; a plus vehicle pitch (up) will cause the ball to move down; a plus vehicle roll (clockwise) will cause the ball (and the roll bug) to rotate counterclockwise. In the latter cases, the 8-ball readings will increase from 0 through 90 and 270 to 360 degrees from 0 through 315 to 270 degrees. At this point the ball will quiver momentarily, and the roll bug will flip to the 180-degree position. The yaw readings will now increase from 270 through 0 up to 90 degrees and the pitch reading, since we are now on the back side of the ball, will read 180 degrees. At the 90-degree yaw reading (270 degrees of vehicle plus yaw) the roll bug will flip back up to the 0-degree position, and the yaw will decrease drow through 45 to 0 degrees and the pitch reading, since we are gain on the front of the ball, will be 0 degrees.

- D. Four coordinate systems to which the IMU stable member axes can be aligned are:
 - 1. Nominal

In this system the IMU stable member axes are aligned as follows:

$$\begin{aligned} &+ X_{\text{SM}} = \text{Unit } (\mathbb{R}) \\ &+ Y_{\text{SM}} = \text{Unit } (\overline{\mathbb{V}} \times \overline{\mathbb{R}}) \\ &+ Z_{\text{SM}} = \text{Unit } (\overline{X}_{\text{SM}} \times Y_{\text{SM}}) \end{aligned}$$

Where \overline{R} = the geocentric (earth orbit) or selenocentric (lunar orbit) radius vector at time T (align) selected by the astronaut, and \overline{V} = the velocity vector at time T (align). This orientation may be chosen by the astronaut for any in-plane burn and facilitates the monitoring of the FDAI Total Attitude Display (e.g., a 0,0,0 reading) and the avoidance of possible gimbal lock during that burn.

2. Preferred

This system is used with the IMU aligned to an orientation calculated and stored by a previously selected program. This is an optimum orientation for any particular maneuver considering the avoidance of gimbal lock and ease of monitoring the FDAI angles.

3. Landing Site

In this system the IMU stable member axes are aligned as follows:

$$\begin{aligned} &+ \mathbf{X}_{\mathrm{SM}} = \text{Unit} (\overline{\mathbf{R}}_{\mathrm{LS}}) \\ &+ \mathbf{Y}_{\mathrm{SM}} = \text{Unit} (\overline{\mathbf{Z}}_{\mathrm{SM}} \times \overline{\mathbf{X}}_{\mathrm{SM}}) \\ &+ \mathbf{Z}_{\mathrm{SM}} = \text{Unit} (\overline{\mathbf{H}}_{\mathrm{CSM}} \times \overline{\mathbf{X}}_{\mathrm{SM}}) \end{aligned}$$

Where the origin is the center of the moon, \overline{R}_{LS} = the position vector of the LM on the lunar surface at a landing site and a time T (align) selected by the crew, and \overline{H}_{CSM} = the angular momentum vector of the CSM ($\overline{R}_{CSM} \times \overline{V}_{CSM}$) at time T (align). This system will give the crew FDAI angles of 0,0,0 at the time of touchdown when T (align) is equal to T (land).

4. REFSMMAT

The IMU stable member axes are initially aligned to an arbitrary orientation, and then this orientation with respect to the celestial sphere is determined by star sightings and a REFSMMAT computed (if the IMU stable member axes are parallel to the earth-centered coordinate system axes then REFSMMAT will be a unity matrix). This arbitrary orientation will thereafter be called the REFSMMAT orientation. Thus, any "known" orientation is a REFSMMAT orientation, and the nominal, preferred, and landing site orientations of the IMU stable member are special cases of a REFSMMAT orientation.

E. Local Horizontal/Local Vertical Coordinate System

The X-axis of this system is defined by the line joining the center of the earth (or moon) and the vehicle, and is positive in the direction from the earth or moon center up through the vehicle. The Z-axis is perpendicular to the X-axis, lies in the orbital plane, and is positive in the direction of the vehicle velocity. The Y-axis completes the right-hand orthogonal system. When in circular orbit and using ORDEAL (orbital rate display, earth and lunar), a pitch rate will be input to the FDAI 8 ball to compensate for the pitch rate due to the orbit (thus providing the astronaut with a local horizontal reference). The ORDEAL is used after obtaining the IM attitude with respect to the local horizontal from the LGC, and then slewing the selected FDAI to this angle.

F. Body Coordinate System

This coordinate system is used to convey directions relative to an instantaneous spacecraft position (e.g., to tell the astronaut where to look to see the CSM). The angles given to the astronaut are in terms of an FDAI coordinate system coincident with the spacecraft axes. The angles are always given in the sequence roll, pitch, yaw to define an external point with respect to the spacecraft. The astronaut will always consider himself to be in the center of the FDAI coordinate system sphere and pointing at the 0,00 point. For example, in order to communicate to the astronaut a point directly behind him (i.e., 180-degree vehicle yaw) we would give the angles 180, 180, 0 degrees (roll, pitch, yaw).

SB NO. PGNS 7-2

S/C:	LM
DATE:	11/1/71
REV:	PCN-11
ORIGINATOR:	J. Nelson
APPROVAL:	Harold a. Loden

P-11

TTTLE:

IRIG BIAS DRIFT

REFERENCES: A. MSC Internal Note No. 71-FC4-1

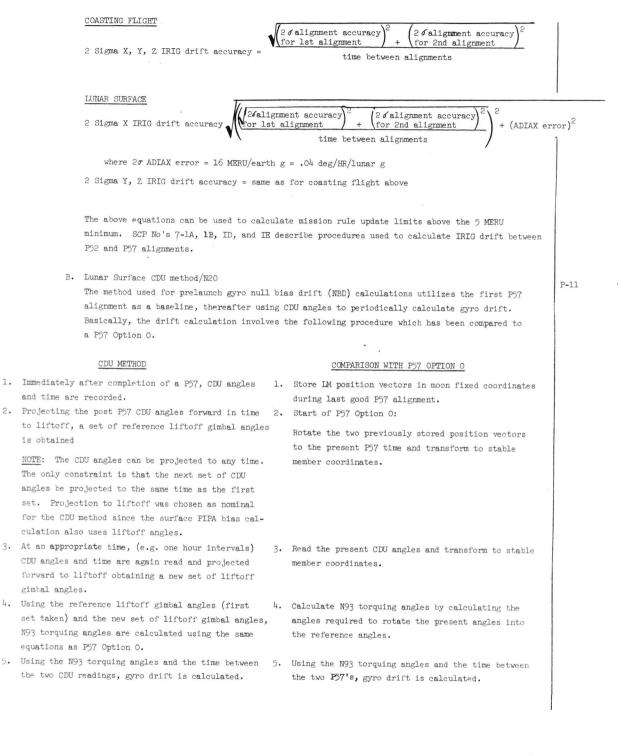
- B. AG 852-66-(MIT)
- C. EG41-32-68-87
- D. SODB, Vol II, Paragraoh 4.5.1
- E. MIT/IL Systems Test Group Memo No. 1220, Rev 1
- F. MIT/IL Systems Test Group Memo No. 1231, Rev A
- G. MIT/IL Systems Test Group Memo No. 1256

RACKGROUND: There are three primary types of gyro drift associated with the three X, Y, Z IRIG's (inertial reference integrating gyros). Two of the drifts are G sensitive; these are (1) IRIG acceleration sensitive drift along the input axis (ADIA), and (2) IRIG acceleration sensitive drift along the spin reference axis (ADSRA). The non-G sensitive drift is (3) normal bias drift (NED).

> ADIA and ADSRA cannot be measured in flight but are calculated prelaunch. ADIA, ADSRA, and NED bias compensation are applied to the IRIG's every 2 seconds during a burn as called by the Servicer program. Only NBD compensation is applied to the IRIG's during coast.

> Of primary concern to flight controllers is the non-G sensitive drift, NBD. NED shifts can be caused by restraint type torques, external magnetic fields, temperature, wear. and contamination or failure in peripheral electronics. Contamination and peripheral electronics problems will cause abrupt shifts in NBD.

NBD IRIG compensation is accomplished via routine SVCT3 every 81.93 seconds as called by waitlist control if FW2 bit 15 (IRIFTFLG) = 1. One gyro torquing pulse is equal to .617981 seconds of arc of rotation (.003 milliradians) at the gyro gimbal. It should be noted that the sign convention used to display the torquing commands (OGC and IGC) displayed to the astronaut in the gyro torquing routine R55 is opposite to that used for NBDX and NBDY. MGC and NBDZ are of the same sign convention. Therefore, the following equations should be used for calculations of new NBD values.


A discussion of the methods used for calculating gyro drift follows:

A. P52/P57 alignments

Two consecutive P52 or P57 alignments are the primary means for calculating Irig drift. Table 1 shows two sigma alignment accuracies for various alignment methods. Also included in Table 1 is the root sum square of alignment accuracies for two consecutive alignments of the same technique. The 2 sigma drift measurement accuracy for any two consecutive alignments can be calculated using the following equations:

P-11

SB PGNS 7-2 PCN-II

SB PGNS 7-2 PCN-II

Assuming no spacecraft movement, the primary error source of the CDU method is CDU granularity (.011 degrees). Table 2 contains drift measurement accuracies for various times between CDU readings. Y and Z axes drift accuracy is equal to the RSS of the 2 σ CDU granularity value (.022 deg) divided by the time between CDU readings. X axis drift accuracy is the RSS of the drift accuracy (as in Y and Z above) and the ADIAX 2 sigma accuracy (.04°/hr/lunar g).

The CDU method can be used on the surface anytime the IMU is aligned to a known reference. Its primary use is during launch prep between the P57 alignments. Care must be taken not to make drift measurements over periods that contain cabin depress/repress, crew egress/ingress or P57 alignment operations. The following sequence may be used for launch prep alignments 2 hours apart.

1. Read CDU angles and time immediately after 1st P57 and obtain 1st set of reference liftoff angles.

2. Wait until Z CDU angle changes or approximately 10 minutes and read a second set of CDU angles and obtain 2nd set of reference liftoff angles.

3. Thirty minutes after the P57, obtain a 3rd set of liftoff angles.

4. Use 1st and 3rd set of angles to get rough check on gyro drift.

5. One hour after the P57, obtain a 4th set of liftoff angles.

6. One hour and 10 minutes after the P57, obtain a 5th set of liftoff angles.

7. Use sets 1 & 4 and 2 & 5 to calculate two sets of drift values.

8. Average the above two sets to determine if a change in a gyro drift compensation term is required.

e P57 values verify the CDU

P-11

9. Use 2nd P57 N93 torquing angles to calculate drift. If the P57 values verify the CDU method values, update the LM computer with the CDU values. If the P57 values do not verify the CDU values the P57 values will be considered good and a new update will be made if necessary.

The present program was written primarily to support lunar surface operations. However, Part 2 of the program (reference SCP No. 7-1) can also be used to calculate IM torquing angles for a docked alignment. Basically, Part 2 calculates the amount of IM platform torquing (Noun 93 torquing angles) recuired to rotate one set of gimbal angles into another set of reference gimbal angles. In the docked align case, CSM CDU angles are the reference gimbal angles which are transferred to the IM coordinate system with the following equations:

OG = 300 + Docking Angle - CSMOG

IG = 180 + CSMIG

MG = 360 - CSMMG

The LM gimbal angles read at the same time as the CSM angles are the second set of inputs to the program. IM N93 torquing angles result. The capability is pointed out here to indicate that CONTROL can back up GUIDANCE in the business of docked alignments if the LM platform is to be aligned to the same REFSMMAT as the CSM. Also, it is possible to take CDU angles simultaneously from the CSM and LM downlinks and make rough docked drift checks without requiring crew participation.

SCP No. 7-1B describes the procedures used to calculate IRIG drift using the surface CDU method and the docked CDU method. Reference A contains the equations used in the CDU method.

SB PGNS 7-2 PCN-II

SIGHTING VECTORS	INSTRUMENT ¹	3 NOUN 05 ACCURACY ^A (DEG)	2 F ALIGNMENT A PER A (DEG)	XIS '		2 RSS OF THE ALIGNMENT ACCURACIES [®] FOR TWO CONSECUTIVE ALIGNMENTS OF THE SAME ALIGN TECHNIQUE (DEG)
STAR/STAR	AOT (INFLIGHT) AOT (SURFACE) COAS	.117 .103 .707	.119 .116 .422			.168 .164 .597
STAR/PLANET	AOT (INFLIGHT) AOT (SURFACE) COAS	•212 •205 •729	.148 .146 .431			.209 .206 .610
STAR/SUN	AOT (SURFACE)	.103 (.105)	.116 (.117)			.164 (.165)
STAR/EARTH	AOT (INFLIGHT)	.130 (.164) ^b (.132 to 1.384) ^c	.122 (.137) (.123	b to ,215) ^c		.173 (.194) ^b (.174 to .304) ^c
SUN/MOON	AOT (INFLIGHT)	.130 (.164 to 5.501) ^b (.132) ^c	.122 (.137 (.123)	ŧo •223) ^b		.173 (.194 to .316) ^b (.174) ^c
g/STAR	AOT (SURFACE)	•095	. <u>0</u> 82	.031 .	<u>z</u> 049	$\frac{X}{116}$ $\frac{Y}{044}$ $\frac{Z}{069}$
g/SUN	AOT (SURFACE)	.095 (.098)	.082 (.083)	.031 .	049	.116 (.117) .044 .069
g/PLANET	AOT (SURFACE)	.130	.093	.031 .	049	.132 .0144 .069
g/Z-BODY	AOT (SURFACE) ^d AOT (SURFACE) ^e	.218 .184	.195 .118		049 049	

FIGURE 1. LM NOUN 05 AND ALIGNMENT ACCURACY

^aThe numbers in parenthesis represent accuracies with onboard computed vectors when they differ from ground values. ^bEarth reference near lunar sphere-of-influence.

^CMoon reference near lunar sphere-of-influence.

 $^{\rm d}{}_{\rm for}$ alignment with landing stored azimuth.

e for alignment with stored azimuth that was updated from a two star alignment.

^fInflight AOT alignments may be either cursor/spiral or X/Y mark alignments.

TABLE 2 DRIFT ACCURACY USING C	U METHOT	1
--------------------------------	----------	---

DELTA		2 or DR	IFT MEASUF	EMENT ACCU	RACY	
TIME (HRS)	(D	EG/HR)			(MERU)	· · · · · · · · · · · · · · · · · · ·
	x	<u>¥</u>	<u>Z</u>	x	<u>¥</u>	<u>Z</u>
0.5	.073	.062	.062	4.92	4.14	4.14
0.75	.057	.041	.041	3.83	2.76	2.76
1.0	.050	.031	.031	3.37	2.07	2.07
1.5	.045	.020	.020	3.00	1.38	1.38
2.0	.043	.015	.015	2.86	1.03	1.03
2.5	.042	.012	.012	2.79	.83	.83
3.0	.041	.010	.010	2.75	.69	.69

This Page Deleted by PCN-11

SB NO. PGNS 7-3

ALGINATOR: J. Nelson APPROVAL: Marseld C. Jodin OPERATION OF THE PGNS FOR VARIOUS BATTERY BUS VOLTAGES TTTLE.

REFERENCES: 1. LIS-390-10002-PGNS Prime Power Requirements and Characteristics - GAEC

2. AG 133-68, Change to the 28V Failure Detection Leak (V-Fail), MIT/IL

3. EG 44-68-41, The Effects of Transient Low Voltage on G&N Operation and Performance, 2/5/68

4. AG 44-67, The Effects of Transient Low Voltage on G&N Operation and Performance, MIT/IL, 2/1/68

S/C: IM DATE:

ORTGINATOR:

REV: PCN-11

11/1/71

P-11

P-11

P-11

P-11

P-6

5. STG 1107, The Effects of Transient Low Voltage on G&N Operation and Performance, 1/31/68

- 6. AP-71-00251, Variations of X Accelerometer Characteristics vs + 28 VAC, 4/27/71
- 7. TR-039-1, Relay-Electric Magnetic Test, 2/3/66

FACKUROUND: The PGNS is known to exhibit different behavior with reduced S/C battery bus voltages. This brief describes the behavior due to constant low voltage and low voltage transients.

> Table I lists the various units and their bus voltage ranges where interface control documents (ICD) requirements are met.

		TABLE I	
PGN	15	EQUIPMENT VOLTAGE (From interface control documents)	BUS VOLTAGE
Inertial Subsystem:	IMU, PSA, CDU	Operate 23.5 to 32.5 Vdc	24.0 -> 32.5
Computer Subsystem:	DSKY, Computer	23.5 to 32.5 Vdc 20.3 + .3 Voltage Fail Detection	24.0 → 32.5

The inertial and computer subsystems are unaffected (in operation) by high voltages up to 34 Vdc. However, it is expected that some finite limit near 34 Vdc may exist where a sudden malfunction would occur rather than a slow degradation of operation. No testing beyond 34 Vdc has been reported.

The computer and display keyboard (DSKY) have a definite lower voltage where all effective action of the computer can be expected to be ceased. This is the level at which the voltage fail (Vfail) signal is generated within the computer. The Vfail signal is generated when the prime power decreases below 20.3 * + .3 volts. After Vfail is generated and persists for 146 to 258 microseconds, the caution and warning integrator in turn generates a "restart" signal. "Restart" then zeros or initializes a number of registers in the computer and resumes operation in a program near where it had left off after the voltage had gone above the Vfail limit. It also temporarily interrupts the DAP. This describes a single restart in the computer and is typical of a voltage transient. For the case where the voltage remains below the Vfail limit for a long time, the operation is slightly different. If the bus voltage continues to remain at the low level threshold of Vfail, the LGC will become locked in a "continual-restart" condition and will not be able to resume normal operation until the voltage rises above the Vfail limit.

Some level of safety margin still exists within the computer to assure that fixed and erasable memory cannot be altered in a random manner (reference MIT/IL memorandum AG 133-68). This margin is at a level somewhat below 16 Vdc of prime power.

*This value may vary depending upon LGC characteristics.

SB NO. PGNS 7-3 PCN-II

At the level of 17 VDC, the drop out point of the normally energized relay in the DSKY, which issues the LGC warning and the PTA inhibit, is being approached. If the level of dropout voltage of the relay and relay driver combination is reached, no operation, proper or otherwise, will allow the LGC warning to be removed until voltage is restored above 17 volts.

The inertial subsystem (IMU, PSA, and CDU's) is unaffected by voltage drops at the equipment interface to a lower limit of 23.5 volts (Ref. AP-71-00251). At lesser voltages, errors are induced in the PIPA's and IRIG's due to exceeding their operational limits. The bias shift and scale factor errors exhibited by the PIPA's are significant and could cause the PGNS to perform unsatisfactorily. The IRIG's, exhibit an uncompensated drift which would probably be acceptable for a reasonable short period of time. Although these characteristics would also appear in transient cases, it is expected that the PGNS would recover and be available as a prime system. One additional consideration for transient cases is the possibility of losing the IMU turn on relay. Tests have shown that the drop out voltage is approximately 3.1 Vdc with an average time delay of 9.1 milliseconds.

P-11

PAGES III-7-11THROUGH III-7-26a DELETED BY PCN-12

Ш-7-11THROUGH Ш-7-26а

SB NO. PGNS 7-8

S/C: LM DATE: 10/3/69 REV: PCN-3/New ORIGINATOR: B.A. Durand APPROVAL: **B.A. Schem**

TITLE: RANGE/RANGE RATE METER

REFERENCES:

Range Indicator Technical Analysis Report - March 1968 G.A.E.C. P.O. 3-63413 LSH (LM-5) Dwg 10.4.4 - Range/Range Rate Meter MIT GSOP R567, Section 5

DISCUSSION:

The range/range rate meter is a vertical scale indicator which displays on two motor driven tape scales either landing radar, rendezvous radar, LGC or AGS values for range and range rate (altitude or altitude rate).

A. <u>Method of Operation</u> - The meter has two sources of power, 28 Vdc (tape motor power) and 115 volt-400 Hz (logic power), which are applied to the meter via CB activation. To prevent the tape meter from random cycling during the turn ON/OFF sequence, the dc power must be applied after the ac power during power up, and prior to removal of the ac power during power down.

Selection of LR, RR, LGC or AGS data is accomplished by two switches located on panel 1, the RNG/ALT monitor switch and the MODE select switch. The RNG/ALT monitor switch accomplishes the switching of range/range rate or altitude/altitude rate signals to the meter. Selection of either type of signal via the RNG/ALT MON switch will illuminate the integral lighting at the top of the display to indicate the mode of operation, range/range rate or altitude/altitude rate. The RNG/RNG RT position of this switch routes RR data directly to the meter while the ALT/ALT RT position routes the information that is selected via the MODE select switch. This switch allows either LR, LGC or AGS altitude/altitude rate data to be displayed on the meter. Thus, there are a total of eight signals that can be introduced to the meter in four separate switched modes of operation depending upon crew choice. Figure 1 illustrates these modes. The following discussion defines each of the signals and the form in which they are sent to the meter electronics:

- RR Range: An 18-bit digital word which is equivalent to the raw range between the LM and CSM. The LSB of this word is worth 9.38 ft.
- RR Range Rate: A continuous pulse train with frequency proportional to the change in velocity between the LM and CSM along the LOS. The scale factor of this data is 19.9 pps/fps.
- 3. LR Altitude: A continuous pulse train with frequency proportional to the slant range from the LM along beam 4 of the LR antenna to the lunar surface. The scale factor of this data is 2.316 pps/ft for altitudes greater than 2500 ft and 11.583 pps/ft for an altitude less than 2500 ft.
- 4. LR Altitude Rate: A continuous pulse train with frequency proportional to the LM velocity with respect to the lunar surface along the antenna X-axis. (NOTE: In antenna position 1, the antenna X-axis is displaced 24° rearward from the LM body X-axis. In position 2, the antenna X-axis is coincident with the LM X-axis). The scale factor of this data is 19.439 pps/fps.
- 5. LGC Altitude: A 15-bit digital word with a value equivalent to the estimated local altitude above the lunar surface, which is the difference between the current position state vector and the magnitude of the landing-site radius. The magnitude of the LSB is 2.345 ft.
- LGC Altitude Rate: A 15-bit digital word equivalent to the LM's velocity along the local vertical direction as computed from LGC state vectors. The magnitude of the LSB is .5 ft/sec.
- AGS Altitude: A 15-bit digital word equal to the estimated local altitude above the lunar surface. The magnitude of the LSB is .2925 ft.
- AGS Altitude Rate: A 15-bit digital word equivalent to the LM's velocity along the local vertical direction. The magnitude of the LSB is 1/16 ft/sec.

III-7-27

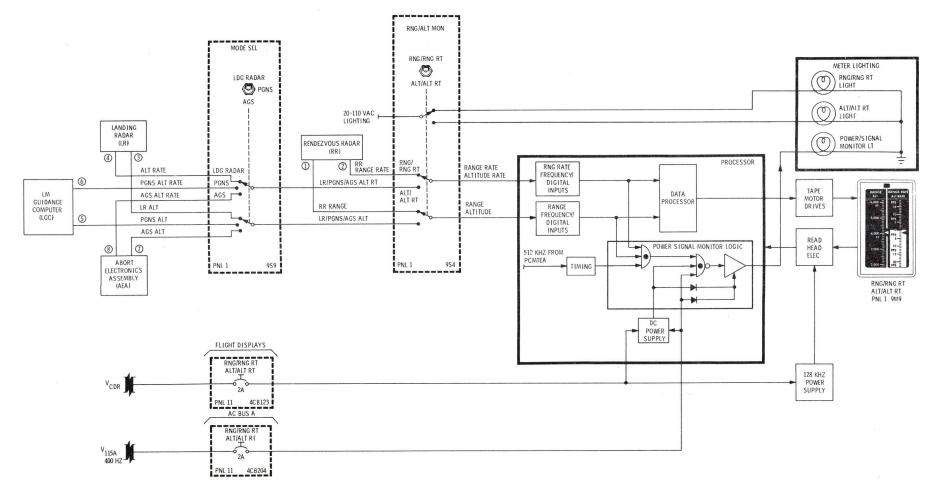


Figure 1. - Range/range rate meter switched modes of operation.

Ш-7-28

SB NO. 7-8 PCN-3/New

The information sent to the meter by either the radars, the LGC, or the AGS is displayed on two tape meters. One tape displays either range or altitude dependent upon the mode selected by the crew. The range/altitude tape is divided into three sections each graduated as follows: 1. 0 - 1000 ft with 5 ft graduations.

2. 1000 - 60,500 ft (10 n.mi) with 100 ft graduations.

3. 10 n.mi. - 405 n.mi. with 2 n.mi. increments.

One point of interest is the landing radar altitude readout on the tape meter. The input received from the LR is multiplied by the cos 15° within the meter to give the crew a more accurate indication of true altitude. It should also be noted that a comparison cannot be made between the LR and the computer values of altitude since from the previous definitions:

LV ALTITUDE (COMPUTED) # (LR SLANT RANGE) Cos 15°

Also, comparison of LR altitude on the meter with raw LR altitude on the DSKY (V16N66) will differ since:

LR SLANT RANGE (DSKY) ≠ (LR SLANT RANGE) Cos 15°

The second tape meter displays either range rate or altitude rate, depending upon the mode selected, and is divided into two halves:

 WHITE - 0 to 700 ft/sec, indicating an opening velocity located on the bottom half of the tape with 0 fps being the separation point.

2. BLACK - 0 to -700 ft/sec, indicating a closing velocity on the top half of the tape.

The graduations are consistant over the entire tape with a spacing of ± 1 ft/sec.

Care should be exercised in comparisons of LR data with computed velocity data. When the LR antenna is in position one, the LR altitude rate is the velocity sensed along the antenna X-axis, which is 24° offset from the vehicle X-axis, whereas the computed data is the velocity of the vehicle with respect to the local vertical. In antenna position two, the altitude rate is along the body X; however if the vehicle X-axis is not along the local vertical, there will not be an exact comparison between the two sources.

Internal to the meter is a power failure circuit which will indicate to the crew that a malfunction has occurred either in the meter or at its interface. This circuit continuously monitors for one set of input data as well as the AC and DC voltage inputs. In addition, the circuit monitors the presence of a 512 kc signal (G.A.E.C.) that is used in the circuitry to detect loss of data at the input registers of the meter. Loss of any of these inputs causes a red light to be illuminated at the top of the meter. The internal logic of the circuit is designed to detect a delay greater than 700 milliseconds between the processing of successive groups of information. The duration of the illuminated light is dependent upon the time in excess of the 700 millisecond threshold. Loss of any input (data, power, sync) will cause the light to illuminate indefinitely due to this circuit. One feature of the circuit is worthy of notice. At low values of range rate/ altitude rate from the radars (0 to \pm 5 ft/sec), the fail light will begin to flash with increasing frequency until zero rate is input; then the light will stay illuminated.

B. <u>Theory of Operation</u> - The meter is basically a zero-nulling digital servo system. Input information arrives at the meter input in two forms: digital (e.g., 15-bit binary word) or continuous pulse train (frequency dependent). This information is scaled and processed as digital information into a holding register which is updated with new data every 100 milliseconds. Every 4 milliseconds, the hold register is read of its contents by a comparator which compares this input with the present value displayed on the tape meter. The difference in these two values is sent to the tape stepmotor which either increments or decrements. The tape, which has a metallic binary code on its backside (equivalent to the readings on the front side), is read by a capacitive sensing readhead. This reading is converted to a digital word and sent to the comparator. When the reading is equivalent to the value received from the hold register, the drive signal to the tape is nulled and the tape displays the required reading.

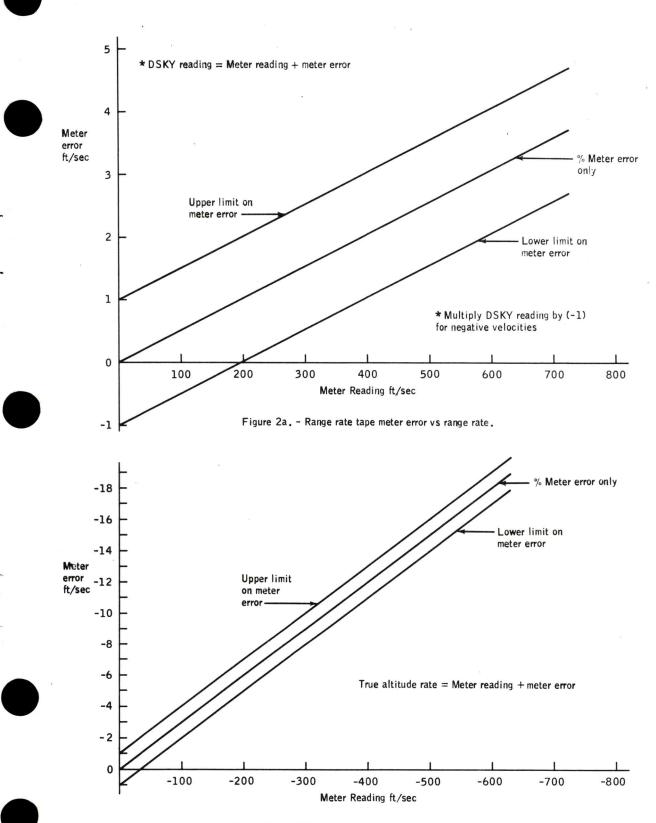
C. <u>Accuracy</u> - The following discussions are intended to describe the accuracy of the tape meter as compared to the true value and to a comparable DSKY readout of the identical parameter:

 RR Range - As mentioned previously the range tape meter is divided into three sections each with different graduations. In addition, the meter drops off a number of low order bits from the input word depending upon the magnitude of the range. The effect of this action is to change the scale factor at discrete values of range/altitude. The following table illustrates the accuracy for each range with the total error (RSS) taking into account the reading error:

Range	LSB	Reading Error	RSS Error
0 - 900.5 ft	9.38 ft	+2.5 ft	<u>+</u> 9.7 ft
900.5 - 1000 ft	18.76 ft	<u>+</u> 2.5 ft	<u>+</u> 19 ft
1000 - 1200.64 ft	18.76 ft	<u>+</u> 50 ft	<u>+</u> 53.2 ft
1200.64 - 38420.5 ft	37.52 ft	<u>+</u> 50 ft	<u>+62.5</u> ft
38420.5 - 57630.7 ft	300.16 ft	<u>+</u> 50 ft	<u>+</u> 305 ft
57630.7 - 60500 ft (10 n.mi.)	1200.60 ft	<u>+</u> 50 ft	<u>+</u> 1201 ft
10 - 12.64 n.mi.	1200.64 ft	<u>+</u> 1 n.mi.	<u>+</u> 1.01 n.mi.
12.64 - 404.4 n.mi.	2401.28 ft	<u>+</u> l n.mi.	<u>+</u> 1.07 n.mi.

The RR range readouts of the meter will differ from those readout on the DSKY (RO4) display. The basic reason for this is the scale factor differences between the LGC and the meter. The data sent to the LGC has a bit weight of 9.38 ft for ranges less than 50.58 n.mi. and 75.08 ft/bit for greater ranges. Thus the data displayed on the DSKY is more accurate in all cases as listed above.

2. LR Range - The LR data sent to the meter is scaled at 2.316 pps/ft above 2500 ft and at 11.583 pps/ft below this altitude. The range meter however utilizes a scale factor of 2.32 pps/ft and 11.6 pps/ft which introduces an error of .2% and .15% respectively with the meter reading low. In addition to the round off error, the altitude tape meter is truncated in the same manner as illustrated for the RR Range with the exception of the first range. At 0-900.5 ft., the LSB is worth 2.345 ft. The error inherent in these readings as compared with DSKY readings will be masked by the multiplication factor .96 (cos 15°) that is performed within the meter. Thus the meter would read low by:


(LR ALTITUDE) (Cos 15°) - (LR ALTITUDE) (.002)

- 3. RR Range Rate The meter receives RR data scaled at 19.9 pps/fps and applies a scale factor of 20.0 pps/fps. This introduces an error of 0.5% low from both the true value and the comparable DSKY readout (R04). In addition, the tape motor steps at intervals of .5 ft/sec, and readout inaccuracy is <u>+</u>.5 ft/sec. The sum of these errors as a function of range rate is shown in Figure 2a.
- 4. LR Altitude Rate As with the RR range rate, a round off error occurs at the interface of the tape meter. The input scaled at -19.41 pps/fps is read as -20 pps/fps giving an error of 2.95% low at every value of altitude rate. As with range rate the meter has an inherent error of <u>+</u>1 fps. Figure 2b illustrates the meter accuracy with respect to altitude rate.

There are also a few cases when the tape meter data must be interpreted based on a knowledge of the relative position and velocity of the CSM with respect to the LM:

- a. If range should increase beyond 405 n.mi., the tape will recycle and start at zero; thus a reading of 5 n.mi. is equal to a true value of 410 n.mi.
- b. If range rate should increase beyond 700 fps, the tape meter will remain static until the range rate exceeds 1000 fps. The tape will then return to zero and start over. Thus a reading of 100 fps would be equivalent to 1100 fps (2,100, 3,100, or 4,100 fps would also be possible).
- c. If digital data should become lost at any time during operation, the meter will stop with the tape displaying the last valid data. The crew will be aware of this malfunction by the power fail light being illuminated.
- d. If continuous pulse data (frequency input) is lost, the meter will interpret this as 0 cps equivalent to 0 fps or 0 ft and the tape will be driven to zero. Again a secondary indication of this failure will be the power fail light.

III-7-30

SB NO. PGNS 7-9

S/C:	LM
DATE:	11/1/70
REV:	PCN-6/New
ORIGINATOR:	C. L. Gruby
APPROVAL:	H. G. L. Gruby H. G. Lodon

TITLE

: LUNAR SURFACE PIPA BIAS CALCULATION

REFERENCES : Guidance System Operations Plan R567 Section 3 Rev 3 Page 3.7.6 Apollo Eng Memorandum AP70-0033 9 January 1970

BACKGROUND : The following describes the method used to measure pipa bias while the LM is on the Lunar surface. The amount of lunar gravity expected in each of the LM stable member axes is calculated by using the current landing site lunar gravity constant (GLS), IMU gimbal angles at the time of the measurement and the Guidance Officer's determination of local vertical attitude. The calculated value is then differenced from the measured value, obtained from the pipas, to determine pipa bias.

DEFINITIONS:

- I = INNER GIMBAL
- 0 = OUTER GIMBAL
- M = MIDDLE GIMBAL

A = ACTUAL CDU ANGLE

L = LOCAL VERTICAL ANGLE

GLS = LUNAR GRAVITY AT LANDING SITE (CM/S²)

GSM = GRAVITY COMPONENT ALONG x, y or z SM AXIS

GIVEN

LOCAL VERTICAL SM GIMBAL ANGLES

SM GIMBAL ANGLES AT TIME (t)

GLS = 162.615 CM/S² (MATH PHYSICS BRANCH, MPAD)

EQUATIONS :

(1) $\begin{bmatrix} \text{GSM} \end{bmatrix} = \begin{bmatrix} \text{NBSM} \end{bmatrix}_{A} \begin{bmatrix} \text{SMNB} \end{bmatrix}_{L} \begin{bmatrix} \text{GLS} \end{bmatrix}_{L}$ (2) $\begin{bmatrix} \text{GSM}_{X} \\ \text{GSM}_{y} \\ \text{GSM}_{z} \end{bmatrix} = \begin{bmatrix} \text{C}_{1} & \text{C}_{2} & \text{C}_{3} \\ \text{C}_{4} & \text{C}_{5} & \text{C}_{6} \\ \text{C}_{7} & \text{C}_{8} & \text{C}_{9} \end{bmatrix}_{A} \begin{bmatrix} \text{C}_{1} & \text{C}_{4} & \text{C}_{7} \\ \text{C}_{2} & \text{C}_{5} & \text{C}_{8} \\ \text{C}_{3} & \text{C}_{6} & \text{C}_{9} \end{bmatrix}_{L} \begin{bmatrix} \text{GLS} \\ \text{O} \\ \text{O} \end{bmatrix}_{L}$ $C_{1} = \cos \text{ I } \cos \text{ M}$ $C_{2} = -\cos \text{ I } \sin \text{ M} \cos \text{ O} + \sin \text{ I } \sin \text{ O}$ $C_{3} = \cos \text{ I } \sin \text{ M} \sin \text{ O} + \sin \text{ I } \cos \text{ O}$ $C_{4} = \sin \text{ M}$

Ш-7-32

 $C_5 = COS M COS O$ C₆ = - COS M SIN O C₇₇ = - SIN I COS M C₈ = SIN I SIN M COS O + COS I SIN O Cé = - SIN I SIN M SIN O + M COS O (3) Multiplying through the matrix, GSM_{X} , y & z take the following form: (a) GSM_x = GLS COS IA COS MA COS IL COS ML + (-COS IA SIN MA COS OA + SIN IA SIN OA) (-COS IL SIN ML COS OL + SIN IL SIN OL) + (COS IA SIN MA SIN OA + SIN IA COS OA) (COS IL SIN ML SIN OL + SIN IL COS OL) (b) GSM = GLS SIN MA COS IL COS ML + COS MA COS OA (-COS IL SIN ML COS OL + SIN IL SIN OL) - COS MA SIN OA (COS IL SIN ML SIN OL + SIN IL COS OL) (c) $GSM_{z} = GLS$ - SIN IA COS MA COS IL COS ML + (SIN IA SIN MA COS OA + COS IA SIN OA) (-COS IL SIN ML COS OL + SIN IL SIN OL) - (SIN IA SIN MA SIN OA + COS IA COS OA) (COS IL SIN ML SIN OL + SIN IL COS OL) (4) Using trigonometric identities to simplify, GSM_x , y and z are reduced to the following: (a) GSM_x = GLS COS IA SIN MA COS IL SIN ML (COS OA - OL) + COS IA COS MA COS IL COS ML + COS IA SIN MA SIN IL (SIN OA - OL) + SIN IA SIN IL (COS OA - OL) + SIN IA COS IL SIN ML (SIN OL - OA) (b) GSM_y = GLS SIN MA COS IL COS ML - COS MA COS IL SIN ML COS (OA - OL) - COS MA SIN IL SIN (OA - OL) (c) $GSM_z = GLS - SIN IA SIN MA SIN IL SIN (OA - OL)$ - SIN IA SIN MA COS IL SIN ML COS (OA - OL) - COS IA COS IL SIN ML SIN (OA - OL) + COS IA SIN IL COS (OA - OL) - SIN IA COS MA COS IL COS ML (5) Actual pipa bias and Δ bias calculation is accomplished in real time on the Hewlett Packard 9100B using the equations (4a), (4b) and (4c) and the measured pipa bias. (a) G measured = $\Delta \text{ PIPA COUNTS} = \frac{CM/SEC^2}{T_2 - T_1} = CM/SEC^2$ (b) X Bias = X measured (1-SFEX) - GSM (c) XA Bias = X Bias - PBIASX

- (d) Y Bias = Y measured (1-SFEY) - GSM
- (e) YA Bias = Y Bias - PBIASY
- (f) Z Bias = Z measured (1-SFEZ) - GSM_
- (g) ZA Bias = Z Bias PBIASZ

(6) By making the following assumptions, GSM_{x} , v and can be reduced to allow computations to

be performed on the olivetti computer.

For GSM_x , v and let: COS (OA - OL) = 1

SIN (OA - OL) = 0For GSM_{X} let: SIN IA SIN IL $\left[1 - COS (MA - ML)\right] = 0$

SIN (OL - OA) = O

For GSM_ let: COS (MA - ML) = 1

Then:

- (a) GSM = GLS COS (IA IL) COS (MA-ML)
- (b) $GSM_v = GLS [COS IL SIN (MA ML)]$
- (c) GSM = GLS SIN (IL IA)

(7) The actual bias and \triangle bias calculation is accomplished in real time on the olivetti using

the equations (6a), (6b) and (6c) and the measured pipa bias.

- (a) G measured = $\Delta \frac{\text{PIFA COUNTS}}{\text{T}_2 \text{T}_1}$ CM/S²
- (b) X Bias = X measured (1-SFEX) GLS COS (IA IL) COS (MA-ML)
- (c) X △ Bias = X Bias P Bias X
- (d) Y Bias = Y measured GLS COS IL SIN (MA ML)
- (e) Y △ Bias = Y Bias P Bias Y
- (f) Z Bias = Z measured GLS SIN (IL IA)
- (g) Z △ Bias = Z Bias P Bias Z

NOTES:

- (1) SFEX, P BIAS X, P BIAS Y, P BIAS Z are LGC eraseable memory locations.
- (2) Scale factor error was included into the X Bias computation due to the fact that almost all of lunar gravity is sensed by that PIPA. Y and Z scale factor errors have virtually no effect on the calculation of Y and Z Bias.
- 8. SUMMARY: Equations (5a), (5b), and (5c) represent the exact solutions to GSM, , and z but are too lengthy and cumbersome to be used in real time. Equations (6a), (6b) and (6c) will be used during mission time with only one constraining factor and that is the magnitude of the outer gimbal \triangle angle (OA - OL). These equations remain accurate with a \triangle outer gimbal angle of less than $+1.0^{\circ}$.

SB NO. PGNS 7-10

S/C: IM REV: PCN-DATE: 11/1 ORIGINATOR: R. A APPROVAL: 24.

LM PCN-11/New 11/1/71 R. A. Thorson Hawld O. Jolen

TITLE: PGNS OPERATION WITHOUT COOLING ON THE LUNAR SURFACE

EACKGROUND: The following brief is an outline of contingency PGNS procedures for the loss of cooling on the lunar surface. The purpose of these procedures is to allow a PGNS direct ascent and RNDZ while maintaining PGNS reliability.

> Although the PGNS is known to be temperature sensitive, performance degradation vs time had not been experienced until Apollo 11. Prior to this time, temperature analysis of the PGNS had been performed only via computer simulations. This data which indicated a PGNS lifetime of approximately one hour was based on violating equipment redlines. Apollo 11, however, indicated that the initial degradation did not occur to approximately 3 hours after cessation of cooling. Due to lack of telemetry on the PGNS equipment, it can only be speculated as to the exact temperatures of the various PGNS equipment. The one measurement that could be correlated is the PIPA temperature: After a quiesent period of approximately 1.3 hours from coolant turn-off, the PIPA temperature rose at approximately 5° /hr vs a prediction (computer simulation) of $\approx 6^{\circ}$ /hr. The following table illustrates the predicted redline values vs the Apollo 11 systems failures:

TIME FROM GLYCOL FAILURE (HOURS)	PREDICTED COMPONENT FAILURE	PROBABLE SYMPTOM	APOLLO 11 DATA
0.9	PTA	PIPA/IMU FAIL	
1.1	PSA	PIPA/IMU FAIL	
1.15	IMU	PIPA/IMU FAIL	
1.5	PIPA	PIPA TEMP CAUT	
1.7	LGC	LGC WARN	
1.75			PIPA TEMP CAUT.
2.5	PIPA	PIPA OFF SCALE HI	
3.2	CDU	CDU FAIL	PIPA TEMP OFF SEAL
3.4			CDU FAIL
4.25			PIPA FAIL
6.25			IMU FAIL
6.9			PLATFORM TUMBLE
7.1			LGC WARN

It is significant that of the predicted component failures only the CDU fail was verified on IM-5 (Apollo 11). It should again be emphasized, however, that the predicted failures were based on redline values and true failures would be dependent upon individual components (e.g., the failure history of the PGNS indicates that failures have been caused by degraded components).

PGNS accuracies under degraded conditions have been looked at by MIT and G&C division with the following conclusions:

With temperature deviations of $\pm 6^{\circ}$ F, PIPA bias and scale factor errors cause small variations in ascent perilume of \approx .l n.m. Apolune figures are somewhat larger in the neighborhood of ± 10 n.m. per $\pm 6^{\circ}$ F. These figures are acceptable since it is not expected that the PIPA temperature will be greater than $\pm 1^{\circ}$ F off nominal at liftoff.

SB NO. PGNS 7-10 PCN-II/New

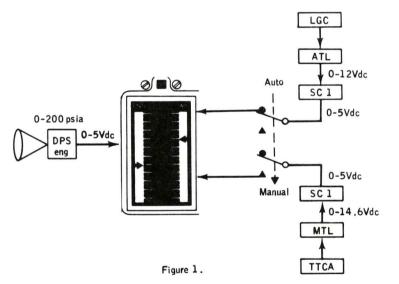
Based on the above data, a successful PGNS ascent and RNDZ is possible with proper management of PGNS operation times. Basically, the contingency timeline follows this sequence.

Initial Conditions: Secondary glycol loop has failed; the crew is on EVA and one hour's traveling distance from the LM when the primary loop fails.

*T-3 hours	Ground informs crew of failure and to return to LM
*T-2 hours	Crew enters LM and deactivates PGNS heaters
T- :45 min	Crew begins emergency checklist
T- :30 min	PGNS powered up and aligned
T- :15 min	AGS powered up and aligned
Post-insertion	Power down AGS
TPI- :10 min	Power up AGS and align to PGNS

*These figures are approximate as it may be 1 3/4 to 3 3/4 hours for the proper phasing to be achieved for a direct RNDZ sequence.

SB NO SCS 9-1

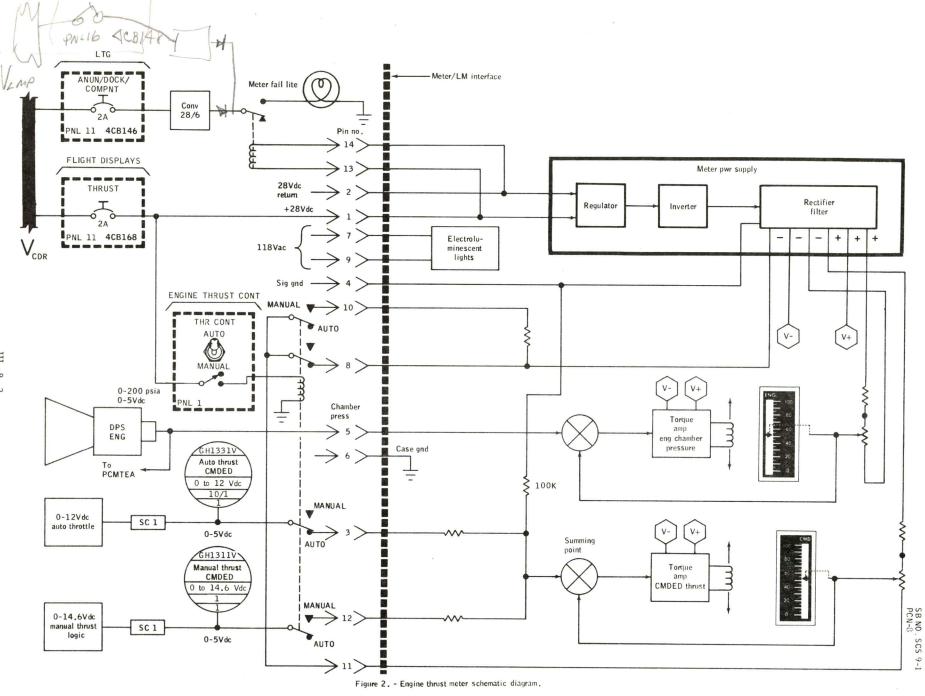

S/C: LM DATE : 6/1/71 REV: PCN-8 ORIGINATOR: D. Clark APPROVAL:

TITLE: ENGINE THRUST METER

- REFERENCES: A. OPERATIONAL CALIBRATION CURVES VOL II (LM-7 & SUB)
 - B. LSP-350-801D METERS, D'ARSONVAL
 - C. LSC-350-80145 METERS, D'ARSONVAL
 - D. LSC-360-601A TRANSDUCER PRESSURE-ABSOLUTE
 - E. LSH (DWG 10.23 DES ENG THROTTLE SIGNAL FLOW, DWG 3.1 LIGHTING SYSTEMS)

DISCUSSION: A. The engine thrust meter is made up of two identical movements. Each uses the "servometric" concept, employing a closed loop rebalancing principle to position a pointer in accordance with an input signal. An output from a feedback transducer mounted on the pointer is compared with the input signal (see Figure 2). Because there is no spring attached to the meter pointer, when power is removed from the driving elements of the meter, the pointers will hold their last position due to bearing and potentiometer friction. Therefore, a warning light is above the meter indicating such a failure. The meter accuracy has been specified at 2 percent of full scale under all environmental conditions. Experience (Honeywell) has shown 0.8 percent (\pm 0.04 volts) of full scale can easily be maintained. Figure 3 shows meter movement versus dc volt input.

B. The engine thrust meter (9M7 PNL I) displays two parameters:



- 1. Descent chamber pressure in percent (0-100); meter was designed for maximum pressure at 110 psia.
- 2. Commanded thrust, auto or manual, in percent (0-100).

The left side of the meter displays descent engine thrust as supplied by a pressure transducer on the DPS engine (see Figure 1). The pressure transducer measures 0 to 200 psia and outputs a linear 0-5 Vdc (volts dc) over this range. Since the maximum pressure at FTP of the DPS chamber is 106 psia, the maximum transducer output is 2.65 Vdc. The signal goes directly to the left side of the thrust meter where 0 to 2.75 Vdc causes full scale deflection (0 to 100 percent thrust, see Figure 3).

P-8

P-8

III - 9 - 2

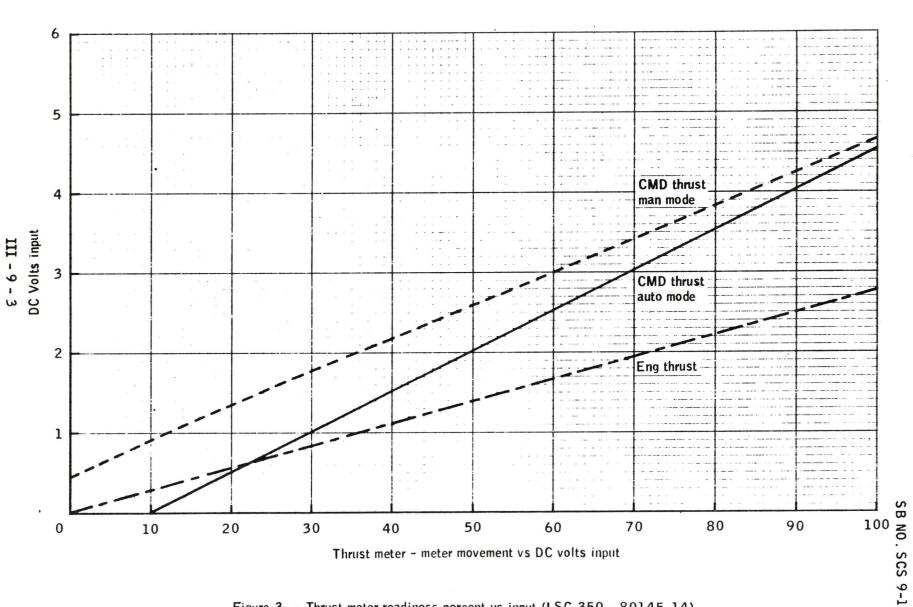
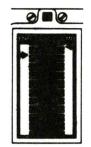



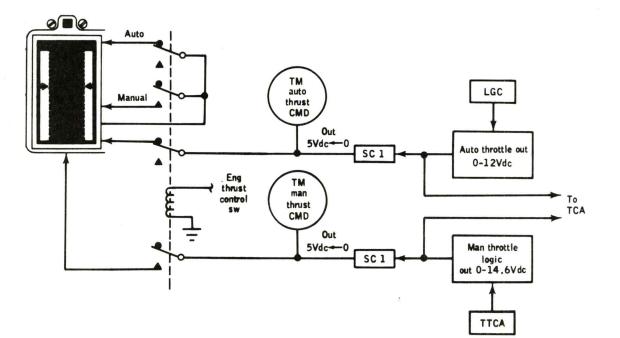
Figure 3. - Thrust meter readiness percent vs input (LSC 350 - 80145-14).

SB NO. SCS 9-1 PCN-8

A few interesting points to consider when using this side of the meter include: Throat erosion of the DPS (descent propulsion system) nozzle causes a drop in TCP (thrust chamber pressure).

100% thrust before erosion

100% thrust with full erosion


P-8

The drop is from 106 psia with no erosion to 100 psia with total erosion (see Figure 4). This means that when the pressure drops, the engine thrust indication will drop. For example, at FTP (full throttle position) when the chamber pressure is 106 psia, the meter will read 97 percent. When the throat erodes during a long burn, the pressure will fall to 100 psia and the meter will read 91 percent.

Figure 4

The thrust on the DPS is limited mechanically to approximately 92.5 percent of its full descent engine capability (106 psia) due to engine optimization. The meter shows 97 percent (due to design scale of 110 psia).

C. The right side of the meter (9M7 PNL I) displays the thrust commanded. There are two modes of display on this meter:

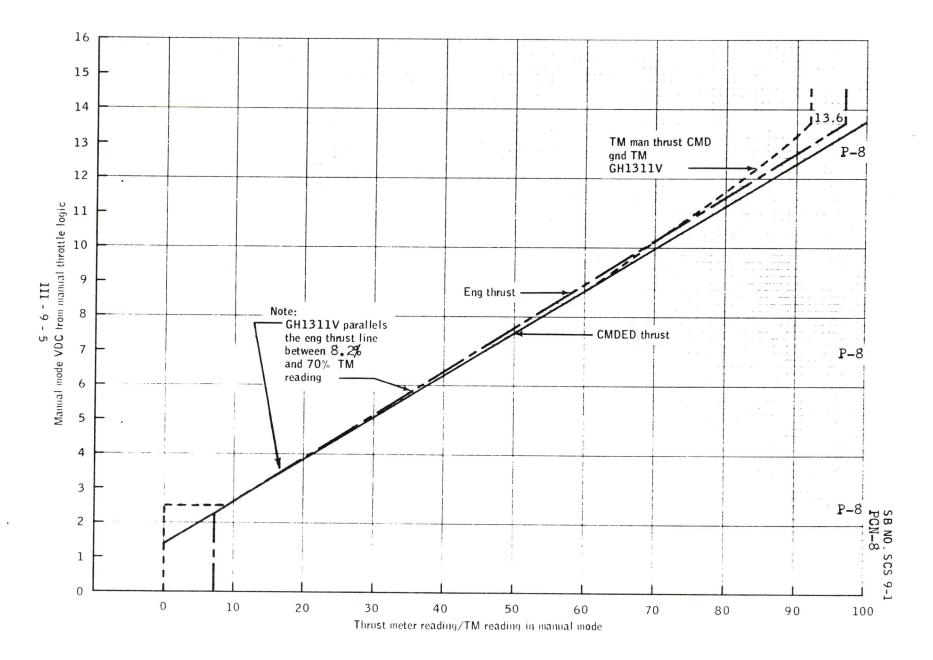


Figure 6. - Thrust meter and TM readout vs manual thrust CMD from manual throttle logic.

1. The Manual Mode

When the "THREET CONTROL GW" ISTI PNL I is switched to "MANUAL", the biasing is such that the meter will read 0 with a 0 to 1.4V manual throttle input - 0 to 100 percent for a 1.4 to 13.6 Vdc - and 100 percent for a 13.6 to 14.6 Vdc input (see Figure 6).
Since the voltage from the manual throttle is 0 to 14.6 Vdc, the manual throttle signal is routed through the TM Signal Conditioner No. 1, where it is sent to PCMTEA (pulse code modulation timing electronics assembly) and to the commanded thrust meter as a 0 to 5 volt signal. In the manual mode 4.65 Vdc will cause full scale deflection (100 percent, see Figure 3).
Full movement of the TTCA provides 5 Vdc, which is more than necessary to position the commanded thrust meter to 100 percent. A failure in the manual mode such as a loss of the TTCA (thrust and translation control assembly) voltage will cause the command side of the meter to drop to zero and the engine side of the meter to drop to 7.5 percent. When in the manual mode, the auto throttle is totally isolated from throttle control as well as the thrust meter.

2. Auto Mode

When the "THRUST CONTROL SW" PNL I is switched to "AUTO", the bias is such that the meter reads from 10 to 100 percent as the auto throttle circuit outputs 0 to 11 Vdc and 100 percent when the auto circuit puts out 11 to 12 Vdc (see Figure 8).

The 0 to 12 Vdc is routed to the Signal Conditioner No. 1 (see Figure 5) where it is changed to a 0 to 5 Vdc signal. The signal is then routed to PCMTEA and to the commanded thrust portion of the meter which in the auto mode reads 10 to 100 percent with a 0 to 4.58 Vdc input (4.58 Vdc out of SC No. 1 equals 11 Vdc from the auto throttle circuit). Because 12 Vdc auto throttle circuits equal 5 Vdc CC No. 1 output, the auto throttle circuit can give more than enough to give full scale deflection. However, the command thrust meter has a built-in bias which assumes that there is 10 percent (2.6 Vdc) being summed with the TTCA. If this 10 percent from the TTCA is lost in the auto mode, the commanded thrust will still read 100 percent, but the engine thrust meter will drop to 85.5 percent due to the fact that the 12 Vdc from auto throttle circuit will not give the necessary voltage needed (13.6 Vdc) for maximum throttle without the 2.e Vdc supplied by the manual throttle (see Figure 7).

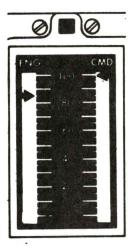
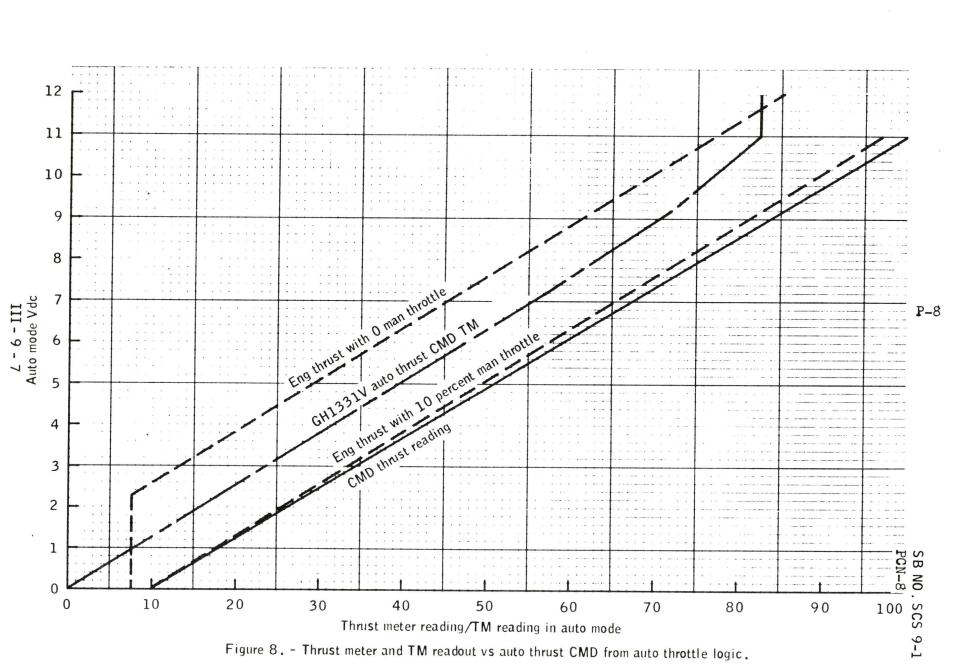



Figure 7.- Meter in auto mode with 100% commanded and a manual throttle input failure.

*

The results of losing the manual throttle voltage and the effect on the thrust meter can be seen in Figure 8. For example if 40 percent thrust was being commanded, it can be seen from Figure 8 that 3.6 Vdc is being outputted by the auto throttle and the remaining 2.6 Vdc is being supplied by the manual throttle. Both engine and commanded thrust read 40 percent. Now if the manual throttle input fails, the auto throttle will immediately respond by printing out the difference (2.6 Vdc) which will now show 40 percent on the engine thrust and 62 percent on the commanded thrust portion of the meter (see Figure 9).

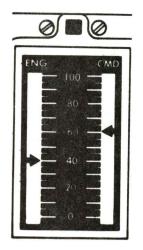


Figure 9.- Thrust meter in auto mode with manual input failure at 40% thrust.

Another interesting point is that in the auto throttle mode, any input above 10 percent by the manual throttle will cause the auto throttle to output that same amount less. Therefore, if while at 40 percent the manual throttle were raised to 20 percent throttle, the commanded thrust meter would drop to 30 percent (another 10 percent is being supplied by the manual throttle) while the engine thrust meter would remain at 40 percent (see Figure 10).

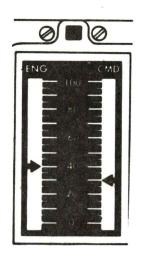


Figure 10.- Thrust meter in auto mode with manual throttle in 20% position while auto is commanding 40%.

SB NO. SCS 9-2

TITLE

: OPERATIONAL ASPECTS OF DECA K26

Amendment 1

REFERENCES

: A. CES Level III Drawings: LDW 300-56003

B. DECA Production Model Design Report LDR (B) - 6200 - 14 15 December 1965

C. Design Control Specification for DECA

LSP 300 - 13E 8 January 1968

D. Red-line Survey of DECA Parameters

CR-68-588-47 16 December 1968

BACKGROUND

: The function of DECA K26 is to remove ATCA DC voltages (+ 15 and + 4.3) from the DECA Power Supply whenever these ATCA voltages are out-of-tolerance. This condition is determined in the DECA Pwr Supply by comparing the ATCA voltages against DECA DC voltages which are generated with AC power delivered through the DECA GIMBAL CB. If the inverter AC is subjected to variations, the DECA DC voltages will also vary which could cause K26 to energize.

15 September 1967

S/C: LM

6/1/71

PCN-8

A.G.

E. Stamper

P-8

D

DATE:

ORIGINATOR:

APPROVAL:

REV:

MALFUNCTION DETECTION

: The failure detection methods used to detect a K26 failure must then consider the overall system responses to both the ATCA DC voltages and the inverter voltage. The ATCA DC voltages are used in the DPS gimballing and throttling control circuits and also in AGS attitude control and Auto Ascent Engine On circuits. The inverter voltage is also used for lighting, displays, slew and track capability of the RR, and slew capability of the S-Band in addition to its use as descent engine gimbal motor power. However, sufficient secondary cues exist to determine which voltage supply has failed. The ATCA DC voltages (\pm 15 and + 4.3) are monitored by the CES DC warning light and the inverter outputs by the INVERTER caution light.

Since the comparison electronics are enabled only when the DPS is armed, there are only two times during the nominal lunar mission which K26 can become energized--during the DPS throttle check or during PDI. If K26 became energized during the throttle check, the result would be that the throttle actuator would move to its FTP position. If it energized during PDI, the results would be: the GDA's locked in their last commanded position; the throttle actuator at FTP; and the commanded auto thrust at 10 percent on the THRUST meter and at 0 percent on TM.

The AC voltage and ATCA DC voltages necessary to cause K26 to energize are dependent upon which DECA S/N is flown. The ATCA voltage required to trip K26 are found in SODB paragraph 4.5.3.2.2.1. The following table shows the relationship between the AC voltage, the state of K26 and the effects of the state of K26 for all DECA's.

SB NO. SCS 9-2 PCN-6/NEW

AC VOLTAGE AT DECA	STATE OF K26	EFFECTS
100 < VAC < 103 for > 300 msec	may be energized	may lock GDA's and may cause throttle to go max thrust
55 < VAC < 100 for > 300 msec	energized	locks GDA's and throttle to max thrust
30 < VAC < 55 for > 300 msec	may oscillate	locks GDA's and may cause oscillations in thrust
VAC < 30	de-energized	locks GDA's but throttle fully operational

MISSION IMPACT

CORRECTIVE ACTION: The following table should be used if K26 is energized during PDI. The table represents the various verification procedures which should be used if the actual thrust is at FTP and the commanded auto thrust is at 10 percent on the THRUST meter and the GDA's locked. The table assumes that the THRUST meter reading is valid.

CES DC WARNING	INVERTER CAUTION	VERIFICATION PROCEDURE	FAILURE CAUSING K26 TO ENERGIZE
NO	NO	A. Cycle DECA GMBL CB	A. Transient AC volt.
		B. No effect, pull DECA GMBL CB	B. K26 failure
NO	YES	Switch to other inverter	AC out-of-tolerance
YES	NO	Pull DECA GMBL CB	DC out-of-tolerance
		I. If actual thrust at FTP and commanded auto at 10 percent	<pre>I. + and/or - 15 vdc supply failed</pre>
		II. If actual thrust at commanded manual thrust and commanded auto thrust at 10 percent	<pre>II. + 4.3 vdc supply failed</pre>

The loss of DECA GMEL CB power will cause the loss of DPS gimballing. The loss of the + 15 vdc supply will cause the loss of DPS gimballing and throttling control, Auto Ascent Engine ON, and AGS attitude control. The loss of the - 15 vdc supply will cause the loss of gimballing and throttling control and AGS attitude control. The loss of the + 4.3 vdc supply will cause the loss of gimballing control, auto throttle control, Auto Ascent Engine On, and AGS attitude control. Mission Rules will determine the required actions for the loss of these functions.

The following figure is a logical representation of the internal DECA circuits which cause K26 to energize.

Ш-9-10

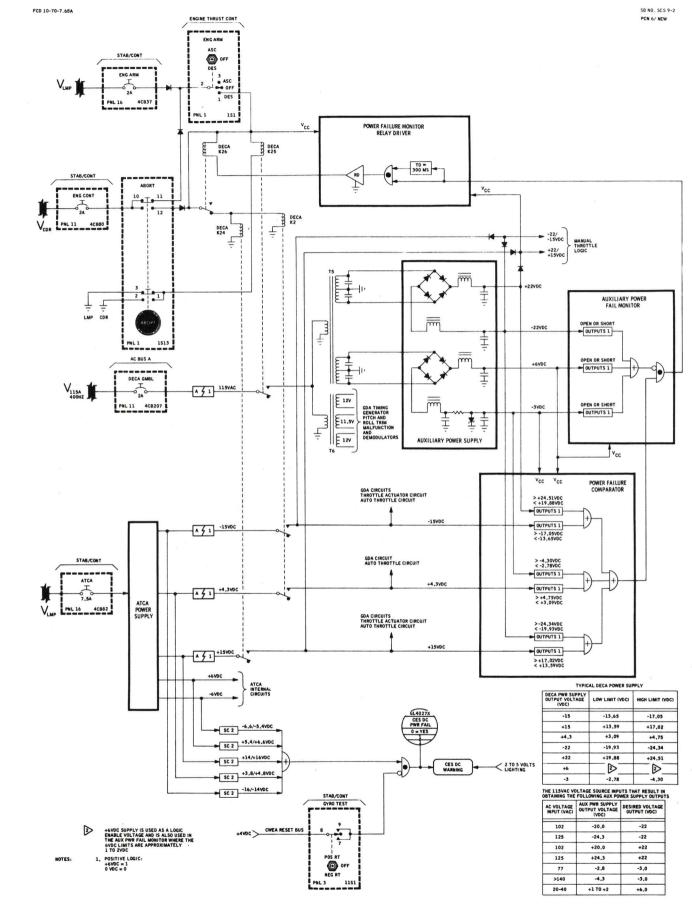


FIGURE L. - DECA POWER SUPPLY.

SB NO. SCS 9-3

S/C: LM DATE: 11-1-71 REV: PCN-11 ORIGINATOR: STURM APPROVAL: 2.4.4.4

TITLE: ASCENT ENGINE ADAPTER CABLE IGNITION

REFERENCES: A. AOH VOL II, PARAGRAPHS 5.4.23, 24, & 25

B. SCP NO. FYRO 3-1, MANUAL STAGING ON THE LUNAR SURFACE

DISCUSSION: A. NORMAL ASCENT ENGINE IGNITION

The ascent engine was designed with two methods available to the crew for ignition. The first method is an automatic start sequence driven by either the FGNS or AGS guidance system. The second method is a manual start sequence performed by the crew. Both of these methods are subject to single point failures in preventing ignition, but it would require a double failure to prevent ignition on the lunar surface because the automatic method is used and backed up by the manual method.

B. ADAPTER CABLE ASCENT ENGINE IGNITION

With the loss of automatic and manual start capability in the past the crew would have had to go into the spacecraft wiring and try rewiring equipment to start the ascent engine. Now an adapter cable has been fabricated that will allow the crew to start the engine much easier. The above mentioned reference contains a step by step procedure for using this cable.

The adapter cable consists of twelve wires, ten of which are used to maintain existing. functions and two wires provide +28 VDC power directly to the ascent engine system A pre-valve assembly bypassing all engine control logic. Starting the ascent engine via the adapter cable will not automatically stage the vehicle so a manual staging sequence must be performed first.

The ascent engine firing adapter cable is plugged into the ED power adapter cable and that is plugged into the GSE connector on either the LMP bus or the CDR bus. The bus used has to be powered down, the cables connected, and then the ascent engine is started and stopped by powering up and down the specific bus via the battery feed tie circuit breakers. Thus, the insertion burn would be made with one guidance system working. If the PGNS system is operational the LMP's bus will be used, but if the PGNS system is degraded then the CDR's bus will be used. Reference LSH Dwg 4.1.1 for electrical drawing.

P-11

DATE: 4/1/69 REV: ORIGINATOR: APPROVAL:

S/C: LM

ORIGINATOR:

APPROVAL:

DATE: 4/1/69 REV:

Original

A.a. Low

Fleming

S/C: LM Original Wegener A. Q. Loda

THROTTLE ACTUATOR CONTROL ASSY

TITLE: REFERENCES:

BACKGROUND:

A. TRW LM Descent Engine Characteristics Report

- B. NASA Memo
- A. The throttle actuator is an electromechanical, linear-motion servoactuator which moves the throttle linkage in response to an electrical input command. The motion of the throttle simultaneously positions the flow control valve pintles and the injector sleeve. Changing the position of the flow control valve pintles varies the amount of fuel and oxidizer metered into the engine and thus changes the magnitude of the engine's thrust.
- B. When the DPS engine is not armed (i.e., 28V power removed from the throttle actuator motors) the throttle actuator is driven to a null position by the hydraulic loads imposed on the flow control valves and by the action of a set of compensating springs designed to minimize the actuation force requirements. The expected position of the throttle actuator during an orbit coast is approximately 40 to 75 percent. The null position at sea level is higher than that under vacuum conditions due to differential pressures acting upon the flow control valves and throttle actuator bellows assemblies. At sea level, the expected throttle actuator position is approximately 50 to 100 percent.
- C. When the engine is armed, the throttle actuator will drive to the position of commanded thrust (autocommanded thrust plus manual-commanded thrust). The response time of the throttle actuator is approximately 0.6 seconds from 10 percent thrust to max thrust or from max thrust to 10 percent thrust.
- D. The instrumentation readout from GQ6806H, throttle actuator position, provides a valid indication of actual throttle position at all times regardless of DPS arm power or ATCA power. The actuator will indicate commanded position only when the DPS engine is armed.

SB NO. PROP 11-2

PCC	/ADC	INTE	DCOM	NECT
RC3	APS	INIE	RUUR	INECI

REFERENCES: BACKGROUND:

TITLE:

- A. The APS/RCS interconnect is designed to allow APS propellants to be used in the two RCS systems during periods of +X thrusting (within limits specified in SODB) Eight solenoid valves are used to control propellant flow between the AFS and RCS. There are two valves in series to each of the RCS System A fuel, System A oxidizer, System B fuel and System B oxidizer manifolds. These valves are controlled by four three-position momentary switches located in Panel 2. Each of these switches controls one fuel and one oxidizer valve in <u>parallel</u> for either System A or System B. Valve position is indicated by four talkbacks (flags) also on Panel 2 and by four operational TM discretes to MSFN. It should be noted that these valve position indications are not a reflection of switch position history, as each indicator is displaying the status of two fuel or two oxidizer valves in <u>series</u> in either System A or System B. Each talkback will display a barberpole indication and the TM discrete will be a "O" if by steam by a scale tailed will display a gray indication and either one or both valves in the pair are closed. Each talkback will display a gray indication and the TM discrete will be a "1" only when both valves in the pair are open.
 - B. Normally the upstream (closest to APS) fuel and oxidizer valve in each system will be closed while the downstream valves will be open. Thus the normal indication will be barberpole on the talkback and a "O" on TM. This same indication would be displayed if both valves were closed or if power were removed from the indicator circuits.

S/C: LM DATE: 1/26/70 REV: PCN-5 ORIGINATOR: R. Nance APPROVAL: Jack J. Hannyton

RCS THRUSTER HEATERS

REFERENCES: BACKGROUND:

TTTT.E.

A. Ground testing of RCS thrusters has shown that explosions result when thrusters are operated at low thruster flange temperatures. To maintain thruster flange temperatures above the critical level each of the 16 RCS thrusters is equipped with two electrical heaters attached to the outboard side of the thruster mounting flange. Each heater has a built-in thermostat. Electrical power for the heaters in each quad is supplied through two circuit breakers.

- 1. One circuit breaker draws power from the CDR Bus and supplies it to one heater on each thruster direct.
- The other circuit breaker draws power from the LMP Bus and supplies it to the other heater on each thruster through the "Heaters System A/B" switch for that quad located on Panel 3.

This switch has three positions, "Off", "Man" and "Auto". The "Off" position interrupts power to the heater assembly. The "Man" position bypasses the integral thermostat and supplies power direct to the heater coil. The "Auto" position supplies power through the thermostat to the heater coil.

- B. Thruster flange temperature is not directly sensed. However, each quad has a temperature transducer attached to the thruster mounting frame common to all four thrusters. This measurement must be used to infer that thruster flange temperature is above the critical limit.
- C. Thruster mount (quad) temperature is displayed to the crew, one at a time, on a meter located on Panel 3, through a rotary switch.
- D. All four thruster mount (quad) temperatures are telemetered directly and simultaneously to MSFN.

SB NO.

PROP 11-4

SUPERCRITICAL HELIUM

TITLE: REFERENCES:

BACKGROUND:

: A. The supercritical helium system provides the means to pressurize and feed propellants for descent engine operation. The system consists of four major components.

- 1. Supercritical helium tank
- 2. Fuel/helium heat exchanger
- 3. Internal heat exchanger
- 4. Pressure relief system.
- B. The supercritical helium tank provides storage for approximately 51 pounds of helium. The fuel/helium heat exchanger functions as a heat source to the cold helium for helium pressure development. Within the supercritical helium tank the internal heat exchanger inputs heat gained from the fuel/helium heat exchanger to the helium mass. The capability of relieving excessively high helium tank pressure is provided by the pressure relief system, which consists of two burst disks in series with an internal bleed valve.
- C. Upon initiation of the first descent engine burn the supercritical helium system begins to provide propellant pressurization. Helium leaves the storage tank and flows through the fuel/helium heat exchanger. Heat is picked up from the flowing fuel and returned to the storage tank via the internal heat exchanger. The heat given off to the bulk helium increases both temperature and pressure. The helium then leaves the internal heat exchanger and returns to the fuel/helium heat exchanger where it is warmed by the fuel and the pressure and temperature is further increased. At this point the helium leaves the supercritical system and is routed to the regulators where it pressurizes and feeds the propellants to the descent engine.

S/C: LM DATE: 6/1/71 REV: PCN-8 ORIGINATOR: G. W. WATKINS APPROVAL: Max f. J.A. Magne

P-8

P-5

S/C: LM DATE: 4/1/69 REV: Original ORIGINATOR: Nance APPROVAL: 2.0. Lorlow

TITLE: REFERENCES:

FLOW CONTROL VALVES

BACKGROUND:

- A. The throttleable LM descent engine utilizes variable area Venturi valves to meter the propellants and provide mixture ratio control.
- B. The valves have two distinct modes of operation: cavitating and non-cavitating.
 - 1. The cavitating region extends from the zero-stroke position to approximately the 67-percent stroke position.
 - 2. The non-cavitating region extends from approximately the 67-percent stroke position to the fixedthrottle position.
- C. While in the cavitating mode of operation, propellant consumption is strictly controlled by the flow control valves, dependent only on the upstream valve pressure and the temperature of the propellant. The flow control valves decouple or isolate the feed system from the thrust chamber while in this mode. This enables the propellant consumption to be accurately maintained regardless of chamber pressure fluctuations and changes in injector or system pressure differentials.
- D. In the non-cavitating mode of operation propellant consumption is dependent on the hydraulic charac-teristics of the total engine system, of which the variable area valve is only one component.

Ⅲ-11-3

S/C: T.M 3/1/72 DATE: REV: PCN-12 ORIGINATOR: WATKINS APPROVAL: Laliner

P-6

P-8

TITLE: RCS PROPELLANT QUANTITY

REFERENCES: PQMD Design and Operational Manual LED 360-427

BACKGROUND: A. General

The RCS Propellant Quantity Measuring Device (PQMD) calculates the nominal design usable RCS propellant quantity remaining using the helium source pressure/temperature ratio, the ideal gas laws, and known RCS system constants. This quantity is displayed on a meter onboard and telemetered to the ground. The PQMD does not measure propellant quantity directly. The PQMD consists of a temperature compensated pressure transducer, computer/signal conditioner electronics, and connecting cables.

B. Operating Principle

Each RCS system is a liquid bipropellant rocket system using helium gas to feed propellants to eight combustion chambers. The helium gas is stored at high pressure in a common source, regulated down, and supplied at constant pressure to both the fuel and oxidizer tanks. Propellants used are displaced by an equal volume of helium, thereby lowering the helium source pressure. The temperature compensated pressure transducer senses helium source pressure, compensates for helium gas temperature, and transmits this ratio to the PQMD computer. The PQMD computer uses this data, the ideal gas laws, and the following assumed system constants to calculate propellant remaining:

- 1. Helium source volume
- 2. Initial helium pressure and temperature loaded
- 3. Initial propellant quantity loaded (616 pounds)
- 4. Propellant tank pressures (177.5 psia)
- 5. Propellant temperature (70°F)
- 6. Propellant mixture ratio (2.0)
- 7. Propellant tank volumes
- 8. Main solenoid valves closed and propellant lines below main solenoid valves evacuated to a vacuum.

NOTE

Propellant will be loaded in the lines . downstream of the main solenoid valves to the thrusters.

9. Trapped and unexpellable propellant quantity (28 pounds)

The design usable quantity remaining is then transmitted to the onboard meter for display and to the PCM TEA to be telemetered to the ground.

- C. System Limitations
 - 1. Calculated propellant quantity is not valid until after pressurization, and the helium source pressure is reduced to that pressure corresponding to the design full tank quantity of 616 pounds (approximately 2920 psia at 70° F).
 - 2. Fuel and oxidizer are not measured directly or individually.
 - 3. Indicated propellant quantity will be lower than actual for up to 30 minutes after high usage periods due to measured helium temperature lagging the actual gas temperature. The higher and longer the usage, the longer the period of inaccuracy.
 - 4. Helium leaks after pressurization appear as loss of propellant.
 - 5. The PQMD indicates percent of "Nominal Design Usable Propellant Remaining". Design Usable Propellant Remaining (588 pounds) is the Design Nominal Loaded (616 pounds) less the Design Trapped and Unexpellable (28 pounds). In actual practice, the PQMD does not indicate usable propellant due to the system variables described in paragraph D.

ш-11-4

SB NO. PROP 11-6 PCN-12

D. System Variables

- Instrumentation tolerances The temperature compensated pressure transducer tolerances are 4 percent of full scale (100 percent).
- Process variations Helium does not precisely follow the ideal gas laws. The following assumed constants do vary:
 - a. Helium source volume
 - b. Propellant tank pressures
 - c. Propellant temperature
 - d. Propellant mixture ratio
 - e. Propellant tank volumes

In addition, the POMD electronic component tolerances contribute some variation. The total process error amounts to 3 percent of full scale (100 percent).

- Loading variations The following assumed contants do vary due to loading equipment and process tolerances:
 - a. Initial helium pressure and temperature loaded
 - b. Initial propellant quantity loaded

These tolerances amount to 3 percent of full scale (100 percent).

In addition, any loading other than the Nominal Design Loading, (616 pounds with the main solenoid valves closed and propellant lines below main solenoid valves evacuated to a vacuum) will make the PQMD inaccurate until the nominal conditions are reached.

4. Transmission and display tolerances - The onboard meter has a mechanism tolerance of l percent of full scale (100 percent). Crew viewing error is estimated to be 2 percent of full scale (100 percent).

Telemetry downlink and ground display is negligable due to the transmission and dis ay method.

PQMD INDICATED QUANTITY VS. NOMINAL PROPELLANT QUANTITY

P-6

	Nominal Propellant Quantity	nt Nominal PQMD Indication		
	(Lb)	TM to Ground	Onboard	
Nominal Loaded	631.2	108%	Off Scale High	
Post Pressurization	631.2	103%	Off Scale High	P-8
Design Nominal Loaded (PQMD Design Full Tank)	616	100%	100%	
Design Nominal Trapped and Unexpellable (PQMD Design Empty Tank)	28	0%	0%	
Preload Empty Tank	0	Off Scale Low	Off Scale Low	

PQMD TOLERANCES

		1.2.2					
•	Instrumentation	Process	Loading	*RSS ERROR	Transmission and Display	Total	
Onboard	2 %	4 %	2 %	5%	3%	8%	
Ground	2 %	4 %	2%	5%	0%	5% F	P - 12

*RSS error subject to loading within helium loading envelope and being calibrated. RSS error could be 6% without CAL data.

This SB is deleted by PCN-6 ŝ

III-11-6 and III-11-7

DATE: REV: ORIGINATOR: APPROVAL: 20

S/C: LM

> 6/1/7 PCN-8 G. W. WATKINS

> > P-8

MAGNETIC LATCHING SOLENOID (PARKER) VALVE TITLE:

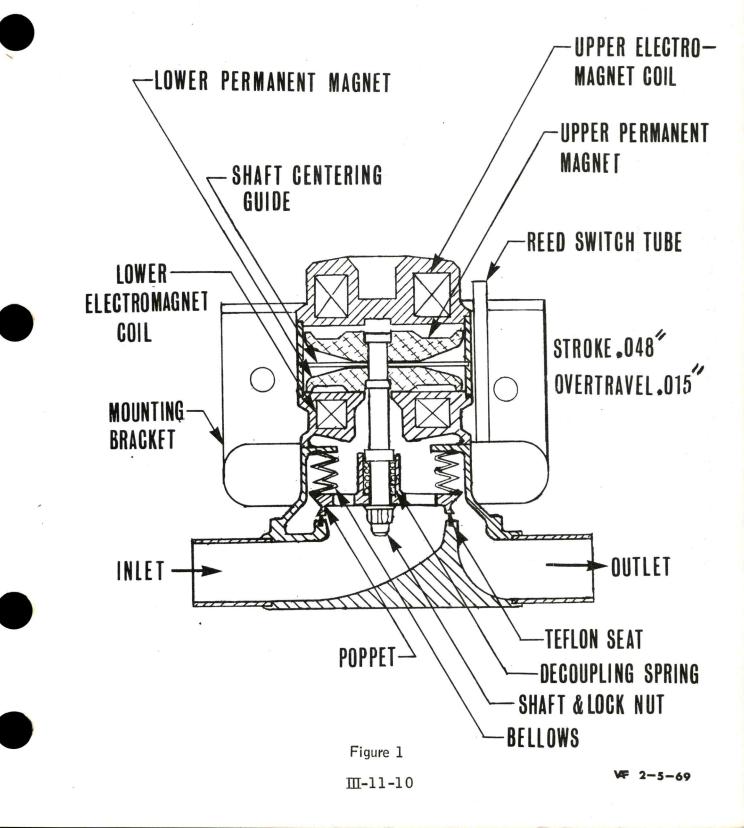
- BACKGROUND: A. The Magnetic Latching Solenoid (Parker) Valve is used to control liquids in the following places on the LM vehicle:
 - 1. RCS Propellant Tank Main Outlets (4, normally open)
 - 2. RCS Crossfeed between Systems A and B (2, normally closed)
 - 3. Ascent to RCS Interconnect (8, normally closed)
 - 4. Descent Propellant Tank Lunar Dump (2, normally closed)
 - B. This valve is a two-way, electromagnetically operated magnetic latching valve with valve position sensed by a magnetically operated reed switch.

Two fixed electromagnets with series connected coils are located in the upper and middle portions of the valve. Between these are two permanent magnets attached to the upper end of the shaft. A bellows and poppet assembly attached to the lower end of the shaft is the closure mechanism. A decoupling spring on the shaft takes up dimensional variations to enable uniform contact between the poppet and seat. The inlet port, outlet port, and seat are in the lower portion of the valve. The reed switch is located in a tube outside the valve body beside the upper electromagnet. The moving contact and one fixed contact of the switch are made of low magnetic retention ferrous material while the other fixed contact is made of non-ferrous material. The moving contact is spring loaded against the nonferrous contact. (Reference cutaway drawing, Figure 1.)

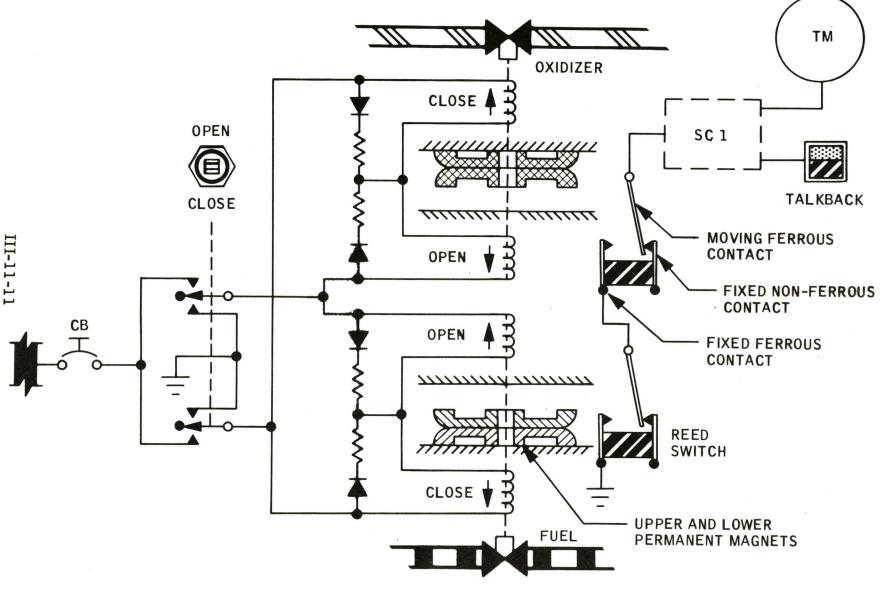
C. The valve is opened by applying power of the correct polarity to both electromagnet coils. The upper electromagnet attracts the upper permanent magnet and the lower electromagnet repels the lower permanent magnet, lifting the poppet off its seat until the two upper magnets are in contact. With power on, the magnetic force of attraction between the fixed and moving ferrous contacts of the reed switch will be strong enough to overcome the spring load and attract the moving contact to the fixed ferrous contact. The valve position indicator circuit will be interrupted for normally open valves and completed for normally closed valves. When power is removed, residual magnetism will maintain the upper magnets and the reed switch contacts in this position.

The valve is closed by applying power of reverse polarity to both coils. The upper electromagnet repels the upper permanent magnet and the lower electromagnet attracts the lower permanent magnet, pulling the poppet back on its seat. The shaft continues to move, compressing the decoupling spring, until the lower magnets are in contact. As long as electrical power is on, the reed switch will remain in its former position because the magnetic force generated by the upper electromagnet is great enough to overcome the spring load. As long as electrical power is applied, valve position indications may not be valid. When power is removed, residual magnetism will maintain the lower magnets in contact. The residual magnetic force will no longer be great enough to hold the reed switch moving ferrous contact against the fixed ferrous contact. The spring load will pull the moving contact against the non-ferrous contact. The valve position circuit will be completed for normally open valves and interrupted for normally closed valves. (See Figures 2 and 3.)

If the valve changes position without the application of power to the electromagnets, the reed switch will respond as it would when the valve is operated normally and power is removed, giving a valid valve position indication.


Π-11-8

D. Tests at GAEC on this valve have shown that a large high pressure (≈150 psi or greater) <u>liquid</u> source upstream and a large volume under vacuum downstream produce high-velocity flow across the valve seat. This high-velocity flow causes a low pressure region to form between the valve seat and poppet. Due to the resulting ΔP, the valve will not remain open. As long as power is maintained, the valve will cycle rapidly open and closed, destroying the valve seat.


These conditions can occur in orbit in the DPS Lunar Dump Circuit due to the unpredictable location of the liquid propellant under zero gravity. Therefore the DPS Lunar Dump valves cannot be relied upon to relieve DPS propellant tank pressure in orbit. The valves in the RCS are not affected because the necessary conditions do not occur during normal systems operation.

P-8

MAGNETIC LATCHING SOLENOID (PARKER) VALVE

SCHEMATIC FOR NORMALLY CLOSED VALVE INSTALLATION (RCS CROSSFEED; ASCENT INTERCONNECT AND DESCENT LUNAR DUMP)

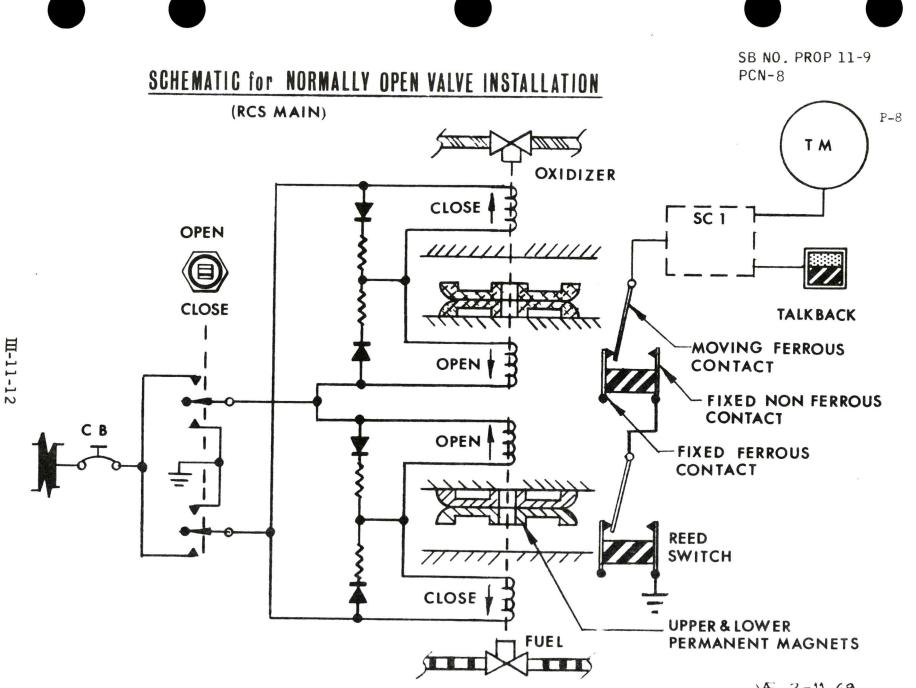


Figure 3

VF 2-11-69

19

0

This SB is deleted by PCN-6

III-11-13 through III-11-18

SB NO. EMU 12-1

S/C: EMU DATE: 6/1/71 REV: PCN-8 ORIGINATOR: W. N. Bates APPROVAL:

TITLE: DOCUMENTATION

ITEM NO.	COMPONENT	DWG NO.	SERIAL NO. IMP/CDR	SPECIFICATION	DVT/QUAL	
	EMU					
	EXTRAVEHICULAR MOBILITY UNIT	SEB13100045B		CSD-A-096		
	EXTRAVEHICULAR COMMUNICATIONS SYSTEM	8358750-503		8553518/8553517		
	PLSS/EVCS	SEB11100066-301				
	PLSS/EVCS	SEB11100066-302				
	PGA					1
	EV PRESSURE GARMENT ASSEMBLY	A7LB-100006-04		CP3001		
	EV GLOVE ASSEMBLY	A7LB-203034-3/4		CP3001		
	LIQUID COOLING GARMENT	A6L-400000-17		CP1002		P-8
	FECAL CONTAINMENT SYSTEM	A6L-501000-05		CD1015		
	PRESSURE HELMET ASSEMBLY	A7LB-102053-03		CP3001		
	URINE COLLECTION AND TRANSFER ASSEMBLY	14-0108-2		CSD-A-650		4
	COMMUNICATIONS CARRIER	16536G-4				
	PURGE VALVE ASSEMBLY	A6L-505000-05		CD1018		P-8
	BIOINSTRUMENTATION	SEB42100083-306				
	PGA RELIEF VALVE	A7LB-109049-01		CP3001		
	SUIT ELECTRICAL HARNESS	A7LB-109040-01		CP3001		
	BIOMED HARNESS	A7LB-109043-01		CP3001		
	LUNAR EXTRAVEHICULAR VISOR ASSEMBLY	A6L 205000-07		CP2004		P-8
	LUNAR BOOTS	A7LB-106062-3/4		CP3001		
	LOWAR BOOTS	АТШ-100002-5/4		01 300 1		
		DWG NO. (SV)		SPECIFICATION (SVHS)	DVT/QUAL (SVHSER)	
100	MOUNTED HARDWARE		1			1
113	PGA MULTIPLE WATER CONNECTOR	710830		3309		
116	URINE TRANSFER CONNECTOR	710904		3328		
141-4	PGA URINE CONNECTOR	714153		3306		
144	INTERNAL URINE TRANSFER CONNECTOR	714152		3307		
183	PGA PRESSURE TRANSDUCER	714171		3291, 3380		
184	PGA LOW PRESSURE WARNING SWITCH	714170		3392, 3381		
200	PLSS	706100-7		3003C	5149	
200	1200	100200 1		4968	5575	
					5719	P-8
201-209 230-239	DISPLAY AND SENSORS				51-5	
201	CARBON DIOXIDE SENSOR	723670-4		3999в		P-8
202	VENTILATION FLOW SENSOR	721730-2		4100	5170	
203	PGA PRESSURE TRANSDUCER	714171-4		3291, 3380	5053	
				4311	5327	
204	PGA LOW PRESSURE WARNING SWITCH	714170-5		3381, 3292 4312	5113 5269	
205	LCG INLET WATER TEMP TRANSDUCER	730324		4149	5055	
206	WARNING INDICATORS	721724		4256	5264	
						1

ITEM NO.	COMPONENT	DWG NO. (SV)	SERIAL NO. LMP/CDR	SPECIFICATION (SVHS)	DVT/QUAL (SVHSER)	
207	OXYGEN QUANTITY INDICATOR	701830-2		3226, 3282		t
208	RCU LIGHTING	723601		4265		
231	EXPENDABLE H20 QUANTITY SENSOR	707460		3231A		
232	PRIMARY OXYGEN PRESSURE TRANSDUCER	714168-2		3226		
233	TEMPERATURE TRANSDUCER	714167-2		3225		
234	BATTERY CURRENT SENSOR	701788-2		3229A		
235	OXYGEN FLOW SENSOR	701088-5		3013A		
236	WATER DIFFERENTIAL TEMP TRANSDUCER	713085-4-200 713085-4-201		3224A		
237	OXYGEN/WATER QUANTITY INDICATOR	710972		3282		1
238-1-1	FEEDWATER FLOW INDICATOR	723439-2				P-8
238-2	RESERVE FEEDWATER FLOW INDICATOR	723121-1				
239	FEEDWATER PRESSURE TRANSDUCER & SWITCH	718788		3302C, 3867	5158	1
210	EVCS AND POWER					
		710980-6		3221, 3223B		1
211	EVCS	722862-1		3221, 3223B	5177	P-8
213	MAIN POWER SUPPLY	(22002-1		3382A	21/1	F=0
	MAIN BATTERY CABLE	713821-2				1
	BRANCHED WIRE HARNESS	715458-2 713083-2 731719-2			,	
215	TERMINAL BOXES A-1 A-2	715500-9 726873 - 7		4159, 4302 4159, 4302		P-8
216	EMI SUPPRESSORS	707413 730219		3302C	5209	
220	ELECTRICAL CONTROLS & SWITCHES					
221	VOLUME CONTROL POTENTIOMETER	710951-3		3016A	5058	
221-1	VOLUME CONTROL POTENTIOMETER	723603		4255		
222	MODE SELECTOR SWITCH	717514-4		3137A	5058 5240	
222 - 1	MODE SELECTOR SWITCH	723602		4262		
223	TIME DELAY MODULE	726451		3835	5052	
224	PUSH TO TALK SWITCH	721728-2		4171A	5576	P-8
225	PUMP SWITCH	715949-2		3302C	5058	
226	FAN SWITCH	712948-2		3302C	5058	1
	CONTROL PACKAGE	721722-2				
227	ALARM GENERATOR	721722-3		3302C, 4154A	5570	
228	PLSS ELECTRICAL UMBILICAL	713812-8		3302C	5056	P-8
229	CURRENT LIMITERS	730307-7		3302C	5182	
240	OXYGEN VENTILATION LOOP					
240	CONTAMINANT CONTROL ASSEMBLY					
241-1	LITHIUM HYDROXIDE CANISTER	706160-12		3230A		P-8
241-1	LITHIUM HYDROXIDE CARTRIDGE	710854-11		3364, 2836в	5156	
241-2	DITUTOR REDROVEDE CAVITIDOE	1007.11		55- , 20505	5225	11
241-3	LITHIUM HYDROXIDE CONTAINER	718783-4		2369		
242	WATER SEPARATOR	706120-5		3135A		P-8
243	FAN MOTOR ASSEMBLY	710974-6		3273A	5207	
243-1	FAN MOTOR	712964-6		3218A	4865	

ITEM NO.	COMPONENT	DWG NO. (SV)	SERIAL NO. LMP/CDR	SPECIFICATION (SVHS)	DVT/QUAL (SVHSER)	
244-1	OXYGEN INLET CONNECTOR	713097-3		3822A, 33088	5180	1
244-2	OXYGEN OUTLET CONNECTOR	713844-3		3822A, 3308B	5180	
245	BACK FLOW CHECK VALVE	721915-5		4284	5173	
246	CO2 SENSOR FLOW RESTRICTOR	723425-1				
250	FEEDWATER LOOP					
251	SUBLIMATOR	705119-4	×	3130C	5204	
252	FEEDWATER RESERVOIR	706160-12		3230 B		
253	WATER SHUTOFF AND RELIEF VALVE	715484-4		3140C	5147	
253-2	WATER SHUTOFF AND RELIEF VALVE			4350		
254	WATER FILL CONNECTOR	706140-7		2700A, 3141A		
255	WATER DRAIN CONNECTOR	706141-4		3141A, 3142A		1
256	RESERVOIR VENT CONNECTOR	718720				
256-1	RESERVE RESERVOIR VENT CONNECTOR	718720				
257	SUBLIMATOR FLOW LIMITER	713601-2		3150		
258	RESERVE FEEDWATER RESERVOIR	723145		4349		
259	RESERVE FEEDWATER RESERVOIR SHUTOFF &	723147				
	RELIEF VALVE					1.
260	LIQUID TRANSPORT LOOP					
261	ACCUMULATOR	706180		3134A	5208	
262	PUMP/MOTOR ASSEMBLY	713867-6		3318A	5208	
		710975		3272	5181	
263	WATER DIVERTER VALVE	715486-2		3133A		
264	MULTIPLE WATER CONNECTOR	718776 - 5		3128E, 3309 3310	5183	
265	PLSS WATER FILL CONNECTOR/DRINK WATER GUN	706140		2700A		
266	TRANSPORT LOOP RELIEV VALVE ASSEMBLY	723610-1		4282	5208	
267	CHECK VALVE	723206-1				11
268	GAS SEPARATOR	742108-2		4736		
270	PRIMARY OXYGEN SUBSYSTEM					1.
274	PRIMARY OXYGEN BOTTLE	702115		21004		
275	PRIMARY OXIGEN FILL CONNECTOR	723145		3122A		
275	PRIMARY OXYGEN REGULATOR ASSEMBLY	723020 707844-3		3138, 3322 3127A		
280	PRIMARI ORIGEN REGULATOR ASSEMBLI PACKAGING	101044-3		312/A		
281	PLSS COVER AND CLOSURE	718730-7				
201		718756-3				
282	THERMAL INSULATION COVER	718800-9		2260, 3017		
283-1	INLET GAS CONNECTOR STOWAGE PLATE	713845-3		3308B		
283-2	OUTLET GAS CONNECTOR STOWAGE PLATE	713846 - 3		4196, 3308в		
286	MULTIPLE WATER CONNECTOR STOWAGE PLATE	710921-2		3128E	5154	
287-1	PLSS ELECTRICAL UMBILICAL STOWAGE PLATE	718745-2				
287-2	PLSS ELECTRICAL UMBILICAL STOWAGE PLATE (PGA)	723509 - 1				
288	MAIN POWER SUPPLY STOWAGE PLATE	718765				
289	REMOTE CONTROL UNIT	721783 - 8		3302C, 4288		
	CAMERA MOUNTING BRACKET	742170-2		nangan 1907		
300	LCG MOUNTED HARDWARE					
302	LCG MULTIPLE WATER CONNECTOR	710832		3310		
		1000-2007 000-000		1000000000		

•

III-12-3

SB NO. EMU 12-1 PCN-8

ITEM NO.	COMPONENT	DWG NO. (SV)	SERIAL NO. LMP/CDR	SPECIFICATION (SVHS)	DVT/QUAL (SVHSER)	
500	OXYGEN PURGE SYSTEM	730101-3		4039	5150 5265	P
510	OXYGEN SYSTEM					
511-2	1 OPS BOTTLE	730103		4049	5153	
512-2	OPS SHUTOFF VALVE	730111-5		4044, 4046		
512-3	OPS FILL FITTING	730111-5		4046		
512-4	OPS HEATER AND REGULATOR	730111-9		4046	5221	1
513	OPS OXYGEN CONNECTOR .	718775-9				P
520	ELECTRICAL CONTROLS AND POWER					1
521	1 OPS POWER SUPPLY	730107-4		4184, 4042A	5178	
522	OPS HEATER CONTROLLER	730106-2				
523	OPS POWER ON-OFF SWITCH	730108-2		4153	5171	
524	OID FOWER OW-OFF SWITCH	730100-2		4171A	5205	
524-1	OPS CHECKOUT SWITCH	731784		2200 117714	5003	
524-2	OPS CHECKOUT LAMP			3302, 4171A	5201	
525	OPS TERMINAL BOX AND FERRULES	730303		33020	5201	
526	OPS TEMPERATURE SENSOR	721001		4159	5152	
527	OPS BATTERY CABLE	731901		4206	5110	
		731720		33020		
530	PACKAGING					
531	OPS COVER ASSEMBLY	731816-4/-5				F
532	OPS THERMAL COVER	731814-4				
533	OXYGEN CONNECTOR STOWAGE PLATE	721760-2		4196		
534	ACTUATING CABLE AND LEVER	723734-3		4044	5206	F
534-1	REMOTE CONTROL ACTUATOR	721920-5			e e	
535	PLSS ANTENNA	713932-4		3385, 3227		1
536	OPS REGULATOR CHECKOUT PRESSURE GAUGE	731716		4205	5179	
537	BREAST PLATE	723238				1.
	SHOULDER HARNESS	723239				
	WAIST HARNESS	723241				F
	LOWER HARNESS MOUNTING	723244				
	UPPER HARNESS MOUNTING	723242				
800	VEHICLE ASSOCIATED EMU COMPONENTS					11
831	VEHICLE H20 RECHARGE CONNECTOR	710911-3		3141A, 3325A	5322	
832	VEHICLE WASTE CONNECTOR	710908-4		3327A	5326	
833-1	VEHICLE INLET OXYGEN CONNECTOR	713065		3330		
833-2	VEHICLE OUTLET OXYGEN CONNECTOR	713842		3330		1
834	OXYGEN RECHARGE CONNECTOR	714121		3322		
837-1	VEHICLE OXYGEN CONNECTOR STOWAGE PLATE	713883		3300		
001 1	PLSS SUPPORT HARNESS	718793-4		5500	5141	
		718794-3			5146	
	EMU SYSTEM FAILURE	706100-6/-7				
	MODE AND EFFECT ANALYSIS	730101-2				
	COMPONENT IGNITION POTENTIAL TEST				5184	
	PLSS OUTGASSING AND ODOR TEST				5176	
	1				1	1

III-12-4

sb NO. EMU 12-2		6/1/71	
		PCN-8 W. V. Bates -	
TITLE: EMU WEIGHTS	APPROVAL:	J. M. Mast	(
A. EVA Configuration		(Lbsm)	
1. EV PGA with ITMG (including IV gloves, pressure helmet assembly and con	nm carrier) 🦒	47.27	P-8
2. Liquid cooling garment (LCG)		4.9	P-5
3. Fecal containment subsystem (FCS)		0.5	
4. Urine collection and transfer assembly (UCTA)	PGA 66.3	0.53	
E Dichalt cocmble	ITMG	0.2	P-8
	auxiliary	1.1	
7. EV gloves	oonents	2.5	1
8. Lunar extravehicular visor assembly (LEVA)		4.4	P-5
9. Lunar overshoes	Ĺ	4.9	
10. Purge valve		0.63	P-6
11. PLSS, dry with EVCS, thermal cover, and harness	ſ	63.79	P-8
12. Remote control unit (RCU)		5.95	P-6
13. PLSS battery		10.5	1
14. PLSS LiOH cartridge PLSS	100.21	5.02	P-8
15. PLSS oxygen		1.80	
16. PLSS liquid transport loop		1.25	P-5
17. PLSS feedwater	l	11.9	P-8
 Oxygen purge system (OPS) without oxygen OPS 	35.00 {	29.22	P-6
19. OPS oxygen	(5.78	P-5
20. BSLSS		10.65	P-6
B. IVA Configuration	Total	212.79	P-8
1. IV PGA with IVCL (including IV gloves, pressure helmet assembly and con	nm carrier)	35.7	
2. Constant wear garment (CWG)		0.9 '	P-5
3. Fecal containment subsystem (FCS)		0.5	
4. Urine collection and transfer assembly (UCTA)		0.53	1
5. Biobelt assembly		0.2	
6. Bioinstrumentation assembly		1.1	
7. Helmet protective shield		0.8	
	Total	39.73	1
C. EMU Maintenance Kit		0.5	P-5
D. Inflight Coverall Garment (ICG)		4.4	
2. Intra-Pro coverant daiment (100)			1

¹ The weight of the RCU includes the weight of the RCU camera bracket(5.391bs. + 0.561bs.).

P-6

III-12-5

1

THIS SB IS DELETED BY PCN-8

This SB deleted by PCN-8

III-12-10 through III-12-12

SB NO. EMU 12-5

S/C: EMU 6/1/71 DATE REV: PCN-8 ORIGINATOR: .V. Bates APPROVAL:

P-3

TITLE: THERMAL CONTROL

BACKGROUND: The EMU must provide sufficient thermal control to satisfy the design metabolic expenditure superimposed upon the extremes of external thermal environment. The responsibility for thermal control for the EMU is divided between the oxygen ventilation loop (OVL) and the liquid transport loop (LTL) in conjunction with the liquid cooling garment (LCG). The oxygen ventilation loop heat loads include respiration latent, suit sensible, perspiration, fan/motor, LiOH sensible and latent. The liquid transport loop heat load includes metabolic (less respiration and suit sensible), heat leak, EVCS, pump, battery, and fan/motor cooling jacket.

The following symbols are used in the text:

Q = heat transfer rate, Btu/hr C_p = specific heat, Btu/lb-°F \dot{m} = mass flow rate of H₂O, lbs/hr T = temperature, $^{\circ}F$ T_{db} = dry bulb temperature, ^oF (i.e., the measured temperature of a gas mixture) T_{Wb} = wet bulb temperature, $^{\circ}\text{F}$ (i.e., the adiabatic saturation temperature of the mixture) P = pressure, psia

 $R = gas constant, 48.3 \frac{ft-lb_f}{lb_m-R}$

 $v = \text{specific volume, ft}^3/\text{lb}$

 ω = humidity ratio, lb water vapor/lb dry air

 ϕ = relative humidity, percent

hfg = enthalpy of evaporation, Btu

hg = enthalpy of a saturated vapor, Btu

hf = enthalpy of a saturated liquid, Btu

q = heat, Btu

Mda = mass flow rate of dry air, lb/hr

Min = mass flow rate of ambient air, lb/hr

Subscripts:

a = dry air

in = inlet parameter

out = outlet parameter

m = mixture of vapor and dry gas v = water vapor parameter

g = saturator vapor parameter

The LTL/LCG transfers heat to the sublimator by conduction. Heat rejection by the LTL at the sublimator is defined by the following equation:

$$\dot{Q} = mCp (T_{in} - T_{out})$$

where
$$C_p = 1.0$$

 $T_{in} - T_{out}$ = differential temp across the sublimator

For a 2000 Btu/hr metabolic load, plus equipment load, the LCG/LTL removes approximately 2140 Btu/hr.

$\dot{q} = (1)(4.2)(60)(53.5 - 45) = 2142.0 \text{ Btu/hr}$

The OVL utilizes natural forced convection, radiation, and evaporation to transfer heat to the sublimator for heat rejection.

III-12-13

SB NO. EMU 12-5 PCN 6

Sublimator Inlet	Sublimator Outlet
$T_{db_{in}} = 120.5^{\circ} F$	$T_{dbout} = 52^{\circ}F$
$T_{wbin} = 88.3^{\circ}F$	$T_{wb_{out}} = 52^{\circ}F$
$P_{m_{in}} = 3.70 \text{ psia}$	P _{mout} = 3.67 psia

where: $P_{m_{in}}$ = total atmospheric press at inlet

$P_{m_{out}}$ = total atmospheric press at outlet

Complete adiabatic saturation pressure at $88.3^{\circ}F$ is 0.66 psia (steam tables). Therefore, the pressure of the dry gas at the sublimator inlet is:

$$P_{a_{in}} = P_{m_{in}} - P_{v} = 3.7 - 0.66 = 3.04 psia$$

The specific volume (ν_{a}) of the inlet dry gas for complete saturation is:

$$v_{a} = \frac{R_{a} T_{in}}{P_{a}} = \frac{(48.3) (460 + 88.3)}{(3.04) (144)} = 60.5 \text{ ft}^{3}/1\text{b}$$

and the relative humidity ratio (ω_{a}) for complete saturation at $88.3^{\circ}F$ is:

$$\omega_{a} = \frac{v_{a}}{v_{g}} \phi = \frac{60.5}{493.7} (1.0) = 0.123$$

Application of the first law to adiabatic saturation results in the humidity ratio (ω_{in}) for the sublimator inlet:

$$\omega_{in} = \frac{C_{p_a} (T_2 - T_{\bar{1}}) + \omega_a {}^h f_{g_a}}{h_{g_{in}} - h_{f_a}} = 0.1149 \text{ lb water vapor/lb dry air}$$

where: C_{pa} = 0.24 Btu/lb-°F $T_1 = 120.5^{\circ}F$

 $T_2 = 88.3^{\circ}F$ From the steam tables, at 88.3°F:

30

 $h_{f_{g_a}}$ = latent heat of evaporization (1042 Btu)

h_{gin} = saturation vapor (1100 Btu)

 h_{f_a} = saturation liquid (56 Btu)

The inlet relative humidity (ϕ_{in}) can be determined from the following expression:

 $\phi_{\text{in}} = \frac{v_g}{v_a} \omega_{\text{in}}(100) = \frac{200.35}{60.5} (0.1149)(100) = 38.05\%$ where: $v_g = 200.35 \text{ ft}^3/1\text{b} \text{ at } 120.5^{\circ}\text{F}$ and $P_g = 1.712 \text{ psia at } 120.5^{\circ}\text{F}$

The dew point is the saturation temperature corresponding to $\mathrm{P}_{\mathrm{v}}.$

where: $P_v = \phi P_g = (.3805) (1.712) = 0.6514 psia$

dew point = 87.9°F

The gas mixture leaving the sublimator will be saturated and must have the same humidity ratio (ω) as the mixture in the desired final condition. This saturation temperature of $52^{\circ}F$ corresponds to a final vapor pressure (P_V) of 0.2 psia.

$$P_a = P_m - P_v = 3.67 - 0.2 = 3.47$$
 psia

$$p_a = \frac{{}^{R}a^{T}a}{{}^{P}a} = \frac{(48.3)(480 + 52)}{(3.47)(144)} = 51.424 \text{ ft}^{3}/1b$$

Ш-12-14

P-6

P-3

$$\phi = 100\%$$

$$\omega_{out} = \frac{v_{a}}{v_{g}} \phi = \frac{(51, 424) (1.0)}{1588.2} = 0.0324 \text{ lb/lb}$$

$$where: v_{g} = 1588.22 \text{ ft}^{3}/\text{lb for } 52^{\circ}\text{F}$$

The sublimator must, therefore, cool the gas from $120.5^{\circ}F$ to $52^{\circ}F$. During the latter part of this cooling process, water is removed. Application of the first law to the sublimator in which work = 0, $\Delta KE = 0$, and the flow is steady state:

 $q_{out} = h_{a_{in}} + \omega_{in} h_{v_{in}} - h_{a_x} - \omega_x h_{v_x} - (\omega_{in} - \omega_{out}) h_{f_x}$

Assume that all condensate leaves at the temperature T_x (52°F). Noting that $\omega_x = \omega_{out}$, $h_v = h_g$ at the same temperature, and Δh_{a} = $C_{p_{a}}$ $\Delta T.$

 $q_{out} = C_{p_a} (T_{in} - T_x) + \omega_{in} h_{g_{in}} - \omega_{out} h_{g_{out}} - (\omega_{in} - \omega_{out}) h_{f_{out}}$ From the steam tables, at 52°F: h_{gout} = 1061 Btu

h_{fout} = 20 Btu

 $q_{out} = 0.24 (120.5 - 52) + 0.1149 (1100) - 0.0324 (1061) - (0.1149 - 0.0324) (20)$

q_{out} = 106.84 Btu/lb at dry air

Where mass flow rate of dry gas into the sublimator is:

$$M_{da} = \frac{m_{in}}{1 + \omega_{in}}$$
where: $M_{in} = 7.65$ lb/hr
 $M_{da} = \frac{7.65}{1 + 0.1149} = 6.86$ lb/hr

The rate of heat removed by the oxygen ventilation loop at the sublimator is:

 $\dot{Q} = M_{da} q_{out} = 6.86 (106.84) = 733.1 Btu/hr$

Total sublimator heat load rejection for 2000 Btu/hr metabolic plus equipment loads:

Oxygen ventilation loop = 733.1 Btu/hr Liquid transport loop = 2142 Btu/hr

Total load = 2875.1 Btu/hr or approximately 2900 Btu/hr

.3

P-3

P-3

P-3

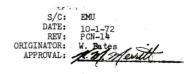
SB NO. EMU 12-5 PCN-8

This Figure deleted by PCN-8

Figure 12-5a

Ш-12-16

SB NO. EMU 12-6a


This SB deleted by PCN-8

SB NO. EMU 12-6b

This SB deleted by PCN-8

III-12-18 through III-12-27

SB NO. EMU 12-7

P-14

P-11

P-11

P-6

P-11

P-14

P-6

P-5

P-6

P-5

P-11

TITLE: EMU PRESSURE REGULATORS

BACKGROUND: The PLSS primary 0, and OPS pressure regulators are both single stage regulators (Figure 12-7a) referenced to ambient pressure. The outlet pressure of the regulator is maintained by the force balance existing across the bellows (i.e., lower regulator valve spring plus PGA pressure versus bellows calibration spring and ambient pressure). As oxygen is consumed, the PGA pressure decreases, causing an imbalance and displacement of the bellows. This displacement modulates the regulator flow metering ball valve, re-establishing the force balance by increasing the PGA pressure. The PLSS primary $\rm O_{2}$ pressure regulator maintains the PGA pressure at 3.85 \pm 0.15 psid for flow rates of 0.07 to 0.7 lb/hr and 3.75 + 0.25 psid for flow rates of 0.7 to 2.0 lb/hr. The OPS pressure regulator maintains the PGA pressure at 3.7 \pm 0.3 psid for flow rates ranging from 0.07 to 8.4 lb/hr.

> For a lower regulator valve spring failure, the regulator would fail open. If the PLSS primary O_{2} pressure regulator fails open, a flow limiting orifice restricts the flow to a maximum of 3.981b/hr for an upstream pressure of 1500 psia. The PGA pressure relief valve is capable of accommodating the flow from the failed open PLSS primary O_{p} pressure regulator, preventing overpressurization. For a full primary 0, supply (POS), approximately 70 minutes lifetime is available. If the OPS pressure regulator failed open, the flow would be in excess of 200 lbs/hr, rupturing the PGA by overpressurization. Since the OPS is a backup system, an upstream shutoff valve prohibits this from occurring when not in use.

If either of the regulators' bellows calibration spring fails, the respective regulator will fail closed. If either of the regulators' bellows ruptures, the respective regulator will fail open.

In the event of a bellows failure, the POS would escape through the ambient reference port and the PGA pressure relief valve. Once the POS is depleted, an orifice in the ambient reference port limits any further oxygen ventilation loop 0_{0} losses to 0.7 lb/hr at 3.9 psia.

If the OPS pressure regulator bellows fails while the shutoff valve is open, the entire $0_{\rm o}$ supply will escape to vacuum within a few seconds.

During LM cabin repressurization to 5 psia, a POS source pressure of 150 psia will prevent the PGA from receiving negative pressures. To maintain proper PGA pressure regulation during repressurization (100 sec), either a minimum POS pressure of 527 psia or a reduced cabin repressurization rate is required.

In the absence of a flow restriction at the OPS outlet, the entire OPS source pressure can be dumped in approximately 4 minutes at an initial flow rate of 240 lbs/hr at a source pressure of 5880 psia.

The OPS pressure regulator will maintain properly regulated pressures down to a minimum source pressure of 500 psia at 8 lbs/hr in a vacuum, and 300 psia at 4 lbs/hr in a vacuum.

At 5 psia ambient, the OPS regulated pressure falls to 3.4 psid between a source pressure of 600 to 800 psia, and to 2.5 psid at a source pressure between 400 and 600 psia.

III-12-28

SB NO. EMU 12-8

S/C: EMU DATE: 10-1-72 DATE: REV: PCN-14 ORIGINATOR: L. Wib APPROVAL: 1

P-14

P-14

TITLE: CMP EVA

BACKGROUND: The CMP EVA on Apollo 17 is required for retrieval of the two film cassettes (one each) from the pan camera and the mapping camera along with the lunar sounder, located in the SIM bay of the SM. These cameras are for lunar surface photography. The CMP assisted by the LMP, positioned at the CM side hatch, will conduct the film cassette retrieval, utilizing the wrist tether retrieval system.

> The EVA is currently scheduled after TEI. The SIM bay orbital experiments have been active since IM jettison and SIM bay door ejection. The total EVA, including preparation and post activities, will encompass approximately 2.5 to 3.0 hours of which 45 minutes (approx.)P-14 will be EVA time (cabin depress to cabin repress).

The CMP's EVA equipment shall consist of an extravehicular pressure garment assembly (A7L-B-CMP EV-PGA), an open loop, umbilical supplied, primary life support system (with crewman restraint capabilities) and a portable, nonrechargable, open loop, emergency life support system.

The primary life support system consists of an EVA oxygen umbilical, a Suit Control Unit (SCU), and a Pressure Control Valve (PCV). The SCU contains an ON-OFF valve, a low pressure warning switch which activates between 3.1 and 3.4 $\ensuremath{\text{psia}}$, and a low flow warning switch which activates at 6.0 lbs/hr with a tone audible to the CMP only. The PCV, located at the PGA outlet, back pressures the PGA by means of a relief valve to provide downstream pressure regulation at $3.85 \pm .15$ psia between PGA inlet flow rates of 10-12 lbs/hr. The CSM provides an O2 supply at 900 \pm 35 psia to the EVA/IVA demand regulator which reduces the pressure to 100 \pm 5 psia before entering the EVA umbilical. The emergency life support system consists of a helmet-mounted Oxygen Purge System (OPS) and a two-position PGA purge valve. This system provides a minimum of 30 minutes regulated O_2 supply based on a fully charged system.

The CDR and IMP, during the EVA, shall be configured in the CDR and IMP lunar surface extravehicular pressure garment assemblies (IMP/CDR A7L/B EV-PGA) while connected to the Command Module Environmental Control System (CM-ECS).

SB NO. PLSS 13-1

BACKGROUND:

TITLE: CONTAMINANT CONTROL ASSEMBLY

S/C: EMU DATE: 6/1/71 REV: PCN-8 ORIGINATOR: W. Y. Bates APPROVAL:

P-8

P-6

P-3

P-3

REFERENCES: SVHS 3230A; 2369; 2826B; SVHSER 5156; 5225; 5390; 5411

A lithium hydroxide cartridge is used for contaminate control in the oxygen ventilation loop of the PLSS. The cartridge provides a means of removing CO_2 and trace contaminants from the recirculating oxygen. The contaminated gases (O_2, CO_2) enter the center of the perforated titanium annulus from one end of the PLSS cartridge (Figure 13-1a). From the annulus, the gases flow radially outward through a 200 mesh stainless steel screen which is used to prevent LiOH back dusting, and into a bed of activated charcoal (0.3 to 0.32 lbs) for odor removal. From the charcoal bed, the gases pass through a separation screen and into the monohydrate LiOH bed (3.12 to 3.38 lbs) where the CO_2 removal occurs. The O_2 then passes through the teflon felt filter and out of the assembly through elongated slots cut in the outer titanium shell.

The cartridge performance is dependent upon stowage temperature, stowage pressure, gas flow rate, P-5 operating temperature, relative humidity, inlet CO2 PP, and LiOH structure. The PLSS cartridge operates in a relatively low flow, low humidity, low temperature, and high CO2 environment. Under these severe conditions, the cartridge utilizes a monohydrate (4 to 8 percent H2O) LiOH P-5 structure to accomplish the design mission without exhibiting breakthrough (>15 mm Hg). The monohydrate structure increases the surface area of LiOH granules, providing a greater number of sites of activation for diffusion and $\rm CO_2$ absorption. The cartridge initially scrubs both moisture and CO2 and generates heat and water as a by-product. This total moisture, in conjunction with the inlet CO2 PP, comprises the driving force that further propagates the reaction and controls cartridge lifetime. After 1-1/2 to 2 hours of operation, the LiOH structure reaches a sufficient P-3 hydration level and starts dumping the excess moisture, increasing the outlet dew point. The net . exchange of moisture within the cartridge over its lifetime is negligible. The monohydrate LiOH bed reacts with CO₂ in the following basic reaction:

$CO_2 + 2LiOH \longrightarrow Li_2CO_3 + H_2O + \Delta Q$

A. Gram Molecular Weight Determination

CO₂ = 12.011 + 32.000 = 44.011 gms = .097 lbs

2 LiOH = 2(6.939 + 16.000 + 1.000) = 47.878 gms = 0.105 lbs

Li₂CO₃ = 13.878 + 12.011 + 48.000 = 73.889 gms = 0.163 lbs

 $H_00 = 2.000 + 16.000 = 18.000 \text{ gms} = 0.040 \text{ lbs}$

If 100 percent efficiency is considered:

3.00 lbs LiOH will react with and remove 2.77 lbs of $\rm CO_2$ and generate 1.14 lbs of $\rm H_2O$ and 3626.5 Btu's

If 34 percent efficiency is considered:

3.00 lbs LiOH will react with and remove 0.940 lbs of $\rm CO_2$ and generate 0.39 lbs of $\rm H_2O$ and 510.6 Btu's

For a 3-hour mission profile, the cartridge outlet CO_2 partial pressure must not exceed 10 mm Hg. The 4800 Btu metabolic production corresponds to a total CO_2 generation of 0.94 lbs. The removal of 0.94 lbs of CO_2 corresponds to a cartridge efficiency of approximately 34 percent (Figure 13-lb). Nominally, the cartridge is at least 50 percent efficient.

B. Vacuum Degradation

The minimum allowable ambient pressure for the LiOH cartridge is 0.5 psia to prevent vaporization of cartridge moisture. If the cartridge is exposed to an ambient pressure of less than 0.5 psia, the maximum time for EMU use is 60 minutes.

C. Cold and Hot Soak

Cartridges exposed to 5°F for 48 hours completed the 3-hour 4800-Btu mission profile with margins of 41 and 51 minutes. Cartridges exposed to 30° F for 72 hours completed the 3-hour 4800-Btu profile with margins of 57 and 70 minutes. Cartridges exposed to 130° F for 130 hours failed to maintain an outlet CO_2 partial pressure of less than 10.00 mm Hg for the required 3-hour mission profile.

SB NO. PLSS 13-1 PCN-5

The high temperature exposure changes the granular structure (monohydrate LiOH) into a crystaline structure (anhydrous LiOH), reducing the surface area for diffusion and absorption.

D. Performance in Mission Profile

The increase in dew point (relative humidity) from 65° F to 75° F increases the CO₂ absorption rate and cartridge performance by a factor of 1/2. The low dew point profile had margins at P-3 20 to 28 minutes where the high dew point profile had margins at 110 to 150 minutes. However, direct liquid injection in excess of 100 grams would glaze (oversaturate) the granules, reducing the P-5 surface area and activation sites for CO₂ absorption. A partially consumed cartridge stowed within the PLSS in excess of 12 hours absorbs the residual water in the OVL, saturating the LiOH.

A 4500 Btu/hr metabolic rate, even for a minute duration, is detrimental to sustained cartridge performance and would require a shortened mission.

Fluorel foam end pads, which are preloaded to 140 psi, prevent possible LiOH channeling by keeping a constant compressive load on the bed, thereby resisting the formation of fissures and channels.

P-5

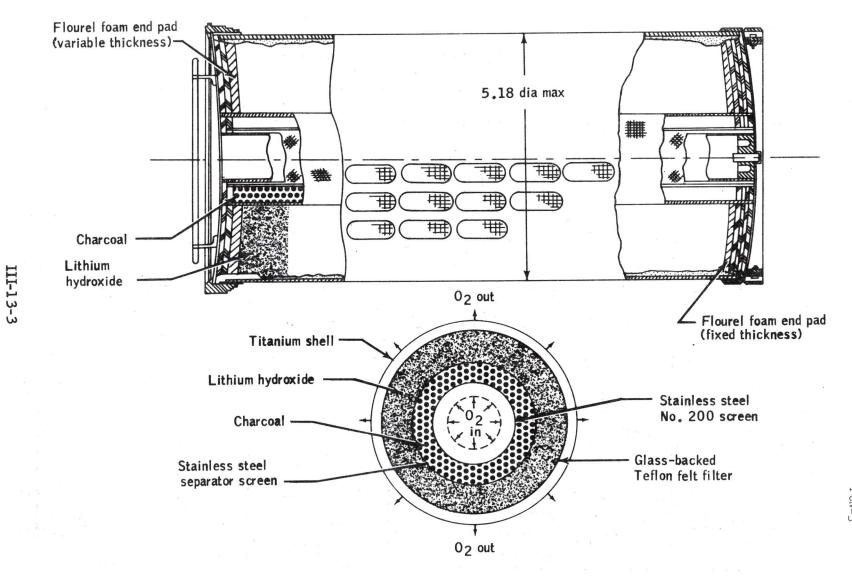
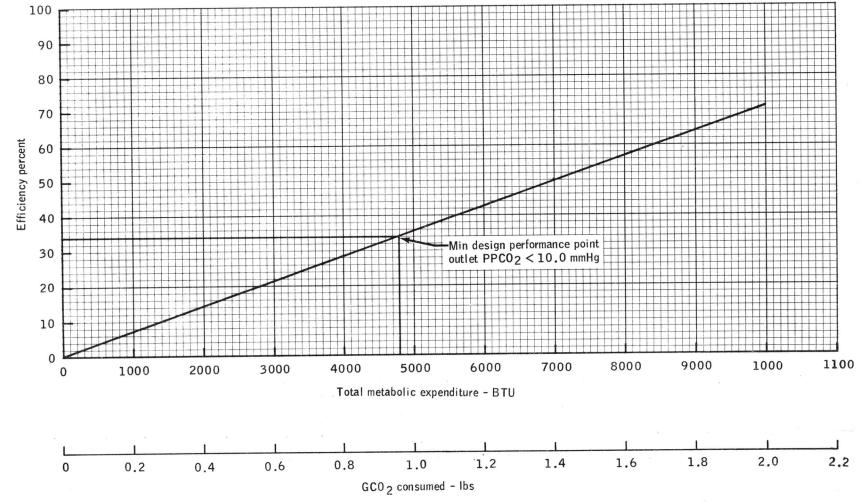
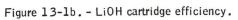




Figure 13-1a. - LiOH canister.

SB NO. PLSS 13-1 PCN-3

III-13-4

SB NO. PLSS 13-1

SB NO. PLSS 13-2

S/C: EMU DATE: 6/1/71 REV: PCN-8 ORIGINATOR: W. V. Bates APPROVAL:

P-5

TITLE: PLSS SUBLIMATOR

REFERENCES: SVHS 3130C; SVHSER 5204

BACKGROUND:

Enterione i come

The PLSS utilizes a sintered-nickel, porous plate sublimator operating at triple point as a heat sink for the liquid transport loop (LTL) and the oxygen ventilation loop (OVL) (Figure 13-2a). The respective loops' cooling passages transfer heat by conduction to the feedwater loop cooling passages. The heat contained in these passages is then dissipated by a mixed mode of sublimation/vaporization of feedwater.

At triple point, the PLSS sublimator rejects heat by a mixed mode of operation (sublimation/vaporization). This mixed mode of operation is defined by the feedwater pressure and the rate of heat transfer and vapor pressure drop across the porous plate, the latter being a function of the plate porosity.

A vaporization mode of operation (h_{fg}) exists when the pressure and/or temperature at the inner surface of the porous plate exceeds the defined triple point. The retention of water in absence of a solid ice layer is achieved by maintaining the combination of vapor pressure of water and surface tension in excess of the feedwater sublimator inlet pressure. (The pressure differential which a pore can retain by surface tension is inversely proportional to the equivalent radius of the restriction, i.e., the smaller pores begin the vaporization process before the larger pores as the heat load increases.) Sublimation (h_{ig}) occurs when the pressure and/or temperature on the inner surface of the porous plate drops below the defined triple point conditions. The thickness of the ice layer formed is governed by the rate of heat transfer and sublimation temperature corresponding to the local vapor pressure at the inlet face of the porous plate. As a result of the random variation in pore radii, the PLSS rejects heat simultaneously by sublimation and vaporization establishing a 32° F heat sink at a vapor pressure of 0.0885 psia (Figure 13-2b).

During startup (Figure 13-2c), provisions are necessary to insure that the sublimation mode is established prior to feedwater pressure buildup. If feedwater pressure (GT&110P/GT&210P) is allowed to build in combination with high initial thermal loads prior to establishing an ice layer, feedwater breakthrough would occur. (Breakthrough results when a pore cannot maintain feedwater pressure by the combination of its surface tension and characteristic vapor pressure.) To prohibit breakthrough, a feedwater flow limiting orifice (visojet) has been placed in the line at the sublimator inlet to prevent high initial feedwater pressure. This flow limiter produces a sufficient line pressure drop to allow formation of the ice layer. The pressure drop across the flow limiter becomes negligible during steady state operation as relatively small flows are required. The maximum feedwater pressure for sublimation is 6.0 psia with any pressure above this resulting in sublimator breakthrough. P-6

The entire thermodynamic cycle (startup, ice layer formation, and operation) is illustrated in Figure 13-2b. Startup is characterized by a pure vaporization mode (h_{fg}) . As the feedwater enters the sublimator at startup, its maximum temperature will be approximately 109° F and its pressure will P-5 simply be the vapor pressure of water at this temperature (Figure 13-2d), 1.2422 psia, plus the ΔP P-3 characteristic of the porous plate, 0.0097 psia (500 microns), for a total back pressure of 1.2519 psia. (The fact that the pressure is a function only of these two sources is due to the ΔP vs flow characteristics of the flow limiter.) The rate decrease of enthalpy is given by the equation for the latent heat of vaporization $h_{fg} = h_g - h_f$, where h_f and h_g are defined as follows:

Enthalpy of water at 109° F and 3.5 psia = h = 76 Btu/1b

Enthalpy of steam at 109° F and 1.2519 psia = $h_g = 1109$ Btu/lb (Figure 13-2d) Enthalpy of water at 32° F and 0.0885 psia = $h_f = 0.00$ Btu/lb Enthalpy of steam at 32° F and 0.0885 psia = $h_g = 1076$ Btu/lb

The value of h_{fg} will range from 1033 Btu/lb to 1076 Btu/lb as the feedwater decreases its temperature from 109° F to 32° F. As the temperature of the feedwater approaches very close to 32° F, the high rate of decrease of the enthalpy together with variations of pore radii results in the formulation of an ice layer. The sublimator is completely filled with an ice layer formation in approximately 4 minutes.

SB NO. PLSS 13-2 PCN-6

P-3

P-5

P-3

P-5

P-3

P-5

P-6

The thickness of the ice layer increases with a further decrease in temperature slowly decreasing the amount of vaporization and, hence, localized pressure until an equilibrium state is reached. This equilibrium state occurs at a temperature of 32°F and a pressure of 0.0885 psia (triple point) resulting from localized vaporization due to the nonhomogeneity of the porous plate. (Figure 13-2b)

The sublimator, which is now at triple point, has established its ice layer and is in the nominal mode of operation of approximately 85 percent sublimation and 15 percent vaporization. The inlet feedwater pressure now stabilizes at a pressure corresponding to the feed H₂O flow rate and sublimator heat load. The change in enthalpy of the feedwater at triple point, $\Delta h_{\rm Tpt}$, is given by $\Delta h_{\rm Tpt} = 0.85(h_{\rm ig}) + 0.15(h_{\rm fg})$ where the following quantities are defined:

Enthalpy of water at 32°F and 0.0885 psia = $h_f = 0.00$ Btu/lb Enthalpy of ice at 32°F and 0.0885 psia = $h_{fi} = -143$ Btu/lb Enthalpy of steam at 32°F and 0.0885 psia = $h_{fg} = 1076$ Btu/lb Latent heat of sublimation at 32°F and 0.0885 psia = h_{ig}

here
$$h_{ig} = h_{g} - h_{i} = h_{fg} - h_{fi} = 1219 \text{ Btu/lb or}$$

 $\Delta h_{Tpt} = 0.85(1219 \text{ Btu/lb}) + 0.15(1076 \text{ Btu/lb})$ P-3
 $\Delta h_{Tpt} = 1197 \text{ Btu/lb}$

This is the amount of enthalpy the sublimator is capable of removing in the mixed mode of operation. The enthalpy content in the liquid transport loop and the oxygen ventilation loop will have to be reduced to effectively cool the crewman. There will also have to be additional decreases in enthalpy of the feedwater itself. The enthalpy of the sublimator structure has been increased by the lowering of temperature of the inlet feedwater from 109° F (startup) down to its 32° F triple point value. This addition of enthalpy will be at the rate of 1.0 Btu/lb-°F, the specific heat of water. Once the feedwater has reached the 32°F level, the enthalpy of the sublimator structure is again increased by the physical change of approximately 85 percent of the increase in enthalpy of the sublimator structure will be the latent heat of fusion or 143.0 Btu/lb. The combination of these two increases in enthalpy must also be removed to effectively cool the crewman. Therefore, the amount of decrease in enthalpy that may be utilized for the oxygen ventilation loop and liquid transport loop will equal the capability of the sublimator less the combination of the latter described system increases or:

(Startup at 109° F) 1197 Btu/1b - 77 Btu/1b - 0.85 (143 Btu/1b) = 957 Btu/1b

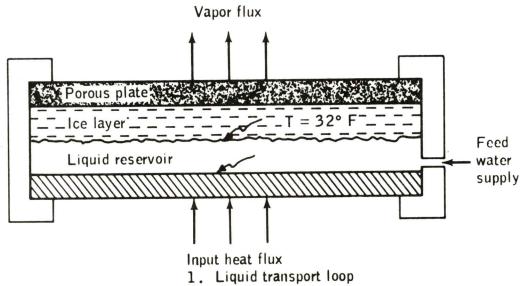
(Nominal operating at 70° F) 1197 Btu/lb - 38 Btu/lb - 0.85 (143 Btu/lb) = 1038 Btu/lb It should be noted that the efficiency of the sublimator increases with a decrease in temperature of the inlet feedwater. Although the sublimator heat removal rate is approximately the same whether in a pure vaporization mode, pure sublimation mode, or a mixed mode, the mixed has the advantage of being self regulating.

The back vented sublimator may operate at a maximum heat rejection level of approximately 8750 Btu/hr without suffering breakthrough. The limiting performance factor for the sublimator is the physical size of the viscojet. For high feedwater flow rates and corresponding high pressure drops across the viscojet, the downstream pressure eventually approaches the saturation pressure of the feedwater flowing through the flow limiter. When this phenomenon occurs (approximately 1.75 psia), boiling and subsequent vapor blanketing of the sublimator plenum results in degraded sublimator performance.

The sublimator has sustained minimum heat loads for 2 hours of operation without suffering degradation. However, complete termination of liquid transport loop flow in excess of 10 minutes will result in sublimator freeze-up.

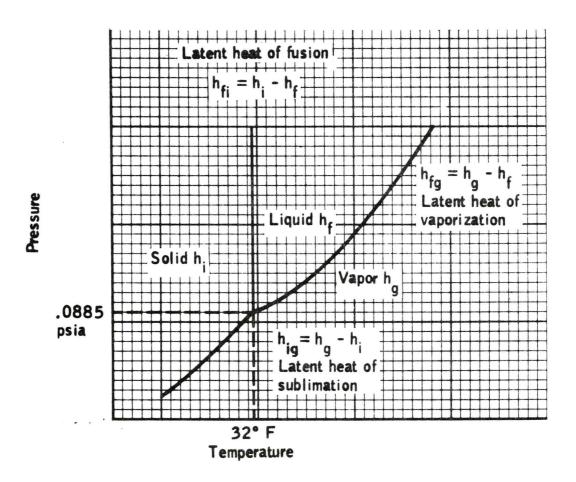
The minimum total heat load for the sublimator is 390 Btu/hr which consists of 140 Btu/hour for the oxygen ventilation loop (OVL) and 250 Btu/hr for the liquid transport loop (LTL). When the heat load on either of these loops drops below these respective values, freezing will occur in that portion of the sublimator.

P-


III-13-6

In the event of pump failure, or other loss of liquid transport loop flow, the oxygen ventilation loop can continue to provide cooling, since only the liquid transport section of the sublimator will freeze. At an OVL flow of 8.0 lbs/hr and a loop pressure of 3.7 psia, a crewman would have 40 minutes of operation at a metabolic rate of 900 Btu/hr before reaching a heat storage limit of 340 Btu.

Degradation in cooling can result from either air inclusion in the liquid transport loop (LTL) or by flow restriction (crimping of the LGC lines). In the maximum diverter valve position, evolved air not entrapped by the gas separator continually circulates through the LTL/LCG, causing flow reduction and a reduced rate of thermal exchange between the LCG and sublimator. In the minimum and intermediate diverter valve positions, air collects in the sublimator because it is the highest point in the loop and exhibits the maximum pressure drop. As a result of the air collection in the sublimator, the pump performance returns to normal operation. However, this entrapment of air restricts flow through the sublimator, degrading the rate of heat rejection and the heat rejection level. In the minimum diverter valve position, termination of flow through the sublimator due to restriction occurs at an approximate total flow rate of 1.5 lbs/min. This reduction is identified by the erratic response of LCG H₂O Δ T (GT8196T/GT8296T) on telemetry. In the intermediate or maximum diverter valve positions, complete termination of flow through the sublimator cannot be achieved by restriction.


The depletion of the feedwater reservoir is identified by the characteristic rise, then fall, in feedwater pressure (GT8110P/GT2110P) over a period of 10 to 20 minutes. This occurrence represents the passage of the water vapor bubble through the flow limiting orifice. When the feedwater pressure drops sufficiently to activate the low feedwater pressure flag and warning tone (1.2 to 1.7 psia), a residual P-8 cooling capacity of approximately 0.6 lbs of feedwater remains downstream of the H_2^0 shutoff and relief P-5 valve to provide an additional 700 Btu's of degraded cooling.

Inability to close the water shutoff and relief valve prior to LM repressurization results in eventual breakdown of the sublimator ice layer and loss of feedwater to the cabin. However, if the PGA pressure (feedwater reservoir reference pressure) approaches cabin ambient pressure during repressurization, insufficient ΔP across the PLSS exists to expel feedwater. On a subsequent depressurization with H_2^0 shutoff and relief valves closed, 140 cc of entrapped water in the sublimator will be extruded through the porous plates in the form of fine hairline filaments of ice.

2. Oxygen ventilation loop

Figure 13-2a. - Porous plate sublimator operation.

Boundary conditions:

- 1. Water at inlet to sublimator 32° to 109° F, 0.0885 to 6.0 psia
- 2. Ice at porous plate 32° F
- 3. Steam exhausted at vacuum side of porous plate is 32° F (additional heat from conduction)
- 4. Water at porous plate is 32° F, 0.0885 psia

Figure 13-2b. - Pressure vs temperature of water.

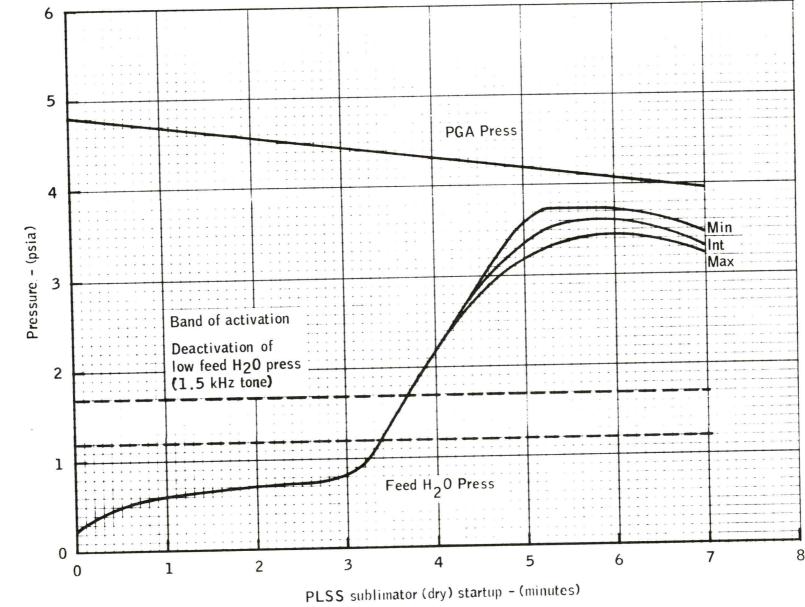


Figure 13-2c. - Sublimator startup.

SB NO. PLSS 13-2 PCN-8

FCD 5-69.7.62

FCD 5-69.7.66

.

SB NO. PLSS 13-2 PCN-8

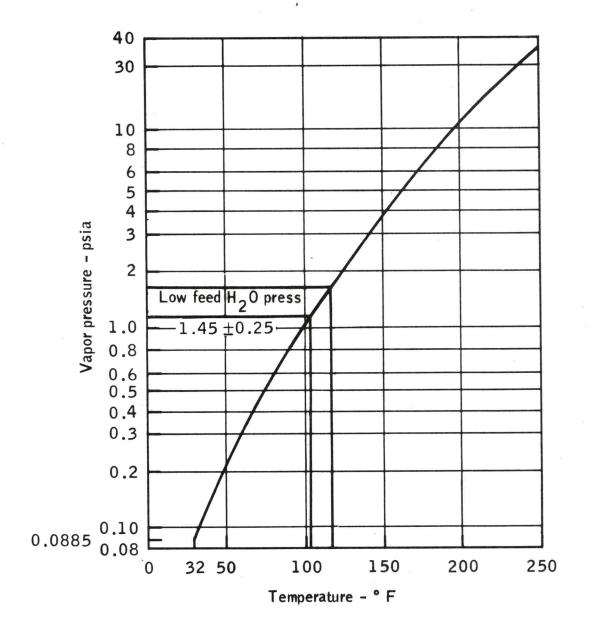


Figure 13-2d. - Vapor pressure of water.

Ⅲ-13-11

S/C: EMU DATE: 11-1-71 REV: PCN-11 ORIGINATOR: W. Bates APPROVAL: M. Murit

P-3

P-5

TITLE: PLSS PUMP/MOTOR ASSEMBLY

REFERENCES: SVHS - 3318A SVHSER - 5208: 5410

BACKGROUND:

The pump/motor assembly consists of the pump, torque motor (multivibrator), and inverter assembly operating between 15.7 and 20.5 Vdc. The positive displacement pump generates a pressure rise of 5.7 ± 1.0 psid, producing a flow rate of 4.0 ± 0.4 lbs/min through the PLSS liquid transport loop |P-ll (LTL) or the LM ECS LCG coolant loop.

A. Inverter Assembly

The solid state inverter assembly (flip-flop) generates a square wave ac signal having a frequency of 32 to 40 Hz. An EMI filter on the inverter power line reduces the level of broad band conductive interference. In addition, two zener diodes on the power line further reduce the susceptibility to transient pulses which manifest themselves by gating the power transistors, resulting in an open circuit. A failed open inverter power transistor inhibits pump startup. Due to the inverter assembly EMI susceptibility, a high-speed switching diode was also placed in parallel with the fan/motor assembly to limit startup transients to -2.25 to +25 Vdc. Maximum pump/motor assembly startup current is less than 2.0 amps.

B. Torque Motor

The torque motor consists of an electromagnetic coil within the magnetic flux field of a permanent magnet. The material for the magnets is initially magnetized with high flux, then demagnetized to limit operational aging. The armature or core for the electromagnetic coil is a cross configuration with a pivot point at the center of the cross. As magnetic couples are produced in one end of the armature about this pivot point, a reaction couple is transmitted to the pump diaphrams at the other end of the armature through the actuation arm. When the armature magnetic polarity reverses, couples reverse and the pump diaphrams are displaced in the opposite direction. The reversing field of the electromagnet is generated by the inverter assembly. Bumper pads on the armature aid damping while a torsion bar at the pivot point restores the armature to a neutral position. The efficiency of the motor depends on the symmetry and consistency of the armature air gap within the motor. Since the armature is supported by the torsion bar, any misalignment results in an asymmetrical condition. An asymmetric armature air gap acts as a shunt across the pole faces, which increases the magnetic leakage between field poles. This in turn decreases the working flux density and increases the power consumption. The performance of the low impedance motor is directly related to the input voltage. The motor is designed to withstand operation at 25 percent above rated frequency of oscillation for a minimum of 5 minutes under rated load conditions without failure or impairment of function.

C. Pump

The pump is of the double-acting positive displacement type. The midsection of the pump contains the actuation arm of the torque motor and is isolated from the water compartments on each side of the midsection by diaphrams. Each of the two diaphrams is a pump chamber with an inlet and outlet check valve to control the water flow direction through the pump. The oscillating motion of the actuation shaft simultaneously compresses the diaphram of one chamber, expelling water, and expands the chamber capacity of the other diaphram, resulting in water induction. The cycle reverses with the motion of the actuation arm. Improper seating of the pump check valves results in reduced performance at nominal power consumption. Working against an incompressible fluid, the pump demands a surge of power during each compression stroke. This 40 Hz EMI ripple (noise) has been eliminated from the telemetered battery current with the installation of a low pass filter. However, the ripple is still apparent on the telemetered battery voltage. From a LM feedwater recharge, the 40 psia N₂ aerated H₂O will release

Ⅲ-13-12

approximately 0.20 cc of N₂ per 1.0 cc of recharge H₂O at 3.5 psia. When the PLSS liquid transport loop drops below 3.5 psia and requires over 200 cc of makeup H₂O, the evolved air will exceed the capacity of the gas separator and degrade the pump to complete cavitation ($\Delta P = O$). This condition can either be caused by a leakage or stretching of the LCG (cold flow), creating a larger volume which necessitates additional coolant.

There are no constraints associated with the operation of the PLSS pump in a deadheaded condition.

During PLSS sublimator operations, the pump may be cycled off for a period not to exceed 10 minutes without suffering degradation to the liquid transport loop (freezeup).

The pump performance (ΔP) and PLSS internal resistance are the two parameters which control the PLSS liquid transport loop pressure rise. The minimum allowable performance (pressure drop) is 1.9 psid at 3.7 lbs/min (including a 0.53 psi pressure drop from the PGA multiple water connector).

P-5

TITLE: FAN/MOTOR ASSEMBLY

REFERENCES: SVHS 3273A; 3218A SVHSER 4865; 5207

BACKGROUND: The fan/motor assembly supplies the pressure rise required to circulate oxygen between the PLSS and the PGA for proper ventilation. The assembly consists of a volute and impeller assembly, and a water cooled inductive inverter type brushless dc motor.

A. Motor

The principle of operation of this motor is identical to the conventional rotor/stator dc motor. A torque is produced when the rotor and stator assemblies generate two electromagnetic fields with a relative angle between them. The commutation operation is derived by a switching function that changes motor polarity by reversing electromagnetic fields.

S/C: EMU

DATE: REV:

ORIGINATOR:

APPROVAL:

2/25/70

PCN-5

J.

The motor and its electrical circuits (printed circuit board) are sealed off from the oxygen ventilation loop by epoxy potting to reduce the possibility of condensation entering the electronics and shorting electrical components. These circuits provide directional starting and speed control.

In the starting mode (current spike of 5.75 amps), the electrical circuit phase 2 switching transistors generate an approximate square wave, producing a motor operating frequency of 80 to 120 Hz. Auxiliary windings of the directional starting circuit provide additional induction during startup and prevent the impeller from rotating in the reverse direction. A high-speed switching diode limits fan startup transient voltages between -2.25 Vdc and +25 Vdc, providing PLSS EMI P-5 protection.

Two seconds after startup, the phase 1 (normal operating phase) switching transistors increase the motor operating frequency to 200 to 300 Hz. After 8 to 10 seconds, the starting circuit provides an RC timing pulse to switch the directional starting circuitry off (auxiliary windings). After 15 to 30 seconds, the motor is operating at full speed at 350 Hz on both phase 1 and 2 windings. The speed control circuitry utilizes phase drive feedback to the phase 1 and 2 windings to compensate for any changes in loading.

A degradation in the speed control circuit will manifest itself by higher power consumption, lower running speed under load, and overheating of components. The bias level of switching transistors will be decreased, and phase 1 windings (normal operating phase) will not share the motor load equally with phase 2 windings.

The failure to switch off the starting circuit results in the motor operating at a lower speed and higher power consumption (i.e., 10,000 to 12,000 vs 18,000 rpm and 3.0 to 3.5 vs 1.3 amps). Phase 2 windings and the auxiliary windings will carry the entire load, eventually overheating.

A loss of the directional starting circuit results in the possibility of the motor starting in reverse direction (1.8 inches of H_2O vs 4.9 inches of H_2O).

The motor performance is dependent upon the loading (in-oz) and operating voltage level. The motor speed becomes unstable at the breakover point, approximately 0.9 in-oz at 15.7 Vdc. The operation of the motor in an environment of higher density results in a proportionally higher power consumption.

This motor is capable of being operated without cooling indefinitely without suffering degraded operation.

A short or open in either rotor or stator windings will render the motor inoperative.

Bearing stiction, high breakaway torque attributed to the lubricant, increases power consumption and reduces fan efficiency. Rotor stall current is 3.75 amps.

P-5

P-5

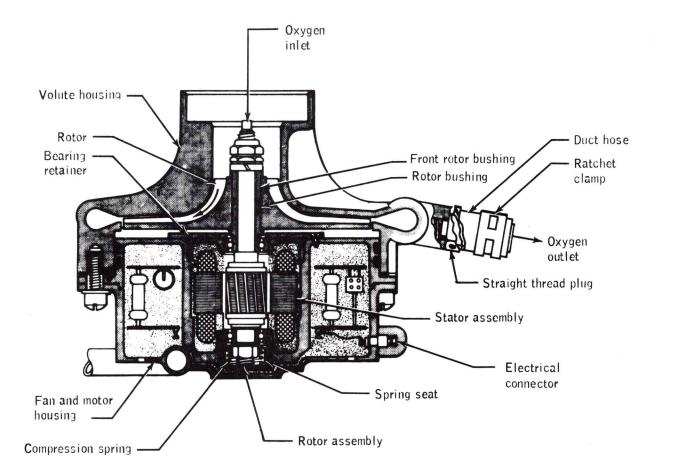
Ⅲ-13-14

SB NO. PLSS 13-4 PCN-5

P-5

P-5

Ban Yolute and Impeller Assembly


The fan performance (AP) and PLSS internal resistance are the two parameters which control the PLSS oxygen ventilation loop pressure rise. The maximum pressure rise (deadheading) corresponds to the minimum volumetric flow. This condition of no flow results in low torque and current loading and high rpm. The fan can operate deadheaded with no time limit, and with oxygen ventilation loop pressure up to 12 psia. A minimum pressure rise corresponds to maximum volumetric flow. This condition of maximum mass flow results in high torque and current loading and low rpm.

To satisfy proper PLSS CO_2 washout and ventilation, the following design performance criteria have been identified for the fan, motor, and PLSS.

The minimum requirement for fan performance under dry conditions (sublimator and LiOH cartridge not functioning) is a 1.046 pressure ratio at 0.472 lbs/min corrected weight flow (equivalent to 4.98 inches of H_2O at 5.5 acfm at 17 Vdc). The minimum requirement for motor performance is 18,000 rpm at 0.635 in-oz at 15.7 Vdc. The minimum PLSS performance requirement for a dry system is 2.85 inches of H_2O at 5.5 acfm.

The PLSS wet condition performance requires a minimum of 1.82 inches of H_2^0 at 6.0 acfm (1.5 inches of H_2^0 plus an additional 0.32 inches of H_2^0 resulting from the PLSS gas connector's internal check valves).

The fan/motor assembly has successfully been subjected to water injection without suffering any degradation.

S/C: EMU DATE: 10-1-72 REV: PCN-14 ORIGINATOR: W. Bates APPROVAL: Min

TITLE: PLSS BATTERY

REFERENCES: SVHS 4968 SVHSER 5719

BACKGROUND: The PLSS battery, consisting of 11 series connected cells with approximately 1.53 Vdc per cell, will deliver 16.8 ± 0.8 Vdc. For 20.5 Vdc, each cell's potential will be 1.86 Vdc. Each cell, as well as the battery case, has a relief valve. The relief and reset pressure for each cell is 4 - 25 psid. The battery case relieves at 8.0 psid max and reseats at 3.0 psid min. To maintain a proper voltage (16.8 Vdc - 1.5 Vdc = 15.3 Vdc), none of the cells can be lost. The battery can be stored 3 years as a dry-charged unit and 17 days as an activated unit.

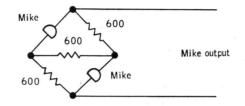
> The PLSS battery was designed for a 7-hour EVA at approximately 3.5 amps or a total power capacity of 25.7 amp-hrs or 432 watt-hrs at a nominal voltage of 16.8 ± 0.8 Vdc. For mission planning a current of 2.94 amps (2.70 amp load plus 0.243 amp measurement inaccuracy) yields an 7.70 hour EVA time excluding checkout and post EVA reserve.

At hot startup, no more than 20.5 Vdc is expected, which will then rapidly decay, overshooting 16.8 Vdc but never below 16.0 Vdc. At cold startup, slower startup voltage and less overshooting is expected. The plateau voltage is between 16.6 and 17.0 Vdc for either cold or hot starts. A battery voltage below 16.0 Vdc may be experienced momentarily during the peak current load(5.75 amp) associated with fan startup.

P-14

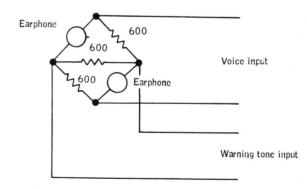
This page intentionally left blank

Ш-13-18


TITLE: MICROPHONES AND EARPHONES

MICROPHONES

S/C: EMU DATE: 11/1/70 REV: ORIGINATOR: PCN-6 APPROVAL

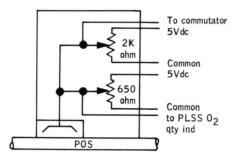

P-6

The two comm carrier microphones are hooked up in a bridge configuration with three 600 ohm resistors. The bridge configuration allows one microphone to fail without complete communication failure.

In the event of a microphone failure, only a 6 db drop will be noticed. If the diagonal resistor shorts, complete failure of communications occurs. But if the diagonal resistor opens, no effect will be noticed. With either one of the two leg resistors open, a 3 db drop will be noticed because the two microphones will be in series with each other.

The two comm carrier earphones are hooked up in a bridge configuration with three 600-ohm resistors. The bridge configuration allows one earphone to fail without complete communication failure.

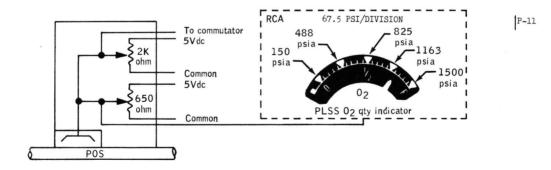
If the diagonal resistor shorts, complete failure of communications occur. But if the diagonal resistor opens, there will be a 3 db drop. With either one of the two leg resistors open, loss in the redundancy of the warning tones occur. If either one of the two leg resistors shortens, however, an increase in the audio output can be noticed.


Ш-13-19

TITLE: INSTRUMENTATION

BACKGROUND: A. Transducers

1. PLSS 02 Press (GT8182P/GT8282P)


The PLSS 0₂ pressure transducer is a Bourdon tube pressure sensor that is mechanically coupled to the wiper contacts of two separate potentiometers. The 2 k ohm potentiometer provides a 0 to 5 Vdc input to the telemetry channel. The 650 ohm potentiometer drives the PLSS 0₂ quantity indicator.

The transducer's characteristics are:

- a. Range: 0 to 1500 psia when excited by 0 to 5 Vdc
- b. Power: approximately 0.05 watts
- c. Weight: 0.34 pounds
- d. Location: between the primary $\boldsymbol{0}_2$ bottle and the primary $\boldsymbol{0}_2$ shutoff value
- e. Source: 5 Vdc
- 2. PLSS 0_2 Quantity Indicator (See Table I)

The output from the PLSS 0_2 pressure transducer's 650 ohm potentiometer drives the PLSS 0_2 quantity indicator. The indicator is a dc milliampere meter using the D'arsonval movement. The PLSS 0_2 quantity indicator is astronaut monitored. It is mounted on the remote control unit (RCU) and provides a visual indication of the 0_2 quantity remaining in the primary 0_2 bottle.

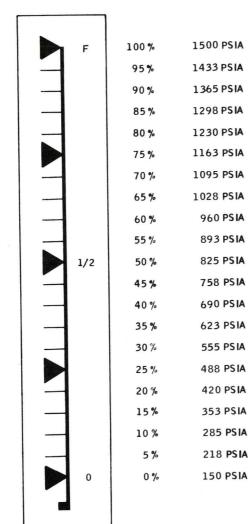
III-13-20

P-11

P-11

S/C: EMU

ORIGINATOR: W.

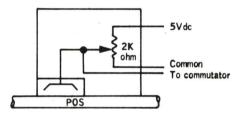

APPROVAL :

DATE: 10-1-72 REV: PCN-14

W. Bates

FCD 5-68.7.8

TABLE I. - PLSS 02 QUANTITY INDICATOR

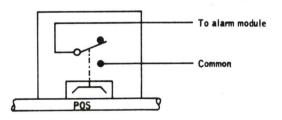

1%	164 PSIA	36%	636 PSIA	71%	1109 PSI
2%	177 PSIA	37%	650 PSIA	72%	1122 PS
38	191 PSIA	38%	663 PSIA	73%	1136 PS
48	204 PSIA	39%	677 PSIA	74%	1149 PS
5%	218 PSIA	40%	690 PSIA	75%	1163 PS
20	218 -514	100	000 1010		
6%	231 PSIA	41%	704 PSIA	76%	1176 PS
7%	245 PSIA	42%	717 PSIA	77%	1190 PS
8%	258 PSIA	43%	731 PSIA	78%	1203 PS
9%	272 PSIA	44%	744 PSIA	79%	1217 PS
10%	285 PSIA	45%	758 PSIA	80%	1230 PS
11%	299 PSIA	46%	771 PSIA	81%	1244 PS
12%	312 PSIA	47%	785 PSIA	82%	1257 PS
13%	326 PSIA	48%	798 PSIA	83%	1271 PS
14%	339 PSIA	49%	812 PSIA	84%	1284 PS
15%	353 PSIA	50%	825 PSIA	85%	1298 PS
190	333 F31A	500	020 1000		
16%	366 PSIA	51%	839 PSIA	86%	1311 PS
17%	380 PSIA	52%	852 PSIA	87%	1325 PS
18%	393 PSIA	53%	866 PSIA	88%	1338 PS
19%	407 PSIA	54%	879 PSIA	89%	1352 PS
20%	420 PSIA	55%	893 PSIA	90%	1365 PS
21%	434 PSIA	56%	906 PSIA	91%	1379 PS
22%	447 PSIA	57%	920 PSIA	92%	1392 PS
23%	461 PSIA	58%	933 PSIA	93%	1406 PS
24%	474 PSIA	59%	947 PSIA	94%	1419 PS
25%	488 PSIA	60%	960 PSIA	95%	1433 PS
250	100 1 314	000	500 1011		1100
26%	501 PSIA	61%	974 PSIA	96%	1446 PS
27%	515 PSIA	62%	987 PSIA	97%	1460 PS
28%	528 PSIA	63%	1001 PSIA	98%	1473 PS
29%	542 PSIA	64%	1014 PSIA	99%	1487 PS
30%	555 PSIA	65%	1028 PSIA	100%	1500 PS
31%	569 PSIA	66%	1041 PSIA	0%	150 PS
32%	582 PSIA	67%	1055 PSIA		
520 338	596 PSIA	68%	1068 PSIA		
3348	609 PSIA	69%	1082 PSIA	1	
35%	623 PSIA	70%	1095 PSIA		
220	025 F51A	100	1033 F31A	1	

SB NO. PLSS 13-8 PCN-8 2

The indicator's characteristics are:

- a. Range: 0 to full (150 to 1500 psia)
- b. Pointer deflection: 100° rotation
- c. Response time: 63 percent of full scale in 2 seconds
- d. Location: on RCU
- e. Source: 5 Vdc
- 3. PGA Press (GT8168P/GT8268P)

The PGA pressure transducer's linear resistive potentiometer is varied by a pressure sensing element. The transducer senses differential pressure. A 0 to 5 Vdc output signal, for a 2.5 to 5 psid input pressure, is applied to the telemetry commutator.


The transducer's characteristics are:

- a. Weight: approximately 0.16 pounds
- b. Power: approximately 0.05 watts

c. Range: 2.5 to 5.0 psid

- d. Location: between the low PGA pressure transducer and the interface with the O_2 ventilation loop
- e. Source: 5 Vdc
- 4. Low PGA Press

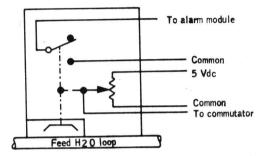
The low PGA pressure transducer contains differential pressure sensing element and an SPST switch. The switch closes at 3.4 to 3.10 psid giving the astronaut a 1.5 kHz tone and flag [P-11 indicator.

The transducer's characteristics are:

a. Weight: approximately 0.16 pounds

b. Location: between the high 0_2 flow sensor and the PGA press transducer

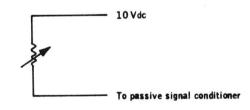
III-13-22


P-11

PCN-11

5. Feedwater Press (GT8110P/GT8210P) and Low Feedwater Press

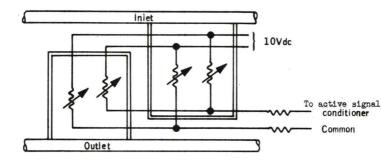
The feedwater pressure transducer senses the pressure in the feedwater loop; the pressure actuates a 2 k ohm potentiometer, which produces a 0 to 5 Vdc output signal for a 0 to 5 psia input pressure. The output signal is then applied to the TM commutator. The low feedwater pressure switch actuates at 1.2 to 1.7 psia.



The transducer's characteristics are:

- a. Weight: approximately 0.36 pounds
- b. Range: 0 to 5 psia
- c. Source: 5 Vdc from regulator B
- d. Location: between the feedwater flow limiter and the sublimator
- 6. Subl 0₂ Out Temp (GT8170T/GT8270T)

The sublimator O_2 outlet temperature transducer is a resistance temperature sensing element (thermistor) whose resistance varies logarithmically with temperature. Using this transducer, the sublimator performance can be determined. The output is fed through a passive signal conditioner. The 0 to 5 Vdc signal from the signal conditioner, representing -4 to 90°F, is P-ll applied to the telemetry commutator.


The transducer's characteristics are:

- a. Range: -4 to 90°F
- b. Source: 10 Vdc
- c. Power: approximately 0.7 milliwatts
- d. Weight: approximately 0.1 pounds
- e. Location: between the sublimator and the fan/motor assembly

III-13-23

7. LCG H₂O AT (GT8196T/GT8296T)

The LGG H₂O AT transducer consists of four resistance temperature elements. Two sense the inlet temperature, and two the outlet temperature. When all four sensing elements are connected, they form a bridge network which is connected to an active signal conditioner. A O to 5 Vdc signal from the signal conditioner, representing O to 15° F, is applied to the telemetry commutator.

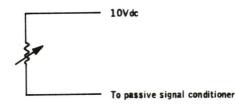
P-11

P-6

The transducer's characteristics are:

a. Range: 0 to 15°F

b. Source: 10 Vdc

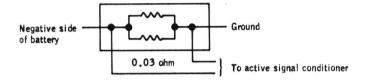

c. Weight: approximately 0.3 pounds

d. Power: approximately 10 milliwatts

e. Location: inlet and outlet of the liquid transport loop

8. LCG H₂O Temp (GT8154T/GT8254T)

The LCG water inlet temperature transducer is a resistance temperature sensing element (thermistor) whose resistance varies logarithmically with temperature. Using the inlet temperature transducer in conjunction with the delta temperature transducer, the astronaut's metabolic rate and the PLSS performance can be determined. The output is fed through a passive signal conditioner. The 0 to 5 Vdc signal from the signal conditioner, representing -4 to 90°F, is applied to the P-11 telemetry commutator.



The transducer's characteristics are:

- a. Range: 40 to 90°F
- b. Source: 10 Vdc
- c. Power: approximately 0.7 milliwatts
- d. Weight: approximately 0.3 pounds
- e. Location: between the H_O diverter valve and the PLSS multiple water connector

9. PISS Bat Cur (GT8140C/GT8240C)

The battery current transducer consists of two precision nichrome resistors in parallel. The total resistance of 0.03 ohm \pm 1 percent produces a 0 to 300 millivolt output over a 0 to 10 amp current range. The transducer output is fed into an active signal conditioner. The output out of the signal conditioner is in the 0 to 5 Vdc range which is applied to the telemetry commutator.

- The transducer's characteristics are:
- a. Weight: 0.022 pounds
- b. Power (maximum): 3 watts
- c. Power (nominal): approximately 0.25 watts
- d. Range: 0 to 10 amps
- e. Location: on terminal box A-1

10. PLSS CO, PP (GT8175P/GT8275P)

The CO_2 sensor consists of a mechanical housing containing the electronics and sensing elements. The housing also provides attachment points to mount on the PLSS and connect the gas lines. The P-ll sensing element and preamplifier may be calibrated or removed and reinstalled without removing the sensor assembly from the PLSS.

The sensing element is basically a pH sensing assembly consisting of a glass electrode immersed in an electrolyte contained by a semipermeable membrane. The pH of the sensing element is a function of the partial pressure of CO_2 . The change in pH as a result of the change in hydrogen ion concentration is detected as a change in potential between two electrodes, one of which is a glass capsule containing an electrolyte at a fixed pH.

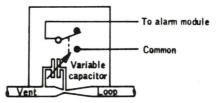
The electronics consists of a preamplifier which is permanently coupled to the sensing element to form the replaceable portion of the sensor. The preamplifier feeds into a buffer amplifier which provides a 0 to 5 Vdc telemetry output. The circuit also includes a dc to dc converter and a voltage regulator to control power to the preamp and buffer amplifier.

- The transducer's characteristics are:
- a. Storage life: 1 year
- b. Operational life (protective cap removed): 1000 hours
- c. Range: 0.1 to 30 mm Hg partial pressure CO₂
- d. Output: 0 to 5 Vdc, proportional to the log10 P CO2

P-11

P-6

P-11


P-11

- e. Temperature range: 35°F to 120°F
- f. Power: 1 watt
- g. Source: 10 Vdc
- h. Weight: 1.3 pounds
- Total pressure range: 10⁻¹ to 21 psia (Note: may not be subjected to vacuum for more than one hour cumulative.)
- j. Location: A bypass line containing the sensor is tied into a point upstream of the fan and upstream of the checkvalve.

11. Low Vent Flow

The low vent flow sensor consists of a calibrated low loss venturi flow tube and a variable capacitance differential pressure sensor. As the capacitance of the sensors is varied with the flow rate through the venturi, the switch closes when the flow rate falls below 5.3 to 4.0 aofm. This actuates the 1.5 kHz warble tone for 10 seconds and the flag on the RCU (remote control unit) is activated while the switch is closed.

The low vent flow sensor is sensitive to humidity, pressure, and voltage. With a pressure increase due to bending of the arms, et cetera, the flow will decrease, actuating the tone. This problem has been solved by a 5-second delay in the time delay module. Humidity and the decrease in voltage still affect the sensor. Abnormal LM environment or PLSS operation causes the actuation band to shift to 3.5 to 5.4 acfm. For a l-volt decrease, there is a 0.1 to 0.2 acfm decrease in ventilation flow rate and an 0.07acfm upward shift for the sensor's switch point. (See Note 1. Page III-13-36)

The transducer's characteristics are:

- a. Weight: approximately 1 pound maximum
- b. Range: 4.0 to 5.3 cfm actuation band
- c. Source: 16.8 Vdc
- d. Location: between the fan/motor assembly and the primary 02 line

12. High 02 Flow

The high 0_2 flow circuit operates on the "Hot Wire Anemometer" principle. Two thermistors are installed at different points in the 0_2 flow path. The downstream thermistor is heated by an electric heater whose current is controlled by the temperature difference between the two thermistors, a bridge circuit, and a heater driver. The heated downstream thermistor (hot wire equivalent) is mounted in the 0_2 line where the 0_2 flow velocity (rate) can exert the maximum temperature change effect. However, the upstream thermistor is installed in the 0_2 tubing wall where it reflects the gas temperature flowing in the line. The closed loop circuit,

SB NO. PLSS 13-8 PCN-11

from thermistors to heater, maintains a preset temperature differential of 1° C. A change in 0_2 flow rate creates a temperature differential greater than 1° C and unbalances the bridge circuit. The bridge unbalance generates an error signal that is applied to a differential amplifier, is amplified by two additional stages, and finally governs the downstream heater current. As the oxygen flow increases, the differential temperature causes the heater current to increase. When the heater current reaches a predetermined value, equivalent to a 0.5 to 0.65 lb/hr flow rate, a flow level detector causes a transistor switch to close. The signal generated from the switch closure is applied to the alarm module after passing through the 5-second time delay module. This activates the 1.5 kHz alarm generator and flag, which alerts the astronaut to a hazardous condition. (See Note 1. Page III-13-36)

The transducer's characteristics are:

- a. Regulator: a precision, temperature compensated, zener-referenced regulator provides the voltage for all stages.
- b. Transistor switch: CLOSED = 100 ohms maximum
- c. Impedance: OPEN = 100,000 ohms minimum
- d. Power consumption: OPEN = 0.1 watt CLOSED = 0.41 watt
- e. Weight: 0.56 pounds
- f. Source: 16.8 Vdc
- g. Location: between the primary O $_{\!\!2}$ pressure regulator and the low PGA pressure transducer
- B. Transducer Excitation
 - Regulators provide precise excitation voltage to signal transducers by compensating for variations in line voltage, temperature, and load. The regulators in the PLSS/EVCS (extravehicular communications system) are series-shunt types consisting of integrated circuit operational amplifiers, temperature compensated zener diode references, and series transistors. A total of five transducer regulators are used in the EVCS with three different output ratings: a. Three 5-volt at 25 mA
 - b. One 10-volt at 50 mA
 - c. One 10-volt at 200 mA: this unit has an additional pass transistor which shares the load current and increases the reliability.
 - 2. The regulator design includes the following:
 - a. Overload protection
 - b. Temperature compensation
 - c. Short circuit protection
 - d. An idling current of 2 mA nominal
 - 3. Specifications of the three regulator types are listed below:
 - a. 5-volt regulator (25 mA)
 - (1) Output voltage: +5 ± 0.5 percent
 - (2) Regulation: + 25 millivolts over the line voltage input range
 - (3) Temperature stability: <u>+</u> 0.005 percent per deg F
 - (4) Output current: 0 to 25 mA rating
 - (5) Ripple: 15 millivolts peak to peak
 - (6) Overload protected to limit current to less than three times rated load (75 mA)
 - b. 10-volt regulator (50 mA)
 - (1) Output voltage: + 10 + 0.25 percent
 - (2) Temperature stability: <u>+</u> 0.005 percent per deg F
 - (3) Output current: 0 to 50 mA rating
 - (4) Overload protected to limit current to less than three times rated load (150 mA)
 - c. 10-volt (200 mA)
 - (1) Output voltage: + 10 + 0.25 percent
 - (2) Regulation: + 25 millivolts over the line voltage input range
 - (3) Temperature stability: <u>+</u> 0.005 percent per deg F
 - (4) Output current: 0 to 200 mA rating
 - (5) Ripple: 25 millivolts peak to peak
 - (6) Overload protected to limit current to less than three times rated load (600 mA)

|P-11

PCN-11

4. The five regulators are designated A, B, C, D, and E. Transducer assignments are as follows:

a. A - 5.0 volts at 25 mA

PGA Press GT8168P/GT8268P

- b. B 5.0 volts at 25 mA
 - (1) PLSS 0, Press GT8182P/GT8282P
 - (2) Feed H₂O Press GT8110P/GT8210P
- c. C 10.0 volts at 50 mA
 - LCG H₂O AT GT8196T/GT8296T
- d. D 5.0 volts at 25 mA
 - Primary 0, Quantity Indicator (meter)
- e. E 10.0 volts at 200 mA

(g) Power

- (1) Subl 0₂ Out Temp GT8170T/GT8270T
- (2) LCG H₂O Temp GT8154T/GT8254T
- (3) PLSS CO₂ PP GT8175P/GT8275P
- C. Signal Conditioning
 - Some PLSS/TM transducers require signal conditioning before they are fed into the TM commutator. Two methods are used: active conditioning and passive conditioning.
 - Active signal conditioning is used for low level signals to provide the amplification necessary for deviating the VCO's (voltage controlled oscillators) 0 to 5 volts. The battery current measurement (GT8140C/GT8240C) and the LCG H₂O delta temperature (GT8196T/GT8296T) require active signal conditioning. The battery current conditioning is provided by a simple, single ended, operational amplifier with a gain of 16.67 and an input impedance of 6 k ohms. The LCG H₂O delta temperature requires a differential input amplifier with a gain of 167.
 - (1) The battery current signal conditioner's characteristics are:
 - (a) Input signal 0 to 300 mV single ended and referenced to ground
 - (b) Output signal 0 to 5 V <u>+</u> 25 mV
 - (c) Input impedance 6 k ohms + 10 percent
 - (d) Output impedance Less than 1 k ohm
 - (e) Offset Less than 25 mV
 - (f) Temperature stability Offset less than 25 mV change over the
 - temperature range of 20° to 140°F.

Gain change less than 1 percent over the same temperature range.

- -7 to -10 volts at 3 mA
 - +7 to +10 volts at 3 mA
- (2) The LCG H₂O delta temperature signal conditioner's characteristics are:
 - (a) Input signal 0 to 30 mV differential
 - (b) Output signal 0 to 5 V <u>+</u> 25 mV
 - (c) Offset signal Less than 25 mV
 - (d) Input impedance Greater than 900 k ohms
 - (e) Output impedance Less than 1 k ohm
 - (f) DC common mode 50,000 to 1 minimum at 5 volts
 - (g) Temperature stability Offset less than 25 mV change over the temperature range of +20° to +140°F. Gain change less than 1

percent over the above temperature change.

b. Passive signal conditioning consists primarily of resistive elements. The signals conditioned are greater than 5 volts and require reduction to within the 0 to 5 volt range for driving the VCO's. The transducers involved are Bat Volt (GT8141V/GT8241V), LCG H₂O Temp (GT8154T/GT8254T) and Subl O₂ Out Temp (GT8170T/GT8270T). The important facts about the passive signal conditioning are outlined below:

- Thermistors: The LCG H₂O In Temp (GT8154T/GT8254T) and the Subl O₂ Out Temp (GT8170T/GT8270T) thermistor sensors are the most complex of the passive signal conditioning circuits since each measurement requires linearization and reduction in order to obtain the proper output voltage. In addition, the linearizing and voltage dropping circuits increase the output impedance to 63 k ohms.
- (2) External resistors: The PLSS O₂ quantity indicator (meter) uses a 4,840 ohm <u>+</u> 0.25 percent precision metal film resistor to set the meter full scale range to 1.0 mA.
- (3) Current limiting resistors: The LCG H₂O Delta Temp (GT8196T/GT8296T) differential bridge uses a 4,430 ohm ± 0.25 percent precision metal film resistor in each leg to limit the bridge current to 1.0 mA, which increases the bridge sensitivity.
- (4) Zener diode buffer: The PLSS Bat Volt (GT8141V/GT8241V) measurement is accomplished with a l2-volt zener diode to reduce the line voltage in order to increase the measurement sensitivity. Use of the temperature compensated zener (0.01 percent per degree centigrade) increases the measurement resolution approximately 2.5 to 1 over the pure resistive voltage divider. The 40 cps ripple generated by the positive displacement pump will result in a noisy telemetry readout.
- D. Voltage Controlled Oscillators (VCO)
 - Two VCO's are used in each EVCS (extravehicular communications system) to provide the analog FM subcarrier requirements. Standard IRIG frequencies are used which cover channels 9, 10, 11, and 12. The channel assignments are as follows:
 - EVC-1Channel 10 (5.4 kHz) deviation = ± 7.5 percent; GT8124J PLSS 1 EKG
Channel 12 (10.5 kHz) deviation = ± 7.5 percent; PLSS 1 PAM dataEVC-2Channel 9 (3.9 kHz) deviation = ± 7.5 percent; GT8224J PLSS 2 EKG
 - Channel 11 (7.35 kHz) deviation = \pm 7.5 percent; PLSS 2 PAM data
 - Each VCO consists of three basic blocks: regulator, frequency generator (multivibrator), and a band limiter (active filter).
 - a. Regulator The regulator is an integrated circuit, temperature compensated, zener-shunt type which provides 0.33 percent dBW line voltage stability to the VCO and B+ line voltage isolation.
 - b. Frequency generator The frequency generator is a multivibrator which uses a hybrid module and discrete components for timing and temperature compensation (NPO capacitors and metal film resistors).
 - c. Filter The filter is an active low-pass and notch combination unit which provides 20 dB rejection for the second harmonic, 36 dB for the third harmonic, and 40 dB for all other harmonics.
 - d. VCO characteristics are:
 - (1) Input impedance: 750 k ohms.
 - (2) Source impedance sensitivity: Less than <u>+1</u> percent of bandwidth change in zero input frequency with a source impedance change from short circuit to open circuit.
 - (3) Linearity: Within 0.15 percent of bandwidth from the best straight line.
 - (4) Output impedance: 1 k ohm nominal.
 - (5) Output voltage: Minimum of 3.0 volts peak to peak into a 10 k load (min).
 - (6) Subcarrier distortion: Less than 1 percent at any frequency in the band.
 - (7) Amplitude distortion: Less than 5 percent.
 - (8) Temperature stability: Maximum of <u>+</u>1 percent dBW change in frequency from 20° to 140°F with 75°F as ambient reference.
 - (9) Sensitivity stability Less than 1 percent dBW change over the temperature range of $20^\circ F$ to $140^\circ F.$

SB NO. PLSS 13-8 PCN-8

P-8

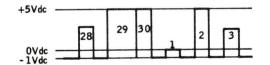
- (10) B+ stability: (system power 14.5 to 20.5 volts) Frequency is stable within 0.33 percent dBW over the above voltage range. The VCO operates on 9.9 to 10.1 volts from the regulator.
- (11) Controls: None. Output frequency and sensitivity are preset with fixed resistors to within ± 1 percent dBW of IRIG.
- (12) Power: 6 mA nominal.

E. EVCS Commutator (See Figure 13-8a)

The EVCS commutator is an IRIG PAM solid state multiplexer which provides 30 samples 1-1/2 times per second by acting as an electronic switching device with a common "OR" gate output. A series of "AND" gates, activated by an electronic clock and digital counter, feeds the common "OR" gate output. All input gates, counters, and decoders are MOSFET integrated circuits. Basically, the commutator consists of a power supply, clock, counters, decoders, analog gates, and an output format unit.

The power supply is composed of regulators and a dc to dc converter. The following voltages are provided by the power supply:

- 1. -1 Vdc to pedestal
- 2. -8 Vdc to logic circuitry
- 3. -16 Vdc to counter
- 4. +3 Vdc to logic circuitry
- 5. +5 Vdc to synch and cal level for channel 2
- 6. +6 Vdc to clock
- 7. +10 Vdc to VCO (7.35 or 10.5 kHz)


In addition to the prime function of line voltage regulation, a preregulator serves as an input line noise filter and prevents the dc to dc converter noise from entering the 16.8 Vdc line. This input voltage reduction improves the output regulation.

The clock is a hybrid multivibrator whose frequency is preset by fixed resistors and temperature compensated with diodes. The sampling rate provided by the clock is 45 samples per second.

The counters count the clock pulses in binary coded decimal (BCD). The first counter counts to 10 and the carry is counted up to 3 in the second counter for a total count of 30 $(3 \times 10 = 30)$. The counters then reset to "0" for the next cycle. Outputs of the counters are fed to the decoders, which are binary coded decimal-to-decimal converters. The outputs of the first counter are decoded into 10 signals and the outputs of the second counter are decoded into 3 signals. Both decoder outputs are combined to form the output signal format.

The analog gates are MOSFET devices which provide low "ON" resistance and low leakage and require decoded BCD signals for activation. With any input signal in excess of 167 percent, the analog gates are overdriven, causing other TM readings to shift.

The commutator output format is a 50-50 duty cycle continuous wavetrain signal with a negative l-volt pedestal. The signal is generated by a chopper type switch which is driven by the clock negative phase. The synch signal of one and one-half channels "ON" and one-half channel "OFF" is derived by decoding channel 29 and by-passing the 50-50 duty cycle switch.

S-68.7.11A

SB NO. PLSS 13-8 PCN-6

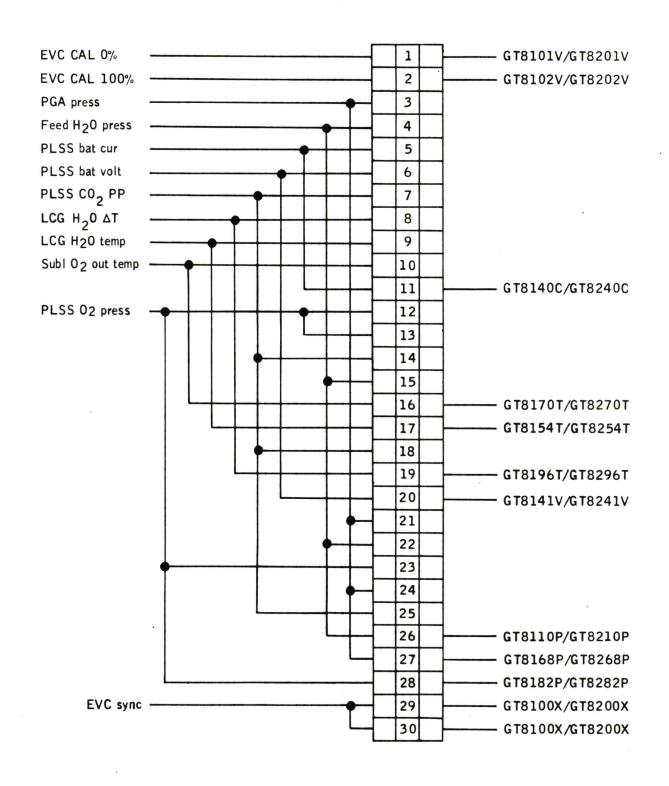


Figure 13-8a. - PLSS/EVCS commutator channel selection.

6/3/69

į.

TABLE II.- HSD TM AND MCC PCMGS ANALOG FORMAT SELECTION

A. MSFN HSD FORMATS

		TITLE CHANNEL LOADING		FM 4	FM 5			1
MEAS NO.	SHORT TITLE					FM 6	FM 10	
GT8100X	EVC SYNC	12	<u>(29</u> , <u>30</u>	·				-
GT8101V	EVC CAL 0 VDC	12		0.1	0.1	0.1	1.0	
GT8102V	EVC CAL 5 VDC	12	1 ②	0.1	0.1	0.1	1.0	
GT8110P	FEED H ₂ O PRESS	12	4,15,22, 26	0.5	1.0	0.5	1.0	
GT8124J	PLSS EKG	10						
GT8140C	PLSS BAT CUR	12	5, (1)	1.0	1.0	1.0	1.0	
GT8141V	PLSS BAT VOLT	12	6, 20	0.2	0.5	0.2	1.0	
GT8154T	LCG H20 IN TEMP	12	9, 17	0.5	1.0	0.2	1.0	
GT8168P	PGA PRESS	12	3, 21,24, (27)	1.0	1.0	1.0	1.0	
GT8170T	SUBL 02 OUT TEMP	12	10, 16	0.2	0.5	0.1	1.0	
GT8175P	PLSS CO2 PP	12	7, 14, 18, (25)	0.1	0.1	0.1	1.0	
GT8182P	PLSS 02 PRESS	12	12,13, 23, (28)	0.2	0.5	0.2	1.0	P-9
GT8196T	LCG H20 AT	12	8, 19	0.5	1.0	0.5	1.0	
GT8200X	EVC SYNC	11	29,30					
GT8201V	EVC CAL 0 VDC	11		0.1	0.1	0.1	1.0	
GT8202V	EVC CAL 5 VDC	11	2	0.1	0.1	0.1	1.0	
GT8210P	FEED H20 PRESS	11	4,15,22, 26	0.5	1.0	0.5	1.0	
GT8224J	PLSS EKG	9						
GT8240C	PLSS BAT CUR	11	5, (11)	1.0	1.0	1.0	1.0	
GT8241V	PLSS BAT VOLT	11	6, 20	0.2	0.5	0.2	1.0	
GT8254T	LCG H20 IN TEMP	11	9, 17	0.5	1.0	0.2	1.0	
GT8268P	PGA PRESS	11	3, 21,24, 27	1.0	1.0	1.0	1.0	
GT8270T	SUBL O2 OUT TEMP	11	10, 16	0.2	0.5	0.1	1.0	
GT8275P	PLSS CO2 PP	11	7, 14, 18, 25	0.1	0.1	0.1	1.0	
GT8282P	PLSS O2 PRESS	11	12,13, 23, 28	0.2	0.5	0.2	1.0	
GT8296T	LCG H ₂ O AT	11	8, (19)	0.5	1.0	0.5	1.0	
SPC EMUST"	PLSS EVC SYNC ST			0.5	1.0	0.5	1.0	1

NOTE: O - LOADED INTO RSDP.

*(POM DECOM SYNC) BIT 1 GT8100 BIT 5 GT8200 ("1" SYNC, "0" OUT OF SYNC) THESE PARAMETERS MAY BE MONITORED ON D/TV PAGE MSK 1709.

B. MCC POMGS ANALOG FORMAT

4

(CONSOLE 34R (FORMAT 7)		CONSOLE 33R (MEDABLE FORMAT 27-B)				
PEN NO.	SHORT TITLE	MEAS NO.	PEN NO.	SHORT TITLE	MEAS NO.		
1	PLSS 02 PRESS	GT8182P	1	PLSS 02 PRESS	GT8282P		
2	PGA PRESS	GT8168P	2	PGA PRESS	GT8268P		
3	FEED H20 PRESS	GT8110P	3	FEED H20 PRESS	GT8210P		
4	LCG H20 TEMP	GT8154T	4	LCG H20 TEMP	GT8254T		
5	LCG H20 AT	GT8196T	5	LCG H ₂ O AT	GT8296T		
6	SUBL 02 OUT TEMP	GT8170T	6	SUBL 02 OUT TEMP	GT8270T		
7	PLSS BAT VOLT	GT8141V	7	PLSS BAT VOLT	GT8241V		
8	PLSS BAT CUR	GT8140C	8	PLSS BAT CUR	GT8240C		

Ⅲ-13-32

Table II deleted by PCN-11

Ш-13-33 & Ш-13-34

F. Alarm Indicators (Flags)

The alarm indicators provide the astronauts with a visual indication of the specific malfunction and inform them of the action to take when the warning tone is activated. The four indicators are:

. Malfunction H₂O (Low feedwater press) O₂ (High O₂ flow) Pres (Low PGA press) Vent (Low vent flow) Action A (abort) O (actuate OPS) O (actuate OPS) P (actuate OPS and purge)

As the warning tone is activated, an electromagnet causes a white flag to disappear and expose a white letter (A, O, or P) on a black background. The alarm indicators are illuminated by Beta lights. Activation of the electromagnet is accomplished by a 10 Vdc signal at 80 milliamps from the alarm module. (See Note 1. Page III-13-36)

G. Tone Generator

The tone generator produces a 1.5 kHz tone that is modulated at a 15 Hz rate in order to increase the tone perception. An alarm is generated when specific critical operating parameters exceed preset upper or lower limit settings, and the 10-second alarm tone in conjunction with a flag indicator alerts the astronaut to an abnormal condition and indicates which system is at fault.

The tone generator uses two IC (integrated circuit) astable multivibrators, a one-pole filter, an output driver, and an isolation transformer. Voltage regulation is not required, so the B+ (line voltage) is applied directly to the first astable 15 Hz multivibrator and the output driver stage. No power is consumed until a common ground is received from the alarm module.

When a ground is applied, the 15 Hz astable multivibrator generates a 15 Hz square wave (7.5 to 11.0 volts.) that is used as B+ for the 1.5 kHz astable multivibrator whose output is fed through a one-pole RC (resistor-capacitor) filter. The filter eliminates the square wave's sharp leading and trailing edges, provides a 6 dB per octave response, and a 3 dB attenuation at 2.0 kHz. The filtered output is applied to an FET (field effect transistor) source follower and through the output transformer which provides an isolated balanced output to a 300 ohm load. The alarm tone generator characteristics are:

1. Frequency: 1.5 kHz ±3 percent .

2. Modulation: Amplitude modulated at least 90 percent at a . frequency of 15 $\underline{\bullet}$ 3 Hz.

3. Control: Activated by a remote switch closure impedance of

250 ohms maximum with a 10 mA current referenced

to the system common; deactivated when the remote

- switch impedance is 0.1 megohm or greater at
- 20.5 Vdc referenced to the system common.

4. Adjustments: None. The frequency and output amplitude are

III-13-35

controlled by fixed resistors.

5. Output impedance: Transformer isolated with 300 ohm output impedance.

6. Output level: 2 + 0.5 milliwatts into a 300 chm balanced load.

H. Alarm Module

The alarm module triggers the warning tone generator through a common line output and drives 4 FLAG type warning indicators through separate output lines. A solid state five input "OR" gate provides a 10 \pm 2 second -10 Vdc pulse to virtual ground in order to activate the warning tone generator for the same time span when any of four critical limit settings have been exceeded: Low PGA Pressure; Low Vent Flow; High O₂ Flow; or Low Feedwater Pressure. (See Note 1. Page III-13-36)

P-6

P-11

P-6

P-6

P-6

PCN-14

In addition to triggering the warning tone, the "OR" gate provides separate output lines to the four warning indicator drivers. The indicator remains energized while the malfunction exists. Should a second malfunction occur while the common line is active, the indicator associated with the second malfunction will be energized but the timed warning tone will not be affected. A change in position of the mode selector switch with a fault present results in the reinitiation of the common output and warning tone on the Low Vent Flow, High O₂ Flow and Low Feedwater Pressure inputs. This characteristic is not true of the Low PGA Pressure input.

The alarm module's characteristics are:

- 1. Power: 15 to 21 Vdc; input current <50 mA quiescent over a temperature range of $0^{\circ}F$ to $140^{\circ}F$ over the supply voltage range under nominal input/output loading conditions.
- 2. Current: <300 mA under nominal loads for all states of activation.
- 3. Inputs: Five Channels:
 - a. Channel 1 contact type closure: CLOSED <10 ohms to input signal common; OPEN >100 k ohms to input signal common.
 - b. Channel 2 same as Channel 1.
 - c. Channel 3 NPN grounded emitter transistor switch: CLOSED <150 ohms to input signal common; OPEN >100 k ohms to input signal common.
 - d. Channel 4 same as Channel 3.
 - e. Channel 5 same as Channel 3.
- 4. Input criteria
 - a. ≥ 9 mA dc to the transducer circuit under any condition.
 - b. ≤ 9 Vdc to the transducer circuit when it is in the OPEN state >100 k ohms.
 - c. Must respond to an input signal greater than 1 millisecond duration and less than 1 millisecond leading edge fall time.
- 5. Outputs
 - a. Five output lines to the warning indicators (FLAGS) capable of supplying 10 Vdc at 80 mA for each indicator.
 - b. One common output line that provides a 10 \pm 2 second $-10~\rm Vdc$ pulse to energize the warning tone generator.
 - c. All output lines contain open short circuit protection.
- NOTE 1: If an input signal from the discrete flow switches is present at the 5 second time delay module for greater than 1.5 seconds, the 10 ± 2 second warning tone is activated. (The warning flag is not activated unless the input signal duration is greater than 5 seconds.) This discrepancy is due to the design of the EMI filter in the 5 second time delay circuitry.

P-14

P-6

P-6

S/C: EMU DATE: 11-1-71 REV: PCN-11 ORIGINATOR: W., Bates APPROVAL: 1.M.

TITLE: H₂O SEPARATOR

BACKGROUND: The water separator (Figure 13-9a) removes entrained water condensed from water vapor during the cooling of the oxygen in the sublimator. This sheet of water leaving the trailing edge of the sublimator cooling fin passages becomes unstable and finally collapses into drops as a result of surface tension. The size of the drop formed increases with increases in liquid surface tension, viscosity, and mass flow and decreases with increases in gas velocity, gas density, liquid density, coefficient of friction, sublimator/condensor width, number of fins per inch, and number of stacks. The collector section captures and collects the condensed water by directing the airstream flow through three 90° turns, producing forced impingement upon the nylon wick. Toluene is utilized as the wick wetting agent to reduce surface tension and improve absorption.

> The return section containing two dacron pads and a fused glass bead plug transfers condensed water from the collection section by diffusion and capillary action.

As the feedwater flows out of the reservoir bladder, a pressure differential forms across the glass beads, extracting the condensation from the pads. The water in the glass beads then transfers to the drain tube in the form of large drops. The separated water is accumulated in the space left between the bladder and the reservoir housing as the bladder empties. The backside of the reservoirs have an actual storage capacity of 5353 cc (min). During a single recharge of feedwater reservoirs (Primary and auxiliary), a maximum of 1318 cc of condensate will be discharged (2.91 lb).

The maximum water separation rate is 0.508 lbs/hr at a feed H_0 0 usage rate of 3.0 lbs of H_0 0/hr. The separator is capable of separating slugs of water ranging in volume up to 5 cubic inches.

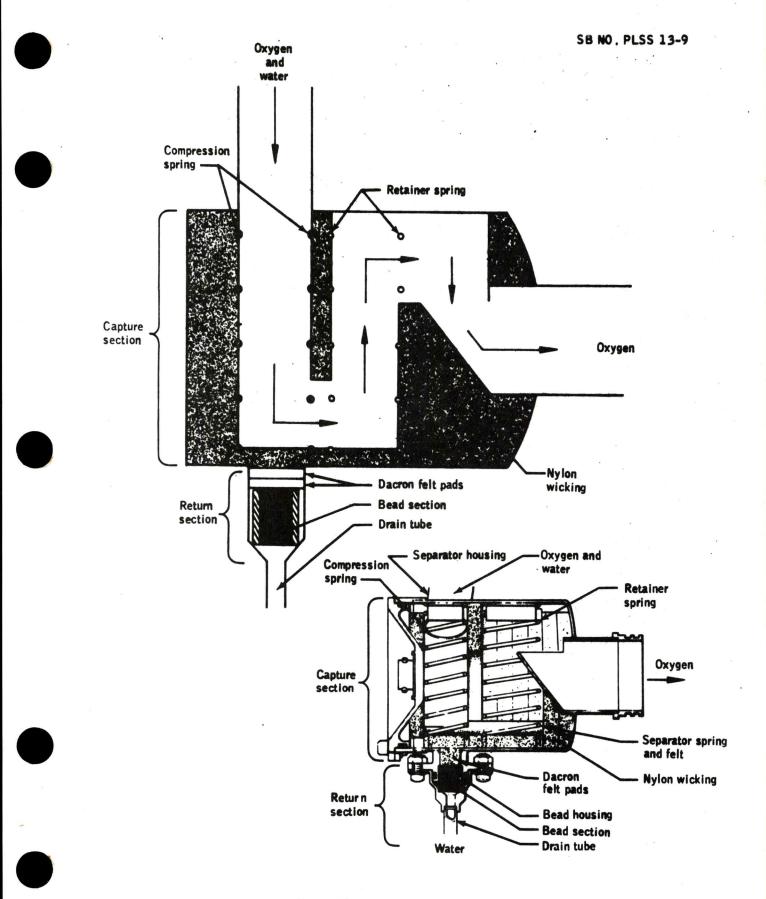


Figure 13-9a. - Schematic - water separator.

SB NO. OPS 14-1

S/C: EMU P-3 DATE: 9/29/69 APPROVAL: REV: PCN-3 ORIGINATOR:

OPS THERMAL CONTROL יתדיידים

BACKGROUND: During OPS purge operation, the crewman's entire thermal control is dependent upon the heat removal capacity of gas ventilation in the PGA. As the body increases in heat storage, the heat removal capacity of the gas stream increases. The limit on this increase is saturation of the gas stream and an outlet temperature approaching skin temperature. At initial activation of purge, the PGA inlet pressure drops to 3.64 psia with an inlet gas temperature of 80°F and dew point of 32°F. The purge valve outlet pressure corresponds to 3.60 psia with an outlet gas temperature of 95°F and dew point of 95°F.

The following symbols are used in the text:

Q = heat transfer rate, Btu/hr

Cp = specific heat, Btu/lb-°F

 $T = temperature, {}^{o}F$

Tdb = dry bulb temperature, $^{\circ}F$ (i.e., the measured temperature of a gas mixture)

P = pressure, psia

R = gas constant, 48.3 $\frac{\text{ft-lbf}}{\text{lb}}$ - R

 $v = \text{specific volume, ft}^{10}$ m

ω = humidity ratio, lb water vapor/lb dry air

 ϕ = relative humidity, percent

 h_{fg} = enthalpy of evaporation, Btu

hg = enthalpy of a saturated vapor, Btu

h. = enthalpy of a saturated liquid, Btu

q = heat, Btu

M_{da} = mass flow rate of dry air, lb/hr

Min = mass flow rate of ambient air, lb/hr

Subscripts:

a = dry air

in = inlet parameter

out = outlet parameter

m = mixture of vapor and dry gas

v = water vapor parameter

g = saturator vapor parameter

PGA Inlet

P_min = 3.64 psia

T_{db} = 80°F

Dew point = 32°F

From the steam tables, the saturation pressure (P_{g}) for water vapor at $80^{\circ}F$ is 0.5069 psia.

The dew point is the saturation temperature corresponding to $\mathrm{P}_{\mathrm{V}}.$ From the steam tables:

Inlet dew point at $32^{\circ}F$: $P_{v_{in}} = 0.08854$ psia Outlet dew point at 95°F: Pvout = 0.8126 psia

PGA Outlet

P_m = 3.6 psia T_{db}_{out} = 95°F

Dew point = 95°F

P-3

III-14-1

SB NO. OPS 14-1 PCN-3

Inlet Conditions

$$\phi_{\text{in}} = \frac{P_{\mathbf{v}}}{P_{\mathbf{g}}} (100) = \frac{0.08854}{0.5069} (100) = 17.5\%$$

 $P_{a_{in}} = P_{m_{in}} - P_{v_{in}} = 3.64 - 0.5069 = 3.13 psia$

$$v_{a_{in}} = \frac{R_a^{T_{in}}}{P_{a_{in}}} = \frac{(48.3)(540)}{(3.13)(144)} = 57.87 \text{ ft}^3/1b$$

 $v_{g_{in}} = 633.1 \text{ ft}^3/\text{lb} \text{ at } 80^\circ\text{F}$

$$\omega_{in} = \frac{v_{a_{in}}}{v_{g_{in}}} \phi_{in} = \frac{(57.87)(.175)}{633.1} = 0.016 \text{ lb/lb}$$

The mass flow rate for dry air into the PGA

$$M_{da} = \frac{M_{in}}{1.0 + \omega_{in}} = \frac{8}{1.016} = 7.87 \text{ lbs/hr}$$

Outlet Conditions

 $v_{a_{out}} = \frac{(48.3)(555)}{2.787(144)} = 66.79$

 $v_{g_{out}} = 404.7 \text{ ft}^3/\text{lb} \text{ at } 95^\circ\text{F}$

 $P_{a_{out}} = P_{m_{out}} - P_{v_{out}} = 3.6 - 0.8126 = 2.787 psia$

 $\omega_{\text{out}} = \frac{v_{\text{aout}}}{v_{\text{g}_{\text{out}}}} \phi_{\text{in}} = \frac{(66.79)(1)}{404.7} = 0.165 \text{ lb/lb}$

 $\phi_{out} = 100\%$

Where: M_{in} = 8.0 lb/hr

The mass flow rate of water removal is

 $M_w = M_{da} (\omega_{in} - \omega_{out}) = 7.87(-0.150) = -1.18 \text{ lbs/hr}$ P-3

The gas leaving the PGA is assumed saturated. Applying the first law of thermodynamics, work = 0, ΔKE = 0, and steady flow conditions.

$$q_{out} = Cp_a (T_{in} - T_{out}) + \omega_{out}h_{g_{out}} - (\omega_{in} - \omega_{out}) h_{f_{out}}$$

Obtaining the appropriate data from the steam tables:

$$q_{out} = 0.24(80 - 95) + (0.165)(1038.5) - (0.016 - 0.165)(63.1)$$

q_{out} = -3.6 + 171.35 + 9.4 = 177.15 Btu/1b dry air

The rate of heat removal

 $\dot{Q} = M_{da} q_{out} = (7.87)(177.15) = 1394.17$

From empirical calculations, the OPS, operating at saturation point at the outlet gas stream, has an approximate maximum heat removal capacity of 1400 Btu/hr.

From test data, the maximum purge flow heat removal is 600 Btu (20 Btu/min) for the 30 minute OPS lifetime. The limiting factor in the use of the OPS is the crewman's capability to store heat. The crewman should not plan to store more than 150 Btu including that accumulated prior to use of the OPS.

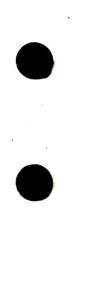
For orbital contingencies, the maximum sustaining work rate may not exceed 1200 Btu/hr with a maximum metabolic expenditure of 750 Btu.

Work R	late (1200 Btu/	hr for 30) minutes)	= 600	Btu)	750 Btu Total Metabolic Expenditure				
Stored	Heat			150	Btu 🖇)) btu iotai metabolie Expendit		Dypendroure		
PGA He	at Load			0	Btu					
Tota	l Heat Load			750	Btu					

For lunar surface operations using the OPS exclusively, the maximum sustained work rate is 1000 Etu/ hr with a total metabolic expenditure of 600 Etu.

Work Rate (1000 Btu/hr for 30 minutes) Stored Heat	= 500 Btu 600 Btu Total Metabolic Expenditure
PGA Heat Leak	= 150 Btu
Total Heat Load	750 Btu

III-14-2


P-3

P-3

P-3

P-3

P-3

SB NO. OPS 14-2

This SB deleted by PCN-8

SB NO. OPS 14-3

This SB deleted by PCN-8

SB NO. PGA 15-1

S/C: EMU DATE: 11-1-71 REV: PCN-11 ORIGINATOR: W. Bates APPROVAL: Them. Mer

ORIFICE AND NOZZLE FLOW TTTLE:

BACKGROUND: As a compressible fluid passes through a nozzle, a drop in pressure and simultaneous increase in velocity results. Assuming adiabatic reversible flow, it is possible to calculate from the continuity equation (M = ρ VA) the required area for the cross section of the nozzle at any point. From this calculation, it is found that for all compressible fluids the nozzle form must first be converging, but eventually, if the pressure drops sufficiently, a point is reached where to accommodate the increased volume due to the expansion, the nozzle must become diverging in form. The smallest cross section of the nozzle is called the throat, and the pressure at the throat is the critical flow pressure p_2 . For gases when the ratio of critical to inlet pressure (p_2/p_1) is <0.53, the flow is sonic or choked.

The following items are used in the derivation:

- A_1 = upstream cross sectional area, ft²
- A_2 = orifice cross sectional area, ft²

C = empirically determined coefficient of discharge

g_c = dimensional constant

- h = enthalpy, Btu/lb
- M = mass flow, rate of ambient air; lbs/hr
- J = 778.3 Btu

 C_p = specific heat for constant volume, Btu/lb-°F

 C_{v} = specific heat for constant pressure, Btu/lb-°F

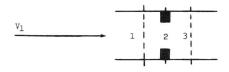
 $k = C_{\rm D}/C_{\rm V}$

p1 = upstream pressure, psia

p₂ = orifice pressure, psia

 $P_m = critical$ flow pressure

 ρ = density, lbs/ft³


V = mean velocity at the given section, ft/sec

v₁ = upstream specific volume

 v_2 = orifice specific volume

R = gas constant, 48.3 $\frac{\text{ft-lb}_{f}}{1}$ 1bm-°R

The general fundamental relation for orifice flow is given by the energy balance $(V_2^2 - V_1^2)/$ $2g_c = J(h_1 - h_2)$. Referring to the figure below,

Let section 2 be taken at the orifice; section 3 is somewhat beyond the orifice on the downstream side; and section 1 is before the orifice on the upstream side. Then solving for V2,

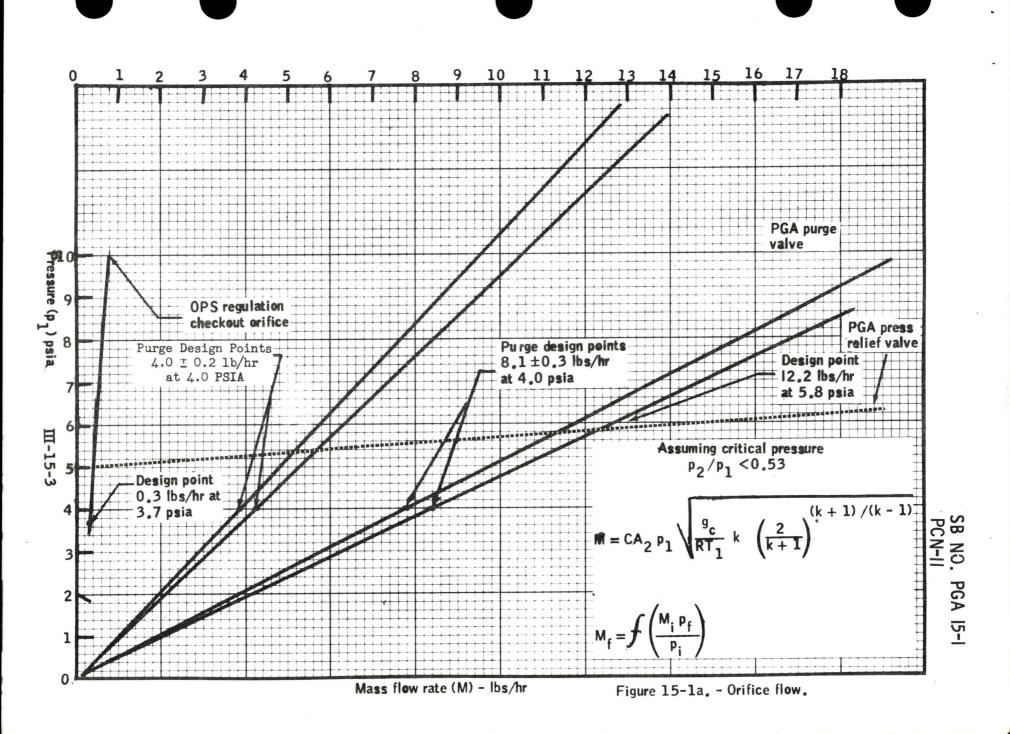
$$v_{2} = c \sqrt{2g_{c}J(h_{1} - h_{2})} / \sqrt{1 - \left(\frac{A_{2}}{A_{1}}\right)^{2} \left(\frac{v_{1}}{v_{2}}\right)^{2}}$$

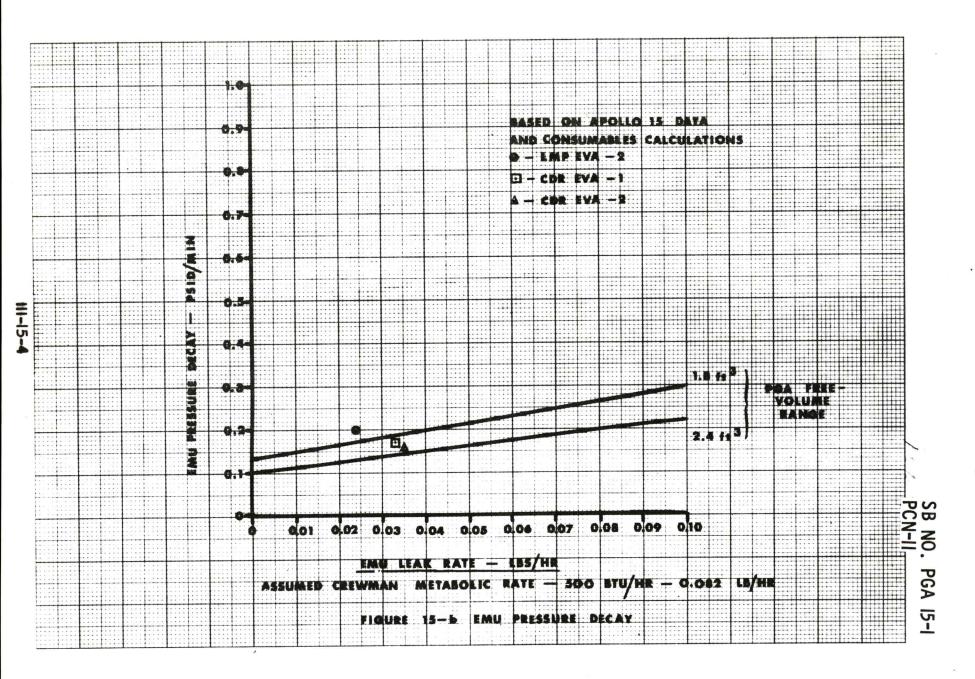
III-15-1

SB NO. PGA 15-1

where C is the coefficient of discharge factor. The volume of gas passing through the orifice is V_2A_2 ft³ per sec, and the quantity is $V_2A_2\rho$. For ideal gases, assuming adiabatic expansion through the orifice, a pressure ratio $(p_2/p_1) \geq 0.53$ results in subsonic flow. For subsonic orifice flow, the flow rate is dependent upon the upstream/downstream pressure relationship.

$$V_{2} = C \sqrt{2g_{c}p_{1}V_{1} - \frac{k}{k-1} \left[1 - \left(\frac{p_{2}}{p_{1}}\right)^{2}\right]} / \sqrt{1 - \left(\frac{A_{2}}{A_{1}}\right)^{2} \left(\frac{p_{2}}{p_{1}}\right)^{\frac{2}{k}}}$$


$$M = 3600 \ CA_{2}p_{2} \sqrt{\frac{2g_{c}}{RT_{1}} - \frac{k}{k-1} - \left(\frac{p_{1}}{p_{2}}\right)^{\frac{k-1}{k}} \left[\frac{p_{1}}{p_{2}} - 1\right]} / \sqrt{1 - \left(\frac{A_{2}}{A_{1}}\right)^{2} \left(\frac{p_{2}}{p_{1}}\right)^{\frac{2}{k}}} = 1bs/hr$$


 V_1 is ofetn small compared with V_2 , and under these conditions, the denominators in the preceding equations become approximately equal to unity.

For ideal gases when $\frac{p_2}{p_1} < 0.53$, the flow rate through the throat is sonic (choke flow).

$$M = CA_2 p_1 \sqrt{\frac{g_c}{RT_1} k \left(\frac{2}{k+1}\right)^{(k+1)/(k-1)}} = f(p_1) lbs/hr$$

For choke flow conditions, the flow rate becomes independent of the downstream pressure.

BEE 20x20 TO INCH

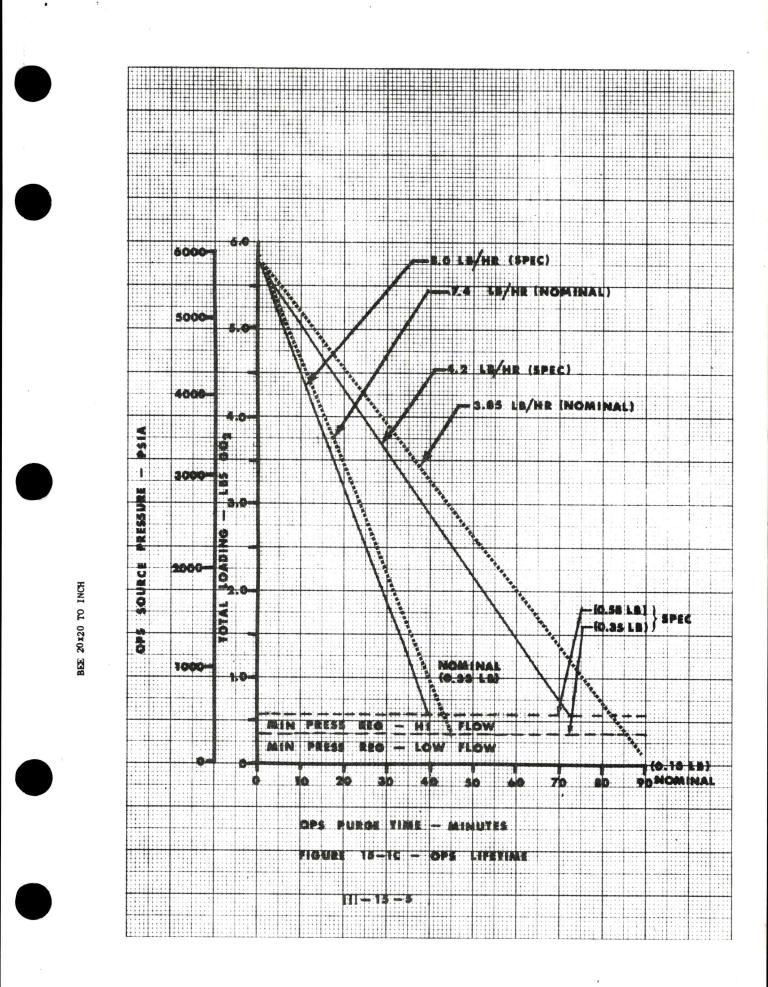


Figure 15-1d deleted by PCN-11

r

This SB deleted by PCN-8

SB NO. PGA 15-3

S/C:	EMU
DATE:	6/1/71
REV:	PCN-8
ORIGINATOR:	L. V. Minter_ 1
APPROVAL:	I.M.M.
	- manufactor

TITLE: A7LB AND A7LB-CMP PGA's

BACKGROUND: Two types of extravehicular PGA's will be utilized for the Apollo J-missions: (1) the A7LB-CMP PGA will be worn by the Command Module Pilot (CMP); (2) the A7LB PGA will be worn by the Commander (CDR) and the Lunar Module Pilot (IMP). The A7LE-CMP PGA is a modified A7L PGA designed to be worn EV by the CMP during the CMP EVA. The CMP does not require liquid cooling, so the A7LB-CMP PGA does not contain a water connector, and the CMP does not wear a liquid cooling garment (LCG). The A7LB PGA utilizes an LCG in conjunction with gas ventilation cooling with both the IM ECS and PLSS.

> The main differences between the A7L and A7LB PGA's were designed to afford greater mobility and durability with the A7LB PGA. A waist joint was added allowing a normal sitting position capability, improving downward visibility and improving center of gravity control. No torso tiedown straps are required. A neck joint was added improving visibility, reducing neck fatigue, and allowing for an adjustable neutral position. Elimination of hardware interference at the shoulder and neck ring improved overhead reach and reduced operating torque. Grasping capability and comfort were improved by increasing the glove thumb extension. Also, the wrist disconnect diameters were increased for improved donning, doffing, and comfort. The A7LB glove has peripheral ducting as opposed to a single duct for improved ventilation.

The A7LB zipper goes from the upper left chest area, down to the waist, and across the back to the right front waist area. For both PGA's, the restraint layer is outside of the bladder layer, but the A7LB pressure sealing zipper is behind the restraint zipper instead of being the outside zipper as on the A7L and the A7LE-CMP PGA's. Due to the A7LB zipper path, the ventilation system was rerouted, creating a different connector configuration. Due to the relocated water connector, the LCG connector manifold was redesigned. An improved clamp and strain relief for the tubing connections account for better reliability.

The A7LB PGA durability was increased via the addition of a nylon scuff layer on the bladder and convolutes and construction of a more durable ITMG. More spacer layers were added and gridded Kapton film was used to improve flammability characteristics.

Unchanged items are the maintenance kit, helmet shield, LEVA, FCS, communications carrier, bio harness, lunar boots, neck dam, CWG electrical harness, purge valve (dual orifice type), and the UCTA.

Some of the improved design items of the A7LB PGA were utilized on the A7LB-CMP. As previously mentioned, the A7LB-CMP torso is basically the same as the A7L torso less the water connector. The arms and legs are the A7LB configuration which standardizes dipped convolutes and improves abrasion resistance by an additional scuff layer. The boot bladders are laminated for improved structural integrity and increased abrasion resistance. The ITMG is the A7LB configuration with a teflon outer layer for improved abrasion resistance. The helmet is the A7LB configuration containing teflon covered vent pad for improved abrasion resistance. The gloves are the A7LB configuration with the large wrist rings. The A7LB-CMP PGA also has improved shoulder cable swages, stainless steel pulley assemblies, and is equipped with the A7LB type pockets.

P-8

LSB NOTES OF INTEREST INDEX

DATE

For Descent/Ascent 9-28-72

4-4-72

10-13-72

10-10-72

10-5-72

10-31-72

7

∩-31-72

LSB NOTES OF INTEREST

1

•

INDEX

SUBJECT		DATE
GENERAL		
LM Tracking versus Telemetry Matri:	x For Descent/Ascent	9-28-72
New Chart Recorder Timing		4-4-72
LM-12 COMM Plans		10-13-72
Lunar Surface Contingency Liftoff H	rocedures	10-10-72
EPS		
Failed LM Circuit Breaker Critical	Bus Cases	10-5-72
Lunar L/O Through Impact on One Asc	ent Battery For Apollo 17	10-31-72
PYRO		
Pyro Battery Information (Revised)		10-31-72
Stay on the Lunar Surface with A Si Allowing Inadvertent Staging (updat	ngle Point Failure ed)	11-1-71
INST		
Calibration Curves		8-7-70
Explanation of the PCMTEA Loading a Instrumentation Interface Drawing	s Presented on the	11-25-70
Failed LM Circuit Breaker Critical	Bus Case	10-5-72
ECS		
Constraints Associated With Use of Loop on the Lunar Surface for Batte	the Secondary Coolant ry Management	10-27-71
EMU		
CMP EVA without OPS		5-12-71
Crew Unsuited Configuration While or	n the Lunar Surface	7-19-71
LRV		
LRV Deployment Mechanism - Space Sup	pport Equipment (SSE)	4-30-71
PGNS IM Attitude Control Meder During DD	-	
LM Attitude Control Modes During PD	L	2-23-70
A Follow-up on CDU Failures and PDI		7-27-71

PGNS (continued)

PDI Procedure for LR Antenna Switching	5-24-71
PDI Procedure for LR Switching Addendum	6-9-71
Lunar Surface Operation of the PGNS and AGS Without Active Cooling	11-1-71
LM Platform Drift	2-25-72
Ascent Guidance and Control Modes, Their Priority and Selection	4-10-72
Changes to the RR Antenna Parking Position on the Lunar Surface	4-11-72
PROP	
Analysis of Vehicle Dynamics Resulting from Isolation of Critical Jet Failed on During Powered Descent	7-7-71
Monitoring Techniques for a Failed APS Inlet Pressure Transducer	7-7-71
RCS Management with a Critical Thruster Stuck on	7-24-71
RCS Thruster Failures and Apollo 15 (Revised)	7-13-71
APS TPI and Depletion	12-1-71

September 28, 1972

NOTE OF INTEREST: LM Tracking Versus Telemetry Matrix for Descent/Ascent

The enclosed three matrices detail the onboard LM switching procedures for obtaining tracking or telemetry for a failure of the LM PM subcarrier voice and telemetry prior to Descent and Ascent. Each matrix has been reviewed by the appropriate MOCR positions on the Ascent and Descent teams.

Alan C. Glines

3 Enclosures

Distribution: CB/E. A. Cernan/H. H. Schmitt/J. W. Young/C. M. Duke/C. G. Fullerton FC/E. F. Kranz/G. D. Griffin FC4/W. L. Peters/H. A. Loden/R. A. Thorson/W. M. Merritt FC5/P. C. Shaffer/J. H. Green/W. M. Stoval FC7/D. E. Stullken/C. R. Lewis/E. I. Fendell (10)/A. C. Glines

FC73/ACG:dbp:2267

I. DESCENT

A. DESCENT CONFIGURATION

TIME	DATA	CREW ACTION
PDI - 5 MIN TO PDI + 1:30	TRACKING (VOICE)	PM, SEC, PRIM, DN VOICE BU, PCM, BIOMED OFF, HI
PDI + 1:30 TO PDI + 2:00	VOICE/TM	S-BAND FUNCTION/VOICE TO VOICE
		S-BAND MODULATE TO FM
PDI + 2:00 TO PDI + 4:00	TRACKING	S-BAND MODULATE TO PM
	(VOICE)	S-BAND FUNCTION/VOICE TO DN VOICE BU
PDI + 4:00 TO TOUCHDOWN	VOICE/TM	S-BAND FUNCTION/VOICE TO VOICE
		S-BAND MODULATE TO FM

B. DESCENT ABORT CONFIGURATION

 ONE GOOD GUIDANCE SYSTEM AVAILABLE (EITHER PNGS OR AGS) - TRACK FROM ABORT INITIATE TO INSERTION.

• TWO GOOD GUIDANCE SYSTEMS AVAILABLE (PNGS AND AGS) -REMAIN ON TLM FROM ABORT INITIATE TO INSERTION.

II. ASCENT

A. PNGS/AGS BOTH GO FOR NAV

TIME	DATA	CREW ACTION
LIFTOFF - 5 MIN	TRACKING (VOICE)	PM, SEC, PRIM, DN VOICE BU, PCM, BIOMED OFF, HI
LIFTOFF - 4 MIN 30 SEC	VOICE/TM	S-BAND FUNC/VOICE TO VOICE
	. · · ·	S-BAND MOD TO FM
LIFTOFF + 1 MIN 30 SEC	TRACKING (VOICE)	S-BAND MOD TO PM
	(VUICE)	S-BAND FUNC/VOICE TO DN VOICE BU
LIFTOFF + 4 MIN	VOICE/TM	S-BAND FUNC/VOICE TO VOICE
		S-BAND MOD TO FM
LIFTOFF + 5 MIN	TRACKING (VUICE)	S-BAND MOD TO PM
	(VOICE)	S-BAND FUNC/VOICE TO DN VOICE BU
LIFTOFF + 6 MIN	VOICE/TM	S-BAND FUNC/VOICE TO VOICE
		S-BAND MOD TO FM
LIFTOFF + 6 MIN 30 SEC	TRACKING	S-BAND MOD TO PM
, ·	(VOICE)	S-BAND FUNC/VOICE TO DN VOICE BU
CUTOFF + 30 SEC (ONLY IF VOICE NOT AVAIL- ABLE WITH TRACKING)	VOICE/TM TO PASS	S-BAND FUNC/VOICE TO VOICE
	TWEAK	S-BAND HOD TO FM

II. ASCENT

B. PNGS OR AGS NO GO FOR BOTH NAV/GUIDANCE

TIME	DATA	CREW ACTION
LIFTOFF - 5 MIN	TRACKING (VOICE)	PM, SEC, PRIM, DN VOICE BU, PCM, BIOMED OFF, HI
LIFTOFF - 4 MIN 30 SEC	VOICE/TM	S-BAND FUNC/VOICE TO VOICE S-BAND MOD TO FM
LIFTOFF + 1 MIN 30 SEC	TRACKING (VOICE)	S-BAND MOD TO PM S-BAND FUNC/VOICE TO DN VOICE BU
LIFTOFF - 1 MIN 30 SEC	VOICE/TM	S-BAND FUNC/VOICE TO VOICE S-BAND MOD TO FM
LIFTOFF + 2 MIN 30 SEC	TRACKING (VOICE)	S-BAND MOD TO PM S-BAND FUNC VOICE TO DN VOICE BUS
LIFTOFF + 5 MIN	VOICE/TM	S-BAND FUNC/VOICE TO VOICE S-BAND MOD TO FM
LIFTOFF + 6 MIN	TRACKING (VOICE)	S-BAND MOD TO PM S-BAND FUNC/VOICE TO DN VOICE BU
CUTOFF + 30 SEC (ONLY IF VOICE NOT AVAILABLE WITH TRACKING)	VOICE/TM TO PASS TWEAK	S-BAND FUNC/VOICE TO VOICE S-BAND MOD TO FM

INTERESTING NOTE: New Chart Recorder Timing

1. Two new timing codes have been added to the Apollo chart recorders. This modification will allow chart recorder operation at slow paper speeds while retaining legible timing marks. Unmodified recorders cannot be operated slower than 10 millimeters per second (MPS) because the timing code marks become extremely compressed and illegible. The modified recorders can be operated at paper speeds as slow as 0.25 MPS.

2. The new codes are called EXPANDED CTE and EXPANDED MET and have been added to the right timing selector switch. The new codes can be selected to the right timing pen only. The EXPANDED CTE/MET time word is longer than the standard CTE/MET by a factor of 30. The standard CTE/MET time word is 10 sec. long and output every multiple of 10 sec. The EXPANDED CTE/MET time word is five min. long and output every multiple of five min. (00, 05, 10, 15 min. etc.).

3. The format of EXPANDED CTE/MET is identical to the standard CTE/MET format. At a paper speed of one MPS an expanded time word would be 30 cm long. At a paper speed of 0.5 MPS the expanded time word would be this actual size:

UNIDS	HOUDS	MIN	UNITS MIN.	DAYS	UNITS DAYS	
AFIVE MIN. SYN		[-more	O SEC. MARKI		

expressing the time 06:16:25:00 or 160:25:00 at the start of the five min. sync pulse. This modification is an addition only. The right timing selector swtich still has the old positions along with the new positions. The left selector swtich has not been modified in any manner.

4. Due to the five min. length of the time code word, EXPANDED CTE/MET will be effected by poor quality telemetry more than the standard CTE/MET 10 sec. time word. This effect has not presented any serious difficulties during tests. One MPS and 0.5 MPS have been found to be the most useful paper speeds.

Richard §. Ramsell

EIF Section.

CSH

1121

Distribution: CG5/J. W. 0'Heill DD/W. R. Hawkins, M.D. FS4/S. D. Sanborn FS5/L. J. Dungan FS6/J. E. Williams HAG/B. J. Goss FC/M. P. Frank FC2/C. S. Harlan FC3/T. R. Loe FC4/J. E. Hannigan FC5/J.C. Bostick FC6/R. A. Hoover FC7/D. E. Stullkon FC8/C. B. Shelley FC9/J. E. Saultz PM-MO-F/R. S. Hanner

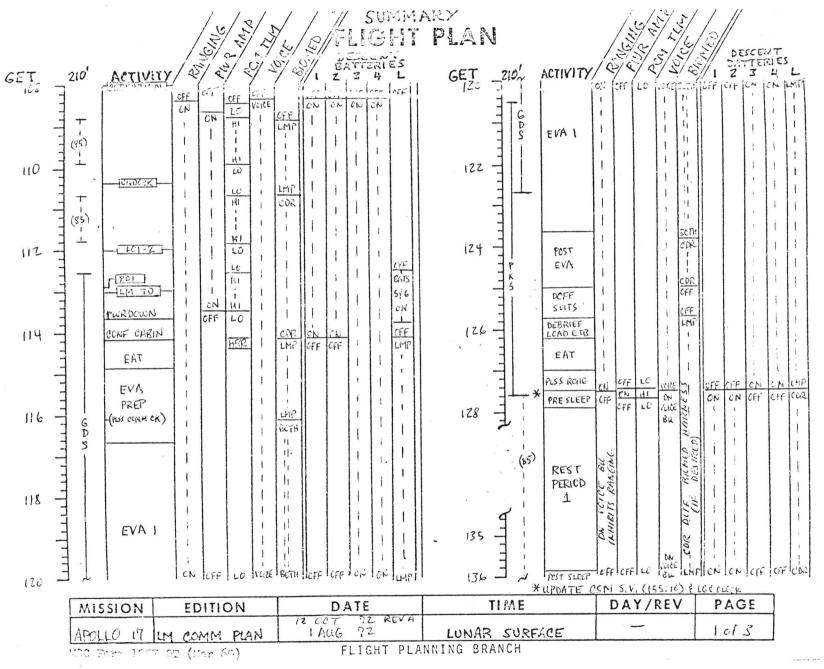
NOTE OF INTEREST

Leon Vick October 13 1972

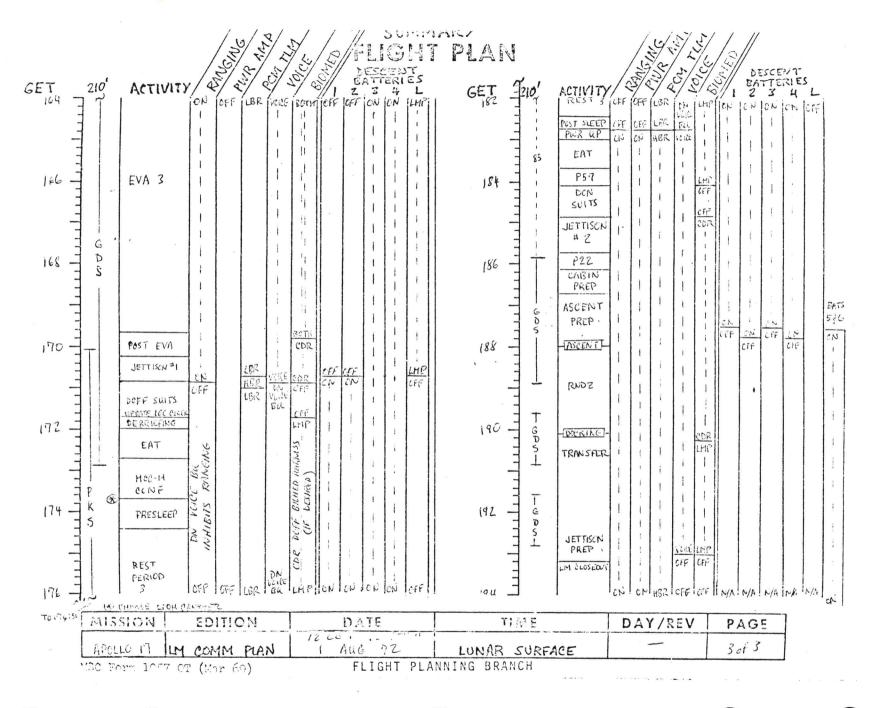
SUBJECT: LM 12 COMM PLANS

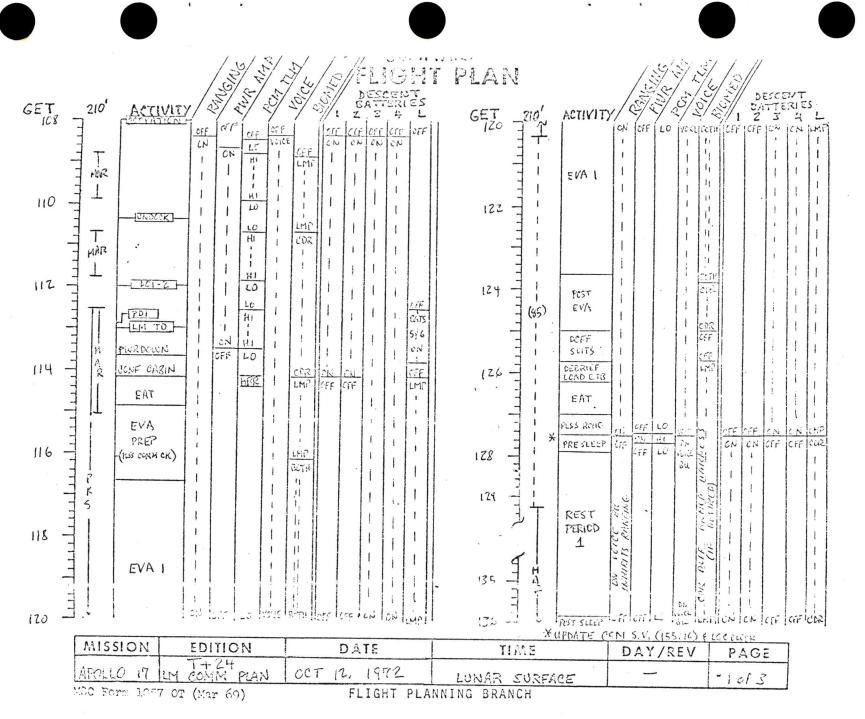
Attached are a revised IM 12 Comm Plan for the T-O (Dec. 6) launch, and a new plan for the T+24 (Dec. 7) launch.

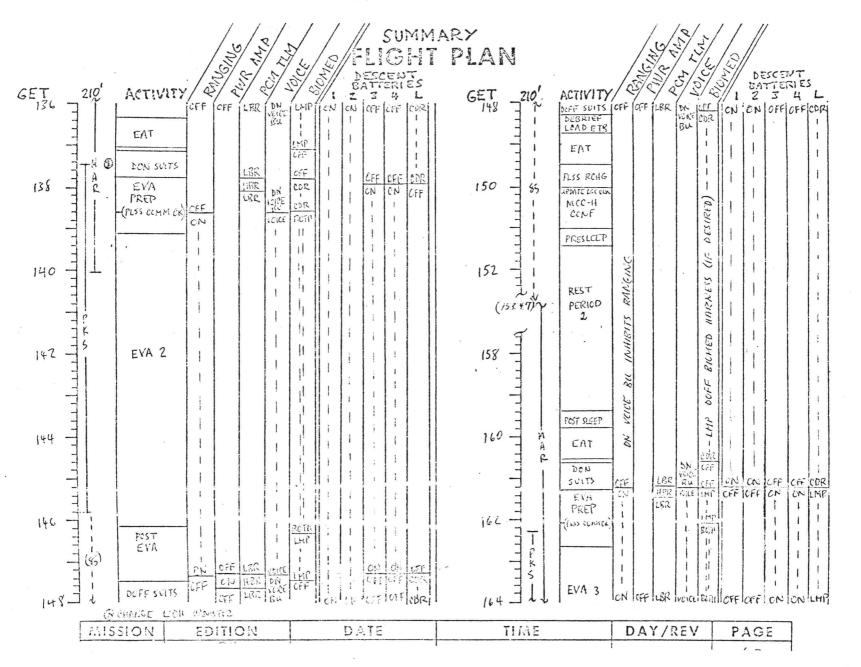
The T-O plan has been modified to accomodate usage of the 210 ft antenna at Parkes, Australia. The only procedural change resulting from Parkes usage is deletion of the power amplifier at ~147:30 (post EVA-2) This period is now within 210 ft. (Parkes) coverage.

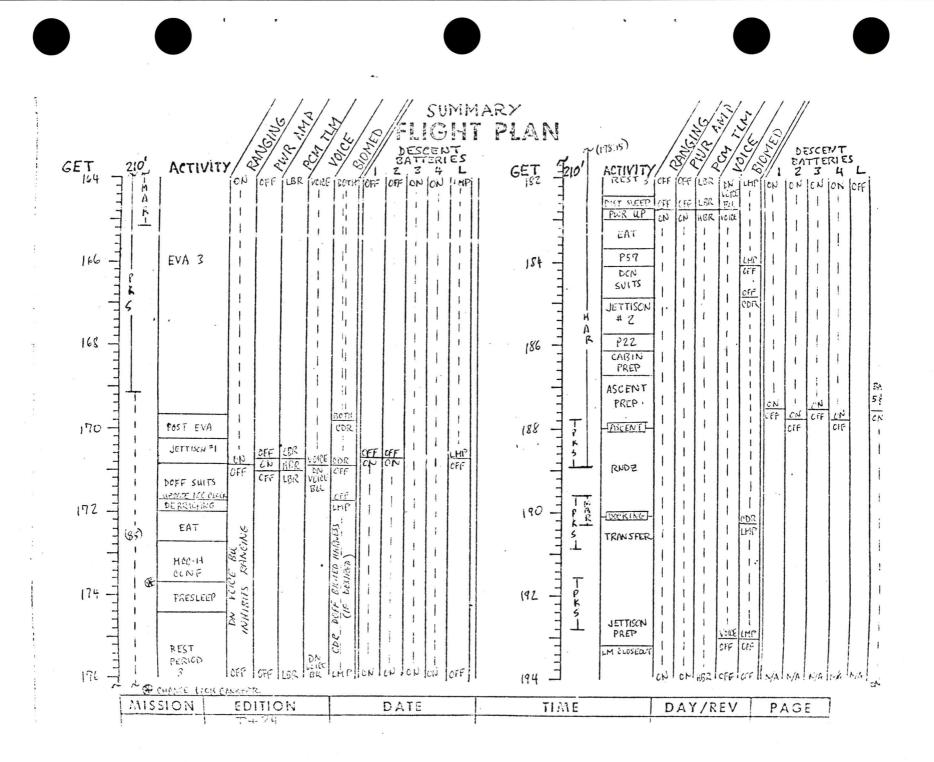

Another change in the T-O plan is the battery configuration in t e period from ~147:30 to ~171:30. The revised configuration, resulting from analysis of battery usage, provides a much better balance of amp-hrs consumed.

The T+24 plan reflects the use of a clock sync during translunar coast such that the lunar stay is all at the same GET as on the nomina. mistion. However, the GMT's of these activities are ~18 hrs later than fc 'T-O Thus, 210 ft. station coverage is shifted by this delta causing podification of power amplifier usage as follows:


~147:30	(Post	EVA-2)	PWR	AMP-ON
~161:10	(Pre	EVA-3)	PWR	AMP-OFF
~170:50	(Post	EVA-3)	PWR	AMP-ON


All other Comm/Battery functions are configured the same on the $\Sigma+24$ and T-O plans.


Juen Tick



GET 200 ACTIVITY BESCENT GET 200 ACTIVITY BESCENT GET 100 FORT 100 FORT 100 FORT 100 FORT 135 100 FORT 100 FORT 100 FORT					• •		
$ V _{1} = \begin{bmatrix} e_{1}T \\ e_{1}T $	GE	T 210' ACTIVITY S S	BATTERIES	GET 210' ACTIVITY		DESCENT BATTERIES	L
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			LAIP CN CN QFF LEFF CURC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOAD ETB	OFF OFF LBR DN LLF	L'ON ON OFFICE	
140 = 140	4		CDR BCTN	150 K. UPMTELLCOUK S MCC-H CONF	ts <i>i</i> (2)		
142 = G = EVA 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	1	40		152 - REST	(IF		
44 = 14 =	ł			Ĩ 2	C INHIBI		
$\frac{1}{146} = \frac{1}{168} = \frac{1}$				POST SUCEP	VEICE		
Int S EVA I <t< td=""><td>ŝ</td><td>bier l</td><td></td><td>SUITS EVA PREP</td><td>CTF CFF LBR VOICL CN CN HBR W.LE LM C CFF LBR 1 1 1 LM 1 LM 1 LM</td><td>$\frac{1}{2} \frac{\partial N}{\partial F} \frac{\partial D}{\partial F} \frac{\partial F}{\partial F} \frac{\partial F}{$</td><td></td></t<>	ŝ	bier l		SUITS EVA PREP	CTF CFF LBR VOICL CN CN HBR W.LE LM C CFF LBR 1 1 1 LM 1 LM 1 LM	$ \frac{1}{2} \frac{\partial N}{\partial F} \frac{\partial D}{\partial F} \frac{\partial F}{\partial F} \frac{\partial F}{$	
MISSION EDITION DATE TIME DAY/REV PAGE AFULLY I'I ILM COMM PLAN I AUG 72 LUNAR SURFACE - 2 of 3		DCFF SUITS CFF CFF LBR BU	LMP ON OFF				
APULLU VI ILM COMM PLAN I AUG 72 LUNAR SURFACE - 2 of 3			DATE	TIME	DAY/REV	PAGE	
			IZ COT 1/2 REVA		·		
			A DESCRIPTION OF THE OWNER OF THE				

001 10 1972

NOTE OF INTEREST: Lunar Surface Contingency Lift-off Procedures

1. For the previous Apollo missions, a procedure for "no PGNS auto ignition" for lunar lift-off has existed, which was designed to meet the following two constraints:

a. To provide for redundant APS-ON signals if possible.

b. To lift-off within 10 seconds of nominal Tig in order to achieve a direct rendezvous.

After the Apollo 16 IM jettison attitude control problem, another constraint evolved which is inconsistent with current procedures. This new constraint, that of checking the attitude control circuitry via a hot-fire after an attitude control configuration change, has caused Apollo 17 checklists to be modified to perform the PGNS portion of the lunar surface hot-fire test last. Another constraint change which impacts the existing procedure is that the 10-second limitation for the direct rendezvous has been relaxed to 30 seconds. This allows more time to execute an alternate procedure as will be examined below.

2. Several options are available which could change the existing procedure to ensure attitude control at lift-off. In some cases, however, this is at the expense of the other constraints. These options and the advantages and disadvantages are as follows:

a. "Safe" the vehicle and wait one rev.

Although this action has the advantage of not hurrying, troubleshooting, and lifting off in the best possible configuration, it causes a powerdown and reconfiguration problem. Also, waiting another two hours on the surface subjects the vehicle to additional failure risks.

b. Immediate manual ignition via START p.b.

An immediate manual start in PGNS does prevent the risk of lifting off in AGS with possibly no attitude control, and obviously can be accomplished in time to make a direct rendezvous. However, the constraint of providing for a redundant APS-ON signal, if possible, would be ignored, and is the main objection to this procedure.

c. <u>Modify original procedure to include Hot-Fire checks after</u> <u>Switching between PGNS and AGS</u>.

Since the original procedure conforms to all constraints except verifying AGS attitude control prior to an AGS auto ignition, it can be modified to include a quick hot-fire check via the ACA prior to ignition. Switching to AGS in the lift-off configuration should cause an auto-on command to be issued and therefore, the AGS would need to be "safed" prior to switching to AGS. This can be accomplished by

already having the AGS MODE CONT switch in ATT HOLD or switching to ATT HOLD, or resetting the ABORT STAGE p.b. prior to selecting AGS. After the crew's assessment of a quick hot-fire check, auto ignition could be allowed via the opposite "safing" action, i.e., switching to AUTO or pushing the ABORT STAGE p.b. This procedure should be able to be performed within the new 30-second time constraint for the direct rendezvous. Although both methods of safing the AGS for the hot-fire check would be acceptable, resetting the ABORT STAGE seems to adhere best to the constraints. Performing the hot-fire in the AGS ATT HOLD does have a slight disadvantage of changing the attitude control configuration after the test by switching to AUTO. This switching causes enable power to the abort preamps to be switched between two contacts of the AGS MODE CONT switch. However, resetting the ABORT STAGE p.b. allows the attitude control circuitry which will be used for the ascent to be checked end-to-end. Both methods require action to safe the AGS prior to its selection unless the AGS MODE CONT switch was placed in ATT HOLD prior to the final countdown. However, this would cause several checklist changes altering normal procedures for a possible contingency. Also, both methods are subject to a single point contact failure which would fail to remove the appropriate inbit to the AEA and cause ignition when AGS was selected.

3. As can be seen from analyzing the above options, arguments can be made for and against each. If the constraints of verifying attitude control and providing for redundant APS-ON are to be met, then safing the AGS for a hot-fire best meets these requirements. Resetting the ABORT STAGE p.b. is recommended over the AGS ATT HOLD method simply because it performs an end-to-end attitude control check and requires no attitude control configuration changes for ascent.

Jany W. Stringle

2

October 5, 1972

NOTE OF INTEREST: Failed LM Circuit Breaker Critical Bus Cases

"If a DC bus is determined to be critical (loss of the bus results in a catastrophic situation due to other systems failures), the ascent batteries will be configured split bus on backup feed paths (normal feed off) for ascent and descent if time permits."

The above mission rule defines the term "critical bus" and states the battery reconfiguration action. This note of interest defines:

- 1. The protected catastrophic situations.
- 2. The procedures to be used for battery/bus reconfiguration.
- 3. The circuit breaker failure cases which would place the LM in a critical bus situation and the action to be taken on a phase by phase basis.

The catastrophic situations protected against are:

- 1. Descent engine shutdown
- 2. Ascent engine shutdown
- 3. Loss of attitude control
- 4. Loss of staging capability

The loss of both computer systems is not protected since a manual profile may be flown for ascent or any PDI abort case. Attitude control failures which could use the secondary coils as a backup are protected since the mission rules do not consider secondary coils as an adequate control system.

The action taken is the same for either critical bus case in either the staged or the unstaged configuration. The procedure is as follows:

CB (16) EPS: ASC ECA CONT - Close Bat 5 Backup CDR Feed - ON; tb-gray Bat 6 Backup IMP Feed - ON; tb-gray Bat 5 Normal IMP Feed - OFF/Reset; tb-b/p Bat 6 Normal CDR Feed - OFF/Reset; tb-b/p Verify Bat 5 & 6 current prior to staging CB (16) EPS: ASC ECA CONT - OPEN

There are many specific failures and combinations of failures which place the LM in a critical bus situation. Some of these systems failures are identified on the cue cards. The attached chart defines those critical bus situations brought about by a circuit breaker failure and the action to be taken on a phase by phase basis.

RAT RQJ

JK

aug L. Pate William L. Peters

WIIIIan L. Pete

Enclosure

CRITICAL BUS CIRCUIT BREAKER FAILURE CASES

	1	PDI	6:10	HI-GATE	+	T	7-
DUC AND OD	PRE	to	to	to	SURFACE	ASCENT	
BUS AND CB	PDI	6:10	HI-GATE	T.D.			
CDR BUS						· · ·	1
*QUAD 1,2,3,4 TCA	NO GO	C - A	C - A	C - O	C - NBO	С	
*ATCA (PGNS)	NO GO	C - A	C - À	C - O	C - NBO	С	
AELD	NO GO	A	С	С	C - NBO	С	
ENG CONT	С	C	С	С		-	
ENG START OVRD	NO GO	А	C	С	C - NBO	с	
LOGIC PWR A	NO GO	А	С	C	MS-NBO	11 <u>4</u> 2 - 13	
*LGC/DSKY	NO GO	C - A	C - A	С	C - NBO	С	
*IMU OPR	NO GO	C - A	C - A	С	C - NBO	Ċ	
LMP BUS							23
QUAD 1,2,3,4 TCA	NO GO	C - A	C - A	C - 0	C - NBO	с	
LOGIC PWR B	NO GO	А	С	С	MS-NBO	-	
ENG ARM	NO GO	А	С	C	C - NBO	· _	
AELD	NO GO	А	С	С	C - NBO	С	
ATCA	NO GO	C - A	C - A	C - O	C - NBO	с	
ATCA (AGS)	NO GO	C - A	C - A	C - O	C - NBO	С	
DES ENG OVRD	С	С	С	С	-	-	
				С. э.			

C - Configure for Critical Bus

A - Abort

0 - Crew Option to Abort or Land

NBO-Liftoff next best opportunity $% \mathcal{B} = \mathcal{B}$

MS- Manual Stage

*- If secondary coils are considered a valid attitude control mode, loss of these circuit breakers will not create a critical bus condition.

NOTE OF INTEREST: Lunar L/O through Impact on One Ascent Battery for Apollo 17.

The nominal ascent battery energy usage at LM impact is 400 A-h (including TM unusable). The guaranteed battery capacity in the single ascent battery configuration is 286 A-h. Therefore, the ascent power requirement at impact must be reduced 114 A-h if impact is to be performed with a failed ascent battery.

The possible methods of reducing the power requirement at impact are as follows:

- 1. Power down all unnecessary equipment shortly after docking
- 2. Power down some unnecessary equipment after insertion and some after docking
- 3. Power down LM after docking and power up before jettison
- 4. Shorten liftoff to docking time

Option 1 was selected as having the minimum impact on the nominal mission. The power requirements for such a plan and the nominal mission are shown in Table 1. The equipment operating after power down are shown in Table 2. The timeline book changes which achieve these power levels are shown in Table 3.

Although the margin at impact is essentially zero, experience has shown that the ascent battery capacity greatly exceeds the rated capacity.

I Scott Ritchey

V. Scott Ritchey

3 Enclosures

FM7:VSRitchey:lad:10/31/72:4581

TABLE 1 - ASCENT BATTERY REQUIREMENTS THROUGH IMPACT

From Event	To Event	From GET	To GET	Delta Time	Nominal Amps	Nominal Amp-Hr	Powered Down Amps	Powered Down Amp-Hr
Pre PDI ASC Batts On	Lunar Surface ASC Batts Off	112:15	113:10	0 + 55	From SEENA	20	From SEENA	13*
Liftoff Prep	Liftoff	187:28	188:03	0 + 35	From SEENA	22	Req'd Precondition	5.
Liftoff	Docking	188:03	190:05	2 + 02	From SEENA	106	From SEENA	106
Docking	Open Hatch	190:05	190:30	0 + 25	44.0	18	44.0	18
Open Hatch	Nominal Power Down Time	190:30	192 : 53	2 + 23	44.0	105	23.0	55
Nominal Power Down Time	Jettison	192:53	193:58	1 + 05	33.2	36	22.7	25
Jettison	Burn	193:58	195:33	1 + 35	34.2	54	22.7	36
Burn	Impact	195:33	195:58	0 + 25	34.2	14	22.7	9 [.]
TM Unusable	•				2.69	25	1.9	18
Total				9 + 25		400		285

* Worst Battery

TABLE 2

COMPONENTS BEING POWERED AT 190:30

Equipment	Amps		
S Band Antenna (DC)	0.030		
S Band Antenna (AC)	0.123	(at	28v)
S Band Power Amp-Pri	2.570		
S Band XMTR/RCVR - Sec	1.290		
PMP	0.150		
DUA - Data	0.430		
CDR Audio	0.150		
SE Audio	0.150		
EPS Disp	0.084		
ASC ECA	0.360		
Glycol Pump 1	1.090		
CO2 Sensor	0.040		
ATCA	1.930		
LGC + DSKY	2.630		
IMU Operate	6.765		
IMU Heater	0.893		
SCEA 1	0.490		
PCMTEA	0.390		
C + WEA	0.490		
SCEA 2	0.370		
Sensors	0.380		
RCS HTRS	0.714		
Invertor	1.450		
:	22.97		

TABLE 3

LM TIMELINE BOOK CHANGES REQUIRED TO ACCOMMODATE IM IMPACT WITH A FAILED ASCENT BATTERY

NOTE: The remaining ascent battery is configured on both normal and backup feed paths and all crosstie circuit breakers are closed before liftoff.

Change to P 3-1

ADD:

190:30

Hatch Open to CSM

Configure CB's to charts (P 3-4, 3-5) CB (11) AC BUS B: AGS - Open Comm: CDR Audio - Close CB (16) RCS Sys B: PQGS/Disp - Open LTG: Flood - Open Track - Open STAB/CONT: AEA - Open ASA - Open ATCA (AGS) - Open Comm: VHF A XMTR - Open VHF B XMTR - Open

DELETE:

CB(16) Comm: Disp - Close

Change to P 3-2 DELETE:

Configure AGS

Concession of the local division of the loca		-	-	i.
l	404	+	0	
	405	+	0	
	406	+	0	
	470R			

Change to P 3-3

DELETE:

2 VHF A: XMTR - Voice/Range RCVR - Off VHF B: XMTR - Off RCVR - On

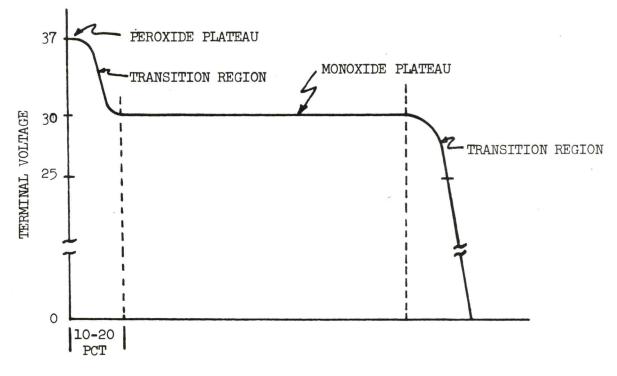
6 Configure CB's per chart

Change to P 3-6

DELETE:

1 Exterior LTG - Track
Bat 5 + 6 backup feed - on; tb(2) - gray

NOTE OF INTEREST: Pyro Battery Information


The IM pyro batteries are of silver-zinc construction as are the IM primary batteries. In the past, a pyro battery has been considered to be failed if its open circuit terminal voltage fell below-35 VDC. The reasoning behind this 35 VDC selection was that it represented a failure of more than one of the batteries 20 cells and thus a questionable battery state. Apollo 14 primary battery problems coupled with a desire to lower the 35 VDC redline on the pyro batteries resulted in a number of pyro battery tests performed at GAC. (Ref LTP 390-143). In general, these tests consisted of demonstrating the battery's capability to handle the staging functions with numerous cell failures and under various states of discharge.

10/31/72 0

11-1-71

The results of these tests demonstrated that the pyro battery is capable of performing the staging function numerous times with a terminal voltage of 18 VDC. Only when the terminal voltage falls below 15 VDC does the ability to perform staging become questionable. Since the LM voltmeter only reads from 20 VDC to 40 VDC, a value greater than 20 VDC must be selected in setting a pyro battery redline. Twenty-five VDC was arbitrarily selected as a value which would substantially reduce the previous 35 VDC redline and at the same time provide ample margin between the redline and offscale low on the voltmeter.

The pyro battery discharge characteristics are as shown in Figure 1.

AMP-HOURS CONSUMED

FIGURE 1

Due to the fact that while on the monoxide plateau the battery terminal voltage is relatively constant, it is impossible to determine, with the instrumentation available, exactly where on the discharge curve the battery might be. Thus with a terminal voltage in the vicinity of 30 VDC, the battery might have 90 percent of its capacity remaining or only 10 percent remaining. For this reason, a pyro battery is considered NO-GO if it is holding in the region of the monoxide plateau.

Dave Whittle

Updated 11-1-71 1-11-71

NOTE OF INTEREST

SUBJECT: Stay on the lunar surface with a single point failure allowing inadvertent staging

1. Present mission rules call for a mission abort anytime the pyrotechnic system(s) cannot be disarmed. The basic reason for the abort is that one more single point failure will cause the vehicle to stage. Should in advertent staging occur during powered flight or at lunar touchdown, a catastrophic event may occur by shutting down the DPS with no APS on signal or the ascent stage may topple off the descent stage at touchdown. These events are serious enough that this portion of the mission rule should remain unchanged. However, once on the lunar surface and the pyrotechnic failure exists, a different set of consequences must be observed. This paper will show that the consequences of an inadvertent staging on the lunar surface is not catastrophic and that the normal mission profile should be continued rather than a next best opportunity liftoff.

2. With the crew either in the cabin or out on an EVA, the following uncomfortable situations will exist with an inadvertent staging:

- a. Loss of descent H₂O
- b. Water boiler freezeup in 1 hour
- c. Loss of descent 0_2
- d. Loss of PLSS recharge capability
- e. Loss of CABIN REPRESS capability
- f. Loss of descent batteries
- g. Temporary loss of vehicle power
- h. Temporary loss of communications and telemetry
- i. Descent batteries are shorted via the guillotine blade
- j. Pyrotechnic devices are actuated in presence of crew (EVA only)

3. Although the list above seems quite formidable, each one is recoverable as follows:

- a. Select ascent H₂O
- b. Water boiler will not freeze up if glycol loop circulation is restored in 1 hour. This requires one EVA crewman to remain within 1 hour of the LM.
- c. Use ascent 0₂ for metabolic requirements.
- d. At the end of a normal EVA there is always a 30-minute 0₂ reserve remaining in the PLSS which could be used for contingency transfer.
- e. The cabin can be repressurized with one OPS plus a small amount out of one ascent O_2 tank. This action will not violate redlines but a subsequent depress and repress to dump material on the lunar surface will not be allowed.
- f. Select ascent batteries.
- g. Vehicle power will be restored when ascent batteries are placed on line.

- h. Communications and telemetry will be restored when vehicle power is restored.
 - i. Tests performed on descent batteries show that a dead short raises current of approximately 2100 amperes for a short time until the intercell connectors burn open. The batteries may vent but will not endanger an EVA crewman. The batteries will not explode.
 - j. All LM pyrotechnic devices by design specification will not produce shrapnel; i.e., they are self-contained and have blast deflectors which contain any particles.

4. In view of the non-catastrophic results described above, plus the low probability of occurrence, it seems prudent to accept the single point failure possibility and continue the mission on the lunar surface. Should inadvertent staging occur, the crew has adequate procedures to recover on ascent consumables and perform a next best opportunity liftoff. The above discussion is contingent on the capability of the LM to safely manually stage on the lunar surface. In attitude envelopes where manual staging is unsafe, the present mission rule of liftoff at the next best opportunity should be followed; however, if manual staging is allowable then the lunar surface stay should be continued if the pyrotechnic system(s) cannot be disarmed.

Willim L. Peters/FC4

Approved: J. E. Hannigan/Chief FC4

NOTE OF INTEREST: Calibration Curves

1. Conversion of measurement system outputs into meaningful engineering units is accomplished by using calibration curves. There are many types of calibration curves, and terminology used by industry to identify curve types has led to much confusion. The problem facing aircraft and spacecraft manufacturers is the selection of an adequate curve within the bounds of accuracy, flexibility, and cost. The following calibration code definitions are meant to clarify the existing confusion as well as provide some concrete definitions for further discussion. In order of descending accuracy, curves shall be defined as End to End, Actual, Hybrid, and Normalized.

2. End to End Calibration Curves:

The end to end calibration curve is the most accurate curve available. This curve is generated by physically stimulating the transducer with a known stimuli and then recording the resultant output of the flight hardware. Obviously the generated curve is directly related to the specific equipments involved. (i.e. transducer, signal conditioning, & signal encoding equipment) the attainable accuracy is limited only by the accuracy of the components involved and the calibrating equipment. Generally the end to end calibration is employed only where extreme accuracy is necessary. Measurements requiring accuracy of this fine a tolerance normally comprise only a fraction of the total number of parameters on a vehicle, and even then they are generally developmental type measurements. Additionally, end to end calibration curves require the establishment of calibration facilities to perform re-calibrations. The end to end calibration is specific equipment sensitive. This means that the calibration is destroyed by equipment replacement.

3. Actual Calibration Curve:

The actual calibration curve is a mathematical entity. It emerges from the mathematical marriage of the actual performance curves of each element in the data chain. Actual calibrations can be maintained without a calibration facility if manufacturer's data is acceptable; however, most aircraft manufacturers do not accept the hardware manufacturers data, but recalibrate all items inhouse. Accuracy sacrificed by using an actual as opposed to an end to end curve is a function of the type measurement (e.g. press, temp) as well as the accuracy of the individual components. Typically, this accuracy error would be so small as to be unnoticeable, except in the most critical of applications. Most signal conditioning and encoding equipment can be easily manufactured to such small tolerances that the resultant curve is that of the transducer alone. The actual curve is equipment sensitive.

4. Hybrid Calibration Curve:

Like the actual curve, the hybrid calibration curve is the result of a mathematical manipulation. The hybrid curve uses specification values for one or more of the equipments in the data chain. These specification values are mathematically combined with the actual curves on the rest of the involved equipment. Typically, actual curves from the transducer are combined with specification values for the signal conditioning and encoding equipment. The hybrid curve is only partially equipment sensitive which allows some equipment replacement without curve impact. Again accuracy sacraficed is minimal, and is still a function of measurement type and component. Some manufacturers refer to these curves as actual curves. (i.e. Grumman Aerospace Corp and North American Rockwell)

5. <u>Normalized</u> <u>Calibration</u> <u>Curves</u>:

The normalized calibration curve results from the mathematical marriage of specification values on each element in the data chain. It has the distinct advantage of being insensitive to equipments. Accuracies on the order of 2% are readily attainable with the normalized technique. Some manufacturers refer to normalized curve as a standard or spec curve.

A review of U.S. manned spacecraft launched to-date reveals a mixture of hybrid and normalized curves during the Mercury and Gemini programs. The initial calibration curves were normalized; however, before flight a check was run on each measurement based on the actual transducer installed in the vehicle. If the check revealed a deviation greater than 1%, then the curve was updated with a hybrid curve. For the Apollo program, North American Rockwell (NAR) uses 100% normalized curves for inhouse checkout and 100% hybrid curves for Cape checkout and for flight. Gruman Aerospace Corporation (GAC) supplies 100% normalized curves and up to 20% hybrid curves on request. Further discussion with Lockheed, Boeing, and aircraft related elements of GAC and NAR indicate a mixture of the various calibration curve techniques depending upon cost, application, accuracy, and various other influencing factors. Aircraft flight tests, for example, are strictly developmental in nature and as such require special characteristics not found in operational measurements. In addition, the small number of transducers required to satisfy a flight test program make reliable normalized curves not feasible. Other considerations make a concrete recommendation of the type of calibration curve for future spacecraft premature at this time. Further research and interface with various aircraft manufacturers combined with an intensive study of future spacecraft requirements should precipitate such a recommendation.

David Okhittle

David Whittle

WLP 8/1/70 DWW:jm

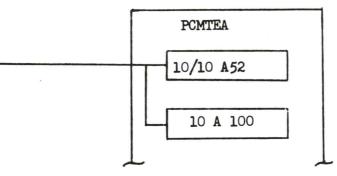
NOV 2 5 1970

NOTE OF INTEREST

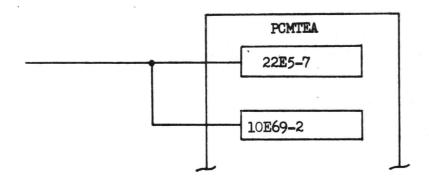
SUBJECT

Explanation of the PCMTEA loading as presented on the Instrumentation Interface drawings.

Sample rate: The number used to represent the samples per second is a code devised for use in some instrumentation documentation. In this code the first digit corresponds to the first digit of the actual sample rate. The second digit indicates how many zeros follow the first digit. Therefore, 10 = 1s/s, 11 = 10 s/s, 22 = 200 s/s, etc.


High Bit Rate (HBR)/Low Bit Rate (LBR): If a parameter location is on HBR only, then only one sample rate number will be shown. Should the location be on HBR and LBR, then two sample rates will be shown divided by a slash. If a parameter is on LBR, it is also always on HBR.

Analog/Events: Following the appropriate sample rate and HBR/LBR combination, an "A" "E", or in a few cases a "D" is shown to indicate whether the parameter is an analog, event, or digital eight bit word, respectively. "Digital words" are used to downlink such things as time and the code for the DUA status. For some analog parameters the "A" will be followed by an "H". The "H" no longer signifies anything and should be ignored.


Analog/Event Location: The last number shown is the channel assignment for the parameter. For events this number will be followed by a dash and another number which indicate the assigned bit for the parameter.

Redundancy: If a parameter is in more than one location then more than one block will be shown for it. Each parameter will have one block per location. If the parameter is redundantly loaded the prime location, or the location used as the source of data at the MCC, is listed first. The parameter is internally redundant if the line connecting the different locations is drawn inside of the "PCMTEA" block. External redundancy is indicated if the line connecting the different location is drawn outside of the "PCMTEA" block.

EXAMPLES:

Internally redundant 1 s/s analog with channel 100 HBR only and channel 52 on HBR and LBR.

Externally redundant event on HBR only with channel 5, bit 7 sampled 200 times per second and channel 69, bit 2 sampled 1 time per second.

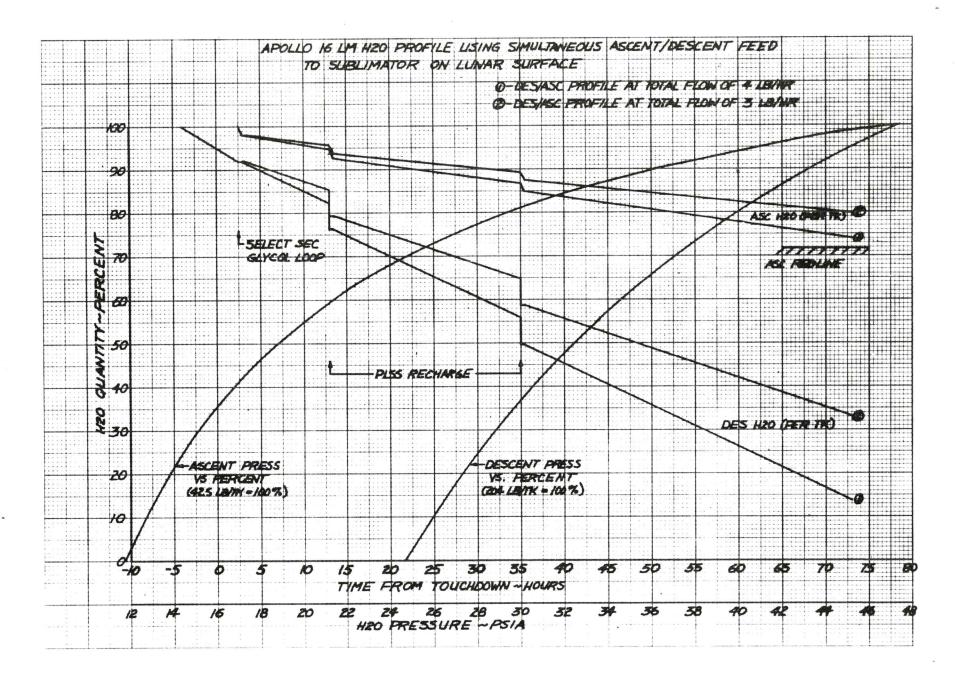
Robert Heselmeyer

Wif 11/25/70 Distribution:

All LSB Personnel

27 October 1971

NOTE OF INTEREST: CONSTRAINTS ASSOCIATED WITH USE OF THE SECONDARY COOL-ANT LOOP ON THE LUNAR SURFACE FOR BATTERY MANAGEMENT


1. Due to recent modifications to the construction and fill procedures of the descent batteries, their capacity has been suspect and, in several cases, has been less than specification. One possible workaround to increase the performance is to raise the battery operating temperatures; a suggestion has been made to accomplish this by terminating primary glycol loop flow and using the secondary glycol loop for cooling while on the lunar surface. There are several consequences associated with this:

- a. Time must be allotted to dryout the primary sublimator (≈55 minutes).
- b. No active cooling to the following equipment: DSEA, LGC, LCA, IMU, GASTA, PTA, and all the equipment located in the descent stage.
- c. No cooling to crew's liquid cooling garment (LCG) during Prep for EVA's.
- d. Secondary loop has a single pump, therefore no redundancy or switchover capability in loop.
- e. No capability for monitoring the secondary H₂O ΔP or secondary W/B inlet temperature. No CWEA is associated with secondary loop.
- f. Unknown temperature rise rate of descent batteries operating without active cooling.
- g. Special procedures must be observed when recharging PLSS H₂O.
- h. Continuous suit fan operation is required during EVA while on secondary loop. Approximately 126 amp-hours must be budgeted for this.
- i. The water feed configuration has never been tested before.

2. The enclosed plot represents an estimated H₂O usage profile for secondary loop operations. The critical consumable during the secondary loop is ascent H₂O of which about 12 lbs/tank would be available. The total stay time is relatively unaffected by the time of activation of the secondary loop, however, the time without cooling to the descent batteries is longer the earlier the secondary loop is activated.

3. Although the profile indicates the feasibility of performing this consumable management, the additional procedures required and the additional amp-hours used by the suit fan during the EVA's would overly complicate the procedures and partially negate any additional amp-hour performance obtained from the descent batteries; therefore, we do not recommend this approach to increase descent battery performance.

WMM/JEH Q. Patin/FC46 of P

NOTE OF INTEREST

May 13, 1971

SUBJECT: CMP EVA without OPS

1. It is the position of the IM Systems Branch that a CMP EVA (nominal or otherwise) should not be attempted without the availability of a functional OPS.

2. Single point failures which could result in catastrophic end results without OPS capabilities, during an EVA, are as follows:

a. Any supply failure upstream of the CM EVA/IVA panel demand regulator (to either the SM or CM portion of the system) resulting in loss of O_2 flow (ventilation) to the crewman.

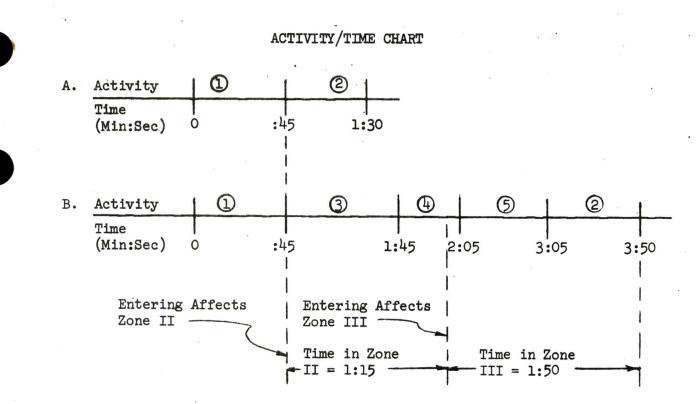
b. Similarly, a failed closed EVA/IVA demand regulator.

c. Similarly, a sever or restriction of the EVA umbilical.

Any of the above, which would result in reverse flow from the PGA through the suit control unit (SCU) and overboard, would require closure (if possible) of the SCU mounted shut-off valve (SOV) immediately upon detection by the crewman. Prior to SOV closure, the PGA pressure could reduce from 4.0 psia to 3.0 psia in 82 seconds at an initial flowrate of 7.2×10^{-3} lb/hr. From the time of loss of O₂ ventilation, the crewman would have approximately 3 minutes (at a low metabolic rate - 500 BTU/hr) of activity time before he would exhibit definite effects on mobility due to CO₂ buildup. Reference Enclosure 2 which correlates suit helmet CO₂ partial pressure buildup without ventilation with CO₂ effects on crewman. Since this type of situation would dictate immediate termination of all EVA activity, coupled with transfer and ingress, the crewman's work rate would greatly increase (approximately 2000 BTU/hr), proportionally reducing the amount of time available before CO₂ buildup affects were incurred (approximately one minute to reach 30 mm Hg).

3. A crewman's emergency ingress time for a vacuum ECS transfer is dependent on distance of travel and LMP clearing of hatch area along with umbilical relocation. Minimum time for this activity is about 45 seconds; subsequent CM ECS hook-up time and O₂ initiation is about 45 seconds-resulting in a minute and a half total. Emergency repress requires additional camera/pole removal and stowage, hatch closure, and hatch locking (approximately one minute). Current procedures require a 15 - 20 second manual closing of the CM dump valve (prior to cabin repress). Whether or not a vacuum ECS transfer is completed, an emergency CM repress can be accomplished in approximately one minute facilitating the three one-pound bottles and the 3.75-pound surge tank. Therefore, the total time from failure to cabin repress is 3 minutes, 5 seconds minimum; and 3 minutes, 50 seconds maximum (depending on CM ECS hook-up). These time estimates are based on available crew procedure guidelines. Reference Activity Time Chart (enclosure 1). 4. Single point failures which would result during checkout in not performing an EVA without OPS capabilities are as follows:

a. A failed closed PCV would not permit PGA pressure regulation, resulting in increasing (if SCU mounted shut-off value open and flowing) suit pressure to the point of pressure relief value operation.

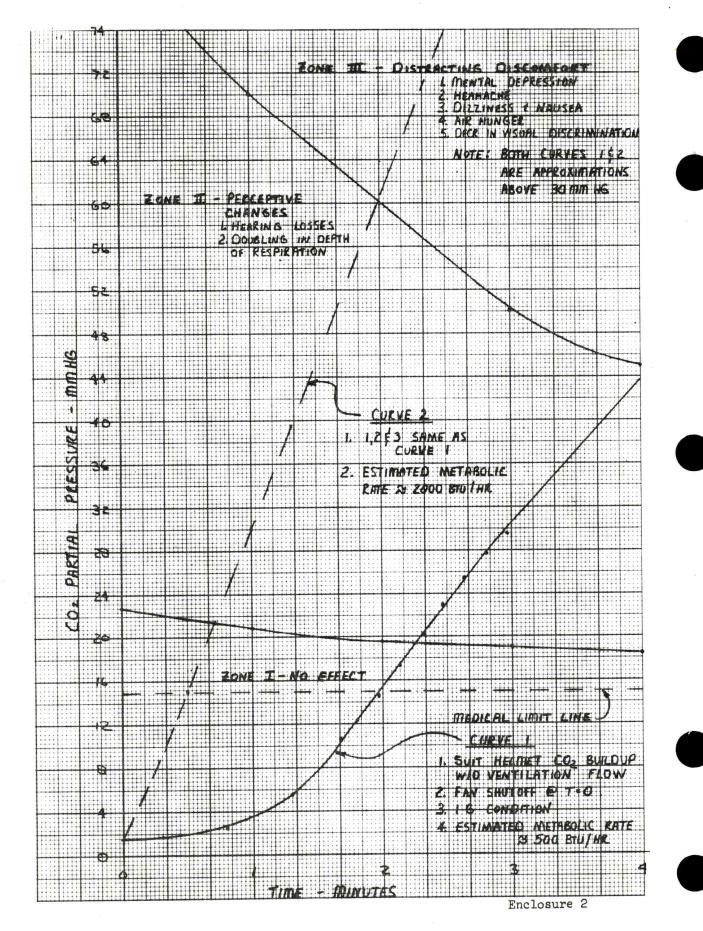

b. A failed open or closed SCU mounted shut-off valve would not permit PGA pressure isolation in event of upstream flow loss or the inability to provide flow into the PGA.

OPS backup capabilities in these instances would provide the backup system should an EVA be necessary.

5. Throughout the Apollo program, it has been the philosophy never to subject a crew to a situation without an adequate backup system, if possible, when a single point failure could be catastrophic. In summary, it is felt that the time available to return and connect to the CM ECS from the EV station would not be of sufficient backup due to the increased CO₂ buildup as previously indicated.

Lee A. Wible

2 Enclosures


A. Vacuum ECS Transfer

B. ECS Transfer in Pressurized Cabin

Activity Definition:

- 1. Transfer and ingress CM
- 2. Transfer to CM ECS
- 3. Camera removal, hatch closure and lock
- 4. CM dump valve closure
- 5. Emergency repress

Enclosure 1

-

NOTE OF INTEREST

SUBJECT: Crew Unsuited Configuration While on the Lunar Surface

Apollo 15 and subsequent missions require the LM crew to doff their PGA's (Pressure Garment Assembly) during sleep periods on the Lunar Surface; in previous lunar stays only the helmets and gloves were doffed and in the event cabin pressure dropped below 4.03 ± .37 PSIA, the Cabin Repress valve (AUTO) would maintain cabin pressure while the crewmen donned helmets and gloves and configured to CLOSED SUIT LOOP mode.

Obviously, without the suits donned, the time to reach a safe configuration is much greater and there are certain large cabin leaks that we cannot stand. In order to minimize these potential problems we investigated all ECS values and switches which, if inadvertently actuated, could have direct effects or lead to potential problems, and have determined that the Lunar Surface Checklist provides adequate safeguards against these potential problems.

Enclosed is an investigation of the critical LM ECS circuit breakers and valves.

marance Satur Q. Patin FC/46

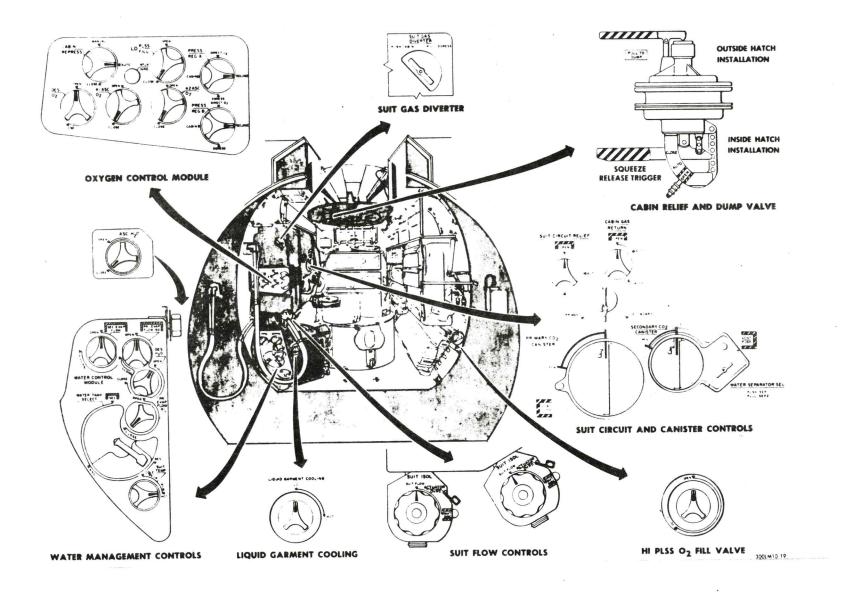
Approved 45K

1 Enclosure

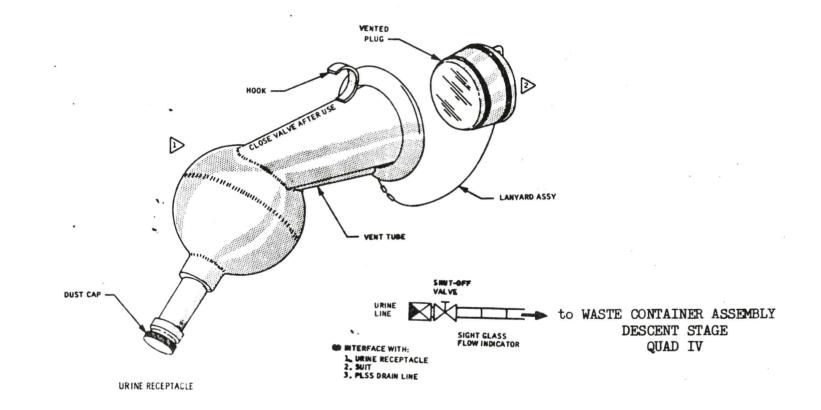
FC46:Q. Patin:mk:7-19-71:4576

TYPE	FUNCTIONAL DESCRIPTION	POSSIBLE INADVERTENT ACTUATION	TOTAL EFFECT S/C - CREW
DES O ₂ SHUTOFF VALVE	-Two position, manually operated shutoff valve controls O ₂ flow into the OXYGEN CONTROL MODULE. There are OPEN and CLOSE posi- tions, with mechanical stops on the handle to prevent overtravel.	Displacement of valve to CLOSE position.	Inadvertent closure of this value does not present immediate danger. However, O_2 is not available for cabin puncture protection or for make-up oxygen to maintain the nominal cabin pressure via the DEMAND Regulators. If the value remains in the CLOSE position for an extended time the cabin pressure decay will cause an onboard Master Alarm via the cabin pressure switch. Crew may re-open the Descent O_2 value and allow the cabin repress value to bring the cabin pressure back to the normal range. Ground monitoring can deter- mine lack of cabin makeup within $0.5 - 1.0$ hr.
DEMAND REGULATORS A and B	-Two regulators work in parallel to regu- late coxygen from up- stream 0 ₂ tanks to the downstream suit loop. Each valve must be manually selected to the required mode. CABIN - 4.8 ⁺ 2psia EGRESS - 3.8 ⁻ .2psia DIRECT - 7.0#/hr (FULL FLOW) CLOSE - NO FLOW	Displacement of a DEMAND Regulator to DIRECT posi- tion.	Initiates a continuous High 0 ₂ Flow (7 #/hr) to the suit loop and via the suit circuit relief valve to the cabin. A cabin pressure buildup to 5.4 psid will automatically dump overboard through the F/H or U/H Dump valve, if placed in AUTO. Crew action requires reselecting the appropriate regulator's CABIN position. Detectable via ground monitoring
H ₂ O SEPARATOR SELECTOR VALVE	-Two position manually operated flapper-type valve that enables selection of either water separator. Positions are: PUSH: SEP 1 PUIL: SEP 2	Displacement of the valve selector handle to a posi- tion between completely in and completely out.	May result in split air flow to both separator with neither attaining sufficient speed to eject the condensed water; eventually results in 100% humidity and possible cabin conden- sation.

.



TYPE	FUNCTIONAL DESCRIPTION	POSSIBLE INADVERTENT ACTUATION	TOTAL EFFECT S/C - CREW
CABIN REPRESS VALVE	-Three position solen- oid valve with manual override - MANUAL - permits con- tinuous oxygen flow (≈6.0 - 8.0 lbs/min) into cabin if Descent 0 ₂ valve open.	Displacement of valve to MANUAL position.	If cabin pressure exceeds 5.4 psia, venting will occur via U/H and F/H dump valves. Immediate corrective action by crew should be taken to re-position valve to AUTO.
• >	CLOSE - inhibits oxygen flow. AUTO - permits oxygen flow into cabin (≈6.0 - 8.0 lbs/min) if valve solenoid is ener- gized via CABIN RE- PRESS C/B and cabin pressure switch closing	CLOSE position.	No immediate danger. However, cabin punc- ture protection is lost if valve remains in CLOSE position while crew is unsuited. Undetectable via ground monitoring.
PLSS O2 RECHARGE VALVES HI PRESS LO PRESS	at < 4.07 \pm 0.37 psia. -Two position manually operated shutoff valves control 0 ₂ flow to the PLSS for 0 ₂ recharge only. There are OPEN and CLOSE positions with mechanical stops on the handles to pre- vent overtravel.	Displacement of valve(s) from CLOSE position.	Down stream of both PLSS O ₂ recharge valves are Q.D.'s which are designed to maintain line seals under full pressures of 1500 and 1000 psia respectively. However, a single point failure possibility is introduced to leak O ₂ to cabin which U/H or F/H valves would relieve.


TYPE	FUNCTIONAL DESCRIPTION	POSSIBLE INADVERTENT ACTUATION	TOTAL EFFECT S/C - CREW
UPPER and FORWARD HATCH CABIN DUMP VALVE	-Three position valves		
	CLOSE - Isolates press contained in the cabin.	Displacement of valve to CLOSE position	Inhibits cabin pressure from relieving over- board in the event pressure exceeds normal operations of 4.8 ±.2 psia. Undetectable via ground monitoring.
	OPEN - Permits cabin pressure to vent O/B if valve remains in this position. (Max full flow >11.1 lb/min at 5.4 psia)	Displacement of valve to OPEN position	Immediately begins to dump cabin more rapidl than cabin repress valve can make up. Crew must immediately return valve to AUTO or CLC position. Prior to doffing suits crew should verify both dump valves has been safely locked out from the OPEN detent.
	AUTO - Permits automatic cabin venting whenever pressure exceeds 5.4 psid.		
	NOTE: Valve handle must be squeezed before valve position can be man- ually changed. Also, a safety latch is pro- vided to prevent move- ment from CLOSE or AUTO to OPEN if properly positioned.	- <i></i>	
URINE DUMP VALVE and ASSEMBLY	Petcock type 360° rotational valve per- mitting urine/water waste material to be vented to the waste con- tainer assembly in the descent stage, when rotated to open posi- tion. Positions are un- marked; however, line indicating blocked or unblocked flow is avail- able to indicate valve status.	Displacement of valve to OPEN position.	If the urine valve remains in the open position with the urine receptacle attached cabin oxygen will vent overboard via the waste container vent valve at rate 2.25 #/h: Demand regulators can provide sufficient flow to prevent decay in cabin pressure. Im- mediately after use, the crew should close the shutoff valve and disconnect the urine receptacle from the urine line.

		POSSIBLE INADVERTENT	
TYPE	FUNCTIONAL DESCRIPTION	ACTUATION	TOTAL EFFECT ON S/C - CREW
CABIN REFRESS C/B	Panel 16 C/B providing power to permit the cabin pressure switch to actuate the Cabin Warning Light and the Cabin Repress valve (if in AUTO)	Circuit breaker opens	Loss of Function. Undetectable via ground monitoring; however, ground can detect cabin pressure decay and SUIT/FAN warning light is actuated at 3.12 psia.
SUIT FAN▲P C/B	Panel 16 C/B providing power to actuate Caution & Warning if a suit fan fails.	Circuit breaker opens	Loss of Function. Suit fan failure eventually detectable via slowing of H ₂ O separator RPM and resulting ECS caution light.
		· ·	
,			

ECS AFT BULKHEAD CONTROLS

URINE RECEPTABLE ASSEMBLY

FROM: H. Smith

SUBJECT: Note of Interest

April 30, 1971

LRV DEPLOYMENT MECHANISM SPACE SUPPORT EQUIPMENT (SSE)

The information presented was extracted from Boeing documents presented for a DCR at Washington D.C.; the drawings were accomplished by FCD. These are Fig. 13-3, sheets 1 and 2 of the LM Systems Handbook.

PERFORMANCE

The LRV Deployment Mechanism is required to support and restrain the stowed LRV in the Quadrant I stowage bay of the LM during earth-lunar transit, and to deploy the stowed vehicle to the lunar surface. The SSE is required to deploy the LRV within 15 minutes with the LM tilted up to 14-1/2 degrees in any direction and with the bottom of the descent stage 14 to 62 inches above the lunar surface. LRV deployment manual acitvity is normally performed by both crewmen.

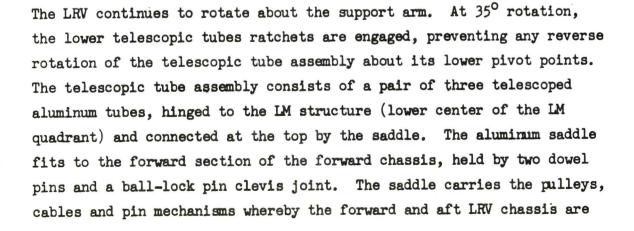
EQUIPMENT DESCRIPTION

The Deployment Mechanism consists of two basic subsystems of hardware, the structural support subsystem and the deployment hardware subsystem. The function of the structural support subsystem is to structurally support the LRV in the LM during launch boost, earth-lunar transit and landing. The function of the deployment hardware subsystem is to deploy the LRV from the LM to the lunar surface after landing.

The structural support subsystem includes two steel support spools at the lower (left and right) sides of the LM quadrant. The spools are bolted to LM attach fittings. Aluminum tube tripod structure attached to the LRV center chassis terminate in left and right tripod apex fittings which attach to the steel spools. The apex fitting halves are pinned together and clamped to the spools to support the LRV. The LRV is restrained against outboard rotation by an aluminum strut (the upper support arm) in the upper center of the LM, connecting the inboard

Page-2-

quadrant corner structure to an LRV center chassis standoff with a pin.


The deployment hardware system (fig. 13-3, sheet 1) consists of bellcranks, linkages and pins to release the LRV from the structural subsystem, thus allowing the LRV to deploy from the LM. It also consists of braked reels, braked reel operating tapes, braked reel deployment cables, LRV rotation initiating push-off spring, telescopic tubes, chassis latches, release pin mechanisms, and LRV rotation support points, all of which operate in the following manner and sequence.

The deployment of the LRV from the LM to the lunar surface consists of five basic steps or phases.

- Phase I Deployment from the stowed position of both braked reel operating tapes and the deployment lanyard.
- Phase II Operating the D-ring to disconnect the LRV from the structural support subsystem.
- Phase III Operating the outer braked reel to unfold the LRV and lower the aft chassis wheels to the lunar surface.
- Phase IV operating the inner braked reel to lower the forward chassis wheels to the lunar surface.
- Phase V Disconnecting the deployment hardware from the LRV after all four wheels are on the surface.

<u>Phase I</u> - This phase consists of deployment of the two braked reel operating tapes and the deployment lanyard from their stowed positions. The outer braked reel operating tape is stowed in a nylon bag attached to the lower right support arm by velcro tape. The inner braked reel operating tape is stowed on the left side of the LRV center chassis in a nylon bag attached to the lower left support arm by velcro tape. (sheet 1, K/2). The deployment lanyard is stowed on the left side of the LRV center chassis by teflon clips. The deployment lanyard is used to assist deployment of the LRV if it stops during any phase of the deployment. <u>Phase II</u> - At the completion of Phase I, the astronaut pulls the D-ring, which is located on the right side of the porch. The first 5-6 inches of travel of the D-ring removes the two lower release pins (Detail -C) from the apex fittings, releasing the lower halves and allowing them to fall away immediately or during deployment rotation. The apex fittings are now configured to lift off the spools when required. The last segment of travel of the D-ring removes the upper release pin (Detail -A). When the upper release pin is removed, the push-off spring rotates the LRV out from the LM approximately 4° , taking up the slack in the outer deployment cables.

<u>Phase III</u> - The LRV is now released from the LM and is ready to be deployed to the lunar surface. During the entire Phase III operations, the astronaut operates the outer braked reel operating tape. The braked reel is a worm and wheel gear arrangement. When the operating tape is pulled, the cable storage drum is rotated, thus releasing (feeding off) cable from the drum (Detail-B) The cable is attached to the LRV center chassis and, as the LRV rotates outboard due to gravity, resists the motion of the LRV. However, as the drum is rotated, feeding out cable, the LRV is allowed to rotate and deploy. For the first 15° of rotation, the LRV rotates on the apex fittings. At 15° rotation, the support arm is engaged by the LRV and the point of rotation shifts from the apex fittings to the support arm, at which point the apex fitting lifts off the support spools. The deployment cable may or may not be required at this time, depending on the landing attitude of the LM.

Page-4-

unlocked from the stowed (folded) LRV position. As the LRV moves outboard, the 45° cable tightens, and rotates the saddle pulley (Detail E). This rotation actuates (rotates) two additional pulleys, each with a steel cable and ball-lock pin. The two ball-lock pins lock the connection between forward and aft chassis to the console post mounted on the center chassis. If either the aft or forward chassis latch pin fails to pull, the deployment lanyard may be pulled to help accomplish this action.

The telescopic tubes and forward chassis stops at 45° due to the 45° cable (chassis latch actuating cable) becoming taut, then by counteracting forces of the LRV forward chassis hinge torsion spring, the telescopic tubes and forward chassis return to the 35° position (stop due to the telescopic tube ratchet). The center chassis and aft chassis continue to deploy. After it is unlocked, the aft chassis fully deploys (unfolds) automatically due to the aft chassis hinge torque bars, until it latches with the center chassis.

The wire mesh LRV wheels are held in the stowed position by four wheel lock struts. One end of each strut is held by a steel pin to the aft or forward chassis structure. The other end of each strut is held by a wheel hub by a pin (in the hub). The wheel lock strut pins are pulled by a steel cable so linked as to pull the pins as the aft or forward chassis opens approximately 170° . When the pins are pulled, the springloaded wheels deploy to the operational position. As the wheels rotate outboard to the deployed position, a mechanism within the wheel hub retracts the pin retaining the wheel strut. The strut is thus freed at both ends, and falls free during wheel deployment movement. Each strut is retained by a 1/8 inch diameter mylar tether.

The LRV center/aft chassis continues outboard rotation, pivoting around the lower support arm latch. During LRV outboard roatation, the telescopic tubes extend (lengthen). Before 72° LRV rotation an anti-collapse telescopic tube latch in each tube engages to prevent shortening (but permit elongation of tubes. At approximately 73° center chassis angle, the cam on the forward sides of the center chassis strut (engaged in the lower support arm latch) strikes the steel latch arm (Detail -D). As the chassis rotates, the cam forces the latch lock arm down out of a safety retaining spring, and unlocks the latch. The center/aft chassis continues to rotate until the aft chassis wheels are on the surface. The wheels are locked with the emergency hand brake, therefore must slide on the surface. Depending on the landing attitude of the LM and the condition of the surface, the wheels might not slide on the lunar surface, therefore use of the deployment lanyard by the astronaut would be required. The astronaut continues to actuate the outer braked reel operating tape to allow the forward chassis hinge to deploy by virtue of the forward chassis hinge torsion spring. Concurrently, the center/aft chassis move outboard, away from the LM. At this point in the sequence, the 45° cable becomes taut due to the outboard movement of the entire LRV. The center chassis continues to move down but is driven outboard by the forward chassis springs. As the angle between forward and center chassis approaches 170°, the forward wheel lock strut pins in the forward chassis release, and the forward wheels deploy as did the aft wheels. The astronaut then pulls the pins that attach the two outer braked reel deployment cables to the center chassis.

<u>Phase III</u> - is complete (motion ceases) with the aft wheels on the lunar surface, with forward and aft chassis locked to the center chassis, all wheels deployed, all four wheel struts free and hanging from their tethers, the outer braked reel deployment cables released, and with the forward chassis held up by the telescopic tube assembly and the 45° cable.

<u>Phase IV</u> - This phase of the deployment consists of the astronaut actuating the inner braked reel operating tape, thus allowing the forward wheels to lower to the surface. Again, the deployment lanyard may be required at this point if the aft wheels will not slide on the surface.

<u>Phase V</u> - This phase consists of releasing the deployment hardware from the LRV. The astronaut pulls up on the saddle release cable

located on the left rear side of the forward chassis. This operation releases a ball-lock pin which holds the saddle on the forward chassis (Detail -F). When the saddle is released the following hardware goes with it:

- 1. Telescopic tube assembly.
- 2. Forward and aft chassis lock release pins.
- 3. Forward chassis wheel lock struts and tethers.

The astronaut then pulls a ball-lock pin, located on the aft center of the aft chassis. This releases the deployment lanyard and the aft chassis wheel lock struts (Detail -G).

At this point, the deployment of the LRV from the LM to the lunar surface is complete.

- Harry Smeth

Note of Interest - IM Attitude Control Modes during PDI

1. Of the many IM attitude control modes, four are acceptable for performing undocked powered maneuvers. In order of priority, these are: PGNS Auto, AGS Auto, PGNS Rate Cmd, and AGS Rate Cmd. However, for PDI, AGS Auto is not considered a valid control mode except for an abort case. The remaining modes, PGNS minimum impulse, AGS pulse, AGS direct (3-axis), and hardover are deemed unacceptable for powered maneuvers.

2. For PDI, a philosophy has been adopted which states that any failure that leaves only one acceptable control mode such that one more failure would require use of an unacceptable control mode, an abort will be requested to insure crew safety. Based on this philosophy, there are a number of failure modes which may occur that will allow for continuation of the mission. A number of examples follow: (Enclosure 1 defines the control modes, their components/interfaces, and disabling failures.)

3. The present mission rules require PGNS Auto/Rate Cmd and AGS Rate Cmd for initiation and continuation of PDI. If a failure occurs in the PGNS auto mode such that PGNS rate cmd in uneffected (e.g., mode control switch failure), the two remaining control modes, PGNS Rate Cmd and AGS Rate Cmd, share no point of commonality except jet drivers for which one failure has no effect on crew safety. The same logic is true for a loss of PGNS Rate Cmd independent of PGNS Auto. In these cases continuation of the mission would be the recommended course of action. It should be pointed out that loss of either mode may cause a change in the crew landing procedures. For example, loss of PGNS Auto would cause the crew to manually fly the FDAI error needles until touchdown. This would not allow automatic velocity nulling using auto-P66. Loss of PGNS Rate Cmd would necessitate flying in PGNS Auto or switching to AGS Rate Cmd for manual-P66 capability and switching back to PGNS for Auto-P66 velocity nulling.

4. <u>A failure which causes loss of both PGNS Auto/Rate Cmd</u> would leave only AGS Rate Cmd as an acceptable control mode. A subsequent failure (CES AC fail, which disables all three RGA's and loss of AGS Auto) would result in an abort utilizing one or more of the unacceptable control modes. Thus a failure common to both PGNS Auto/Rate Cmd would require an abort.

5. <u>The loss of AGS Rate Cmd</u> would leave the crew dependent on PGNS Auto/ Rate Cmd. This is undesirable since a single failure could remove total PGNS capability; however, consideration for continuing the mission with loss of AGS Rate Cmd would be given if the failure is independent of AGS Auto since this would be a valid mode for an abort if required. <u>The</u> <u>partial loss of AGS Rate Cmd (loss of one RGA)</u> is considered an acceptable mode with the crew using AGS direct (secondary coils) in the effected axis. <u>Based on this, a one-axis failure on AGS Rate Cmd will</u> allow continuation of the mission. 6. Loss of AGS Auto would not constitute loss of AGS Rate Cmd in all cases since the crew may have rate dampening capability (no attitude hold). Thus, this failure may not be cause for abort unless AGS Rate Cmd is also disabled. In addition, loss of any of the unacceptable modes of control (secondary coils, etc.) also is an allowable event until only one acceptable control mode exists at which time an abort must be performed.

7. The statements above reflect the intent and interpretation of the current 3-axis control mission rules. It should be pointed out that inherent in these rulings is the availability of PGNS guidance steering for either automatic steering or for providing steering information to the crew (FDAI error needles). The loss of this capability above hi-gate is cause for an abort. However, below hi-gate manual landing at the crew's option may be attempted with loss of guidance steering. The rationale for this decision is that the problem may be recoverable upon landing and that time for ground evaluation during this time frame is minimal. Thus, in accordance with this statement, landing may be attempted after hi-gate (at the crew's option) with a violation of the 3-axis control philosophy stated earlier, since the failure of guidance steering may be common with PGNS Auto/Rate Cmd. Of course, an obvious unrecoverable failure would be cause for an abort and would be so recommended during this time frame.

Richard Q

Richard A. Thorson

Enclosure

Control Mode	Components/Interfaces	Ruling
PGNS Auto	Operational ISS Operational LGC Valid Navigation Primary Pre-amps CES-LGC Interface	Loss of mode ¹ Loss of mode ¹ Loss of mode Loss of mode ² Loss of mode ²
PGNS Rate Cmd	Operational ISS Operational LGC Primary Pre-amps ACA ACA-LGC Interface CES-LGC interface	Loss of model Loss of model Loss of mode ² c/m with loss of one Loss of mode Loss of mode ²
AGS Rate Cmd	Operational AEA Operational ASA 3 RGA's ACA Abort pre-amps ATCA CES-AEA interface	c/m ³ c/m ³ c/m with loss of one ⁴ c/m with loss of one Loss of mode ² Loss of mode Loss of mode ²
AGS Auto	Operational AEA Operational ASA 3 RGA's Abort pre-amps ATCA CES-AEA Interface	Loss of mode Loss of mode c/m with loss of one ⁴ Loss of mode ² Loss of mode Loss of mode ²

1. A permanent loss of either the ISS or LGC will disable both PGNS Auto and Rate Cmd. A temporary loss of the ISS or LGC will disable only PGNS Auto (cause a loss of guidance steering) leaving PGNS Rate Cmd as an acceptable mode.

2. Although these components and interfaces are common to each mode, there are specific failures associated with each that may disable only one of the two modes.

3. Loss of the AEA or ASA functions would cause a loss of the attitude hold function of AGS Rate Cmd. This would only effect AGS Rate Cmd if erroneous outputs were introduced to the ATCA. A zero output would permit retention of AGS Rate Cmd as an acceptable control mode.

4. Loss of one RGA would disable rate dampening in the effected axis only. By using AGS direct in this axis, AGS Auto/Rate Cmd remains an acceptable mode.

Enclosure 1

NOTE OF INTEREST: A Follow-up on CDU Failures and PDI

1. A number of static CDU failure cases have been run on the Houston LMS to determine procedures for the continuation of PDI (reference note of interest - CDU Failures and PDI, dated July 2, 1971). The resultant conclusions from these runs vary depending on the type of CDU failure (i.e., pitch, roll, or yaw) experienced.

2. The LMS runs proved that the pitch CDU failure was the most critical, although a technique was developed to reach the visibility phase (hi-gate). It was in fact a "manual" technique, flying to chart values of altitude and altitude rate. Since landing radar could not be incorporated into the LGC, it was decided that this failure presented an abort case should it occur during powered descent.

3. Static roll CDU failures were acceptable; however, initial out-of-plane position dispersions caused problems with landing radar updates. The techniques required for this failure are straight forward provided a limited amount of out-of-plane steering is required. The Apollo 15 crew has agreed to continue with this failure provided a concurrence from the ground is received, based on analysis of the trajectory dispersions.

4. The yaw case represents a situation where the techniques are similar to existing procedures. One exception is to ensure a zero yaw angle while following the pitch and roll attitude error needles, thus allowing incorporation of landing radar data. The procedures for the roll and yaw failure cases are presented in enclosure 1.

5. Although the crew is familiar with the techniques presented in enclosure 1, and have demonstrated the yaw technique in descent simulations (July 16, 1971), it should be understood that a single static CDU failure is highly unlikely. Dynamic failures or static failure of all CDU's is more realistic. In view of this, MIT has developed an E-memory program which could conceivably be used for all cases of CDU failures. However, there are two constraints to this approach. First, the IMU platform must be aligned and time must exist for uplinking the E-memory program prior to PDI. Secondly, multiple failures or dynamic failures violate existing redundant 3-axis attitude control mission rules.

6. From the preceding discussions it should be apparent that only in the case of static CDU failures do acceptable procedures exist. However, this conclusion is probably academic due to the nature of the failure.

Richard A. Thorson

1 Enclosures

FC42:RAThorson:dh:4717:7-27-71

HAL: JEH

CDU FAILURES

1. For dynamic (changing) types of failures or static pitch CDU failures during PDI, the PGNS is no go as a navigation system, and we have an abort situation.

2. For single axis yaw or roll CDU failures statically, the PGNS is go for nav, go for control with the failed axis being flown like accel CMD (no rate damping or deadbanding). The following proposal permits continuing descent and maintaining PGNS abortability utilizing AGS attitude hold as the primary control mode.

STATIC YAW OR ROLL CDU FAIL

Descent Techniques

Primary Control Mode:

AGS att hold Yaw to zero VxxN2OE, E; xx is 21 for Yaw, 23 for Roll Follow N22 pitch and roll or error needles (if N22 is used with a roll CDU failure, the roll sign represents an attitude error vice desired attitude). Maintain zero yaw on ball V57 at ΔH OK

NOTE:

- 1. Error needles will be valid after N20 loading.
- 2. Use auto throttle until visibility, landing phase.
- 3. Use manual throttle in visibility, landing phase.

Aborts or Ascent

- 1. Use AGS Auto
- 2. Second preference

PGNS att hold Follow N22 pitch and roll or error needles (see above). Maintain zero yaw on ball (N77 can be called late for cutoff backup)

May 24, 1971

NOTE OF INTEREST: PDI Procedure for LR Antenna Switching

The question of what's the best procedure for an LR antenna out of proper position has arisen again. In this note, I will present some background on the subject, our conclusion, and rationale.

BACKGROUND:

The following facts are pertinent to the discussion:

1. PDI is nominally initiated with the LR antenna in position 1 (24° angular offset from the X axis).

2. LR position 2 (vertical position) is automatically commanded at P64.

3. The H and H at P64 is 7030 ft and - 162 ft/sec.

4. The LR can be driven manually to either position 1 or position 2.

5. It takes the antenna approximately 8-10 seconds to drive from one position to another.

6. The LGC must recognize either position 1 or position 2 in order to process LR data through the proper matrix.

7. The worst thing that can happen is to have an antenna/antenna position indication mismatch, i.e., the antenna actually in position 2 but indicating position 1, or vice versa. (The LGC processes LR data through the wrong matrix.)

8. If the LR antenna is actually stuck in position 1 during the vertical phase, the tapemeter readout of raw LR data will be approximately 10 percent in error.

9. LR dropouts may occur if the LR is in position 1 during the vertical phase.

DISCUSSION:

The following situations could theoretically occur at antenna switchover time (64):

1. The antenna could fail to move from position 1 (with the position 1 discrete still indicated to the LGC).

2. The antenna could physically move to position 2, properly indicate position 2, but the position 1 discrete not go away.

3. The antenna could move to position 2 but fail to send the position 2 discrete to the LGC.

4. The antenna could drive to an intermediate position where neither position discrete were indicated. (Cases 3 and 4 would appear the same).

For Cases 2 and 3, it is clear that the proper action is to command the antenna manually back to position 1 (LDG ANT: DES). For Case 4, it's not quite as clear, but since Cases 3 and 4 appear the same, I think the thing to do is to manually command position 1 where the LR was working properly before. For Case 1 there are some systems reasons that say that manually commanding position 2 may not hurt the situation and may indeed get us the desired position where the LR works best. There is also a philosophy which says to "leave well enough alone" - if the LR is working properly in position 1, don't mess with it. If you couple this philosophy with the fact that at LR switchover time we are descending at a rate of -160 ft/sec and at an altitude of 7000 feet, and the fact that it takes 8-10 seconds for the LR to drive, we arrive at our conclusion.

CONCLUSION:

It is concluded that the proper action for any of the 4 situations is to manually command LR position 1 (LDG ANT:DES). Even for case 1, we want to command LDG ANT: DES in order to insure that we remain in position 1. There just isn't enough time to do anything else. If for case 1 we chose to manually attempt to drive to position 2 and were unsuccessful, we would then have to command the antenna back to position 1. Data delays, drive times and recognition time would eat up 40-50 seconds (~4000-5000 ft) altitude. We procedurally start a stop watch at P64. If we **do not** reach position 2 within 15 seconds, we will call LDG ANT: DES. If we fail to lose position 1 within ~5 seconds after P64, we will also call LDG ANT: DES. Should the crew ever get a 511 alarm (LR not in position 2 or repositioning) they should procedurally command position 1.

LM Control

ADDENDUM - NOTE OF INTEREST: PDI Procedure for LR Antenna Switching

Publication of this note was delayed pending an analysis by LAB of the extent of data dropouts for the LR failed in Position 1. The results of the run are as follows:

ALTITUDE (FT) 39,700 - 6,600 LOCK 6,600 - 900 LOST LOCK 900 - 200 LOCK 200 - 130 LOST LOCK

These results were discussed with the Guidance Officer and it was mutually agreed that the actions and procedures delineated in the basic note of interest are acceptable.

earner John A. Wegener LM Control

NOTE OF INTEREST:

Lunar Surface Operation of the PGNS and AGS without Active Cooling

1. On Apollo 15, the mission rule for loss of secondary glycol was changed to reflect a continue mission ruling on the lunar surface. The rationale for this change was based primarily on the ability of the PGNS to perform a direct rendezvous in the event of a primary glycol failure, i.e., an ascent/direct RNDZ on an uncooled and possibly degraded PGNS. The following note is intended to clarify the management of the PGNS and AGS for a no-cooling contingency.

2. Although the PGNS and AGS are known to be temperature sensitive, performance degradation vs time from loss of cooling has been debated since Apollo 11. Prior to this time, temperature analysis of the PGNS had been performed only via computer simulations. This data indicated that the PGNS lifetime was approximately one hour which was based on violating various equipment redlines. Apollo 11, however (in lunar orbit), indicated that the initial equipment degradation did not occur until approximately 3 hours after cessation of cooling (AGS did not degrade as it was operating on the active secondary loop). Due to lack of telemetry on the PGNS equipment, it can only be speculated as to the exact temperature of the various PGNS equipment. The one measurement that can be correlated was the PIPA temperature, which after a quiescent period of approximately 1.3 hours from coolant turn-off, rose at approximately 5 /hr vs computer simulation data of approximately 6 /hr. The following table illustrates the predicted failures (redline limits) vs the Apollo 11 systems failures:

TIME FROM GLYCOL FAILURE (HOURS)	PREDICTED COMPONENT FAILURE	PROBABLE SYMPTOM	APOLLO 11 DATA
0.9 1.1 1.15 1.5 1.7 1.75 2.5 3.2 3.4 4.25 6.25 6.9 7.1	PTA PSA IMU PIPA LGC PIPA CDU	PIPA/IMU FAIL PIPA/IMU FAIL PIPA/IMU FAIL PIPA TEMP CAUTION LGC WARNING PIPA OFF SCALE HI CDU FAIL	PIPA TEMP CAUTION PIPA TEMP OFF SCALE HI CDU FAIL PIPA FAIL IMU FAIL PLATFORM TUMBLE LGC WARNING

It is significant that of the predicted component failures only the CDU fail was verified on LM-5 (Apollo 11). It should be emphasized however, that these predicted failures were based on specification values rather than actual expected failure levels.

3. Prior to the Apollo 11 test, the PGNS was considered reliable for one hour from loss of coolant. Thus, our rules were written for a T-1 or T-2 liftoff if the failure occured at touchdown or late in descent. For a loss of the secondary coolant loop, a next best opportunity ascent was scheduled (\leq two hours). For an any time loss of the primary loop, ascent would have been planned within forty-five minutes if the PGNS was to be the prime system.

4. With MIT, G&C Division and FCD's re-evaluation of the Apollo 11 data and subsequent simulations, it seemed practical to desensitize our position on uncooled PGNS reliability. First, with the PGNS unpowered, the initial heat into the system will be less than on Apollo 11. Second, by minimizing PGNS operating time prior to liftoff, a direct RNDZ on the PGNS ($\approx 1 3/4$ hr) seemed practical based on the available data. In addition, the computer simulation data indicates that the AGS can be used as a PGNS backup for insertion, turned off, and used again from TPI until docking. The following is a brief summary of the PGNS and AGS accuracies under uncooled conditions as determined by MIT and G&C Division:

With temperature deviations, PIPA bias and scale factor errors cause small variations in the ascent trajectory of $\approx 0.01 \text{ n.m./}^{\circ}\text{F}$ in perilune and $\approx 1.4 \text{ n.m./}^{\circ}\text{F}$ in apolune. Since the RIPA temperature should not be greater than $\pm 1^{\circ}\text{F}$ at liftoff, these dispersions are acceptable. AGS performance is also acceptable provided the AGS is turned off after insertion. AGS errors are expected to be $\cdot 1^{\circ}/\text{hr/}^{\circ}\text{F}$ gyro bias and 22 X 10⁻⁶ g/ $^{\circ}\text{F}$ accelerometer uncertainty.

5. Based on these considerations, the mission rule for loss of the secondary loop (which does not affect either PGNS or AGS provided the primary loop is available) allows a stay ruling on the lunar surface. Loss of the primary loop (the PGNS is not on the secondary loop) requires a next best short RNDZ opportunity. For this latter case, predictable temperatures can be maintained by following the timeline below:

*T-3 ho	burs	Ground informs crew of failure and crew returns to LM (Assumes worst case condition of crew EVA and approximately 1 hour traveling time from the LM).
*T-2 ho	ours	Crew enters IM and deactivates LGC and PGNS heaters (AGS heaters if secondary loop has failed).
т-	:45 min	Crew begins emergency liftoff checklist (pp 19-1, Lunar Surface Checklist).
т-	:30 min	Begin PGNS power up and alignment.

T- :15 min Begin AGS power up and alignment.
 Post-insertion Power down AGS (If secondary loop failed).
 TPI- :10 min Power up AGS and align to PGNS (if secondary loop failed).

*These figures are approximate as it may be 1 3/4 to $\approx 3 3/4$ hours to enable the proper phasing to be achieved for a direct Ascent/RNDZ sequence. However, with the heaters deactivated, the time required to obtain proper phasing is immaterial. The small rise in structural temperature that occurs with the loss of all vehicle cooling will have a negligible effect on PGNS or AGS temperatures during the times considered.

Richard Q. H

Richard A. Thorson

3

HAL: JEH: drd: 11/16/71: 4717

FEB 2 5 1972

Note of Interest - LM Platform Drift

In the past couple of weeks, several items concerning LM platform drift have been reviewed. These items are LM activation drift check comparison and onboard crew chart for gyro compensation. The following is to present the problem addressed, the considerations discussed, and the end agreements derived:

a. Drift checks - The last LM activation sim pointed out a weakness in the flight controller philosophy of comparing the two drift checks. The problem presents itself when the VO6N2O docked drift check differs greatly from the P52 alignment drift check. In the case where there is no reason to suspicion either method, some criteria has to be applied to select the data used to evaluate gyro compensation. This criteria is to avoid a one-rev slip in PDI to obtain an additional P52 drift check. The circumstances which could lead to a large difference were first considered. These are obscure sighting errors and gyro bias shifts. Data input and calculation errors were disregarded, since these could be doublechecked. The P52 display of NO5 star angle difference provides a check on sighting accuracy. However, a sighting error out of the plane of the two star vectors does not appear in the NO5 value. Thus it is possible, though remote, for a sighting error to pass the NO5 check and degrade the N93 torque angles. A gyro drift bias can change or shift because of instrument contamination. An example of possible contamination is bubble entrapment around the gyro float. A bias shift not only causes the two drift-check methods to disagree, but allows both methods to indicate a drift other than actually exists.

(1) Numerous theoretical cases were studied assuming one of the error sources. An attempt was made to apply a voting or weighting logic to select the best drift data. After much headscratching, it became apparent that all cases could not be protected by a given logic. As a result, the alternate approach to apply a reasonability limit was considered. The theoretical uncertainties in each drift check method can be combined to give an expected tolerance on the comparison. Any difference exceeding this tolerance, plus an additional pad, would indicate a hidden error in one or both methods. For the nominal timeline, the two-sigma uncertainties in the N20 and P52 checks are 4.3 meru and 5.6 meru, respectively. For a comparison uncertainty, the RSS sum of the above individual values is used. This comparison value is 7.08 meru. A detailed description of the various error sources considered in the uncertainty values are contained in enclosure 1.

(2) The selection of the absolute tolerance limit was just a matter of adding an arbitrary pad to the uncertainty. In discussing the drift-check problem with the Apollo 16 Activation/Descent flight director, the tolerance philosophy was accepted and a limit of 12 meru selected. The limit is approximately one half the allowable drift about the y axis to maintain abortability during descent. Thus in summary, the results of the N2O and P52 drift checks will be compared. If the values agree within 12 meru, the P52 data will be used to update gyro compensation.

If the values disagree by more than 12 meru and there is no indication of error in either method, PDI will be slipped a rev to allow another P52 to be performed. For further discussion, questions should be directed to Mr. J. Nelson/FC4, extension 4717, or Mr. W. Presley/FC5, extension 3268.

2

b. Gyro Compensation Chart - Concern has again been expressed over crew usage of the onboard gyro compensation chart. The necessary scratchpad calculations and chart entries allow much room for error. Even though it is unlikely the crew will ever be required to use the chart (late P52 completed after LOS on rev 12), the chart is still considered a necessary evil. However, the indicated drift level requiring usage of the chart has been reevaluated. For previous missions, this level has been 5 meru or greater. To increase this limit, the landing errors resulting from various drift levels were investigated.

(1) The drifts were applied to the Apollo 16 timeline from LOS rev 12 to nominal PDI. The position errors resulting from the misalignment assumed no LR velocity updates. The maximum allowed error was selected as the redesignation capability at 6,000 ft requiring 60 fps DPS propellant usage. These errors are ± 4100 ft crossrange and ±2100 ft downrange. Crossrange errors result from x and z axis drifts; the x being the most sensitive. A drift rate of approximately 15 meru about x results in the allowable dispersion. Downrange errors are caused by y axis drifts. The drift rate required to cause the allowable downrange dispersion, however, far exceeds the abortability constraint. The limiting level about the y axis is selected as one half the abortability value or approximately 16 meru. As a result, the acceptable uncompensated drift level is increased to 10 meru. The new value has been submitted for update in the LM Data Card Book for Apollo 16.

(2) In the process of reevaluating the update criteria, the idea of altering the compensation chart format was considered. A change was suggested to make the onboard chart similar to a special flight controller quick-look format. The format change eliminates all arithmetic steps. The variable chart entries are N93 torque angle and the time interval between alignments. The output is the new gyro compensation in scaled octal form. A sample format is contained as enclosure 2. The new format assumes a known value for the old or previous compensation. If the prelaunch compensation values change, then the chart must be modified accordingly. This is not considered a problem since the gyro characteristics are usually stabilized well before the final cut-off data for the onboard data file.

(3) The new format was shown to the crew of Apollo 17. The crew opinion was favorable, and as a result, the format will be submitted as a change to the Apollo 17 LM Data Card Book. The idea was rejected for Apollo 16 as being too close to launch for a change of this nature. For

further discussion, questions should be directed to Mr. R. Thorson/FC4, extension 4717, or Mr. W. Presley/FC5, extension 3268.

Will S. D. usle Will Presley

3

ionene. John Wegeher CBP JCB

2 Enclosures

FC551/WSPresley:phc:2/17/72:3268

I. P52/N20 GYRO DRIFT MEASUREMENT ACCURACY

P52

The two sigma alignment accuracy of an AOT inflight P52 alignment using two stars is 0.119 degrees.¹ Since two P52 alignments are required to measure gyro drift, the RSS of the alignment accuracy for each P52 is used to determine drift measurement accuracy as follows:

	25 accuracy of 25 accuracy of	f lst P52 f 2nd P52	.119 ⁰ .119 ⁰		• •
		RSS	.168°		
Dr:	ift measurement a	accuracy =	.168° time bet	ween alignments (HR	<u>)</u>
25 Apollo 16/1952	Drift measureme:	nt accuracy	$=\frac{.168^{\circ}}{2 \text{ HR}}$	$= \pm .084^{\circ}/HR = \pm$	5.6 MERU

NOTE: To simplify decisions real-time, if the N93 torquing angles of the second P52 are less than $.168^{\circ}$, no gyro drift update will be made since the torquing angle is less than the two sigma accuracy of two consecutive alignments.

N20

The LM IMU to CSM IMU mechanical interface uncertainties which adversely affect the accuracy of a N2O alignment do not affect the N2O drift check if the N2O sets are taken at the same attitude. Since the N2O drift check uses the difference between two N2O alignments, the LM/CSM mechanical uncertainties drop out.

The N2O gyro drift check accuracy is calculated using the following error sources and assumes that both N2O sets are taken at the same attitude:

1. Gimbal uncertainty - 23 arc sec (0.0063 deg) for both the CSM and LM. $^{\rm 2}$

2. CSM uncompensated drift - The CSM mission rule limit for gyro drift updates is l MERU $(0.15^{\circ}/hr)$ for the first update and 3 MERU $(.045^{\circ}/hr)$ thereafter. For the purposes of the N2O drift accuracy calculation, a two sigma CSM drift accuracy of 3 MERU will be used.

NOTE: Due to the length of time that the CSM platform has been operating prior to the docked alignment period, the CSM platform drift is well known. Furthermore, the CSM does a P52 alignment and drift check approximately 2 hours prior to the first LM P52.

¹SODB (Spacecraft Operational Data Book) Vol II, Table 4.5-3 "IM Noun 05 and alignment accuracy"

²MSC Internal Note 70-FM-219, Apollo G&N Contingency Alignment Accuracy Update, AGS Gravity Alignment and RTCC LM IMU Orientation Determination Accuracy, Page 7. 3. Crew marking accuracy - For a heavy CSM/IM (98,047 lbs) a 2 jet minimum impulse jet firing will cause a rate of 0.02 deg/sec about the X body axis and 0.0022 deg/sec about the Y and Z axes. 'Assuming a crew DSKY marking accuracy on the V06N20's of 0.5 seconds and a worse case spacecraft rate of 0.02 deg/sec a marking accuracy of 0.01 degrees is obtained.

Assuming the above three error sources are the primary errors associated with a N2O drift check, the two sigma N2O drift measurement accuracy can be calculated as follows:

Accuracy of a single N20 set

SOURCE	ERROR (DEG)
LM Gimbal uncertainty	0.0063
CSM Gimbal uncertainty	0.0063
LM crew marking accuracy	0.01
CSM crew marking accuracy	0.01
RSS .	0.0167 deg
Accuracy of two N20 sets	
Accuracy of 1st N20 set	0.0167 deg
Accuracy of 2nd N20 set	0.0167 deg
RSS	0.0236 deg
25	0.0472

Based on the Apollo 16 nominal time between N2O sets of one hour, the 2G accuracy for two N2O sets and the 2G CSM uncompensated drift value of 3 MERU, the drift measurement accuracy is calculated as follows:

Apollo 16 N20 drift measurement accuracy = $\sqrt{3^2 + (\frac{0.0472^\circ}{1 \text{ HR}} \div \frac{0.015^\circ}{\text{MERU}})^2}$ = $\sqrt{3^2 \div (3.14)^2}$ Apollo 16/N20 drift measurement accuracy = ± 4.34 MERU

Using the P52 and N20 drift measurement accuracies, a combined accuracy for comparing the N20 drift check with the P52 drift check is 7.1 MERU.

2

APOLLO 14 AND 15 DATA

3

Apollo 14 and 15 drift checks were similar to Apollo 16 in that M20 drift checks were made and compared to P52 drift checks. However, Apollo 15 M20 mark data was taken both by the crew and the ground. The following table contains the difference between M20 and P52 drift values for Apollo 14 and 15. Subscripts indicate which consecutive alignments were used for the drift calculations.

•	DIFFERE VALU	NCE BETWEEN ES (MERU)	NSO AND	P52 DRIFT
	Х	Y	Z	
Apollo 14 N20 ₁₋₂ - P52 ₁₋₂	•5	•35	1.12	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
Apollo 15 [*] N20 ₁₋₃ - P52 ₁₋₂	.18	1.12	•95	
N20 ₁₋₃ - P52 ₂₋₃	1.31	3.90	3.56	

*Some of the data taken by the ground was erroneous and was not used in the above table.

II. P52/N20 ALIGNMENT COMPARISON UNCERTAINTY

The following table lists error sources associated with N2O alignments and shows P52/N2O N93 comparison accuracies.

N20 ALIGNMENT UNCERTAINTY

		(DEG)	
ERROR' SOURCE	Х	Y	Z
LM Gimbal Uncertainty ¹ CM Gimbal Uncertainty LM Crew Marking Uncertainty ² CM Crew Marking Uncertainty Hardware Alignment Uncertainty ³ X (.264 deg)	0.0063 0.0063 0.01 0.01 0.0538	0.0063 0.0063 0.01 0.01 0.01	0.0063 0.0063 0.01 0.01 0.01
Y (.067 deg) Z (.068 deg)	0.057	0.034 0.059	0.008
RSS 2 V	0.093 0.186	0.070 0.140	0.257 0.514

P52/N20 ALIGNMENT COMPARISON UNCERTAINTY

		i.	(DEG)		
		Х	Y	Z	
25 25	P52 Alignment Uncertainty N20 Alignment Uncertainty	0.119 0.186	0.119 0.140	0.119 0.514	anna dhen ka 2 daadd
25	P52/N20 Comparison Uncertain	nty 0.221	0.184	0.527	

1 & 2 See previous Part I for discussion.

 3 Spacecraft Operational Data Book (SOBD) Vol II, Table IM10/4.5.1-2; Also note that propagation of the hardware uncertainties into the platform axes is dependent on attitude. The above uncertainties were computed using a CSM attitude of 0° roll, 104° pitch, 0° Yaw.

⁴Spacecraft Operational Data Book (SODB) Vol II, Table 4.5-3

4

5

In addition to the above N2O alignment uncertainty, a N2O alignment is affected by known hardware misalignments between the LM IMU and CSM IMU. Hardware misalignments are listed in Table 4.5.1-2 of 'the appropriate LM vehicle SODE appendix. The X axis misalignment is corrected with the docking angle bias. Presently the Y & Z hardware misalignments are not included in the N2O alignment and therefore the N2O Y & Z axes alignment uncertainties should include the known hardware misalignments. Capability to propagate the Y & Z CSM & IM misalignments into the LM platform axes does not presently exist. Arrival of the LM11 misalignment data must be obtained before a total picture of the N2O alignment accuracy can be obtained.

NOTE OF INTEREST: Ascent Guidance and Control Modes, Their Priority and Selection

Recent discussions have illustrated the need to discuss established ascent flight control modes relative to navigation and guidance sources as set down by Data Priority. Although the combinations set forth by Data Priority are valid during powered flight, the sequential cockpit switching required is of concern to some people. It is this concern which is addressed by this memo.

Before continuing, it will be convenient to review the definitions of navigation, guidance and control and their relation to the established ascent guidance and control modes:

1. Navigation - The capability to measure a change in the vehicle state with a subsequent state vector update. To perform the navigation function, requires an operational IMU or reference that is correctly aligned for measurement purposes (i.e., working PIPA's) and a functional computer (LGC, AGS) to perform the necessary computations for state vector updates.

2. Guidance - The ability to compute and generate commands that guide the vehicle along a desired path or towards a desired end point. Thus, in addition to attitude measurements (i.e., gyros, CDU's), guidance is dependent upon valid navigation. Also, guidance must be able to control the vehicle via attitude commands or it must supply these commands to the crew (error needles) such that they may act on them. In this vein, guidance is considered as guidance steering.

To perform the guidance steering function requires one of a 3. number of acceptable control modes. These are: PGNS auto, AGS auto, PGNS attitude hold, and AGS attitude hold.

From these definitions, it is possible to view the established guidance and control mode priorities and the rationale used in their selection. These modes are listed below in their order of priority:

CONTROL MODES

GUIDANCE MODES

1.	PGNS auto	1.	PGNS auto (Nav, guidance, control)
2.	AGS auto	2.	AGS auto (Nav, guidance, control)
3.	PGNS attitude hold	3.	PGNS error needles (Nav, guidance)
4.	AGS attitude hold*	4.	AGS error needles (Nav, guidance)*
5.	Manual	5.	FDAI (H if possible) (Nav)
		6.	Overhead window

*AGS error needles and auto shutdown are not available in AGS attitude hold.

....

As noted above, the order of these modes is based on the desirability of an automatic sequence. The selection of PGNS attitude hold as the third priority is based on two facts. First, an auto shutdown is possible if PGNS guidance is valid and second, PGNS needles are available (AGS attitude hold does not allow for error needles or an auto guidance shutdown).

Although these priorities are valid for powered ascent, the possibility of a switch failure when switching control modes brings up the question of gain vs risk during powered flight. In talks with Phil Shaffer, he has stated that it is acceptable during ascent for the crew to down mode (i.e., PGNS auto to PGNS attitude hold) control modes to an acceptable system following loss of the prime mode. Thus ground attempts to upgrade control modes are not necessary provided the crew's configuration insures a safe insertion. This reasoning accepts the fact that a manual shutdown and subsequent tweak may be necessary, and that the subsequent gain of an auto shutdown is not worth the risk of additional guidance control switching in which a number of relays are exercised. It should be emphasized that the above argument does not supercede the recognized ground procedure of requesting a guidance switch to AGS auto for trajectory dispersions.

A typical example of the above rationale is the case where PGNS auto is declared NO-GO on the lunar surface. Although PGNS attitude hold and guidance may be available, the ascent would be performed on AGS auto as per data priority agreements. In contrast, if PGNS auto should fail during ascent, AGS auto would be preferred; however, PGNS attitude hold (if available) flying PGNS or AGS error needles would be acceptable. Similarly, if AGS auto should fail after an AGS liftoff, AGS attitude hold flying PGNS error needles would be preferred to switching to PGNS attitude hold.

The point of this discussion is that the ground must make clear to the crew their capabilities such that they have at their option the most desirable control mode available should a subsequent failure cause them to change their guidance source. This will minimize the powered flight use of the guidance control switch.

Stoval Bill

William M. Stoval

Gary Renick

2

A Rusivi Richard A. Thorson

FC42:RAT: drd: 4/10/72:4717

April 11, 1972

NOTE OF INTEREST:

Change to the RR Antenna Parking Position on the Lunar Surface

GAC has recently concluded that the present lunar surface RR antenna position is inadequate for a coelliptic RNDZ sequence. Although the current antenna position does not impact a direct RNDZ, it is predicted that the RR temperature will exceed the RR thermal limits during a coelliptic sequence.

To preclude exceeding the antenna thermal limits, it is currently planned to reposition the antenna after the initial P57 alignment on ascent day. This technique will lower the antenna temperature sufficiently to prevent subsequent thermal problems. Currently, the recommended position is 30° shaft and 0° trunnion. The appropriate change will be made via real time checklist update.

Richard a, Skarson

Richard A. Thorson

FC42:RAT:drd:4/11/72:4717

NOTE OF INTEREST: Analysis of Vehicle Dynamics resulting from Isolation of Critical Jet Failed On During Powered Descent

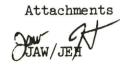
If one LM vertical jet has failed during Powered Descent and has been isolated pulling the TCA circuit breaker associated with that pair, a subsequent failed on vertical jet in the diagonal quad in the opposite direction will cause the GDA to drive to some new location to counteract the torque induced by that failed on jet. For simplicity, we will call that jet the critical jet.

This note of interest addressees itself to what happens when the failed on jet is isolated during PDI. The isolation of the critical jet leaves the GDA out from the C.G. by over a degree and no jets to counteract the torque it is introducing. The GDA drives back seeking the C.G. but a large excursion occurs in the meantime. A mathematical simulation of this dynamics problem was made and some of the results can be seen in figures 1 and 2. Figure 1 represents the case where the critical jet failure occurs at PDI + 0:30 and figure 2 depicts the dynamic response at PDI + 12:00. The different lines on each figure represent the response as a function of the reaction time of the crew to isolate the critical jet. As a check on the math model data, several runs were made at the Grumman FMES simulator and that data is shown by small circles in figures 1 and 2. The FMES data correlated very close to the math model data.

The following conclusions were reached from this study:

1. During FTP operation (PDI + 0:26 to PDI + 7:24), the critical jet can always be isolated without loss of control of the vehicle even if the crew's reaction time allows the GDA to stabilize ($\gtrsim 6$ sec) with sufficient offset to overcome the failed on jet.

a. The worst case angular deviation from the flight path angle is 41° which gives an effective thrust of 7600 lbs. along the flight path.


b. The later the isolation occurs in FTP, the less the excursion. (concluded from data not shown).

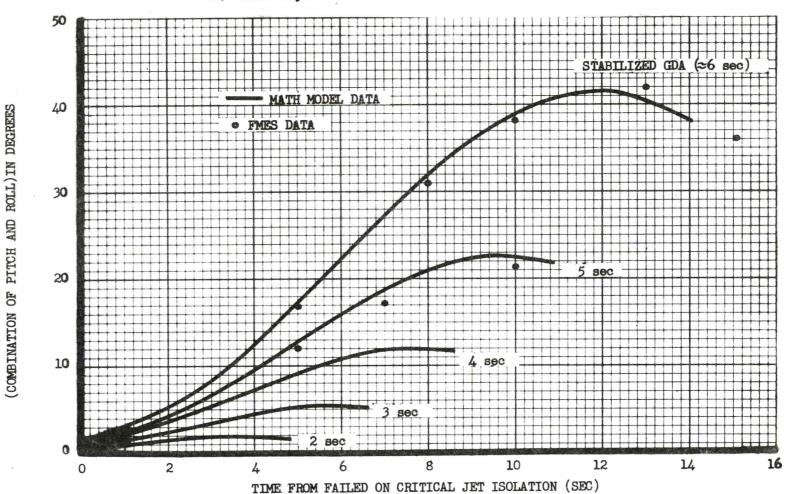
2. During hover (i.e. lower thrust which requires the GDA to move out farther than at FTP to counteract a critical failed on jet) the vehicle is unstable if the critical jet is isolated after it stabilizes.

3. When the critical jet is not isolated prior to throttle down, the data showed there would be a 7° excursion at throttle down.

Robert S. Manus Jr.

Robert S. Nance LM Propulsion Section

Figure 1


LM-10 VEHICLE DYNAMICS WHEN GDA IS RECOVERING FROM ISOLATION OF A FAILED

ON CRITICAL JET (DIAGONAL PAIR ISOLATED)

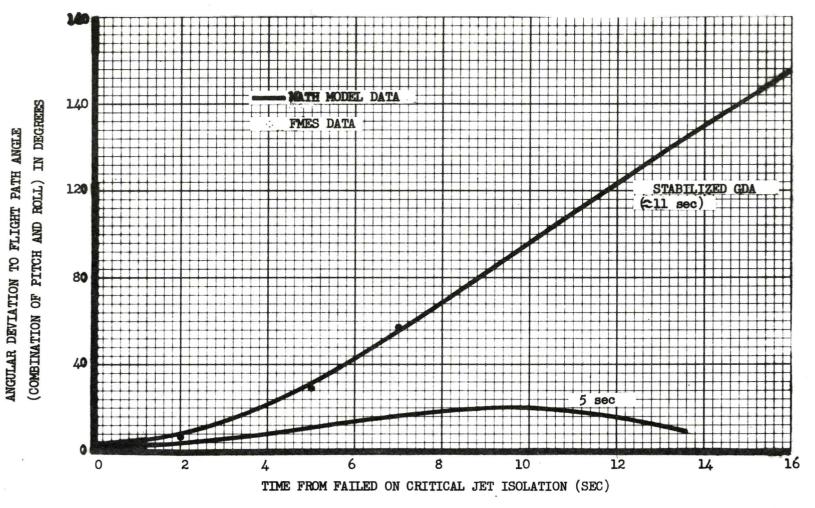
ASSUMPTIONS:

ANGULAR DEVIATION TO FLIGHT PATH ANGLE

A. FAILED ON CRITICAL JET OCCURS AT PDI + 0:30.

B. TIME REQUIRED TO ISOLATE CRITICAL JET IS NOTED WITH EACH CURVE

R.S. NANCE 6/24/71


Figure 2

LM-10 VEHICLE DYNAMICS WHEN GDA IS RECOVERING FROM ISOLATION OF A FAILED ON CRITICAL JET (DIAGONAL PAIR ISOLATED).

ASSUMPTIONS:

A. FAILED ON CRITICAL JET OCCURS AT PDI + 12:00

B. TIME REQUIRED TO ISOLATE CRITICAL JET IS NOTED WITH EACH CURVE

R.S. NANCE 6/24/71

NOTE OF INTEREST: Monitoring Techniques for a Failed APS Inlet Pressure Transducer

A question has been raised as to the course of action <u>if</u> an APS inlet pressure transducer failed during the mission.

Background - The APS fuel and ox tanks are isolated by squibs prior to pressurization. The ground has two inlet pressure transducers (ox and fuel) for monitoring propellant leaks prior to pressurization. The crew has ullage pressure transducers (ox and fuel) which provide redundant instrumentation for monitoring leaks.

<u>Monitoring Techniques</u> - If an APS inlet pressure transducer fails, the crew, as long as they are not EVA, can use the redundant ullage pressure for monitoring APS propellant leaks. However, once on the lunar surface several options are available for a failed APS inlet pressure transducer. These options or techniques are discussed below:

1. One-man EVA - EVA could be constrained to one man. This would allow the other crew member to monitor the onboard ullage pressure for a leak. This, of course, would change and limit the lunar surface experiments and timeline.

2. Pressurize one APS helium tank - By pressurizing with one APS helium tank, a propellant leak would show up as a decrease in APS helium pressure. This provides a monitoring technique, but a leak would be much greater under a pressurized condition. This technique is considered unacceptable.

3. Ascent feed - Opening up the ascent feed and closing the mains to one RCS system would allow monitoring of the APS inlets via the RCS manifold pressures. This would allow ground monitoring capability but exposes the APS to more plumbing which could leak.

4. Establish confidence in system integrity and proceed nominally -If the APS is able to take the launch and boost vibration as well as the shock of landing without developing a leak, system integrity has been established. The crew would monitor ullage pressure to confirm no leaks after touchdown until EVA time. After this confidence was established by onboard monitoring, a "GO" would be given with no other perturbations to the system. <u>Conclusion</u> - All of the above options have been considered for a failed inlet pressure transducer by the IM Propulsion Section, IM CONTROLS, and Lead Flight Director. Option four is considered the best technique available to handle an APS inlet pressure transducer failure. We feel that option four can give confidence of a "tight" APS without any of the disadvantages of the other three options.

Slenn W. Watkins

Glenn W. Watkins IM Propulsion Section

JAW/JEH:dh:7-7-71

2

NOTE OF INTEREST: RCS Management with a Critical Thruster stuck on.

BACKGROUND: After high gate should a critical jet fail on, (second failure after diagonal opposing jet has failed) the crew will go on and land with the failed jet firing. This is done because isolation by pulling the circuit breaker would cause the vehicle to spin up and crash.

The purpose of this note of interest is to present the proper RCS propellant management for ascent if this condition can not be corrected on the surface.

The first case considered is where the horizontal jet in the critical pair fails on right after high gate. The nominal RCS remaining at touchdown is 76% for both system A and B but the stuck on horizontal jet and the jets to oppose it would drop the RCS to 66% in one system and 45% in the other system. It is assumed that the failure is either electrically isolated or mechanically isolated by closing the RCS main SOVs upon touchdown. In order to safely ascent without losing control, the failed jet may have to be reenabled just prior to ascent. The amount of RCS required would be 50% for the failed jet and the jets to oppose it and 10% normal moment control. Since the amount of RCS at touchdown averaged 55% (AVE of 45% & 66%) and 13% is unusable there would be only 42% usable RCS remaining. The 60% required would dictate that some ascent feed would be required. If both RCS systems were used down to 20% i.e. 35% used during ascent and the remaining 25% came from ascent feed, approximately 300 fps ΔV margin would remain in the APS at insertion. This ΔV margin is possible because the vehicle is several hundred pounds lighter due to the high RCS usage. The ascent feed would last about 4 minutes.

The second case considered is if the vertical jet in the critical pair fails on right after high gate. In this case the GDA will overcome the failed on jet and the RCS at touchdown will average 65% (one system at 55% and one at 76%). Due to the complex nature of a vertical failed on jet during ascent, the RCS data for this case was run on the FMES at Grumman and with John Young in the Houston LMS. An upward firing jet was selected to be failed on since it negates 100 pounds of thrust of the APS engine and is a worst case situation. It was found that the APS could make orbit if $2\frac{1}{2}$ minutes of ascent feed was used at the start of the burn and the RCS used for the remainder of the burn. This leaves the RCS at about 20 - 25% (7% - 12% usable) at insertion.

John Young tried electrically isolating the failed jet during ascent and supplementing PGNS auto with direct coils which saved a lot of propellant. He said it was not too difficult, particularly around the time of pitch crossover.

CONCLUSIONS:

- 1. If a horizontal jet in a critical pair is required during ascent, ascent feed should be used during the first four minutes of ascent and RCS for the remainder of the burn. The RCS should be managed with the crossfeed to keep both systems above 20%.
- 2. If a vertical jet in a critical pair is failed on during ascent, ascent feed should be used during the first two and a half minutes of ascent and RCS for the remainder of the burn. The RCS should be managed with the crossfeed to keep both systems above 20%.
- 3. After ascent pitchover, at crew option, the failure can be isolated and the crew can supplement the attitude control with the direct coils. Should the crew have difficulty controlling the vehicle, the failed on jet should be reenabled.

Robert S. Mance J. Robert S. Nance FC/12

FC42:RS Nance:mhk:4717:7-24-71

NOTE OF INTEREST: RCS Thruster Failures and Apollo 15*

RCS thrusters can fail in many different ways. They can fail mechanically off or on, or electrically off or on. Electrical failures can be via primary preamps, abort preamps, or jet drivers. Considerable discussion has again arisen over what types of thruster failures constitute violation of redundant 3-axis attitude control. The attachments define how RCS thruster failures will affect Apollo 15. Attachment 1 generalizes how thruster failures will affect mission continuation. Attachment 2 specifies for single thruster failures per jet and per phase what mission action will be taken. Attachment 3 specifies mission action required for multiple thruster failures. It should be noted that a single vertical thruster failed off with a subsequent specific D.C. power failure or specific RCS system failures will result in the loss of attitude control. These two specific failures are not considered in the attachments.

tachments

* REVISED 7-13-71

ATTACHMENT 1

THRUSTER FAILURES

Single Thruster Failure

1. Single <u>vertical</u> thrusters mechanically failed off or failed off via the jet driver (can't be fired via PGNS or AGS) will violate redundant 3-axis attitude control and no go PDI.

2. Any single horizontal or vertical thrusters mechanically failed on will violate redundant 3-axis attitude control (RCS system must be isolated), will no go PDI, and will be cause for abort from PDI to HI GATE.

Multiple Thruster Failures (Critical Jets)

An abort will be performed from PDI to HI GATE for the following combinations of thruster failures:

1. Any combination of horizontal and/or vertical thrusters failed on in critical quads which require isolation.

2. Confirmed failed off vertical thrusters in critical quads.

NOTE: To provide confirmation, a PGNS ATT HOLD check will be performed when the critical vertical thruster is suspected to be failed off.

3. Any horizontal or vertical thrusters failed on (requiring isolation)^{*} and the critical vertical thruster failed off.

4. Any 2 adjacent pairs isolated and loss of GDA.

5. Any 3 pair isolated.

* Isolation of a thruster failed electrically on is accomplished by opening the affected quad TCA circuit breaker.

MISSION RULE ACTION FOR FIRST JET FAILURE

	PRE PDI	PDI TO HG	HG TO TD	LUNAR SURFACE
MECH OFF				
HORIZONTAL	GO 1			STAY 1
VERTICAL	NO GO 2			STAY 2
MECH ON *				
HORIZONTAL	NO GO 5	NO GO 5	GO 1	STAY 5
VERTICAL	NO GO 5	NO GO 6	GO 1	STAY 6
ELEC ON				
JET DRIVER (H or V)	GO 3	GO 3	GO 3	STAY 3
PRIME PREAMPS	GO 3	GO 3	GO 3	STAY 3
ABORT PREAMPS	GO 4	-0- 4	-0- 4	STAY 4
ELEC OFF				
JET DRIVER				
HORIZONTAL	GO 1		_	STAY 1
VERTICAL	NO GO 2			STAY 2
PRIME PREAMPS	20.1			CITATE 1
HORIZONTAL VERTICAL	GO 1 GO 2			STAY 1 STAY 2
ABORT PREAMPS	GO 1			STAY 1
TOOLT THERE	uo r			UIRI L

* May appear as an RCS leak if only one valve fails open. ---- A single thruster failed off during PDI cannot be confirmed.

-o- Abort preamps failed on could only be detected in AGS.

CONFIGURATION AFTER FIRST THRUSTER FAILURE

1. 2.	Take no action 5. Disable thruster in LGC (optional) V25 NO7 Isolate thruster	Isola a.	PANEL(11 or 16) RCS SYS (A or B)
٦.	PANEL(11 or 16) RCS SYS(A or B) QUAD(1 - 4) TCA - OPEN	b.	QUAD 1 thru 4 TCA - OPEN RCS SYS (A or B) LGC THRUSTER PAIR CMDS
	(remainder optional) RCS SYSTEM (A or B) LGC THRUSTER PAIR CMDS	с.	QUAD 1 thru 4 DISABLE RCS MAIN SOV SYS(A or B) - CLOSE
4.	QUAD $(1-4)$ - DISABLE 6. If AGS selected,	Isola a.	te system prior to staging PANEL (11 or 16)
	PANEL (11 or 16) RCS SYS (A or B)		RCS SYS(A or B) QUAD 1 - 4 TCA - OPEN
	(1 - 4) TCA - OPEN	b.	RCS SYS (A or B) LGC THRUSTER PAIR CMDS QUAD 1 thru 4 DISABLE
		c.	RCS MAIN SOV STS(A or B) - CLOSE
	GENERAL NOTE: First Feiled ON jets often biah and	S MAY	

GENERAL NOTE: First Failed ON jets after high gate HAX be isolated (Time Permitting).

7-13-71 JAW/RSN

Ť	987 Terman an ann an 26 An 26			ann 200 Gàine Annaich an	SEC	OND FA	ILURE	dente generale entre gangar				
FIRST FAILURE	HORIZ	ONTAL	OFF	HORI	ZONTAI	ON	VERTI	CAL OF	rF(I)	VERI	CAL C	N
HORIZONTAL OFF	J.D.	P.P.	A.P.	J.D.	P.P.	A.P.	J.D.	P.P.	A.P.	J.D.	P.P.	A.P.
J.D.	-	-	-	Gl	Gl	-0-	-			Gl	Gl	-0-
PRIME PRE	-	-	-	Gl	Gl	-0-	-	-	-	Gl	Gl	-0-
ABORT PRE	-	-	-	Gl	Gl	-0-	-	-	-	Gl	Gl	-0-
HORIZONTAL ON												
J.D. (ISOLATED)	-	-	-	A 2	A 3	-0-	Α7	A3	-	A7	A 3	-0-
PRIME PRE(ISOLATED)	-	-	-	A5	A 4	-0-	A 4	A 4	-	A5	A 4	-0-
ABORT PRE	-	-	-	Gl	Gl	-0-	-	2	-	Gl	Gl	-0-
VERT OFF(I)												
J.D. (II)	-	-	-	A 2	Α3	-0-	A 2	A 3	-	A2	Α ₃	-0-
PRIME PRE	-	-	-	A 6	A 4	-0-	A 3	A 3	-	a 6	A 3	-0-
ABORT PRE	-	-	-	Gl	Gl	-0-	-	-	-	Gl	Gl	-0-
VERT ON								618 (11 9)				
J.D. (ISOLATED)	-	-	-	A 2	A 3	-0-	A 8	A 3	-	A 2	A 3	-0-
PRIME PRE(ISOL)	-	-	-	A 5	A 4	-0-	A 4	A 4	-	A 5	A 4	-0-
ABORT PRE	-	-	-	Gl	Gl	-0-	-	-	-	Gl	Gl	-0-

MISSION RULE ACTION FOR CRITICAL THRUSTER FAILURES PRIOR TO HIGH GATE

- A single thruster failed off during PDI cannot be confirmed.

-o- Abort preamps failed on could only be detected in AGS.

G Continue Mission

- A Abort PDI to HI GATE then perform AGS check to determine maximum controlability.
- (I) Vertical thrusters suspected to be failed off will be verified via PGNS RATE CMD check when the second vertical thruster becomes suspect.
- (II) PDI will not be initiated with a confirmed vertical thruster failed off via jet driver.
- 1-8 See attached sheet.
- NOTE: It is recognized that a vertical thruster failed off with subsequent specific loss of DC power or specific RCS System loss results in loss of control.

GENERAL NOTE: Second Jet Failed ON after High Gate will <u>NOT</u> be isolated.

7-13-71 JAW/RSN

CONFIGURATION AFTER CRITICAL THRUSTER FAILURE 1. Isolate second failure (11 or 16) PANEL RCS SYS (A or B) (1 - 4) TCA - OPEN QUAD (remainder optional) (A or B) RCS SYS LGC THRUSTER PAIR CMDS QUAD (1 - 4) - DISABLE2. After AGS check take no action on second failure and select PGNS * 3. After AGS check take no action on second failure and stay in AGS. After AGS check, stay in AGS and enable first failure 4. (11 or 16) PANEL RCS SYS (A or B) QUAD (1 - 4) TCA - CLOSE 5. After AGS check, stay in AGS and enable first failure and isolate second failure FIRST FAILURE PANEL (11 or 16) RCS SYS (A or B) QUAD (1 - 4) TCA -CLOSE SECOND FAILURE PANEL. (16 or 11) RCS SYS (B or A) (1 - 4) TCA - OPEN QUAD 6. After AGS check, stay in AGS and isolate second failure PANEL (11 or 16) RCS SYS (A or B) (1 - 4) TCA - OPEN QUAD 7. After AGS check, select PGNS, enable first failure and isolate second failure FIRST FAILURE: PANEL (11 or 16)RCS SYS (A or B) QUAD (1 - 4) TCA - CLOSE (If first failure disabled in LGC) RCS SYS (A or B) LGC THRUSTER PAIR CMDS QUAD (1 - 4) - ENABLESECOND FAILURE: PANEL (16 or 11)(B or A) RCS SYS QUAD (1 - 4) TCA - OPEN (Remainder optional) RCS SYS (A or B) LGC THRUSTER PAIR CMDS QUAD (1 - 4) - DISABLE8. After AGS check take no action on second failure, select PGNS and enable first failure prior to staging. PANEL (11 or 16) RCS SYS (A or B) QUAD (1 - 4) TCA - OPEN

*Assumes Direct and Hardover available if required.

7-13-71 JAW/RSN

NOTE OF INTEREST: APS TPI and Depletion

References: IMO 271-947, Helium Ingestion Testing of the Ascent Engine, dated November 23, 1970

> EP22-5-71, WSTF Helium Ingestion Testing on the Ascent Engine, dated January 22, 1971

FC44 (71-137), APS Propellant Level Detector (PLD) Failures, dated September 3, 1971

The intent of this note of interest is to show the development of a philosophy which precluded an APS TPI burn to depletion for Apollos 14 and 15 to a philosophy that allows APS TPI burn to depletion for Apollo 16.

When the direct rendezvous was proposed for the Apollo 14 mission, GAC expressed much concern over the short APS TPI burn (-4 sec nominally). Their primary concern was that the relatively small mass quantities remaining after insertion would rebound and slosh when ullage was applied for the APS TPI burn. This, GAC maintained, would result in helium ingestion to the APS beyond the level of confidence of testing. GAC proposed an RCS TPI (-42 sec nominally). ASPO, on the other hand, had no qualms about the ability of the ascent engine to withstand helium ingestion, but subsequently agreed that additional helium ingestion to 14 was agreed on pending the results of these tests. FCD, at that time, established a philosophy that we would never "knowingly" burn the APS to depletion even though this depletion constraint had long since been removed from the SODB.

The helium ingestion tests designed to set up the conditions caused by rebounding propellants, were performed at WSTF as planned. Of the seven tests which were conducted with three types of helium ingestion (entrained flow, slug flow, and interrupted flow), there was no evidence of any detrimental effects to the engine or its operation. Entrainment flow involves the injection of a low volumetric flow (approximately one standard cubic foot per minute, SCFM) of helium into the engine feedlines. Slug flow is cycled ON in one-half second intervals while interruption flow is ON continuously for 2 to 5 seconds. For each of the flow conditions, the gas was ingested into the oxidizer and fuel feedlines at different times and simultaneously. Despite over seventy seconds of gas ingestion testing during which large pressure oscillations were induced, the engine continued to operate satisfactorily. No signs of structural damage to the engine or the supporting structures were noted following the test. In spite of the results of these extremely severe tests (these test conditions are similar but worse than those expected for a depletion burn), we maintained our philosophy for Apollo 14 to never knowingly commit to an APS depletion. We had established procedures by which the APS low level discretes were compared with the engine OFF discrete to determine APS TPI capability. Prior to Apollo 15, however, I began to question, in view of the overwhelming supporting data, whether we were needlessly penalizing our APS capability. What bothered me specifically was the comparison technique was no better than four seconds accurate (sensor error plus 1 sample/second data on discretes). Since we subtracted the four-second uncertainty, this meant we could no go APS TPI when the capability might really exist. Still, we maintained a conservative philosophy with regard to APS depletion for Apollo 15.

When Apollo 16 data priorities began to crank up, Phil Shaffer approached me as to whether the APS could be taken to depletion for TPI. He was concerned about RCS deorbit ΔV for certain situations and proposed an APS/RCS hybrid TPI, if required. I concluded, after verifying it with the APS subsystem manager, that there was no reason not to burn the APS to depletion.

I felt that an APS depletion burn was justified for the following reasons:

a. The potential conditions induced by rebounding and sloshing APS propellants during the nominal TPI are worse than the conditions induced by a depletion burn. The helium ingestion tests showed that the APS engine could withstand these worse case conditions. If we are not concerned about the nominal APS TPI, we should not be concerned about depletion burns.

b. There have been five APS ground tests to depletion and two flight tests to depletion. There is no SODB constraint against burning the APS to depletion.

c. The uncertainty in the technique for determining APS remaining could preclude APS TPI when the capability really exists.

d. The crew (I talked with C. Duke) did not object to the procedures required by the hybrid burn, i.e., it is really normal trim procedures.

I recommended, and I still recommend, that we no longer adhere to the old philosophy which precludes burning the APS to depletion.

I would also like to clarify that the retention of the APS low level detector (ground TM) for Apollo 16 was not defended based on the determination of APS TPI capability, but rather an abort situation where a certain ΔV capability must be guaranteed in order to commit to a IM-active or a CSM-active maneuver.

ohn U. Wegenor Tohn A. Wegener

2

NOTE OF INTEREST: Ascent Limit Weight

Attached is the procedure that will determine the ascent limit weight "real time". Also included are the curves that will appear in the SODB for the ascent limit weight. This procedure will be contained in the IM Console Handbook for Apollo 16.

in W. Walkins

Glenn W. Watkins

FC44: GWWatkins: drd: 4/3/72:4717

Distribution CB/E. A. Cernan H. W. Hartsfield J. W. Young T. K. Mattingly C. M. Duke F. W. Haise CG52/T. W. Holloway FC/E. F. Kranz J. W. Roach M. F. Brooks G. D. Griffin M. L. Windler M. P. Frank FC2/C. S. Harlan FC3/T. R. Loe W. J. Moon R. S. Watson FC4/J. E. Hannigan L. W. Strimple R. H. Heselmeyer FC5/J. C. Bostick P. C. Shaffer FC54/E. L. Pavelka (7) FC55/C. B. Parker (6) FC6/R. A. Hoover J. F. Honeycutt (4) FC9/J. E. Saultz CG2/D. L. Bentley FM/F. V. Bennett FM5/R. L. Berry (4)

SCP NO. PROP 11-24

ASCENT LIMIT WEIGHT DETERMINATION

TITLE:

PURPOSE:

The purpose of this SCP is to establish a method of determining the ascent limit weight margins in real time and to determine the effect of trading off ascent feed and/or balance couples during ascent.

4/1/72 PCN-13/New

Watkins

(Demener

ORIGINATOR:

APPROVAL:

BACKGROUND: DEFINITION

The ascent limit weight is defined as the maximum weight that will allow the ascent stage to achieve insertion orbit utilizing APS propellant. The following assumptions are defined pre-mission by the Apollo <u>Spacecraft Program Office (ASPO)</u> affecting propellant utilization.

- 1. APS propellant will be allocated for the TPI burn.
- The LM will be required to perform a 1/2^o plane change.
- 3. Three sigma dispersions on performance will be considered in the propellant budget.
- 4. APS propellant will be utilized for moment control by ascent feeding the RCS for the duration of the burn.
- 5. An APS engine valve pair malfunction will be considered.
- 6. The RCS engines will be assumed to operate in the balance couple mode for controlling attitude during the insertion burn. This means that the RCS will contribute nothing towards the ΔV during the burn.
- 7. A pad (99.999 percent probability of propellant nondepletion) will be considered for the propellant budget.
- 8. Unusable and propellant allocated for outage will not be considered available for the APS engines to burn.

A nominal ∆V of 6055 FPS is assumed for insertion.
 Nominal lunar sample return and stowage is assumed.

Feasibility of Exceeding Limit Weight

Even under nominal conditions the ascent limit weight could be exceeded for some periods. Also, the EVA's are getting longer which allows more time to collect additional rock samples. This can cause the lunar surface weight to increase. Lower than expected RCS usage during descent can drive the lunar surface weight up. These factors make it more feasible that the ascent limit weight can be exceeded.

Premission Determination of Ascent Limit Weight Margins

Prior to each mission, Mission Planning and Analysis Division (MPAD), utilizing the ASPO defined assumptions, publishes a memo establishing the ascent limit weight margins for various phases on the lunar surface. These phases include touchdown abort, before and after each EVA, as well as the nominal liftoff. These pre-mission margins are valid unless the vehicle mass properties change "real time" and/or any of the assumptions are changed.

TIME:

This procedure is to be used anytime on the lunar surface that the ascent center of gravity changes from the nominal, or different assumptions are made for ascent feed or balance couple operation as outlined in the definition. Either of these conditions requires a new ascent limit weight determination.

PROCEDURE:

ASCENT LIMIT WEIGHT CALCULATION

When the ascent limit margin is negative, certain assumptions can be traded off to increase the limit weight. These trade off items and their priority are covered by a ASPO memo (Ascent Limit Weights, PD12/241-71, dated November 18, 1971). The value of the trade off items (1, 2, and 7) is determined by the pre-mission ascent limit weight memo published by MPAD. If the margin is still negative, it may be desireable to consider trading off items 4 and 6. The following procedure will outline how to determine the ascent limit weight as a function of vehicle cg. The method for determining the trade off value of items 4 and 6 (ascent feed and balance couple) will also be discussed.

1. Changes to ascent weight

Any changes to the expected lunar surface weight or stowage is monitored and reported per FCOH SOP 2.16 (Lunar Surface Weight Updates).

2. Vehicle Weight and "wet CG"

Ascent vehicle weight and "wet cg" is determined per FCOH 2.5 (S/V Weight Updates). IM Prop runs a parallel determination of "wet cg" utilizing IM Console Handbook SCP PROP 11-11 (cg and DPS Gimbal Angle Determination). The "wet cg"represents the cg of the ascent stage with the APS and RCS propellant.

The following steps (3 thru 6) are to be performed after the new cg is determined. Data that is used in these steps is found in the SODB Vol. II RCS Section.

3. Determine the "dry CG"

The "wet cg" is transformed into the "dry cg" of the vehicle utilizing the SODB curve entitled Ascent Wet to Dry CG Conversion and found in the SODB Vol. II RCS Section. The "dry cg" represents the cg of the ascent stage with the APS propellant and tanked RCS propellant removed.

4. Determine the "Delta Limit Weight"

The "dry cg" is used for the limit weight curve to determine the effects of balance and unbalance couple operation as well as ascent feed. Four curves for the following conditions are listed in the SODB Vol. II RCS Section under Delta Ascent Limit Weight during Moment Control versus dry vehicle cg.

A. Balance couple with ascent feed (nominal configuration)

B. Balance couple without ascent feed

C. Unbalance couple with ascent feed

D. Unbalance couple without ascent feed

Entering these curves with the Y and Z "dry CG" coordinates will yield a positive or negative number for the configuration desired termed the ascent stage delta limit weight. Curve (A) represents the nominal configuration and is normally used in determining the ascent stage delta limit weight. To determine trade off capability for no ascent feed and/or balance couples off, curves (B, C, and D) are used.

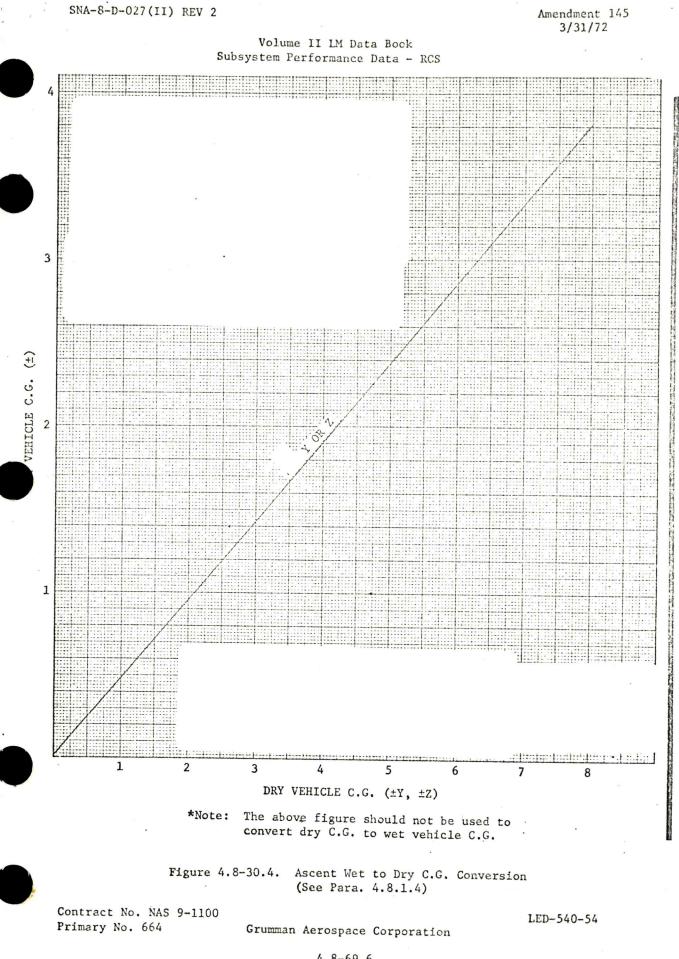
5. Determine the New Ascent Stage Limit Weight

After the ascent stage delta limit weight for the configuration desired is determined from step (4), it is added (positive or negative value) to the value used for the <u>reference limit weight</u>, which is defined in the specific vehicle appendix of the SODB. There-fore, the new ascent stage limit weight for the configuration desired = \pm ascent stage delta limit weight + ascent stage reference limit weight.

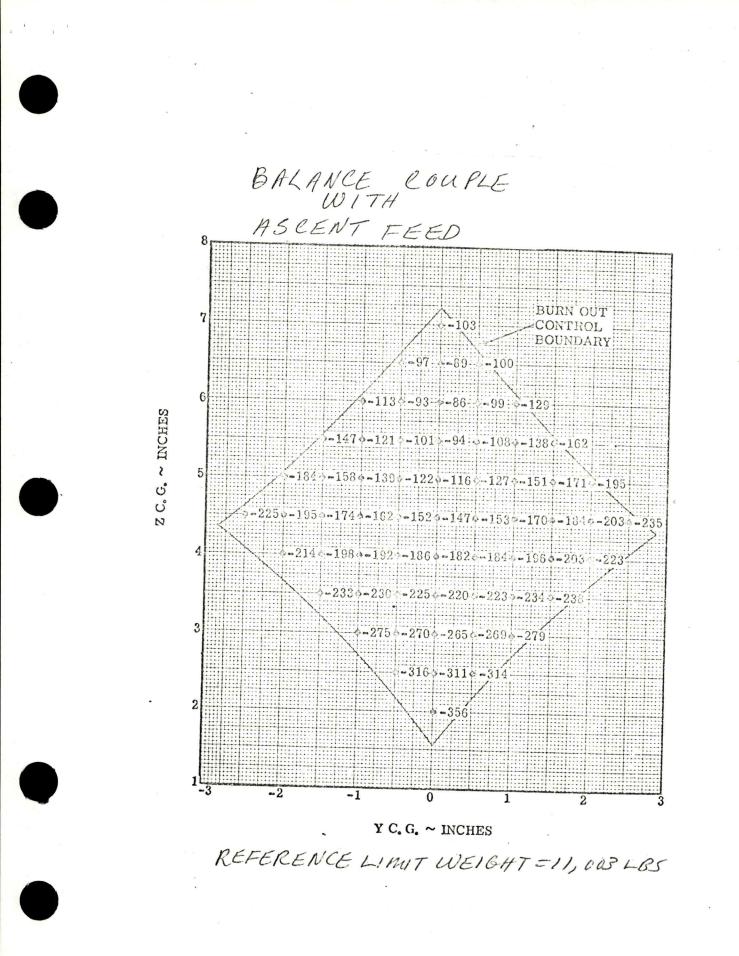
6. <u>Determination of Trade Off Value</u> Trade off value of ascent feed and/or balance couple operation is determined as follows:

A. Balance Couple Trade Off

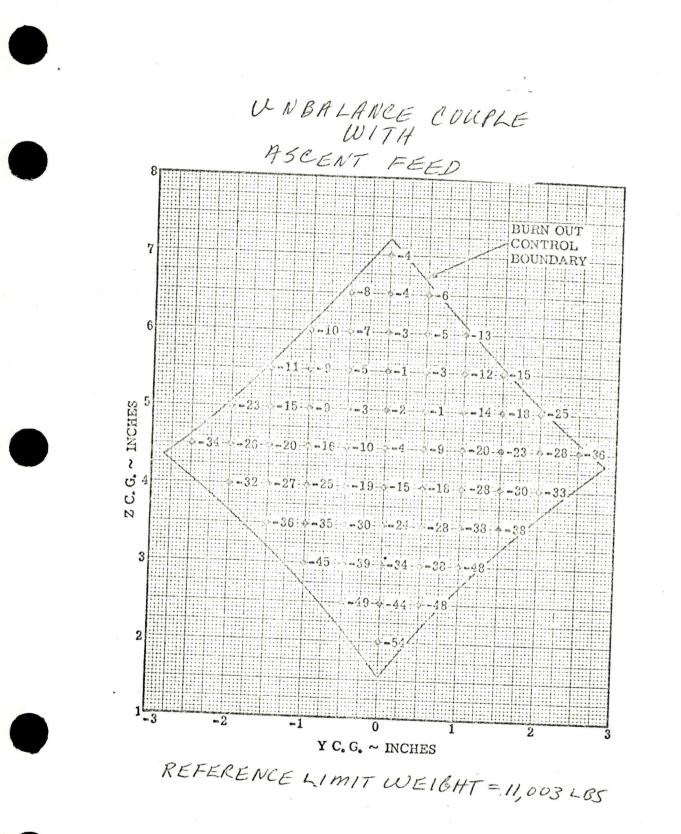
Determine the limit weight for the nominal configuration (balance couple with ascent feed open), and subtract that value from the case for unbalance couple with ascent feed. This difference is the trade off value for balance couple.

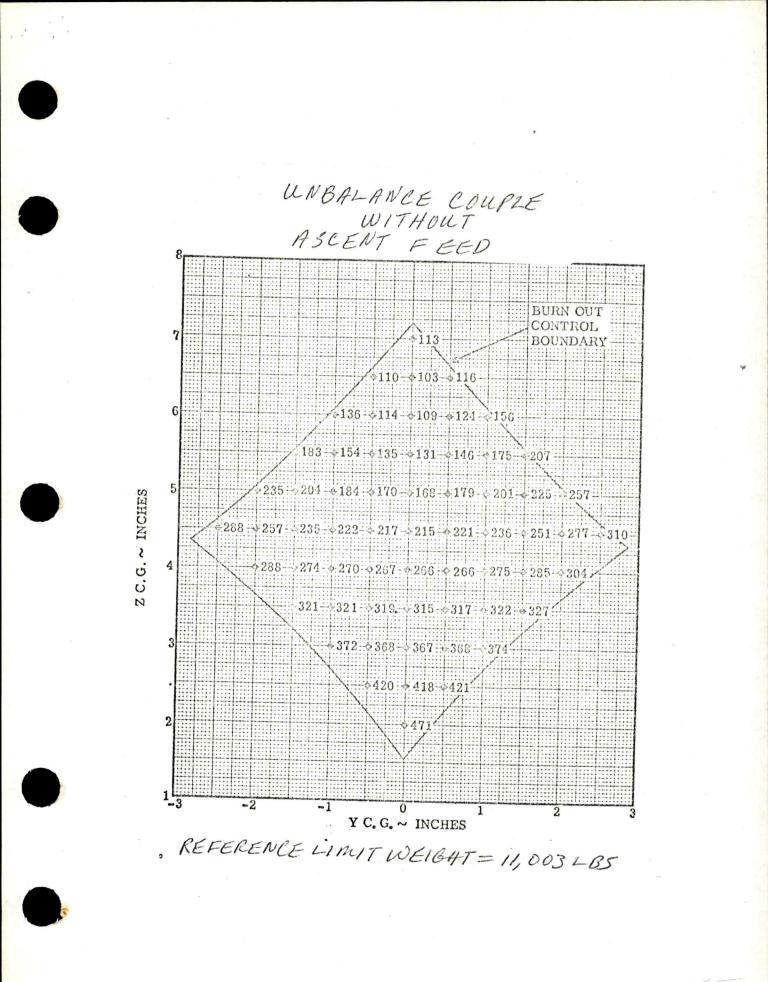

B. Ascent Feed Effect

Determine the limit weight for the nominal configuration (balance couple and ascent feed open) and subtract that value from the case for balance couple and ascent feed closed. This difference is the trade off value for ascent feed.


C. Balance Couple and Ascent Feed

Determine the limit weight for the nominal configuration (balance couple and ascent feed open) and

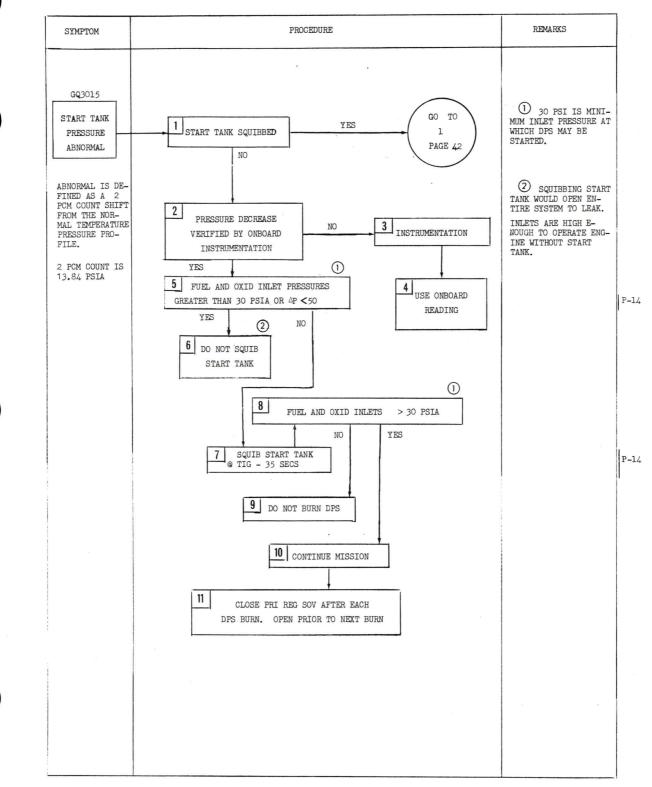

subtract that value from the case for unbalance couple and ascent feed closed. This difference is the trade off value for balance couple and ascent feed.

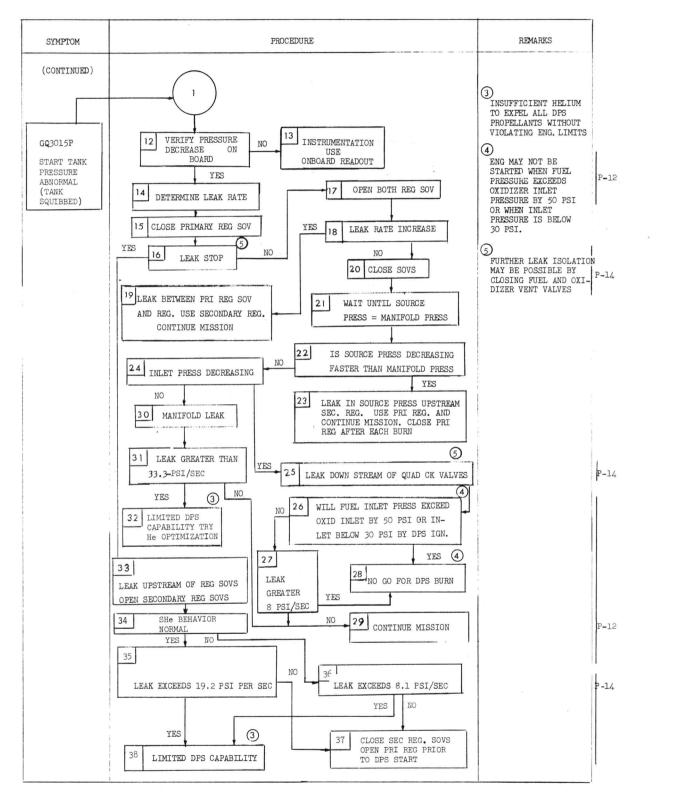


4.8-69.6

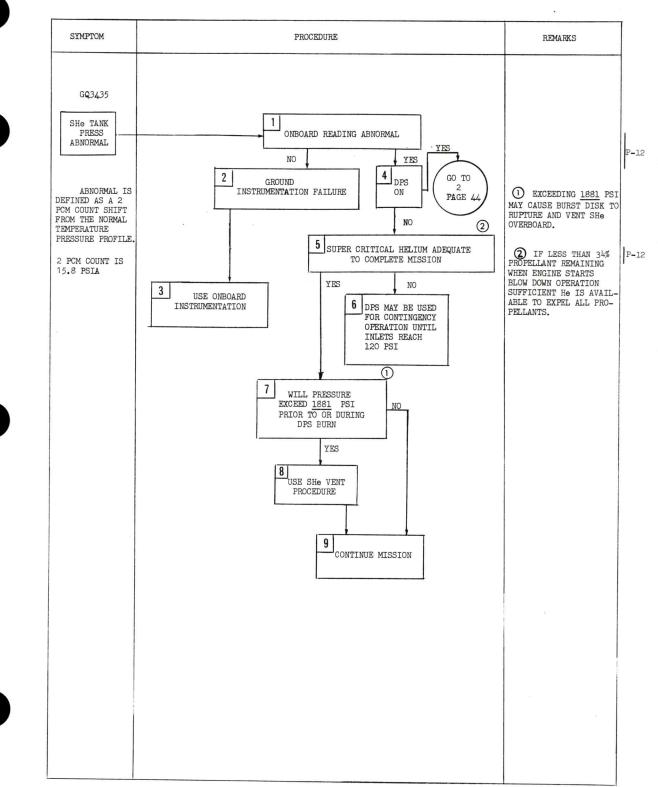
DATE: 10/1/72 REV: PCN-114 APPROVAL WAltan L. Paters

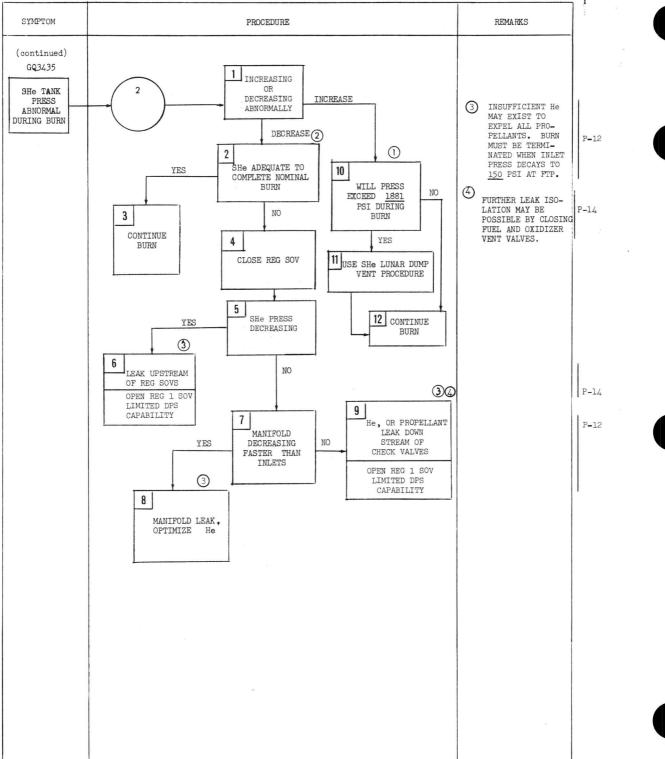
.

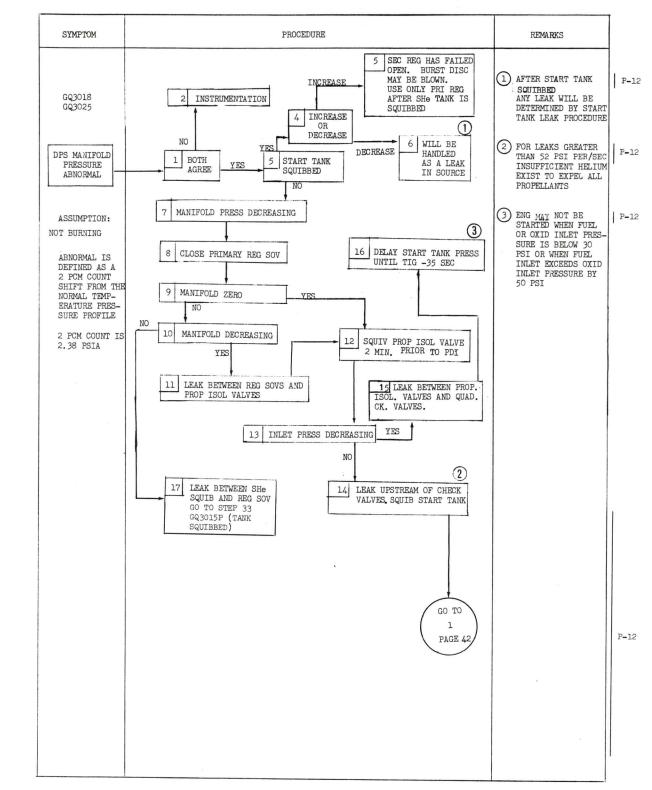

PROP MALFUNCTION ANALYSIS INDEX

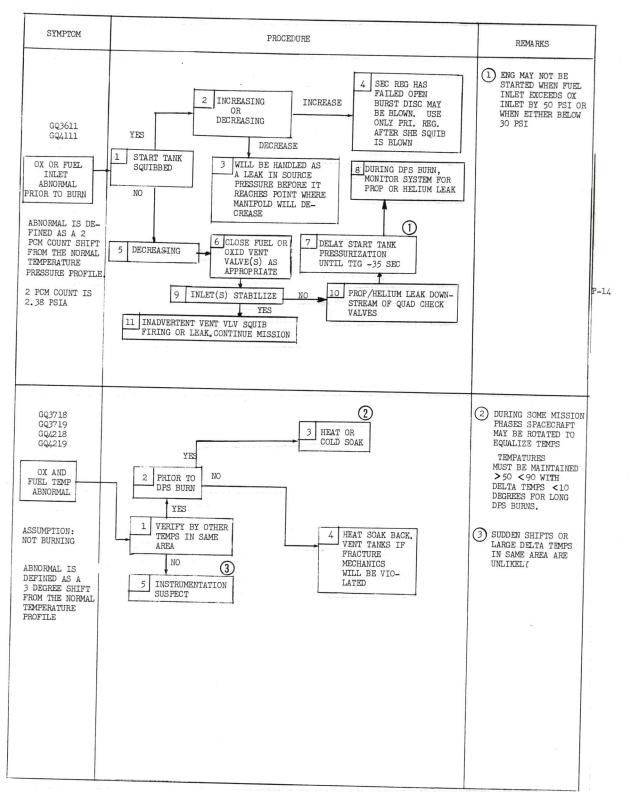

TM/C	B	
GQ3015P GQ3025P GQ3025P GQ3025P GQ3611P GQ4111P GQ4718T GQ4218T GQ4218T GQ4219T GQ42047 GQ4604Q GQ4004Q GQ4104Q GQ41042	DPS STRT TNK P DPS HE PRESS DPS REG P DPS HE REG P DPS VI PRESS DPS 0X PRESS DPS 1 FU T DPS 2 FU T DPS 2 OX T DPS 1 OX T DPS 2 0X T DPS FU 1 QTY DPS FU 2 QTY DPS 0X 2 QTY	P-14
GQ6510P GP0001P GP0042P GP0042P GP0042P GP0042P GP0042P GP038X GP038X GP038X GP0718T GP1218T GP1218T GP1503P GP1503P GP1503P GP2501P GP2998U GR1095Q GR1095Q GR101P	TCP APS HE 1 PRESS APS HE 1 P APS HE 2 PRESS APS HE 2 P P APS HE REG P APS HE REG P APS HE REG P APS HE 1 CLSD APS FUEL LOB APS FUEL LOB APS FUEL LOB APS OX TEMP APS OX TEMP APS OX TEMP APS OX LO APS OX PRESS APS OX PRESS APS OX PRESS APS VLV A \triangle POS APS VLV A \triangle POS RCS PROP A QTY RCS PROP B QTY RCS A HE PRESS	
GR1102P GR1201P GR1202P GR2121T GR2122T GR2201P GR2202P GR3201P GR3202P	RCS B HE PRESS RCS A REG PRESS RCS A FU TEMP RCS A FU TEMP A FU MFLD PRESS B FU MFLD PRESS B OX MFLD PRESS B OX MFLD PRESS	

1


PAGE <u>TM/CB</u>	PAGE
41-42 GR6001T QUAD 4 TEMP $43-44$ GR6002T QUAD 3 TEMP 45 GR6004T QUAD 1 TEMP 45 GR6004T QUAD 1 TEMP 45 GR6001W RCS MAIN A CLSD 46 GR9610U RCS MAIN B CLSD 46 GR9610U A/S X FEED OPN 46 GR9631U A/S C FD A FU 46 GR9642U A/S C FD A OX 47 69 LMP 4CB42 QUAD 4 TCA 47 69 LMP 4CB42 QUAD 1 TCA 47 69 LMP 4CB42 QUAD 1 TCA 47 69 LMP 4CB50 TEMP/PRESS/DISP-FLAG 47 69 LMP 4CB52 ASC FEED 1 47 69 LMP 4CB52 ASC FEED 1 $49-50$ LMP 4CB52 ASC FEED 1 1 $49-50$ LMP 4CB52 ASC FEED 1 1 $51-52$ LMP 4CB53 ASC FEED 1 1 $51-52$ LMP 4CB64 QUAD 2 TCA 2 54 CDR 4CB63 QUAD 1 TCA 2	65 65 65 66 66 66 67 88 88 68 69 69 69 69 69 69 69 69 70 70 70 70 71 171 72 73 74 44 74 74 75 55 55 75 75 75 75


PCN-12





DATE: 10/1/72 REV: PCN-14 APPROVAL: Husled a Julian

LM PGNS MALFUNCTION ANALYSIS

	LM PG	NS MALFUNC	TION ANALYSIS			
тм/св		PAGE	TM/CB		PAGE	
GG1040V GG1110V	+120VDC 2.5V TM BIAS	201 202	CHANNEL 31 BIT 13, 14	ATTITUDE HOLD & AUTO MODE	289	
GG1201V GG1331V	28 VAC 800HZ 28 VAC 3.2 KHZ	203 204	CHANNEL 31 BIT 15 CHANNEL 32 BIT 1, 2, 3	OUT OF DETENT	290	
GG1523X GG1523X	IMU STANDBY LGC OPERATE	206	4, 5, 6, 7, 8 CHANNEL 32 BIT 9 CHANNEL 32 BIT 10	THRUSTER DISABLE GIMBAL OFF CIMPAL FAIL 108b 108f	291	
GG2107V/37/67 GG2112V/13/42/43/72/73	IG, MG, OG SERVO ERROR	210	CHANNEL 32 BIT 10 CHANNEL 32 BIT 14 CHANNEL 33 BIT 2	PROCEED BR POWER ON AUTO	294	
GG2300T GG3304V/05/24/25	PIPA TEMP RR SHFT/TRN SIN/COS	214 216	CHANNEL 33 BIT 3 CHANNEL 33 BIT 4	RR RANGE LOW SCALE RR DATA GOOD	296 297	
GG9001X GG9002X	LGC WARN ISS WARN	218 220	CHANNEL 33 BIT 5 CHANNEL 33 BIT 6	LR RNG DATA GOOD LR POSITION 1	298 299	
GN7557X GN7552T	LR RANGE BAD LR VEL BAD	222 224	CHANNEL 33 BIT 7 CHANNEL 33 BIT 8	LR POSITION 2 LR VEL DATA GOOD	300 301	
GN7/2031 GN7/21X GN7723T	RR NO TRACK RR ANT TEMP	228	CHANNEL 33 BIT 9 CHANNEL 33 BIT 10 CHANNEL 33 BIT 11	ELOCK UPLINK	302 303	P-14
4CB29 4CB88	RR OPERATE GASTA	231 232	CHANNEL 33 BIT 12 CHANNEL 33 BIT 13	DOWNLINK TOO FAST PIPA FAIL	305 306	
4CB105 4CB122	LR OPERATE LGC/DSKY	233 234	CHANNEL 33 BIT 14 CHANNEL 33 BIT 15	LGC WARNING OSCILLATOR ALARM	308 309	
4CB124 4CB155 4CB156	IMU OPERATE HEATER OPERATE	237 243	RR CDU SHFT & TRUN ANG ICDU GIMBAL ANGLE INPU	LES TS	310 311	
4CB157 4CB161	LR HEATERS IMU STANDBY	245 246	PIPA INPUTS DNLK BIT SYNC		312 314 315	
4CB201 4CB206	GASTA RR OPERATE	247 248	UPLINK DATA RR DATA		316 317	
4CB212 4CB213	A O T LAMP A O T HEATER	249 250	LR DATA CHANNEL 11 BIT 1	ISS WARN	318 319	RCN-9
40B226 40B227	ORDEAL ORDEAL	251 252 253	CHANNEL 11 BIT 4 CHANNEL 11 BIT 13 CHANNEL 11 BIT 14	LIGHT TEMP CAUT LAMP ENGINE ON ENGINE OFF	320 319	
CHANNEL 15 BIT 1, 2, 3, 4, 5 & KEY RESET	, DSKY KEY CODES	254	CHANNEL 12 BIT 1 CHANNEL 12 BIT 2	RR CDU ZERO ENABLE RR ERROR CTR	321 322	
CHANNEL 16 BIT 3 CHANNEL 16 BIT 4	MARK X MARK Y	255 256	CHANNEL 12 BIT 4 CHANNEL 12 BIT 5	COARSE ALIGN ENABLE ZERO IMU CDU'S	323 324	P-14
CHANNEL 16 BIT 5 CHANNEL 16 BIT 6 CHANNEL 16 BIT 7	MARK REJECT DESCENT + DESCENT	257 258	CHANNEL 12 BIT 6 CHANNEL 12 BIT 8	ENABLE IMU ERROR CTR DISPLAY INERTIAL DATA	325 326	
CHANNEL 30 BIT 1 CHANNEL 30 BIT 1 CHANNEL 30 BIT 2	ABORT WITH DESCENT STAGE STAGE VERIFY	262	CHANNEL 12 BIT 9-12 CHANNEL 12 BIT 13 CHANNEL 12 BIT 14	IR POS 2 COMMAND	327 328	
CHANNEL 30 BIT 3 CHANNEL 30 BIT 4	ENGINE ARM ABORT STAGE	264 265	CHANNEL 12 BIT 15 CHANNEL 13 BIT 1-3	ISS TURN ON DELAY CMPT RADAR MODE SELECT	330 331	
CHANNEL 30 BIT 5 CHANNEL 30 BIT 6	AUTO THROTTLE DISPLAY INERTIAL DATA	266	CHANNEL 13 BIT 4 CHANNEL 13 BIT 7 CHANNEL 13 DIT 8	RADAR ACTIVITY DOWNLINK ORDER BIT	332 333	
CHANNEL 30 BIT 7 CHANNEL 30 BIT 9	RCDU FAIL IMU OPERATE	268 270	CHANNEL 13 BIT 0 CHANNEL 13 BIT 9 CHANNEL 13 BIT 10	START ACA READ	334 335 336	1
CHANNEL 30 BIT 10 CHANNEL 30 BIT 11	G & N CONTROL OF S/C IMU CAGE	272 274	CHANNEL 13 BIT 11 CHANNEL 13 BIT 12	ENABLE STANDBY RESET TRAP 31A	337 338	P-14
CHANNEL 30 BIT 12 CHANNEL 30 BIT 13 CHANNEL 30 BIT 13	ISS CDU FAIL IMU FAIL ISS THEN ON PROFEST	276 278	CHANNEL 13 BIT 15 CHANNEL 14 BIT 2-3	ENABLE TORUPT ALT RATE SEL & ALT METER ACT	339 340	-14
CHANNEL 30 BIT 15 CHANNEL 31 BIT 1, 2, 3,	TEMP IN LIMITS	281	CHANNEL 14 BITS 6-10	THRUST DRIVE GYRO TORQUE ENABLE, GYRO SELECT, GYRO SIGN & GYRO ACT	341 342	
4, 5, 6, CHANNEL 31 BIT 7, 8, 9,	2 1/2 DEGREE SWITCHES	282	CHANNEL 14 BITS 11-12 CHANNEL 14 BITS 13-15	ATTITUDE HOLD & AUTO MODE OUT OF DETENT THRUSTER DISABLE GIMBAL FAIL 108b,108f, PROCEED RR POWER ON AUTO RR RANGE LOW SCALE RR DATA GOOD LR RNG DATA GOOD LR RNG DATA GOOD LR RUG DATA GOOD LR RANGE LOW SCALE PLOCK UPLINK UPLINK TOO FAST DWNLINK TOO FAST PIPA FAIL LGC WARNING OSCILLATOR ALARM LES TS ISS ISS ISS WARN LIGHT TEMP CAUT LAMP ENGINE OFF RR CDU ZERO ENABLE RE ERROR CTR COARSE ALIGN ENABLE ZERO IMU CDU'S ENABLE INU ERROR CTR DISPLAY INERTIAL DATA GIMBAL TRIM 108b,108f, LR POS 2 COMMAND RR ENABLE AUTO TRACK ISS TURN ON DELAY CMFT RADAR MODE SELECT RADAR ACTIVITY DOWNLINK ORDER BIT ACA COUNTER ENABLE STANT ACA READ TEST ALARMS ENABLE TANP 3LA ENABLE TRAP 3LA ENABLE TRAP 3LA ENABLE TRUPT ALT RATE SEL & ALT METER ACT THRUST DRIVE GYRO TORQUE ENABLE, GYRO SELECT, GYRO SIGN & GYRO ACT DRIVE CDU X, Y & Z	344 345	
10, 11, 12	TRANSLATION CMDS	200	DSKI OUTBITS		346	1

۲.

.

.

.

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
GG9002X ISS WARNING 1 = ON O = OFF (CONT'D)		 1.C. ISS CDU FAIL WHICH MAY BE CAUSED F" ONE OF THE FOLLOW- ING: CDU FINE ERROR >1.0 VRMS. (.7°). CDU COARSE ERROR >2.0 VRMS. (30°). 	1.C. IMU CDU FAIL C30E12 C30E12 = 0.	1.C. LOSS OF INERTIAL REFERENCE TO THE LGC PLATFORM GOOD FDAI IS VALID.	1.C. <u>EFFECT</u> LOSS OF INERTIAL REFERENCE TO THE LGC. <u>ACTION</u> USE AGS FOR EURNS AND ATTITUDE CON- TROL, PGNS MIN IMP GOOD.
, . , .		 UPLINE COUNTER FREQ. > 160 CPS. COS (↔) < 2.0V (66.4°). +14 VDC SUPPLY 	х. Т		
		< 8 VDC. 1.D. LGC INTERFACE FAILURE.	1.D. CH33B13 = 1, NO PIPA FAIL CH30B13 = 1, NO IMU FAIL CH30B12 = 1, NO ICDU FAIL	l.D. LOSS OF CREW INDICATION OF ISS WARN.	1.D. <u>EFFECT</u> LOSS OF CREW INDICATION OF ISS WARN. <u>ACTION</u> CREW MUST RELY ON PROG CAUT AND ASSOCIATED ERROR CODES FOR WARNING OF ISS FAILURES.
	2. GG9002X = 0 NO ISS WARN AND CHILBI = 0 NO ISS WARN.	2. LGC INTERFACE FAILURE.	2. FROG CAUT AND ERROR CODE INDICATE IMU FAIL, ICDU FAIL AND/OR PIPA FAIL WHILE THRUSTING. ALSO WILL GET ONE OR MORE OF THE FOLLOWIN CH30El3 = O IMU FAIL CH30El2 = O ICDU FAIL CH3BEl3 = O PIPA FAIL (IF THRUSTING).		2. <u>EFFECT</u> LOSS OF PART OF ISS DEPENDING ON FAILURE. <u>ACTION</u> REF. APPROPRIATE CHANNEL BIT MALFUNC- TION ANALYSIS.
	3. GG9002X = 1 ISS WARN AND CH11E1 = 0 NO ISS WARN.	3. RELAY CONTACT SHORTED	3. CH33El3 = 1, NO PIPA FAIL CH30El3 = 1, NO IMU FAIL CH30EL2 = 1, NO ICDU FAIL	3. LOSS OF CREW INDICATION OF ISS WARN.	3. <u>EFFECT</u> LOSS OF CREW INDICATION OF ISS WARN. <u>ACTION</u> CREW MUST RELY ON PROG CAUT AND ASSO- CIATED ERROR CODES FOR WARNING OF ISS
	4. WRONG INDI- CATION FOR PRESENT STATUS OF ISS.	4. TM FAILURE.	4. SCERA 2 LOCATION 3	4. NONE.	CIATED ERROR CODES FOR WARNING OF ISS FAILURES. <u>EFFECT</u> REF. LSH TABLE 9-IV. <u>ACTION</u> ADVISE INSTRUMENTATION OF FAILURE.

FEC/TSG Form 280 (July 68)

GG9002X ISS WARN

PAGE 2 OF 2

LR RNG 1 (DR RNG PAD) L OR 2 NOT LOCKED ON AND DATA FAD) DEAMS FAD) DATA FAD) DOBATA FAD)		TOTAL S/C EFF	EQUIP/FUNCTION EFFECTS AND NOTES	FAILURE VERIFICATION METHOD	POSSIBLE CAUSE	FAILURE SYMPTOM	T/M NUMBER
DATA BAD FAD 1.A.1. VELOCITY TRANS- MITTER INOPERATIVE. 1.A.1. ONEOARD VEL XMTR FOWER OUTPUT BELOW NOMINAL. 1.A.1. POSSTELE TRANSMITTER ARCING LA.1. POSSTELE TRANSMITTER ARCING (SEE 1.A. ABOVE). (SEE 1.A.1 AND LA.2 (SEE 1.A. ABOVE). AND AND 1.A.2. ZERO DOPPLER FOR AT LEAST 1/2 SEC ON VELOCITY BEAMS 1 AND/CR DATA GOOD 1.A.2. CYCLING OF ALT & VEL A.2. SPACECRAFT VELOCITY & ATTITUDE IN COMENDATION WITH TERRAIN IRREGU- IN COMENDATION WITH TERRAIN IRREGU- NUITENTLY AND SIMULTANEOUS- WILCITY BEAMS 1 AND/CR ADD (MSST) AND (STST) AN			1 AND 2 ARE REQUIRED TO ENABLE E DATA GOOD. WITH NO RANGE DATA	DATA BAD) GN7557X = 1 (VEL DATA BAD)	1 OR 2 NOT LOCKED ON BECAUSE OF 1.A.1 OR	l (LR RNG BAD) AND GN7521X = 1	LR RNG DATA BAD
AND CHAN 33 1.A.2. ZERO DOPPLER FOR AT LEAST 1/2 SEC ON VELOCITY EEGAMS 1 AND/OR 1.A.2. CYCLING OF ALT & VEIL.A.2. SPACECRAFT VELOCITY & ATTITUDE LIGHTS AND ALSO GM7521X 1.A.2. EFFEC AGMENTATION WITH TERRAIN IRREGU- AGENDE ALL OR MYSTAL X ND A "1" INTER-LARITIES MAY CAUSE ZERO DOPPLER, NUTTERVILA AND SIMULTANEOUS-HILCH MOMENTARILY MAY CAUSE DATA LY. 1.A.2. EFFEC MOMENTARY DATA LOSS. 1 = LR RNG DATA GOOD 2. 1.B. ALITITUDE MODE SWITCH SET TO LO SCALE 1.B. CHAN 33B9 = 0 (RNG LO SCALE FACTOR) CHAN 33B6 = 1 (VEL DATA BAD) 1.B. CHAN 33B9 = 0 (RNG LO SCALE FACTOR) 1.B. THE ALITITUDE MODE SWITCH SWITCH SWITCHES 1.B. EFFEC MOMENTARY DATA LOSS. 0 = LR RNG DATA GOOD SWITCH SET TO LO SCALE ABOVE 2500 FT ALITITUDE. 1.B. CHAN 33B9 = 0 (RNG LO SCALE FACTOR) CHAN 33B6 = 1 (VEL DATA BAD) 1.B. THE ALITITUDE MODE SWITCH SWITCH SWITCHES 1.B. EFFEC MOMENTARY DATA LOSS. 0 = LR RNG DATA GOOD SWITCH SET TO LO SCALE (RNG LO SCALE FACTOR) 1.B. CHAN 33B9 = 0 (RNG LO SCALE FACTOR) 1.B. CHAN 33B9 = 0 (RNG LIS LIMITED TO LOSCALE FACTOR) 1.B. CHAN 33B9 = 1 (VEL DATA BAD) 1.B. CHAN 33B9 = 0 (LES WILL CHER ARE PRESENT UNTIL MUCH OF FILTERS OUT THE HIGH DOPIER FREQUENCY THE FORWARD VELOCITY IS DISSIPATED. LACTOR (DG ANT SWITCH - HOW WAIT 10 SEC. 0. MICH ARE PRESENT UNTIL MICH OF FILTERS OUT THE HIGH DOPIER FREQUENCY THE FORWARD VELOCITY IS DISSIPATED. LACTOR (DG ANT SWITCH - HOW WAIT 10 SEC.	CCT	OSS OF LR DATA.	POSSIBLE TRANSMITTER ARCING .A. ABOVE).			BAD)	DATA BAD O = LR RNG
BIT 5 1.A.2. ZERO DOPPER FOR AT LEAST 1/2 SEC ON VELOCITY EEAMS 1 AND/OR DATA GOOD 1.A.2. CYCLING OF ALT & VEIL.A.2. SPACECRAFT VELOCITY & ATTITUDE IN COMBINATION WITH TERRAIN IRREGU- AND GN7557X TO A "1" INTER-LARITIES MAY CAUSE ZERO DOPPER, MITTENTLY AND SIMULTANEOUS-WHICH MOMENTARILY MAY CAUSE DATA DROPOUTS. 1.A.2. EFFEC MOMENTARY DATA LOSS. 1 = LR RNG DATA GOOD 1.B. ALTITUDE MODE SWITCH SET TO LO SCALE ABOVE 2500 FT ALTITUDE. 1.B. CHAN 33B9 = 0 (RNG LO SCALE FACTOR) 1.B. THE ALTITUDE MODE SWITCH SWITCH SWITCH SWITCH SWITCH SWITCH IN COMENTARY DATA LOSS. I.B. THE ALTITUDE MODE SWITCH STO LOS SCALE (RNG LO SCALE FACTOR) I.B. THE ALTITUDE MODE SWITCH SWILL INHERE THE LO SCALE FUNC- TION. CYCLING CS(LI) FONS LW SWILL REINITIALIZE THE LO SCALE FUNC- TION HIGH SCALE. SWILL INHER THE LO SCALE CIRCUITRY IN SWITCH SCALE SCHILL SWILL REINITIALIZE THE LO SCALE CIRCUITRY SWILL SWILL REINITIALIZE THE LO SCALE CIRCUITRY SWILT A SECONDS CB(11) FONS LR - C		ACTION ATTEMPT TO RESTORE PO CB (11) PGNS LR.					AND
Data GOOD SWITCH SET TO LO SCALE ABOVE 2500 FT ALTITUDE. (RNG LO SCALE FACTOR) (VEL DATA BAD) THE VELOCITY AND RANGE FREQUENCY IRACKER'S FILTERS TO LOW PASS WHICH FILTERS OUT THE HIGH DOPLER FREQUENCY IRACKER'S FILTERS TO LOW PASS WHICH FILTERS OUT THE HIGH DOPLER FREQUENCY (VEL DATA BAD) LATE ACQUISITION OF CONTENT AND RANGE FREQUENCY IRACKER'S FILTERS TO LOW PASS WHICH FILTERS OUT THE HIGH DOPLER FREQUENCY IRACKER'S FILTERS TO LOW PASS WHICH FILTERS OUT THE HIGH DOPLER FREQUENCY INTER TO LOW PASS WHICH FILTERS OUT THE HIGH DOPLER FREQUENCY (VEL DATA BAD) LATE ACQUISITION OF CONTENT (VEL DATA BAD) VEL LIGHT - ON. GN7557X = 1 (VEL DATA BAD) VEL LIGHT - ON. THE VELOCITY IS DISSIPATED. ALSO THE ALTITUDE LOCK ABOVE THAT ALTITUDE. POSITIONING THE IR ANT TO DES WILL INHUBIT THE LO SCALE FUNC- TION. CYCLING CB(11) FONS IR WILL REINITIALIZE THE LO SCALE CIRCUITRY TO HIGH SCALE. IF ATTEMPT TO RESET SFUL: CB(11) FONS IR - C WAIT 4 SECONDS CB(11) FONS IR - C		IOMENTARY DATA LOSS. ACTION	BINATION WITH TERRAIN IRREGU- ES MAY CAUSE ZERO DOPPLER, MOMENTARILY MAY CAUSE DATA	LIGHTS AND ALSO GN7521X AND GN7557X TO A "1" INTER- MITTENTLY AND SIMULTANEOUS-	AT LEAST 1/2 SEC ON		BIT 5 LR RNG DATA GOOD 1 = LR RNG
	LR DATA. ON VER SC LO SCALE UNSUCCES OPEN	ATE ACQUISITION OF L ACTION DG ANT SWITCH - HOVE WAIT 10 SEC. DG ANT SWITCH - DESC F ATTEMPT TO RESET L FUL: CE(11) FGNS LR - OP	LOCITY AND RANGE FREQUENCY R'S FILTERS TO LOW PASS WHICH S OUT THE HIGH DOPPLER FREQUEN- HICH ARE FRESENT UNTIL MUCH OF RWARD VELOCITY IS DISSIPATED. HE ALFIMETER MODULATION SWEEP IS LIMITED TO 12,000 FT, THUS TING ALFITUDE LOCK ABOVE THAT DE. POSITIONING THE LR ANT TO LL INHEBIT THE LO SCALE FUNC- CYCLING CB(11) PGNS LR WILL LALZE THE LO SCALE CIRCUITRY	(RNG LO SCALE FACTOR) CHAN 33B8 = 1 (VEL DATA EAD) GN7557X = 1 (VEL DATA EAD) VEL LIGHT - ON.	SWITCH SET TO LO SCALE		
TTER INOPERATIVE. OUTPUT EELOW NOMINAL ALT, FROVIDED THAT LR VELOCITY TRANSMITTER LOSS OF LR ALTITUDE LIGHT ON. UP AUDITATION DE ACCOUNT DATA WILL ACTION	DATA.	OSS OF LR ALTITUDE D. ACTION TTEMPT TO RESTORE PO	ED THAT LR VELOCITY TRANSMITTER EFFECTED, VELOCITY DATA WILL ILABLE AND CAN BE ACCEPTED FOR	OUTPUT BELOW NOMINAL ALT, LIGHT ON.	L.C. ALTITUDE TRANSMIT- TTER INOPERATIVE.		
LGC AND TM. TO BOTH DATA ON DOWNLINK AND TAFF TUDE AND ALTITUDE RATE BUT WILL NOT LGC AND TM. METER APPEARS LOCKED UP. UPDATE THE STATE VECTOR WITH ALTI- ALTITUDE UPI	DATES IN LGC. ON	OSS OF ALTITUDE UPDA REW MUST RELY ON MSF.	ND ALTITUDE RATE BUT WILL NOT THE STATE VECTOR WITH ALTI- ATA. DELTA HEIGHT ON THE DSKY E STATIC. TAPE METER AND CROSS	DATA ON DOWNLINK AND TAPE METER APPEARS LOCKED UP. ΔH VALUE WILL BE STATIC.	DATA GOOD RELAY TO BOTH		

4

FEC/TSG Form 280 (July 68)

.

	T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
	CHAN 30 BIT 6	THIS BIT IS NO BY THE LUMINARY	LONGER CHECKED PROGRAM.			
	DID REQUES	2				
267						
						×
F	C/TS3 Form	280 (July 68)			CHAN 30 BIT 6 DID REQUEST	PACE I OF I

· ·

CHAN 30 BIT 6 DID REQUEST PAGE 1 OF 1

۲

•

CHAN 30 BIT 7 RCDU FAIL (PAGE 1 OF 1)

4

٠

PCN-9

-

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN 30 BIT 7 RCDU FL O = RCDU FL 1 = NO RCDU FL	1. "O" RCDU FAIL.	1.A. LGC INTERFACE CIRCUIT FAIL OR RCDU FAIL LOGIC MALFUNC TION.	1.A. DSKY TRACKER LIGHT, NO RESOLVER/CDU DELTAS IN LGC MODE, IF IN LGC MODE WILL GET 515 ALARM (RR CDU FAIL). IF IN P20/22 AND LOCKED ON WILL NOT GET 525 ALARM (DELTA THETA GREATER THAN 3 DEGREES. DSKY PROG LIGHT (P20/22).	1.A. FAILURE CAN BE VERIFIED BY EVALUATING THE RCDUS/RESOLVERS, WITHIN ACCEPTABLE LIMITS, WITH RR IN LGC MODE. IF THE INDICATION IS FALSE, THE RR ANT RESOLVER/LGC INTERFACE (RCDUS) IS STILL OFERATIONAL. LR/RR READ (R20) CHECKS RADMODES E7 WHICH LS RESET WHEN THE RCDU FAIL OCCURS. THIS KEEPS R20 FROM READING DATA. THE SOFTWARE THEN SEQUENCES AS FOLLOWS: LR/RR READ (R20) \rightarrow RR DATA READ (R22 \rightarrow P20 \rightarrow RR DESIGNATE (R21). P20 CAN LE USED TO LOCK ON AND THEN SWITCH TO AUTO TRACK TO KEEP LOCK. SOFTWARE WORKAROUND WILL BE NECESSARY TO UPDAT STATE VECTORS.	ACTION LOCK ON WITH P20 & THEN SWITCH TO AUTO TRACK OR USE EMP.
	2. "1" NO RCDU FAIL.	1.B RCDU FAIL. 2. LGC INTERFACE CIR- CUIT FAIL. OR CDU FAIL LOGIC MALFUNC- TION.	ON, IF IN LGC MODE WILL GET NO 515 ALARM (RR CDU FAIL). IF IN P20/22 AND LOCKED ON FOSSIBLE 525 ALARM (DELTA THETA GREATER THAN 3 DEGREES). 2. RESOLVER/RCDU DELTAS	 B. RCDU FAILURE PRECLUDES THE USE OF RCDUS. RR IS OPERATIONAL IN AUTO TRACK AND SLEW BUT P20/22 IS UNUSE- AELE. SAME AS 1.E. EXCEPT THAT FAILURE OF THIS INFIT WILL MASK ACTUAL RCDU FAILURE AND REQUIRE THE EVALUATION OF RESOLVER/RCDU DELTAS. 	1.B. EFFECT RCDU FAIL. USE RR MODES SLEW AND AUTO TRACK. 2. EFFECT RR UNUSEABLE IN LCC MODE. USE RR MODES SLEW AND AUTO TRACK.

FEC/ISG Form 280 (July 68)

.

1

τ

T/M FAILURE NUMBER SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN 30 BIT 9 IMU OPERATE 0 = OPR 1 = NOT IN OPR (CONT)			 2.C P51 AND P57 WILL CAUSE PROG CAUT 00210 AND TRANSFER TO POOH (FLASHING V37). A DSKY PROCEDURE WILL HAVE TO BE USED TO AVOID ROUTINE IMUCHK IN P51 AND P57 NOTE: IF IMU OPR BIT FAILS OFF AFTER TURN ON HAS BEEN ACHIEVED T4RUPT IMUMON DOES THE FOLLOW- ING 201 SET IM30B9 = IMU OFF 202 SET IM33B6 = 1 DAP OFF 203 FW1B5 = 0 TRACKING NOT ALLOWED 204 FW2B15 = 0 DRIFT FLAG (NO GYRO COMP) 205 FW3B13 = 0 REFSMFLG (NO REFSMMAT) 206 IF FW0B8 = 1 (IMU IN USE) PROG CAUT 00214 207 SET FW0B8 & B7 = 0 (IMU NOT IN USE, P20 NOT RUNNING) DSKY PROCEDURE WILL HAVE TO BE USED TO SWITCH BITS 202 - 207. AFTER THE SWITCHING HAS BEEN ACCOMPLISHED EFFECT OF FAILURE WILL BE THE SAME AS ABOVE. 	
	н 1	, ,		

FEC/TSG Form 280 (July 68)

۰.

.

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN 30 BIT 10 G&N CONTROL OF S/C 0 = PGNS 1 = ACS	1. "1" (AGS) WHEN SWITCHING FROM AGS TO PGNS	1.A. OPEN BETWEEN CON- TACTS 2 AND 3 OF GUID CONT SW 986 ON PANEL 1.	1.A. GH1621X = 1 AGS SELECTED: AGS WD45 BIT 9 = 1 AGS NOT IN FOLLOW UP.	1.A. LOSS OF LGC-CES INTERFACE. AGS WILL BE IN CONTROL OF SPACECRAFT.DAP WILL REMAIN ON AND PGNS RCS, GDA & ENG ON/OFF COMMANDS GENERATED BUT DISABLED TO CES. IF SWITCH BACK TO PGNS IS EFFECTED THE DAP WILL BE INITIALIZED. FGNS ATTITUDE ERRORS STILL AVAILABLE ON FDAI. ONBOARD ISS & LGC WARN INHIBITED.	1.A. <u>EFFECT</u> LOSS OF REDUNDANT (FONS) 3-AXIS ATTITUDE CONTROL <u>ACTION</u> LET AGS CONTROL S/C OR CONTROL MAN- UALLY USING PGNS ATTITUDE ERROR NEEDLES.
a na sana ang ang ang ang ang ang ang ang ang		1.E. CE (11) STAB/CONT, ATCA (PGNS) OPEN.	1.B. PREAMPS CAUTION LIGHT 6D530 ON PANEL 2 ON; GH1621X = 1 AGS SELECTED; AGS WD 45 BIT 9 = 1 AGS NOT IN FOLLOWUP.	1.B. SEE IM CB FAILURE ANALYSIS OF 4CB81. NOTE: PGNS ATTITUDE ERRORS STILL AVAILABLE ON FDAI.	1.B. <u>EFFECT</u> LOSS OF REDUNDANT (FGNS) 3-AXIS ATTITUDE CONTROL <u>ACTION</u> ,ATTEMPT TO RESET CB.SWITCH TO AGS IF
	2. "1" (AGS) ANYTIME	2. MICRO-LOGIC CIRCUIT FAILURE IN LGC OR FAILURE OF RELAY CON- TACT CA2 K7.	SELECTED; AGS WD45 BIT 9 = O AGS IN FOLLOW UP.	2. DAP WILL REMAIN ON AND THE S/C WILL REMAIN IN PGNS CONTROL. ALTHOUGH AUTOMATIC GUIDANCE STEERING IS STILL GOOD, AUTOMATIC ATTITUDE MANEUVERS WILL NOT BE POSSIBLE (CHECKLIST CODE 203 WILL APPEAR IN BURN FROGRAMS BUT CAN BE BYPASSED WITH AN ENTER).	NOT EFFECTIVE. 2. <u>EFFECT</u> AUTOMATIC MANEUVERS NOT POSSIBLE <u>ACTION</u> MANEUVER IN ATTITUDE HOLD OR AGS.
	FROM AGS TO PGNS	3. SHORT BETWEEN CON- TACTS 4 AND 5 OF GUID CONT SW 986 ON PANEL 1.	AGS WD 45 BIT 9 = 1 AGS NOT IN FOLLOWUP.	CAN BE EFFECTED BY CYCLING GUID CONT SW TO AGS AND BACK TO PONS. IF SHORT IS INTERMITTENT CB (16) STAE/CONTROL ATCA (AGS) SHOULD BE OPENED TO PRE- VENT ANY RECURRENCE.	3. <u>EFFECT</u> TEMPORARY LOSS OF PGNS CONTROL <u>ACTION</u> CYCLE GUID CONT SW AND OPEN 4CE230 ATCA (AGS). SEE MALFUNCTION ANALYSIS OF 4CE230 FOR FUNCTIONS LOST.
	WHEN SWITCHING	4.A. OPEN BETWEEN CON- TACTS 4 AND 5 OF GUID CONT SW 986 ON PANEL 1.	SELECTED; AGS WD 45 BIT 9 = 0 AGS IN FOLLOWUP.	4.A. LOSS OF AGS USE OF PRIMARY COILS, GDA AND ENGINE ON/OFF INTERFACE WITH CES. PGNS WILL BE IN CONTROL OF SPACE CRAFT. HARDOVER AND DIRECT WILL STILL BE AVAILABLE, AS WELL AS AGS ATTITUDE ERRORS.	4.A. <u>EFFECT</u> LOSS OF REDUNDANT (AGS) 3-AXIS ATTITUDE CONTROL <u>ACTION</u>
		ATCA (AGS) OPEN.	AGS IN FOLLOWUP,	4.B. SEE LM CE FAILURE ANALYSIS OF 4CE230. NOTE: AGS ATTITUDE ERRORS STILL AVAII- ABLE ON FDAI.	USE PGNS CONTROL 4.B. <u>EFFECT</u> LOSS OF REDUNDANT (AGS) 3-AXIS ATTITUDE CONTROL <u>ACTION</u>

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN 30 BIT 10 (CONT)	5. "O" (PGNS) ANYTIME	5. MICRO-LOGIC CIRCUIT FAILURE IN LGC OR FAILURE OF RELAY CON- TACT CA2K7.		5. THE DAP WILL REMAIN ON EUT RCS, GDA AND ENGINE ON/OFF COMMANDS WILL EE DISABLED TO THE SCS. WHEN SWITCH- ING BACK TO PGNS A LARGE ATTITUDE MANEUVER MAY RESULT SINCE THE LACK OF AN AGS INDICATION WILL PREVENT A DAP INITIALIZATION. THE BURN PROGRAMS CHECK ON THIS DISCRETE WILL NOT RESULT IN CHECKLIST CODE 203 AS IT SHOULD WHEN THE S/C IS NOT IN PGNS CONTROL.	5. <u>EFFECT</u> POSSIBLE LARGE UNEXPECTED ATTITUDE MANEUVER WHEN SWITCHING BACK TO PGNS <u>ACTION</u> TURN DAP OFF VIA MODE CONTROL SW OR SELECT ATT HOLD MIN IMPULSE BEFORE SWITCHING TO PGNS CONTROL.
	6. "O" (PGNS) AFTER A SUC- CESSFUL SWITCH FROM PGNS TO AGS	6. SHORT BETWEEN CON- TACTS 2 AND 3 OF GUID COMTROL SW 986 ON PANEL 1.	6. GH1621X = 0 FGNS SELECTED; AGS WD45 BIT 9 = 0 AGS IN FOLLOW UP.	6. SAME AS 4.A. A SWITCH BACK TO AGS CAN BE BFFECTED EX CYCLING GUID CONT SW TO PONS AND BACK TO AGS. IF SHORT IS INTERNITIENT CB (11) STAB/CONT, ATCA (PGNS) COULD BE OPENED TO PRE- VENT RECURRENCE.	6. <u>EFFECT</u> TEMPORARY LOSS OF AGS CONTROL <u>ACTION</u> CYCLE GUID CONT SW AND OPEN 4CE81 ATCA (PGNS). SEE MALFUNCTION ANALYSIS OF 4CE81 FOR FUNCTIONS LOST.

FEC/TSG Form 280 (July 68)

.

4

CHAN 30 BIT 10 G/N CONTROL OF S/C PAGE 2 OF 2

x

•

CHAN 30 BIT 13 IMU CAGE (PAGE 1 OF 2)

PCN-9

	T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION	
	CHAN 30 BIT 11 IMU CAGE O = IMU CAGE 1 = NO IMU CAGE	l. "O" IMU CAGE	1A. LGC INTERFACE FAILURE	THE PLATFORM IS CAGED. CREW WILL GET NO ATT LIGHT	 1A. PLATFORM REMAINS ALIGNED AND INERTIAL ALTHOUGH DRIFT COMPENSATION IS NOT BEING ACCOMPLISHED. THE DAP IS DISABLED. THE FOLLOWING MUST BE ACCOMPLISHED TO NEGATE THE EFFECTS OF THE CAGE DISCRETE: 1. SET DSPTABILB¹ = 0 NO ATT OFF 2. SET CH12B5 = 1 ZERO IMU CDU 3. SET CDUX, Y, Z = 0 ¹/₄. SCHEDULE UNZ2 ROUTINE 	EFFECT 1A. T4RUPT INITIALIZES SOME BITS IN WRONG STATE ACTION CORRECT T4RUPT ACTION NOTE: SUBSEQUENT POWER UP WILL REQUIRE REPEAT OF ABOVE ACTION	
			1B. SHORTED DIODE BETWEEN IMU TURN-ON RELAY AND CAGE CMD TO THE LGC.	1B. IM3OB11 = 0 IMU CAGE RSVR'S AND CDU'S INDICATE PLATFORM IS CAGED.	1E. PLATFORM WILL BE CAGED DUE TO THE ENERGIZED CAGE RELAY. THE ISS CANNOT BE USED AS AN ATTITUDE REFER- ENCE. MINIMUM IMPULSE IS THE ONLY PGNS CONTROL MODE AVAILABLE.	1B. EFFECT LOSS OF PGNS, DAP MINIMUM IMPULSE ONLY PGNS CONTROL MODE <u>ACTION</u> SWITCH TO AGS.	
274			IC. SHORT ON IMU CAGE SWITCH.	1C. SAME AS 1B, EXCEPT CAGE INDICATION WILL DISAPPEAR WHEN CB:PGNS:IMU STBY IS OPEN.	1C. SAME AS 1B WITH CB:PGNS:IMU STBY CLOSED. CAGE CONDITION WILL BE TERMINATED IF CB:PGNS:IMU STBY IS OPENED. PLATFORM IS USABLE EXCEPT IMU HEATER POWER IS REMOVED WITH OPEN IMU STBY CB AND PIPA TEMP WILL DECREASE TO GLYCOL TEMP. PIPA'S WILL BE LOST AFTER 1/2 HOUR TO 1 HOUR. IRIG'S WILL BE STABLE AT THE GLYCOL TEMP ALTHOUGH MAY GET SIZEABLE DRIFT RATES (0 TO 30 MERU).	ACTION	
		CAGE (MOMEN- TARILY) MSFN PROBABLY	2. SHORTED DIODE BETWEEN CAGE RELAY AND CAGE AND TO LGC. (CAN OCCUR DURING IMU TURN- ON ONLY)	2. IM30B11 = 0 IMU CAGE OCCURS MOMENTARILY. FAILURE CAUSES TURN-ON RELAY TO BE ENERGIZED THUS REMOVING BOTH THE CAGE CMD AND THE T/O REQUEST. WILL GET PROG CAUT 00207 "ISS TURN-ON REQUEST NOT PRESENT FOR 90 SEC" AND IM30B2 = 1 TURN ON SEQUENCE FAILED.	2. PLATFORM MAY NOT BE CAGED BEFORE GOING INTO AN INERTIAL MODE. NO FURTHER S/C EFFECT.	2. <u>EFFECT</u> POSSIBLE NON-NOMINAL TURN-ON SEQUENCE <u>ACTION</u> NONE.	

FEC/TSG Form 280 (July 68)

4

.

.

\$

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN'30 BIT 11	3. "1" (NO IMU CAGE)	3A. OPEN 4CB161 (IMU STBY)	3A. SEE 4CB161 ANALYSIS	3A. SEE 4CB161 ANALYSIS	3A. SEE 4CB161 ANALYSIS
(CONT'D)	WITH IMU CAGE SWITCH IN ON POSITION	3B. CAGE SWITCH FAILED	3B. IMODES 30 BIT 11 = 1 (IMU CAGE NOT REQUESTED)	3B. UNABLE TO CAGE IMU VIA CAGE SWITCH (3S1) ON PANEL 1	EFFECT 3B. UNABLE TO CAGE IMU VIA CAGE SWITCH
			-		CAN CAGE VIA TURN-ON OR DSKY INPUT
	x ¥	3C. LGC INTERFACE FAILURE	ATTITUDE EXCURSIONS IF DAP IS ON. ALSO IMU FAIL	3C. THE LGC WILL NOT BE AWARE OF THE CAGING PROCESS AND THUS NOT INHIBIT THE DAP OR IMU AND ICDU	3C. <u>EFFECT</u> POSSIBLE UNSTABLE VEHICLE DUE TO EXCESSIVE JET FIRINGS.
			C3OB13 = 0 ICDU FAIL C3OB12 = 0 CREW WOULD SEE PROG CAUT AND ISS WARN.	FAILS, OR RESET THE TRACK, DRIFT, AND REFSMMAT FLAGS (F1B5, F2B15, F3B13). IF THE DESIRED ATTITUDE OF THE SPACECRAFT (AS "KNOWN" BY THE	ACTION STABILIZE VEHICLE; RE-ESTABLISH INERTIAL REFERENCE.
2	a.			DAP) IS ANYTHING OTHER THAN CLOSE TO ZERO, THE DAP WILL INTERPRET THE CAGING PROCESS AS AN ATTITUDE ERROR	Indiana Adriation
				AND FIRE JETS TO CORRECT FOR IT. NOTE: IF USE OF CAGE SWITCH IS DESIRED THE DAP CAN BE TURNED OFF.	
		a.		· · · · · ·	
	280 (July 68)				

FEC/TSG Form 280 (July 68)

PAGE 2 OF 2

8

1

T is a		T		CHAN 30 BI	F 12 ISS CDU FAIL (PAGE 1 OF 1)
T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN 30 BIT 12 ISS CDU FAIL O = ISS	l. "O" ISS CDU FAIL.	1.A. LGC INTERFACE FAIL OR CDU FAIL LOGIC MALFUNC- TION.		1.A. FAILURE CAN EE VERIFIED BY EVALUATING CDU/RESOLVER DELTAS. IF THE INDICATION IS DETERMINED TO FE FALSE ISS CDU INTERFACE IS STILL OPERATIONAL.	1.A. <u>EFFECT</u> FALSE ICDU FAIL. <u>ACTION</u> CONTINUE MISSION AND RESET CH11 E01
CDU FAIL l = NO ISS CDU FAIL	e B V		s S	ISS WARNING CAN EE MASK BY INTERNALL SETTING CH11 B01. (G&N DICTIONARY PG1-68) SUCCEEDING T4RUPT CYCLES WILL BYPASS CHECK FOR THIS DISCRETE. IF ANOTHER FAILURE OCCURS, CH30 CK IN T4RUPT WILL LIGHT ISS WARNING.	TO CLEAR ISS WARNING.
				IMU RESOLVER/CDU DELTAS MUST BE MONITORED CLOSELY AS THIS FAILURE WILL MASK AN ACTUAL ICDU FAILURE.	
		1.B. I CDU FAILURE, COARSE ERROR TOO GREAT, FINE ERROR TOO GREAT, COUNTER FREQUENCY TOO LARGE, 14 VDC CDU POWER SUPPLY FAILURE.	1.B. RESOLVER/CDU DELTAS, ISS WARNING, 3777 ALARM.	1.B. LOSS OF INERTIAL REFERENCE TO THE LGC. THE RESOLVER ANGLES & FDAI TOTAL ATTITUDE ARE STILL CORRECT. DAP WILL FIRE JETS EECAUSE IT THINKS THE SPACECRAFT IS OUT OF THE DEAD- EAND. TURN DAP OFF.& SWITCH TO AGS. PCNS MIN IMPULSE IS STILL AVAILABLE. A SOFTWARE WORKAROUND IS AVAILABLE FOR CERTAIN FAILURES. REF EMP 103 A, F, DESCENT WITH FAILED CDU'S.	1. B. EFFECT LOSS OF CDU'S, PLATFORM IS STILL AVAILABLE, & MIN IMPULSE IS AVAIL- ABLE. SWITCH TO AGS OR USE SOFTWARE WORK- AROUND.
2 2 1	2."1" NO ISS. CDU FAIL.	2. LGC INTERFACE FAIL. CDU FAIL LOGIC MALFUNC- TION.	<u>NO</u> 3777 ALARM.	2. FAILURE MUST BE VERIFIED BY EVALUATING RESOLVER/CDU DELTAS. THIS FAILURE PREVENTS USE OF IMU FOR LOGIC ATTITUDE REFERENCE. FDAI TOTAL ATT. IS STILL AVAILABLE FOR ATT. REF. VIA RESOLVERS AND GASTA.	2. SAME AS 1.B.
	2			NOTE: IN EITHER 1A OR 2 FAILURE CASE, ICDU FAIL MONITOR CAPABILITY IS LOST.	
* • • •					

4

¥.

FEC/TSG Form 280 (July 68)

1

1

.

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN 30 BIT 13 IMU FAIL (CONT)	2. "1" NO IMU FAIL	2. LGC INPUT FAILURE OR FAILURE IN IMU FAIL DETECTION CIRCUITRY.	FROE CAUT BUT ONE OF THE FOLLOWING WILL BE OUT OF LIMITS. GG1201V 800 HZ PJR	2. CREW WILL NOT BE WARNED OF IMU FAILURE. SEE APPROPRIATE TM MALFUNC- TION AMALYSIS FOR FUNCTION EFFECTS OF FAILURE.	2. VALID IMU FAIL CONDITION - LOSS OF IMU LOSS OF CREW IMU FAIL WARN- ING VIA ISS WARN LIGHT. ISS WARN LITH IS VALID FOR FAILURES OTHER THAN IMU FAIL.
			<pre><14 VOLTS GG1331V 3.2 KHZ PWR <14 VOLTS GG2107, 37, 67,IG, MG, GG SERVO ERRORS >3 VIMS FOR 2 SEC.</pre>		ACTION PGNS MIN IMP STILL GOOD OTHERWISE USE AGS
		·			

F

279

.

CHAN 30 BIT 14 ISS TURN ON REQUEST (PAGE 1 OF 2)

.

,

_

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION]
CHAN 30 BIT 14 ISS TURN- ON REQUEST 0 = T/O REQUEST 1 = NO T/O REQUEST		1A. LGC INTERFACE FAILURE. NOTE: UNLIKELY FAILURE SINCE 28 VDC FWR IS NEEDED TO ACTIVATE LGC IN- PUT CIRCUITRY	1A. IM 30 BIT 14 = 0	 1A. T/O SEQUENCE WILL BE NOMINAL WITH EXCEPTION THAT T/O SEQUENCE FAILURE (IM30B2 = 1) WILL NOT BE CHECKED AND PROG CAUT 00207 COULD NOT BE ISSUED IN CASE OF A SEQUENCE FAILURE. IM30B14 WOULD AGREE WITH CH30B14, THROUGHOUT THE MISSION. NOTE: IF FAILURE GOES AWAY SUBSEQUENT TO TURN-ON, WILL GET IM30B14 = 1 WITH IM30B2 = 1 (T/O SEQUENCE FAILED) AND PROG CAUT 00207 (ISS T/O REQUEST NOT PRESENT FOR 90 SEC). TO AVOID PROBLEMS WITH ROUTINE ENDTNON DURING FUTURE 	EFFECT 1A. LOSS OF PROG CAUT 00207 <u>ACTION</u> NONE	P-14
		 LOSS OF POWER TO IMU T/O RELAY. CAUSED BY FAILURE OF DIODE OR TRAN- SISTOR ON DELAY COMPLETE LINE. FAILURE OF CH12B15 ISS T/O DELAY COM- PLETE. 1C. FAILED IMU TURN ON RELAY OR CONTACT SHORTED TO 28 VDC POWER. 	 1B. SAME AS 1A. ALSO PTA INHIBIT CAUSES 120 VDC PTA FWR SUPPLY (GG1040) OFF SCALE LOW. PIPA FAIL CH33B13 = 0 PROG CAUT 00212. 1C. SAME AS 1B. 	 IMU TURN-ON'S, IM30B2 SHOULD BE SET TO ZERO. 1B. CYCLE IMU CAGE SWITCH TO COM- PLETE TURN ON SEQUENCE. 1C. LOSS OF IMU. IMU WILL REMAIN CAGED. CONSIDER POWERING DOWN THE IMU. 	EFFECT 1B. NON-NOMINAL TURN ON. <u>ACTION</u> CYCLE IMU CAGE SWITCH TO ALLOW PLATFORM TO GO INERTIAL. <u>EFFECT</u> 1C. LOSS OF PGNS ATTITUDE REFERENCE. <u>ACTION</u>	РС N-9 Р-14
	2. "1" NO T/O REQUEST (DURING TURN-ON SEQUENCE)	2A. LGC INTERFACE FAILURE	2A. IM3OB14 = 1 PLATFORM WILL BE CAGED.	 2A. THE FOLLOWING SEQUENCE WILL HAVE TO BE FOLLOWED TO ACHIEVE A TURN- ON. 1. CLOSE IMU OPR CB 2. SET IM30B7 = 1 (FIRST TURN- ON SAMPLE) WITH DSKY PRO- CEDURE. NO FURTHER ACTION REQUIRED. 	SWITCH TO AGS. PGNS MIN IMPULSE STILL GOOD. <u>EFFECT</u> 2A. LOSS OF NOMINAL IMU T/O SEQUENCE. <u>ACTION</u> USE ALTERNATE METHODS.	P-14

7

.

1

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION]
CHAN 30 BIT 14	2. "l" no t/o REQUEST. (DURING	2B. LOSS OF IMU OPR CB	2B. SEE IMU OPR CB MAL- FUNCTION ANALYSIS.	2B. SEE IMU OPR CB MALFUNCTION	2B. SEE IMU OPR CB MALFUNCTION.	
ISS TURN- ON REQUEST O = T/O REQUEST 1 = NO T/O REQUEST		2C. SHORTED DIODE BE- TWEEN CAGE RELAY AND CAGE CMD TO LGC.	2C. IM30B11 = 0 IMU CAGE OCCURS MOMENTARILY. WILL GET PROG CAUT 00207 "ISS TURN-ON REQUEST NOT PRESENT FOR 90 SEC" AND IM30B2 = 1 TURN-ON SEQUENCE FAILED.	2C. PLATFORM MAY NOT BE CAGED BEFORE GOING INTO AN INERTIAL MODE. NO FURTHER S/C EFFECT. CAGE USING DSKY FROCEDURE IF DESIRED. FAILURE CAUSES TURN-ON RELAY TO BE ENERGIZED THUS REMOVING BOTH THE CAGE CMD AND THE T/O REQUEST.	EFFECT 2C. LOSS OF NOMINAL TURN-ON SEQUENCE. <u>ACTION</u> NONE.	PCN-9
		2D. OFEN CONTACT ON IMU T/O RELAY	2D.PLATFORM WILL BE INERTIAL WITHOUT BEING CAGED & IM30B14 = 1 PTA INHIBIT WILL CAUSE 120 VDC GG1040 OFF SCALE LOW.	IMU CAGE SWITCH.	2D. <u>EFFECT</u> PLATFORM WILL <u>BE INERTIAL WITHOUT</u> GETTING RID OF THE PTA INHIBIT. <u>ACTION</u> FINISH TURN ON <u>SEQUENCE</u> USING DSKY	P-14
				5 °	METHOD OR CYCLE IMU CAGE SWITCH.	
2						
	ď					
				ж		
FEC/TSC Form	280 (July 68)					

FEC/TSG Form 280 (July 68)

280a

CHAN 30 BIT 14 ISS TURN ON REQUEST (PAGE 2 OF 2)

THIS PAGE LEFT INTENTIONALLY BLANK

Low X A Service C. C. W. M. Martin Company

280Ъ

.

1

7

.

	T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
	CHAN 30 BIT 15 TEMP IN LIMITS	l. "l" TEMP OUT OF LIMITS.	1.A. LGC INPUT FAILURE.	1.A. GG2300T PIPA TEMP WILL READ 134 ± .2°F OR > 126 ± .2°F.	1.A. CREW WILL GET TEMP LIGHT ON DSKY ILLUMINATED.	1.A. <u>EFFECT</u> LOSS OF CREW WARNING OF IMU TEMPERA- TURE.
a T	l = TEMP OUT OF LIMITS O = TEMP	-	1.B. TEMPERATURE CONTROL PAILURE.	1.B. GG2300T PIPA TEMP WILL READ >134 ± .2°F OR <120 ± .2°F.	1.B. REF. GG2300T FAILURE ANALYSIS.	ACTION LIGHT ON DSKY CAN EE EXTINGUISHED EY SETTING CH11 BIT 4 = 0. 1.B. REF. GG2300T FAILURE ANALYSIS.
a takin sahar s		2. "O" TEMP IN LIMITS	2. LGC INPUT FAILURE.	2. GG2300T PIPA TEMP READS >134 ± .2°F OR < 120	2. CREW HAS LOST ABILITY TO SEE TEM- PERATURE PROBLEM. SEE GG2300T PIPA	2. <u>EFFECT</u>
	NOTE: THE T CREW IS VAL STANDBY MOD	EMP CAUT INDICAN ID WHEN THE LGC E.	ION TO THE		TEMP MALFUNCTION ANALYSIS FOR TEMP OUT OF LIMITS FUNCTION EFFECTS.	LOSS OF CREW WARNING OF IMU TEMPERA- TURE PROBLEM. <u>ACTION</u> CREW CONSULT MSFN FOR STATUS OF IMU.
			ж		а.	

FEC/TSG Form 280 (July 68)

CHAN 30 BIT 15 TEMP IN LIMITS

4

	ri-		UIAN JI BIIS I - I	6 2 ¹ / ₂ DEGREE SWITCHES (PAGE 1 OF 3)
T/M NUMBER	FAILURE SYMPTOM POSSIBLE CAUS	FAILURE VERIFICATION	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
HAN 31 BIT 1-6 2 1/2 DEGREE SWITCHES BIT 1 + PITCH MIN MPULSE, + EL (LPD) BIT 2 PITCH MIN IMPULSE, EL (LPD) BIT 3 YAW MIN MPULSE SIT 5 ROLL MIN MPULSE, AZ (LPD) = ON = OFF	"O" (ON) LA. 2 ¹ / ₂ DECREE SWIT IN ACA SHORTED.	ATTITUDE CONTROL SW IN PULSE, CORRESPONDING ERROR COMMAND = ±2 ±.1V; C31B15 = 1 ACA IN DETENT. NOTE: GH1247/48/49 = YAW, PITCH, ROLL ERROR COMMANDS RESPECTIVELY.	 1A. • PARTIAL LOSS OF MINIMUM IMPULSE CAPABILITY. THE + YAW MIN IMP CMDS (CHAN 6) ARE PROCESSED INDEFENDENTLY OF THE + PITCH AND + ROLL CMDS (CHAN 5) AND A FAILURE IN ONE CHANNEL DOES NOT AFFECT THE OTHER CHANNEL. THE SHORT CAN BE ISOLATED COMPLETELY BY UNPLUGGING THE DEFECTIVE ACA AND INSERTING THE SHORTING PLUG, OR PARTIALLY VIA THE ATTITUDE CONTROL SWITCHES. PLACING THE APPROPRIATE ATTITUDE CONTROL SW TO FULSE WOULD DISABLE THE SHORT AND NOT FIRE JETS AS LONG AS GUID CONT SW WAS IN PGNS. (PLACING IT TO DIRECT WOULD FIRE JETS IF CB(11) STA B/CONT, ATT DIR CONT WAS CLOSED.) FOR PITCH AND ROLL IF THE + SW IS SHORTED THE -CAPABILITY IS LOST BUT ONE + PULSE COULD EE OFTAINED WITH EVERY CYCLING OF THE APPROPRIATE ATTITUDE CONTROL SW. IF THE -SW IS SHORTED, ONE - PULSE CAN BE OFTAINED WITH EVERY CYCLING OF THE APPROPRIATE ATTITUDE CONTSOL SW. IF THE -SW IS SHORTED, ONE - PULSE CAN BE OFTAINED WITH EVERY CYCLING OF THE ATT CONT SW AND ONE + PULSE WITH EVERY CYCLING OF THE ATT CONT SW WHILE THE ACA IS DEFLECTED IN THE + DIRECTION. FOR YAW THE FAILURE MODES ARE JUST THE OPPOSITE OF PITCH AND ROLL, I.E. IF THE -SW IS SHORTED, THEN THE 'EAPABILITY IS LOST. • THE + FITCH AND + ROLL COMMAND ARE ALSO USED FOR + AZ AND E LEVA- TION LFD CMDS. THE AZ AND E HE ROLL & PITCH ATTITUDE CONTROL SWITCHES, RESPECTIVELY. EITHER ONE + OR ONE - PULSE CORRESPONDING TO THE SHORTED IN E64 TO CONT SW, BUT CAPABILITY IN THE OPPOSITE DIRECTION (- OR +) IS LOST. AFTER THE CREW HAS PROCEEDED IN F64 TO ENABLE LFD CAPABILITY, AN ON FAILURE OF THE LFD DISTS STARTS A MONITOR WHICH RUNS UNTIL THE NEXT V37 OR RESTART OR ISOLATION OF THE SHORT VIA THE ATT CONT SW AND CAUSES 3 TO 4 PERCENT T LOSS. 	EFFECT 1A. PARTIAL LOSS OF LPD AND/OR MINIMUM IMPULSE CAPABILITY <u>ACTION</u> ISOLATE FAILURE COMPLETELY VIA ACA SHORTING FLUG OR PARTIALLY VIA ATTITUDE CONTROL SWITCH MANAGEMENT, OR USE RATE COMMAND OR AUTO FOR MANEUVERS. FOR LPD WORK-AROUND, SEE NOTE.**

FEC/TSG Form 280 (July 68)

1

	T/M MBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
BIT	N 31 1 - 6 NT'D)		1B. MICRO-LOGIC CIRCUIT FAILURE IN LGC	1B. WITH APPROPRIATE ATTITUDE CONTROL SWITCH IN PULSE, CORRESPONDING ERR	AND +AZ AND +E1 LPD CMDS. THE +YAW	EFFECT 1B. TOTAL LOSS OF LPD CAPABILITY AND/OR PARTIAL LOSS OF MIN IMP CAPABILITY.
				CMD = 0; C31B15 = 1 ACA IN DETENT.	MIN TMP CMDS (CHAN 6) ARE PROCESSED INDEPENDENTLY OF THE +PITCH AND +ROLI CMDS (CHAN 5) AND A FAILURE IN ONE CHANNEL DOES NOT AFFECT THE OTHER CHANNEL. FOR A FAILED ON -YAW BIT, ONE -YAW PULSE COULD BE OBTAINED FOR	ACTION ISOLATE MIN IMP FAILURES PARTIALLY BY MODE CONTROL SWITCH MANAGEMENT, OR USE RATE COMMAND OR AUTO OR AGS FOR MANEUVERS. FOR LPD WORK-AROUND
	an a		~		EVERY OFF AND ON CYCLING OF THE DAP MODE CONTROL SWITCH, BUT +YAW CAPA- BILITY IS LOST. FOR A FAILED ON +YAW BIT, ONE +YAW PULSE COULD BE OBTAINED FOR EVERY OFF AND ON CYCLING OF THE	SEE NOTE. **
					DAP AND ONE -YAW PULSE FOR EVERY OFF AND ON CYCLING OF THE DAP WHILE THE ACA IS DEFLECTED IN THE -YAW DIREC- TION. SIMILARLY, THE + PITCH AND + ROLL BIT FAILURES CAN BE MASKED	
	a subscription of				WITH THE ORDER HERE BEING +PITCH, -PITCH, +ROLL, -ROLL; THUS FOR A FAILED+PITCH BIT, -PITCH AND +ROLL CAPABLITY IS LOST; FOR A FAILED -ROLL BIT, NO CAPABLITY IS LOST WHEN	н
					COUPLED WITH SIMULTANEOUS ACA DEFLEC- TION. IF ANY OF THE FOUR (+AZ OR +E1) LPD BITS ARE FAILED ON, ALL NORMAL LPD CAPABILITY IS LOST. TIME FERMITTING A SOFWARE WORKAROUND COULD BE UTILIZED. IF LPD IS ENABLED	
	- 11 1		,		A MONITOR WILL BE STARTED WHICH CAUSES 3 TO 4 PERCENT T LOSS.	EFFECT
		2. "1" (OFF)	DEGREE SWITCH IN ONE OF THE ACA'S.	2A. WITH APPROPRIATE ATTITUDE CONTROL SWITCH IN FULSE AND ACA DEFLECTED, CORRESPONDING ERR CMD = 0.	2A. LOSS OF MIN IMP AND POSSIBLY LPD CAPABILITY FOR ONE OF THE ACA'S FOR APPROPRIATE FAILED BIT.	2A. PARTIAL LOSS OF LPD AND/OR MIN IMP CAPABILITY FOR ONE ACA <u>ACTION</u> USE REMAINING ACA.**
			OR OPEN BETWEEN CON-	PGNS MIN IMP CMD AVAILABLE AND BOTH + AND - AGS PULSE CMDS AVAILABLE IN AFFECTED	ONLY) PGNS MIN IMP CMD AND (IF BIT	2B. (PARTIAL LOSS OF LPD AND/OR MIN IMP CAPABILITY ACTION
			APPROPRIATE ATTITUDE CONTROL SWITCH (11S3, 4, 5) ON PANEL 13.			USE RATE COMMAND OR AUTO OR AGS FOR MANEUVERS.**

FEC/TSG Form 280 (July 68)

CHAN 31 BITS 1 - 6 $2\frac{1}{2}$ DEGREE SWITCHES (PAGE 3 OF 3) PCN-9

(CONT'D) TACTS 1, 2, 3, 3HD 4, 15, 4HD 15, 4HD THO CONDARLABLE ONLY) FGNS MIN IMP CMD, AGS FULSE (CMD, AND LTF DIFECT MIN IMP CMD AGS FULSE (CMD, AND THE OFFOSITE (+ OR -) CHD, AND THE OFFOSITE (- OR TFOL SW. MIN IMP CMD AGS FULSE (CMD AVAILABLE IN AFFECTED AXIS. *2D. OPEN BETWEEN CONTACTS 5 AND 6 OF AFFFORFLATE ATTITUDE CONTROL SW. 2D. NEITHER + OR - PGNS MIN IMP CONTROL SW. 2D. LOSS OF PGNS MIN IMP CONTROL SW. MIN IMP CMD AVAILABLE UT AND PGNS AGS FULSE (CMD AVAILABLE UT AND -AGS FULSE COMBAND AND AGS FULSE COMMAND OR AUTO OR AGS FOLSE CONTROL SW. *2E. OPEN BETWEEN CONTACTS 5, 6, 7, AND 8 OF AFFRORTATE ATTITUDE CONTROL SW. 2E. NEITHER + OR - PGNS MIN IMP CONTROL SWITCH. ACTION USE RATE COMMAND OR AUTO OR AGS FOLSE CMDS AVAILABLE IN AFFECTED AXIS. *2E. OPEN BETWEEN CONTACTS WITCH. 2E. NEITHER + OR - PGNS MIN IMP CONTROL SWITCH. ACTION USE RATE COMMAND OR AUTO OR AGS FOLSE COMBANDS IN ONE AXIS. *2E. OPEN BETWEEN CONTACTS WITCH. 2E. NEITHER + OR - PGNS ANI IMP CONTROL SWITCH. ACTION USE RATE COMMAND OR AUTO OR AGS FOLSE CMD AXILABLE IN AFFECTED AXIS. *2E. OPEN BETWEEN CONTACTS WITCH. 2E. NEITHER + OR - PGNS ANI IMP CONTROL SWITCH. ACTION USE RATE COMMAND OR AUTO OR AGS FOLSE COMMAND OR AUTO OR AGS PULSE CAPABILITY (IF BITS 1, 2, 5), OR 6) AND AGS PULSE CAPABILITY (IF BITS 1, 2, 5), OR 6) AND AGS PULSE CAPABILITY (IF DITS 1, 2, 5), OR 6) AND AGS PULSE CAPABILITY (IF					The second	UNAN JI BIIS	1 - 6 2 DEGREE SWITCHES (PAGE 3 OF 3)
BIT $1 - 6$ (COMT'D) (C				POSSIBLE CAUSE			TOTAL S/C EFFECT/ACTION
TACTS 5 AND 6 OF APPROPRIATE ATTITUDE CONTROL SW.MIN IMP CAD AVAILABLE BUT APPROPRIATE ATTITUDE CONTROL SW.MIN IMP CAD AVAILABLE BUT ACTION EAST PROPRIATE ATTITUDE CONTROL SW.MIN IMP CAD AVAILABLE BUT ACTION CAUSA AVAILABLE IN AFFECTED AXIS.AND LIPO CAPABILITY (IP BITS 1, 2, 5) OR 6) IN ONE AXIS.LOSS OF LEP AND/OR MIN IMP CAPABILI IN ONE AXIS.*2E. OPEN BETWEEN CON- TACTS 5, 6, 7, AND 8 OF APPROPRIATE ATTI- TUDE CONTROL SWITCH.2E. NEITHER + OR - PENS MIN IMP NOR AGS PULSE COMMAND OR AUTO OR AGS POLSE AVAILABLE IN AFFECTED AXIS.2E. LOSS OF PGNS MIN IMP CONTROL AND LPD CAPABILITY (IF BITS 1, 2, 5) OR 6) AND AGS PULSE COMMANDS IN ONE AXIS.2E. LOSS OF PGNS MIN IMP CONTROL AND LPD CAPABILITY (IF BITS 1, 2, 5) OR 6) AND AGS PULSE COMMANDS IN ONE AXIS.2E. LOSS OF PGNS MIN IMP CONTROL AND LPD CAPABILITY (IF BITS 1, 2, 5) OR 6) AND AGS PULSE COMMANDS IN ONE AXIS.2E. LOSS OF PGNS MIN IMP CONTROL AND LPD CAPABILITY ON DE JET DIRECT AXIS.2E. LOSS OF PGNS MIN IMP CONTROL AND LPD CAPABILITY (IF BITS 1, 2, 5) OR 6) AND AGS PULSE COMMANDS IN ONE AXIS.2E. LOSS OF PGNS MIN IMP CONTROL AXIS.2E. COSS OF LPD AND/OR MUT OR AGS POLSE AXIS.*CAPABILITY REMAINING MATRIX FOR FAILURES 2B, C, D, E OPEN CONTACTS I, 2 (-) + + +/- 1, 2, 3, 4 (-) + + +/- 2. JET +/- 1, 2 (-) + + +/- 2. JET +/-2. JET +/- 2. JE		BIT 1 - 6	-	TACTS 1, 2, 3 AND 4 (FOR -) OR 13, 14, 15, AND 16 (FOR +) OF APPROPRIATE ATTITUDE	PGNS MIN IMP CMD AVAILABLE AND THE OPPOSITE (+ OR -, BUT NOT BOTH) AGS PULSE CMD AVAILABLE IN AFFECTED	ONLY) PGNS MIN IMP CMD, AGS PULSE CMD, AND (IF BIT 1, 2, 5 OR 6) LPD CMD. FURTHER, ONLY ONE JET DIRECT CONTROL IS AVAILABLE IN CORRESPONDING	2C PARTIAL LOSS OF LPD AND/OR PGNS MIN IMP AND AGS PULSE AND DIRECT CAPABILITY <u>ACTION</u> USE RATE COMMAND OR AUTO FOR
TACTS 5, 6, 7, AND 8 OF APPROPRIATE ATTI- TUDE CONTROL SWITCH.MIN IMP NOR AGS PULSE CMDS AVAILABLE IN AFFECTED AXIS.MIN IMP NOR AGS PULSE CMDS AVAILABLE IN AFFECTED AXIS.AND LPD CAPABILITY (IF BITS 1, 2, 5), OR 6) AND AGS PULSE COMMANDS IN ONE AXIS.LEFECT LOSS OF LPD AND/OR PARTIAL LOSS OF DIRECT CAPABILITY AND PARTIAL LOSS OF DIRECT CAPABILITY IN ONE AXIS.*CAPABILITY REMAINING MATRIX FOR FAILURES 2B, C, D, E OPEN CONTACTS $1, 2 (-)$ MIN IMP $+ +/-$ AGS FULSE: DIRECTDIRECT $1, 2 (-) + +/-$ 1, 2, 3, 4 (-) + $1, 2, 3, 4 (-) + +$ 2 JET $+/-$ 2 JET $+/-$ AUSE TO ENABLE REDESIGNED AND/OR ELINCED AND/OR ELINCED DIRECT.1, 2, 3, 4 (-) + $1, 2, 3, 4 (-) + +$ 2 JET $+, 2$ JET $-$ JET $+/-$ USING THE STANDARD N69 UPDATE.		2 -		TACTS 5 AND 6 OF APPROPRIATE ATTITUDE	MIN IMP CMD AVAILABLE BUT BOTH + AND - AGS PULSE CMDS AVAILABLE IN AFFECTED	AND LPD CAPABILITY (IF BITS 1, 2, 5	LOSS OF LPD AND/OR MIN IMP CAPABILITY IN ONE AXIS <u>ACTION</u> USE RATE COMMAND OR AUTO OR AGS FOR
*CAPABILITY REMAINING MATRIX FOR FAILURES 2B, C, D, E OPEN CONTACTS MIN IMP AGS PULSE: DIRECT 1, 2 (-) + +/- 2 JET +/- 1, 2, 3, 4 (-) + + 2 JET +, 1 JET - 1, 2, 3, 4 (-) + + 2 JET +, 1 JET - 5, 6 +/- 2 JET +/-		- - 		TACTS 5, 6, 7, AND 8 OF APPROPRIATE ATTI-	MIN IMP NOR AGS PULSE CMDS AVAILABLE IN AFFECTED	AND LPD CAPABILITY (IF BITS 1, 2, 5, OR 6) AND AGS PULSE COMMANDS IN ONE AXIS. FURTHER ONLY ONE JET DIRECT CONTROL IS AVAILABLE IN AFFECTED	LOSS OF LPD AND/OR PGNS MIN IMP AND AGS PULSE CAPABILITY AND PARTIAL LOSS OF DIRECT CAPABILITY IN ONE AXIS.
OPEN CONTACTSMIN IMPAGS PULSE-DIRECT $1, 2(-)$ ++/-2 JET +/- $13, 14(+)$ -+/-2 JET +/- $1, 2, 3, 4(-)$ ++2 JET +, 1 JET - $13, 14, 15, 16(+)$ 1 JET +, 2 JET - $5, 6$ +/-2 JET +/-		1	n v redan k				USE AUTO OR RATE COMMAND FOR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			OPEN CONTACTS 1, 2 (-) 13, 14 (+)	MIN IMP AGS PULSE: + +/- - +/-	DIRECT 2 JET +/- 2 JET +/-		AVAILABLE TO ENABLE REDESIGNATIONS, TIME FERMITTING, BY WRITING INTO THE E-MEMORY REGISTERS AZINCRI AND/OR ELINCRI DIRECTLY VIA THE DSKY, OR BY
			13,14,15,16 (+) 5,6		1 JET +, 2 JET - 2 JET +/-		SOLING THE STANDARD ROY OFDATE.
					×		
	L		280 (Traine (9)				

FEC/TSG Form 280 (July 68)

THIS PAGE LEFT INTENTIONALLY BLANK.

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	- 12 TRANSLATION COMMANDS (PAGE 1 OF 3 TOTAL S/C EFFECT/ACTION
CHAN 31 BITS 7-12 TRANSLATIC COMMANDS BIT 7 +X TRANS BIT 8 -X TRANS BIT 9 +Y TRANS BIT 9 HY TRANS	1. "O" (ON)* N *NOTE: FAILED ON TRANS LATION COMMANDS WILL NOT AFFECT ATTITUDE CON- TROL AS ROTATIO TAKES PRECEDENC IN DAP.	4	1A. RCS JET DRIVERS AND TCP'S CORRESPONDING TO	1A. DAP EXECUTES ERRONEOUS TRANSLA- TION COMMAND. THE TRANSLATION CAN BE STOPPED BY PLACING BOTH TTCA/ TRANSL SWITCHES TO DISABLE. THE AFFECTED TTCA CAN BE DETERMINED BY ENABLING EACH TTCA SEPARATELY AND THEN LEAVING THAT ONE OFF. IF THE AGS TRANSLATION SW WAS NOT SHORTED ALSO (GH1240, 41, 42) THEN TTCA USE IN AGS COULD BE REGAINED BY TURNING THE DAP OFF AND RE-ENABLING AFFECTED TTCA.	1A. <u>EFFECT</u> UNWANTED TRANSLATION OCCURS <u>ACTION</u> ISOLATE APPROPRIATE TTCA VIA TTCA/ TRANSL SW.
-Y TRANS BIT 11 +Z TRANS BIT 12 -Z TRANS O = ON 1 = OFF		1B. MICRO-LOGIC CIRCUIT FAILURE IN LGC.	FAILED TRANSLATION COMMANDS	1B. DAP EXECUTES ERRONEOUS TRANS- LATION COMMAND. THE TRANSLATION CAN BE STOPPED BY TURNING THE DAP OFF VIA MODE CONTROL SW OR SWITCHING TO AGS. TO MAKE THE PGNS USEABLE AGAIN, TWO JET PAIRS MUST BE ISOLATED IN THE LGC VIA THE LGC THRUSTER PAIR CMD SWITCHES OR TWO JETS VIA THE DSKY. REFERENCE TABLE 1. THIS WILL RESULT IN A PROGRAM CAUTION AND ALARM CODE 2001 OR 2002 EVERY DAP CYCLE AND THUS EFFECTIVE LOSS OF PROGRAM CAUTION AND ALARM CODE MONITORING.*	ACTION ISOLATE APPROPRIATE LETS VIA LCC
	2. "1" (OFF)	2A. OPEN SWITCH IN ONE OF THE TTCA'S.	2A. NO RCS JET DRIVERS AND TCP'S FOR CORRESPONDING TTCA DEFLECTION; POSSIBLE GH1240, 41, 42 = \pm 10V, 'AGS \pm X, \pm Y, \pm Z TRANS- LATION COMMANDS.	2A. LOSS OF ONE TRANSLATION COMMAND FOR PGNS AND/OR AGS, DEPENDING ON WHETHER ONE OR BOTH CONTACTS HAVE FAILED.	2A. EFFECT PARTIAL LOSS OF TRANSLATION CAPABILITY FOR ONE TTCA. <u>ACTION</u> USE OTHER TTCA.
			AND TCP'S FOR CORRESPONDING TTCA DEFLECTION; GH1240, 41, 42 = \pm 10V, AGS \pm X, \pm Y, \pm Z TRANSLATION COMMAND	2B. LOSS OF ONE TRANSLATION COMMAND FOR PGNS, BUT NO EFFECT ON AGS TRANS- LATION CAPABILITY. +X TRANSLATION CAN ALSO BE ACCOMPLISHED BY SETTING DAPBOOLS BIT 6 VIA THE DSKY AS THE BURN PROGRAMS DO. THUS NO LOSS OF AUTOMATIC ULLAGE FOR FAILURE OF +X TRANSLATION BIT.	ACTION PERFORM DESIRED TRANSLATION WITH AGS, OR +X TRANSLATION WITH +X TRANS BUTTON OR VIA THE DSKY.
		CONTACTS 2 AND 3 IN TTCA/TRANSL SW (1820, 22) ON PANEL 4.	ING TICA DEFLECTION;	2C. LOSS OF ALL PGNS TRANSLATION CAPABILITY WITH ONE TTCA DUE TO LOSS OF LGC COMMON VOLTAGE FOR ALL 6 TRANSLATION SWITCHES.	EFFECT 2C. TOTAL LOSS OF PGNS TRANSLATION CAPABILITY WITH ONE TTCA. <u>ACTION</u> USE OTHER TTCA

.

i.

FEC/TSG Form 280 (July 68)

x

R

PCN-9

-

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN 31 BITS 7-12 (CONT'D)	2. "1" (OFF) (CONT'D)	2D. FAILED OPEN +X TRANS DISABLE CLUTCH	2D. NO RCS JET DRIVERS AND TCP'S FOR CORRESPONDING +X TRANSLATION TTCA DEFLECTION; CH1240 = 0 NO AGS +X TRANSLATION COMMAND	2D. LOSS OF +X TRANSLATION IN PGNS AND AGS FOR ONE TTCA. * IF A BIT IS STUCK ON THEN TRANSLA- TION CAPABILITY VIA PGNS IN THE OTHER DIRECTION IS LOST FOR + Y & + Z. FOR + X TRANS IF + X IS ON THEN - X IS LOST, IF -X IS ON THEN +X IS STILL AVAILABLE.	
 100 	an a		•		

.

.

.

TABLE 1

TABLE 2

	+X	-X	+Y	-Y	+Z	-Z	+U	-U	+V	-V
B1, A2										
B3, A4	•	-		•	•					-
B3, A2				Ĵ.						
A4, B1	0			1						
A1, B 2			•						-	
B2, A3		۲								
A3, B4		•		•				•		-
.B4, A1						•		•		
B1, B2			\odot				\odot			0
B1, B4			•	1		\odot				•
B2, B3			•		\odot		•			
A3, A4				0				\odot	۲	
A3, A2				•	\odot					
A4, A1				•		\odot		•		

GIVEN MANEUVER

.

TRANSLATION		T	Г	TRANSLATION		TON COLLE
JETS	JET DRIVERS	TCP		JETS	JET DRIVERS	ТСР
+Y				Z		
PURE B1L	GH1433V	GR5046X		PURE (A1F	GH1432V	GR5045X
TRANS B2L	GH1429V	GR5042X		TRANS B4F	GH1420V	GR5033X
A1F	GH1432V	GR5045X		A3R	GH1425V	GR5038X
B3A	GH1424V	GR5037X		B1L	GH1433V	GR5046X
B4F	GH1420V	GR5033X		B2L	GH1429V	GR5042X
A2A	GH1428V	GR5041X		A4R	GH1421V	GR5034X
-Y				+X		
PURE A3R	GH1425V	GR5038X		B1D	GH1431V	GR5044X
TRANS A4R	GH1421V	GR5034X		A2D	GH1427V	GR5040X
A1F	GH1432V	GR5045X		B3D	GH1423V	GR5036X
B3A	GH1424V	GR5037X		A4D	GH1419V	GR5032X
A2A	GH1428V	GR5041X			2	
B4F	GH1420V	GR5033X		-X		
				A1U	GH1430V	GR5043X
+Z ·			1	B2U	GH1426V	GR5039X
PURE BAA	GH1424V	GR5037X	1	A3U	GH1422V	GR5035X
TRANS A2A	GH1428V	GR5041X	1	B4U	GH1418V	GR5031X
A3R	GH1425V	GR5038X				
B1L	GH1433V	GR5046X				
A4R	GH1421V	GR5034X	I			
B2L	GH1429V	GR5042X	T			

.

288

CHAN 31 BITS 7 - 12 TRANSLATION COMMANDS (PAGE 3 OF 3) PCN-9

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN 33 BIT 8 LR VEL DATA GOOD	REF. GN7557X FAILURE ANALYSIS.				
O = LR VEL DATA GOOD					
l = LR VEL DATA BAD					
					×

FEC/ISG Form 250 (July 68)

2 ÷

CHAN 33 EIT 8 LR VEL DATA GOOD PAGE 1 OF 1

*

CHAN 33 BIT 9 LR RNG LO SCALE (PAGE 1 OF 1)

t - -

4

T/M	FAILURE	POSSIBLE CAUSE	FAILURE VERIFICATION	EQUIP/FUNCTION	IT 9 LR RNG LO SCALE (PAGE 1 OF 1)
NUMBER	SYMPTOM	PUSSIBLE CAUSE	METHOD	EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
	1. "O" (RNG LO SCALE) WHEN ABOVE 2500 FT.	1.A. ALTITUDE MODE SWITCH FAILURE.	1.A. POSSIBLE LOSS OF LOCK ON DEPENDING ON ALTITUDE. CHAN 33 B5 = 1 (LR RNG BAD) GN7521 = 1 (LR RNG BAD) ALT LIGHT ON CHAN 33 B8 = 1 (LR VEL BAD) GN7551 = 1 (LR VEL EAD) VEL LIGHT ON.	1.A. THE ALTITUDE MODE SWITCH SWITCH THE VELOCITY AND RANGE FREQUENCY TRACKER'S FILTERS TO LOW PASS WHICH TENDS TO FILTER OUT THE HIGH DOPPLER FREQUENCIES WHICH ARE PRESENT UNTIL MUCH OF THE FORWARD VELOCITY IS DISSIPATED. ALSO THE ALTIMETER TRANS- MITTER MODULATION SWEEP RANGE IS LIMITED TO 12,000 FEET, THUS FREVENT- ING ALTITUDE LOCK ABOVE THAT ALTITUDE	LATE RR LOCK-ON. <u>ACTION</u> ATTEMPT TO RESET THE LO SCALE: LDG ANT - HOVER WAIT 10 SEC LDG ANT - DESC
		1.B. LGC INPUT FAILURE.	1.B. AH EXCESSIVE AND NOT CONVERGING.	1.B. DATA INPUT TO THE LGC WILL BE IMPROPERLY SCALED. SCALING IS:	1.B. EFFECT
				>2500 FT 1.07746 FT/BIT < 2500 FT 5.3873 FT/BIT	POSSIBILITY OF UPDATING STATE VECTOR WITH INCORRECTLY SCALED ALTITUDE
				WHEN THE LGC RECEIVES AN INDICATION OF RANGE LO SCALE NOT SET,IT MULTI- PLIES THE ALTITUDE DATA BY 5.	DATA. NO VALID LR ALTITUDE DATA WILL EE AVAILABLE FOR STATE VECTOR FRIOR TO 2500 FEET.
				TAPE METER ALTITUDE DATA WILL BE VALID.	ACTION DO NOT INCORPORATE LE DATA UNTIL AH APPEARS REASONABLE. IF ENABLED, INHIBIT STATE VECTOR UPDATE V58E.
2		SWITCH FAILS TO SWITCH		2.A. ALTITUDE DATA WOULD NOT BE AFFECTED ABOVE 2500 FEET AND WOULD SUFFER AN INACCURACY OF APPROXIMATELY 5 % BELOW 2500 FEET.	2.A. <u>EFFECT</u> SLIGHT INACCURACY IN ALTITUDE DATA. ACTION
				FREQUENCY TRACKER FILTERS WOULD SWITCH TO LOW BAND PASS BASED ON THE ECEIPT OF LOW DOPPLER DATA AND WOULD OPERATE NORMALLY.	NONE.
		2.B. LGC INPUT FAILURE.		TUDE MODE SWITCH WOULD SWITCH ALL BAND PASS FILTERS NOMINALLY BELOW 2500 FEET. DATA WILL BE SCALED	2.E. EFFECT INCORRECTLY SCALED DATA WILL UPDATE STATE VECTOR INCORRECTLY.
- 13 ⁻¹ - 2				INCORRECTLY. NEED A V58E TO INHIBIT STATE VECTOR UPDATES.	<u>ACTION</u> INHIEIT STATE VECTOR UPDATES VIA V58E.

FEC/TSG Form 280 (July 68)

3 *

. .

302

PCN-9

. .

.

	T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION	
323	CHAN 12 BIT 4 COARSE ALIGN ENABLE 1 = COARSE ALIGN ENABLE 0 = COARSE ALIGN NOT ENABLED	1. "1" (ENABLE) WITH ISS ERROR COUNTERS NOT ENABLED. (CHAN 12 BIT 6 = 0)	1. MICRO LOGIC FAILURE WITHIN THE LGC	GG2107V/37V/67V IG, MG, OG SERVO ERRORS WILL EE STATIC AT ZERO VOLTAGE. NOTE: DURING COARSE ALIGN AND CAGE THE SERVO ERROR IS A 800 HZ SIGNAL. THE SIGNAL CONDITIONER HAS A 3.2 KHZ REFERENCE, THERE- FORE THE SERVO ERRORS ALTHOUCH HIGH WILL APPEAR ON TM AS NULL. LGC ACTUAL GIMEAL ANGLES WILL EE STATIC.	 IMU IS LOST. ISS CDU READ COUNTERS ARE INHIBITED. THE COARSE ALIGN ENABLE WILL CAUSE THE COARSE ALIGN ENABLE WILL CAUSE THE COARSE ALIGN RELAY IN THE PSA TO EE ENERGIZED, THUS ROUTING COARSE ALIGN SIGNALS FROM THE ISS CDU'S TO THE ISS SERVO LOOP. SINCE THE ERROR COUNTERS ARE NOT ENABLED, NO COARSE ALIGN COMMANDS WILL BE INTRODUCED INTO THE SERVO LOOP. PRESENCE OF A COARSE ALIGN DISCRETE AND ABSENCE OF AN ERROR COUNTER ENABLE DISCRETE IN THE CDU CAUSES THE ISS CDU READ COUNTERS TO BE INHIBITED, THUS CAUSING THE LGC GIMBAL ANGLE COUNTERS TO BE STATIC. WITH STATIC CDU ACTUALS, THE DAP WILL EITHER FIRE CONTINUALLY IF THE S/C IS OUT OF THE DEADBAND OR IT WILL NOT FIRE AT ALL IF THE S/C IS WITHIN THE DEADBAND. NOTE: DUE TO AN INHIBITED READ COUNTER, A CHANGE IN S/C ATTITUDE (IF DETECTED BY THE IMU) WILL CAUSE AN ICDU FAIL (CH3O BL2) AND AN ISS WARN (CH11 E1) WHEN THE DIFFERENCE BETWEEN HE READ COUNTER (Y) AND THE GIMEAL (G) ARE >.70 FINE ERROR. 	1. <u>EMPECT</u> IMU LOST, DAP EITHER FIRING CONTINUALLY OR NOT AT ALL. <u>ACTION</u> SWITCH TO AGS FOR AUTO CONTROL OF S/C.	PCN-9
		2. "1" (ENABLE) WITH ISS ERROR COUNTER ENABLED (CH12 B6 = 1) ALSO WITH CAGE RELAY NOT ENERGIZED	FAILURE WITHIN THE	2. GG2107V/37/67 IC, MG, OG SERVO ERRORS WILL INDICATE HIGH ERRORS.	2. IMU IS LOST. ROLL, PITCH, YAW ATTIUTDE ERRORS WILL BE ROUTED TO SERVO LOOP. THIS WILL CAUSE THE GIMBALS TO EE DRIVEN SO THAT THE ERROR IS NULLED. THE DAP MAY FIRE TO COUNTER THE RATE AT WHICH THE GIMEALS ARE BEING DRIVEN.	2. <u>EFFECT</u> LOSS OF S/C ATTITUDE AND IMU. <u>ACTION</u> SWITCH TO AGS FOR AUTO CONTROL OF S/C.	
		3. "O" (NOT ENABLED)	3. MICRO-LOGIC FAILURE WITHIN THE LGC	3. LGC DOWNLINK. IMU WILL NOT RESPOND TO V41.	3. LOSS OF IMU COARSE ALIGN OPERATIONS. STAB LOOP WILL BE LOCKED IN FINE ALIGN MODE. CAGE OPERATION IS POSSIBLE.	3. EFFECT LOSS OF IMU COARSE ALIGN OPERATION. ALIGN IMU VIA FINE ALIGN ROUTINE (VH2). NOTE: THE A GYRO ANGLES MUST FE LIMITED SO AS NOT TO DRIVE THE MG INTO GIMEAL LOCK.	

CH12 BIT 4 COARSE ALIGN ENABLE

PAGE 1 OF 1

.

CHAN 12 BIT 5 ZERO IMU CDU'S

(PAGE 1 OF 1)

T/M NUMBER	FAILURE SYMPTOM	POSSIBLE CAUSE	FAILURE VERIFICATION METHOD	EQUIP/FUNCTION EFFECTS AND NOTES	TOTAL S/C EFFECT/ACTION
CHAN 12 BIT 5 ZERO IMU CDU'S 1 = CDU ZERO 0 = NO CDU ZERO	1. "1" (CDU ZERO)	1. MICRO-LOGIC FAILURE WITHIN THE LGC	 IG, MG, OG CDU ACTUAL ANGLES IN THE LGC WILL BE ZERC. ISS CDU FAIL (CH30 B12 = 0) ISS WARN (CH11 B1 = 1) 	1. LOSS OF ISS ANGLE INFORMATION TO THE LGC. DAP WILL ASSUME LARGE ATTITUDE ERRORS WHICH IT WILL FIRE TO CORRECT. COARSE ALIGN CAPABILITY WILL BE LOST. STATIC GIMBAL ANGLES OF ZERO DEGREES WILL BE SENT TO THE LGC AND THE AEA. THE ISS CDU ERROR COUNTERS CAN STILL BE USED TO DISPLAY ATTITUDE ERRORS.	LOSS OF POINS ATTITUDE CONTROL AND IMU. <u>ACTION</u> SWITCH TO AGS FOR APPO ATTITUDE CONTROL.
	2. "0" (NO CDU ZERO)	2. MICRO-LOGIC FAIL- URE WITHIN THE LGC	2. CHAN 12 BIT 5 WILL NOT RESPOND TO V40 N20 (ZERO ISS CDU'S) SHOULD BE A Δ HETWEEN CDU'S & RESOLVERS IF SPACE CRAFT IF NOT AT 0, 0, 0 ATT.	2. LOSS OF CDU ZERO CAPABILITY. LOSS OF LGC KNOWLEDGE OF ATT REFER- ENCE. LGC WOULD READ 0, 0, 0 & THE RESOLVERS & READ COUNTERS WOULD READ THE ACTUAL ANGLES. THE CDU ANGLES DISPLAYED WOULD BE THE LGC'S KNOW- LEDGE OF THE SPACECRAFT & SINCE THE READ COUNTER WOULD NEVER COUNT UP THEN THE LGC WOULD ASSUME THAT THE STACECRAFT WAS AT 0, 0, 0. DAP WILL SEE LARGE ATT ERRORS & WILL FIRE JETS TO CORRECT IT.	2. EFFECT LOSS OF AGS INITIALIZATION CAPABILITY AGS GUIDANCE MAY BE DEGRADED. DAP WILL FIRE JETS FECAUSE IT IS OUT OF DEADBAND. <u>ACTION</u> SWITCH TO AGS & FILT TO 0, 0, 0 THEN DO ANOTHER CDU ZERO TO COARSE ALIGN PGNS, THEN REALIGN.

. -

.

☆ U.S. GOVERNMENT PRINTING OFFICE: 1972-779-471/978

.

June 21, 1971

NOTE OF INTEREST:

PGNS Automatic Control of GDA's for DPS Thirty Minute Burns

1. Certain modes of LOI aborts require the DPS to be burned at LOI ignition plus thirty minutes. At present, the only technique available in the Contingency Checklist for performing this burn is the manual AGS procedure using the TTCA's for controlling pitch and roll. Since the assumption for LOI aborts has always been that no LM failures exist or will occur during the burn, this single-point failure sensitive procedure has never been questioned. However, this assumption is not valid, and a need for another less sensitive procedure exists. Therefore, a procedure for the burn to be performed in PGNS with automatic control of the GDA's was developed.

Deleter Do Mistake

2. In the current thirty minute activation listed in the Contingency Checklist, both PGNS and AGS are aligned to 0, 0, 0 at the burn attitude. The AGS is then configured for performing the burn, and the PGNS is set up for monitoring in P47. Changing this configuration to perform a PGNS burn, plus the addition of a few DSKY entries will allow a manual PGNS burn with automatic GDA attitude control. Thus, no manual TTCA control for pitch and roll is required.

3. Required checklist changes include monitoring the PGNS on the FDAI's vice the AGS, disabling U-V jets via a V65E, and changing the switch configuration for a PGNS-Auto burn. In addition, the following DSKY entries must be accomplished:

a. Set DV counter to "POSMAX" to allow the burn to be started manually at the crew's leisure without an ENG FAIL alarm when DV Monitor Routine is enabled:

V21 NO1E 3515E 37777E

b. Set DV THRUST for GDA Trim allow to the docked constant of 12 cm/sec.

V21 NOLE 1250E 14E

c. Start DV Monitor Routine:

V25 N07E 103E 100E 0E d. Reset DRIFTBIT to cause DAP to compute offset accelerations for GDA Trimming:

V25 NO7E 111E 200E 0E

Engine ignition and shutdown procedures remain as per the checklist. Also, selecting POO after the burn clears all flags.

4. Burning with this technique has the following advantages:

a. PGNS automatically controls GDA's for roll and pitch stabilization (no TTCA manual control necessary).

b. RCS propellant saved, as only jets fired are for yaw control.

c. Horizontal jet failures no longer cause attitude control problems (horizontal jets are used by TTCA's for controlling pitch and roll in the manual AGS procedure).

d. GDA problems during the burn can be controlled by disabling the GDA's and using the TTCA's in PGNS.

e. Normal AGS TTCA Technique available for backup in case of PGNS failure. Thus, no alternate procedures to read-up during time critical situation.

5. Although this procedure has been run on the LMS and checked out on the FMES at GAC, the crew has already trained to the current LOI abort techniques and all LOI abort simulations have been completed. Therefore, the procedure will not be incorporated into the Apollo 15 Checklist, but will be available on the ground if required. Every effort will be made to include it in the Apollo 16 Checklist as the primary method of performing DPS thirty minute burns.

Jany in Strimple

AND H

1 .

February 9, 1972

NOTE OF INTEREST: Planned Operation of the LM Descent Cooling Valve

The planned use of the LM descent cooling valve would allow glycol flow to the descent stage in normal fashion until late in the LM battery discharge cycle when flow would be terminated. This technique would allow the batteries to warm up near the end of their discharge and theoretically produce more power. Constraining this plan are the battery and ECA temperature limits. The purpose of this note of interest is to explain the method of determining the time of glycol flow termination which affords maximum temperature rise in the batteries without damaging them or the ECA's. The many factors that affect this time and their nominal values are listed below.

FACTOR

- a. Battery Starting Temp
- b. ECA Starting Temp
- c. Battery Temp Rise Rate
- d. ECA Temp Rise Rate
- e. Battery Temp limit
- f. ECA Temp limit
- g. Total Battery Capacity
- h. Battery Management Plan
- i. Predicted Mission Current Profile

These temperature rise rates are actually exponential and can be used for approximations only.

The number of hours prior to battery depletion that glycol flow is terminated is based on a temperature constraint defined by either the battery or the ECA. A rough approximation of the earliest time the valve can be closed without violating any temp constraints may be obtained by inserting the parameters for each equipment in the following equation and taking the smallest generated number.

$$Tc = \frac{Temp \ limit \ F - \ Start \ Temp \ F}{Temp \ rise \ rate \ OF/hr}$$

In practice, these limiting numbers will be determined graphically by extrapolating actual test data. Results obtained from LMO 510-1903 "ECA/Battery

NORMAL VALUE 45°F internal 40°F internal 3.4°F/hr^{*} 3.9°F/hr^{*} 100°F Nominal, 130°F Contingency 132°F Flange 2075 Amp-hrs Control Relay Assembly No-Coolant Test-Quick Look Report" are listed below:

CASE)	TIME	TO	REACH	CONSTRAINT	(Tc)
100° F Battery Constraint	(Nominal)		.5	16.	2 hours	
130° F Battery Constraint	(Contingency)			24.	5 hours	
132 ⁰ F ECA Constraint				23.	5 hours	

In order to relate the "Tc" to the GET, it is necessary to know the current profile and battery management plan both before and after the descent cooling valve is shut off. The battery management plan calls for 4 descent batteries to be on line for the last 15 hours of the lunar stay which allows for equal heat distribution. Ampere hours consumed relative to GET in conjunction with the following equation establish the time of glycol shut off.

Amp-hours consumed at descent = Total Bat Capacity - (Avg amps for Tc \cdot Tc) cooling valve cutoff (AH_{C.0.})

Knowing Tc to be 16.2 hours, the average current for the last 16.2 hours of descent battery operation was determined to be 23.1 amperes. Substituting in the equation gives:

 $AH_{C.0.} = 2075 - (23.1 \cdot 16.2) = 1701$ ampere hours

Since the planned Apollo 16 mission will use only 1665 ampere hours, it is obvious that the descent cooling valve is not required to be shut off in the nominal case. Should the $100^{\circ}F$ battery constraint be raised to the contingency $130^{\circ}F$ level, the ECA temperature constraint will become the limiting factor yielding an AH_{C.O.} of 1532 ampere hours or approximately 4 hours prior to liftoff. Should one descent battery be lost, the AH_{C.O.} would be 1286 ampere hours or approximately 16 hours prior to liftoff.

In summary, the descent cooling valve need not be operated for the nominal mission but should some contingency arise which may require additional battery capacity, the valve could be operated in accordance with the guide-lines described in this note of interest.

William I. Peters

William L. Peters

FC43:WLPeters:drd:4576:2/11/72

2

Clark

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS 77058

REPLY TO ATTN OF: FC43 (72-49)

APR 1 4 1972

MEMORANDUM FOR RECORD

FROM: FC4/Chief, LM Systems Branch

SUBJECT: Electrical Power Management Procedures for Total Loss of One LM Descent Battery for Apollo 16

1. The total loss of one IM descent battery prior to its delivery of any energy could result in a reduction of lunar stay time unless positive action is taken. Several approaches to the problem, such as reduction in power consumption, may be taken in order to complete the nominal mission. The electrical energy budget for Apollo 16 is shown below:

	Ampere-hours
Mission Required	1642
TM unusable	43
Contingency revolution	63
Total required	1748
Total available (4 Bats)	1660
Excess capacity required	88

2. One method of obtaining the needed power to complete the nominal mission would be to adjust the predicted power usage after a period of time on the lunar surface based on real-time power usage. Past missions have demonstrated that premission predictions on power consumption have always been high--7.5%, 10.8%, 1.8%, and 8.9% on Apollo's 11, 12, 14, and 15, respectively. Experience on these missions has also shown that the error between predicted and actual current levels can be determined after one sleep and one EVA period. The problem with this approach is that by the time an adjusted profile can be generated, it is too late to manage the load profile.

3. Ascent electrical energy could be used to cover the contingency revolution on the surface with the realization that one ascent battery would be adequate for rendezvous and docking, but not for lunar impact. In this particular case, the descent batteries would be run to depletion before switchover to ascent power. The increase of ampere-hour capacity of the remaining four descent batteries will be attempted by closing the descent cooling valve during the latter hours of lunar stay time. The procedure for valve operation is covered in the current flight mission rules and an FC4 note of interest dated February 9, 1972, subject: Planned Operation of the IM Descent Cooling Valve. 4. The above methods of obtaining a nominal mission depend strongly on all the 3-sigma dispersions falling in the good direction. A more reliable method of obtaining the objective is to manage the electrical power profile. The electrical loads powered during activation and descent are all required and there are only two loads that may be eliminated or duty cycled during the lunar stay, the LGC standby power, and the inverter. The consequence of powering down the LGC completely is the stopping of the LGC clock. The CSM state vector can still be updated every 20 hours as planned and any emergency liftoff on PGNS is delayed only by the key strokes required to update the time. The LGC will be completely powered down at the nominal equipment power down time after touchdown. The inverter is kept powered up on the lunar surface to prevent S-band steerable antenna sag and subsequent loss of communications and telemetry. In order to develop a plan for inverter cycling several assumptions must be made.

2

a. The MARS 210' antenna is scheduled to cover all LM activity.

b. The Parks 210' antenna will be called up as required to extend the MARS antenna coverage.

c. The combination of a 210' antenna and a LM omni antenna is an acceptable LBR mode.

d. PLSS data relayed through the LM must be via the LM steerable. A test will be performed to determine if the S-band steerable antenna does sag as advertized when AC power is removed. If it does not sag, the inverter will only be powered when the crew is not in the LM and the steerable is required. The crewman in the cockpit can always correct a sagging antenna by powering the inverter. If the antenna does sag, the inverter must be powered whenever the steerable is required. The steerable will be required when there is no 210' antenna coverage or PLSS data is to be relayed through the LM. Reference figure 1 for the planned inverter duty cycle. Power saved is as follows:

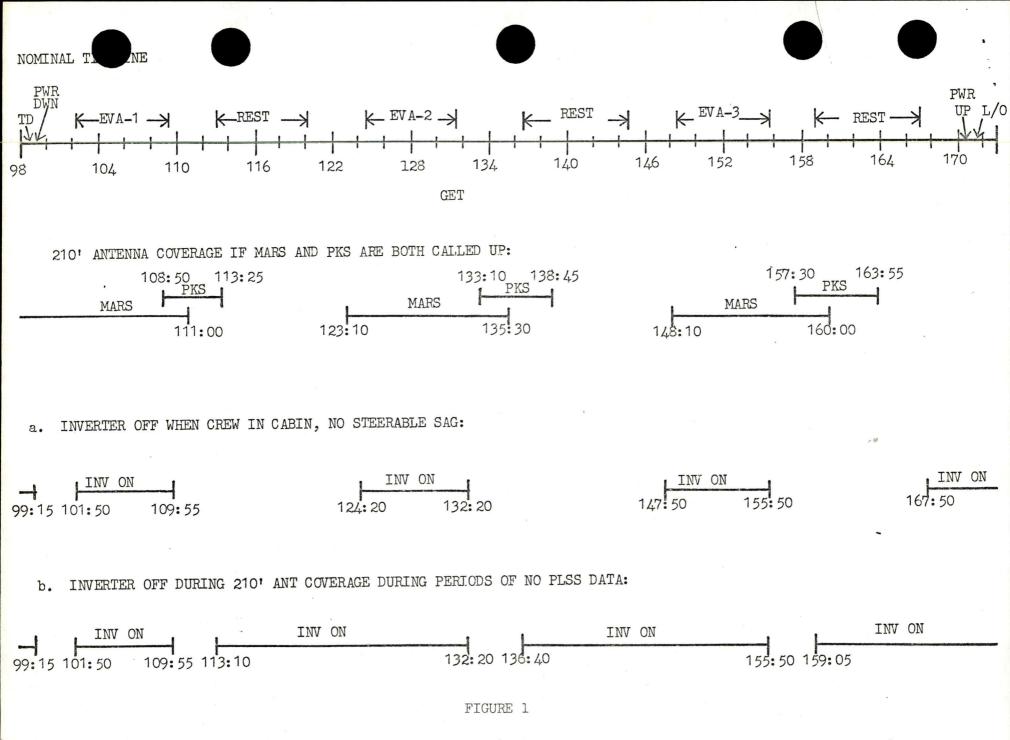
	Ampere-hours saved with no antenna sag	Ampere-hours saved with antenna sag
LGC standby OFF	58	58
Inverter Cycle	76.5	23.1
Total	135.5	81.1

5. In summary, if the IM descent battery is lost prior to its use, the nominal Apollo 16 mission can be performed with some fairly minimal equipment duty-cycling. At power down on the lunar surface, the LGC will be completely powered down and the inverter will begin a regulated duty cycle. The mission will be continued in this mode until the

adjusted predicted profile produces an adequate ampere-hour pad at which time the inverter will return to a continuous duty cycle, and the LGC will be powered up, updated, then returned to normal checklist standby mode. The descent cooling valve will be closed according to the mission rules and the referenced note of interest on that subject. If all the 3-sigma dispersions work against the above plan, the difference of the excess capacity required (88 AH) and the ampere-hours saved in the worst case (81.1 AH) can be obtained from the ascent batteries without any loss in capability in normal or contingency modes.

6. Any questions or comments concerning this memorandum should be directed to W. L. Peters, extension 4576.

James E. Hannigan Enclosure FC43:WDReeves/RDLegler:dh:4576:4-13-72

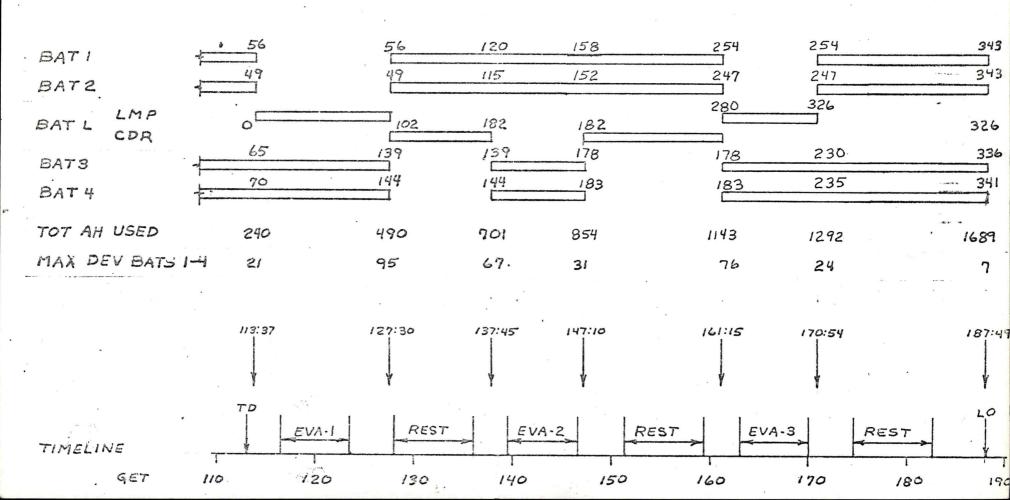

cc:

3

CB/E. A. Cernan H. W. Hartsfield J. W. Young T. K. Mattingly C. M. Duke F. W. Haise CG2/D. L. Bentley CG4/S. P. Grega CG5/T. W. Holloway DD3/J. F. Zieglschmid EG7/J. Hanaway C. Finch EP5/B. Bragg FA/H. W. Tindall FM2/F. V. Bennett FM4/P. T. Pixley FM5/R. L. Berry (4)FM6/L. D. Hartley FM7/D. Nelson S. Ritchey FS4/F. H. Wrinkle FS6/J. R. Garman PA/J. A. McDivitt O. G. Morris PD/R. Kubicki PM-MO-F/R. S. Hamner F. L. Van Rensselaer TRW/C. Skillern MIT/Cambridge/CSDL/R. Larson

FC/E. F. Kranz J. W. Roach M. F. Brooks G. D. Griffin M. L. Windler M. P. Frank FC2/C. S. Harlan C. R. Lewis E. I. Fendell FC3/T. R. Loe W. J. Moon R. S. Watson FC4/J. E. Hannigan L. W. Strimple R. H. Heselmeyer FC5/J. C. Bostick P. C. Shaffer E. L. Pavelka (7) C. B. Parker (6)FC6/R. A. Hoover J. F. Honeycutt (4) FC9/J. E. Saultz FC4/H. A. Loden R. A. Thorson J. A. Wegener W. M. Merritt W. L. Peters J. Knight D. W. Whittle H. R. Perkins W. D. Reeves R. D. Legler

> R. L. Carlton J. D. Shannon


LM-12 BAT

RY MANAGEMENT PLAN R 2, 1972

LUNAR SURFACE STAY TIME = 75HR THREE EVA 7-7-7 HR

BASED ON SEENA

YEN: C PYRO BATTERY VO GE READOUT AT PL +4 MIN < 37.1 VOLTS WITH ALL PRIOR READINGS GOOD SINGLE POINT FAILURE POSSIBILITIES : A) VOLTAGE > 35.3 VOLTS - SINGLE CELL SHORT OR EXTERNAL LOAD ON BATTERY. IF ONE CELL, VOLTAGE WILL STEADY AT 35.3 VOLTS WHEN CELL DEPLETED; IF LOAD ON WHOLE BATTERY, VOLTAGE WILL DECAY TO 30,5-31.5 VOLTS UNTIL BATTERY IS DEPLETED THEN DECAY FURTHER B) VOLTAGE < 35.3 VOLTS - LOAD ON WHOLE BATTERY ; VOLTAGE WILL DECAY TO 30.5-31.5 VOLTS WHERE IT WILL REMAIN UNTIL BATTERY DEPLETED.

RECOMMENDATIONS:

A) FOR CASE A) ABOVE, A <u>CONTINUE MISSION</u> DECISION PERMITS BATTERY VOLTAGE TO SETTLE OUT AT 35.3 VOLTS WHICH IS A CONTINUE MISSION CASE UNDER PRESENT WRITTEN RULES. RISK IS THAT VOLTAGE WILL CONTINUE TO DECAY AND MAY REQUIRE MANUAL STAGING BEFORE A T₃ LIFTOFFF
B) <u>ABORT</u> SINCE NO POSSIBILITY OF A FLUITFUL LUNAR STAY IS FELT TO EXIST

ATTACHMENT 9-II

FLIGHT CONTROLLERS' CHECKLIST

Note: The Flight Controllers' checklist includes MCC, SSR's, CCATS, RTCC, RTACF.

ITEM

9-14

ACCOMPLISHED

A. Discontinue Commanding

Discontinue commanding as directed by the Flight Director.

B. Mission Contingency or Possible Mission Contingency

If a contingency appears imminent or has occurred, insure that logs are current. Monitor equipment closely and restrict all voice communication to only that which is necessary.

C. Log Mission Contingency Time

Log in GMT and GET the time a mission contingency was declared.

D. RTCC-Log a Time for Delog (O&P)

The O&P will request RTCC to log a time for a delog of display.

E. Terminate all Telephone Calls

Terminate all telephone calls unless specifically authorized by current directives.

F. Hardcopy D/TV Displays

(Only if a display has a bearing on the mission contingency.)

G. Crew Recovery

Any possible efforts toward crew recovery will receive the highest priority. Further checklist items will not restrict crew recovery efforts.

N 2 1972

Note of Interest - Apollo 17 Rendezvous Techniques When VHF Comm Has Gone Away

During an Ascent sim debriefing on October 26, 1972, White flight volunteered me to write this note of limited interest. It concerns how we will handle terminal phase, most of which occurs on the lunar backside, when we have lost VHF comm between the vehicles. The plan we came up with is straightforward, with the variables being tied to malfunctions in the rendezvous sensors.

Since the only insurmountable problem created by failed VHF comm occurs when we lose STDN coverage, the plan is constant until LOS. In all cases we still want the LM to execute TPI. So as long as the RR is working, it's ops normal with MSFN Relay providing for intra-vehicle communications. When the RR is not working, the only sure solutions are the CMC (w/Sextant tracking) and the ground. Depending on the nature of the VHF problem, normal or intermittent VHF ranging could provide a marginal solution in the AGS and an even more marginal solution from the charts. The CMC solution has the highest priority, followed by the ground, and then whatever else is available. The main consideration here is how to get the best solution to the LM. The most accurate technique would be for the ground to take the final comp CMC vectors, compute a LM - active TPI solution with those vectors, and have that solution voiced to the IM. An acceptable backup to this technique is for the CMP to voice his solution (which is computed CSM - active) to the LM where the LM crew will apply the correction biases (-1 fps in ΔV_x , +2 fps in ΔV_z). This would provide an acceptable solution, but does insure small midcourse corrections since these biases are rounded off numbers and assume circular orbits.

If there is an agreement between the CMC and ground solutions, no other comparison efforts need be made. If they disagree, then we can obtain another ground solution, using 10 to 15 minutes of post-insertion tracking, which should be adequate to break the tie. (The prime ground solution is based on the final Powered Flight Processor vector from Ascent.) The marginal solutions available from intermittent VHF ranging could also be used. Confidence in the CMC solution will be related to the observed vector behavior during the mark schedule. Things like N49's, number of marks, solution behavior, etc., all provide valuable clues about the validity of that solution. The point is that even when the only two "good" solutions disagree we can usually deduce which one is better.

The post-TPI plan will vary depending on sensor availability. As long as the RR is working, we will continue with a LM - active rendezvous. Although the CSM won't have good solutions after the LM executes a MCC, by P76'ing his own computed MCC (with the sign changes) onto his LM vector, he should stay in the ball park. Regardless, if they get off a good TPI and the RR keeps working, we're home free.

For the no RR case, after the LM executes TPI we will revert to CSM - active terminal phase midcourses and braking. The rationale for this decision is

obvious, since the LM has no way of computing good midcourses or the actual closing rates during braking. The CSM on the other hand will be good navigation (Sextant) for the midcourses and will have the best relative state estimates at braking. The actual braking techniques vary with the available tools. If VHF ranging is available, things are essentially nominal for the CMP. If not, his N54 range rate is the best data available, and should be adequate to get him close when coupled with his visual techniques. The LGC and AGS states, which probably were not that great to start with, have not incorporated the midcourses the CSM executed, and would be too inaccurate to solve the close-in rendezvous problem.

In summary, we have arrived at three basic ground rules for this remote VHF comm failure case:

a. The LM will remain active for TPI, regardless of the status of the rendezvous sensors. If the RR is unavailable, the ground is prime for <u>computation</u> of the TPI solution, with the CMC vectors having the highest priority.

b. As long as the RR is available, the LM will remain active for MCC computation, execution, and braking.

c. If the RR is unavailable, the CSM will go active for MCC computation, execution, and braking.

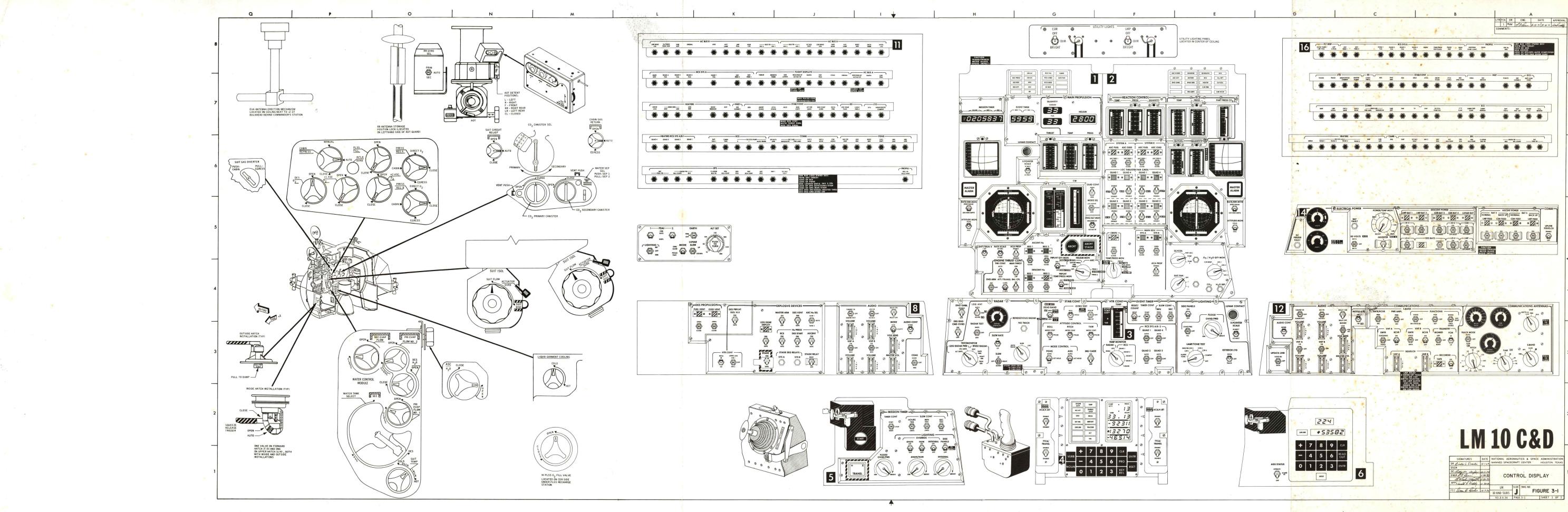
If there are any questions or comments you can contact Bill Stoval, extension 2538.

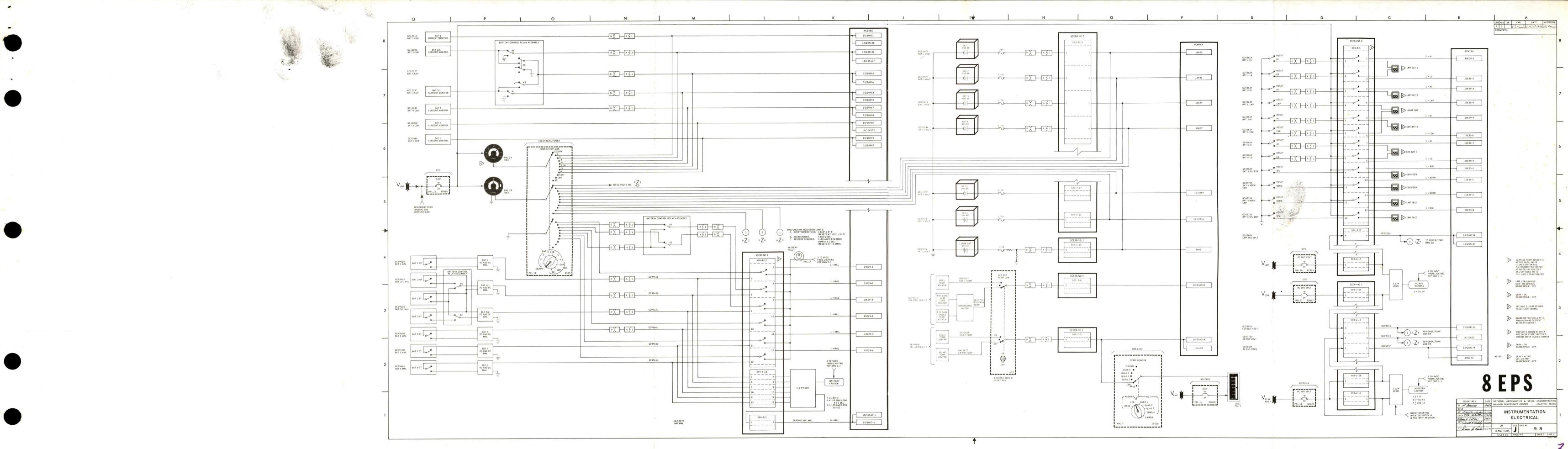
Bill Stoval

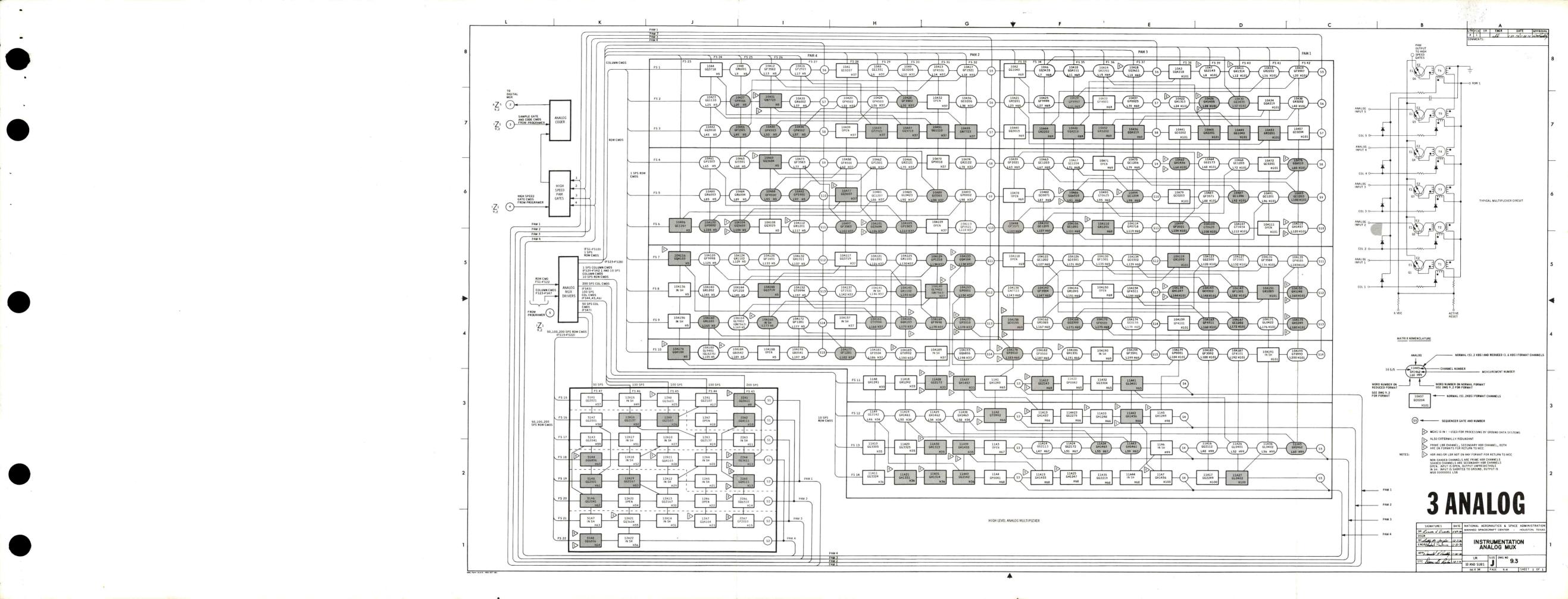
FC54/WMS:phc:10/31/72:2538

IM-EPS Minimum Requirements Resulting From Meeting of all IM-EPS Personnel On 1 December 1972

nerbang


A. From undocking to touchdown, the minimum requirements are based on the time to complete a landing, a 24.5 hour lunar stay with 1 EVA (4 hrs), a 2 hr surface contingency ascent, and a 2 hr rendezvous through crew transfer, a 2 hour orbital contingency, and redundant ascent EPS sources for the rendezvous.


The time to complete the landing and the 24.5 hr lunar stay may be supported by any combination of descent and ascent consumables. In addition, each ascent battery must contain the consumables required for liftoff and a 2.0 hr rendezvous through crew transfer. The 2 hr orbital contingency is considered to be satisfied by the redundancy requirement.


B. For the remainder of the lunar stay, the minimum descent and ascent stage requirements are based on the consumables required for the scheduled activities during each defined phase, a 2 hour surface reserve and a 2 hour orbital reserve. If the descent batteries are depleted on the surface and the IM power requirements are being supplied solely by the ascent stage, each ascent battery must have sufficient energy remaining at the scheduled liftoff for a 2 hour surface reserve, a liftoff, and a 2 hour rendezvous. If the descent batteries have sufficient energy to complete the lunar stay, each ascent battery must have sufficient energy remaining for preconditioning, a liftoff, a 2 hr rendezvous, and crew transfer. The surface reserve may be satisfied by either the ascent or descent batteries while the orbital contingency is satisfied by the redundancy requirement.

2

C. For the rendezvous the minimum requirement is the energy required to complete a IM active rendezvous through crew transfer. Should these minimum requirements be violated the IM will be powered down while the CSM becomes the active vehicle. However, the LM will be powered up to perform braking with sufficient consumables being retained for this purpose.

-	

.

											_
	MEAS ID	PCM CHANNEL NUMBER	BIT NO.	BLOCK NO.	FRAME	WORD	LOW RATE TIME SLOT	MEAS	PCM CHANNEL NUMBER	BIT	T
	GB0541 GB0542	10A 192 10A 184			50 48	5	197 189	GG3324 GG3325 GG9001	11A 11 11A 20 10E 2/13	1	t
	GC0071 GC0155 GC0155 GC0201	10A 82 10A 158 10A 174 10A 72			22 41 45	69 69 69	87 179	GG9002 GH1204	10E 2/13 10E 2/13 10E 31	2 1	
	GC0202 GC0203 GC0204 GC0205 GC0206	10A 41 10A 79 10A 57 10A 9 10A 36			19 11 21 15 3 10	101 101 101 101 37 37 37	10 38	GH1214 GH1217 GH1230 GH1240 GH1241	10E 23 10E 31 10E 41 11A 1 11A 8	1 2 1	
7	GC0207 GC0301 GC0302 GC1201 GC1202 GC1203	10A 1 10A 126 10A 134/143 10A 91/106 10A 122/167 10A 63/ 95			1 33 35/37 24/28 32/43 17/25	69 69/101 101/69 69/101	131 139/148 96/111 127/172	GH1242 GH1247 GH1247 GH1247 GH1248 GH1248	11A 18 11A 25 10A 139 11A 33 10A 155		
	GC1203 GC1204 GC1205 GC1206 GC1207 GC4361 GC4362	10A 67/ 94 10A 68/102 10A 75/ 87 10A 81/ 96 10E 30	1	BL730 BL730	18/25 18/27 20/23 22/26 35 35	69/101 69/69 101/69 69/101 37/5 98 98	67/100 71/ 99 72/107 79/ 92 86	GH1249 GH1249 GH1260 GH1283 GH1286	11A 5 10A 175 51E 1/ 2 51E 1/ 2 10E 31	1 2 3	
	GC4362 GC4363 GC4364 GC4365 GC4365 GC4366	10E 30 10E 30 10E 30 10E 30 10E 30 10E 30	3456	BL730 BL730 BL730 BL730	35 35 35 35	98 98 98 98		GH1301 GH1311 GH1313 GH1313	10E 23 10A 132 11A 30	2	1
	GC4367 GC4368, GC4369 GC4370	10E 30 10E 30 10E 33 10E 33	7 8 1 2	BL730 BL730 BL733 BL733	35 35 39 39	98 98 98 98		GH1313 GH1314 GH1314 GH1323	10A 22 11A 31 10A 11 10E 23	3	
	GC4371 GC4372 GC9961 GC9962	10E 33 10E 33 10E 29 10E 29	3 4 1 2 3	BL733 BL733 BL729 BL729	39 39 34 34	98 98 100		GH1330 GH1331 GH1331	10E 23 11A 21 10A 186	Å	
6	GC9963 GC9964 GC9965 GC9966 GF0500 GF0521	10E 29 10E 29 10E 29 10E 29 10E 29 10A 182 10A 113	3 4 5 6	BL729 BL729 BL729 BL729 BL729	34 34 34 34 47 30	100 100 100 100 69 37	187 118	GH1348 GH1418 GH1419 GH1420 GH1421	10E 41 12E 1/ 2 12E 1/ 2 12E 4 12E 4	2 8 7 8 7	
	GF0584 GF1083 GF1084 GF1201 GF1202 GF1211	10A 181 10E 5/ 16 10E 5/ 16 10E 3/ 14 10E 3/ 14	1 2 1 2 3	BL705 BL705 BL703 BL703	47 7/20 7/20 4/18 4/18	37 98/98 98/98 98/98 98/98	186 113/155 113/155 84/153 84/153	GH1422 GH1423 GH1424 GH1425 GH1425 GH1426	12E 1/ 2 12E 1/ 2 12E 4 12E 4 12E 4 12E 1/ 2	65654	1111
	GF1211 GF1212 GF1221 GF1231 GF1232 GF1241	10E 5/ 16 10E 5/ 16 10E 5/ 16 10E 4/ 15 10E 4/ 15 10E 5/ 16	3 4 5 1 2 6	BL705 BL705 BL705 BL704 BL704 BL705	7/20 7/20 7/20 5/19 5/19 7/20	98/98 98/98 98/98 98/98 98/98 98/98	113/155 113/155 133/155 101/154 101/154 113/155	GH1427 GH1428 GH1429 GH1430 GH1431	12E 1/ 2 12E 4 12E 4 12E 1/ 2 12E 1/ 2 12E 1/ 2	3 4 3 2 1	1111
5	GF1281 GF1301 GF1521 GF1651 GF2021	10A 172/177 10A 130/147 10A 17/ 46 10A 128 10A 59/ 99			45/46 34/38 5/13 34 16/26	5/ 37 69/101 37/ 5 5 69/101	117/182 135/152 18/49 133 63/104	GH1432 GH1433 GH1455 GH1455 GH1455 GH1456	12E 4 12E 4 11A 15/ 39 10A 26 11A 7/ 42	2 1	J
	GF2531 GF2581 GF2921 GF2936 GF3071	10A 137 10A 127 10A 16/ 43 10E 4/ 15 10E 4/ 15	73	BL704 BL704	36 33 5/37 5/19 5/19	37 101 5/12 98/98 98/98	142 132 17 101/154 101/154	GH1456 GH1457 GH1457 GH1461 GH1462	10A 60 11A 13/ 37 10A 115 11A 19/ 43 11A 29/ 45		
-	GF 3073 GF 3571 GF 3572 GF 3582 GF 3583	10E 4/ 15 10A 83/ 98 10E 3/ 14 10A 12/ 28 10A 73/ 97	5 4	BL704 BL703	5/19 22/26 4/18 4/ 8 20/26	98/98 101/69 98/98 5/37 5/37	101/154 88/103 84/153 13/ 30 77/102	GH1463 GH1603 GH1621 GH1628 GH1629	11A 38/ 34 10E 41 10E 23 10E 27 10E 27	3 5 1 2	BBBBB
	GF3584 GF3591 GF3592 GF4101 GF4101	10A 131/142 10A 194 10A 183 10A 187 10A 159			34/37 50 47 48 41	101/ 69 69 101 101 101	136/147 199 188 192	GH1630 GH1641 GH1642 GH1643 GH1644	10E 27 10E 31 10E 31 10E 31 10E 31 10E 31	3 8 7 4 5	BBBBBB
4	GF4500 GF4501 GF4502 GF4503 GF4511 GF4585	10A 58/ 88 10A 33 10A 20/ 54 10A 24/ 50 10A 154/163 10A 135/170			16/24 9 6/15 7/14 40/42 35/44	37/ 5 69 37/ 5 37/ 5 69/101 101/ 69	62/ 93 22/ 57 26/ 53 159/168 140/175	GH1893 GH1896 GI0001 GI0001 GI0001	10E 41 10E 31 51DS 2 C 51DS 2 B 51DS 2 A	4 6	BAAAA
	GF4586 GF9986 GF9997 GF9998 GF9999 GG0001	10A 13/ 27 10E 3/ 14 10A 19/ 29 10A 120/169 10A 25 51DS 1 E	3	BL703	4/ 8 4/18 5/ 8 32/44 7	37/ 5 98/ 98 101/ 69 5/ 37 69 125	14/ 29 84/153 20/ 31 125/174 27	GI 3301 GI 3305 GI 3306 GL0300 GL0300	10A 65/89 10E 27 10E 27 51D 1D 51D 1C	4 5	B
	GG0001 GG0001 GG0001 GG0001 GG1040	51DS 1 D 51DS 1 C 51DS 1 B 51DS 1 A 10A 2/49			1 1 1 1/13	124 123 122 121 69/101		GL0300 GL0300 GL0302 GL0400 GL0401	51D 18 51D 1A 51D 1 10E 7/18 11A 26/41	8	в
	GG1110 GG1201 GG1331 GG1513 GG1523	10A 23/ 51 10A 121 10A 5 10E 6/ 17 10E 6/ 17	1 2	BL706 BL706	7/14 32 2 8/22 8/22	5/ 37 37 37 98/ 98 98/ 98	25 126 6 114/156 114/156	GL0402 GL0422 GL0423 GL0501 GL0501	11A 36/27 10A 171 10A 85 11D 1 D 11D 1 C		
3	GG2001 GG2021 GG2041 GG2107 GG2112	51A 2/ 5 51A 1 51A 3/ 6 12A 1/ 9 11A 16			1/1 1/1 1/1 1/1 2	58/ 61 57 59/ 62 17/ 26 99	48	GL0501 GL0501 GL4026 GL4027 GL4028	11D 1 8 11D 1 A 10E 7/18 10E 7/18 10E 7/18	1 2 3	BI
	GG2113 GG2137 GG2142 GG2143 GG2143	11A 14 12A 3/16 10A 9/40 11A 12 10A 7			2 1/1 2/5 2 2	67 19/50 34/36 65 101	47 46 8	GL4047 GL4054 GL4069 (GL9401 (GL8275)1	10E 7/18 10E 7/18 10E 7/18 10E 7/18 10A 180	6 4 5	BI BI BI
	GG2167 GG2172 GG2173 GG2173 GG2219	12A 13/19 11A 24 11A 28 10A 64 11A 35			1/1 3 4 17 4	30/ 53 67 33 101 68	51 68	(GL9402 1 (GN7563) ¹ GM5000 GN7521 GN7557 GN7621	10A 164/149 10E 40 10E 1/12 10E 1/12 10E 1/12 10E 1/12	1 1 2 3	BI BI B
	GG2249 GG2279 GG2300 GG3304 GG3305	11A 17 11A 23 10A 123/166 11A 32 11A 10			2 3 32,43 4 2	100 66 101/69 65 35	128/171	GN7723 GN7723 GP0001 GP0002 GP0018 GP0025	10A 31/55 10A 138 10A 153/179 10A 93/100 10A 70 10A 37		
2								1 MEAS		maar	

MEAS	PCM CHANNEL NUMBER	BIT NO	BLOCK NO.	FRAME	WORD	LOW RATE
GG3324 GG3325 GG9001 GG9002 GH1204	11A 11 11A 20 10E 2/13 10E 2/13 10E 31	1 2 1	BL702 BL702 BL731	2 3 3/ 17 3/ 17 37	36 35 98/ 98 98/ 98 98	83/141 83/141
GH1214 GH1217 GH1230 GH1240 GH1241	10E 23 10E 31 10E 41 11A 1 11A 8	1 2 1	BL723 BL731 BL741	29 37 47 1 2	98 98 98 65 33	193
GH1242 GH1247 GH1247 GH1248 GH1248 GH1248	11A 18 11A 25 10A 139 11A 33 10A 155			3 36 4 40	33 68 101 66 101	144 160
GH1249 GH1249 GH1260 GH1283 GH1286	11A 5 10A 175 51E 1/ 2 51E 1/ 2 10E 31	1 2 3	BL747 BL747 BL731	1 45 1/1 1/1 37	98 101 24/32 24/32 98	180 43/44 43/44
GH1301 GH1311 GH1313 GH1313 GH1314	10E 23 10A 132 11A 30 10A 22 11A 31	2	BL 723	29 35 4 6 4	98 5 35 101 36	193 137 24
GH1314 GH1323 GH1330 GH1331 GH1331	10A 11 10E 23 10E 23 11A 21 10A 186	34	8L723 BL723	3 29 29 3 48	101 98 98 36 69	12 193 193 191
GH1348 GH1418 GH1419 GH1420 GH1421	10E 41 12E 1/ 2 12E 1/ 2 12E 4 12E 4	2 8 7 8 7	BL741 JET D JET D JET D JET D	47 1/1 1/1 1 1	98 8/16 8/16 48 48	
GH1422 GH1423 GH1424 GH1425 GH1426	12E 1/ 2 12E 1/ 2 12E 4 12E 4 12E 4 12E 1/ 2	65654	JET D JET D JET D JET D JET D	1/1 1/1 1 1 1/1	8/ 16 8/ 16 48 48 8/ 16	
GH1427 GH1428 GH1429 GH1430 GH1431	12E 1/ 2 12E 4 12E 4 12E 1/ 2 12E 1/ 2	34321	JET D JET D JET D JET D JET D	1/ 1 1 1/ 1 1/ 1 1/ 1	8/ 16 48 48 8/ 16 8/ 16	
GH1432 GH1433 GH1455 GH1455 GH1456	12E 4 12E 4 11A 15/ 39 10A 26 11A 7/ 42	2 1	JET D JET D	1 2/ 5 7 1/ 5	48 48 68/35 101 100/66	28
GH1456 GH1457 GH1457 GH1461 GH1462	10A 60 11A 13/ 37 10A 115 11A 19/ 43 11A 29/ 45			16 2/ 5 30 3/ 5 4/ 5	101 66/33 101 34/67 34/99	64 120 50/ 59 54/ 60
GH1463 GH1603 GH1621 GH1628 GH1629	11A 38/ 34 10E 41 10E 23 10E 27 10E 27	3 5 1 2	BL741 BL723 BL727 BL727	5/ 4 47 29 33 33	34/ 67 98 98 98 98	58/ 55 193
GH1630 GH1641 GH1642 GH1643 GH1644	10E 27 10E 31 10E 31 10E 31 10E 31 10E 31	3 8 7 4 5	BL727 BL731 BL731 BL731 BL731 BL731	33 37 37 37 37 37	98 98 98 98 98 98	
GH1893 GH1896 GI 0001 GI 0001 GI 0001	10E 41 10E 31 51DS 2 C 51DS 2 B 51DS 2 A	4	BL 741 BL 731 AG S AG S AG S	47 37 1 1 1	98 98 128 127 126	
GI 3301 GI 3305 GI 3306 GL0300 GL0300	10A 65/ 89 10E 27 10E 27 51D 1D 51D 1C	4 5	BL727 BL727	18/ 24 33 33 1 1	5/ 37 98 98 4 3	69/ 94 4 3
GL0300 GL0300 GL0302 GL0400 GL0401	51D 1B 51D 1A 51D 1 10E 7/18 11A 26/41	8	BL707	1 1 9/23 3/5	2 1 5 98/ 98 99/ 65	2 1 5 115/161 52
GL0402 GL0422 GL0423 GL0501 GL0501	11A 36/27 10A 171 10A 85 11D 1 D 11D 1 C			4/ 3 44 23 1 1	99/100 101 37 36 35	56 176 90 36 35
GL0501 GL0501 GL4026 GL4027 GL4028	11D 1 B 11D 1 A 10E 7/18 10E 7/18 10E 7/18 10E 7/18	1 2 3	BL 707 BL 707 BL 707	1 9/23 9/23 9/23	34 33 98/ 98 98/ 98 98/ 98	34 33 115/161 115/161 115/161
GL4047 GL4054 GL4069 GL9401 GL8275) ¹	10E 7/18 10E 7/18 10E 7/18 10E 7/18 10A 180	6 4 5	BL707 BL707 BL707	9/ 23 9/ 23 9/ 23 47	98/98 98/98 98/98 5	115/161 115/161 115/161 185
GN7563) ¹ GM7563) ¹ GM5000 GN7521 GN7557 GN7521	10A 164/149 10E 40 10E 1/12 10E 1/12 10E 1/12 10E 1/12	1 1 2 3	BL740 BL701 BL701 BL701 BL701	43/ 39 45 2/ 15 2/ 15 2/ 15 2/ 15	5/ 37 98 98/ 98 98/ 98 98/ 98	169 82/124 82/124 82/124
GN7723 GN7723 GP0001 GP0002 GP0018 GP0025	10A 31/55 10A 138 10A 153/179 10A 93/100 10A 70 10A 37			9/ 15 36 40/ 46 25/ 27 19 10	5 /37 69 37 /101 37 /5 37 69	143 158/184 98/105 39

MEAS ID	PCM CHANNEL NUMBER	BIT NO	BLOCK NO.	FRAME	WORD	LOW RATE
GP0041 GP0042 GP0318 GP0320 GP0718	11A 4 11A 22 10E 43 10E 43 10A 114	12	BL743 BL743	1 3 49 49 30	68 65 98 98 69	119
GP0908 GP1218 GP1408 GP1501 GP1503	10E 24 10A 129/144 10E 24 10A 62/92 10A 61/105	1 2	BL724 BL724	29 34/38 29 17/25 17/28	100 37/5 100 37/5 5/37	194 134/149 194 66/ 97 65/110
GP2010 GP2010 GP2997 GP2998 GQ3015 GQ3018	22A 7 10A 173/178 10E 32 10E 32 10A 40 10A 42	3 4	BL732 BL732	1 45/46 38 38 11 12	15 37/69 98 98 69 5	178/183
GQ3025 GQ3435 GQ3603 GQ3603 GQ3604 GQ3604	10A 108 10A 6/30 10A 104/77 12A 8 10A 101/69 12A 21			29 2/ 8 28/ 21 1 27/ 19 1	5 69/101 5/37 25 37/5 55	7/ 32 109 106
GQ3611 GQ3611 GQ3718 GQ3719 GQ4103	22A 1/ 4 10A 18 10A 4/ 47 10A 117/148 10A 165/116	•		1/ 1 5 2/ 13 31/ 39 43/ 31	9/ 12 69 5/ 37 37/ 5 37/ 5	19 170
GQ4103 GQ4104 GQ4104 GQ4111 GQ4111	12A 11 10A 133/176 12A 7 22A 2/ 5 10A 10			1 35/46 1 1/1 3	28 37/5 23 10/13 69	138 11
GQ4218 GQ4219	10A 3/48 10A 34/56			1/ 13 9/ 15	101/ 69 101/ 69	
GQ4455 GQ6510 GQ6510	10E 32 22A 6 10A 76/86	2	BL732	38 1 20/23	98 14 101/ 69	80/ 91
GQ6806 GQ6806 GQ6806 GR1085 GR1095	51A 8 51A 4 10A 193 10A 162/151 10A 146/119			1 50 42/ 39 38/ 31	64 60 37 69/101 69/101	198 167 151
GR1101 GR1102 GR1201 GR1201 GR1202	10A 125/160 10A 124/145 10A 112 10A 110 10A 140			33/ 42 33/ 38 30 29 27	37/ 5 5/ 37 5 69 5	130/165 129/150 117 145
GR2121 GR2122 GR2201 GR2202 GR3201	10A 66 10A 74 10A 14/ 45 10A 15/ 44 10A 21/ 53			18 20 4/ 12 4/ 12 6/ 14	37 37 69/101 101/ 69 69/101	70 78 15 16 23
GR3202 GR5031 GR5032 GR5033 GR5034	10A 38/52 22E 1A 22E 1A 22E 1A 22E 1A 22E 1A	8 7 6 5	RCS TCP RCS TCP RCS TCP RCS TCP	10/ 14 1 1 1 1	101/ 69 6 6 6 6	40
GR5035 GR5036 GR5037 GR5038 GR5039	22E 1A 22E 1A 22E 1A 22E 1A 22E 1A 22E 1B	4 3 2 1 8	RCS TCP RCS TCP RCS TCP RCS TCP RCS TCP	1 1 1 1	6 6 6 7	
GR5040 GR5041 GR5042 GR5043 GR5044	22E 1B 22E 1B 22E 1B 22E 1B 22E 1B 22E 1B	7 6 5 4 3	RCS TCP RCS TCP RCS TCP RCS TCP RCS TCP	1 1 1 1	7 7 7 7 7	
GR5045 GR5046 GR6001 GR6002 GR6003	22E 18 22E 18 10A 8 10A 35 10A 80	2 1	RCS TCP RCS TCP	1 1 3 10 22	7 7 5 5 5	9 37 85
GR6004 GR9609 GR9610 GR9613 GR9631	10A 84 10E 10/21 10E 10/21 10E 10/21 10E 10/21	3 4 7 5	BL710 BL710 BL710 BL710	23 13/27 13/27 13/27 13/27 13/27	5 98/98 98/98 98/98 98/98	89 122/164 122/164 122/164 122/164
GR9632 GR9641 GR9642 GR9661 GR9662	10E 10/ 21 10E 10/ 21 10E 10/ 21 10E 42 10E 42	6 1 2 1 2	BL710 BL710 BL710 BL742 BL742	13/ 27 13/ 27 13/ 27 48 48	98/98 98/98 98/98 98 98	122/164 122/164 122/164
GR9663 GR9664 GR9665 GR9666 GR9667	10E 42 10E 42 10E 42 10E 42 10E 42 10E 42	3 4 5 6 7	BL742 BL742 BL742 BL742 BL742 BL742	48 48 48 48 48 48	98 98 98 98 98 98	
R9668 570441 570454 570625 570992 570992	10E 42 51D 2 10A 107 10A 90/103 11A 2 10A 185	8	BL742	48 1 28 24/27 1 48	98 97 101 69/101 66 37	112 95/108 190
510993 510994 510050 510201 510202	10A 185 10A 195 10A 152/161 10E 11/ 22 10E 11/ 22 10E 11/ 22	1 6 7	BL711 BL711 BL711	50 40/42 14/28 14/28 14/28	101 5/37 98/98 98/98 98/98	200 157/166 123/181 123/181 123/181
Y0231	10E 11/ 22 10E 11/ 22	4 5	BL711 BL711	14/ 28 14/ 28	98/ 98 98/ 98	123/181 123/181

				LBR (F	REDUCED 1.6	KBS) FORMA	T			
RT	SYNC	SYNC	SYNC	SYNC	FORMAT					
	51D1a GL0300	51D1b GL0300	51D1c GL0300	51D1d GL0300	10D1 GL0302	10A5 GG1331	10A6 GQ3435	10A7 GG2143	10A8 GR6001	10A9 GC0205
	1	2	3	4	5	6	7	8	9	10
	10A10 GQ4111	10A11 GH1314	10A12 GF3582	10A13 GF4586	10A14 GR2201	10A15 GR2202	10A16 GF2921	10A17 GF1521	10A18 GQ3611	10A19 GF9997
	11	12	13	14	15	16	17	18	19	20
	10D2 OPEN	10A20 GF4502	10A21 GR3201	10A22 GH1313	10A23 GG1110	10A24 GF4503	10A25 GF9999	10A26 GH1455	10A27 GF4586	10A28 GF3582
	21	22 10A30	23	24	25 1101c	26 11D1d	27	28	29	30
	10A29 GF9997	GQ3435	11D1a GL0501	11D15 GL0501	GL0501	GL0501	10A35 GR6002	10A36 GC0206	10A37 GP0025	10A38 GR3202
	31	32	33 51F1	34 51E2	35	36 11A9	37	38 11A16	39 10A46	40 11A19
			BL747	BL747	10A42 GQ3018	GG2142	11A14 GG2113	GG2112	GF1521	GH1461
	41 11A24	42 11A26	43 10A50	44 11A29	45	46	47	48 11A38	49	50 11A45
	GG 21 72	GL0401	GP4503	GH1462	GH1463	GL0402	GF4502	GH1463	GH1461	GH1462
	1005	10A58 GF4500	10A59	10460	10A61	56 10A62	57 10A63	58 10A64	59 10A65	60 10A66
	61	GF4500	GF2021	GH1456	GP1503	GP1501	GC1203	68 GG2173	G13301	GR2121
ł	10467	10468	1006	10D7	1008	1009	10A73	10A74	10A75	10A76
ł	GC1204	GC1205	OPEN 73	74	7.5	0PEN 76	GF3583	GR2121	GC1206	GQ6510 80
t	10D10 OPEN	10E1 BL701	10E2 BL702	10E3 BL703	10A80 GR6003	10A81 GC1207	10A82 GC0071	10A83 GF3571	10A84 GR6004	10A85 GL0423
ł	81	82	83	84	85	86	87	88	89	90
I	10A86 606510	10A87 GC1206	10A88 GE4500	10A89 613301	10A90 GT0625	10A91 GC1201	10A92 GP1501	10A93 GP0002	10A94 GC1204	10A95 GC1203
t	91	92	93	94	95	96	97	98	99	100
	10E4 BL704	10A97 GF3583	10A98 GF3571	10A99 GF2021	10A100 GP0002	10A101 GQ3604	10A102 GC1205	10A103 GT0625	10A104 GQ3603	10A105 GP1503
t	101	102	103	104	105	106	107	108	109	110
	10A106 GC1201	10A107 GT0454	10E5 BL705	10E6 BL706	10E7 BL707	10E8	10A112 GR1201	10A113 GF0521	10A114 GP0718	10A115 GH1457
	111	112	113	114	115	116	117	118	119	120
	10E9	10E10 BL710	10E11 BL711	10E12 BL701	10A120 GF9998	10A121 GG1201	10A122 GC1202	10A123 GG2300	10A124 GR1102	10A125 GR1101
H	121	122	123	124	125	126	127	128	129	130
	10A126 GC0301	10A127 GF2581	10A128 GF1651	10A129 GP1218	10A130 GF1301	10A131 GF3584	10A132 GH1311	10A133 GQ4104	10A134 GC0302	10A135 GF4585
$\left \right $	131 10E13	132 10A137	133 10A138	134 10A139	135 10A140	136 10A141	137 10A142	138 10A143	1 39	140
L	BL702	GF2531	GN7723	GH1247	GR1202	OPEN	GF3584	GC0302	10A144 GP1218	10A145 GR1102
	141 10A146	142 10A147	143 10E14	144 10E15	145 10E16	146 10E17	147 10A152	148 10A153	149 10A154	150 10A155
H	GR1095	GF1301	BL703	BL704	BL705	BL706	GT0994	GP0001	GF4511	GH1248
ł	10E18	10E19	10E20	10E21	10A160	156 10A161	157 10A162	158 10A163	159 10A164	160 10A165
1	BL707	162	163	BL710	GR1101	GT0994	GR1085	GF4511	(GN7563) ¹ GL9402 169	GQ4103
h	10A166 GG2300	10A167 GC1202	10A168	10A169	10A170	10A171	10A172	10A173	10A174 GC0155	10A175
H	GG2300	GC1202	0PEN 173	GF9998	GF4585	GL0422	GF1281	GP2010	GC0155	GH1249
	10E22 BL711	10A177 GF1281	10A178 GP2010	10A179 GP0001	10A180 (GL8275) ¹	10A181 GE0584	10A182 GE0500	10A183 GF3592	10A184 GB0542	10A185 GT0992
	181	182	183	184	GL9401 185	186	187	188	189	GT0992
	10A186 GH1331	10A187 GF4101	10E23 BL723	10E24 BL724	10E25 OPEN	10E26 0PEN	10A192 GB0541	10A193 606806	10A194 GF3591	10A195 GT0993
H	191	192	193	194	195	196	197	198	199	200
				ONE SA DE SIGN 35, 36 55, 56 AS BEI	R CHANNELS MPLE PER S IATOR FOR W , 43, 44, 46 , 58, 59, 60 NG SAMPLED () USED FOR	ECOND (1 S/ ORDS 1, 2, 3 , 47, 48, 50 ARE TO BE I AT 1 S/S	S). CHANNEL 3, 4, 5, 33, 5 3, 51, 52, 54 NTERPRETED	34,) DATA SYST	EMS	

 PF
 PRIME FRAME

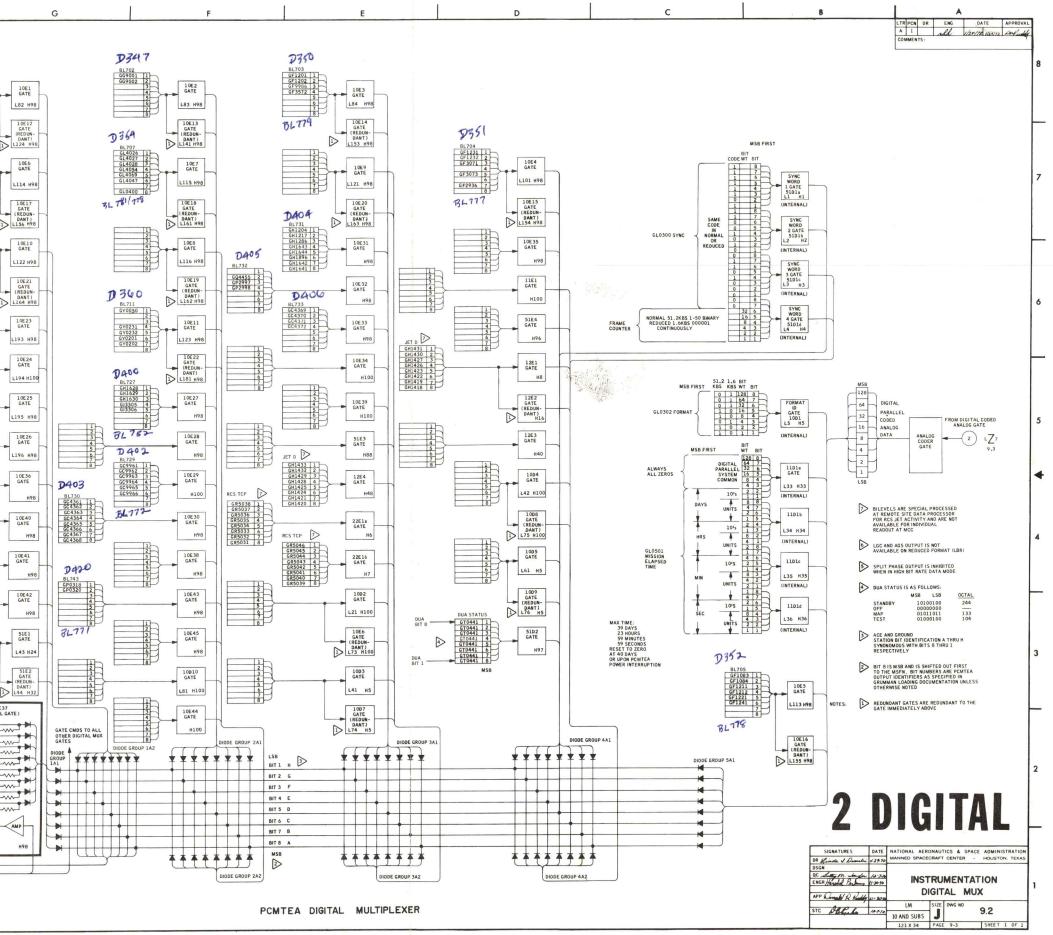
 A
 ALL PRIME FRAMES 1-50

 B
 PRIME FRAMES 1, 6, 11

 C
 2, 7, 12

 D
 3, 8, 13

 E
 4, 9, 14


 F
 4, 9, 14

 F
 5, 10, 15

WORD ABBREVIATIONS "A" ANALOG "D" DIGITAL PARALLEL "E" DIGITAL PARALLEL EVENT "DS" DIGITAL SERIAL 10 1 S/S 11 10 S/S 12 100 S/S 51 50 S/S 22 200 S/S EXAMPLE: 22 A 4 A A A 200 S/S ANALOG CHANNEL 4

1. MEAS ID IN () USED FOR PROCESSING BY GROUND DATA SYSTEMS

Í.		R	
J. J. C. S. LEWISK J. J. S. LEWISK	Harris Harris Harris 1 1005 10070 10070 10070 10070 2 10071 10070 10070 10070 10070 3 10070 10070 10070 10070 10070 4 10070 10070 10070 10070 10070 3 10070 10070 10070 10070 10070 4 10071 10070 10070 10070 10070 5 10071 10070 10070 10070 10070 6 10073 10070 10070 10070 10070 10 10075 10070 10070 10070 10070 10070 10 10075 10070 10070 10070 10070 10070 10 10075 10070 10070 10070 10070 10070 10 10075 10070 10070 10070 10070 10070 10070		IAL DATA (A) BIT 8 (MSD) (A) BIT 7 (A) BI
	46 104.176 104.177 104.176 1145 1147 104.179 46 664.04 6F12.81 6F2.010 SEE FR 1 60001 47 104.187 104.181 104.182 1064.1 1147 104.183 47 104.187 104.181 104.182 1064.1 114.17 104.183 47 104.941 104.182 1064.1 114.17 104.183		SHIFT PULSES

TABLE 9-V. - TELEMETRY VERSUS PAM AND SEQUENCER GATES

-

		PAI	4 1					PA	M 2					PA	м 3					PA	M 4		
SEQ	CHANNEL (S)	ELEC/ COMM	ECS	GNC	PROP	SEQ	CHANNEL (S)	ELEC/ COMM	ECS	GNC	PROP	SEQ	CHANNEL(S)	ELEC/ COMM	ECS	GNC	PROP	SEQ	CHANNEL (S)	ELEC/ COMM	ECS	GNC	PROP
1	22A1 (22A4) (EX) 12A1 (12A9) 12A8 (EX) 12A15 51A1			GG2107 GG2021	GQ3611 GQ3603	1	22A2 (22A5) (EX) 12A2 12A9 (12A1) 12A16 (12A3) 51A2 (51A5)			GG2107 GG2137 GG2001	GQ4111	1	22A3 12A3 (12A16) 12A10 (12A18) 12A17 51A3 (51A6)			GG2137 GG2041		1	22A4 (22A1) (EX) 12A4 (12A12) 12A11 12A18 (12A10) 51A4 (EX)				GQ3611 GQ4103 GQ6806
2	22A5 (22A2) (EX) 12A5 12A12 (12A4) 12A19 (12A13) 51A5 (51A2)			GG2167 GG2001	GQ4111	2	22A6 (EX) 12A6 12A13 (12A19) 12A20 51A6 (51A3)			GG2167 GG2041	GQ6510	2	22A7 (EX) 12A7 12A14 12A21 51A7				GP2010 GQ4104 GQ3604	2	12A22 51A8(EX)				GQ6806
3	11A1 11A8 11A18 11A28 (EX) 11A37 (11A13) (EX)			GH1240 GH1241 GH1242 GG2173 GH1457		3	11A2 (EX) 11A9 (11A40) 11A19 (11A43) 11A29 (11A45) 11A38 (11A34)	GT 0992		*GG2142 *GH1461 *GH1462 *GH1463		3	11A3 11A10 11A20 11A30 (EX) 11A39 (11A15) (EX)			GG3305 GG3325 GH1313 GH1455		3	11A4 11A11 11A21 (EX) 11A31 (EX) 11A40 (11A9)			GG3324 GH1331 GH1314 *GG2142	GF 0041
4	11A12 (EX) 11A22 11A32 11A41 (11A26)	GL0401		GG2143 GG3304	GP0042	4	11A5 (EX) 11A13 (11A37) (EX) 11A23 11A33 (EX) 11A42 (11A7) (EX)			GH1249 GH1457 GG2279 GH1248 GH1456		4	11A6 (11A44) 11A14 11A24 11A34 (11A38) 11A43 (11A19)		p	*GG2113 *GG2172 *GH1463 *GH1461		4	11A7 (11A42) (EX) 11A15 (11A39) (EX) 11A25 (EX) 11A35 11A44 (11A6)			GH1456 GH1455 GH1247 GG2219	
5	10A3 (10A48) 10A7 (EX) 10A11 (EX) 10A15 (10A44) 10A19 (10A29)		*GF9997	*GG2143 *GH1314	GQ4218 *GR2202	5	10A1 10A5 10A9 10A13 (10A27) 10A17 (10A46)	GC0207 *GC0205	*GF4586 *GF1521	*GG1331		5	11A16 11A26 (11A41) 11A36 (11A27) 11A45 (10A29)	*GL04 <mark>01</mark> *GL0402		*GG2112 *GH1462		5	11A17 11A27 (11A36)	GL0402		GG2249	
6	10A22 (EX) 10A26 (EX) 10A30 (10A6) 10A34 (10A56) 10A38 (10A52)			*GH1313 *GH1455	*GQ3435 GQ4219 *GR3202	6	10A20 (10A54) 10A24 (10A50) 10A28 (10A12) 10A32 10A36	*GC0206	*GF4502 *GF4503 *GF3582			6	10A2 (10A49) 10A6 (10A30) 10A10 (EX) 10A14 (10A45) 10A18 (EX)			GG1040	*GQ3435 *GQ4111 *GR2201 *GQ3611	6	10A4 (10A47) 10A8 10A12 (10A28) 10A16 (10A43)		*GF3582 *GF2921		GQ3718 ~GR6001
7	10A41 10A45 (10A14) 10A49 (10A2) 10A53 (10A21) 10A57	GC0202 GC0204		GG1040	GR2201 GR3201	7	10A39 10A43 (10A16) 10A47 (10A4) 10A51 (10A23) 10A55 (10A31) (EX)		GF2921	GG1110 GN7723	 GQ3718	7	10A21 (10A53) 10A25 10A29 (10A19) 10A33 10A37		*GF9999 *GF9997 GF4501		*GR3201 *GP0025	7	10A23 (10A51) 10A27 (10A13) 10A31 (10A55) (EX1 10A35		*GF4586	*GG1110 GN7723	* GR6002
8	10A60 (EX) 10A64 (EX) 10A68 (10A102) 10A72 10A76 (10A86) (EX)	*GC1205 GC0201		*GH1456 *GG2173	≁GQ6510	8	10A58 (10A88) 10A62 (10A92) 10A66 10A70 10A74		*GF4500		*GP1501 *GR2121 GP0018 *GR2122	8	10A40 10A44 (10A15) 10A48 (10A3) 10A52 (10A38) 10A56 (10A34)				GQ3015 GR2202 GQ4218 GR3202 GQ4219	8	10A42 10A46 (10A17) 10A50 (10A24) 10A54 (10A20)		*GF1521 *GF4503 *GF4502		'GQ3018
9	10A79 10A83 (10A98) 10A87 (10A75) 10A91 (10A106) 10A95 (10A63)	GC0203 *GC1206 *GC1201 *GC1203	*GF3571			9	10A77 (10A104) (EX) 10A81 (10AH96) 10A85 10A89 (10A65) 10A93 (10A100)	*GC1207 GL0423		*GI3301	GQ3603 +GP0002	9	10A59 (10A99) 10A63 (10A95) 10A67 (10A94) 10A71 10A75 (10A87)	-GC1203 +GC1204 +GC1206	*GF2021			9	10A61 (10A105) 10A65 (10A89) 10A69 (10A101) (EX) 10A73 (10A97)		*GF3583	*G13301	°GP1503 GQ3604
10	10A99 (10A59) 10A103 (10A90) 10A107 10A111 10A115 (EX)	GT0454	*GF2021	*GH1457		10	10A97 (10A73) 10A101 (10A69) (EX) 10A105 (10A61) 10A109 10A113		*GF3583 *GF0521		*GQ3604 *GP1 503 	10	10A78 10A82 10A86 (10A76) (EX) 10A90 (10A103) 10A94 (10A67)	*GC0071 GT0 *GC1204	625		 *GQ6510	10	10A80 10A84 10A88 (10A58) 10A92 (10A62)		~GF4500		*GR6003 *GR6004 *GP1501
11	10A119 (10A146) 10A123 (10A166) 10A127 10A131 (10A142) 10A135 (10A170)		*GF2581 *GF3584 *GF4585	*GG2300	GR1095	11	10A117 (10A148) 10A121 10A125 (10A160) 10A129 (10A144) 10A133 (10A176) (EX)			*GG1201	GQ3719 *GR1101 *GP1218 *GQ4104	11	10A98 (10A83) 10A102 (10A68) 10A106 (10A91) 10A110 10A114	*GC1205 *GC1201	*GF3571		GR1201 *GP0718	11	10A96 (10A81) 10A100 (10A93) 10A104 (10A77) (EX: 10A108 10A112 (EX)	GC1207			*GP0002 *GQ3603 6Q3025 *GR1201
12	10A139 (EX) 10A143 (10A134) 10A147 (10A130) 10A151 (10A162) 10A155 (EX)	*GC0302	*GF1301	*GH1247 *GH1248	GR1085	12	10A137 10A141 (10A168) 10A145 (10A124) 10A149 (10A164) 10A153 (10A179)	GL9402	*GF2531 *GF4101	(GN7563) ¹	*GR1102 *GP0001	12	10A118 10A122 (10A167) 10A126 (EX) 10A130 (10A147) 10A134 (10A143)	*GC1202 *GC0301 *GC0302	 *GF1301			12	10A116 (10A165) (EX) 10A120 (10A169) 10A124 (10A145) 10A128 10A128 10A132		*GF9998 *GF1651	'GH1311	GQ4103 GR1102
13	10A159 (EX) 10A163 (10A154) 10A167 (10A122) 10A171 10A175 (EX)	*GC1202 *GL0422	GF4101 *GF4511	 *GH1249		13	10A157 10A161 (10A152) 10A165 (10A116) (EX) 10A169 (10A120) 10A173 (10A178) (EX)	*GT 0994	 *GF9998	-	 *GQ4103 *GP2010	13	10A138 (EX) 10A142 (10A131) 10A146 (10A119) 10A150 10A154 (10A163)		*GF3584 *GF4511	*GN7723	*GR1095	13	10A136 10A140 10A144 (10A129) 10A148 (10A117) 10A152 (10A161)	 *GT0994			*GR1202 *GP1218 GQ3719
14	10A179(10A153) 10A183 10A187(EX) 10A191 10A195	*GT0993	*GF3592 *GF4101	8	*GP0001	14	10A177 (10A172) 10A181 10A185 (EX) 10A189 10A193 (EX)	*GT0992	*GF1281 *GF0584		*GQ6806	14	10A158 10A162 (10A151) 10A166 (10A123) 10A170 (10A135) 10A174 (EX)	GC0155 *GC0155	*GF4585	*GG2300	~ GR1085	14	10A156 10A160 (10A125) 10A164 (10A149) 10A168 (10A141) 10A172 (10A177)	 *GL9402	*GF4101 *GF1281		*GR1101
										-		15	10A178 (10A173) (EX) 10A182 10A186 (EX) 10A190 10A194		*GF0500 *GF3591	*GH1331	⁺GP2010 	15	10A176 (10A133) (EX) 10A180 10A184 10A188 10A192	*GL9401	(*GL8275: ¹ *GB0542 *GB0541	2	GQ4104

9-33

Г

* LBR () INTERNAL REDUNDANT CHANNEL (EX) EXTERNAL REDUNDANT CHANNEL

1. MEAS ID IN () USED FOR PROCESSING BY GROUND DATA SYSTEMS REV A, PCN-1

TABLE 9-VI.- LM VEHICLE TM CONVERSION

	BINARY	DEC EQV	VOLTS	MILLI- VOLTS	% FS	OCTAL		BINARY	DEC EQV	VOLTS	MILLI- VOLTS	% FS	OCTAL		BINARY	DEC EQV	VOLTS	MILLI- VOLTS	% FS	OCTAL		BINARY	DEC EQV	VOLTS	MILLI- VOLTS	% FS	OCTAL
	00000000 00000001 00000010 00000011 000000	1 2	× 0.000 0.020 0.040 0.059	× 0.00 0.08 0.16 0.24	2.00 0.40 0.79 1.19	0 1 2 3 4		01000000 01000001 01000010 01000011 01000100	65 66 67	1.245 1.265 1.285 1.304 1.324	4.98 5.06 5.14 5.22 5.30	24.90 25.30 25.70 26.08 26.48	100 101 102 103 104		1000000 1000001 10000010 10000011 10000100	129 130 131	2.510 2.530 2.549 2.569 2.589	10.12	50.20 50.60 50.98 51.38 51.78	201 202 203		11000000 1100001 11000010 11000011 11000100	193 194 195	3.795 3.814 3.834	15.18 15.26 15.34	75.50 75.90 76.28 76.68 77.08	300 301 302 303 304
	00000101 00000110 00000111 00001000 00001001	6 7 8	0.079 0.099 0.119 0.138 0.158	0.32 0.40 0.47 0.55 0.63	1.58 1.98 2.38 2.77 3.16	5 6 7 10 11		01000101 01000110 01000111 01001000 010010	70 71 72	1.344 1.364 1.383 1.403 1.423	5.38 5.45 5.53 5.61 5.69	26.88 27.28 27.76 28.06 28.46	105 106 107 110 111		10000101 10000110 10000111 10001000 10001001	134 135 136	2.609 2.628 2.648 2.668 2.688	10.44 10.51 10.59 10.67 10.75	52.18 52.56 52.96 53.36 53.76	207 210		11000101 11000110 11000111 11001000 1100100	198 199 200	3.893 3.913 3.933	15.57 15.65 15.73	77.48 77.86 78.26 78.66 79.06	305 306 307 310 311
	00001010 00001011 00001100 00001101 00001110	11 12 13	0.178 0.198 0.217 0.237 0.257	0.71 0.79 0.87 0.95 1.03	3.56 3.96 4.34 4.74 5.14	12 13 14 15 16		01001010 01001011 01001100 01001101 01001110	75 76 77	1.443 1.463 1.482 1.502 1.522	5.77 5.85 5.93 6.01 5.09	28.86 29.26 29.64 30.04 30.44	112 113 114 115 116		10001010 10001011 10001100 10001101 10001110	139 140 141	2.708 2.727 2.747 2.767 2.787	10.99	54.16 54.54 54.94 55.34 55.74	212 213 214 215 216		11001010 11001011 11001100 11001101 11001110	203 204 205	3.992 4.012 4.032	15.97 16.05 16.13	79.44 79.84 80.24 80.64 81.02	312 313 314 315 316
	00001111 00010000 00010001 00010010 0001001	16 17 18	0.277 0.296 0.316 0.336 0.356	1.11 1.19 1.27 1.34 1.42	5.54 5.92 6.32 6.72 7.12	17 20 21 22 23		01001111 01010000 01010001 01010010 01010011	80 81 82	1.542 1.561 1.581 1.601 1.621	6.17 6.25 6.32 6.40 6.48	30.84 31.22 31.62 32.02 32.42	117 120 121 122 123		10001111 10010000 10010001 10010010 100100	144 145 146	2.806 2.826 2.846 2.866 2.885	11.38 11.46	56.12 56.52 56.92 57.32 57.70			11001111 11010000 11010001 11010010 11010011	208 209 210	4.091 4.111 4.131	16.36 16.44 16.52	81.42 81.82 82.22 82.62 83.00	317 320 321 322 323
	00010100 00010101 00010110 00010111 00011000	21 22 23	0.376 0.395 0.415 0.435 0.455	1.50 1.58 1.66 1.74 1.82	7.52 7.90 8.30 8.70 9.10	24 25 26 27 30		01010100 01010101 01010110 01010111 01010111	85 86 87	1.640 1.660 1.680 1.700 1.719	6.56 6.64 6.72 6.80 6.88	32.80 33.20 33.60 34.00 34.38	124 125 126 127 130		10010100 10010101 10010110 10010111 10011000	149 150 151	2.905 2.925 2.945 2.965 2.984	11.70 11.78		224 225 226 227 230		11010100 11010101 11010110 11010111 110110	213 214 215	4.190 4.210 4.229	16.76 16.84 16.92	83.40 83.80 84.20 84.58 84.98	324 325 326 327 330
	00011001 00011010 00011011 00011100 00011101	26 27 28	0.474 0.494 0.514 0.534 0.553	2.13	9.48 9.88 10.28 10.68 11.06	31 32 33 34 35		01011001 01011010 01011011 01011100 01011101	90 91 92	1.739 1.759 1.779 1.798 1.818	6.96 7.04 7.12 7.19 7.27	34.78 35.18 35.58 35.96 36.36	131 132 133 134 135	-	10011001 10011010 10011011 10011100 10011101	154 155 156	3.004 3.024 3.044 3.063 3.083	12.10	61.26	231 232 233 234 235	Re-	11011001 11011010 11011011 11011100 11011101	218 219 220	4.289 4.308 4.328	17.15 17.23 17.31	85.38 85.78 86.16 86.56 86.96	331 332 333 334 335
	00011110 00011111 00100000 00100001 00100010	31 32 33	0.573 0.593 0.613 0.632 0.652	2.37 2.45 2.53	12.16	36 37 40 41 42	•	01011110 01011111 01100000 01100001 01100010	95 96 97	1.838 1.858 1.878 1.897 1.917	7.35 7.43 7.51 7.59 7.66	36.76 37.16 37.56 37.94 38.34	136 137 140 141 142		10011110 10011111 10100000 10100001 10100010	159 160 161	3.103 3.123 3.142 3.162 3.182	12.49 12.57 12.65	62.84	237 240 241		11011110 11011111 11100000 11100001 11100010	223 224 225	4.387	17.55 17.63 17.71	87.36 87.74 88.14 88.54 88.94	336 337 340 341 342
	00100011 00100100 00100101 00100110 001001	36 37 38	0.672 0.692 0.711 0.731 0.751	2.77 2.85 2.93	13.44 13.84 14.22 14.62 15.02	43 44 45 46 47		01100011 01100100 01100101 01100110 01100111	100 101 102	1.976	7.75 7.83 7.91 7.98 8.06	38.74 39.14 39.52 39.92 40.32	143 144 145 146 147		10100011 10100100 10100101 10100110 10100111	164 165 166	3.202 3.221 3.241 3.261 3.281	12.89 12.96 13.04	64.42 64.82 65.22	243 244 245 246 247		11100011 11100100 11100101 11100110 11100111	228 229 230	4.486	17.94 18.02 18.10	89.32 89.72 90.12 90.52 90.92	343 344 345 346 347
LETTER	00101000 00101001 00101010 00101011 00101100	41 42 43	0.771 0.791 0.810 0.830 0.850	3.16 3.24 3.32	15.42 15.82 16.20 16.60 17.00	50 51 52 53 54		01101000 01101001 01101010 01101011 011011	105 106 107	2.055 2.075 2.095	8.14 8.22 8.30 8.38 8.46	40.72 41.10 41.50 41.90 42.30	150 151 152 153 154		10101000 10101001 10101010 10101011 10101100	169 170 171		13.28 13.36 13.44		251		11101000 11101001 11101010 11101011 1110110	233 234 235	4.605	18.34 18.42	91.30 91.70 92.10 92.50 92.88	350 351 352 353 354
ENG	00101101 00101110 00101111 00110000 00110001	46 47 48	0.870 0.890 0.909 0.929 0.949	3.56 3.64 3.72	17.40 17.80 18.18 18.58 18.98	55 56 57 60 61		01101101 01101110 01101111 01110000 01110001	110 111 112	2.154 2.174 2.194	8.54 8.62 8.70 8.78 8.85	42.68 43.08 43.48 43.88 44.28	155 156 157 160 161		10101101 10101110 10101111 10110000 10110001	174 175 176	3.459	13.60 13.68 13.76 13.83 13.91	68.38 68.78 69.18	255 256 257 260 261	,	11101101 11101110 11101111 11110000 11110001	238 239 240	4.684 4.704 4.723	18.74	93.28 93.68 94.08 94.46 94.86	355 356 357 360 361
DATE	00110010 00110011 00110100 00110101 0011011	51 52 53	0.968 0.988 1.008 1.028 1.047	3.87 3.95 4.03 4.11 4.19	19.76 20.16 20.56	62 63 64 65 66		01110010 01110011 01110100 01110101 01110110	115 116 117	2.253 2.273 2.293	8.93 9.01 9.09 9.17 9.25	44.66 45.06 45.46 45.86 46.24	162 163 164 165 166		10110010 10110011 10110100 10110101 101101	179 180 181	3.518	14.15	69.96 70.36 70.76 71.14 71.54	264 265		11110010 11110011 11110100 11110101 11110110	243 244 245	4.783	19.13 19.21 19.29	95.26 95.66 96.04 96.44 96.84	362 363 364 365 366
APPR	00110111 00111000 00111001 00111010 00111011	56 57 58	1.067 1.087 1.107 1.127 1.146	4.35	22.14 22.54	67 70 71 72 73	5	01110111 01111000 01111001 01111010 01111010	120 121 122	2.352 2.372 2.391	9.33 9.41 9.49 9.57 9.64	46.64 47.04 47.44 47.82 48.22	167 170 171 172 173	9		184 185 186	3.656	14.47 14.55 14.62	72.34 72.72 73.12			11110111 11111000 11111001 11111010 11111011	248 249 250	4.882 4.901 4.921	19.53 19.60 19.68	97.24 97.74 98.02 98.42 98.82	367 370 371 372 373
APPROVAL	00111100 00111101 00111110 00111111	61 62 63	1.166 1.186 1.206 1.225	4.74 4.82 4.90		74 75 76 77		01111100 01111101 01111110 011111110	125 126	2.451 2.470	9.72 9.80 9.88 9.96	48.62 49.02 49.40 49.80	174 175 176 177		10111100 10111101 10111110 10111110	189 190			73.92 74.30 74.70 75.10	275 276		11111100 11111101 11111110 11111110	253 254	4.980		99.22 99.60 00.00	374 375 376 377

"LESS THAN 0.00 VOLTS (0.00 MILLIVOLTS) UNDERSCALE.

9-34

Pht the ENG 11/30/70 11/30/70 DATE

Þ

LM-10 AND SUBS REV A

.

MGREATER THAN 5.000 VOLTS (20.0 MILLIVOLTS) OVERSCALE.

4

.

				di 1		so	ERA 1								_							SC	ERA 2							LM-10 REV A, PC
SCERA LOCATION AND TYPE	ELEC/COMM ECS	GNC	PROP	MEASUREMENT FIELD TITLES	C&W	PCM DISP	SCERA LOCATION AND TYPE	ELEC/COMM	ECS	GNC	PROP	MEASUREMENT FIELD TITLES	C&W	PCM DISI	SCERA LOCATION AND TYPE	ELEC/COMM	ECS	GNC	PROP	MEASUREMENT FIELD TITLES	C&W PC	DISP	SCERA LOCATION AND TYPE	ÉLEC/COMM	ECS	GNC	PROP	MEASUREMENT FIELD TITLES	C&W P	PCM DIS
LOC-1 GSE CHECKOUT					Ţ		LOC-12 SIGNAL ISOLATING DISCRETE BUFFER 504-4	GY0201X GY0202X			GR9609U GR9610U GR9641U GR9642U GP0318X GP0320X GR9609U GR9610U	RCS MAIN A CLSD RCS MAIN B CLSD ASC FD A 0X ASC FD B 0X OPEN APS HE 1 CLSD APS HE 2 CLSD RCS MAIN A CLSD OPEN RCS MAIN B CLSD ED RLY A K1-K6 ED RLY B K1-K6	x x x	x x x x x x x x x x x x x x x x x x x x	LOC-1 GSE CHECKOUT								LOC-12 SIGNAL ISOLATING DISCRETE BUFFER 504-4	GL4054X GC9961U GC9962U GC9963U GC9965U GC9965U GC9965U	GF2936X	GH1642 GH1641	GQ4455X	C/W PWR FAIL GLY PUMP SW/O DPS PROP LO OPEN AGS ATT HOLD AGS AUTO BAT 1 MAL BAT 2/L MAL BAT 2/L MAL BAT 4 MAL BAT 5 MAL BAT 6 MAL	x	× × × × × × × × × × × × × × × × × × ×
LOC-2 SIGNAL ISOLATION DISCRETE BUFFER 504-2	GY0050X	GH1426V GH1427V GH1428V GH1428V GH1429V GH1430V GH1430V GH1432V GH1432V		JD B2U OUTPUT JD A2D OUTPUT JD A2A OUTPUT JD B2L OUTPUT JD B1L OUTPUT JD B1L OUTPUT JD A1F OUTPUT ABORT CMD OPEN	x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x	LOC-13 SIGNAL ISOLATING DISCRETE BUFFER 504-4	GM 5000U	÷		GR9661U GR9662U GR9664U GR9664U GR9664U GR9666U GR9667U GR9667U GR968U GR9631U GR9631U GR9631U GR9633U	THR PR 4A CMD THR PR 4B CMD THR PR 3A CMD THR PR 3B CMD THR PR 3B CMD THR PR 2B CMD THR PR 1B CMD THR PR 1B CMD THR PR 1B CMD THR PR 1B CMD ASC FD A FU ASC FD B FU ASC FD B FU		x x x x x x x x x x x x x x x x x x x	LOC-2 SIGNAL ISOLATING DISCRETE BUFFER 504-3	GL4026X GL4028X GL4069X GL4027X		GN7521X GN7557X GN7621X GH1260X G13305X	GP0908X GP1408X	CES AC PWR FAIL ASA PWR FAIL LR RNG BAD LR VEL BAD RR NO TRACK APS FUEL LO APS OF ALARM MSTER ALARM OF STALL APS ON ACS WARMUP CES DC PWR FAIL	X X X X DSBLD X X X X X X X X X X X X X X X X X X X		LOC-13 SIGNAL ISOLATING DISCRETE BUFFER 504-5	GC9961U GC9963U GC9964U GC9964U GC9965U GC9966U	GF2935X	GH1628X GH1629X G13306X GH1630X		ROLL PLS/DIR PITCH PLS/DIR GLY PUMP SW/O OPEN AGS STANDBY YAW PLS/DIR BAT 1/MAL BAT 2/L MAL BAT 3/L MAL BAT 4 MAL BAT 5 MAL BAT 6 MAL	x x x x x x x x	* * * * * *
LOC-3 SIGNAL ISOLATING DISCRETE BUFFER 504-2		GH1603X GH1230X GH1348X GH1893X	GR5041X GR5042X GR5043X GR5044X GR5044X GR5045X GR5046X	MIN DEADBAND APS ARM RCS TCP AZA RCS TCP BZL RCS TCP BID RCS TCP BID RCS TCP BIL DPS ARM X TRANS OVRD	× × × × × × ×	x x x x x x x x x x x x x x x x	LOC-14 SIGNAL ISOLATING DISCRETE BUFFER 504-5	GY0231X GY0232X GY0201X GY0202X			GR9661U GR9662U GR9663U GR9664U GR9665U GR9665U GR9667U GR9667U GR9668U	THR PR 48 CMD THR PR 48 CMD THR PR 38 CMD THR PR 38 CMD THR PR 38 CMD THR PR 28 CMD THR PR 18 CMD THR PR 18 CMD ED RLY A K7-K15 ED RLY A K7-K15 ED RLY A K1-K6 ED RLY B K1-K6	*****	x x	LOC-3 SIGNAL ISOLATING DISCRETE BUFFER 504-3	GL4047	GF1083X GF9986U GF1084X GF3572X	GH1301X GH1621X GH1323X GH1330X GG9001X GG9002X		OPEN SUIT FAN 1 MAL SEL GLY LO LVL DPS ON AGS SELECT SUIT FAN 2 FAIL BAT MAL REPR ELEC OPEN P TRIM FAIL R TRIM FAIL LGC WARNING	* * * * * * * * * * * * * * * * * * *		LOC-14 SIGNAL ISOLATING DISCRETE BUFFER 504-5			GH1283X GH1286X GH1643X GH1644X GH1204X GH1214X GH1217X GH1896X	GP2997U GP2998U	ABORT STG CMD ENG FIRE OVRD PGNS AUTO PGNS AUTO DUT DETENT AUTO ON AUTO OFF UNBAL COUPLES OPEN OPEN APS VLV A APOS APS VLV B APOS		****
LOC-4 SIGNAL ISOLATING DISCRETE BUFFER 504-2		G13232X GH1418V GH1420V GH1420V GH1421V GH1422V GH1422V GH1423V GH1423V GH1425V		TEST MODE FAIL OPEN JD B40 OUTPUT JD A47 OUTPUT JD A48 OUTPUT JD A38 OUTPUT JD B3D OUTPUT JD B3D OUTPUT JD B3A OUTPUT	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x	LOC-15 ATTENUATOR 502-2	6C0301V		GH1331V GH1311V GI3215V		AUTO THRUST CMD MAN THRUST CMD COR BUSY CMO ASA +12VDC	x x	X X X X	LOC-4 SIGNAL ISOLATING DISCRETE BUFFER 504-4	GC4361X GC4362X GC4362X GC4364X GC4365X GC4365X GC4366X GC4367X GC4362X GC4369X GC4370X GC4371X GC4372X				BAT 1 HI BAT 2 LO BAT 2 HI BAT 3 HI BAT 3 HI BAT 4 COR BAT 4 LO BAT 4 COR BAT 5 COR B BAT 6 COR N BAT 6 LMP B	x x x x x x x x x x x x x x x x x x x	****	LOC-15 ATTENUATOR 502-2	GC0302V		GH1488V GH1489V GI3214V		PRIME -4.7VDC B/U -4.7VDC ASA +28VDC LMP BUS V	x x x x	
LOC-5 SIGNAL ISOLATING ANALOG BUFFER 504-1	GF130 GF152 GF0994V 1. MEASUREMENT NOT :	90	IN SCERA	SUIT PRESS CO2 PP SEL H2O SEP RT S-BAND RCVR AGC	1 1 1	X X X X X	LOC-16 FREQ TO DC CONVERTER 505-1	GC0155F		GI3233F		AC BUS FREQ 400 HZ ASA FREQ OPEN	××	x	LOC-5 SIGNAL ISOLATING DISCRETE BUFFER 504-5		GF1241X GF1221X GF121X GF1212X GF3071X GF1231X GF1231X GF1231X GF1232X GF1201X GF1202X			SEC CO2 SEL SUIT DIV EGR SUIT RLF CLSD SUIT RLF OPEN DMD REG A CLSD OPEN CABIN RET GER CABIN RET OPEN COR SUIT DISC LMP SUIT DISC	× × × × × × × × × ×		LOC-16 ATTENUATOR 502-2	GC0201V GC0202V GC0203V GC0204V				BAT 1 VOLTS BAT 2 VOLTS BAT 3 VOLTS BAT 4 VOLTS		X X X X X X X X
LOC-6 SIGNAL ISOLATING ANALOG BUFFER 504-1	1. MEASUREMENT NOT		GR1101P GR1102P GR1201P GR1202P	RCS A HE PRESS RCS B HE PRESS RCS A REG PRESS RCS B REG PRESS	1 1 1 1	X X X X X X X X	LOC-17 AC TO DC CONVERTER 503-2	GC0071V		GH1405V	area	AC BUS VOLTS OPEN RGA XCIT 800 HZ	x x	x	LOC-6 RESISTANCE TO DC CONVERTER 506-3	GL9401U 2. MEAS ID	GB0541T GB0542T (GL8275U) ² GF4511T	R PROCESSING BY	Y GROUND DATA S	MESA TEMP 1 MESA TEMP 2 SEL RTG/ ECA 1 T PRI W/B H ₂ 0 T SYSTEMS	x x x x		LOC-17 ATTENUATOR 502-2	GC0205V		GH1240V GH1241V GH1242V		BAT 5 VOLTS X TRANS CMD Y TRANS CMD Z TRANS CMD		x x x x x
LOC-7 SIGNAL ISOLATING ANALOG BUFFER 504-1	GF358: GF358: GF450: GY0703U 1. MEASUREMENT NOT	3P)P	IN SCERA	ASC 1 02 P ASC 2 02 P DES 1 H20 P SEL ED BAT V	1 1 1	X X X X X X	LOC-18 SIGNAL ISOLATING ANALOG BUFFER 504-1	GC0155F GC0071V GC0301V GC0207V				AC BUS FREQ AC BUS VOLTS CDR BUS V BAT L VOLTS		X X X X X X	LOC-7 AC TO DC CONVERTER 503-2			GH1401V GH1402V GH1403V		RGA A-B 800 HZ RGA B-C 800 HZ RGA C-A 800 HZ	X X X		LOC-18 ATTENUATOR 502-2	GC0206V		GH1249V GH1247V GH1248V		BAT 6 VOLTS ROLL ERR CMD YAW ERR CMD PITCH ERR CMD		x x x x x
LOC-8 SIGNAL ISOLATING ANALOG BUFFER 504-1	GF450: GF450: 1. MEASUREMENT NOT		GP0025P GP0001P IN SCERA	ASC 1 H2O P ASC 2 H2O P APS HE REG P APS HE 1 PRESS	1 1 1	x x x x x x	LOC-19 SIGNAL ISOLATING ANALOG BUFFER 504-1	1. MEASUREME	NT NOT SIGNAL	CONDITIONED IN	GP0002P GQ3018P GP1501P GP1503P	APS HE 2 PRESS DPS REG P APS FU PRESS APS OX PRESS	1 1 1	x x x x x	LOC-8 DC AMPLIFIER 501-1	GC0302V	GF3584P GF3584P	GH1408V		DES 1 0 ₂ P DES 1 0 ₂ P 4.3 VDC LMP BUS V	x x x x	x x	LOC-19 ATTENUATOR 502-2			GH1406V GH1407V GH1493V GH1494V		+15 VDC -15 VDC +6VDC SUPPLY -6VDC SUPPLY	x x x x	
LOC-9 RESISTANCE TO DC CONVERTER 506-3			GQ3718T GQ3719T GP0718T GP1218T	DPS 1 FU T DPS 2 FU T APS FUEL TEMP APS OX TEMP		X X X X X X X X	LOC-20 RESISTANCE TO DC CONVERTER 506-3				GR6002T GR6003T GR6004T GR6001T	QUAD 3 TEMP QUAD 2 TEMP QUAD 1 TEMP QUAD 4 TEMP		X X X X X X X X	LOC-9 PHASE SENSITIVE DEMODULATOR 507-1			GH1313V GH1314V GH1455V GH1456V		PITCH GDA POS ROLL GDA POS YAW ATT ERR PITCH ATT ERR	× × ×		LOC-20 RESISTANCE TO DC CONVERTER 506-3		GF2531T GF2581T		GR2121T GR2122T	W/B GLY IN T RCS A FU TEMP RCS B FU TEMP W/B GLY OUT T		x x x x x
LOC-10 RESISTANCE TO DC CONVERTER 506-3	GF999	BU GI3301T	GQ4218T GQ4219T	SEL GLYCOL T ASA TEMP DPS 1 0X T DPS 2 0X T	x	x x x x x x	LOC-21 RESISTANCE TO DC CONVERTER 506-3	GL9402U	GF1281T GF1651T	GN7723T (GN7563T) ²	BY GROUND DAT.	SUIT TEMP CABIN TEMP RR ANT TEMP SEL LR/ ECA 2 T A SYSTEMS	x	x x x x x x x x	LOC-10 PHASE SENSITIVE DEMODULATOR 507-1			GH1457V GH1461V GH1462V GH1463V		ROLL ATT ERR RGA YAW RATE RGA PITCH RATE RGA ROLL RATE	x x x x		LOC-21 RESISTANCE TO DC CONVERTER 506-3	GF0521T GT0454T	GF4585T GF4586T			DES 2 H ₂ 0 T OPEN S-BND ANT TEMP ASC 1 H20 T ASC 2 H20 T	x	x x x x x x x
LOC-11 ISOLATING DISCRETE BUFFER 504-2			GR5031X GR5032X GR5033X GR5035X GR5035X GR5035X GR5035X GR5038X GR5038X GR5039X GR5039X	RCS TCP B4U RCS TCP A4D RCS TCP A4F RCS TCP A4R RCS TCP A3U RCS TCP B3D RCS TCP B3A RCS TCP B3A RCS TCP B32U RCS TCP B2U RCS TCP A2R	× × × × × × × × × × × × × × × × × × ×	x x x x x x x x x x x x x	LOC-22 CAPPED	2. mbr3 0							LOC-11 CAPPED								LOC-22 CAPPED					LETTER ENG A, PCN-1 all	DA TE 1-24-72 1-14-72	APPROVAL Alutedri

.

٣

.

•

.

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS

MEAS ID	MEASUREMENT	S/S AND LBR ^a	PAM AND SEQ/ GT AND DIODE	SCERA		TM RAI	NGE	TM ACC	1 PCM CNT ^C	C&W	ONBO	ARD RANG	E	0/B ACC	REFEREN	NCE
	DESCRIPTION	LBR~	GT AND DIODE"	AND LOC				EU	CN1-	Jun	01100			EU	DWG/FIG	ZON
GB0541T	MESA TEMP 1	1L	4-15	2-6	20	200	DEG F	3.9	,710						13-1	B-6
GB0542T	MESA TEMP 2	1L	4-15	2-6	20	200	DEG F	3.9	,710				2		13-1	B-6
GC0071V	AC BUS VOLTS	11	3-10	1-18/1-17	0	125	VRMS	1,59	,494	C	63	126	VAC	2.9	5.4	C-3
GC0155F	AC BUS FREQ	1-1L	3-14	1-18/1-16	380	420	HZ	,68	,158	С					5.2	C-3
GC0201V	BAT 1 VOLTS	1	1-8	2-16	. 0	40	VDC	.45	.158		20	40	VDC	.9	5.2	S-!
GC0202V	BAT 2 VOLTS	1	1-7	2-16	0	40	VDC	.45	.158		20	40	VDC	.9	5.2	G-4
GC0203V	BAT 3 VOLTS	1	1-9	2-16	0	40	VDC	.45	.158		20	40	VDC	.9	5.2	G-4
GC0204V	BAT 4 VOLTS	1	1-7	2-16	0	40	VDC	,45	.158		20	40	VDC	.9	5.2	S-4
GC0205V	BAT 5 VOLTS	11	2-5	2-17	0	40	VDC	,45	.158		20	40	VDC	.9	5.3	H-4
GC0206V	BAT 6 VOLTS	11	2-6	2-18	0	40	VDC	.45	,158		20	40	VDC	.9	5.3	R-4
GC0207V	BAT L VOLTS	1	2-5	1-18	0	40	VDC	.51	.158		20	40	VDC	.9	5.2	G-4
GC0301V	CUR BUS V	1L	3-12	1-18/1-15	0	40	VDC	.51	.158	W	20	40	VDC	.9	5.3	G-3
GC0302V	LMP BUS V	1L- <mark>1</mark> L	3-12/1-12	2-8/2-15	0	40	VDC	.60	.158	W	20	40	VDC	1.0	5.3	G-3
GC1201C	BAT 1 CUR	1L-1L	1-9/3-11		0	60	AMPS	. 95	,237		0	60	AMP	1.5	5.2	S-8
GC1202C	BAT 2 CUR	1L-1L	3-12/1-13		0	60	AMPS	.95	.237		0	60	AMP	1.5	5.2	F-4
GC1203C	BAT 3 CUR	1L-1L	3-9/1-9		0	60	AMPS	, 95	.237		0	60	AMP	1.5	5.2	F-4
GC1204C	BAT 4 CUR	1L-1L	3-9/3-10		0	60	AMPS	.95	.237		0	60	AMP	1.5	5.2	S-5
GC1205C	BAT 5 CUR	1L-1L	1-8/3-11		0	120	AMPS	1.9	.474		0	120	AMP	3.0	5.3	N-5
GC1206C	BAT 6 CUR	1L-1L	3-9/1-9		0	120	AMPS	1.9	.474		0	120	AMP	3.0	5.3	R-4
GC1207C	BAT L CR	1-1L	2-9/4-11		0	60	AMPS	. 95	.237		0	60	AMP	1.5	5.2	F-4
GC4361X	BAT 1 HI	1	10E30-2A1	2-4					HI			FLAG			5.2	S-5
GC4362X	BAT 1 LO	1	10E30-2A1	2-4					LO			FLAG			5.2	S-5
GC4363X	BAT 2 HI	1	10E30-2A1	24					HI			FLAG			5.2	F-7
GC4364X	BAT L LMP	1	10E30-2A1	2-4					LMP			FLAG			5.2	G-6
GC4365X	BAT 3 HI	1	10E30-2A1	2-4					HI			FLAG			5.2	F-5
GC4366X	BAT L CDR	1	10E30-2A1	2-4					CDR			FLAG			5.2	F-6
GC4367X	BAT 4 HI	1	10E30-2A1	2-4					HI			FLAG			5.2	S-5
GC4368X	BAT 4 LO	1	10E30-2A1	2-4					LO			FLAG			5.2	S-5
GC4369X	BAT 5 CDR B	1	10E33-3A1	2-4					B/U			FLAG			5.3	P-4
GC4370X	BAT 6 CDR N	1	10E33-3A1	2-4					NORM			FLAG			5.3	Q-4
GC4371X	BAT 5 LMP N	1	10E33-3A1	2-4					NORM			FLAG			5.3	0-4
GC4372X	BAT 6 LMP B	1	10E33-3A1	2-4					B/U			FLAG			5.3	Q-4
GC4391X	DEADFACE OPEN											FLAG				
GC4411X	BUS FAULT											COMP CAU	Т			
GC9961U	BAT 1 MAL	1	10E29-2A1	2-12/2-13					MAL	C					5.2	S-5
GC9962U	BAT 2/L MAL	1	10E29-2A1	2-12/2-13					MAL	C					5.2	F-5
GC9963U	BAT 3/L MAL	1	10E29-2A1	2-12/2-13					MAL	C					5.2	F-4
GC9964U	BAT 4 MAL	1	10E29-2A1	2-12/2-13					MAL	С					5.2	S-5
GC9965U	BAT 5 MAL	1	10E29-2A1	2-12/2-13					MAL	С					5.3	G-4
GC9966U	BAT 6 MAL	1	10E29-2A1	2-12/2-13					MAL	C					5.3	G-5

asys AND LBR (SAMPLES/SECOND AND LOW BIT RATE)
Example: 1L, ONE S/S AND ON LBR
1-1L, REDUNDANT ONE S/S WITH ONE LOCATION ON LBR
1L-1L, REDUNDANT ONE S/S WITH BOTH LOCATIONS ON LBR
.

^bPAM AND SEQ/GT AND DIODE (PAM AND SEQUENCER GATE FOR ANALOG PARAMETERS/GATE AND DIODE FOR BILEVEL PARAMETERS) ^C1 PCM CNT (ENGINEERING WEIGHT OF ONE PCM COUNT)

•

LETTER	ENG	DATE	APPROVAL
А	Hershel Pedains	7-30-7/ 9-30-71	wonah h fu

LM-10 AND SUBS

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS - Continued

MEAS ID	MEASUREMENT	S/S AND	PAM AND SEQ/	SCERA		TM RA	ANGE	TM ACC	1 PCM	C&W	ONBO	ARD RA	NGE	O/B ACC	REF	ERENCE
		LBR ^a	GT AND DIODE	AND LOC	_		·····	EU	CNTC					EU	DWG	ZONE
GF0500P	DES 2 H ₂ 0 P	1L	3-15		0	60	PSIA	1.18	.237		0	100	PCT	2.8	6.2	Q-9
GF0521T	DES 2 H ₂ 0 T	1L	2-10	2-21	20		DEG F	1.5	.710			_			6.2	S-9
GF0584P	DES 2 02 P	1L	2-14		0	3000	PSIA	63.6	11.9		0	100	PCT	2.9	6.1	S-4
GF1083X	SUIT FAN 1 MAL	1L-1L	10E5-5A1	2-3					FAIL	C					6.1	F-4
GF1084X	SUIT FAN 2 MAL	1L-1L	10E5-5A1	2-3					FAIL	W					6.1	F-4
GF1087X	SEL FAN FAIL											COMP	CAUT		6.1	F-3
GF1201X	CDR SUIT DISC	1L-1L	10E3-3A1	2-5					DISC						6.1	J-7
GF1202X	LMP SUIT DISC	1L-1L	10E3-3A1	2-5					DISC						6.1	J-4
GF1211X	SUIT RLF CLSD	1L-1L	10E5-5A1	2-5					CLSD						6.1	H-7
GF1212X	SUIT RLF OPEN	1L-1L	10E5-5A1	2-5					OPEN						6.1	H-7
GF1221X	SUIT DIV EGR	1L-1L	10E5-5A1	2-5			-		EGR			<mark> .</mark>			6.1	G-6
GF1231X	CABIN RET EGR	1L-1L	10E4-4A1	2-5					CLSD						6.1	E-7
GF1232X	CABIN RET OPEN	1L-1L	10E4-4A1	2-5					OPEN						6.1	E-7
GF1241X	SEC CO2 SEL	1L-1L	10E5-5A1	2-5		10-	0.5.5		SEC						6.1	D-4
GF1281T	SUIT TEMP	1L-1L	4-14/2-14	1-21		120	DEG F	1.75	.395		40	100	DEG	1.6	6.1	M-7
GF1301P	SUIT PRESS	1L-1L	3-12/1-12	1-5	0	10	PPSIA	.26	.040	W	0	10	PSI	.33	6.1	G-8
GF1521P	CO ₂ PP	1L-1L	2-5/4-8	1-5	0	30	MMHg	3.00	.118	С					6.1	K-5
GF1522P	CO ₂ PP										0	30	MMHg		6.1	K-6
GF1651T	CABIN TEMP	1L	4-12	1-21	20	120	DEG F	2.77	.395		40	100	DEG	2.0	6.1	L-7
GF2021P	PRI GLY PMP AP	1L-1L	3-9/1-10		0	50	PSID	1.28	.198						6.2	J-8
GF2531T	W/B GLY IN T	1L	2-12	2-20	20	120	DEG F	2.77	.395						6.2	M-1
GF2581T	W/B GLY OUT T	IL	1-11	2-20	20	120	DEG F	2.77	.395						6.2	0-1
GF2681T	PRI GLY PUMP IN T											120	DEG		6.2	M-3
GF2921P	SEC GLY PRESS	1-1L	4-6/2-7		0	60	PSIA	1.12	.237		0	60	PSI	1.9	6.2	H-4
GF2935X	GLY PUMP FAIL			2-13					FAIL	С					6.2	L-7
GF2936X	GLY PUMP SW/0	1L-1L	10E4-4A1	2-12					FAIL			COMP	P CAUT		6.2	H-6
GF3071X	DMD REG A CLSD	1L-1L	10E4-4A1	2-5					CLSD						6.1	M-4
GF3073X	DMD REG B CLSD	1L-1L	10E4-4A1	2-5				_	CLSD					-	6.1	N-4
GF3571P	CABIN PRESS	1L-1L	1-9/3-11		0	10	PSIA	.26	.040		0	10	PSI	. 32	6.1	F-8
GF3572X	REPR ELEC OPEN	1L-1L	10E3-3A1	2-3					OPEN	W					6.1	N-4
GF3582P	ASC 1 0 ₂ P	1L-1L	4-6/2-6	1-7		1000	PSIA	19.6	3.95	С		100	PCT	2.8	6.1	Q-6
GF3583P	ASC 2 0 ₂ P	1L-1L	4-9/2-10	1-7		1000	PSIA	19.6	3.95	С		100	PCT	2.8	6.1	R-4
GF3584P	DES 1 02 P	1L-1L	1-11/3-13	2-8		3000	PSIA	63.6	11.9	С	0	100	PCT	2.9	6.1	R-4
GF3591P	U/H RLF PRESS	1L	3-15		0	25	PSIA	. 47	.099						6.1	C-3
GF3592P	F/H RLF PRESS	1L	1-14		0	25	PSIA	.47	.099						6.1	D-2
GF4101P	PRI H20 REG AP	1-1L	1-14/1-13		0	2	PSID	.06	.008						6.2	P-6
F4500P	DES 1 H ₂ 0 P	1L-1L	2-8/4-10	1-7	0	60	PSIA	1,18	.237		0	100	PCT	2.8	6.2	Q-9
F4501P	DES H ₂ 0 PRESS	1	3-7		0	25	PSIA		.099						6.2	R-7
F4502P	ASC 1 H ₂ 0 P	1L-1L	2-6/4-8	1-8	0	60	PSIA	1.18	.237			100	PCT	2.8	6.2	P-9
GF4503P	ASC 2 H ₂ 0 P	1L-1L	2-6/4-8	1-8	0	60	PSIA	1.18	.237		0	100	PCT	2.8	6.2	Q-9
F4511T	PRI W/B H ₂ O T	1L-1L	3-13/1-13	2-6		160	DEG F	3.32	.554						6.2	N-2
GF4585T	ASC 1 H ₂ 0 T	1L-1L	1-11/3-14	2-21	-200	200	DEG F	6.86	1.59						6.2	Q-8
F4586T	ASC 2 H ₂ O T	1L-1L	2-5/4-7	2-21	-200	200	DEG F	6.86	1.59						6.2	Q-8
GF9986U	SEL GLY LO LVL	1L-1L	10E3-3A1	2-3						С					6.2	M-5
GF9993U	CO2 COMP CAUT											COMP	CAUT		6.3	L-2

•

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS - Continued

MEAS ID	MEASUREMENT DESCRIPTION	S/S AND LBR ^a	PAM AND SEQ/ GT AND DIODE ^D	SCERA AND LOC		TM RA	NGE	TM ACC EU	1 PCM CNT ^C	C&W	ONBO	ARD RAN	IGE	0/B ACC EU	REFER	ENCE
GF9997U	SEL GLY PMP P	11-11	1-5/3-7		0	60	PSIA	1.12	.237		0	60	PSI	1.9	6.2	K-5
GF9998U	SEL GLYCOL T	1L-1L	4-12/2-13	1-10	20	120	DEG F	2.77	.395		20	80	DEG	3.2	6.2	L-!
GF9999U	SEL H ₂ O SEP RT	1L	3-7	1-5	0	3600	RPM	77.4	14.2	с	arte de travénier	COMP	CAUT		6.1	K-4
GG0001 X	PGNS DOWNLINK	50													9.11	K-
GG0117H	ALT POS										0	60500	FT			
GG0118L	ALT RATE VEL										-700	700	F/S			
GG0119L	FORWARD VEL						2				-200	200	F/S			
GG0120L	LATERAL VEL										-200	200	F/S			
GG1040V	PLS TORQ REF	1-1	3-6/1-7	PB8-III	85	135	VDC		.198						10.7	D-
GG1110V	2.5VDC TH BIAS	1-1L	4-7/2-7	PU-I	0	5	VDC		.020						10.12	F-
GG1201V	28VAC 800HZ	1L	2-11	PU-I	0	31	VRMS		.125						10.7	E-
GG1331V	28VAC 3.2KHZ	1L	2-5	PU-II	0	31	VRMS		.125						10.7	E-
GG1513X	IMU STBY	1L-1L	10E6-1A1	PD-I					STBY						10.7	К-
GG1523X	LGC OPERATE	1L-1L	10E6-1A1	PD-I					OPR						10.7	S-
GG2001V	X PIPA OUT INØ	50-50	2-1/1-2	PB3.2-II	-2.5	/2.5	VRMS		.020						10.11.1	0-
GG2021V	Y PIPA OUT INØ	50	1-1	PB3.2-II	-2.5	/2.5	VRMS		.020						10.11.1	M-
GG2041V	Z PIPA OUT INØ	50-50	3-1/2-2	PB3.2-II	-2.5	/2.5	VRMS		.020						10.11.1	N-
GG2107V	1G SVO ERR INØ	100- 100	1-1/2-1	PB3.2-II	-3	3	VRMS		.024						10.11.1	J-
GG2112V	1G RSV OUT SIN	10L	3-5	PB8-IV	-20	20	VRMS		.158						10.11.1	D-
GG2113V	1G RSV OUT COS	10L	3-4	PB8-IV	-20	20	VRMS		.158						10.11.1	D-
GG2122V	1G RSV OUT SIN										-90	90 DE	G PITCH			
GG2123V	1G RSV OUT COS										-90	90 DE	G PITCH			1
GG2137V	MG SVO ERR INØ	100- 100	3-1/2-1	PB3.2-II	-3	3	VRMS		.024						10.11.1	J-
GG2142V	MG RSV OUT SIN	10L- 10	2-3/4-3	PB8-IV	-20	20	VRMS		.158						10.11.1	D-
GG2143V	MG RSV OUT COS	10-1L	1-5/1-4	PB8-IV	-20	20	VRMS		.158						10.11.1	D-
GG2152V	MG RSV OUT SIN										-180	180 [DEG ROLL			
GG2153V	MG RSV OUT COS										-180	180 [DEG ROLL			T
GG2167V	OG SVO ERR INØ	100-	2-2/1-2	PB3.2-II	-3	3	VRMS		.024						10.11.1	I-
GG2172V	OG RSV OUT SIN	10L	3-4	PB8-IV	-20	20	VRMS		.158						10.11.1	D-
GG2173V	OG RSV OUT COS	10-1L	1-8/1-3	PB8-IV	-20	20	VRMS		.158						10.11.1	D-
GG2182V	OG RSV OUT SIN										0	360 [DEG YAW			1
GG2183V	OG RSV OUT COS										0	360	DEG YAW			
GG2217V	PITCH ATT ERR															
GG2219V	PITCH DAC OUT	10	4-4	PB8-1	-5	5	VRMS		.040						10.11.2	F-
GG2247V	ROLL ATT ERR															
GG2249V	YAW DAC OUT	10	4-5	PB8-I	-5	5	VRMS		.040						10.11.2	F
GG2277V	YAW ATT ERR															
GG2279V	ROLL DAC OUT	10	2-4	PB8-I	-5	5	VRMS		.040						10.11.2	G-
GG2300T	PIPA TEMP	1L-1L	1-11/3-14	PU-I	120	140	DEG F		.080						10.11.1	I.
GG3304V	RR SHFT SIN	10	1-4	PB8-III	-20	20	VRMS		.158					1	10.14	B-
GG3305V	RR SHFT COS	10	3-3	PB8-III	-20	20	VRMS		.158						10.14	B-
GG3324V	RR TRUN SIN	10	4-3	PB8-III	-20	20	VRMS		.158						10.14	C-
GG3325V	RR TRUN COS	10	3-3	PB8-III	-20	20	VRMS		.158						10.1	C.

•

.

-

.

.

.

•

.

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS - Continued

MEAS ID	MEASUREMENT	S/S AND	PAM AND SEQ/	SCERA	TM RANGE	TM ACC	1 PCM	C&W	ONBOARD RANG	26	0/B	REFER	ENCE
	DESCRIPTION	LBR ^a	GT AND DIODE ^D	AND LOC	THINANGL	EU	CNT ^C	Caw	UNBUARD RANG	at.	ACC EU	DWG	ZONE
GG9001X	LGC WARNING	1L-1L	10E2-2A1	2-3			WARN	W				10.13.2	B-6
GG9002X	ISS WARNING	1L-1L	10E2-2A1	2-3			WARN	W		-		10.13.2	C-8
GH1204X	OUT OF DETENT	1	10E31-3A1	2-14			OUT					10.20	R-7
GH1214X	AUTO ON	1L	10E23-1A1	2-14			ON					10.21	S-9
GH1217X	AUTO OFF	1	10E31-3A1	2-14			OFF					10.21	S-7
GH1230X	APS ARM	1	10E41-1A2	1-3			ARM					10.24	K-5
GH1240V	X TRANS CMD	10	1-3	2-17	-10 10 VDC		.080					10.20	K-4
GH1241V	Y TRANS CMD	10	1-3	2-17	-10 10 VDC		.080					10.20	K-5
GH1242V	Z TRANS CMD	10	1-3	2-17	-10 10 VDC		.080					10.20	K-6
GH1247V	YAW ERR CMD	10-1L	4-4/1-12	2-18	-13 13 VDC		.103					10.20	K-7
GH1248V	PITCH ERR CMD	10-1L	2-4/1-12	2-18	-13 13 VDC		.103					10.20	M-7
GH1249V	ROLL ERR CMD	10-1L	2-4/1-13	2-18	-13 13 VDC		.103					10.20	M-3
GH1260X	APS ON	50L-50L	51E1-1A2	2-2			ON					10.24	E-6
GH1283X	ABORT STG CMD	50L-50L	51E1-1A2	2-14			STG					10.24	S-4
GH1286X	ENG FIRE OVRD	1	10E31-3A1	2-14			ON					10.21	N-3
GH1301X	DPS ON	1L	10E23-1A1	2-3			ON					10.21	E-6
GH1311V	MAN THRUST CMD	1L	4-12	1-15	0 92.5 PCT		.471		0 100	PCT		10.23	I-4
GH1313V	PITCH GDA POS	10-1L	1-6/3-3	2-9	-6 6 DEG		.047					10.22	I-3
GH1314V	ROLL GDA POS	10-1L	4-3/1-5	2-9	-6 6 DEG		.047					10.22	I-5
GH1323X	P TRIM FAIL	1L	10E23-1A1	2-3			FAIL	С				10.22	B-2
GH1330X	R TRIM FAIL	1L	10E23-1A1	2-3			FAIL	С				10.22	B-6
GH1331V	AUTO THRUST CMD	10-1L	4-3/3-5	1-15	0 82.5 PCT		.387		0 100	PCT		10.23	I-4
GH1348X	DPS ARM	1	10E41-1A2	1-3			ARM					10.21	L-6
GH1401V	RGA A-B 800 HZ			2-7				W					
GH1402V	RGA B-C 800 HZ			2-7				W					
GH1403V	RGA C-A 800 HZ			2-7				W					
GH1405V	RGA XCIT 800 HZ			1-17				W					
GH1406V	+15 VDC			2-19				W					
GH1407V	-15 VDC			2-19				W					
GH1408V	+4.3 VDC	21,020		2-8				W					
GH1418V	JD B4U OUTPUT	100- 100	12E1-4A2	1-4			ON	W				10.20	F-8
GH1419V	JD A4D OUTPUT	100- 100	12E1-4A2	1-4			ON	W				10.20	F-8
GH1420	JD B4F OUTPUT	100	12E4-3A2	1-4			ON	W				10.20	F-8
GH1421V	JD A4R OUTPUT	100	12E4-3A2	1-4			ON	W				10.20	F-8
GH1422V	JD A3U OUTPUT	100- 100	12E1-4A2	1-4			ON	W				10.20	F-8
GH1423V	JD B3D OUTPUT	100- 100	12E1-4A2	1-4			ON	W				10.20	F-8
GH1424V	JD B3A OUTPUT	100	12E4-3A2	1-4			ON	W			-	10.20	F-8
GH1425V	JD A3R OUTPUT	100	12E4-3A2	1-4			ON	W				10.20	F-8
GH1426V	JD B2U OUTPUT	100- 100	12E1-4A2	1-2			ON	W			-	10.20	F-8
GH1427V	JD A2D OUTPUT	100-	12E1-4A2	1-2			ON	W				10.20	F - 8
GH1428V	JD A2A OUTPUT	100	12E4-3A2	1-2			ON	W				10.20	F-8
GH1429V	JD B2L OUTPUT	100	12E4-3A2	1-2			ON	W	1			10.20	F-8
GH1430V	JD A1U OUTPUT	100- 100	12E1-4A2	1-2			ON	W				10.20	F-8

MEAS ID	MEASUREMENT	S/S AND	PAM AND SEQ/	SCERA	TM RANGE	TM ACC	1 PCM	C&W	ONBOARD RANGE	0/B ACC	REFE	RENCE
	DESCRIPTION	LBR ^a	GT AND DIODE ^D	AND LOC	in tourde	EU	CNTC	can	UNDOARD RANGE	EU	DWG	ZONE
GH1431V	JD BID OUTPUT	100-	12E1-4A2	1-2			ON	W	_		10.20	F-8
GH1432V	JD A1F OUTPUT	100	12E4-3A2	1-2			ON	W			10.20	F-8
GH1433V	JD BIL OUTPUT	100	12E4-3A2	1-2			ON	W			10.20	F-8
GH1455V	YAW ATT ERR	10-10- 1L	4-4/3-3/ 1-6	2-9	-3.5 3.5 VRMS		.028				10.20	S-6
GH1456V	PITCH ATT ERR	10-10- 1L	4-4/2-4/ 1-8	2-9	-3.5 3.5 VRMS		.028				10.20	S-4
GH1457V	ROLL ATT ERR	10-10- 1L	2-4/1-10/ 1-3	2-10	-3.5 3.5 VRMS		.028				10.20	S-2
GH1461V	RGA YAW RATE	10L- 10L	2-3/3-4	2-10	-25 25 DEG/SEC		.198				10.20	T-5
GH1462V	RGA PITCH RATE	10L- 10L	2-3/3-5	2-10	-25 25 DEG/SEC		.198				10.20	T-4
GH1463V	RGA ROLL RATE	10L- 10L	2-3/3-4	2-10	-25 25 DEG/SEC		.198				10.20	T-2
GH1488V	PRIME -4.7 VDC			2-15				С	_			
GH1489V	B/U -4.7 VDC		1	2-15				С				
GH1493V	+6 VDC SUPPLY			2-19				W			_	
GH1494V	-6 VDC SUPPLY			2-19				W				
GH1497V	YAW RGA SIG								-25 25 DEG/SEC		10.20	S-5
GH1498V	PITCH RGA SIG								-25 25 DEG/SEC		10.20	S-3
GH1499V	ROLL RGA SIG								-25 25 DEG/SEC		10.20	S-1
GH1603X	MIN DEADBAND	1	10E41-1A2	1-3			WIDE				10.20	Q-1
GH1621X	AGS SELECT	1L	10E23-1A1	2-3			AGS				10.20	T-1
GH1628X	ROLL PLS/DIR	1	10E27-2A1	2-13			ON				10.20	0-3
GH1629X	PITCH PLS/DIR	1	10E27-2A1	2-13			ON				10.20	0-5
GH1630X	YAW PLS/DIR	1	10E27-2A1	2-13			ON				10.20	L-8
GH1641X	AGS AUTO	1	10E31-3A1	2-12			ON				10.20	S-9
GH1642X	AGS ATT HOLD	1	10E31-3A1	2-12			ON				10.20	R-9
GH1643X	PGNS AUTO	1	10E31-3A1	2-14			ON					J-8
GH1644X	PGNS ATT HOLD	1	10E31-3A1	2-14							10.20	
GH1893X	+X TRANS OVRD	1	10E41-1A2	1-3			ON				10.20	J-8
GH1896X	UNBAL COUPLES	1	10E31-3A1	2-14			OFF				10.20	Q-9 F-9
GI <mark>0001</mark> %	AGS DOWNLINK	50							-		10.19	D-5
GI3151V	ALPHA SIN								-180 180 DEG		10.19	C-2
GI3152V	ALPHA COS								-180 180 DEG		10.19	C-2
GI3153V	BETA SIN								0 360 DEG		10.19	C-2
GI3154V	BETA COS								0 360 DEG		10.19	C-2
GI3155V	GAMMA SIN						-		-90 90 DEG		10.19	C-2
GI3156V	GAMMA COS								-90 90 DEG		10.19	C-2
GI3166V	YAW ATT ERR								-15 15 DEG		10.18	F-5
GI3167V	PITCH ATT ERR								-15 15 DEG		10.18	F-5
GI3168V	ROLL ATT ERR								-15 15 DEG		10.18	F-5
GI3203H	ALT POS								0 50,000 FT		10.18	F-2
GI 3204L	ALT VEL RATE								-700 700 FFT/SEC		10.18	F-2
GI3205L	LAT VEL	-							-200 200 FT/SEC		10.18	G-4

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS - Continued

•

.

.

•

•

•

•

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS - Continued

	MEASUREMENT	S/S AND	PAM AND SEQ/	SCERA	_		NCE	TM	1 PCM	C811	ONROADD DANCE	0/B	REFE	RENCE
MEAS ID	DESCRIPTION	LBR ^a	GT AND DIODE ^D	AND LOC	Т	m ra	NGE	ACC EU	CNTC	C&W	ONBOARD RANGE	ACC EU	DWG	ZONE
GI3214V	ASA +28 VDC			2-15						W			10.17	J-6
GI3215V	ASA +12 VDC			1-15						W	*		10.17	J-6
GI 3232X	TEST MODE FAIL			1-4						W			10.17	J-6
GI3233F	ASA 400 HZ			1-16						W			10.17	J-6
GI3301T	ASA TEMP	1L-1L	4-9/2-9	1-10	20	200	DEG F						10.17	J-6
GI3305X	AGS WARMUP	1	10E27-2A1	2-2					WMUP				10.17	0-6
GI3306X	AGS STANDBY	1	10E27-2A1	2-13					STBY		-		10.17	0-7
GL0300X	FRAME SYNC & ID	50L										1	9.1	E-4
GL0302X	FORMAT ID	٦L											9.1	E-4
GL0400X	PCM OSC FAIL 1	1L-1L	10E7-2A1						FAIL				9.1	H-6
GL0401V	CAL 85 PCT	10L-10	3-5/1-4		0	5	VDC		.020				9.1	H-2
GL0402V	CAL 15 PCT	10L-10	3-5/4-5		0	5	VDC		.020				9.1	H-2
GL0422V	PCM OSC FAIL 2	1L	1-13		0	5	VDC		.020				9.1	H-6
GL0423V	PCM OSC FAIL 3	11	2-9		0	5	VDC	1	.020				9.1	H-6
GL0501W	MET	10L			0 4	10	DAYS						9.1	E-6
GL4022X	ASC PRESS WARN							1		W				
GL4023X	DES REG WARN							-		W		-		
GL4024X	DES QTY WARN							-		W		-		
GL4026X	CES AC PWR FAIL	1L-1L	10E7-2A1	2-2				-	GOOD	W			10.17	G-4
GL4027X	CES DC PWR FAIL	1L-1L	10E7-2A1	2-2					GOOD	W		-	10.17	G-4
GL4028X	AGS PWR FAIL	1L-1L	10E7-2A1	2-2				-	GOOD	W			10.17	0-7
GL4029X	LGC WARNING							1		W				
GL4030X	ISS WARNING									W				
GL4031X	RCS TCA WARN									W				
GL4032X	RCS REG A WARN									W		-		
GL4033X	RCS REG B WARN		-							W		1		
GL4034X	DC BUS WARN	-						-		W		-		-
GL4036X	CABIN WARN									W		1		
GL4037X	SUIT/FAN WARN									W		-		
GL4041X	ASC REG CAUT									C			-	
GL4042X	ASC QTY CAUT									С				
GL4043X	ENG GMBL CAUT	1								С			1	
GL4046X	INVERTER CAUT									С		-		
GL4047X	BAT MAL	1L-1L	10E7-2A1	2-3					GOOD	С		-	9.6	I-4
GL4048X	RNDZ RDR CAUT								1	С		-		
GL4050X	PRE AMPS CAUT									с				1
GL4051X	ED RELAYS CAUT									с		-		1
GL4052X	RCS CAUT								1	С				1
GL4053X	HEATER CAUT							-		С				+
GL4054X	C/W PWR FAIL	1L-1L	10E7-2A1	2-12				-	GOOD	С		1	9.4	E-4
GL4056X	ECS CAUT			+				1		С		-		+
GL4057X	02 QTY CAUT		-						-	С		-	1	+
GL4058X	GLYCOL CAUT									С				+

9-27

LM-10 AND SUBS REV A, PCN-1

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS - Continued

MEAS ID	MEASUREMENT	S/S AND	PAM AND SEQ/	SCERA	TM RANGE	TM ACC	1 PCM	C&W	ONBOARD RANGE	O/B ACC	REFERI	ENCE
	DESCRIPTION	LBR ^a	GT AND DIODED	AND LOC		EU	CNT ^C	Cun	SHESHES MARE	EU	DWG	ZONE
GL4059X	WATER QTY CAUT							C				
GL4060X	S-BD RCVR CAUT							C				
GL4069X	MASTER ALARM	1L-1L	10E7-2A1	2-2			OFF				9.4	C-8
GL4070X	RECORDER ON		L			1	L		FLAG			
GL8275U		Т	USEI	D FOR PROCES	SING BY GROUND DATA	SYSTEM	IS. REF.	GL9401	U FOR VEHICLE DATA	r	,	·
GL9001U	BATTERY FAULT					-			COMP CAUT			
GL9011W	MISSION TIME		· · · ·	-					0 1000 HRS			
GL9012W	EVENT TIME					-			0 60 MIN			
GL9013A	THRUST/WEIGHT								FLAG			
GL9401U	SEL RTG/ECA 1T	۱L	4-15	2-6	-200 500 DEG F		2.77					
GL9402U	SEL LR/ECA 2T	1-1L	4-14/2-12	1-21	-200 200 DEG F		1.58		-100 200 DEG F			
GL9501U	TCA PR 4A FAIL				in K				FLAG			
GL9502U.	TCA PR 4B FAIL								FLAG			
GL9503U	TCA PR 3A FAIL			-					FLAG			
GL9504U	TCA PR 3B FAIL								FLAG			
GL9505U	TCA PR 2A FAIL								FLAG			1
GL9506U	TCA PR 2B FAIL								FLAG	1		1
GL9507U	TCA PR 1A FAIL			9					FLAG			
GL9508U	TCA PR 1B FAIL								FLAG			
GM2435U	LUNAR CONTACT								LUNAR CONT			
GM5000U	LAND GEAR DPLY	1	10E40-1A2	1-13			DPLY		FLAG		4.1	D-6
GN7521X	LR RNG BAD	1L-1L	10E1-1A1	2-2			BAD	+	TEAG		10.16.2	C-6
GN7523L	LR VXA								-700 700 FT/SEC		10.10.2	0-0
GN7524L	LR VYA								-200 200 FT/SEC			
GN7525L	LR VZA								-200 200 FT/SEC			
GN7527H	LR RANGE								0 60500 FT		-	
GN7545E	VEL XMTR PWR	1			-				0 500 MW		+	
GN7546E	ALT XMTR PWR								0 500 MW			
GN7557X	LR VEL BAD	1L-1L	10E1-1A1	2-2		-	BAD				10.16.1	F-3
GN7563T					ING BY GROUND DATA	SYSTEMS		194020	FOR VEHICLE DATA		10.10.1	1-5
GN7609H	RR SHFT ANGLE	Τ				T	Γ	1	-70 155 DEG		1	1
GN7610R	RR SHFT RATE								-10 10 DEG/SEC			
GN7611H	RR TRUN ANGLE							1	-70 70 DEG			
GN7612R	RR TRUN RATE	1						-	-10 10 DEG/SEC			
GN7613H	RR RANGE							-	0 400 N.MI		+	
GN7614L	RR RANGE RATE								-700 700 FT/SEC			
GN7621X	RR NO TRACK	1L-1L	10E1-1A1	2-2			NO TRACK	С	COMP CAUT		10.14	K-2
GN7642E	RR PWR OUT						INNUN		0 500 MW			
GN7644V	ATM TRUN OUT								0 5 VDC			
GN7646V	ATM SHAFT OUT								0 5 VDC			
GN7648V	ATM AGC	1							0 5 VDC			
GN7723T	RR ANT TEMP	1-1- 1L	2-7/3-13/ 4-7	1-21	-200 200 DEG F		1.58	С	-100 200 DEG		10.14	T-3
GP0001P	APS He 1 PRESS	1L-1L	1-14/2-12	1-8	0 4000 PSIA		15.8	W	0 4000 PSI		11.2	P-2
GP0002P	APS He 2 PRESS	1L-1L	2-9/4-11	1-19	0 4000 PSIA		15.8	W	0 4000 PSI		11.2	0-6
GP0018P	APS He REG P	1	2-8		0 300 PSIA	+	1.19	1			11.2	K-7

LETTER	ENG	DA	TE	APPROVAL
A,PCN-1	ahk	1-24-72	1-24-72	nywoldy

.

0

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS - Continued

MEAS ID	MEASUREMENT	S/S AND	PAM AND SEQ/	SCERA	TM RANGE	TM ACC	1 PCM	C&W	ONBOARD RAN	GE	O/B ACC	REFER	RENCE
	DESCRIPTION	LBR ^a	GT AND DIODE ^D	AND LOC	TH RAIGE	EU	CNTC	Can	UNDUARD NAM	UL	EU	DWG	ZONE
GP0025P	APS He REG P	1L	3-7	1-8	0 300 PSIA		1,19	с				11.2	K-2
GP0041P	APS He 1R P	10	4-3		0 4000 PSIA		15.8		0 4000	PSI		11.2	0-3
GP0042P	APS He 2R P	10	1-4		0 4000 PSIA		15.8		0 4000	PSI		11.2	0-6
GP0318X	APS He 1 CLSD	1	10E43-2A2	1-12			CLSD		FLAG			11.2	M-3
GP0320X	APS He 2 CLSD	1	10E43-2A2	1-12			CLSD		FLAG			11.2	M-6
GP0501P	FU ULLAGE P								0 300	PSI		11.2	I-7
GP0718T	APS FUEL TEMP	۱L	3-11	1-9	20 120 DEG F		. 395		40 100	DEG		11.2	I-6
GP0908X	APS FUEL LO	11	10E24-1A1	2-2			LO					11.2	H-6
GP1001P	OX ULLAGE P								0 300	PSI		11.2	I-2
GP1218T	APS OX TEMP	1L-1L	4-13/2-11	1-9	20 120 DEG F		. 395		40 100	DEG		11.2	I-2
GP1408X	APS OX LO	1L	10E24-1A1	2-2			LO					11.2	H-2
GP1501P	APS FU PRESS	1L-1L	2-8/4-10	1-19	0 250 PSIA		.990					11.2	G-7
GP1503P	APS OX PRESS	1L-1L	4-9/2-10	1-19	0 250 PSIA		.990		5			11.2	G-2
GP2010P	APS TCP	200- 1L-1L	2-2/3-13/ 3-15		0 150 PSIA		.592					11.2	B-5
GP2997U	APS VLV A APOS	1	10E32-3A1	2-14			∆POS					11.2	B-3
GP2998U	APS VLV B ∆POS	۱.	10E32-3A1	2-14			∆POS					11.2	B-3
GQ3015P	DPS STRT TNK P	1	3-8		0 1750 PSIA		6.92		0 1750	PSI		11.1	T-7
GQ3018P	DPS REG P	1L	4-8	1-19	0 300 PSIA		1.19	W				11.1	Q-3
GQ3025P	DPS He REG P	1	4-11		0 300 PSIA		1,19					11.1	Q-6
GQ3309X	DES He REG 1								FLAG				
GQ3310X	DES He REG 2								FLAG				
GQ3435P	DPS He PRESS	1L-1L	3-6/1-6		0 2000 PSIA		7.90					11.1	H-7
GQ3436P	DPS He PRESS							-	0 1750	PSI		11.1	H-7
GQ3500X	FU VENT OPEN								FLAG			11.1	K-6
GQ3501P	DPS FU ULL P		*										
GQ3603Q	DPS FU 1 QTY	100- 1-1L	1-1/4-11/ 2-9		0 95 PCT		.375	6				11.1	L-6
GQ3604Q	DPS FU 2 QTY	100- 1-1L	3-2/2-10/ 4-9		0 95 PCT		.375					11.	L-6
GQ3605Q	DPS FU QTY SEL	1-15	4-2						0 95	PCT		1.1	L-5
GQ3611P	DPS FU PRESS	200- 200-1L	3-6/1-1/ 4-1	×	0 300 PSIA		1,19					11.1	G-2
GQ3718T	DPS 1 FU T	1-1	4-6/2-7	1-9	20 120 DEG F		.395		40 100	DEG		11.1	J-3
GQ3719T	DPS 2 FU T	1-1	2-11/4-13	1-9	20 120 DEG F		. 395		40 100	DEG		11.1	J-1
GQ4000X	DPS OX VENT								FLAG				
GQ4001P	DPS OX ULL P						a		0 300	PSI		11.1	K-3
GQ4103Q	DPS OX 1 QTY	100- 1-1L	4-1/2-13/ 4-12		0 95 PCT		. 375					11.1	К6
GQ4104Q	DPS OX 2 QTY	100- 1-1L	3-2/2-11/ 4-15		0 95 PCT		.375					11.1	К-6
GQ4105Q	DPS OX QTY SEL								0 95	PCT		11.1	L-5
GQ4111P	DPS OX PRESS	200- 200-1L	3-6/2-1/ 1-2		0 300 PSI		1.19					11.1	G-2
GQ4218T	DPS 1 OX T	1-1	1-5/3-8	1-10	20 120 DEG F		. 395		40 100	DEG		11.1	J-3
GQ4219T	DPS 2 OX T	1-1	1-6/3-8	1-10	20 120 DEG F		. 395		40 100	DEG		11.1	J-1
GQ4455X	DPS PROP LO	1	10E32-3A1	2-12			LOW	W				11.1	L-5
GQ6510P	DPS TCP	200- 1L-1L	2-2/1-8/ 3-10		0 200 PSIA		.790		0 100	PCT		11.1	C-3

A

А

•

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS - Continued

	MEASUREMENT	S/S AND	PAM AND SEQ/	SCERA		TH	DANOF	TM	1 PCM		0.00	0400 0	NCE	0/B	REFE	RENCE
MEAS ID	DESCRIPTION	LBR ^a	GT AND DIODE			TM	RANGE	ACC EU	CNTC	C&W	ONB	OARD RA	NGE	ACC EU	DWG	ZON
GQ6806H	DPS VAR ACT	50-50- 1L	2-14/4-1/ 4-2		0	100	РСТ		. 395						11.1	E-3
GR1085Q	RCS PROP A QTY	1-1L	3-14/1-12		0	108	PCT		.425		0	100	PCT		12.1	H-9
GR1095Q	RCS PROP B QTY	1-1L	3-13/1-11		0	108	PCT		.425		0	100	PCT		12.1	H-9
GR1101P	RCS A He PRESS	1L-1L	2-11/4-14	1-6	0	3500	PSIA		13.8	С	0	3500	PSI	-	12.1	J-8
GR1102P	RCS B He PRESS	1L-1L	4-12/2-12	1-6	0	3500	PSIA		13.8	С	0	3500	PSI		12.1	G-8
GR1201P	RCS A REG PRESS	1-1L	4-11/3-11	1-6	0	350	PSIA		1.38	W	0	350	PSI	1	12.1	I-6
GR1202P	RCS B REG PRESS	1L	4-13	1-6	0	350	PSIA		1,38	W	0	350	PSI	-	12.1	G-6
GR2121T	RCS A FU TEMP	1L	2-8	2-20	20	120	DEG F		. 395		20	120	DEG		12.1	J-5
GF2122T	RCS B FU TEMP	1L	2-8	2-20	20	120	DEG F		.395		20	120	DEG		12.1	G-5
GR2201P	A FU MFLD PRESS	1-1L	3-6/1-7		0	350	PSIA		1.38		0	350	PSI		12.1	I-3
GR2202P	B FU MFLD PRESS	1-1L	1-5/3-8		0	350	PSIA		1.38		0	350	PSI		12.1	G-4
GR3201P	A OX MFLD PRESS	1-1L	3-7/1-7		0	350	PSIA		1,38		0	350	PSI		12.1	I-4
GR3202P	B OX MFLD PRESS	1-1L	1-6/3-8		0	350	PSIA		1.38		0	350	PSI		12.1	H-4
GR5031X	RCS TCP B4U	200	22E1a-3A2	1-11					ON	W					12.1	C-2
GR5032X	RCS TCP A4D	200	22E1a-3A2	1-11					ON	W					12.1	N-1
GR5033X	RCS TCP B4F	200	22E1a-3A2	1-11					ON	W					12.1	B-1
GR5034X	RCS TCP A4R	200	22E1a-3A2	1-11				1	ON	W					12.1	N-2
GR5035X	RCS TCP A3U	200	22E1a-3A2	1-11	1				ON	W	-				12.1	N-4
GR5036X	RCS TCP B3D	200	22E1a-3A2	1-11	1			1	ON	W					12.1	C-3
GR5037X	RCS TCP B3A	200	22E1a-3A2	1-11				1	ON	W					12.1	C-4
GR5038X	RCS TCP A3R	200	22E1a-3A2	1-11				1	ON	W					12.1	N-3
GR5039X	RCS TCP B2U	200	22E1b-3A2	1-11	-			-	ON	W					12.1	C-7
GR5040X	RCS TCP A2D	200	22E1b-3A2	1-11	1				ON	W					12.1	N-5
GR5041X	RCS TCP A2A	200	22E1b-3A2	1-3					ON	W					12.1	N-6
GR5042X	RCS TCP B2L	200	22E1b-3A2	1-3					ON	W					12.1	C-5
GR5043X	RCS TCP A1U	200	22E1b-3A2	1-3					ON	W					12.1	N-9
GR5044X	RCS TCP B1D	200	22E1b-3A2	1-3	1				ON	W.					12.1	C-8
GR5045X	RCS TCP A1F	200	22E1b-3A2	1-3		-			ON	W					12.1	N-7
GR5046X	RCS TCP B1L	200	22E1b-3A2	1-3					ON	W					12.1	C-9
GR6001T	QUAD 4 TEMP	۱L	4-6	1-20	-60	260	DEG F		1.26		-60	260	DEG		12.1	C-2
GR6002T	QUAD 3 TEMP	۱L	4-7	1-20	-60	260	DEG F		1,26		-60	260	DEG		12.1	D-4
GR6003T	QUAD 2 TEMP	1L	4-10	1-20	-60	260	DEG F		1.26		-60	260	DEG		12.1	D-6
GR6004T	QUAD 1 TEMP	1L	4-10	1-20	-60	260	DEG F		1.26		-60	260	DEG		12.1	D-8
GR9609U	RCS MAIN A CLSD	1L-1L	10E10-1A2	1-12					CLSD			FLAG			12.1	F-5
GR9610U	RCS MAIN B CLSD	1L-1L	10E10-1A2	1-12					CLSD			FLAG			12.1	K-5
GR9613U	A/B X FEED OPN	1L-1L	10E10-1A2	1-13					OPEN			FLAG			12.1	I-2
GR9631U	ASC FD A FU	1L-1L	10E10-1A2	1-13					OPEN			FLAG			12.1	H-2
GR9632U	ASC FD B FU	1L-1L	10E10-1A2	1-13					OPEN			FLAG			12.1	K-2
GR9641U	ASC FD A OX	1L-1L	10E10-1A2	1-12					OPEN			FLAG			12.1	F-2
GR9642U	ASC FD B OX	1L-1L	10E10-1A2	1-12					OPEN			FLAG			12.1	G-2
GR9661X	THR PR 4A CMD	1	10E42-1A2	1-13/1-14					CMD			FLAG			12.1	M-2
GR9662X	THR PR 4B CMD	1	10E42-1A2	1-13/1-14			1947 - 1948 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 -		CMD			FLAG			12.1	D-2
GR9663X	THR PR 3A CMD	1	10E42-1A2	1-13/1-14					CMD			FLAG			12.1	M-4
GR9664X	THR PR 3B CMD	1	10E42-1A2	1-13/1-14	-				CMD			FLAG			12.1	D-2
GR9665X	THR PR 2A CMD	1	10E42-1A2	1-13/1-14	1				CMD			FLAG			12.1	M-6

•

-

.

TABLE 9-III.- TELEMETERED AND DISPLAYED PARAMETERS - Concluded

	MEASUREMENT	S/S AND	PAM AND SEQ/	SCERA		DAN	CE.	TM	1 PCM	C&W	ONBOARD RAN	GF	0/B ACC	REFER	ENCE
MEAS ID	DESCRIPTION		GT AND DIODE ^b	AND LOC	11	RAN	GE .	ACC EU	CNT ^C	Caw	UNBOARD RAM		EU	DWG	ZONE
GR9666X	THR PR 2B CMD	1	10E42-1A2	1-13/1-14			_		CMD		FLAG			12.1	D-6
GR9667X	THR PR 1A CMD	1	10E42-1A2	1-13/1-14					CMD		FLAG			12.1	M-8
GR9668X	THR PR 1B CMD	1	10E42-1A2	1-13/1-14					CMD		FLAG			12.1	D-8
GT0441X	DUA STATUS	50	51D2-4A1											8.4	K-7
GT0451H	Y POS GIMB OUT										-75 255	DEG		8.3	B-7
GT0452H	X POS GIMB OUT										-75 75	DEG		8.3	B-7
GT0454T	S-BND ANT TEMP	1L	1-10	2-21	-200	200	DEG F		1,59		-100 200	DEG		8.3	B-5
GT0504V	S-BND RCVR AGC										0 5	VDC		8.3	I-7
GT0625V	VHF B AGC	1L-1L	3-10/1-10		-97	-27	DBM		.276					8.3	P-1
GT 0992B	S-BND ST Ø ERR	10-1L	2-14/2-3		-200 +	200	KHZ		1.59					8.3	J-6
GT0993E	S-BND XMTR PO	1L	1-14		0	1.2	W		.020					8.3	H-5
GT0994V	S-BND RCVR AGC	1L-1L	4-13/2-13	1-5	-135	-50	DBM		.020	С				8.3	J-7
GT9999J	EKG 1/2														
GY0050X	ABORT CMD	1L-1L	10E11-2A2	1-2					ON					10.21	S-4
GY0201 X	ED RLY A K1-6	1L-1L	10E11-2A2	1-12/1-14					ARM	С	COMP CA	UT		4.1	D-5
GY0202X	ED RLY B K1-6	1L-1L	10E11-2A2	1-12/1-14					ARM	C	COMP CA	UT		4.1	C-5
GY0231X	ED RLY A K7-15	1L-1L	10E11-2A2	1-14					SAFE					4.1	D-3
GY0232X	ED RLY B K7-15	1L-1L	10E11-2A2	1-14					SAFE					4.1	C-3
GY0703U	SEL ED BAT V			1-7							20 40	VDC		4.1	R-2
						PLSS	DATA								
GT8100X	EVC 1 SYNC	1.5													
GT8101V	EVC 1 CAL O	1.5			0	5	VDC							1	
GT8102V	EVC 1 CAL 100	1.5			0	5	VDC								
GT8110P	PLSS 1 H20 P	1.5			0	5	PSIA	.18			FLG/TONE			7.1	Q-2
GT8124J	PLSS EKG 1	FM 5.4 kHz			0	5	VDC						\$	7.1	I-6
GT8140C	PLSS 1 BAT CUR	1.5			0	10	AMPS	.243						7.1	S-9
GT8141V	PLSS 1 BAT V	1.5			12 2	0,5	VDC	.316						7.1	P-5
GT8154T	LCG 1 H ₂ O IN T	1.5			-4	90	DEG F	4.51						7.1	L-3
GT8168P	PGA 1 02 PRESS	1.5			2.5	5	PSID	.11			F/T2.5/6	PSI	0.1	7.1	N-4
GT8170T	PLSS 1 02 SUBL T	1.5			-4	90	DEG F	4.51						7.1	P-2
GT8175P	PLSS 1 CO2 PP	1.5			.1	30	MMHg	1.0						7.1	N-3
GT8182P	PLSS 1 02 P	1.5			0 1	500	PSIA	47			0/FUL	L	70	7.1	T-4
GT8196T	LCG 1 H20 2T	1.5			0	15	DEG F	.57						7.1	L-2
GT8200X	EVC 2 SYNC	1.5													
GT8201V	EVC 2 CAL O	1.5			0	5	VDC								
GT8202V	EVC 2 CAL 100	1.5			0	5	VDC								
GT8210P	PLSS 2 H20 P	1.5			0	5	PSIA	.18			FLG/TONE			7.1	R-2
GT8224J	PLSS EKG 2	FM 3.9 kHz			0	5	VDC							7.1	I-1
GT8240C	PLSS 2 BAT CUR	1.5			0	10	AMPS	.243						7.1	S-9
GT8241V	PLSS 2 BAT V	1.5			12 20.	.5	VDC	.316						7.1	0-5
GT8254T	LCG 2 H ₂ O IN T	1.5			-4	90	DEG F	4.51						7.1	L-3
GT8268P	PGA 2 02 PRESS	1.5			2.5	5	PSID	.11			F/T2.5/6	PSI	0.1	7,1	M-4
GT8270T	PLSS 2 02 SUBLT	1.5			-4	90	DEG F	4.51						7.1	P-
GT8275P	PLSS 2 CO2 PP	1.5			.1	30	MMHg	1.0						7.1	M-3
GT8282P	PLSS 2 02 P	1.5			0 1	500	PSIA	47			0/FULL		70	7.1	T-4
GT8296T	LCG 2 H20 AT	1.5			0	15	DEG F	.57						7.1	L-2

TABLE IV .- LUNAR MODULE TELEMETRY DATA SUMMARY

.

Ú.

.

.

		Measureme	nt			Loading			Sau			for		s/s			Summary TWX		M log and	Strip chart record	Primary MSK number
	Number	Title	Unit	Rang	ge High	number	1	2	3	4	5	6	7	8	9	10	number	plo STD		setup number	
C	C0071V	AC BUS VOLT	VRMS	0	120	1022069	1					.2			-		70	21B		LP-1	1001, 1002; 1071, 1091,
	C0155F	AC BUS FREQ BAT 1 VOLT	HZ VDC	380 0	420 40	1041069 1019101	1			.2		.2					70 70	21B 21A		LP-1 LP-1	1127 1001, 1002, 1091, 1127 1001, 1002, 1061
	C0202V	BAT 2 VOLT	VDC	Ő	40	1011101	1			.2		.2					70	21A		LP-1	1001, 1002, 1061
	C0203V	BAT 3 VOLT	VDC	0	40	1021101	1			.2	.2	.2					70	21A		LP-1	1001, 1002, 1061
	C0204V	BAT 4 VOLT	VDC	0	40	1015101	1			.2		.2					70	21A		LP-2	1001, 1002, 1061
	C0205V C0206V	BAT 5 VOLT BAT 6 VOLT	VDC VDC	0	40 40	1003037 1010037	1			.2	.2	.2					70 70	21B 21B		LP-2 LP-2	1001, 1002, 1061 1001, 1002, 1061
	GC0301V	CDR BUS VOLT	VDC	0	40	1033069	1			1	1	1					70	21B		LP-2	1001, 1002, 1001
	GC0302V	SE BUS VOLT	VDC	0	40	1035069	1			1	ī	1					70	21A		LP-2	1001, 1002, 1061, 1091
	C1201C	BAT 1 CUR	AMP	0	60	1024101	1			1	1	1					70	21A		LP-1	1001, 1002, 1071
	C1202C	BAT 2 CUR BAT 3 CUR	AMP AMP	0	60 60	1032069 1017069	1			1	1	1					70 70	21A 21A		LP-1 LP-1	1001, 1002, 1071
	GC1204C	BAT 4 CUR	AMP	0	60	1018069	1			i	1	1					70	21A		LP-2	1001, 1002, 1071
	C1205C	BAT 5 CUR	AMP	0	120	1018101	1			1	1	1					70	21B		LP-2	1001, 1002, 1071
	3C1206C	BAT 6 CUR	AMP	0	120	1020069	1			1	1	1					70	21B		LP-2	1001, 1002, 1071
	GC4361X GC4362X	BAT 1 HI TAP BAT 1 LOW TAP		OFF OFF	ON ON	1035098H 1005098G												41			
	3C4363X	BAT 2 HI TAP		OFF	ON	1035098F				а.								41			
	GC4364X	BAT 2 LOW TAP		OFF	ON	1035098E	1			.2	.2	.2						41			
	GC4365X GC4366X	BAT 3 HI TAP BAT 3 LOW TAP		OFF OFF	ON ON	1035098D 1035098C	1			.2	.2	.2						41			
	GC4367X	BAT 4 HI TAP		OFF	ON	1035098B	i			.2	.2	.2						41			
1	GC4368X	BAT 4 LOW TAP		OFF	ON	1035098A	1			.2	.2							41			
	GC4369X	BAT 5 B/U CDR		OFF	ON	1039098H	1			1	1	.5						41			
	GC4370X GC4371X	BAT 6 NORM CDR BAT 5 NORM SE		OFF OFF	ON ON	1039098G 1039098F	11			1	1	.5						41			
	GC4372X	BAT 6 B/U SE		OFF	ON	1039098E	1			1	1	.5						41			
	GC9961U	BAT 1 MAL		ABS	PRS	1034100H	1			.2	.2	.2						41			1001, 1002, 1081
	GC9962U GC9963U	BAT 2 MAL BAT 3 MAL		ABS ABS	PRS PRS	1034100G 1034100F	1			.2	.2	.2						41 41			1001, 1002, 1081
	GC9964U	BAT 4 MAL		ABS	PRS	1034100F	1			.2	.2	.2						41			1001, 1002, 1083 1001, 1002, 1081
1	GC9965U	BAT 5 MAL		ABS	PRS	1034100D	1			.2	.2	.2						41			1001, 1002, 1081
	GC9966U GF1083X	BAT 6 MAL SUIT FAN 1 MAL		ABS NO	PRS YES	1034100C	1	-		.2	.2	.2	-					41			1001, 1002, 1081
	GF1084X	SUIT FAN 2 MAL		NO	YES	1007098H 1007098G	1			.2	.2	.2						42			1001, 1002, 1021, 1051, 1310 1001, 1002, 1021, 1051,
	GF1201X	CDR SUIT DISC		FLOW	DISC	1004098H	1			1								42			1310 1001, 1002, 1021, 1051,
	GF1202X	SE SUIT DISC		FLOW	DISC	1004098G	1			1	.1	.5						42			1310 1001, 1002, 1021, 1051,
	GF1211X	SUIT RLF CLSD		NOT	CLOSED	1007098F	1			.2	.2	.2						42			1310 1021, 1051
	GF1212X	SUIT RLF OPEN		CLOSED NOT	OPEN	1007098E	ı			.2	.2	.2						42			1021, 1051
	GF1221X	SUIT DIV EGRESS		OPEN CAB	EGR	1007098D	1			.2	.2	.2						42			1021, 1051, 1310
	GF1231X GF1232X	CABIN RET CLSD CABIN RET OPEN		NOT CLOSED NOT	CLOSED	1005098H	1			.2	.2							42			1021, 1051
	GF1241X	SEC CO2 SEL		OPEN PRI	SEC	1007098C	1			.2	.2	.2						42			1021, 1051 1001, 1002, 1021, 1051,
	GF1281T	SUIT TEMP	°F	20	120	1045005	1			.1	.1	.1					70	22A		LP-4	1310 1001, 1002, 1011, 1051
	GF1301P	SUIT PRESS	PSIA	0	10	1034069	1			1	1	1					70	22A		LP-4	1001, 1002, 1011, 1051, 1310
	GF1521P	CO2 PART PRESS	MMHG	0	30	1005037	1			.1	.1						70	22A		LP-4	1001, 1002, 1011, 1051, 1310
	GF1651T GF2021P	CABIN TEMP PRI GLY PMP DEL P	°F PSID	20 0	120 50	1034005 1016069	1			.1		.1					70 70	22A 22C		LP-3 LP-5	1001, 1002, 1011, 1051 1001, 1002, 1011, 1051, 1310
	GF2531T	MAIN W/B GLY IN	°F	20	120	1036037	1			.2	.2	.2					70	22B		LP-5	1310 1001, 1002, 1021, 1051, 1310
	GF2581T GF2921P	MAIN W/B GLY OUT REDUN PMP PRESS	°F PSIA	20 0	120 60	1033101 1005005	1 1			.2	.2 .1	.2					70	22B 22B		LP-5 LP-3	1021, 1051, 1310 1001, 1002, 1011, 1051,
	GF2936X	SEL GLY PMP FAIL		NO	YES	1005098B	1			.2	.2	.2						42			1310 1001, 1002, 1011, 1051,
	GF3070X	DMD REG A EGR/CLSD		NO	YES	1005098E	1			.2	.2	.2						42			1310
	GF3071X	DMD REG A CLSD		NO	YES	1005098F	1			.2	.2	.2						42			1051
	GF3073X GF3075X	DMD REG B CLSD DMD REG B EGR/CLSD		NO NO	YES YES	1005098D 1005098C				.2		.2						42			1021, 1051
	GF3571P	CABIN PRESS	PSIA	0	10	1022101	1			1	1						70	22A		LP-3	1021, 1051 1001, 1002, 1011, 1051
	GF3572X	REPR ELEC OPEN		NO	YES	1004098	1			1		.5						42			1001, 1002, 1021, 1052,
	GF3582P	ASC 1 02 PRESS	PSIA	0	1000	1004005	1			.2	.2	.2					70	22B		LP-4	1310 1001, 1002, 1011, 1031,
1																	10	LED		111 -14	1051, 1310 .
	GF3583P	ASC 2 02 PRESS	PSIA	0	1000	1020005	1			.2	.2						70	22B		LP-4	1001, 1002, 1011, 1031, 1051
	GF3584P	DES 02 PRESS	PSIA	0	3000	1034101	1			.2	.2						70	22B		LP-4	1001, 1002, 1011, 1031, 1051
	GF3589P GF3591P	02 MANIFOLD PRESS U/H PLF PRESS	PSIA PSIA	0	1400 25	1024069 1050069	1			.2	.2	.2					70 70	22A 22B		LP-4 LP-3	1001, 1002, 1011, 1051 1001, 1002, 1021, 1051

TABLE IV.- LUNAR MODULE TELEMETRY DATA SUMMARY - Continued

Number Units Data Particle Paritele Paritele Pari		Measureme	ent			Loading			So			for		a /a			Summary	PC	M	Strip chart	
NAME Outs Law Law <thlaw< t<="" td=""><td>Numbon</td><td>mi+1.</td><td>Theda</td><td>Ran</td><td>ıge</td><td></td><td></td><td></td><td></td><td>aubr</td><td></td><td>Tave</td><td>⁵,</td><td>5/5</td><td></td><td></td><td></td><td></td><td></td><td>the second second second second</td><td>Primary MSK number</td></thlaw<>	Numbon	mi+1.	Theda	Ran	ıge					aubr		Tave	⁵ ,	5/5						the second second second second	Primary MSK number
GPA1210 GPA3210 GPA3210 SPA3210	Number	IICIE	UNIC	Low	High		l	2	3	4	5	6	7	8	9	10			T	number	
GPU_ALL TRIL BO FRO DELP FEET DO C D D C D C D	GF 3592P	F/H RLF PRESS	PSIA	0	25	1047101	1			.2	.2	.2					70	22B		LP-3	1001, 1002, 1021, 1051,
Bits IF NIT WE NOT THEY ***							l			.2	.2	.2					70				1001, 1002, 1011
GRASSON ANC 1 NO QT PCT 0 100 100637 1 . 2 0 2 0 2 0 2 0 2 0 100 1007, 100, 101, 101 1001, 100, 101, 101 1001, 1000, 101, 101 1001, 1000, 101, 101 1001, 1000, 101, 101 1001, 1000, 101, 101 1001, 1000, 101, 101 1001, 1000, 101, 101 1000, 100, 100, 101, 101 1000, 1000, 100, 100, 100, 100, 100, 10	GF4511T	PRI W/B H20 TEMP	°F	20	260	1040069												22C		LP-3	1001, 1002, 1011, 1351
GP4583 Abc 2 HD QTY PCT 0 100 100737 1 .2 2 2 70 220 LD-5 130 1001 100	GF4581Q	DES H20 QTY	PCT	0	100	1016037	1			.2	.2	.2					70	220		LP-5	1001, 1002, 1011, 1031, 1310
Unspace Col Accord (1) Park (2) Dot (2) Dot (2) <thdot (2) Dot (2) <thdot (2)</thdot </thdot 	GF4582Q	ASC 1 H20 QTY	PCT	0	100	1006037	1			.2							70	220		LP-5	1001, 1002, 1011, 1031, 1310
JPDOPTI LLT FIRE PRESS PETA 0 6 6 100030 1 1 -2 2 70 220 LP-5 1001, 1005, 1011, 101 UP99900 LED SEF NATE FFM 0 300 1007009 1 -1	GF4583Q	ASC 2 H2O QTY	PCT	0	100	1007037	l			.2	.2	.2					70	22C		LP-5	1001, 1002, 1011, 1031, 1310
Bit Bit Bit Part Bit Part Part Part Part Part Part Part Par			PSIA														70			LP-5	1001, 1002, 1011, 1051 1001, 1002, 1011, 1051
CONCOLT FURS CONCE SLOLENCE 1 2 1	GF9998U	GLY TEMP	°F	20	120	1032005	1			.2	.2	.2					70	220		LP-5	1001, 1002, 1011, 1051, 1310
OLIONY FLE TORE REF VDC 84.3 1.3.4.5.5 IOLION 2.5.7.4 2.3.4.7.2 2.3.4 1.2-6.1 2.3.7.4 2.3.7.7 1.2.7.1 2.3.7.7 1.2.7.1 2.3.7.7 1.2.7.1 2.3.7.7 1.2.7.7 2.3.7.7 1.2.7.7 2.3.7.7 1.2.7.7 2.3.7.7 1.2.7.7 2.3.7.7 1.2.7.7 2.3.7.7 1.2.7.7 2.3.7.7 1.2.7.7 2.3.7.7 1.2.7.7 2.3.7.7 1.2.7.7 2.3.7.7 1.3.7.7 1.1.7	GF9999U	H20 SEP RATE	RPM	0	3600	1007069	1			.1	.1	.1					70	220		LP-4	1001, 1002, 1011, 1051, 1310
			VDC					.2		.2	.1		.1					23A		LP-6	
JUIJSAK MG STEPY 0.01 0.0																	71				1137, 1142
Dilligge Line OFF OFF OFF OFF Dordby Image Line Api Subject V Terms of the subject V Discourt V FIRA OUT IN FH VMS -2.68 2.66 5101077 1 2.8	GG1331V	IRIG SUSP 3.2 KC		0	31.34	1002037	l			.2	1	.2						23A			1133, 1135, 1137, 1142
022224Y Y FIRA OUT IN FIN YMME 0.2.6 3.6.5 3.0.1057 1 1.2.2.2.2 3.00 10.3 11.33 11.31 022214Y VIEW OUT IN FIN YMME 2.7.2 2.6.6 3.0.1057 1 1.5 1 3.00 10.3 11.33 11.31	GG1523X	LGC OPR		OFF	ON	1008098	1			1	1	.5									1133, 1139
Obschwart To NU BER IN PR VMEM -2.93 2.86 120107 10 1	GG2021V	Y PIPA OUT IN PH	VRMS	-2.68	2.63	5101057	1			.2	.2	.2							30D	LO-3	1133, 1151
JOZZIZY IO SUNG OUT SING VEMS -21.1 20.0 10209 1																					
doc2147 doc2142 mo SVN ERR IN FM doc2142 mo SVN ERR IN FM doc2142 mo SVN ERR IN FM doc2147 Mo SVN ERR IN FM doc2147 Mo SVN ERR IN FM verse of the stress of t	GG2112V	IG RSVR OUT SIN	VRMS	-21.11	20.69	1102099	1			1	1	1			÷				30E	LO-3	1133, 1148, 1475
002167Y 005 RSYH OUT COS YMB -20.74 1002010 1	GG2137V	MG SVO ERR IN PH	VRMS	-2.92	2.96	1201019	10			1	5	1							30D	LO-3	1133, 1135, 1151
Doclary Oc Deskyn OUT SIN YMB -20.74 B. 20.60 103607 1																					
OBCLITY OR SEVE OUT COS VMMS -2.1.35 21.02 101/101 1																					
GG22LyF NW ATT ERR NWS -20.5 20.10 110200 4 3 3 1	GG2173V	OG RSVR OUT COS	VRMS	-21.35	21.02	1017101	1			1	1	1							30E	LO-3	1133, 1148
G222797 BOLL ATT ERR VBMS -20.10 19.70 1103066 4 3 3 1																				L0-2	
GG2300T FIFA TEMP °F 119.0 139.7 1032101 1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>L0-2</td><td></td></th<>																				L0-2	
GG3304V RR SHFT SIN VRMS -23.05 22.63 1.04065 1 1 1 5 300 ID-7 1.31 GG3305V RR SHFT COS VRMS -22.39 21.95 1.02035 1 1 1 5 300 ID-7 1.31 GG3325V RR TRUN SIN VRMS -22.39 22.03 1.02036 1 1 1 5 300 ID-7 1.31 GG3325V RR TRUN COS VRMS -22.63 22.22 1.03035 1 1 1 5 306 ID-7 1.31 GG3025V RR TRUN COS VRMS -22.63 22.22 1.03035 1 1 1 5 45 306 ID-7 1.31 GG3025V RR TRUN COS VRMS -22.63 22.62 10.3035 1 1 1 5 45 306 ID-7 1.31 ID-3 ID-3 </td <td></td> <td>71</td> <td>224</td> <td>30B</td> <td>L0-2</td> <td></td>																	71	224	30B	L0-2	
GG3305V RF SHFT COS VEMS -22.39 21.95 11.02035 1 1 1 5 300 LP-7 11.31 GG3324V RF TRUN SIN VEMS -22.39 22.03 1102036 1 1 1 5 300 LP-7 11.31 GG3325V RF TRUN COS VEMS -22.63 22.22 1100305 1 1 1 5 306 LP-7 11.31 GG302X LGC MANNING ABS PRS 1003006H 1 1 1 5 45 306 LP-7 11.31 GG9002X LGC MANNING ABS PRS 1003006H 1 1 1 5 44 LO-1 1127, 1157 GH1204X DOT DET NO YES 1037096H 1 1 1 5 44 LO-1 1128, 1127, 1157 GH121XX MUTO OR NO YES 1037096H 1 1 1 5 44 LO-1 1128, 1127, 1157 GH124VX TRANE CMD VDC -10 1100633																	17	ZOR	30D	LP-7	
GG 3325 V RE TRUN COS VEME -22.63 22.22 1103035 1 1 1 1.5 30E LO-3 GG 9001X LDC WARNING ABS PRE 10030961 1 1 5 45 30E LP-7 1135 1139 GG 9002X LDC WARNING ABS PRE 10030961 1 1 5 45 30E LP-7 1135 1139 GH120XX OUT DET NO YES 10370981 1 1 5 44 10-1 1127, 1157 GH120XX AUTO OR NO YES 10370980 1 1 1.5 44 10-1 1127, 1157 GH120X X TRANS CMD VDC -10 10 1100633 1 1 5 43 30C LP-8 1127, 1157 GH124VX Y TRANS CMD VDC -10 10 1103033 1 1 5 43 30C LP-8 1127, 1157																					
GG9001X LIC WARNING ABS PRS 1003098t 1 1 1 5 105 105 GG9002X ISS WARNING ABS PRS 1003098t 1 1 1.5 45 30E LP-7 1135, 1139 GR1214X AUTO ON NO YES 1037098t 1 1 1.5 44 10-1 1127, 1157 GR1214X AUTO OFF NO YES 1037098t 1 1 1.5 44 10-1 1127, 1157 GR124X AUTO OFF NO YES 1037098t 1 1 1.5 44 10-1 1127, 1157 GR124X X TRANS CMD VDC -10 10101055 1 1 1.5 43 30C LP-8 1127, 1157 GH124X Y TRANS CMD VDC -12 12 1060101 4 1 1 71 30A L0-1 1123, 1127, 1157 GH124X <thy cmd<="" th="" trans=""> VDC -</thy>	GG3324V	RR TRUN SIN	VRMS	-22.39	22.03	1102036	1			l	1	•5							30E	LP-7.	1131
GCG9002X ISS WARNING ABS PRS 10030960 1 <th1< td=""><td>GG3325V</td><td>RR TRUN COS</td><td>VRMS</td><td>-22.63</td><td>22.22</td><td>1103035</td><td>1</td><td></td><td></td><td>1</td><td>1</td><td>•5</td><td></td><td></td><td></td><td></td><td></td><td></td><td>30E</td><td></td><td>1131</td></th1<>	GG3325V	RR TRUN COS	VRMS	-22.63	22.22	1103035	1			1	1	•5							30E		1131
CHI214X AUTO ON NO YES 1020908 1 1 1 5 CH1217X AUTO OFF NO YES 1037098G 1 1 1 5 CH1230X AFS ARM NO YES 1037098G 1 1 1 5 44 1123 1123 1123 1124 CH1240V X TRANS CMD VDC -10 10101065 1 1 1 5 44 300 LP-8 1127 1157 CH124V Y TRANS CMD VDC -10 10100333 1 1 1 5 43 300 LP-8 1127 1157 CH124VY YAM LC IMPUT ERR VDC -12 12 1040101 4 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>		ISS WARNING		ABS	PRS	1003098G				1		.5						45	30E		1135, 1139
CH1230X APS ARM NO YES 1047998H 1 1 1.5 44 1154 CH1240V X TRANS CMD VDC -10 10 1101065 1 1 1.55 44 30C LP-8 1127, 1157 CH1240V X TRANS CMD VDC -10 10 1102033 1 1 1.55 43 30C LP-8 1127, 1157 CH124VV Y TRANS CMD VDC -10 10 1103033 1 1 1.55 43 30C LP-8 1127, 1157 CH124VV Y TRANS CMD VDC -12 12 103010 4 1 1 71 30A 10-1 1123, 1127, 1160 CH124VV YAW LC IMPUT ERR VDC -12 12 104010 4 1 1 1 1 1 123, 1127, 1150 CH1240V ROL LC INPUT ERR VDC -12 12 104010 4 1 1 1 1 1 123, 1127, 1154 CH1260X APS ON OFF ON YES<																		44		LO-1	
GH1240V X TRANS CMD VDC -10 10 1101065 1 1 1 5 GH1241V Y TRANS CMD VDC -10 10 1102033 1 1 1.5 43 30C LP-8 1127, 1157 GH1241V Y TRANS CMD VDC -10 10 1103033 1 1 1.5 43 30C LP-8 1127, 1157 GH1247V YAW LC IMPUT ERR VDC -12 12 106101 4 1 1 1 71 30A LO-1 1123, 1127, 1160 GH1248V FOTC LC INPUT ERR VDC -12 12 106101 4 1 1 71 30A LO-1 1123, 1127, 1157 GH1260X APS ON OFF ON 5101024 1 1 1 5 44 10-2 1123, 1127, 1157 GH1260X APS ON NO YES 5101024 1 1 5 44 10-2 1123, 1127, 1157 GH1301X DPS ON NO <th< td=""><td></td><td>And a state of the state of the</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		And a state of the																			
CH1242V Z TRANS CMD VDC -10 10 1103033 1 1 1 1 5 43 30C LP-8 1127, 1157 GH124YV YAW LC IMPUT ERR VDC -12 12 1036101 4 1 </td <td>GH1240V</td> <td>X TRANS CMD</td> <td></td> <td>-10</td> <td>10</td> <td>1101065</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>43</td> <td></td> <td></td> <td>1127, 1157</td>	GH1240V	X TRANS CMD		-10	10	1101065	1			1	1	.5						43			1127, 1157
GH124.8V PTCH LC INPUT ERR VDC -12 12 1040101 4 1						1103033	1			1	1	.5							30C	LP-8	1127, 1157
GH1249V ROLL LC INPUT ERR VDC -12 12 1045101 4 1 <th1< th=""> 1 1</th1<>																					
GH1283X ABORT STAGE NO YES 5101024 1 1 1 5 144 1001, 1002, 1081, 109 1127, 1157 GH1286X ENG FIR OVERRIDE NO YES 1037098 1 1 1.5 144 1001, 1002, 1081, 109 1127, 1154 GH1286X ENG FIR OVERRIDE NO YES 1037098 1 1 1.5 144 10-2 1127, 1154 1127, 1154 GH1311V MAN THRUST CMD PCT 0 9.25 1035005 1 1 1 1 300 L0-2 1127, 1137, 1154 GH1314V POLL GDA POS VRMS -15 15 1003101 1 1 1 1 1 1.23, 1127, 1154 GH1314V ROLL GDA POS VRMS -15 15 1003101 1 1 1 1 1 1.23, 1127, 1154 GH1314V ROLL GDA POS VRMS -15 15 1003101 1 1 1 1 1.23, 1127, 1154 GH1330X R TRM FAIL NO YES 1029098E 1 <td>GH1249V</td> <td>ROLL LC INPUT ERR</td> <td></td> <td>-12</td> <td>12</td> <td>1045101</td> <td>4</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L0-1</td> <td>1123, 1127, 1160</td>	GH1249V	ROLL LC INPUT ERR		-12	12	1045101	4			1	1	1								L0-1	1123, 1127, 1160
GH1286X ENG FIR OVERRIDE NO YES 1037098 1 1 1 1 5 44 1123, 1127, 1154 GH1301X DPS ON OFF NO 1029098 1 1 1 5 10 11 1 <th1< th=""> 1 1</th1<>																				10-2	1001, 1002, 1081, 1091,
GH1311V MAN THRUST CMD PCT 0 9.25 1035005 1																				10.0	1123, 1127, 1154
GH1314V ROLL GDA POS VRMS -15 15 1003101 <	GH1311V	MAN THRUST CMD		0	9.25	1035005	1			1	1	1						44		L0-2	1123, 1127, 1137, 1154
GH1323X R TRM FAIL NO YES 1029098F 1 1 1 5 144 1123, 1124, 1160 GH1330X R TRM FAIL NO YES 1029098E 1 1 1 5 144 1123, 1124, 1160 GH1330X R TRM FAIL NO YES 1029098E 1 1 1 5 144 1021, 102, 1021, 112 GH1331V AUTO THRUST CMD PCT O 0.25 1048069 1 1 1 1 130, 1160 1031, 1002, 1021, 112 GH1348X DPS ARM OFF ON 1047098 1 1 1 5 144 1001, 1002, 1021, 112 1154 1013, 1027, 113 1154 1 1 5 144 10171, 1123, 1127, 113 ID1348X DPS ARM OFF ON 1047098 1 1 1 5 144 1001, 1002, 1091, 112 ID154, ID							1														
GH1330X R TRM FAIL NO YES 1029098E 1 1 1 5 44 1127, 1160 GH1331V AUTO THRUST CMD PCT 0 0.25 1048069 1 1 1 1 71 30C L0-2 1001, 1002, 1021, 112 GH1348X DPS ARM OFF ON 1047098 1 1 1 5 44 L0-2 1001, 1002, 1021, 112 1154 1001, 1002, 1091, 112 115 1 1 5 14 101, 1002, 1091, 112			VRMS														71		30C	L0-2	
GH1331V AUTO THRUST CMD PCT 0 0.25 1048069 1 1 1 1 71 30C L0-2 1330, 1160 1071, 1123, 1127, 113 GH1348X DPS ARM OFF ON 1047098 1 1 1 5 44 1001, 1002, 1091, 112 1125, 1154																					
GH1348X DPS ARM OFF ON 1047098 1 1 1 5 14 1154 1001, 1002, 1091, 112 11 1 1 5 14 1001, 1002, 1091, 112				8														44			1330, 1160
1125, 1154	2.2		PCT							1							71	277.	30C	L0-2	
							1			l	1	.5									1001, 1002, 1091, 1123, 1125, 1154
GH1418V JDB4U OUTPUT OFF ON 1201008A 43 L0-1,2 L0-5	GH1418V	JDB4U OUTPUT		OFF	ON	1201008A												43		LO-1,2 LO-5	

• •

TABLE IV.- LUNAR MODULE TELEMETRY DATA SUMMARY - Continued

	Measureme	ent		_						FN f						Summary	PCM		Strip	
					Loading number			Sar	mple	e ra	ates	3, 2	5/S			TWX	tabs	and	record	Primary MSK number
Number	Title	Unit	Ran		number			2	1	_	6	7	8		10	number	plot STD	s SP	setup number	
			Low	High		1	2	3	4	5	0	7	0	9	10			ər		
GH1419V	JDA4D OUTPUT		OFF	ON	1201008												43		LO-1,2 LO-4	
GH1420V	JDB4F OUTPUT		OFF	ON	1201048A												43		LO-1,2	
GH1421V	JDA4R OUTPUT		OFF	ON	1201048B											×	43		LO-5 LO-1,2	
	JDA3U OUTPUT		OFF	ON	1201008C												43		LO-4 LO-1,2	
GH1422V																			LO-4	
GH1423V	JDB3D OUTPUT		OFF	ON	1201008D												43		LO-1,2 LO-5	
GH1424V	JDB3A OUTPUT		OFF	ON	1201048c												43		LO-1,2 LO-5	
GH1425V	JDA3B OUTPUT		OFF	ON	1201048D												43		LO-1,2	
GH1426V	JDB2U OUTPUT		OFF	ON	1201008E												43		LO-4 LO-1,2	
GH1427V	JDA2D OUTPUT		OFF	ON	1201008F												43		LO-5 LO-1,2	
																			LO-4	
GH1428V	JDA2A OUTPUT		OFF	ON	1201048E												43		LO-1,2 LO-4	
GH1429V	JDB2L OUTPUT		OFF	ON	1201048F												43		LO-1,2 LO-5	
GH1430V	JDALU OUTPUT		OFF	ON	1201008G												43		LO-1,2	
GH1431V	JDB1D OUTPUT		OFF	ON	1201008H												43		LO-4 LO-1,2	
			OFF	ON	1201048G												43		LO-5 LO-1,2	
GH1432V GH1433V			OFF	ON	12010400 1201048H												43		LO-1,2	
GH1455V	YAW ATT ERR	DEG	-11.67	11.67	1007101	14			2	3	.5					71		30B	LO-5 LO-1	1123, 1127, 1137, 1145
GH1456V	PITCH ATT ERR	DEG	-11.56	11.67	1016101	4			2 2	3	.5					71 71		30B 30B	LO-1 LO-1	1123, 1127, 1137, 1145 1123, 1127, 1137, 1145
GH1457V GH1461V		DEG /	-11.67	11.67 25.00	1030101 1103034	10			3	5	.5 1					71		30A	LO-1,2	1123, 1127, 1137, 1145
GH1462V	RGA PITCH RATE	SEC DEG/	-25.00	25.00	1104034	10			3	5	1					71		30A	LO-4,5 LO-1,2	1123, 1127, 1137, 1145
		SEC				10				5	1					71		30A	LO-4,5	1123, 1127, 1137, 1145
GH1463V		DEG/ SEC	-25.00	25.00	1105034				3							(1		JUM	LO-4,5	
GH1603X GH1621X			NAR PGNS	WIDE AGS	1047098F 1029098D				1	1	.5						44		LO-1 LO-1,2	1137, 1145 1127, 1137
GH1628X	ROLL PLSD/DIR		OUT	IN IN	1033098H	1			1	1	.5						44 44			1123, 1127, 1157
GH1629X GH1630X	YAW PLSD/DIR		OUT OUT	IN	10330980 1033098F	1			1	1	.5						44			1123, 1127, 1157 1123, 1127, 1157
GH1641X GH1642X			OFF	ON ON	1037098A 1037098E				1	1	.5						44			1123, 1157 1123, 1157
GH1643X	PGNS MODE AUTO		OFF	ON	1037098E	1			1	1	.5						1414 1414			1123, 1137, 1157
GH1644X GH1893X	X TRANS OVERRIDE		OFF	ON OFF	10370980 1047098E	1			1	1	.5						44			1123, 1137, 1157 1127, 1157
GH1896X GI0001X			NO DIG	YES CODE	10370980	1		+	1	1	.5	-			-	64	44			1127, 1157 1123
GI3301T	ASA TEMP	°F	20	200	1018005	1			.2	.2	.2					71	23A		LP-8	1127, 1160
GI3305X GI3306X	AGS STBY		OFF OFF	ON ON	1033098E 1033098E	1			1	1	.5						45 45			1127, 1160 1127, 1160
GL0400X GL0401V		VDC	NO O	YES 5.0	1009098A 1103099	1			.2	.2	.2					70	46 24 A		LP-9	1081, 1091 1081, 1091
GL0402V	CAL 15 PCT	VDC	0	5.0	1104099	1			.1	.1	.1					70	24A 24A		LP-9 LP-9	1001, 1081, 1091 1081, 1091
GL0422V GL0423V		VDC VDC	0	5.0	1044101 1023037	1			.2	.2	.2						24A		LP-9	1081, 1091
GL4026X GL4027X			NO NO	YES	1001098H 10090980				1		.5						46			1127, 1160 1127, 1160
GL4028X	AGS PWR FAIL		YES	NO	1009098H	1			1	1	.5						46			1127, 1160
GL4047X GL4054X			YES	NO NO	10090980 1009098E				.2	1	.5						46			1001, 1081, 1091 1001, 1081, 1091
GL4069X GL82751		°F	YES -200	NO 500	1009098I 1047005				1		.5					70 70	46 24A		LP-9	1001, 1081, 1091, 1468 1021, 1310
GM5000X	LAND GEAR DEPLOY		NO	YES	10450981	[]]			1	1	.5			-	1	12	46	-		1001, 1002, 1021 1031, 1135, 1142
GN7521) GN7557)	LR VEL BAD		NO	Y ES Y ES	10020981	1			1	11	.5						46			1131, 1135, 1142
GN75631 GN76212		°F	-200 TRK	200 NTRK	1043005 1002098	1			.1	.1	.1						25A 46		LP-10	1131, 1137, 1151 1137, 1145
GN77231	RR ANT TEMP	°F	-200	200	1009005	1		-	.1	.1	.1			-	-	71	25A	21 *	LP-10	1131, 1137, 1151 1123, 1125, 1169
GP0001F GP0002F	APS HE 2 PRESS	PSIA PSIA	0	4000	1040037 1025037	1			.2	.2	.2					71 71	26A 26A	31A 31A	LP-11	1123, 1169
GP0018F GP0025F	APS HE REG PRESS	PSIA PSIA	0	300 300	1019037 1010069	1				.2						71 71	26A 26A	31A 31A		1125, 1169 1123, 1125, 1169
GP02017	APS HE 1 TEMP	°F	-200	200	1035101		L		.1	.1	.1					71	26B	Jan	LP-11	1169
GP0318) GP0320)	APS HE 2 CLSD		OPEN	CLSD CLSD	10490981 10490980					1.1							47			1123, 1125, 1172 1123, 1125, 1172
GP07187 GP09082	APS FUEL TEMP	°F	20 NORM	120 LOW	1030069 1029100	1			.1	.1	.1					71	26B 47		LP-12	1125, 1169 1123, 1125, 1172
GP12187	APS OX TEMP	°F	20	120	1034037		L		.1	.1	.1					71	26B		LP-12	1125, 1169
GP1408) GP15018		PSIA	NO RM O	LOW 250	1029100 1017037				1	1	.5					71	47 26A	31.A	LP-12	1123, 1125, 1172 1123, 1125, 1169

4

5

.

٠,

•

.

-	0
	()
- 1	1

					1											Da			
	Measuren	nent			Loading		S	MS ampl		for		s/s		Summary analog chart TWX tabs and record Primary MSK number number plots setup com for number					
Number	Title	Unit	Ra	nge	number			*			<i>.</i>						plots setup	Primary MSK number	
Number	TILLE	Unit	Low	High		1 2	3	4	5	6	7	8	9	10			-		
GF1503P GF2010P	APS OX PRESS APS TCP	PSIA PSIA	0 0	250 150	1017005 1045037	1		1	1 5	1					71 71	26A	31A 31B	LP-12 LP-12	1123, 1125, 1169 1001, 1002, 1091, 1123,
JP2997U	APS DELTA FOS A		CLD/	MID	1038098F	1		.1	.1	.1						48			1125, 1127, 1169 1071, 1154, 1172
GP2998U	APS DELTA POS B		OPN CLD/ OPN	MID	1038098E	1		.1	.1	.1					71	48 27A	32A	LP-13	1172
GQ3015P GQ3015P GQ3025P GQ3435P GQ3603Q GQ3604Q GQ3611P GQ3718T GQ4104Q GQ4104Q GQ4111P GQ4219T GQ4455X GQ6510P	DPS START TANK P DPS HE REC FRESS DPS HE REC PRESS DPS HE PRESS DPS PUEL 1 QTY DPS FUEL 2 QTY DPS FUEL 2 QTY DPS FUEL 1 TEMP DPS OX 1 QTY DPS OX 1 QTY DPS OX PRESS DPS OX PRESS DPS OX 1 TEMP DPS OX 2 TEMP DPS OX 2 TEMP DPS DPS DW DPS TEMP	PSIA PSIA PSIA PCT PCT PCT PCT PCT PCT PCT PCT PSIA	0 0 0 0 0 20 20 20 0 0 20 20 0 0 20 20 2	1750 300 200 95 95 300 120 120 95 95 300 120 120 120 120 120	1011069 1012005 1029005 102069 1028005 1027027 1005069 1002005 1031037 1043037 1033037 1003069 1001101 1009101 10380986 1020101			.2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .	.2.2.2.2.1.1.2.2.1.1.	.1 .2 .2 1 .1					71 71 71 71 71 71 71 71 71 71 71 71	27A 27A 27A 27C 27C 27C 27C 27C 27C 27C 27C 27B 27B 27B 27B	32A 32A 32A 32A 32A 32A 32A	LP-14 LP-14 LP-14 LP-14	1123, 1125, 1169 1123, 1125, 1169 1123, 1125, 1169 1123, 1125, 1169 1123, 1125, 1169 1123, 1125, 1169 1123, 1125, 1172 1125, 1172
GQ6806H	VAR INJT ACT POS	PCT	0	100	1050037	1		1	1						71		32B	LP-13	1172 1123, 1125, 1127, 1137,
GR1085Q GR1095Q GR1101P GR1201P GR1201P GR2121T GR2122T GR2201P GR2202P	RCS PROP A QTY RCS PROP B QTY RCS A HE PRESS RCS A HE PRESS RCS A FUEL TEMP RCS B FUEL TEMP RCS B FUEL TEMP A FUEL MFLD PRESS B FUEL MFLD PRESS	PCT PCT PSIA PSIA PSIA PSIA PSIA	0 0 0 0 20 20 0	103.5 103.5 3500 3500 350 120 120 350 350	1042069 1038069 1033037 1033005 1030005 1018037 1020037 1004069 1004101			.2 .2 .2 .2 .2 .2 .2 .2 .1 .1 .1	.2 .2 .2 .1 1	.2 .2 .2 .1 1 1			-		71 71 71 71 71 71 71 71	48 48 28A 28A 28A 28A 28A 28C 28C		LP-15 LP-15 LP-15 LP-15 LP-15 LO-4 LP-15 LO-5	1154 1123, 1125, 1166 1123, 1125, 1166 1123, 1125, 1166 1123, 1125, 1166 1125, 1166 1125, 1166 1123, 1166
GR 3201P	A OX MFLD PRESS	PSIA	0	350	1006069	1		1							71	280		LP-16 LO-4	1123, 1125, 1166
GR 3202P	B OX MFLD PRESS	PSIA	0	350	1010101	1		1							71	280		LP-16 LO-5	1123, 1125, 1169
3R5031X GR5031X GR5032X GR5033X GR5034X GR5034X GR5036X GR5035X GR5035X GR5036X GR5042X GR504X GR5042X GR504X	RCS TCP BAU RCS TCP AAD RCS TCP AAR RCS TCP AAR RCS TCP AAR RCS TCP AAU RCS TCP BAD RCS TCP BAD RCS TCP BAD RCS TCP BAD RCS TCP AAR RCS TCP AAA RCS TCP AAAA RCS TCP AAAAA RCS TCP AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	oF oF oF	OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	ON ON ON ON ON ON ON ON ON ON ON ON ON O	2211006A 22211006C 2201006C 2201006C 2201006C 2201006C 2201006C 2201007E 20107E 20107E 220107E 220107E 220107E 220107E 220107E 20107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 20107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 20007E 220107F 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 220107E 20100000 20100000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SPECC SPECC	<pre>! IAL IAL IAL IAL IAL IAL IAL IAL IAL IAL</pre>	PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	CES CES CES CES CES CES CES CES CES CES	SIN(SIN(SIN(SIN(SIN(SIN(SIN(SIN(71 71 71 71 71	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		10-16 10-5 10-4 10-5 10-4 10-5 10-5 10-5 10-5 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-4 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16 10-5 10-16	1091 1025 1172
GTO441X GTO454T	ST ANT ELEC ASSY	DEG	-200	200	5101097 1028101	60 1		.1		.1					70	50 29A		LP-17	1091 1001, 1002, 1071, 1091 1468
GT0992B		DEG	-90	90	1048037	1		.1		.1					70 70	29A 29A		LP-17	1001, 1002, 1081, 1091 1468 1001, 1002, 1081, 1091
GT0993B	S-BND XMTR PO	KHZ	1130	1250	1050101	1		1.1	1.1	.1					10	CYA		TE-T(1468

TABLE IV.- LUNAR MODULE TELEMETRY DATA SUMMARY - Continued

. .

	Measureme		Rar	nge	Loading number			Se	MS mpl			mat s,				Summary TWX number		log	Strip chart record setup		
Number	Title	Unit	Low	High		1	2	3	4	5	6	7	8	9	10		STD	SP	number		
GT0994V	S-BND RCVR SIG	VDC	0	5	1040005					1						70	29A		LP-17	1001, 1002, 1081, 1091, 1468	
GY0050X GY0201X GY0202X GY0231X	ABORT CMD ED SYS A REL XFER ED SYS B REL XFER SYS A FED REL CLSD		NO NO OPEN OPEN	YES YES YES CLSD CLSD	1014098H 1014098C 1014098B 1014098E 1014098D	1 1 1 1 1 1			1 1 1 1 1	1 1 1	.5						50 50 50 50			1001, 1002, 1081, 1091, 1127, 1157 1001, 1002, 1081, 1091 1001, 1002, 1081, 1091 1001, 1002, 1081, 1091 1001, 1002, 1081, 1091	
GY0232X GT8101V GT8102V GT8102V GT8124J GT8140C GT8154T GT8154T GT8154T GT8169C GT8170T GT8168T GT8202V GT8202V GT8202V GT8202V GT8202V GT8202V GT8202V GT8224J GT8240C	EVCS 2 CAL 0 PCT EVCS 2 CAL 100 PCT PLSS NO 2 FEED H20 EKG NO 2	VDC VDC PSIA VDC AMP VDC °F PSIA °F PSIA °F VDC VDC PSIA VDC AMP	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 10 20.5 90 5.0 90 1110 15 5 5 5 5 10	10140905	1			.1 .1 .5 1 .2 .5 1 .2 .5 1 .2 .5 .1 .1 .5	.1 .1 1 .5 1 1.5 .5 1 .1 .1	.1 .1 .5 1 .2 .2 1 .1 .2 .5 .1 .1 .5						34A 34A 34B 34B 34B 34B 34A 34A 34A 34A		LP-18 LP-20 LP-18 LP-18 LP-18 LP-18 LP-18 LP-18 LP-18 LP-19 LP-20 LP-19	1310 1310 1310 1302, 1310 1310, 1316 1310, 1316 1310, 1316 1310	
GT 8241V GT 8254T GT 8268F GT 8268F GT 8270T GT 8282P GT 8296T	PLSS NO 2 BATTERY LCG H20 INLET NO 2 PGA 02 NO 2 PLSS 2 SUB 02 OUT PLSS 02 SUPPLY NO 2	VDC °F PSIA °F PSIA °F	12 40 2.5 40 0	20.5 90 5.0 90 1110 15					.2 .5 1 .2 .2 .5	1.5	.2 1 .1						34A 34B 34B 34B 34A 34A 34B		LP-19 LP-19 LP-19 LP-19 LP-19 LP-19	1310, 1326 1310 1310 1310 1301, 1310 1301, 1310	

TABLE IV. - LUNAR MODULE TELEMETRY DATA SUMMARY - Concluded

- 1

1 k

~

.

-

.

-

	Measureme	nt			Loading			Sa			for			5		Summary TWX	an	CM alog s and	Strip chart record	Primary MSK number
Number	Title	Unit	Ran	ge High	number	1	2	3	4	5	6	7	8	9	10	number		ots SP	setup number	frimary Mok Humber
CA1820T	TEMP CREW HS ABL	°F	-300.0	+850.0	1022084	1	.2	-		.1	.1	-	.1	-	.1	3	1A		CP-1	404
CA1821T	SUR LOC 1A TEMP CREW HS ABL	°F	-300.0	+850.0	1024052	1		_	_		.1	-			.1	3	14		CP-1	404
	SUR LOC 4A	°F																		
CA1822T	TEMP CREW HS ABL SUR LOC 7A		-300.0	+850.0	1025084	1		-	-	.1	.1	-			.1	3	lA		CP-1	404
CA1823T	TEMP CREW HS ABL SUR LOC 10A	°F	-300.0	+850.0	1027052	1	.1	-	-	.1	.1	-	.1	.1	.1	3	lA		CP-1	104
SA1830T	TEMP SM SKIN . SURF LOC 1A	°F	-109.0	+264.0	1014052	1	-	-	-	.5	.1	-	.1	.1	.5	3	2A		CP-2	
SA1831T	TEMP SM SKIN SURF LOC 4A	°F	-109.0	+264.0	1048084	1	-	-	-	.5	.1	-	.1	.1	•5	3	2A		CP-2	
SA1832T	TEMP SM SKIN SURF LOC 7A	°F	-109.0	+264.0	1014084	1	-	-	-	.5	.1	-	.1	.1	•5	3	2A		CP-2	
SA1833T	TEMP SM SKIN SURF LOC 10A	°F	-109.0	+264.0	1049052	1	.1	-	-	.1	.1	-	.1	.1	.1	3	2A		CP-2	
SA2377T	TEMP BAY 2 OX	°F	-100.0	+200.0	1048052	1	.1	-	-	.1	.1	-	.1	.1	.1	3,5	2A		CP-2	674, 884
SA2378T	TANK SURFACE TEMP BAY 3 OX	°F	-100.0	+200.0	1046084	1	.1	-	-	.1	.1	-	.1	.1	.1	3,5	2A		CP-2	674, 884
SA2379T	TANK SURFACE TEMP BAY 5 FUEL	°F	-100.0	+200.0	1047052	1	.1	-	-	.1	.1	-	.1	.1	.1	3,5	2A		CP-2	674, 884
SA2380T	TANK SURFACE TEMP BAY 6 FUEL	°F	-100.0	+200.0	1047084	1	.1	_	_	.1	.1	_	.1	.1	.1	3,5	2A		CP-2	674, 884
2220202	TANK SURFACE	Dam		100.0	2019226			_			-						10			
SC0030Q SC0031Q	QUANTITY H2 TANK 1 QUANTITY H2 TANK 2	PCT PCT	.0000	100.0	1047116 1048116	1	.1 .1	-	-	.1	.1 .1	-	.1	.5	.1	24 24	4B 4B		CP-6 CP-6	554, 613 554, 613
SC0032Q SC0033Q	QUANTITY 02 TANK 1 QUANTITY 02 TANK 2	PCT	.0000	100.0		1		-	-	.1	.1	-	.1	.5	.1	14 14	4B 4B		CP-6 CP-6	554, 613
SC00334 SC0037P	PRESS 02 TANK 1	PSIA	.0000	1100.0	1014116	1		-	_		.1	-	.1	.5	.1	4	4B 4B		CP-6	554,613 554,613
SC0038P	PRESS 02 TANK 2	PSIA	0	1100	1022116	1		-	-	.2	.2	-	.5	1.0		4	4B		CP-6	554, 613
SC0039P SC0040P	PRESS H2 TANK 1 PRESS H2 TANK 2	PSIA PSIA	0	350 350	1012116	1		-	_	.2	.2	-	.5	1.0		24 24	4B 4B		CP-6 CP-6	554, 613 554, 613
SC0041T	TEMP 02 TANK 1	°F	-325.0	+80.00	1018116	1	.1	-	-	.1	.2	-	.1	.5	.1	4	4E		CP-9	554, 613
SC0042T SC0043T	TEMP 02 TANK 2 TEMP H2 TANK 1	°F °F	-325.0	+80.00	1019116	1		-	-	.1	.1	-	.1	.5	.1	14 14	4E 4E	22AA	CP-9 CP-9	554,613 554,613
SC0044T	TEMP H2 TANK 1	°F	-425.0	-200.0	1021116		.1	-	-	.1	.1	-	.1	.5	.1	4	4E	c. c.nn	CP-9	554, 613
CC0175T	TEMP STATIC	°F	+32.00	+248.0	1029084	1	.1	-	-	.1	.1	-	.1	• 5	.1	3	ЗA		CP-3	443, 524
0001767	INVERTER 1 TEMP STATIC	٥F	+32.00	+248.0	1030052	1	.1	-	-	.1	.1	-	.1	.5	.1	3	ЗA		CP-3	443, 524
CC0177T	INVERTER 2 TEMP STATIC	°F	+32.00	+248.0	1030084	1	.1	-	-	.1	.1	-	.1	.5	.1	3	3A		CP-3	443, 524
CC0206V	INVERTER 3 AC VOLTAGE MAIN	VAC	0.0	+150.0	1105011	5	.2	-	-	.2	.5	_	.2	1.0	.2	3	3B	22AA	CP-4	443, 518, 524
CC0203V	BUS 1 PHASE A AC VOLTAGE MAIN	VAC	0.0	+150.0	1102074	5	.2	-	_	.2	.5	-	.2	1.0	.2	3	3B		CP-4	443, 518, 524
CC0206V	BUS 2 PHASE A DC VOLTAGE MAIN	VDC	0.0	+45.00	1102075	5	.2	_	-	.2	.5	_	.2	1.0	.2	3	3B		CP-4	443, 518, 524, 544,
CC0207V	BUS A DC VOLTAGE MAIN	VDC	0.0	+45.00	1102076	5	.2	-	-	.2	.5	_	.2	1.0	.2	3	3B		CP-4	574, 584, 594 443, 518, 524, 544,
CC0210V	BUS B DC VOLTAGE BAT-	VDC	0.0	+45.00	1103073	5	.2	_	-	.2	.5		.2	1.0	.2	3	3B		CP-4	574, 584, 594 443, 518, 524
CC0211V	TERY BUS A DC VOLTAGE BAT-	VDC	0.0	+45.00	1103075	5		_	_			_		1.0		3	3B		CP-4	443, 518, 524
CC 0215C	TERY BUS B DC CURRENT BATT	AMP	0.0	+5.000	1103009		.1	_	_		.1			1.0		3	3A		CP-3	518, 524
0002220	CHARGER OUT DC CURRENT	AMP	0.0	+100.0	1103010	5		_	_			_		1.0		3	ЗA		CP-3	443, 518, 524
0002230	BATTERY A DC CURRENT	AMP	0.0	+100.0	1104009	5		_	_			_		1.0		3	3A		CP-3	443, 518, 524
CC0224C	BATTERY B DC CURRENT	AMP	0.0	+100.0	1104010	5		_	_		.2	_		1.0		3	3A		CP-3	443, 518, 524
CC0232V	BATTERY C DC VOLTAGE BAT-	VDC	0.0	+45.00	1103011		.2	_	_					1.0		3	3B		CP-4	443, 518, 524
	TERY RELAY BUS																			
3C2060P	N2 PRESSURE FC 1 REGULATED	PSIA	0.0	75.00	1101106		.2	-	-	.2	.1	-	.2	1.0	.2	3	4C		CP-7	443, 518, 544, 574
CC2061P	N2 PRESSURE FC 2 REGULATED	PSIA	0.0	75.00	1101107	1	.2	-	-	.2	.1	-	.2	1.0	.2	3	4C		CP-7	443, 518, 544, 584
SC2062P		PSIA	0.0	75.00	1101123	1	.2	-	-	.2	.1	-	.2	1.0	.2	3	4C		CP-7	443, 518, 544, 594
SC2066P		PSIA	0.0	75.00	1102108	1	.2	-	-	.2	.1	-	.2	1.0	.2	3	4C		CP-7	518, 574
SC2067P	02 PRESSURE FC 2 REGULATED	PSIA	0.0	75.00	1102113	1	.2	-	-	.2	.1	-	.2	1.0	.2	3	4C		CP-7	518, 584
SC2068P	02 PRESSURE FC 3 REGULATED	PSIA	0.0	75.00	1102121	1	.2	-	-	.2	.1	-	.2	1.0	.2	3	4C		CP-7	518, 594
SC2069P	H2 PRESSURE FC 1	PSIA	0.0	75.00	1102122	1	.2	-	-	.2	.1	-	.2	1.0	.2	3	4C		CP-7	518, 574
SC2070P		PSIA	0.0	75.00	1102123	1	.2	-	-	.2	.1	-	.2	1.0	.2	3	4C		CP-7	518, 584
SC2071P	REGULATED H2 PRESSURE FC 3	PSIA	0.0	75.00	1102124	1	.2	-	-	.2	.1	-	.2	1.0	.2	3	4D		CP-8	518, 594
	REGULATED																			

TABLE V. - COMMAND AND SERVICE MODULE TELEMETRY DATA SUMMARY

FLIGHT DIR MISSION LOG DAY REV PG SITE/ACQ/LOS FLIGHT EVENTS/HISTORY/BRIEFING 4 PM 12/10 LIM INST ON - MAIN All Inst OK OFF 6:20 ON 8:10 -40:00 -28:18 Ful Poor -07:20 Last Date Secycle = 00,30 LOX prepress 54B Press to recycle to - 22:00 Swing arm a back 40 pick up - 22:00 at 9345 40 11:53:00 (+2:40) off 11:42 (-5 see cut.

MSC FORM 1441 (APR 66)

FLIGHT DIR MISSION LOG	DAY REV PG
SITE/ACQ/LOS	FLIGHT EVENTS/HISTORY/BRIEFING

MSC FORM 1441 (APR 66)

FLIGHT DIRECTOR'S MISSION LOG

DAY REV PG	
FLIGHT EVENTS/HISTORY/BRIEFING	
	ng pang nanar kanakan asaran sana manakan kanakan kanakan kanakan kanakan kanakan kanakan kanakan kanakan kanak
	Na 1949 - Lans Walter e des grads 18 mais dans militari
	n an the state of th
	na an a
	nd Ar chaine by graden and a line to cause beauty plantates
	-
	n an a share ta share
	Tradition and a start that and a start of the start of th

MSC FORM 1441 (APR 66)

÷

-			
	PG	DAY REV	FLIGHT DIR MISSION LOG
	N G	FLIGHT EVENTS/HISTORY/BRIEFIN	SITE/ACQ/LOS
		al Mandren de Nethen aus anna ann ann ann ann ann ann ann ann a	
t,			
	2 - 2000 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 20		
	e Managana ang kang kang kang kang kang kan		
	-		