June 9, 1983

MEMORANDUM
PER-IOM-83-G021

TO : Distribution

FROM : Alan Goldberg/0A0/400.2

SUBJECT: Meeting Notes from APL Fine Guidance Review, June 8, 1983

The JHU Applied Physics Laboratory held a Preliminary Review of their
Alternative Fine Guidance System Study yesterday at the Lab. Representa-
tives were present from MSFC (the funding center), JHU (the study
contractor), GSFC, LMSC, P-E, STScI, IDT's, and others (full list
attached). The presentation was divided into (1) an analysis of the
present PCS problems, and (2) a review of alternate sensor concepts
(viewgraphs attached).

The PCS/FGS analysis included visits to contractor and NASA sites,
consultation with APL experts, and development of internal models.
Problems or questions uncovered include:

o validity of 0.007 afcsec stability on 14.5 mag stars

o origin of 3x3 arcsec instantaneous FOV

o purpose of 40Hz PCS sampling

o disturbance environment: reaction wheels, etc.

o comsic ray effects on detectors and electronics

o effect of delayed launch on cosmic ray flux and aerodynamic
torques

o proper use of FGS data by PCS: 1is 1lHz update sufficient?
o lack of DF-224 margin

The alternate sensor review consisted of reports on successful image-
splitter fabrication experiments at JHU and P-E, and a survey of other
technologies. Bill Fastie worked with Muffoletto Optical, producing a two
part image-splitter by optically contacting two polished, uncoated quartz
blocks and subsequently polishing flat the joint line. No gap can be
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detected on an SEM micrograph, suggesting that the gap is less than 0.3
microns. P-E has optically contacted coated glass pieces resulting in a ;
gap indistinguishable from the coating thickness alone. Both P-E and JHU 1
are to build four-part quradrant splitters to a common design specification.

Other sensor technologies included near- and long-term candidates. The
most promising appear to be:

optical splitters feeding PMT's

quadrant Digicon

Hybrid: optical splitter feeding a Digicon

Hybrid: diode-pair Digicons at Koesters interferometer output

The last concept is the same as one I proposed two to three years ago
while at P-E. The only significant question raised on these concepts was
Digicon susceptibility to magnetic fields in high-accuracy applications.

APL will concentrate on further studies of the best candidate alternatives,
including technical details and system impact. The program manager, Dave
Grant, and division director, George Weiffenbach, seem sincerely committed
to running an open study and producing a technically and managerially
useful result. The APL effort will continue through mid-October. The

next review should be early August.

Ol

Alan Goldberg
Attachment

Distribution: S. Dardarian/400.2
D. White/400.2
A. Boggess/683
D. Leckrone/685

cc: G. Daelemans/0A0/400.2
B. Lambeck/0AO
T. Facey/Perkin-Elmer
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FGS Signal Processing I [[El

e Make optimal use of sensor information
regardless of the particular fine guidance
sensor used.

e Extend the useful range of nonlinear sensor
characteristics by using prior information.




Preliminary Study | m
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e Extend the useful range of the Koester prism
interferometer via an extended Kalman filter.

e Simple signal model
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Measurements at 40 hz

Random oscillator with rms amplitude
of 10 marcs at 10 hz

Random ramp with rms slope of 60 marcs/sec
and rms initial condition of 3 marcs

RMS additive measurement noise of 3 marcs

Interferometer modeled as a cubic and
an exponential decay

Linearize measurement about a—priori estimate
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e Filter successfully tracks a ramp
with good prior information.

e [his demonstrates extending the useful
range In a simple case.

e Range extension for a realistic case is
yet to be done.

e Poor prior information hurts filter performance.

® Large prior oscillation hurts filter performance.




High Frequency Jitter Problem I IE

e High frequency jitter does not average
to zero due to the nonlinear measurement
characteristic.

e txtended Kalman filter funning at a higher
rate (1 msec) does not perform well
due to higher noise.
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Further Work l @

e [valuate suboptimal extended Kalman filters for
use with current and proposed sensors based
on realistic single—axis model.

e Suboptimal filters will be selected using
a detalled linearized single—axis model.

e fFilters will be evaluated using a detailed
single—axis model.
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RATIONALE:

DURATION:

ORGANIZATION:

APL PROGRAM

-

DEVELOP AN ALTERNATIVE ST FINE GUIDANCE SYSTEM FOR

CONSIDERATION IN THE EVENT THE EXISTING INTERFEROMETER
SYSTEM DEMONSTRATES MARGINAL PER FORMANCE

APRIL 15, 1983 — OCTOBER 15, 1983

SPONSOR: MARSHALL SPACE FLIGHT CENTER

PRINCIPAL INVESTIGATOR: WILLIAM G. GASTIE, THE JOHNS
HOPKINS UNIVERSITY

PROGRAM MANAGER: DAVID G. GRANT, APPLIED PHYSICS LABORATORY
PROGRAM ENGINEER: MICHAEL D. GRIFFIN (APL)

PROGRAM SCIENTIST: THOMAS E. STRIKWERDA (APL)




APL PROGRAM . |

MISSION: DEVELOP THE PRELIMINARY ENGINEERING DESIGN OF
' : AN ALTERNATE FINE GUIDANCE SYSTEM i

_GUIDE.LlNES: — SATISFY SCIENTIFIC REQUIREMENTS :
— MORE FORGIVING PERFORMANCE CHARACTERISTICS -
— MINIMUM DISTURBANCE TO EXISTING FGS
— MINIMUM SCHEDULE/COST PERTURBATION
— NONINTERFERENCE WITH MAINSTREAM EFFORT

" TECHNICAL APPROACH: UNRESTRICTED

!
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APL PROGRAM

bELIVERABLES: ALTERNATE FINE GUIDANCE SYSTEM PROGRAM PLAN

a. TECHNICAL | ,
PRELIMINARY ENGINEERING DESIGN

NEW SENSOR PERFORMANCE VERIFICATION |

SYSTEM PERFORMANCE VERIFICATION ‘.

E . PRELIMINARY INTEGRATION PLAN %

b. PROGRAMMATIC

| | _ INDUSTRY DEVELOPMENT TEAM FOR FLIGHT-
| QUALIFIED UNITS

ST PRINCIPAL CONTRACTORS COMPLETE KNOWLEDGE OF
ALTERNATE FGS SYSTEM CONSEQUENCES |
'SYSTEM INTEGRATION ISSUES

PROGRAM SCHEDULE AND COST ESTIMATES

|
l
»
|
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Space Telescope System Study | o

Purposes:

To understand the system requirements and
operating environment for an alternate FGS.

To provide an independent study of potential
problem areas and recommendations for ST.

Study Emphasis:

Complexity of ST system required focusing on
any area primarily in terms of its relation
to pointing stability and control problems.
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Space Telescope System Study I

System Integration Consiraints
Dynamic range for interface with PCS?
Power margin?
Mass/volume limits in FGS box?
Cost, schedule, space qualification?
Integration time, suitability for acquisition? |

Processing requirements — interface with FGE/PCS?

Noise, sensitivity, spectral response?
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Space Telescopé System Study | |

Alternate Sensor Technologies

Image Dissectors —~ e.g. IUE Fine Error Sensor.

CCD/CID solid state arrays.
Optical splitter / FGS PMTs in quadrant mode.

Digicon in quadrant mode, with/without optical
splitter.

Signal processing to assist interferometer.
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Space Telescope System Study |

FGS Optical System Properties
What is needed to form an imoge in the FGS?
What will the image quality be?

Guide Stars

Availability? Magnitudes? Spectral type?
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Space Telescope System Study |

Science Requirements on Pointing Control

Nominal stability requirement .007 arcsec
for 24 hours using 14.5 magnitude guide stars.

Jitter spec seems to be 10% of Airy disk for
original 3 meter telescope in UV. Reduction to
2.4 meters cuts guide star photons by 33% and
increases diffraction spot size by 207%.




Space Telescope System Study I |

PCS/FGS configuration and performance.
Acquisition sequence for dim stars a problem.

3 arcsec star selector FOV size specification?
— sky background at 23rd magnitude, using
safety factor of 100?
— SSS scan rate in coarse track mode?
— "guarantee” 1 guide star in pupil FOV?

If pupil-size is larger, slew accuraé)yl‘/'dfi/ff'
and acquisition time is more forgiving.

Is 40 Hz FGS internal rate required for sensor
with larger dynamic range?
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Space Telescope System Study I [E

Disturbance Environment

Reaction wheels — statistical performance summary
given. Is this the right measure of performance?

High gain antenna a significant jitter source.
Microstrip phased arrays instead?

Cosmic ray environment may be more severe than
expected based on analysis seen so far.

Solar array damping times — operations impact?

Star selector servos — jitter in spec?




.
. N ' ‘

Space Telescope System Study | IE

Disturbance Environment (Cont'd.)

x(
|

Thermal effects — analysis seems okay. V,.Blankef
performance a bit optimistic. Sensitivity study?
No other problems, pending FGS cover plate fix.

Structure — low frequency damping coefficients?
Graphite/epoxy water retention/outgassing? APL
has had experience at the arcsec level with

this material (MAGSAT).

Environmental torques/wheel speeds/momentum
dumping capability — impact of later launch on
aero torques needs to be assessed.
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Space Telescope System Study I @

Disturbance Environment (Cont'd.)

Gyro noise — present quietling measures have been
very effective, but DRIRU-2 is 6—8 db quieter.
Is this important in the present system?

Gyro drift — FGS samples used in 1 Hz average for
inertial updates. Is better/more frequent update
possible or desirable? FGS/PCS filtering? Full

state filter around gyro?

Photon noise — a problem for acquisition and
tracking on dim stars - loss of lock potential.
Sample filtering? Lower FGS rate?




Space Telescope System Study I o

Computer Systems

No margin for on—orbit "work arounds' in DF-224.
In—flight reprogramming has saved many missions.

Considerable margin in FGE for new algorithms.
No data storage margin. Expense of changes is
an obvious drawback.

FGE radiation susceptibility may be a problem.
Radiation—hardened parts not currently used.
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Space Telescope System Study I

Simulation Approach

PCS/FGS simulation is required to analyze sysw‘em
performance of sensors with new galn/pomhng
error signal characteristics.

1-DOF simulators are adequate for initial work.
Six—month time frame does not permit development
of PCS/FGS simulation capability at APL.

NASA/MSFC and NASA/GSFC had 1-DOF models which
were available for APL use/modification/updates.

Latest configuration/hardware data will be

included and simulation model "played back" to
NASA/Lockheed/PE for verification.

ST performance will be studied with new sensor

in updated 1-DOF model.




POINTING CONTROL SYSTEM_ANALYSIS

e Fundamental control strategy

e Offset tracking and motion compensation
e Observer design

e Vehicle conftrol

e Single plane system model

e Planned work




o
BASIC CONTROL PHILOSOPHY

OBJECTIVE: Align specified scientific
instrument boresight to
data star line—of-sight

TECHNIQUE: Track nearby guide stars
and offset science instrument
boresight to data star
line—of-sight
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FINE GUIDANCE SENSOR FIELD-OF-VIEW

3x3 5 instantaneous field-of-view

3 fine guidance sensors
(sections labled 1, 2, 3)

Sensitive
region

Guide star

Telescope focal plane I \
|




o @
FINE-LOCK CONTROL STRATEGY

» Star selector servo loop maintains guide star
within limited interferometer field—of—view

e Servo encoder and known guide star offset
combined to measure pointing error to data star

e Blending of measured pointing error at low
frequency and integrated gyro rate at high
frequency used to control vehicle attitude




® CONTROL FUNCTIOMAL BLOCK DIAGRAM ®
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OQFFSET_TRACKING

- S ]

e Must account for guide star/data star
offset, including velocity aberration

o Control system should feedforward compensate
for known motion due to velocity aberration
rather than rely on feedback




POVS (2
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OFFSET TRACKING AND MOTION COMPENSATION
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OBSERVER DYNAMI

o Model measurement process as attitude
error due to gyro bias

€ = GDS-éV g .
) => é=0ps=8g+B

ég=év + BJ




OBSERVER MODEL AND DYNAMICS

A

Of8+_va5

J

(a) Gyro drift - pointing error model

(b) Closed loop observer

m>
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SOME OBSERVER FEATURES

o Estimated and true pointing error will differ
due to random noise and unmodeled vehicle dynamics

e Assumes sensor characteristic is within
linear range
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feedback




VEHICLE CONTROL ‘

Flexible
modes

Measurement | 4

+ € :\ + . 1 0
Ops > system ...C\_}.- -1 K, —.—(1} Ke =1 1, Reaction A | L v |V
updates wheel Iy +
(1 Hz) 1
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Vehicle Vf::;le
Vehicle attitude ks
attitude loop loop 10 Hz eap
(low (high notch Drift
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frequency) frequency) filter
+
g /LA i)
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PLANNED WORK

e Simulation study assessing pointing and loss—of
lock performance of alternative sensor versus

the current sensor

» Analysis of error sources and their propagation
to pointing error

e Analysis of control loop bandwidth requirements

e Three dimensional description of pointing
control system operation




Space Telescope
Disturbance Torque Analysis

e External torques:
— Gravity gradient - — Aerodynamic
— Magnetic — Solar

e Torque - momentum - wheel speed - vibration

e Magnetic momentum dumping effectiveness determines
LOS jitter due to wheel speed

e Disturbances also affect PCS performance

830607 JCRay




Space Telescope
Momentum Control Simulation

e Assume ST inertial (PCS working perfeclly) :
momentum = J torque

e Currently, model:
— gravity gradient torque
— CP magnetic momentum dumping
— aero torque (MSFC coefficients)

e Plan: .
— implement ME law (others?) sMinIMUM  EERGY
— independent aero torque model EFFECT oF LATER LAuvey
— evaluate wheel speed performance
(statistics, spectra, histories, ... )

— disturbance profiles for PCS simulation

830607 JCRay
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S.T. EXTERNAL TORQUES

CASE NAHE:T TESTS BODY ORIENTATION CINERTIAL)?
INITIAL CONDITIONS: RIGHT ASCENSION (DEG) = 90.00
EPOCHY  YEAR=1984. DAY 1 DECLINATION (DEG) = 73.50
BODY HOM. (NHS) = .00 .00 .00 ROLL ANGLE (DEG) = .00
MAG. TORQUE GAIN = 758 SA ANGLE (DEG) - 90.00
.05
£ 1 -a% -
; -
E -.l .
R
. T T T T 1
A (] 5
L 10
5 05
R ) 7
0
b .
E 2 -
5 .08 .
-
& "
! ]
n | 1 1 T 1
0 S 10
-—
0%
. —
T -
¥o-les o
-.l - ’
I I I I B |
0 S 10

TINE <HOURS»

10148 AN EDT 6/7/83 2330 STSIN




CASE NANE3

TESTS

INITIAL CONDITIONS?

EPOCH:
BobYy nmon
HAG. TOR

L]

MCO[/O~ ODODMD

N
H
v

3152 PN EDT

YEAR=19084, DAY= |

« (NHS) = .00 .00

QUE GAIN = 750

02 -

.01
0 -4

01

S.T. AERODYNAMIC TORQUES

BODY ORIENTATION (INERTIAL)!
RIGHT ASCENSION (DEG) = 90.00
DECLINATION (DEG) = 73.58
ROLL ANGLE (DEG) - .80
SA ANGLE (DEG) = 90.00

.02

.02

.01

]
I I |

o
-
!

!

.02

[

=
1

677783 2330 STSIN

TINE <HOURS»



§.T. DIPOLE MOMENT ]

CASE NAME1 TESTS OF MAGNETIC TORQUERS BODY ORIENTATION (INERTIAL):
INITIAL CONDPITIONSS ] RIGHT ASCENSION (DEG) = 90.00
EPOCHY YEAR+=1984, DAY= 1 DECLINATION (DEG) = ~73.50
BODY MOM. (NHS) = .08 .00 .00 ROLL ANGLE (DEG) = .00
HAG. TOROUE GAIN = 750 SA ANGLE (DEG) = 390.00
4000
2000 -
'r’ 0 l\‘/l\‘\_
- W NV
" 2000
A -
ﬁ 4000 1 T T 1
E 0 S 10
r 4000
¢ 2000 ]
¢ 000 - A
N . 3 /1
A S i A of S
P 2000 -
y 2l L —
L ; r . ‘ . ,
: 0 s
- 4000 — ) 10
. 2900 -
n % g =
2 3. . W
2 2000 —
“4000 T T T T m
0
4000 - » 1%
—
2000
” =
T 0 -
4 - -
2000 -
- 4000 I I , r .
0 5 10

10347 AN

EDT

TIHE <«HOURS>»
6/7/83 2330 STSIN




[sT GrouND TRACK |

SAAL>
Mag F1eLD Hoe

\

300
——— NAG FIELD CONTOURS (GAUSS)

wremeeeee- GROUND TRACK

o
L\

-
Sternees D

e

. o®

LONGITUDE (DEG)

100

R J SN . Y- T

<CQWs >

6€/7/83 2544 SCOPE

3138 PN EDT




EPOCH = 1975

LATITUDE

3 Y% 1 HPUI ISPU U WU VU U P SN I S S | 1 1 1 L
Y 0. 30. " V—1 A bh A A V1 .l A_d l Aol l 4 i l 4 i l N l A4 1 LA l i

) 60 90°* 120° 150° 180° 210° 240° 270° 300° 330° -43&.‘.,0‘
EAST LONGITUDE

) \, Mwn«-w\ ENERGY cosnic o .
& EwEeRGY (GeV> WHICH cAN REACH sSuprepce. .




_  CHARGED

% Z

PART(CLES SPIRAC 10 From BELOW




® | ® ®
CBSHMIC RAY ACCESS T@ A SPACECRAFT
BRTHOCRAPHIC PRBJECT IBN

ALT = 400 KM LAT = -10.
LON = 0.
AT some E

ZEN1TH

A FERNS SR
/ "
/

p of

£ : 3

\ //
) \\Ltoﬂ ;// /
“qeoeohennoadacencndasnns aaoooaoaoangooaan]——— m——--~——~~71——u-;-~—-77//
“apuoabaoeouvon nanuuguuouuyoauu ugauoguoooo / ///' . ~
‘uqoaoannogadagana aunuunqaunu aodaugoaooo /////,////
'8Q00000»0000a00000QuaL00YoNanle0anaguouaa ) -
-sagtutaadon me,um, 00 [r{.l(mtil." u%?q nggmu gg%jg ugcm unt}nnm) uogoahogna-"
QOO0 LN, OOUOOO0O) Xy ¥10)00( OO 'y XN
&ﬂﬂﬁ“ %‘h&x; '\ Tl ’nﬂl‘ A ‘}}Ih{% dan
R *

| =-ai’

NADIR




b e S

EXPOSURE FACTOR

14

12

10

LAT=-50.0
LON=210.0

L.

v L] ¥ & VP

1.0

RIGID

L.
L] LR R B

10.0
ITY (GV)




Nt

NI IR

NI

o ”a!‘,‘ ;'v

NI

tul = qo, LON = 120,

eHL

LBN = 120,

N

",17

N

ik = -30.

N

- qu, LN - 2qu,
2UHEIN
-.-——A‘ 3

i I

LAT = 20, L = 290,
ETIRIT

Hntn i

LAT = -10,

LN = 290,
ZENTTH

2 &, 5
.
A1

Hn K

LON = 290.
IR




incliration

1¢°

1.0
RICIDITY GV

{ncliration

00

I n

X w e

~

HOLDud JuNSOdX 3

\ g
-

1.0

13v)

Ri1GIDITY

HOLUA 38NS0dxX3

[

o

‘e

b ad

Ll

“”

[P 3

~

Q

[~ 1

e

o

e r

" [

» " » + s "

L + + + + Al +

> b | Q ® “w v “ o
HOLJud IUNSOAXI

&

e e o

[

(¢ ]

e

L ad

L]

o

o

—

(v}

[ b

.

o .

o r

~ 3

N N N

4 - v i v w

X 2 e e v N

c.t

1BI7Y 16V

R

iraticn

-

N " + + + + +
v v w, v v v ad
b 1] v ~ - ~ "~ ©
HOLDU4 3NBOAX
s &
L4 "y ~—

+ + +

+
“© -
-

[~

-

te

HO01Jud 3UNSOIX I

O

RiGIDITY 15V)

.. =] .1

1

c.




o
L

‘g% {cmZsec GV ster)!

o,
[ ]

O° INCLINATION

TTANCE

|

)
o

2

(steradions)
T

TRANSMI!

S

1

S
()

XPCSURE
{cmZsec GV)'

i
)
]
¥
1
4
)
o
A
1
i
A4

.-
-
—-—

S,
¢ ]

30° INCLINATION

I 10 10

RIGIDITY (GV)

S0°INCLINATION

COSMIC RAY
DIFFERENTIAL
RIGIDITY
SPECTRUM

ORBIT
AVERAGED
GEOMAGNETIC
TRANSMITTANCE

1

1

ORBIT
AVERAGED

COSMIC RAY
EXPOSURE




SIMPLIFIED FGS OPTICAL SCHEMATIC
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PCS Computer Review l ﬂl

o PCS required to have at least 20% memory and
execution time margin for on orbit changes

o 71.4% execution time used (Jan 83)

e 86.9% memory used (Jan 83) exceeds spec

¢ Memory margin solutions being investigated:
e Remove functions
e Use spare memory board
e Add external storage




PCS Computer Review l

PCS/FGS Interface has growth potential

Spare command slots already allocated
e 4 all commandable every 25ms period
e 11 one commandable per 25ms period

No spare data slots allocated

PCS & FGS hardware capable of supporting
16 additional data words every 25ms




FGE Review l

e No specification for FGE memory margins
(Firmware prohibits on orbit changes)

e FGE memory used:
447% 1802 program
03% 1802 data
64.2% 2900 program
70.0% 2900 8 bit data
95.3% 2900 24 bit data

e Shortage of spare 24 bit data memory
locations may hamper future changes




FGE Review I ﬂ)

e No specification for FGE execution time margin
(Firmware prohibits on orbit changes)

e FGE 2900 execution time is mode dependent:
13.0% SSM
13.2% Fine mode
13.4% Fine lock (no FEA start)
18.0% LOS
18.4% Fine lock
20.8% LOS (turns)
22.8% Search
31.6% Coarse track

e FGE 2900 is thermal limited at ??%

o Growth to 31.6% in any mode without thermal risk




FCE Review | f

o FGE 2900 processor is power cycled at 40 Hz
due to thermal dissipation limit

e 6.3 Billion power cycles in 5 years

e Power cycling may lead to failure
e Needs further investigation
e Electromigration ?




FGE Review | [E

No specification for FGE radiation susceptibility
No radiation hardened devices currently in FGE
Preliminary review — ldentify

Further study — Analyze



FCE Review |

e FGE soft errors
e Probabilistic events
e Device variations |
e Effects are location dependent
¢ No permanent damage

e Potential soft error prone devices:
935L422 Bipolar RAM
2901B Bipolar ALU ——" NOT MucH EFFEC,
6551 CMOS RAM (heavy IOHS)
4000 series CMOS logic (heavy ions)
TTL Bipolar logic (heavy |ons)

e Potential solutions:
e Less susceptible devices
e Immune devices
e Error detection/correction
e Operational




FGE Review I

e FGE latchups
e Probabilistic events
e Device variations
e Permanent damage

e Potential latchup prone devices:
6551 CMOS RAM (heavy ions)
6611 CMOS PROM (heavy ions)

e Potential solutions:
e I[mmune parts
e External device protection




FGE Review ‘

e FGE total radiation dose
e Device variation ‘
e Degradation building to failure
e Permanent damage

A

e Expect 1.8K Rad over 5 years with shielding ' L

e Potential total dose prone devices:
6551 CMOS RAM (less than 6K Rad)
1802 CMOS microprocessor (as low as 1.3K Rad)
4000 series CMOS logic (as low as 7K Rad)

e A solution is to use radiation hardened devices

A
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APL PROGRAM |
ALTERNATE SENSOR CONCEPTS
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APL PROGRAM
ALTERNATE SENSOR CONFIGURATION -

GUIDE STAR IMAGE SENSORS

— DO NOT DEPEND ON KOESTERS PRISMS
~ — REQUIRE FORMATION OF NEAR DIFFRACTION LIMITED STAR IMAGE

- TECHNOLOGY CONFIGURATION
OPTICAL IMAGE IMAGE FGS FIELD OF VIEW ONTO QUADSPLITTER. USE EXISTING
SPLITTER PMT’s. PROCESS FOR ACQUISITION AND FINE LOCK
QUADRANT IMAGE FGS FIELD OF VIEW ONTO DIGICON QUAD DETECTOR. USE
DETECTORS EXTENDED QUAD RING TO FACILITATE ACQUISITION. PROCESS

FOR ACQUISITION AND FINE LOCK

HYBRID OPTICAL IMAGE FGS FIELD OF VIEW ON QUAD SPLITTER WHICH 1S MOUN.TED
SPLITTER, QUADRANT ON A QUAD DETECTOR DIGICON. PROCESS FOR ACQUISITION
DETECTOR AND FINE LOCK

IMAGE - IMAGE FGS FIELD OF VIEW ONTO IMAGE DISSECTOR. SCAN FIELD
DISSECTOR OF VIEW OVER APERTURE FOR ACQUISITION. DO FINE LOCK IN
' ' ACQUISITION WINDOW

CCD,.CID IMAGE FGS FIELD OF VIEW ONTO ARRAY. PROCESS FOR ACQUISITION
- ENHANCED CID AND FINE LOCK




APL PROGRAM | |
ALTERNATE SENSOR CONFIGURATION

-

INTERFEROMETER ENHANCEMENT

— DOES NOT DISTURB KOESTERS PRISMS

. — MAINTAINS ACCURACY WHILE DIMINISHING PROBABILITY
o ! OF LOSS OF LOCK

TECHNOLOGY CONFIGURATION

HYBRID TWO-CHANNEL USE LIGHT EXITING KOESTERS PRI

OPTICAL SPLITTER, REPLACE PMT's WITH SPLIT-FACE DIGICONS, AXIS NORMAL |
TWO-CHANNEL DIGICON | TO KOESTERS PRISM AXIS. SYNTHESIZE QUAD DETECTOR

AND USE AS CATCH BASIN IN ALTERNATE AXIS

SMS AND FORM IMAGES. |

' SIGNAL PROCESSING

O

OPTIMAL FILTERING
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Space Telescope Alternate Sensors

Image Splitters
Optical Splitters
Digicon with quadrant diode array
Image dissector tube
CCD / CID array
Combination devices
Interferometer Modifications

Interferometer output imaged onto Digicon
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Space Te'lescope Alternate Sensors

Digicon
Flexible diode array geometry
Low dark noise
S—20 photocathode
Simple operation / stable / small size
Excellent single photon detection

Space qualified

High—voltage supply (15 kV) not a problem




Space Telescope Alternate Sensors

Digicon — Disadvantages
Some light lost in "gaps" between diodes

Dynamic range is limited

Beam spread from cathode to diode (12 microns)




SPACE TELESCOPE FGS

Component Weight & Power Estimate

Quadrant Digicon

Size 2" d x 3"

Weight 4 1b. (with mount)
HVPS

Size 3-1/4" x 4-1/2" x 3"

Weight 3 1b.

Power 300 mw

Charge Amplifier Assembly

Size 2" d x 2"
Weight 1 1b.
Power 200 mw

Signal Processer

Size 5" x 3" x 3"
Weight 5 1b.
Power 300 mw

LVPS
Size 3-1/4" x 4-1/2" x 2"
Weight 3 1b.
Power

Microprocesser

Size 5" x 8" x 4"
Weight 7 1b.
Power 7 watt
TOTAL
PCwe <9 watt, 22 VDC
Weight (Components) <20 1b.




QUAD TUBE SCAN GEQMETRY

SCAN PATH

DIODE A DIODE B

SPOT DIAMETER APPROXIMATELY 25 um.

// ELECTRONIC VISION' /
4 f [ _ 8 SYSTEMS DIVISION /




Error Function
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Space Telescope Alternate Sensors

Image Dissector Tube
Proven design and extensive flight experience
Low noise — no cooling required
Large dynamic range ‘

S—20 photocathode

Random access of any photocathode area




b

Space Telescope Alternate Sensors

Image Dissector Tube - Disadvantages
Low efficiency (non—integrating)

Acquisition complicated and/or time consuming

Extensive electronics required
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Space Telescope Alternate Sensors

CCD / CID Arrays
Integrating devices
Good quantum efficiency
Compute image centroid or use quadrant mode

Random access (CID)

Non—-destructive readout (CID)




Space Telescope Alternate Sensors

CCD / CID Arrays — Disadvantages
Large dark noise and/or readout noise

Extensive circuitry required

New technology — not space qualified

b
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Space Telescope Alternate Sensors

Interferometer Output Imaged onto Digicon
Maintains most of existing hardware

Maintains interferometer tranfer function !

No loss of lock problem




Space Telescope Alternate Sensors

Interferometer Output Imaged onto Digicon—
Disadvantages

Complicated design

Alignment of optics is critical




APL PROGRAM
SUMMARY

— ST SYSTEM STUDY ESSENTIALLY COMPLETED, FINAL REPORT
- PUBLISHED IN JULY 1983
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— CONTROLS CONFIGURATION DEFINITION |
— OPTICS

' — SENSOR EVALUATION WILL FOCUS ON
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— OPTICAL SPLITTERS

— HYBRID CONFIGURATIONS

— SIGNAL PROCESSING
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