—ll

- am

Bob Wity

4

DRAFT DOCUMENT

The Programming Language
HAL '

- A specification

1 March 1971

INTERMETRICS

DRAFT DOCUMENT

The Programming Language
HAL '

- A specification

1 March 1971

National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas 77058

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

. Submitted to:

FOREWORD TO THIS DRAFT

This document is a draft of The Programming Language, HAL -

A Specification (Document # MSC-01848). The content is sub-

stantially complete. An index will be included in the final
document.

This feport was prepared by Intermetrics, Inc. ﬁnder
contract NAS-9-10542 from the Manned Spacecraft Center of
the National Aeronautics and Space Administration. The
Technical Monitor of this contract is Mr. Jack Garman/FS5.

The publication of this draft does not constitute a
document release by Intermetrics and information contained

herein shall not be disclosed outside the Government.

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

PREFACE

The HAL Programming Language has been developed by the
staff of Intermetrics, Inc. based on many years of experience
in producing software for aerospace applications.

HAL accomplishes three siénificant objectives: (1) increased
readability,lthrough the use of a natural two-dimensional mathe-
matical formaﬁ; (2) increased reliability, by providing for
selective recognition of common data and subroutines, and by
incorporating specific data-protect features; (3) real-time
control facility, by including a comprehensive set of real-time
control commands and signal conditions. Although HAL is designed
primarily for programming on-board computers, it is general
enough to meet nearly all the needs in the production, verifica-
tion and support of aerospace, and other real-time applications.

The design of HAL exhibits a number of influences, the
greatest being the syntax of PL/1 and ALGOL, and the two-dimen-
sional format of MAC/360, a language developed at the M.I.T.
Draper Laboratory. With respect to the latter, Intermetrics
wishes to acknowledge the fundamental contribution, to the
concept and implementation of MAC, made by Dr. J. Halcombe Laning

of the M.I.T. Draper Laboratory.

March 1, 1971

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840°

TABLE OF CONTENTS

1.0 BRIEF DESCRIPTION OF HAL
l.1 The Basic Characteristics of HAL

1.1.1 Source Input/Source Listing

1.1.2 Data Types and Computations

1.1.3 Real-time Control

1.1.4 Program Reliability

2.0 HAL LANGUAGE ELEMENTS
2.1 Syntax Notation

2.1.1 Syntactical Elements

2.1.2 Keywords

2.1.3 Vertical Strokes

2.1.4 Braces
2.1.5 Brackets

2.1.6 Three Dots

2.2 HAL Character Set
2.3 Basic Syntax Elements

2.3.1 Identifiers

2.3.2 Keywords
2.3.3 Literals

2.3.3.1 Arithmetic Literals

2.3.3.2 Bit 8tring Literals

2.3.3.3 Character String Literals

2.3.4 Special Characters

2.3.4.1 Arithmetic Operators

2.3.4.2 Relational Operators

i
INTERMEﬂmCSTNCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139

+ (617) 868-18¢

A

t

0

=8
.
N

2.3.4.3 sString & Logical Operators

2.3.4.4 Other Operators

2.3.4.5 Separators

2.3.4.6 Built-in Function Names

2.3.4.7 Compiler-Generated Annotation
SOURCE LANGUAGE INPUT
Two-Dimensional Format

3.1.1 E and S Line Expressions

HAL Single-Line Format

3.2.1 Implicit Data Declarations

Comments

3.3.1 Comments on Statement Lines

3.3.2 Comment Lines

Use of Blanks
DATA ELEMENTS
Data Types

4.1.1 Arithmetic Data

4,1.1.1 Scalar
4.1.1.2 Integer
4.1.1.3 Vector
4.1.1.4 Matrix

4.1.2 String Data

Data Organizations
4.2.1 Arrays

4.2.2 Structures

4.2.2.1 A Not Qualified Example

4,2.2.2 A Qualified Example

id

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840°

1=
.
w

(8,}
.
o

wn
=

4.2.2.3 An Aerospace Application

Attributes

Initialization Attributes

Storage Class Attributes

Memory Optimization Attributes

Dynamic Memory Protection Attributes

Special Attributes

DATA DECLARATION

DECLARE Statement

Bulal

Simple DECLARE Statement

5+lelal
Bedsle
TR W
5.1.1.4
9sdedsB

5:.1:1:6

<array-spec>

<type-spec>

<attribute list>

Initialization

Declaration of Program, Function &
Statement Labels

Examples of Simple Declaration

Statements (Floating Point Implementation)

Factored Declaration Statement

Bedindal

Examples of Factored Declarations

Structure Declaration Statement

5.1.3:1
Bele3s2
5:1:3.3

5.1.3.4

<terminal-declaration>

<minor-struct-declaration>

Examples

Structure Initialization

133

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

5.2 Notation of Data Types and Organizations

5.2.1 Data Type Notation

5.2.2 Array Notation

5.2.3 Structure Notation

5.3 Implicit Declarations
5.4 Alternate DECLARE Form
<5.5 DEFAULT Statement

6.0 DATA MANIPULATION

6.1 Expressions

6.1.1 Arithmetic Expressions

6.1.1.1 Integer Expressions

6.1.1.2 Scalar Expressions

6.1.1.3 Vector Expressions

6.1.1.4 Matrix Expressions

6.1.2 String Expressions

6.1.2.1 Bit String Expressions

6.1.2.2 Character String Expressions

6.1.3 Array'Expressions

6.1.3.1 Two-array Expressions

6.1.4 Structure Expressions

6.1.5 Relational Expressions

6.1.5.1 Bit String Comparisons

6.1.5.2 Arithmetic Comparisons

6.1.5.3 Character Sfring Comparisons

6.1.5.4 Array Comparisons

6.1.5.5 Structure Comparisons

iv

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139

- (617) 868-1840

6.1.6 Precedence Order 6-14
.6.1.6.1 Group I Arithmetic Operations 6-14
6.1.6.2 Group II Relational and String Operations 6«15

6.1.6.3 Further Comments on the Order of
Operations 6-15
6.2 Conversions i - B=17
6.2.1 Implicit Conversions - ‘ 6=17
6.2.1.1 Data Type 6-17
6.2.1.2 Arithmetic Literals ' 6-19
6.2.1.3 Precision 6-19
6.2.2 Explicit Conversions 6-23
6.2.2.1 Data Type 6-23
6.2.2.2 Array-Type | 6-27
6.2.2.3 Special Character-To-Bit, Bit-To- 631

Character Functions
6.2.2.4 Precision : 6=32
6.2.2.5 Summary of Explicit Data-Type Conversions 6-35
6.3 Subscripts % | 6-37
6.3.1 Subscripting Data-Types and Arrays of Data-Types 6-38
6.3.2 Single-Element Reference 6-38
6.3.3 Multiple-Element Partitions 6-40
6.3.3.1 The Use of * ' 6-40
6.3.3.2 The "TO" Operator 6-40
6.3.3.3 The "AT" Operator : 6-41
6.3.4 Subscripting Structures 6-42
6.4 Expression Summary 6-44
v
v

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840-

7.0 STATEMENTS
7.1 Assignment Statements

7.1.1 Implicit Conversions

7.1.1.1 Type Conversions

7.1.1.2 Precision Conversion

7.1.2 String Assignments

7:1.2,1 Bit Strings

7.1.2.2 "Boolean" Assignments

7.1.2.3 Pseudo-Variable Bit String Assignment

7.1.2.4 Fixed Character Strings

7.1.2.5 Varying Character Strings

7.1.3 Array Assignments

7.2 Declaration Statements
7.3 Control Statements

7.3.1 The GO TO Statements

7.3.2 DO Statements

7.3.2.1 The Simple DO Statement

7.3.2.2 DO WHILE Statement

7.3.2.3 The DO FOR Statement

7.3.2.4 DO CASE Statement

7.3.3 END Statement

7.3.4 The IF Statement

7.3.5 The NULL Statement

7.3.6 REPLACE Statement

Procedures and Functions

~
L]
1SN

7.4.1 Procedures

7.4.1.1 PROCEDURE Statement

vi

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

7=10

Lo s

1
I 7.4.1.2 CALL Statement:) 7-21
I 7.4.2 Functions | : =22
7.4.2.1 FUNCTION Statement 1-22
l 7.4.2.2 Function Reference 7-24
7.4.2.3 Parameter Declarations ' L 7-24
I 7.4.2.4 Functions of An Array 7-26
I 7.5 Programs - 7-28
7.5.1 PROGRAM Statement | 7-28
I 7.5.1.1 Program Calls - 7+28
7.6 RETURN Statement =30
I 7.7 CLOSE Statement 7 : 7-31
I 8.0 HAL PROGRAM ORGANIZATION 8-1
8.1 Program Structure 8-1
I 8.1.1 Scope of Names ; 8-2
8.1.2 Selective Inclusion of Outer Names 8-4
I 8.1.2.1 Incilusion of Structure Names 8=5
I 8.1.2.2 Implicit Declaration of Names 8-6
8.1.3 Scope of Labels 8-6
I 8.1.4 Scope of the REPLACE Statement 8-8
8.1.5 Scope of the DEFAULT Statement 8-8
I 8.2 The COMPOOL 8-=11
l 8.3 The Symbolic ALibrary : 8-12
9.0 REAL TIME CONTROL 9-1
I 9.1 TASK Statement | g=1
9.1.1 Task Calls g9=2
I 9.2 Schedﬁling | Statements Q=3
I 9.2.1 SCHEDULE Statement : 9-3
vii
I INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

9.2.2 WAIT Statement

9:.2:3 PRIO_CHANGE Statement

9.2.4 TERMINATE Statement

(o)
w
=
<
0
B
r'.
0]

and Signals
9.3.1 Events

9.3.2 SIGNAL Statement

9.4 Dypémic Control of Shared Data
9.4.1 Conflicts in Sharing Data
9.4.2 The Update Block
9.4.2.1 Summary on Entering an Update Block
(LOCK_TYPE (1) Variables)
9.4.2.2 Summary on Leaving an Update Block
(LOCK_TYPE (1) Variables
9.4.2.3 Examples
9.4.3 Exclusive Subroutines
9.4.4 Access Rights
9.5 Error Recovery

9.5.1 ON Statement

9.5.2 ER_RUPT Statement

9.5.3 EXAMPLES
10.0 INPUT-OUTPUT

10.1 FILE Statement

=
o
N

READ Statements

10.2.1 READ Statement

10.2.2 standard Input Data Formats

10.2.2.1 Standard Arithmetic Data Formats

10.2.2.2 Standard Character Data Format

10.2.2.3 Arrays and Structures

viii

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139

+ (617) 868-1840

o

10.2.3 READ_ALL Statement
10.3 WRITE Statement

10.3.1 Standard Output Data Formats

10.3.1.1 Scalars, Vectors, and Matrices

10.3.1.2 1Integers and Bit Strings

10.3.1.3 Characters

10.4 Input/Output Manipulations

10.4.1 I/0 Functions

10.4.2 Character String Functions

APPENDIX A Built-In Functions on Pseudo Variables
APPENDIX B Standard Defaults

APPENDIX C HAL Keywords

ix

10-8

10=10
10-13
10=13
10~13
10-14
10=15
10-15

10-16

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

1.0 BRIEF DESCRIPTION OF HAL

HAL is a programming language developed by Intermetrics, Inc.
for aerospace computer applications. It is intended to satisfy
the requirements for both on-board and support software. The
language contains features which provide for real-time control,
vector—matri% and array data handling, and bit and character

string manipulations.
1.1 The Basic Characteristics of HAL

1.1.1 Source Input/Source Listing

A singular feature of HAL is that it accepts source code
in a multi-line format, corresponding to the natural notation
of ordinary algebra. An equation which involves exponents and

subscripts may be written, for example, as

_ 2 2.3/2
cI— (XAJ+YBK)

instead of (as in FORTRAN or PL/1)

C(I) = (X*A(J)**24+Y*B(K)**2)**(3,/2)

HAL also permits an optional single-lire format; its construction

is similar to the example above, with some minor changes; thus

C$I = (X AS$J**2+Y BSK**2)**3/2

=3

INTERMETRICS INCORPORATED - 380 GREEN STREET-CARH%NDGE,MASSACHUSETTS(Q139- (617) 868-1840

HAL source code may be input on cards or by data terminal.

The input stream is free-form in that, for the most part, card
~or carriage column locations have no meaning; statements are
separated simply by semi-colons.

In an effort to increase program reliability and promote
HAL as a mofe direct communications medium between specifications
and code; the HAL program listing is annotated with special
marks. Vectors, matrices and arrays of data are instantly
recognized by bars, stars and brackets. Thus, a vector becomes
V, a matrix ﬁ, and an array [A]. Further, bit strings appear
with a dot, i.e., é and character strings with a comma, é.

With these special marks as aids, the source listing is more
easily understood and serves as an important step toward
self-documentation. In addition to data marks, logical para-
graphs, or blocks of code, are automatically indented so that
dependence of one block on another may be seen clearly.

HAL is a higher-order language, designed to allow programmers,
analysts and engineers to communicate with the computer in a
form which approximates natural mathematical expression. Parts
of the English language are combined with standard notation to
provide a tool that readily encourages programming without

demanding computer hardware expertise.

1=2

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

1.1.2 Data Types and Computations

HAL provides facilities for manipulating a number of
different data types. Arithmetic data may be declared as
scalar, véctor, matrix or integer (wholg number). Individual
bits may be treated as Boolean quantities or grouped together
in strings. The language permits the user to manipulate
éharacter strings, via special instructions. Organizations of
data may also be constructed; multi-dimensional arrays of any
single type can be formulated, partitioned, and used in expressions.
A hierarchical organization called a structure can be declared,
in which related data of different types may be stored and re-
trieved as a unit or by individual reference.

HAL requires that most data types be described explicitly;
i.e., by declarations which assign a name and specify desired
attributes. However, for data types with default attributes
the programmer can take advantage of HAL's implicit declarations
and let the compiler assign these variables appropriately.

The arithmetic data types together with the appropriate
operators and built-in functions constitute a useful mathematical
subset. HAL can be used directly as a "vector-matrix" language
in implementing large portions of both on-board and support soft-

ware. For example, a simplified equation of motion might appear as

_— *

A = B ACC;

G = -MU UNIT(R)/R.R;
VDOT = A + G;

RDOT = V;

J=3

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

where the matrix g transforms acceleration from measurement
to reference coordinates.

By combining data types within expressions and utilizing
both implicit and explicit conversions from one type to another,
HAL may be applied to a wide variety of problems with a powerful

and versatile capability.

1.1.3 Real-time Control

HAL is a real-time control language; that is, certain
defined blocks of code called programs and tasks can be scheduled
based on time or.the occurrence of anticipated events. These
events may include external interrupts, specific data conditions,
and programmer-defined software signals. Uhdesirable or un-
expected events, such as abnormal conditions, may be handled
by instructions which enable the programmer to specify appro-
priate action. |

HAL's real-time control features permit the initiation and
scheduling of a number of active tasks. This is a necessity

for any complex onboard space application.

1.1.4 Program Reliability

Program reliability is enhanced when a software system
can create effective isolation for various subsections of code
as well as maintain and control commonly used data. HAL is a
block-oriented language in that a block of code can be established
with locally defined variables that cannot be altered by sections

of program located outside thé block. Independent programs

1-4

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

can be compiled and run together with communication among the
programs permitted through a centrally managed and highly visible
data pool. For a real-time environment, HAL couples these pre-
cautions with a locking mechanism which can protect, by pro-
grammer directive, a block from being eﬁtered, a‘task from
being initiated, and even an individual variable from being
written into, until the lock is removed.

These measures cannot in themselves ensure total software
reliability but HAL does offer the tools by which many anticipated
problems, especially those prevalent in real-time control, can

be isolated and solved.

1=8

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840°

2.0 HAL LANGUAGE ELEMENTS

A.HAL program consists of statements terminated by semi-
colons (;), groups of associated statements which are treated as
a single statement (do—groups), and blocks of statements organized
as subroutines (e.g. procedures and functions). The statements and/or
blocks must be compiled as a program unit, or as sets of indepen-
dently compilable program units. Communication between programs
is through a common data pool (COMPOOL) within a symbolic library
(see Sec. 8).

HAL is composed of five basic syntactical elements: identi-
fiers, keywords, literals, special characters, and built-in
functions. Complex syntactical units (i.e., statements) are
constructed from these basic elements using a common set of

input characters.
2.1 Syntax Notation
The following rules are used throughout this specification |

to describe the syntax of the various constructs in HAL.

2.1.1 Ssyntactical Elements

Syntactical elements represent the defined language
elements which comprise HAL. Elements are denoted by lower
case letters (allowing imbedded hyphens) enclosed by angle

brackets. Some examples are:

a=1

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840"

<digit>
<identifier>
<expression>
<operand>

<label>

2.1.2 Keywords
A keyword is the literal occurrence in the language of

the characters represented. They are made up of upper caée
letters and break characters. Some examples are:

DECLARE

INTEGER

AND

OR

NOT

CALL

PROCEDURE

PRIO_CHANGE

2.1.3 Vertical Strokes

The vertical stroke | indicates that a choice of syn-
tactical units or other meaningful symbols is to be made; e.g{
<identifier> |<expression>
<name> | <label>
0|1]2]3]4

etc.

22

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139

2.1.4 Braces
Braces { } are used to denote that a choice of one of the
enclosures must be made. The choices may be stacked vertically,

or horizontally using the vertical stroke. For example,

MATRIX}

DECLARE(nam?>{VECTOR

and

DECLARE<name> {MATRIX | VECTOR}

are identical.

2.1.5 Brackets

Brackets [] are used to denote that a choice of one or

none is to be made. For example
[<label>:]END;

specifies that an END may but need not be, labeled; e.g.;

MARK: END;
or just
END;
2.1.6 Three Dots
Three dots ... denote that the immediately preceding

syntactical unit may occur one or more times in succession; e.g.,
[<digit>])sss

specifies a sequence of zero or more digits, while

{<digit>}..

specifies a sequence of one or more digits.

2+3

- (617) 868-1840

INTERMETRICS INCORPORATED -« 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840"

2.2 HAL Character Set

HAL's language syntax includes a total of 85 basic characters.

These are:

52

10

23

English language alphabetic letters: upper case A

through Z and lower case a through z.

(Lower case

is optional and may be used in identifiers when

available.)

digits 0 through 9.

special characters.

Each special character or com-

bination of characters has a particular meaning within

the language syntax.

Section 2.3.4.)

~.

(equals sign)
(plus sign)
(minus sign)
(slash)

(asterisk)

(less than symbol)

(greater than symbol)
(not symbol; also *)
(OR symbol; also)
(ampersand)
(semi-colon)

(colon)

2-4

They are:

[1
{}

(Their uses are discussed in

(period)

(comma)
(apostrophe)

{left parenthesis)
(right parenthesis)
(dollar sign)
(break character)
(number sign)

(AT sign)
(brackets)

(braces)

HAL will also accept other characters, restricting their

use to within comments and character strings. Some examples

are:

)

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840"

(exclamation point)
(percent sign)
(question mark)

(double quotation marks)

2-5

2.3 Basic Syntax Elements

2.3.1 1Identifiers

An identifier is a name which is assigned by the programmer

to a data element, statement label, etc. Each identifier must

satisfy the following rules:

A.

b'

The first character must be a letter.

It may contain 0 to 31 additional characters, which may

be any combination of letters, digits, or break characters,
except that it must not end with a break character.

It must not be a compiler reserved word.

A qualified structure name will contain imbedded

periods and must not end in a period or break character.

A structure name must be 31 characters or less,including

periods.

Examples of valid identifiers:

A
RO5
INTEGRATION_ ROUTINE
SEXTANT_TO_NAVIGATION BASE_ MAT

STATE.COV_MATRIX

2-6

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840°

Examples of invalid identifiers:

1A begins with digit

SAMPLE _ ends in a break character
DECLARE reserved word

POS VEC contains a blank
STATEMENT #200 contains a #vcharacter

232 Keywofds

Keywords are words recognized by the compiler to have
standard meanings within the language, and are usually unavailable
for any other use; for example, operators, commands, attributes,

and built-in function names. A list of HAL keywords is presented

in Appendix C. Some examples are:

DECLARE
INTEGER
AND
VECTOR
SQRT
TRANSPOSE

PRIO_CHANGE

=7
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

2.3.3 Literals
A literal is a group of characters or digits

which expresses its own value. For example, 248 and

12.6 are literals in that the compiler will assign these values

to these "names". Literals are constants during program execution.

s

There are two types of literals: arithmetic and string.

2.3.3.1 Arithmetic Literals. An arithmetic literal has the

following general format:
<digits>[{E|B|H}<integer>]...
where
<digits> = one or more decimal digits with an
optional decimal point.

<integer> = signed or unsigned whole number.

GENERAL RULES:
l. E, B, H represent powers of 10, 2, 16 respectively.

(That is, 1.023E+2 = 102.3, 32B-5 = 1.)

2. No distinction is made by form between scalar and integer
literals. (See Sec. 6.2.1.2 for the use of literals

in expressions.)

2-8

INTERMETRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139

EXAMPLES :

0.123E6B-3E10, 1lE75, 1lE-75, 456.789, 3 are all valid

arithmetic literals.

2.3.3.2 Bit String Literals. Three forms of bit string literals

- are defined:

BIN[(<repetition>)] '<binary digit string>'
OCT[(<repetition>)] '<octal digit string>'
HEX [(<repetition>)] '<hexadecimal digit string>'
where <repetition> is an unsigned integer and the digit strings
are of length 1 or more. When <repetition> is provided the resulting
string length is equal to <repetition> times the number of digits in
the particular <digit string>. Imbedded blanks are allowed
between the apostrophes, but have no significance.
GENERAL RULES:
l. Binary digit strings may contain only zeros, ones, or
blanks.

2. There are 4 special forms of bit string literals:

TRUE, _ -
{ ON } = BIN'1]

- (FALSE, _

{ OFF } = BIN'O

EXAMPLES:
TRUE, BIN'10110', HEX 'ABCD', BIN(32)'l', OCT'3777' are

all valid bit string literals.

2~9

- (617) 868-1840

2.3.3.3 Character String Literals. Two forms of character

string literals are defined:
'<teXt>'

CHAR. [(<repetition>)]'<text>'

where <text> may contain any character in the accepted character
set. If it is desired to have an apostrophe in the resulting

literal, it ﬁust be represented by an adjacent pair of apostrophes.
The length of the resulting string is equal to the count of the

characters plus the number of apostrophe pairs.

EXAMPLES:
'AB''''C', CHAR'57.3/C', CHAR(26) 'POP', are all valid character-
literals, having lengths of 5, 6, and 78 respectively.
NOTE: The character pair /* is always
interpreted as an opening comment
bracket by the compiler, even if
it occurs within a character string

literal.

2.3.4 Special Characters

Special characters or combinations of characters are used
in HAL between or with identifiers as operators, separators,
or other delimiters. These characters and their uses are defined

below and described in more detail in Sec. 6.

2-10

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

2.3.4.1 Arithmetic Operators.

Symbol Definition
+ ~addition (or prefix plus)

- subtraction (or prefix minus)

Fd division (other uses also)

(see note belowf) multiplication
* vector cross product (other uses also)
. | vector dot product (other uses also)
R exponentiation (single-1line)

t Note that HAL does not utilize a character as a multiplication

operator. Instead: -
(1) a space (or spaces) between two distinct identifiers
is interpreted as multiplication.
(2) one of the operands (identifer or expression) must be
enclosed in parentheses.
(3) the leftmost operand must end with a parenthesis

(function form; e.g., SIN(X)).

2~11

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

2.3.4.2

Relational Operators.

Symbol

=&

Definition

equal to

not equal to (or =)
less than

greater than

less than or equal to

greater than or equal to

not greater than (or *>)

not less than (or 7<)

The word NOT is equivalent to (7|") and may be applied to the

combinations above.

2:3.4.3

String and Logical Operators.

Symbol
AND (or &)
OR (or |)
NOT (or 1 or 7)

CAT (or || or |})

Word operators (e.g., AND) may be substituted for symbols (e.g., &)
except that they do not act as delimiters and must be appropriately

delimited by blanks or otherwise.

described in more detail in Sec.

2

6.

12

Definition

Boolean AND
Boolean OR
Boolean NOT

Concatenation

The use of these operators is

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840°

2.3.4.4 Other Operators.

Symbol Definition
Indicates repetition within

a list, or the last member
of an array or string.

@ Scaling operator, or character -
to-bit modifier

$ Subscript operator (single-
line)
2.3.4.5 Separators. The following characters have meaning

as separators in HAL:

Symbol Definition

comma P (a) separates elements of a list;

(b) separates indices in index
expressions;

(c) separates clauses in declare
statements.

semicolon (a) terminates statements;

~e

(b) separates structure indices
from array element indices.

(a) associates a statement label .

colon
with the succeeding statement;

(b) separates array element
indices from sub-element indices.

apostrophe . ‘ delimits string literal values
(character or bit).

indicates replace in assignment
and DO FOR statements.

equals

2-13

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS. 02139 - (617) 868-1840

period . separates component names of
qualified structures.

*
4/ encloses comments.
() Parentheses have many uses in

the language. They are used
in expressions, for enclosing
lists, function arguments,
data dimension and initializa-
tion values, etc.

2.3.4.6 Built-in Function Names. Built-in function names are

identified by the compiler as names of functions which are part
of the language. A complete list of these functions appears

in Appendix A. Some examples are:

ABS
TRUNCATE

COos

TAN
INVERSE

UNIT

2.3.4.7 Compiler-Generated Annotation. The following charactérs

are used by the compiler to annotate various data types as they
appear in the listing. Identical usage is also acceptable in

the input stream.

2-14

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

i
i |
Symbol) Definition

l * ‘Over a name denotes a matrix type.
I - Over a name denotes a vector type.

. Over a name denotes a bit string type.
I ’ . Over a name denotes a character string

type. :
I [] Denotes an array of a particular
data type.
I {1} Denotes a structure organization.
i
1
i
0
i
!
i
i
i
i
i
. 2~15

I INTERMETRICS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840"

3.0 SOURCE LANGUAGE INPUT

A source language program is presented to the compiler
in the form of statements. Statements can be written in

single line, one-dimensional format, as in FORTRAN, PL/I,

and most languages, as (for example)

A = B**4 + 2(C+D)**2 ;
Z = R/ (A-Z) **2;
C = A**B*%2 4 E**4;

However, one of the unique features incorporated into HAL, in
order to improve readability and clarity, is that statements

may also be written using a multi-line or two-dimensional

format. That is:

a =38% + 2(ctp) ?;
Z = R/(A-Z)z;

2
C=AB +E4;

The multi-line format introduces the added dimension of optional
exponent and subscript lines. These lines are used for the
exponentiating and subscripting of data on the main line of the
statement. The exponent line is also used for annotation of
variable names in order to indicate data types. Examples of

the multi-line format are:

3=1

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

(1) an assignment® statement involving scalar array

elements :

(2) a vector-matrix equation:

- T - %
X = (R.V) UNIT (R) + M

(R*V) ;
(3) a complicated expression in multi-line format in-
volving multiple exponents and multiple indices;
Y =5 BAKERKS.N + COMBUF2K ;
. INDEX_TABLEI J I,J,*%'
’ .
The standard source language input is expected to be in
two-dimensional format. The single-line format is provided
as an alternate. If single-line input is used, the compiler
will expand the single-line to multi-line in the output listing.

The definitions and restrictions of the two-dimensional and

single-line formats are described below.

3=2

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840"

3.1 Two-Dimensional Format

or
-
" S

of

Source language input statements must always have a main
"M" line. An "M" line may optionally have associated with
zero or more "E lines" (exponent lines) and zero or more
lines" (subscript lines). An input statement may be‘thbught

as n continuous parallel streams of characters on the E-, M-,

S lines that comprise the statement. A statement terminator (semi-colon)

is
on

on

used to terminate the n-line stream. The terminator must be
the main line and occur after (to the right of) all information

the main line and any associated E and S lines. Another state-

ment may begin following the terminator.

The first character of each line of input must be the parti-

cular letter that identifies the line. The various identification

letters recognized, are:

First character of

line Meaning
E This line contains exponents for the main

line, or another E line below it.

M This line is a main line; a blank is
assumed to be an M line.

S This line contains subscripts for the

main line or another S line above it.

C This line contains comments.
D This line contains compiler directives.
3-3

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

Statements and comments may occupy any part of the rest of tﬁe
available lines (e.g. columns 2 through 80 for cards).
Continuation of a statement from one set of E, M, and
S lines to another is permitted. For this purpose, column(s)
2 of the next set is considered equivalent to column(s) 81 of
the current set. A statement may be continued in this manner
until a terminator appears on an M line. The number of E and
S lines in the succeeding set(s) need not be the same as the number
of E and S lines used originally. An M line, however, must always

be present in every set. For example,

E 5

B K

M A =B + C

S I

E 2

M + D+ E
which is equivalent to

E 5

E K 2

M A=B +C 4+ D+ E;

S I

3.1.1 E and S Line Expressions. The E and S lines contain

exponent and subscript expressions respectively, as well as
certain data type annotations. Labels, terminators, statements,
and expressions resulting in vectors, matrices, and character

strings are not permitted on E or S lines.

3-4

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

S lines are evaluated from the lowest S line up to the
main line; E lines are evaluated from the ﬁpper-most E line
down to the main line. Subscripting is always evaluated prior
to exponentiation. Exponent and subscript expressions follow
the same arithmetic rules as for expressions on the main line

(See Section 6).

Examples
M Q = A ; J is an index for C, the result of
S B which is used to index B; the result is
S C then used to index A.
S J
E 2
E 3 9
E 2 2 512
M B = A ; means B=A ; or B = A 3
E
E 2 (D+E)
M A =2B +D ;
s 2 (TABLE_1 +TABLE_2.) K
S J K

Expressions on an E or S line must appear following (to
the right of) the associated identifier on the M line. Also,
M line information cannot appear directly above S line or
below E line expressions. Similar rules apply to E and S
lines associated with other E or S lines.

The number of E and S lines allowed in a statement will

be determined by the compiler implementation.

3=5

INTERMETRICS INCORPORATED -« 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 8568-1840

3.2 HAL Single-Line Format
Most HAL statements can be written in a single line, similar
to FORTRAN or PL/1. The single line format requires the use of
the following operators:
** for exponentiation

$ for subscripting

EXAMPLES:
Multi-Line Single-Line
l. X = A2 + B2; X = A*%2 + B**%2.
2. X=A:'[+BI; . X = ASI + BS$I;

If the exponent or subscript is an expression(or a murtiple
subscript) rather than a simple name or literal, the expression,

in single-line format, must be enclosed in parentheses:

R i ” K) *%
3. X = AJ,K X = A$(J,K) (2P)
4. X = Bi X = BS (AS (J,K+3)) **2

When subscripting an exponent or exponentiating a subscript,
it becomes necessary to introduce the single-line format into the
multi-line statement as well; thus

5 x = a(BSDT X = A** (B$J) **P

3.2.1 Implicit Data Declarations.

Since data type annotation (-), (*), (.), (,) cannot be
supplied by the programmer over a variable name using a single
line, implicit data declarations (See Sec. 5.3) are not possible

in this format.

3-6

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

3.3 Comments

3.3.1 Comments on Statement Lines.

Comments can be inserted on any E, M, or S line in a
statement. A comment consists of any set of characters enclosed
in the'/* */ pair. These are the comment open and close brackets
respecti&ely. The */ combination cannot be used within a comment
since it would be interpreted as the comment close bracket.

Comments on one M line, initiated by /*, can be continued
to other M lines until terminating bracket */ appears on a
succeeding M line. Comments initiated on an E or S line must be
terminated before the end of the line (e.g., column 80 for

cards). For example:

E 2 2 2 /*THTIS IS A COMMENT*/
M RMAG =X +Y + 2 /*WHICH IS TO

*
& . = & / SHOW HOW COMMENTS*/

M CONTINUE */ + ALPHA;

Note that imbedding a comment within a statement is allowed. 1In

general, comments are permitted wherever blanks are legal.

3.3.2 Comment Lines.

Comments may also be introduced by the use of comment
lines. A comment line begins with a C in the first character
position of the input line. The rest of the line contains the
comment made up of characters recognized by the compiler imple-

mentation. Comment lines may only appear between statement line

3=7

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840"

groups; i.e., they are not permitted within the EMS combination

that comprises a statement line.

EXAMPLE :
E 2
M A=B ;
5 - I
C THIS IS AN EXAMPLE WHICH
& : Z
C SHOWS A = B AND IS
& I
C COMPUTED ONLY WHEN FLAG 1 IS SET
M X=Y;

3= 8

INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

3.4 Use of Blanks
Blanks are significant as separators between identifiers,
keywords, and literals. The use of consecutive blanks is syntac-
tically equivalent to the use of only one blank with the following
exceptions: '
(1) within EMS combinations when the horizontal position of
items is important relative to the associated data above or
below;

(2) within character strings.

3=9

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840°

4.0 DATA ELEMENTS

HAL classifies data elements by type and permits collections
of types into data organizations. Types are further specified
by data attributes. There are six data éypes in HAL; integer,
scalar, vector, matrix, and chéracter and bit strings. The type
classifidatiqn of an identifier determines the contexts in which
it may be used.

The data types may also be combined into data organizations.
There are two types of organizations in HAL: arrays and structures.
Fig. 4-1 summarizes the relationship among the types and organiza-

tions.

* 4-1

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840"

HAL Data Types and Organizations

Types Orgahizations
Arithmetic String Array Structure
Scalar Bit
Individual . Array
- ' ~ Data-Type
N Integer — Character
Vector 2 Combinations
of Data-Types
Matrix

Figure 4-1

4.1 Data Types

4.1.1 Arithmetic Data

An arithmetic deta item is one that has a numeric value
and may be used in an arithmetic expression. There are four

arithmetic types in HAL: scalar, integer, vector, and matrix.

d:lalel Scaiar. Scalar variables are numbers represented in a
fixed or floating point form. The choice of form will depend on
the target machine for a particular compiler implementation of
the language (i.e., a compiler will implement either fixed or
floating point, but not both). Fixed and floating point are

alternate forms of scalars and are not mixed or used together.

4.1.1.2 Integer, An integer is a signed number containing

only integral values - a whole number.

4.1.1.3 Vector. A vector corresponds to its normal mathematical
definition, having magnitude and direction and represented by
n-components within a coordinate system.- The individual components
of a vector item are scalars, by definition. Vectors obey the

standard rules of vector arithmetic.

4-3

INTERMETRICS INCORPORATED -« 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

4.1.1.4 Matrix. A matrix corresponds to its normal mathematical
definition, being a rectangular array of m rows and n columns
of scalar elements. A matrix obeys the standard rules of matrix

arithmetic.

4.1.2 String Data

There are two types of strings in HAL: character strings
and bit strings. String data has a length property. A bit string
of length one is a Boolean variable which may take on values of
only 1 or 0. A bit string of length n can be considered as the
concatenation (joining together) of n bit stringsrdf length one. A
character string may have fixed or varying length. A fixed length char-
acter string of.size n always contains n characters. A varying character
string is one whose length is dynamically controlled at execution
time. A varying character string requires specification of

its maximum size.

EXAMPLE

'ABCD? HELP!' is a character string of
length 11, including the space between ? and

H.

4-4

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

4.2 Data Organizations
A data organization is a collection of data items. There

are two kinds of data organizations in HAL: arrays and structures.

4,2.1 Arrays
An array is an ordered collection of elements,‘known by
one name, all of which have the same data type and attributes.
For example, every vector in an array of vectors must have the
same number of components; every character string in an array
of varying character strings must have identical maximum length. The

maximum number of dimensions of an array is implementation dependent.

4,2.2 Structures

A structure is a hierarchical organization bf data which:
may contain other structures, arrays, or individual data types.
A structure need not consist of identical data elements.

Briefly, when a structure name is declared it is immediately
followed by a list of the names and attributes of the elements
within it. Each name is preceded by a level number (non-zero
integer literal) which identifies the level of organization. All
elements having the same level number are at the same level of

organization.

The outermost structure is called the major structure and
is always at level one; all contained structures are minor struc-
tures. All elements of the structure must be at a level greater

than one. If a minor structure is at the nth level,

4-3
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

»
‘ '

its elements must be specified at the n+l level. Each item in

a structure is given a name. If the name of a structure is
referenced, the entire sfructure, i.e., all elements, are addressed.
If the name of an element which is a minor structure is referenced,
all of the elements of that minor structure are addressed.

If any of the names assigned to items of a major structure

‘are not unique within a name scope (See Sec. 8), the item must be

referred to by the major structure name, the name of the minor
structure in .which the element is contained, and the name of the

element. In referencing, all names of the hierarchy are separated

‘by periods and the entire compound or qualified name becomes the

element name. This type of structure, which requires all element

names to be fully qualified, is called a qualified structure,

and is specified with the attribute QUALIFIED in its declaration.
Multiple copies of major or minor structures (i.e., arrays of

structures) are permitted; these are limited to one-dimensional

arrays.

4,2.2.1 A Not Qualified Example. One example of a hierarchical

organization is the table of contents of a book. The name of a
structure might be the name of the book and would contain as
elements other structures which would be chapters in the book. Each
chapter, as a minor structure could contain other elements which

would be the sections of the chapter, and so forth. Thus,

4-6

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

DECLARE 1 BOOK NOT QUALIFIED,
2 CHAPTER ONE,
3 INTRODUCTION,
3 THEORY,
3 SUMVMARY,
2 CHAPTER_TWO,
3 BACKGROUND,
3 DEVELOPMENT,
2 CHAPTER THREE,
3 ORIENTATION,
3 FUNCTIONAL SPECIFICATION,
2 CHAPTER_ FOUR,
3 CONCLUSIONS,

3 FUTURE_PLANS;

4.2.2.2 A Qualified Example. An example of a structure which

must be qualified is:

DECLARE 1 A QUALIFIED,
9B,
56,
3a,
3B,
2D,

3B,

3C:

4-7

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

Since the element names are not unique within the structure, each

element must have a qualified name.

A.C.A
‘A.C.B
A.D
A.D.B

A.D.C

4.2.2.3 An Aerospace

is the major structure

is
is
is
is
is
is

is

Application.

element B (at level 2)

minor structure C
element A of minor
element B of minor

minor structure D

element B of minor

element C of minor

elements of different types.

ment of data as well as other limited operations.

structure

structure

structure

structure

coasting flight navigation data can be grouped in a

NAVIGATION DATA FILE structure; i.e.,

DECLARE,

1 NAVIGATION_DATA FILE,

2 STATE_VECTOR,

3 TIME,

3 POSITION VECTOR,

3 VELOCITY VECTOR,

2 W_MATRIX MATRIX,

2 STATE_CONTROL_FLAGS,

4-8

I structure can be used to collect and name sets of associated data

The qualified names are:

C

C

In a space application a

Structure commands permit move-

For example,

INTERMETRICS INCORPORATED -« 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

3 CENTRAL_BODY FLAG.BIT,

3 PERTURBATION FLAG BIT,

3 MISSION_STATUS_FLAGS,
4 RENDEZVOUS_FLAG BIT,
4 ORBITAL FLAG BIT,

4 IN_TRANSIT FLAG BIT;

4-9
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

.4.3 Attributes

Attributes are used in conjunction with type and organization
to specify to the compiler other characteristics associated with
a type or organization name. There are five classes of attributes
in HAL:

(1) Initialization

(2) Storage class

(3) Memory optimization

(4) Dynamic memory protection

(5) Special

4.3.1 Initialigation Attributes

There are two forms of initialization attributes, INITIAL
and CONSTANT. Both forms provide a technique which enables the'-
programmer to preset valges (numeric and string) into data elements.
The use of the CONSTANT attribute will additionally make it illegal
to assign new values to the identifier; i.e., to "write" into it.
When either form is used as an attribute the other form may not
be used. Both initialization attributes may be used with all
data types (and arrays of data types). ©Neither can be used with
major or minor structure names, but may be appliéd to the data

elements of a structure.

4.3.2 Storage Class Attributes

Storage class attributes are used to specify storage alloca-

tion characteristics of data elements. There are two storage

4-10
INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

class attributes: STATIC and AUTOMATIC. STATIC specifies that
storage for the data element or organization is to be allocated

when the program containing the data is loaded and initiated, and
is not to be released until the program execution has been
completed or terminated.

AUTOMATIC specifies that storage is to be allocated upon

entry into the procedure, function, or task block containing the declar-

ation. AUTOMATIC storage is released upon exit from the block. Since a

program may contain procedures, functions, and tasks, data with
AUTOMATIC attributes require storage only while the specific

procedure, function, or task is active#

4.3.3 Memory Optimization Attributes

These attributes are used to control the storage assign-
ment and packing of data elements and organizations. There are
two attributes: DENSE and ALIGNED. DENSE means that the amount
of memory space occupied by the variable is more important than
the time required to access it. Consequently, the compiler will
attempt to conserve storage space by packing items. The result
of packing by the compiler is dependent on the target computer
characteristics and the compiler implementation.

ALIGNED means that the time required to access this data

is more important than the space it occupies. This attribute

* See Secs. 7 and 9 for definitions of program, procedure,

function, and task.

4-11

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

will cause the compiler to store the data for efficient

access.

4.3.4 Dynanic Memory Protection Attributes

A real time system application may require the coexistence
of many processes and the use of common data elements. The control
technigues necessary to share these common data elements must

include mechanisms for:

a. blocking other users from reading data elements, or
organizations, while their current values are being
changed‘(written).

b. preventing changes (writing) when data is being used

(read) .

For example, one job may be in the middle of using a matrix when
it is interrupted by another job which updates the matrix. When
the first job was interrupted it had used part of the 'old' matrix
values, and when it continues it will be using the updated matrix.
This problem could, of course, apply to any data element‘or
organization which is shared among jobs in a real time system.

HAL provides the sharing control attribute LOCK_TYPE
which specifies the type of sharing control that is to be used.
The LOCK _TYPE attribute causes the compiler to perform checking on
all programs which use the specified variable to help insure that

the proper locking statements have been employed by the programmer.

4-12

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

The LOCK_TYPE attribute is only useful for STATIC storage
and may be included in declarations at the program and COMPOOL*
levels. If this attribute is not assigned to a variable, locking
statements cannot be used (i.e., there w%ll be no controlled
sharing).

The defined locktypes are:

LOCK_TYPE (1) This class of sharing allows the data
to be read by any number of users.
Read accesses will wait for writes.
Write accesses will wait for any writes
and for all previously initiated reads

to be completed prior to writing.

LOCK_TYPE (2) This type of sharing requires that
write accesses wait for other writes.

Read accesses can occur at any time.

4,3.5 Special Attributes

There are some attributes which can only be appligd to
certain data types or organizations. These are as follows:
(1) QUALIFIED and NOT QUALIFIED are attributes which can only
be applied to major structures. The attribute specifies whether
the element names within that structure will always be qualified,

or never qualified. If the NOT QUALIFIED attribute is used, all

* GSee Section 8

4=-13

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

the names within the structure must follow the rules that apply

to unstructured identifiers. If the QUALIFIED attribute is used,

then item names within the structure may be duplicated elsewhere,

and -all references to structure élements‘must be fully qualified.
(2) VARYING is an attribute which can only be applied to charac-
ter strings. It signifies that the character string length may
change at execution time. The maximum size of the string must be
declared when VARYING is specified.

(3) The PRECISION attribute is applied to fixed and floating

point scalars, vectors, and matrices, and arrays of these data
types. It specifies the desired/minimum precision of the numerical
representation of data within the computer.

(4) The dimension (or length) attxibute is applied to vec- -

tors, matrices, arrays, bit strings, fixed and varying character-strings.
It specifies the size and shape of vectors, matrices and arrays,

the length of bit and fixed character strings, and the maximum

length of varying character strings.

4-14

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 -« (617) 868-1840

5.0 DATA DECLARATION

5.1 DECLARE Statement
~ The DECLARE statement is a non-executable statement used to
specify explicitly the data organization; type, and attributes
of identifiers. There are three forms of the DECLARE statements:
l. Simple DECLARE statement
2. Factored DECLARE statement

3. Structure DECLARE statement

5.1.1 Simple DECLARE Statement

The simple DECLARE statement is used to specify individually

the organization, type and attributes of one or more identifiers.

v

GENERAL FORMAT:
DECLARE<name><specifications> [,<name><specifications>]...;

where <specifications> = =

'{[<array—spec>][<type—spec>][<attribute—list>][

' {PROGRAM | LABEL | FUNCTION [<type-spec>]}}

When no <specifications> are included, the compiler assigns

default* type and attributes.

* HAL standard defaults are presented in Appendix B. (Also

see Sec. 5.5, DEFAULT Statement.)
5-1

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

S«1edel <array—spec>?. An <array-spec> is written as follows:
ARRAY (<dimension-list>)

The array <dimension-1list> can specify multiple dimensions

in the form <m>[,<m>]... where <m> must be an unsigned integer

literal greater than one; e.g., ARRAY (2,3) specifies a 2x3

array.

*
5.1.1.2 <type-spec>. A <type-spec> jis written in one of the follow-

ing forms:

INTEGER

SCALAR [PRECISION (<p>[,<g>])]

VECTOR [(<length>)] [PRECISION (<p>[,<g>1)]
MATRIX [(<rows><cols>)] [PRECISION (<p>[,<q>1)]
BIT [(<length>)]

CHARACTER [(<length>)]

CHARACTER (<max-length>)} VARYING

GENERAL RULES:

1. The <rows> and <cols> in the matrix declaration must be unsigned
integer literals greater than one; they define the dimensions
of the matrix.

2. For vectors, the <length> defines the vector dimension (i.e., the
number of scalar components) and must be an unsigned integer
literal greater than one. For bit and character strings, the <lengths>
define the number of bits or characters in the object string

and must be unsigned integer literals. For varying character

* See Sec. 5.4 for alternate form of specifying <array-spec> and

<type-spec>.
Y p 5.2

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

strings, the <max—leﬂgth> defines the maximum number
of characters that may be assigned to that character variable.
3. The form PRECISION (Xp>[,<g>]) defines the desired fixed or float-
ing point precision of scalars, vectors and matrices.
(a) For floating point, <p> must be an unsigned integer
| literal which specifies the desired minimum number of
significant decimal digits.
(b) For fixed point, (<p>,<g>) are integer literals such that
<p>

2 > maximum absolute value to be represented

(<p> being the number of integer bits)
279 < minimum absolute value to be repreéented
(<g> being the number of fractional bits)
and <p>+<g> = the minimum number of bits necessary to
express the desired range of the scaiar.
(e} In general,‘the compiler will assign either a single
word or a double word for scalars. For floating point,
a double word will be assigned if <p> is greater than the
number of decimal digits that can be represented in
single precision in a particular machine.
For fixed point, a double word will be assigned
if <p>+<g> + the number of sign bits exceeds the numbef of
bits for single precision representation in a particuiar machine.
(a) Examples:
(i) PRECISION(5,3) requires a minimum of 8 bits to

accommodate a magnitﬁde range of .125 < magnitude

H=3

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840-

< 32, In this case, presuming a word length L>8,

knot including sign bits) the compiler would assign

5 integer bits, and a number of fractional bits equal to
L = 5 = the number of sign bits. |

(ii) PRECISION(-5,39) requires a minimum of 34 bits to

accommodate a magnitude raﬁge of 2_39 < magnitude

<2—5. In this case, presuming a DP word is necessary,
the compiler would assign -5 integer bits and
a number of fractional bits equal to -5 + 2L - the
number of sign bits.

4, 'If PRECISTON and diménsions are not inéluded in a <typé—spec>

the compiler will assign defaults. Defaults are presented

in Appendix B.

5.1.1.3 <attribute list>. An <attribute list> may be specified

by including zero or one attribute from each of the following

classes, in any order:

1. Initialization attributes:
INITIAL (<value>)
CONSTANT (<value>)

where <value> must be a literal or a list of literals (see

S8c. 5.1:1: 4).
2. Storage class attributes:

STATIC
AUTOMATIC
" 3. Dynamic Sharing Control Attributes:

LOCK_TYPE (<n>)

5-4
INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

where <n> is an unsigned integer greater than zero literal

defining the class of sharing control.

4, Storage optimization attributes:

DENSE
ALIGNED

GENERAL RULES:

1. If an attribute does nﬁt appear in a simple declaration,
the compiler will assign the default* value for that
attribute.

2. Restrictions on use of classes of attributes (also see

Sec. 8):

a. Initialization attributes may not be used at the COMPOOL
level, nor in declaring <procedure-parameters> and <function-
parameters> within procedures and functions (see Sec. 7.4).

b. Storage class attributes may only be used at the task,
procedure, and function levels.

Gy Sharingkcontrol attributes may only be used at the program
and COMPOOL levels.

d. Storage optimization attributes may not be used in

declaring <procedure-parameters> and <function-parameters>.

5.1.1.4 1nitialization. INITIAL and CONSTANT values

of vectors, matrices, and arrays may be specified by lists of

literals.

* See Appendix B,

5=5
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

GENERAL FORMAT:
{INITIAL|CONSTANT} ({<list-of-literals> |
<list-of-literals>,*})
~ where
<list—of—literals> = [<n>#]{[<literal>]|<list-of-literals>}
[,[§n>#] {[<literal>]|<list-of-literals>}]

<n> is an unsigned integer literal.

GENERAL RULES:

1. <n>fi<literal> specifies that there are <n> consecutive
entries of this <literal> in the 1list.

2. <n># specifies <n> consecutive entries causing no initializa-
tion.

3. <n>{f<list-of-literals> specifies that there are <n> consecutive
entries of this "sub" <list-of-literals> within the list. |

4, ¥ indicates a partial initialization. That is, for a
vector, matrix, array, and structure of data types not
encugh literals have been specified. After component-by-
component assignment, all the rest are left uninitialized.

5. For vector and matrix declarations, if the number of <literals>
in the <list-of-literals>:
a. is equal to one, all the components are initialized

to the <literal>.
b. is equal exactly to the declared number of components,
the vector or matrix is initialized, component-by-

component, from the list.

: 5-6
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

In (b), if the number of <literals> is not exactly
that required, the list must include a * as its last item

and the rest of the vector or matrix will be uninitialized.

For array declarations of vectors and matrices, if the number

of <literals> in the <list-of-literals>:

a.

is equal to one, all of the vector or matrix components
iq all the array elements are initialized to the
<literal>.

is exactly equal to the declared number of components
in a vector or matrix element, each array element is
initialized identically, component-by-component, from
the 1list.

is exactly equal to the total number of components,

the entire array is initialized, component-by-component,
from the 1list.

In (b) and (c) above, if the number of <literals>

is not exactly that required then the list must

include a * as its last item and the rest of the array

will be uninitialized.

For array declarations of scalars, integers, and bit and

character strings, if the number of <literals> in the <list-

of-literals>:

a.

is equal to one, all of the coﬁponents are initialized
to the <literal>.

is equal exactly to the total number of components,
the array is initialized, component-by-component, from

the list.

57

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

Ce In (b), if the number of <literals> is not exactly

that required, see 6 (d) above.
EXAMPLES:
‘1. DECLARE V VECTOR(9) CONSTaANT (1,0,0,0,0,0,0,0,0,0);
may also be written as
DECLARE V VECTOR (9) CONSTANT (1, 8#0);
2. DECLARE A ARRAY (4,4) BIT (2) |
INITIAL (BIN'1l0', BIN'1l0', 14#BIN'01l');
3. ARRAY B ARRAY (3,3) VECTOR (5) INITIAL (O0);
All the components of the 9 vectors in the array B,
are initialized to 0.
4, DECLARE B ARRAY (3,3) VECTOR (5) INITIAL (25,0,5,0,1);

All 9 vectors in the array, B, are initialized to

(25;0,:5;0,;1) & |
5. DECLARE B ARRAY (3,3) VECTOR (5)
INITIAL (15#0, 15#1, 15%#2)

The number of literals in the initialization list is
equal to the total number of components in the array. The
components of the three vectors in the first row are initial-
ized to 0, in the second row to 1, and in the third row to 2.

6. DECLARE B ARRAY (100)
INITIAL (5%#(1,2,3,4,5),25%, 5#(6,7,8,9,10),%);

The first 25 items of the array B are initialized
with the repeating pattern (1,2,3,4,5). The next 25 are

left uninitialized. Items 51-75 are initialized to the

5~8
INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

repeating pattern (6,7,8,9,10). The remaining items are
not initialized.
7. DECLARE A ARRAY (10) INITIAL (2),
B ARRAY (10) INITIAL (#,2,%*)
All the scalars of A are initialized to 2. Only the
second scalar of B is initialized to 2, the rest being left

uninitialized.

5.1.1.5 Declaration of Program, Function, and Statement Labels.

The scopes of procedure, function and statement labels, i.e.,
the regions of the program in which they are recognized, are

defined in Sec. 8.

GENERAL RULES:

1. Statement and procedure labels must be defined (by appearance
or by DECLARE statement) before their use in the listing,
or at least in the block (i.e. prdgram, function or procedure)
in which they are used.

2. Function labels must be defined (by appearance or by DECLARE
statement) before their use, regardless of whether tﬁe

FUNCTION statement and function reference appear in the same block.

5-9
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

3. <type-spec> specifies the data type returned by a function.

4, LABEL and FUNCTION may not be used at the COMPOOL level.

5.1.1.6 Examples of Simple Declaration Statements (Floating
Point Implementation).

1. DECLARE I INTEGER INITIAL (65);
I is an integer with an initial value = 65.
2. DECLARE X PRECISION (8) AUTOMATIC INITIAL (6.061);
X is a floating point scalar with at least 8 significant
decimal digits.
3. DECLARE COMMAND MODULE_ STATE VECTOR (6) STATIC;
COMMAND MODULE_STATE is a 6-dimensional vector with
single precision components (by default).
4. DECLARE SXT_TO NB_MAT MATRIX CONSTANT
1y 0 07 0 1 B U 0y 1)3
The matrix is a constant 3x3 identity matrix.
5. DECLARE A ARRAY (5, 3, 4) VECTOR (6) PRECISION (10);
A is a 5x3x4 array of vectors. Each element is a 6-dimensional
vector with components represented to at least 10 significant
decimal digits.
6. DECLARE S BIT (100) INITIAL (BIN (100) '1');
S is a bit string of length = 100. The initial value is
g1l 1's.
7. DECLARE TRAKFLAG BIT AUTOMATIC;

TRAKFLAG is a bit string of length = 1 (i.e. a Boolean).

5-10 '
INTERMETRICS INCORPORATED -+ 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840

8. DECLARE MESSAGE CHARACTER (35 INITIAL (CHAR(3)'H');
MESSAGE is a fixed character string of length = 3.
The initial value is HHH. |
9. DECLARE OUT ARRAY (132) CHAR (1) INI?IAL (*)3
OUT is a linear array of 132 character strings of length 1.

Initially, all characters are blank.

5.1.2 Factofed Declaration Statement.

A factored declaration statement eliminates the need for
repeated specifications when an attribute or type is applicable
to more than one identifier. All of the factors are placed prior
to the first name in the declaration statement; other names, with
or without specifications, are separated by commas.

GENERAL FORMAT:
DECLARE <factors>,<name> [<specifications>]
[,<name> [<specifications>]]...;
where both the <factors> and <specifications> are of the following
form and order:
[<array-spec>] [<type-spec>] [<attribute-list>]
GENERAL RULES:
1. A <factor> applies to all names appearing in the factored
declaration statement, where applicable (e.g., PRECISION
will not be applied as a <factor> to a string type included

in the statemeht).

5-11

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840"

2. If either INITIAL or CONSTANT is used as a <factor>, the other
may not-be used in the <specifications>.

3. If either STATIC or AUTOMATIC is used as a <factor>, the other
may not be used in the <specifications>.

4. If either LOCK_TYPE (1) or LOCK_TYPE(2) is used as a <factor>,
the other may not be used in the <specifications>.

5. If either DENSE or ALIGNED is used as a <factor>, the other

may not be used in the <specifications>.

5.1.2.1 Examples of Factored Declarations.

i DEéLARE PRECISION (8), A VECTOR (6), B MATRIX (2,2) INITIAL
(1,5,0,0);
All elements of A and B are represented to at least 8 signi-
ficant decimal digits.
2. DECLARE STATIC,
A VECTOR (4) INITIAL (0,0,0,1),
B MATRIX (5,5),
C ARRAY (20);
A, B, and C are allocated STATIC storage.
3. DECLARE MATRIX (3,4) INITIAL (0) AUTOMATIC,
A, B, C PRECISION (10);
A, B, and C are all (3,4) matrices with AUTOMATIC storage.

Initially, all components are set to zero.

5=12

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

4. DECLARE INTEGER, A, B, C, D INITIAL (5);

5. DECLARE BIT DENSE INITIAL (OFF), TRACKING, RENDFLAG;

5.1.3 Structure Declaration Statement

The structure declaration statement is used to declare
a structure organization.
GENERAL FORMAT:
DECLARE 1 <struct-name> [(<copies>)] [<struct-attributes>],
{,2{

GENERAL RULES:

<minor—struct—declaration>}} .
<terminal-declaration> et

1. <copies> must be an unsigned integer literal greater than 1;
it defines the number of copies of the structure. For
example, DECLARE 1 A (100), 2 B --- etc.
declares that there are 100 copies of the structure A.

2. <struct-attributes> are attributes limited to

QUALIFIEDINOT_QUALIFIED
DENSE | ALIGNED
STATIC | AUTOMATIC
LOCK_TYPE (<n>)
a. If any attributes are not provided in the declaration,
the compiler will assign default* values. |
b. It should be noted that attributes apply to the entire
structure and,with the exception of DENSE and ALIGNED,

cannot be overridden in the minor structures or terminal

declarations.

* See Appendix B

5-13

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

5.1.3.1 <terminal-declaration>. The <terminal-declaration> is

similar to a simple declaration (Sec. 5.1.1); however, only a
single name may be declared and the attribute list is limited to
INITIAL or CONSTANT, and DENSE or ALIGNED.
GENERAIL FORMAT:
[<next-level>]<name> [<array-spec>] [<type-spec>]
[INITIAL|CONSTANT] (<value>) [DENSE|ALIGNED]]{,|;}
GENERAL RULES:
1. If the <terminal-declaration> is contained in a <minor-struct-
declaration> then
<next-level> equals <this-level> + 1, where <this-level>
is the level of the <minor-struct-declaration>, otherwise
<next-level> equals 2.
2. The semi-colon (;) is used if the declaration is the last

<terminal-declaration> of the structure declaration statement.

5.1.3.2 <minor-struct-declaration>.

GENERAL FORMAT:

<this-level><name> [(<copies>)] [DENSE |ALIGNED],

{<minor—struct~declaration>}
<terminal-declaration> e

GENERAL RULES:

1. <this-level> is an unsigned integer literal > 2 which identi-
fies the level of hierarchy.

2. If a second <minor-struct-declaration> is contained within

a first <minor-struct-declaration> then <this-level> of the

Lo

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

second declaration must be 1 greater than <this-level> of

the first declaration.

5.1.3.3 Examples.

1. Notes
DECLARE 1 A, (1) major structure A
2 B, (2) minor structure B contains
minor structure C and
3 C, terminal element F
4 D VECTOR(9), (3) minor structure C contains
terminal elements D and E
4 E MATRIX (4,4),
3 F INTEGER; | Hotes
2 DECLARE 1 NAV__STATE (2) LOCK_TYPE (1) NOT_QUALIFIED 7 (1)

2 STATE,
3 TIME PRECISION(8),
3 R VECTOR(3) PRECISION(10),
3 V VECTOR(3) PRECISION(10),
2 STATE_FLAGS DENSE,
3 BODY BIT INITIAL (TRUE),
3 PHASE BIT,
2 W MATRIX(9,9) PRECISION (10);
Notes:

1. This is a structure whose name is

(2)
(3)
(4)
(5)
(6)
(7)
(7)
(8)

NAV_STATE.

The number of copies is 2 and it has a sharing class of 1.

2. This is a minor structure called STATE whose elements are

defined at the next level.

5=15

INTERMETRICS INCORPORATED - 380 GREEN STREET - C/\P.ﬁBRIf)GE, MASSACHUSETTS 02139 « (617) 868-1840

3. This is a terminal declaration of a scalar element, TIME.

4. This is a terminal declaration of the vector, R.

5. Same as (4) above except name is V.

6. This is a minor structure called STATE_ FLAGS whose
elements are defined below at the next level.

7. These are terminal declarations of the Boolean variables,
BODY and PHASE. |

8. This is a terminal declaration of the matrix, W.

5.1.3.4 Structure Initialization. A structure may be initialized

by including the INITIAL or CONSTANT attribute in the <terminal-
declarations>. If a <terminal-declaration> represents a single
copy of the declared data item (i.e. the major structure and minor
structures containing this item are single copies themselves) '

then initialization may be accomplished as described in Sec. 5.1.1.4.

If multiple copies are implied (i.e.,the major structure
or minor structure(s) containing this item, or both, have more
than 1 copy), two possibilities exist: (1) the data item may be
initialized as if it were a single copy; or (2) the initialization
<list-of-literals> may be designed to account generally for all copies.

GENERAL RULES:

1. If multiple copies exist and the data item is initialized

as if it were a single copy, but not partially initialized,

(see Rule 4 of Sec. 5.1.1.4), all copies will receive

identical initialization for this data item.

5-16
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

2, If multiple copies exist and it is desired to initialize
copies individually, or partially initialized the structure,
the <list-of-literals> specifies consecutive entries for the
data item, component-by-component, with copies running
serially.

EXAMPLES:

1. DECLARE 1 A

2 B INITIAL (6.061),
2 C ARRAY (5) INITIAL(1,4#0);
The structure A is initialized by initializing B and C.
2. DECLARE 1 A (20),
.2 B INITIAL (6.061),
2 C ARRAY (5) INITIAL(1,4#0);
The structure A has 20 copies; each is initialized identically.

3. DECLARE 1 A (20),

2 B INITIAL (15%#6.061,%),

2 C ARRAY(5) INITIAL(L5#(1,4%0),%);
The structure A has 20 copies; the first 15 are initialized
identically. The remaining copies are uninitialized.

4, DECLARE 1 A (20),

Z B INITIAL (6.061;%);

2 C ARRAY(5) INITIAL(19#(5#),(1,4#0));
The structure A has 20 cdpies. The first copy of B is
initialized to 6.061, the rest are uninitialized. The
first 19 copies of C are uninitialized; the last copy is

initialized to (1,0,0,0,0).

B=17

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

5.2 Notation of Data Types and Organizations

5.2.1 Data Type Notation.

The compiler will annotate certain names in order to
enhance the readability of the output listing. The notation which
signifies data type will be placed on the E line directly over

the name on the M line. The notation characters are described

below.
Data Notational Examples
Type Character : P
VECTOR ~ POSITION = R
* *
MATRIX * REFMMAT = M
BIT « COM__BUFFER9=TRACKFLAG
’ 14
CHARACTER 7 MSG = B

There is no data type notation for INTEGER or SCALAR types. These
types must be determined from context or from the declaration
statements (or symbol table listing).
GENERAL RULES:
The annotation of an operand depends upon the resulting
type of the operand itself and not upon éhe type associated with
the identifier being referenced; for example:
1. When an element of a vector is referenced, it is not annotated;
1.€,; it is a scalar. For example, V2 is the second scalar

element of the vector V.

5-18

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

2. When an element of a matrix is referenced, it is not annotated
since it is a scalar. For example, Ml,2 is the scalar
element in the 1lst row, 2nd column of ﬁ.

3. When a row or column of a matrix is yeferenced, vector
notation is used; for example,

*

M, , is the 2nd column of the matrix M
4

4, When a partition of a matrix is referenced, matrix notation
is used; for example,
* *

Ml TO 3, 1 TO 2 is a partition of the matrix M; 1i.e.

rows 1, 2, 3 and columns 1, 2.

5.2.2 Array Notation

The compiler will annotate arrays of data types with

enclosing square brackets (i.e., [1).

If the array consists of vectors, matrices} bit or charac-
ter strings, then the appropriate data type notation will also

be presented. For example,

[Aa] A is an array of vectors,

[X] A is an array of matrices,

[A] A is an array -of bit strings,

[A] A is an array of character strings.

GENERAL RULES:

1. When a single array element is referenced, the compiler
annotation will be consistent with the resulting data type.
For example, suppose A is an array of matrices; then X2:*,l

has vector notation because the referenced item is a vector

5~19
INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

(i.e., the first column vector from the second matrix element

of A).
2. When a partition of an array is referenced, array notation

'is used; for example,

[A]2 7O 4 is an array of elements A2, A3, A4 from

array A.

The programmer may include the notation above as part of
the input source code. This notation must be consistent with
its use (e.g., a * must not be placed over a vector, etc.).

If notation is not included then the compiler will annotate

the output listing as described.

5.2.3 Structure Notation

The compiler will annotate major and minor structure

names with enclosing braces (e.g. {Al}).

GENERAL RULES:

1. When a single copy of a structure terminal is referenced, the
compiler annotation will be consistent with the resuiting
data type or array. The notation will be the same as described
in Séecs. 5.2.1 and-5.2.2.

2. When multiple copies of a structure terminal are referenced,
the compiler will annotate the terminal name with enclosing
brackets and the appropriate data type. This reference remains
a structure organization subject to the restrictions on

structure manipulations imposed in Secs. 6 and 7.

5=20
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

EXAMPLES:
1. DECLARE 1 A (5).
2 B BIT(10),
2 C VECTOR,
2 D MATRIX;
a. {A}2 is the second copy of A.
b. é4; is the bit string in the 4th copy of A.
c. {C} is a structure of all copies of the vector C.

*
d. {b} is a structure of the last three copies of the

3 %0 5
matrix D.
. 2; DECLARE 1 A (5).,
2 B CHARACTER(10) ;
{é} is a structure of all copies of the string B.
3. DECLARE 1 A,
2 B ARRAY (5) CHARACTER(10);
[é] is the array terminal.

. 4 ’
Note that while {B} in 2 and [B] in 3 contain the same data they

are not identical in form and cannot be used interchangeably.

5=21

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

i
| I
| l

5.3 Implicit Declarations

In general, HAL requires that all data quantities be declared
explicitly. The syntax of expiicit data declarations has been
presented in Sections 5.1 and 5.2. HAL also permits certain
variables to be declared implicitly; namely,vector, matrix, bit
and character string data ty?es, by providing a (=), (*), (.), or
(,) respectively, on the E line over the name of the data quantity.
In the absence of an identifying symbol on the E line, the compiler
will interpret the variable to be of a scalar type. The implicit
declaration of integers, arrays, and structures is not allowed.

The compiler will assign characteristics, valid throughout

the current scope (see Section 8 for further detail on scope of

names), to implicitly declared names based on their first appearance
in the listing. Thereafter, notation need not be supplied. Fof
example, if V is used to declare a variable implicitly, then that
variable may be referred to as V in any succeeding statement
within the current scope. The compiler will supply the bar (-)
on appropriate succeeding appearances of V when it has not been
included by the programmer.

The implicit declaration of names as scalar, vector, matrix,
bit or character string causes the assignment of default* values

for all appropriate attributes.

* See Appendix B

5=22

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

5.4 Alternate DECLARE Form
All of the HAL data types, and arrays of these types, may
be declared using an alternate form of the DECLARE statement.

GENERAL FORMAT:
<note>

DECLARE <name> [INTEGER] [PRECISION (<p>[,ql])]

<sizes>
[<attribute-1list>];

where
<note> = [-[*].],]
and
<sizes> = [<array-shape>|<array-shape>:][<dimension>
<string length>] |
<array-shape> = <m>[,<m>]...
<dimension> = <m>[,n]
<string-length> = <r>
<m>, <n>, <p>, <g>, <r> must be integer literals. In addition,

<m>, <n> must be greater than 1; <r> must be greater than 0.

GENERAL RULES:

1. (=), (*), (.), (,) appearing over the name specifies vector,
matrix, bitvstring and character string data types respectively.
If <note> and INTEGER are not provided, <name> is a scalar.

2. <dimension> specifies either vector length or the number
of rows and columns.

3. <string-length> specifies bit or character length for fixed

length strings or maximum length for varying strings.

5-23

}INTERMETWCSlNCORPORATED-BBO(%H%HdSTREET-CANM%NDSF,MASSACHUSETTS(HH39- (617) 868-1840

4. Use of INTEGER, PRECISION, and <attribute-list> are described

in Secs. 5.1.1.2; 5.1.1.3; and Sec. S5.l.2.

5. When declaring <procedure- or <function-parameters> (see Sec.
7.4), <note> may be omitted if the pfoper annotations are
included on the parameters‘appearing in the CALL and function
referencg statements.

EXAMPLES:

1. DECLARE V

5,3,4:6°
- a 5x3x4 array of vectors. Each vector is of length 6.

2. DECLARE S,,.i

- a bit string of length 100.

4
3. DECLARE OUT132:17

- a linear array of 132 character strings. Each string is
of length 1.

*
4. DECLARE M6,6;

- a 6x6 matrix.

5. DECLARE ASO;

- a linear array of 50 scalars.

5-24
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

5.5 DEFAULT Statement

When variables are implicitly declared, or when variables
or functions are explicitly declared with not all characteris-
ticslspecified, the unspecified charactefistics are supplied

from a set of default characteristics. The standard set of

these is described in Appendix B.

In some~cases it may be convenient to modify the standard
default ‘set to reduce the amount of source program coding required
to achieve the given objective. For this purpose, the DEFAULT
statement is provided.

GENERAL FORMAT:

DEFAULT {<type-spec>| [<type-spec>]<length-default-list>};

where
<type-spec> is defined in Sec. 5.1.1.2
<length-default-list> = {<length-default>}...
<length-default> may be one of the following forms:
BIT_ LENGTH (<m>)
VECTOR_LENGTH (<m>)
MATRIX DIM (<m>,<n>)
CHAR_LENGTH (<m>) [VARYING]

where <m> and <n> are literals of integral value.

<type-spec> is used to specify default type; e.q.
DEFAULT MATRIX(3,4);

DECLARE A, B, C SCALAR;

5-25

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

A and B are declared (3x4) matriées by default. The explicit form,
SCALAR, becomes necessary because of this change in default type.
<length-spec> is used to specify defaults for bit-string lendgth,
vector length, matrix row-column dimensipn, and character-string
length (and VARYING-length). 1In the case of character strings,
if VARYING is provided a maximum length (<m>) must be provided,
whether in a . DEFAULT or DECLARE statement. For example, the
following twé statements will cause an error messagde;

DEFAULT CHAR_LENGTH(ZO);

DECLARE C CHARACTER VARYING;
EXAMPLES:
l. ALPHA: PROGRAM;

DEFAULT MATRIX (4,7) BIT_LENGTH(24);

DECLARE A MATRIX, B, C BIT(10), D BIT;

CLOSE ALPHA;
A and B are (4x7) matrices. D is a bit string of length 24.
2. BETA: PROCEDURE;
DEFAULT BIT_LENGTH(16);
DECLARE E, F BIT, G CHARACTER;
'CLOSE BETA;
E is a scalar and G is a character string of standard

default length. F is a bit string of length 16.

5-26
INTERMETRICS INCORPORATED - 380 GREEN STREET-CANH%NDGE,MASSACHUSETTS(Q139- (617) 868-1840

6.0 DATA MANIPULATION

6.1 Expressions
An expression is an algorithm used for computing a value.

Variables, constants, literals, built—in‘functioné, and programmer-
defined functions combined with operators, form expressioﬁs.
Expressions are of four types: arithmetic, string, array and
relational. The type of an‘expression is the type of itsvresult
and is independent of the types of its operands. In the defini-
tions that follow

<type-operand>={<type—name>|<type—function>|<type—gxpression>|

(<type-expression>)}

where,

*
<type-name>={<type-variable>|<type-constant>|<type-literal>}

and
<type- >={<integer- |<scalar- [<vector- | <matrix- |

<bit- |<character- >}

6.1.1 Arithmetic Expressions

Arithmetic expressions yield arithmetic values; e.g.,a
scalar expression is defined to be an expression yielding a scalar
result. There are four types of arithmetic expressions: integer,

scalar, vector and matrix.

* literals are only defined as being arithmetic, bit and character

strings.

6-1

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

6.1.1.1 Integer Expressions. An <integer-expression> is composed

of the following elementary operations:
GENERAL FORMAT:

{{[+]|-}<integer-operand> |
<integer-operand>{+|-|<mult>}<integer-operand> |
<integer-operand>**<positive-integer-literal>}
where
<positive-integer-literal> is a positive whole number
literal or a bit string literal (interpreted by the compiler

in this context as a positivé whole number).

GENERAL RULES:
1. <mult> denotes multiplication by logical adjacency. The
associated operands must be separated by at least one space

(blank) unless one or both of the operands are parenthesized.

2. <integer-operands> and <positive-integer-literals> may be
either integers or bit strings. Bit strings are converted
implicitly to integers.

3. An integer result can only be derived from operations on
<integer-operands>.

4. Division is not an integer operation; dividing one integer

by another yields a scalar result.
5. In general, exponentiation will result in a scalar, except

when the exponent is a <positive-integer-literal>.

B 6-2

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

EXAMPLES: .
. e 4
-P, Q+R, F>, Q0 §, (-P)

are all integer expressions if P, Q, R, F are declared as integers.

6.1.1.2 Scalar Expressions. A <scalar-expression> is composed

of the following elementary operations:
GENERAL FORMAT:

{{[+]|-}<scalar-operand> |
<scalar-operand>{+|-|/|<mult>}<scalar-operand> |
<scalar-operand>**<scalar-operand>|

<vector-operand>.<vector-operand>}

1. The <scalar-operand> may be a scalar, integer, or bit sﬁring
except where the above format reduces to an <integer-expression>.
Integers are converted implicitly to scalars. Bit strings

j are converted implicitly, first to integers and then to scalars.

2. Exponentiation is undefined when the <scalar-operand> is

: negative and the <scalar-operand> exponent has a non-integral

j value.

3. <vector-operand>.<vector-operand> denotes the vector inner
product (dot—product); The dimensions of the two <vector—-

operands> must be equal.

2

EXAMPLES : p

. % . .
-P, P/R, P/S, R , V.MV, 8 + S/R

are all valid scalar expressions if P is declared a scalar,

and R is declared to be either an integer or a scalar.

6~3
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

I GENERAL RULES:

6.1.1.3 Vector Expressions. A <vector-expression> is composed

of the following elementary operations:
GENERAL FORMAT:

{{[+]|-}<vector-operand> |
<vector-operand>{+|-|*}<vector-operand> |
<Vector-operand>{/[<mult>}<scalar—operand>]
<scalar-operand><mult><vector-operand> | -
<matrix-operand><mult><vector-operand> |

<vector-operand><mult><matrix-operand>}

GENERAL RULES:

1. The <scalar-operand> may be a scalar, an integer or a bit
string. Integers and bit strings are converted implicitly
to scalars.

2. Addition and subtraction must involve two vectors of identical
dimensions.

3. <vector-operand>*<vector-operand> denotes vector cross-product,
which is defined only for three-dimensional vectors.

4. Multiplication and division of a <vector-operand> by a <scalar-
operand>, and negation of a vector, denote operations on each
vector component.

5. <matrix-operand><mult><vector-operand> denotes formal mathe-
matical matrix-vector multiplication; the vector dimension
must equal the column dimension of the matrix.

6. <vector-operand><mult><matrix-operand> denotes formal

mathematical vector-matrix multiplication; the vector

6-4

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

I
| l
1

dimension must equal the row dimension of the matrix.
EXAMPLES :

VO . S 4 — 2 k%

=pP*Y,; P4V, 5v, v s, p/(a+sS), (V.P)°F, MV, F/(V.V M) are

all valid vector expressions.

6.1.1.4 Matrix Expressions. A <matrix-expression> is composed

of the following elementary operations:

{{[+]|-}<matrix-operand>|
<matrix-operand>{+|-|<mult>}<matrix-operand> |
<matrix-operand>**{-1|T}|
<scalar—operand><mult><matrix—operand>I
<matrix-operand>{/|<mult>}<scalar-operand> |

<vector-operand><mult><vector-operand>}

GENERAL RULES:

l. The <scalar-operand> may be a scalar, an integer, or a bit
string. Integers and bit strings are converted implicitly
to scalars.

2. Matrix addition and subtraction must involve matrices of
identical row and column dimensions.

3. <«matrix-operands><mults><matrix-operand> denotes formal
mathematical matrix multiplication; the column dimension of
the left operand must equal the row dimension of the right.

4. Exponentiation of a matrix is restricted to the inverse (-1)
and transpose (T) functions. These may also be written in

‘ * *
functional form as INVERSE (M), TRANSPOSE (M).

6-5 |
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

5. Multiplication and division of a matrix by a scalar, and
negation of a matrix, denote operations onheach matrix
element.

6. <vector-operand><mult><vector-operand> denotes the vector
outer product; the result is a matrix whose row and column
dimensions are the dimensions of the left and right operands,

respectively.

EXAMPLES :

* k x k k_] x %k Tk ° *))
-M N, M¥N, M ©, (M N)~, M/S, A N, V V are all valid matrix

expressions.

6.1.2 String Expressions

String expressions yield string results; e.g., a bit
string expression is defined as an expression yielding a bit
string result. There are two types of string expressions: bit

and character.

6.1.2.1 Bit String Expressions. Bit string expressions

may contain bit string operands only. A <bit-expression> is

composed of the following elementary operations:

GENERAL FORMAT:
{[NOT] bit-operand>|

<bit-operand>{AND|OR|CAT}<bit-ocperand>}

6-6

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

GENERAL RULES:

1. NOT complements each bit in the string.

2. AND, OR perform bit-by-bit logical AND and OR on the
.corresponding bits of the two operands.

3. When the string lengths are unequal, the shorter string is
padded on the left with zeros until the strings are of equal
length.

4. Concatenation, CAT or (||), links together two bit strings. The

length of the result is the sum of the lengths of the two operands.

EXAMPLES:

NOT A, A OR (B AND C), A||NOT B||(B OR C) are all valid

bit string expressions.

6.1.2.2 Character Strirg Expressions. A character string

expression must involve the concatenation of a character string
and a bit string, integer, or scalar operand. A <character-

expression> is composed of the following elementary operations:

GENERAL FORMAT:
{<character-operand>| | <data-operand> |

<data-operand>| |<character-operand> |

<character-operand> | |<bit-operand>}
where <data-operand>={<integer-operand>|<scalar-operand> |

<character-operand>}

GENERAL RULES:

l. <integer- and <scalar-operands> are converted implicitly

67

INTERMETWCS!NCORPORATED~(%013REEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840

to character numerical representation.

23 <bit-operands> are converted first to integers and then
to characters.

EXAMPLES:
'i'EXTl | "HELP', A| lr}EXT, 'fEXTI l (A/é) , {*EXTI | (ﬁl lé) are all

valid character expressions.

6.1.3 Array Expressions

Array expressions yield array results. In general, most
of the operations described in Sections 6.1.1 and 6.1.2 are valid
for arrays if the operation is valid for elements of the arrays.
There are two classes of array expressions: 1) where both operands
are arrays; 2) where one operand is an array.

6.1.3.1 Two—-array Expressons. For two-—array expressions, all of

the expressions detailed in Secs. 6.1.1 and 6.1.2 are valid by .

replacing the <type-operands> by <type-array-operands>. For

example, in Sec. 6.1.1.2 the ?scalar—operand> becomes a <scalar-

array-operand> and the <vector-operand> becomes a <vector-array-

operand>.

GENERAL RULES:

i The two <array-operands> must be dimensionally identical.

2. The indicated operation is performed element-by-element, in
sequence, on corresponding elements of the two arrays. For
example, let [P] and [S] be two-dimensional arrays. Then

[P] + [S] will be executed in the following sequence:

6-8 |
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840

+
Pn,m Sn,m

k3 Thevresulting array will be of the same dimensions as the
<type-array-operands>. '

EXAMPLES:
~[p1, [P1/[S], [B1*[¥1, (@181, [(R1'P1, (Alor(B], [a]]][TExT]

are all valid array expressions.

6.1.3.2 One-array Expressions. For one-array expressions, all

of the expressions detailed in Secs. 6.1.1 and 6.1.2 are valid
if one of the <type-operands> is replaced by a <type-array-operand>.
GENERAL RULES:
1. The indicated operation is performed, in sequence, using
the single operand and each element of the array.
24 The resulting array will be of the same dimensions as the
<type-array-operand>.
EXAMPLES:
(p1/s, [P1%7, VIs1, r'®Y, [A] or B, a||[TEXT], V/[Al, [MIF,

[A]+5 are all valid array ekpressions.

6.1.4 Structure Expressions {
|

There are no structure expressions defined in HAL.

6~9
INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

6.1.5 Relational Expressions
Relational expressions yield a single true (TRUE/ON) or
false (FALSE/OFF) result of a comparison of. operands. Relational

operators are grouped as follows for use in different contexts:

== not equal
<P> —
= equal
(M= not equal A
= equal
< less than
> greater than
<Q> = 4 9
<= less than or equal
>= greater than or equal

< not less than

LT1> not greater than

6.1.5.1 Bit String Comparisons.

GENERAL FORMAT:
{<bit-operand><Q><bit-operand> | [7]<single-bit-operand>}

where
<single—bit—operand>={<single—bit—name>]<single—bi£-function>|

<single-bit-expression>| (<single-bit-expression>)}

A <single-bit-expression> is a string expression whose result is

a bit string of length one.

GENERAL RULES:

1 When string lengths are unequal the shorter string is padded
on the left with sufficient zeros to make the strings of
equal length.

23 When comparing bits:

6~10

INTERMETR!CS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

a. Proceeding from left to right, if the first comparison
which is not equal isl">" then the total bif—string
comparison is true for the relational operators >,
>=, a<, 7=, and false for the operators <, <=, 7>, =,

b, Proceeding from left to right, if the first comparison
which is not equal is "<" then the total bit-string
comparison is true for the relational operators <,
<=, 71>, 7=, and false for the operators >, >=, 1<, =.

s The total ‘bit-string comparison is true for the ‘relational
operator = (and false for 7=) if and only if all bit |
comparisons are =,

3. The <single—bit—operand> implies the comparison}
<single-bit-operand> = TRUE

EXAMPLES:

A=B, A>B, A<B, etc. are all valid bit string comparisons.

6.1.5.2 Arithmetic Comparisons.

{<integer-operand><Q><integer-operand> |
<scalar-operand><Q><scalar-operand> |
<vector-operand><P><vector-operand> |
<matrix-operand><P><matrix-operand>}

GENERAL RULES:
1. The <integer-operand> may be either an integer or a bit
string except where the <integer-operand> comparison reduces

to a <bit-operand> comparison. Bit strings are converted

implicitly to integers.

6~11
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840"

2 ‘The <scalar-operand> may be a scalar, integer, or bit string

except where the <écalar—operand> comparison reduces to
either an <integer- or <bit-operand> comparison. Integers
are converted implicitly to scalars. Bit strings are
converted implicitly, first to integers and then to scalars
EXAMPLES: |
I>J, I<A, Aﬂ=é, é<=(A+§.V), V=B, M1=N are all valid

arithmetic comparisons.

6.1.5.3 Character String Comparisons. Character comparisons

have the following general format:
<character—operand><Q><character—operénd>
GENERAL RULES:
L When the string lengths are unequal, the shorter string
is padded on the right with sufficient blanks to make
the strings of equal length.
25 The character comparison involves left-to-right comparison
of corresponding characters in each operand according to
a collating sequence which may be implementation dependent.
3 Total character-string comparisons follow the same rules

as described for bits in Sec. 6.1.5.1 (Rule 2).

6.1.5.4 Array Comparisons. Array comparisons are valid in

comparing two <type-array-operands>, or one <type-array-operand>
and one <type-operand>. The result must be a single true or

false answer.

6-12

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840"

GENERAL FORMAT:
{<type-operand> |<type-array-operand>}<P>

{<type-operand> |<type-array-operand>}

GENERAL RULES:

1. Comparisons are on an element-by-element basis.

2. For the operator =, the comparison is true only if all
the array elements are equal.

3. For the operator -1i=, the comparison is true if any of

the array elements are not equal.

EXAMPLES:

[T] = [A], [A] "= S, [P]=[S] are valid array comparisons.

6.1.5.5 Structure Comparisons.

GENERAL FORMAT:

<structure-operand><P><structure-operand>

GENERAL RULES:

1« The two <structure-operands> must be identical in organization.

6-13
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840"

6.1.6 Precedence Order

In the evaluation of an expression, the order of operatio
is determined by parentheses and operator precedence. The
precedence is divided into two groups, I,and II; I is of higher
priority. The groups are further ordered by relative priority

number (the highest number being the highest priority).

6.1.6.1 Group I Arithmetic Operations

ns

Operation ' Prioritzl Eg;gi
Exponentiation 6 SS
Matrix transpose (short form) 6 ﬁT
Matrix inverse (short form) 6 ﬁﬁl
Scalar-scalar product 5 S S
Scalar-vector or vector scalar product 5 S Vor Vs
Scalar-matrix or matrix-scalar product 5 S ﬁ or ﬁ S
Vector-matrix product 5 T M
Matrix-vector product 5 M7
Vector outer product 5 VvV
Matrix-matrix product ' 5 MM
Vector cross product 4 V%V
Vector inner (dot) product 3 V.V
Scalar-scalar quotient 2 S S
Vector-scalar quotient 2 vV/s

_ 6-14

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

Matrix-scalar quotient
Scalar sum or difference
Vector sum or difference

Matrix sum or difference

2 M/
1 st
1 v '
1 Mo

— %] .
S, V, M represent scalar (also integer and bit string),

vector, and matrix operands.

6.1.6.2 Group II Relational and String Operations.
Operation ‘Priority - Form
NOT (7, 7) 5 B
cat (| 4 allB
(=, 7=, >, 7>, <, 3 Sl >= S
<, >=, <=)
AND (&) 2 A & B
OR (]) 1 AlB
6.1.6.3 Further Comments on the Order of Operations.

1. Operations within an expression are performed in the order

of decreasing priority.

A+B**3, exponentiation is performed before addition.

expression involves operations of the same priority, the general

For example, in the expression

rule is that the operations are performed left to right.

Exceptions are noted below.

6-15

If an

0n

0

=* <

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

2, Exponentiation is right to left. Thus,

®
A**B*xC = ABT = A% (Bxx()

i Division is right to left. However, vector and matrix

expressions may never appear as a denominator in a quotient.

a. A/B/C = A/(B/C) = A C/B

b. A/BX/CY/D = A/(B X/(C ¥/D)) = A C Y/B X D
C. V/A/B = V/(A/B) = B V/A
d. V/a/R = V/(A/R) is illegal
e. V/R.V = V/(R.V)
4, Within priority 5, in Group I, deviation from left-to-right

order of scalar-vector-matrix products is permitted in order

to simplify the computations. For example, in

— * —
V=MSS SV

the scalars are first multiplied together, then the vector

is multiplied and finally the matrix. Strict left-to-right

evaluation would cause 3 matrix-scalar and 1 matrix-vector

product. However, since multiplications are associative,

the forms are mathematically equivalent. If an expression

is enclosed in parentheses, it is tféated as a single operand. |
The parenthesized expression is evaluated before its

associated operation is performed.

6-16

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

6.2 Conversions
Conversions of data type and precision can be accomplished
implicitly within expressions, and explicitly by special con-

version functions. These conversions are detailed below.

6.2.1 Implicit Conversions

6.2.1.1 Data Type. Several implicit data-type conversions
are described in Sec. 6.1 as occurring when operands of different
types are combined by an operator. These conversions are also
noted in the expressions summary of Sec. 6.4. In general, but
with cértain restrictions, implicit conversions within expressions
follow a progression:

to-scalar-to-character

from bit-to-integer
to-character

i.e.,
+S > C
B > I
>C
and from single precision (SP) to double precision (DP). Vector

and matrix operands cause the same effects as scalars.

GENERAL RULES: —

1. The prefix operations + and - applied to bit strings cause
conversion of the strings to integers.

2. For arithmetic operations, other than exponentiation,
involving two bit strings or a bit string and an integer,

the strings are converted to integers, and the result is an

integer.

6-117

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840

Exponentiation involving integers and bit strings always
causes conversion of integers to scalars, and conversion of
bit strings first to integers, and then to scalars; the

result is a scalar. There is an exception for the exponentia-
tion of an integer by a <§ositive—integer—literal> (see

Sec. 6.1.1.1). 1In thié case the result is an integer.

For aritﬁmetic operations involving a bit string and a

scalar, the string is first converted to an integer and then
to a scalar, and the result is a scalar.

For arithmetic operations involving an integer and a scalar,
the integer is converted to a scalar, and the result is a
scalar.

Division always causes the conversions of numerator and
denominator to scalars, and produces a scalar result.

The concatenation of a character string and a scalar, integer
or bit string causes conversion of the scalar or integer

to a character string, and the éonversion of a bit string first
to an integer and then to a character string. Conversion

of scalar to character produces a character string of
specific length to be determined by the implementation.
Conversion of integer to character produces a character string
of minimum length sufficient to represent the integer as a

signed decimal number.

6-18

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840"

6.2.1.2 Arithmetic Literals. If the representation of an

arithmetic literal in the target machine is exactly an integral
number (whole number) the literal will be treated as an <integer-
operand> in operations and expressions, and with respect to

the data-type conversions detailed in Sec. 6.2.1.1. Thus, 2,
2.00, 27.3E+3, 0.1024E+4B-5 are examples of "integer literals".
If the literal has a fractional part, it will be treated as a
single preciéion <scalar-operand>. Thus 1.5, 2.386E+2, etc.

are examples of "scalar literals".

6.2.1+.3 Precision. Implicit conversion of precision occurs
when operands of different types or precisions are combined
by an operator.

GENERAL RULES:

1. Conversion from bit to integer:

Bit strings of length less than a machine word length
are converted to integers by regarding the string as an
unsigned integer. The result will be a full word positive
integer. For string length exactly equal to word length,

a sign bit is presumed, and the resulting integer will be a
full word signed integer. For string lengths greater than
a word length, conversion will not be performed; the compiler
will issue an error statement.

2. Integer to Scalar:

a. Floating Point

When an integer can be represented exactly in single

precision floating point then the conversion will be exact. |
6—19 :
INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

For larger integers, conversion will approximate the
integer by the most significant portion that can be
represented in a single precision floating point number.

Fixed Point

In conversion from integer'to fixed point if the
second operand 1is a scalar then the number of integer
bitg after conversion will be set equal to that of the
scalar operand; otherwise the integer will be treated
as a fixed point quantity of all integer bits and no

fractional bits.

3. Conversions within Expressions:

a. Floating Point Operations

For operations involving two single precision
operands, the result will always be single precision.
For operations involving single and double precision,
the single precision éuantity will be converted to
double precision and the operations will be performed
in, and the result will be, double precision.

b. Fixed Point Operations

For operations involving two fixed point single
precision operands (single word length) the result will

be single precision.* For operations involving single

* For a particular target machine, the product of two single

precision operands may be available to double precision.

6=20

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

and double precision operands, the conversion to double
length will follow the same'rules as for fioating.point.
The result of an operation also_carries.with it an
implicit scaling based on the operation involved and the
scaling of the operands.
- GENERAL RULES:
1. Addition ana subtraction
The resultant number of integer bits equals the
maximum of the integer bits of the two operands.
2. Multiplication
The resultant number of integer bits equals the
sum of the integer bits of the two operands.
3. Division
The resultant number of integer bits equals the
difference in the integer bits between numerator
and denominator.
4. Exponentiation
The resultant number of integer bits equals the
product of the number of integer bits in the argu-
ment and the maximum absolute value of the exponent.
5. _Fractional bits for all operations
The resultant number of fractional bits equals
that necessary to fill out a single or double word
length, depending upon the context, and the sum

of the integer and sign bits.

6=21

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

HE I =l BN BN BN BN BN BN B B DD B B B B B B =

EXAMPLES:

l.

Presuming a 32 bit word length including 1 sign bit:
DECLARE A PRECISION(5,12);

DECLARE B PRECISION(15,13);‘

X = A + B;

The implicit scaling of the expressions A + B is

.(15,16). That is, the number of integer bits equals

the maximum number of integer bits of A and B. The
number of fractional bits equals 32 - (15+1).

DECLARE A PRECISION(5,12);

DECLARE B PRECISION(20,20);

X = A B;

The implicit scaling of the expression A B is
(25,38). That is, the number of integer bits equais
the sum of the integer bits of A and B. The number

of fractional bits equals 64 - (25+1). Conversion

to double length is caused by the presence of B
which requires a doublé word based on the declaration
statement.

DECLARE PRECISION(3,12)A,B;

X ='AB
The implicit scaling of the expression aB is (24,7).
That is, the number of integer bits equals the pro-
duct of the integer bits of A and the maximum value

of B; i.e., 3x23 = 24, The number of fractional bits

equals 32 - (24+1).

6~22

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

-

c. Conversion of Literals

In convertiné a literal to a fixed point scalar, only
the necessary number of integer bits will be used. First
the literal is divided by 2N so that its value is <1
but > 0.5. 2N is therefore the maximum range and N
becomes the number of.integer bits in the fixed pbiﬂt.
scaling. P-N-1 bits are assigned as fractional whefe
P is‘the word length. (This presumes 1 sign bit.) For
example, for the literal 250.87 the compiler would assign

PRECISION(8, P-8-sign bits). For the literal .004875

the precision is PRECISION (-7, P+7-sign bits).

6.2.2 Explicit Conversions

Three classes of explicit conversions are specified: a
data-type conversion to convert from one data-type to another,
an array-type to convert a list of mixed data types to an array
of a single type, and a set of special bit and character con-

versions.

6.2.2.1 Data Type. The explicit conversion of data types can
be accomplished with the following set of conversion functions:
1. INTEGER (<single-operand>)
2. SCALAR (<single-operand>)

3. BIT (<single-operand>)

[<index-expression>]

4. CHARACTER[<index_expression>](<51ngle—0perand>)

5. VECTOR[<dimension>] (<list>)
6. MATRIX[<dimension>](<llSt>)
6-23

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840"

where <single-operand> ='{<type—operand>[<type—array—0perand>}
<list> = <single-operand>|[,<single-operand>]. . .

and <dimension> = <m>[,<n>]

<m> and <n> may be <bit-, <integer-, or <scalar-operands>;

their values are converted to integers: <m> and <n> must be > 2
<index-expressions>, in the form of subscripts, are detailed

in Sec. 6.3;1.

GENERAL RULES:

1. INTEGER converts bit strings, scalars and character strings
to integers, and arrays of these types to arrays of integers.
A bit string is converted according to the rules stated in
Sec. 6.2.1.3. A scalar is converted to a signed full
word integer by rounding to the nearest whole number. A
character representation of a whole number is converted to
a signed full word integer.

2. SCALAR converts bit strings, integers and character strings
to scalars, and arrays of these types to arrays of scalars.
A bit string is converted first to an integer (as in (1)
above) and then to a scalar. An integer is converted to a
scalar according to the rules stated in Sec. 6.2.1.3. A
character representation of a decimal number is converted .to
a scalar.

A bit string may be converted directly to a floating

(or fixed point) scalar, i.e. not converting to integer
firste, by use of the BIT pseudo-variable, described in

Seds T+leZ2:3s

6-24

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

BIT converts integers, scalars and character strings to bit
strings. Integers and scalars are converted to full word
bit strings; character strings are converted to the bit
length representing the total character string. BIT may be
subscripted by an <index-expression> to select a desired
range of bits (see Sec. 6.3.1).

BIT also converts arrays of integers, scalars, or
charactérs to arrays of bit strings.
CHARACTER converts bit strings, integers, and scalars to
character strings. Scalars are converted to specific
length character strings; integers are converted to
minimum length character representations (see Rule 7 of
Sec. 6.2.1.1). Bit strings are converted to integers first
and then to characters. CHARACTER may be subscripted by an -
<index-expression> to select a desired range of characters
(see Sec. 6.3.1).

CHARACTER also converts an array of bit strings, integers,
or scalars, to an array of character strings.
VECTOR may be applied to a mixed list of all <type-operands>
and <type-array-operands>. The VECTOR conversion-function
may be thought of as constructing a scalar one-dimensional
list of all the included elements. (Conversions follow
SCALAR rules.) Vector, matrix, and array list-elements
are equivalent to lists of their components. Matrices are
unraveled by rows; arrays are unraveled by the "right-most"
index first (i.e. 1,11y 31,1:2p 1;1,:,35 ssa 1,;2,),; 132,28 tE.).

|

6-25

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

The rules for "filling" VECTOR are similar to those
for initialization (see Sec. 5.1.1.5). The resulting vector
is filled element-by-element from the <list>. The number
of elements in the list may equal one, or the desired
vector dimension. If equal to one (e.g., VECTORG(O)), the
function may be subscripted by the desired dimension and
all the components will be assigned values equal to this
single element. The default dimension is used if a sub-
script is not provided.

If equal to the desired vector dimension (e.g., VECTOR
(3#A2,B2,C2,D2) or VEéTOR4((A,B,C,D)), the function may or
may not be subscripted by the correct dimension. In either
case the vector dimension equals the number of elements
in the list.

The MATRIX conversion-function constructs a one-dimensional
list according to the same rules as for VECTOR. The resulting
matrix is "filled" (element-by-element) by rows, and the

shape (rows, columns) may be specified by subscripting the
function. The number of elements in the list may equal one,

or the desired total number of matrix elements. For

example,
MATRIX4,4 (1)
MATRIX4’4(A,4#O,A,4#0,A,4#O,A)

are acceptable forms. If equal to one, the function may be

subscripted by the desired dimension and all the components

6-26

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

will be assigned values equal to this single element. When

subscripts are not provided, the default matrix dimensionality

is used, and the number of elements in the list must equal
~one, or be consistent with the default.

EXAMPLES:

INTEGER(S), SCALAR(S]||B), BIT([A]),CHARACTER (a),

2

i TO 5

VECTOR(A,S,I,AZ), MATRIX (A,S8,I,A",P),

4,4
SCALAR([C]), MATRIX8 8(l).
4

are all valid conversion-function applications.

6.2.2.2 Array-Type. The explicit formulation of arrays can be

accomplished by adding "array shaping" subscripts to the functions
presented in Sec. 6.2.2.1, thus:

1. INTEGER[<array—shape>](<llSt>)

2 SCALAR[<array-shape>}(<llSt>)
3 BIT[<array—shape>:][<index—expression>](<llSt>)
4. CHARACTER (<list>)

[<array-shape>:] [<index-expression>]

Pa VECTOR<array—shape>:[<dimension>](<llSt>)

6. MATRIX](<list>)

<array-shape>: [<dimension>

where
<array-shape> = <m>[,<m>]...
<m> may be <bit-, <integer-, or <scalar-operand>; the value of

<m> is converted to an integer before use and must be > 2.

6~27

INTERMETRICS INCORPORATED -+ 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

GENERAL RULES:

L INTEGER and SCALAR may be applied to mixed lists of all
<type-operands> and <type-array-operands>. Conversions are
‘the same as for the corresponding data-type functions.
Except where these forms reduce tolthe data~type functions
of Sec. 6.2.2.1, the number of elements in the lists may
equal one, or the total number of array elements. Thus,

a) 1if equal to one, the <array-shape> must be specified
and all the elements in the array will be assigned
values equal to this single list element.

b) If equal to the total, the <array-shape> may be
specified and the elements assigned on an element-
by-element basis. If <array-shape> is not provided,
a one-dimensional array of length n is presumed, -
where n is the number of elements in the list.

7. BIT and CHARACTER may be applied to mixed lists of all
<type-operands> and <type-array-operands>. Conversions are
the same as for the corresponding data—type functions.
Except where these forms reduce to the data-type functions
of Sec. 6.2.2.1, the number of elements in the list may
equal one, or the total number of array elements.

a) If equal to one, the <array-shape> must be

~ specified and all the elements in the array will
be assigned values egqual to this single list
element. If <index-expression> is not provided,

default* string length will be used.

* See Appendix B.
6-28

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

b) If equal to the total, the <arréy—shape> may be
specified and the elements assigned on an element-
by-element basis. If <array-shape> is not provided
a one-dimensional array of length n is presumed,
where n is the number of elements in the list. If
<index-expression> is not’provided, a default*
string length ié used.

3 VECTOR and MATRIX may be applied to mixed list of all <type-
operands> and <type-array-operands>. Conversions are the
same as for the corresponding data-type functions. Except
where these forms reduce to the data-type functions of
Sec. 6.2.2.1, the number of elements in the list may equal
one, or the number of components in a single vector or matrix
array-element, or the total number of vector or matrix com-
ponents in the array. Thus,

a) 1if equal to bne, the <array-shape> must be specified
and all the vecéor or matrix components in the
array will be assigned values equal to this single
list element. If <dimensions> are not provided,
default vector or matrix dimensions will be used.

b) If equal to the number of components in a single
vector or matrix array-element, the <array-shape>
must be specified and all the vectors or matrices

-~ in the array will be assigned these list values.

If MATRIX-<dimension> is not provided then the
default matrix dimensions is used. (In this case

the number of list elements must be consistent with

- *See Appendix B
6-29

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

the default.) If VECTOR-<dimension> is not pro-
vided, the vector dimension equals the number of
elemenfs in the list.

c) If equal to the total number of components, the
<array-shape> and the VECTOR-<dimension> must be
specified. If MATRIX-<dimension> is not provided,
the rule of (b) above applies. The components
will be assigned, from the list, on an element-by-

" element basis.

EXAMPLES:

’
1. INTEGER3,4(ACE)

= A 3x4 array of integer-elements. Each element is equal
to INTEGER(ACE). ACE must be the character representation
of an integer (e.g., '-604"'). |
b 2. SCALAR(A,B,C,154I)
- A one-dimensional array of 18 scalar values.
3. BIT(A,B,C,D,E)

- A one-dimensional array of 5 default length bit strings.

BITy 2:1 1o ¢\
= A 3x2 array of 8-bit bit strings. All array elements
are equal to the eight "left most" bits of A.

5. VECTOR9:4(A,0,O,O)

- A one dimensional array of 9 four-component vectors.

Each vector equals (A,0,0,0).

6=30
INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

6. VECTOR2 D (B) .
- A 2x2 array of default length vectors. Every vector
componént is equal to B.
T VECTOR2’2:6(6#A,6#B,1,O,0,1,0,0,6#D)
- A 2x2 array of 6-component vectors.
8. MATRIXlO:(A,B,C, ———————— b
- A one-dimensional array of 10 default size matrices.
(Note that list length must be consistent with the
deféult.)

9. MATRIX (5#A,5#B,5#C,5#D,54E)

2,3,4:5,5

- A 2x3x4 array of 5x5 matrices.

6.2.2.3 Special Character-to-Bit, Bit-to-Character Functions

In addition to the BIT and CHARACTER functions presented
in Sec. 6.2.2.1, special subscripting allows binary, octal.and
hexadecimal conversion from characters to bit string and vice-
versa. The general forms are:

a) B](<character—operand>)

IT[<form>

b) CHARACTER (<bit-operand>)

[<form>]
where

<form> = {@BIN|@OCT|@DEC|@HEX}
GENERAL RULES:

1. BT converts a character string (or array of character

T<form>
strings) of binary, octal, decimal or hexadecimal digits into

a corresponding bit string (or array of bit strings). @BIN

6=31

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 -

requires'the character string to be made up of only 1's

and 0's, @OCT of only 0 to 7, etc.

25 CHARACTER converts a bit string (or array of bit

<form>
strings) into a character string of binary, octal, decimal or
hexadecimal digits, depending on the subscript. If .the-

bit string is too short.for the required form, it will be
padded on the left with zeros.

3. If <form> is not provided, these conversion functions revert

to the unsubscripted functions of Sec. 6.2.2.1.

EXAMPLES:
¥ T 4
BIT@OCT(657'), CHAR@HEX (B),
]] T 1
CHAR@BIN(10101%}, BIT@HEX(FAD')

are all valid applications.

6.2.2.4 Precision. The precision of expression results can be
specified or changed explicitly by the use of the <precision-
expression>. That is:

{<type—operand>[<type—array—operand<}<precision_expreSSion>

 where
<type-operand>={<integer- [<scalar- |<vector- |<matrix- |
<bit- loperand>
and likewise for <type-array-operands>. If the <type-operand>

is an expression or a subscripted name, the <operand> must appear

within parentheses.

6=32

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

A. Floating point:

GENERAL FORMAT:
<precision-expression> = @p

GENERAL RULES:

l. p must be an unsigned integer literal and is equal to
the minimum number of significant decimal places (same
meaning as in the PRECISION attribute of the declaration
staéement).

EXAMPLES (presuming a 32-bit word):

1. DECLARE A PRECISION(10);

DECLARE B ARRAY (5);

A = (BI) @10+C;

B, is converted from single to double precision (i.e.,
aﬁ least 10 significant decimal places) and the sum
is performed in double precision. Note that an indexed
name requires parentheses.

2. REPLACE SP*BY '4';
REPLACE DP BY '1l0';
DECLARE X PREC(DP) ;
A =B +(X Y)@SP;
The double precision result of X Y will be converted
to single.precision. The final sum is computed in
single precision.

B. Fixed point:

GENERAL FORMAT:
<precision-expression> =

{@p[,q] |{@<name>|@DP|@SP|e@*} [+k -k}

*See Sec. 7.3.6 6—33
INTERMETRICS INCORPORATED -+ 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

where- @DP and @SP are keywords; i.e., no spaces are allowed

between characters.

GENERAL RULES:

1. @p, g specifies the number of integer and fractional
bits (same meaning as in the PRECISION attribute of
the declaration statement).

.2. @<name>tk specifies the precision to be the same as
that of <name> except with the binary point shifted
relatively to the right (+) or left (-) by k places;
i.e., increasing or decreasing, respectively, the
number of integer bits.

3. @DPtk specifies conversion,rfirst to double word length
while maintaining the number of integer bits, and then
a relative shift of the binary point right (+) or left (-)
by k places.

4. @SPik specifies a relative shift of the binary point
to the right (+) or left (-) by k places first, and
theh conversion to single word length while maintaining
the new number of integer bits.

Bs @*+tk specifies the current word length with the binary
point shifted relatively to the right (+) or left (-)
by k places.

EXAMPLE:

Presuming a 32-bit word,

A =E + (B + C

@*-5 epp-8’P) ag-5

C is converted from single to double precision and the

: 6-34
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

binary point shifted left eight places. B + C is

performed in double precision and the result of the

multiplication with D is rescaled to the same scaling

as E except that the binary point is shifted left

five places.

This guantity is added to E after the

binary point of E is also shifted left five places.

6.2.2.5 Summary* of Explicit Data-Type Conversions.

The

following table describes the resulting conversion for each

function and operand type (I+S means integer to scalar, etc.):

Type
Function £ . - -
INTEGER 4 S~>I B~>1I (65 i (1) A
SCALAR I-+S 4 B>I+>S crg (1)
prr(3) I-+B g (%) i csp (2)
CHARACTER ' I+C S->C B+I->C v

V/: Restores

Notes: (1)

original argument (no operation).

INTEGER and SCALAR only accept character string

arguments which represent whole numbers and scalars,

respectively. For example, INTEGER('30672') and

SCALAR('362.06E+1"') are valid applications.

* This section summarizes the conversions presented in Secs.
6:2:2:1 and §.2:2:.3.

6~35

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840°

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840

(2)

(3)

(4)

BIT converts scalars and character strings directly

to bit strings. That is a floating point scalar |
argument would result in the string representing the
machine "bit-pattern" of the floating point quantity.
A character is converted to its bit pattern.

BIT and CHARACTER may be subscripted in order to
select particular bits and characters, or to modify
usage (see Section 6.2.2.3). A character string which
represents binary, octal or hexadecimal digits can

be converted to a corresponding bit string; i.e.,

1 1]
BIT@BIN(1011') Dbecomes 1011
1]
BIT@OCT(657"') becomes 110 101 111
1 T
BIT@HEX(FAD') becomes 1111 1010 1101

Likewise bit strings can be converted to binary, octal
or hexadecimal character digits; e.g.,

CHARACTER (BIN'11111010")

@HEX

VECTOR and MATRIX cause the same conversions as SCALAR.

6-36

6.3 Subscripts

Subscript notation is used in HAL to specify single elements,
or multiple-element partitions,of vectors, matrices, bit- and
character-strings, arrays, and structures.

The first element of a vectof, the first bit in a bit-string
("left-most" bit) and the first character in a character string
("left-most" character) are noted by the subscript 1, the second
by 2, etc. up to the total number of components. Thus, for a

9-element vector the components may be written as

For a matrix, the first of the two subscripts refers to the row
number, running from 1 up to the number of rows, and the second
to the column number, running from 1 up to the number of columns.
For example the elements of a 2x3 matrix could be referred to by

writing:

By 1P, 587,452 155,98 3

The above data-types (including integers and scalars) may
be arrayed in one, or multiple dimensions, and also organized
into hierarchical data structures. In order to select and
partition all quanfities uniquely it is necessary to distinguish
levels of subscripts. 1In the most general case, this is accomplished
by seéarating structure subscripts from array subscripts with
a semi-colon (;) and array subscripts from data-type subscripts

with a colon (:). For example,

6-37

INTERMETRICS INCORPORATED -« 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

X'Y5;3:3,4

refers to the scalar element in the 3rd row, 4th column of the
3rd component of the array of matrices Y which is in the 5th

copy of the structure X.

6.3.1 Subscripting Data-Types and Arrays of Data-Types

Subscripting (i.e., selecting or partitioning) is

accomplished by attaching a <subscript-expression> to a name, thus

GENERAL FORMAT:

{<type—name>|<type—array—name>}<Subscript_expression>

where
<subscript-expression>
= [[<index-expression>[,<index-expression>]...]:]
[<index-expression>[,<index-expression>]]
and
<index-expression>
= <scalar—expression>[TO<scalar—expression>][
[<scalar-expression>AT]<scalar-expression>}
<scalar-expressions> are evaluated and converted to the nearest

integer before use. <scalar-expressions> must be > 1.

6.3.2 Single-Element Reference

When referencing a single element the general format of
Sec. 6.3.1 reduces to
[[<scalar-expression>[,<scalar-expression>]...]:]

[<scalar—-expression>[,<scalar-expression>]]

6-38

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

GENERAL RULES:

1. The expressions to the left of the colon (:) reference the
particular array element; the expressions to the right may
be used to reference a matrix, vector, or string component.

2. For an array, if "left-expressions" are not provided, the
colon being optional in this case, reference is made to an
array of the particular matrix, vector, or string components.

3. For a vector or matrix, one or two <scalar-expressions> are
used to reference a vector or matrix component.

4, For a bit- or character-string, one <scalar-expression> is
used to reference a single bit or character in the string.

5. Use of a number sign (#) in place of a <scalar-expression>

means "the last of a particular index".

EXAMPLES :

1. M3'4 references the matrixfcomponent in the third row, fourth
column.

2. A2’3,4 references a scalar or integer array element in the
second plane, third row, fourth column.

3. references the component in the third row, fourth

85,8, 4:3,4
column of the matrix located in the second plane, third row,

fourth column of the array, A.
4. BIT16(A) references the 16th bit in the bit representation of A.

14
5. TEXT8 references the 8th character in the string.

*
M3,7:

. *
of the array of matrices, [M].

references the matrix in the third row, fourth column

=39
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

74 [VS] references an array of the 5th components of all the .

vectors in the array of vectors [V]. [V5] is an array of

scalars.

6.3.3 Multiple-Element Partitions

6.3.3.1 The Use of *. An asterisk (*) may be used in place of

<scalar-expression> to indicate "all of a particular index",
thus establishing a cross-section of a matrix or an array.

EXAMPLES:
1. M*,4 references the fourth column of the matrix, which is
a vector. (That is, all rows, fourth column.)
2. '[7]2’*: references the vectors in the second row of the array

of vectors. Note that [V]2 , is itself a one-dimensional
7

array.

6.3.3.2 The "TO" Operator. The TO-operator may be used to

reference (or partition) a set of elements by specifying the
index limits.
GENERAL RULES:
1. The value of the expression to the left of TO refers to
the element at which the partition begins.
2. The value of the expression to the right of TO refers to the

element at which the partition ends.

EXAMPLES:

B5 TO lo'selects bits 5, 6, 7, 8, 9, 10 from the bit string B.

1.

6-40

INTERMETRICS INCORPORATED - 380 GREEN STREET-(:AMBRHXBE MASSACHUSETTS 02139 - (617) 868-1840

PRI E .

*

2. Ml TO P, 1 TO O partitions a larger matrix and selects the
first P rows and the first Q columns.
3. [A.]P TO (P+2), 1 TO 3:4 TO 4 partitions a two-dimensional

‘array of bit strings. The result is.an array of 3 rows and
3 columns. Each array element is a partition from bit 4 to

the last bit of the corresponding original bit string.

6.3.3.3 The "AT" Operator. The AT-operator may be used to

reference (or partition) a set of elements by specifying the

size (or‘length) and the beginning index.

GENERAL RULES:

1. The value of the expression to the left of AT indicates
the size of the partition.

2. The value of the expression to the right of AT refers

to the element at which the partition begins.

EXAMPLES:

1. B6 AT 5 selects 6 bits from the bit string B; i.e.,bits
5:6:7:8,;9;10.

2 BITlO AT P(A) first converts the floating point (or fixed-

point) scalar, A, to a bit string and then selects 10 bits

starting at P.
*

3. M4 AT 5, 4 AT 7 partitions a larger matrix by selecting
a 4x4 sub-matrix.
4, PQ TO # partitions a character string by selecting the rest

of the string starting at Q.

6-41
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -« (617) 868-1840

5. Note that

Sy 70 10 = S9 aT 2

1"
N e

6.3.4 Subscripting Structures

Subscripts may be used to specify terminal data elements
and specific copies of the major structure, or contained minor
structures.

GENERAL FORMAT:

<structure-name> . ; .
: <structure-subscript-expression><subscript-

expression>
where
<structure-subscript-expression>

= [[<index-expression>[,<index-expression>]...];]

<structure-name> = {<fully-qualified-name>|<not-qualified-name>}

and <index-expression> and <subscript-expression> are defined

in Sec. 6.3.1.

GENERAL RULES:

1. When the <structure-subscript-expression> is included, all
structure subscripts (major and minor) must be indicated.

2. The use of an asterisk * means "all of the particular index".

Thus, {A.B.D} means D in all the copies of B which are in

26:*;
the 26th copy of A. If all indices are filled with * then
the <index-expressions> may be omitted optionally; for example,

A.B.Dy 4. = A.B.D

6~42
INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

EXAMPLES:
DECLARE 1 A (50)NOT QUALIFIED,

2 B(25),
3 C ARRAY (4,4) MATRIX(3,3),
3 D INTEGER,

Z B({15),
3 G VECTOR(3),

2 F BIT (1) ;

The following examples refer to the above structure declaration.

1. Cg,10;4,2:1,2
iThis represents the scalar component in the first row, second
column of the matrix which occupies the 4,2 position in the
array C. This array is in the 10th copy of B which is in the
8th copy of A.

2. G,

This represents the second component of the vector G in

all copies of E which are in all copies of A.

3. .

F25; .
This represents the single 1-bit bit-string in the 25th

copy of A.
1. * :
‘ {C}23,*;4,*:
This represents all the matrices in the "4th row" of the
array C, in all the copies of B which are in the 23rd copy

of A.

6-43

. INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

6.4 Expression Summary

Tables 6.4-1 through 6;4—7 summarize the allowable
operations between two operands. In most cases the valid result-
type (or error) and any implied data conversions are indicated
within the boxes. Array operations are generally valid wherever

corresponding data-type operations are also valid.

6-44

INTERMETRICS INCORPORATED -« 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

+ J3LVHOJHOONI SOIYL3WNHILNI

13341S N334 08¢

+ 6€1¢0 SLLISNHOVSSVYIN

0v81-898 (£19)

‘3D0QIHGNWVO -

e <px = {[*]y
{42 }OPERAND -
Operation Prefix <Q>
<Q> = NOT
(‘
OPERAND INTEGER SCALAR VECTOR MATRIX BIT STRING | CHARACTER
STRING
<P> <P> <P> <p> ‘<P> <Q>
INTEGER SCALAR VECTOR MATRIX integer Bit ERRQR

B+1* String

$¥=9

* . B+>I means conversion from bit to integer

Table 6.4-1

+ J3LVHOJHOONI SOIHLINEILN

+ 6€1¢0 SLLI3ISNHOVSSVIN

0vy81-898 (£19)

'39QIHGNVO - 13341S N334O 08¢

97 =9

Operation Addition & Subtract : QRBRLHD OP.ERAND2
OPERAND2
INTEGER SCALAR VECTOR MATRIX BIT STRING CH??QE%ER
OPERAND, -
INTEGER INTEGER SCALAR ERROR ERROR INTEGER ERROR
I+S B~1I
SCALAR SCALAR SCALAR ERROR ERROR SCALAR ERROR
I-»>S B-+I-+S
VECTOR ERROR ERROR VECTOR ERROR ERROR ERROR -
MATRIX ERROR " ERROR ERROR ' MATRIX ERROR ERROR
d
BIT STRING INTEGER 'SCALAR ERROR ERROR INTEGER ERROR
B>I B>I~+S B+I
A
"HARACTER ™
e ERROR ERROR ERROR ERROR ERROR ERROR
dimension check
Table 6.4-2

+ 03LVHOJHUOONI SOIHLIWYHILNI

'IOAIHGNVD - 13341S N334 08¢

* 6€120 SLL3SNHOVSSVIN

+81-898 (£19)

i
14

0

LV-9

Operation Multiplication:

OPERAND, <mult>OPERAND

2

OPERAND2
INTEGER SCALAR VECTOR MATRIX BIT STRING CHARACTER
OPERAND] STRING
INTEGER INTEGER SCALAR VECTOR MATRIX INTEGER ERROR
I-»S I->S I-»S B->TI
SCALAR SCALAR SCALAR VECTOR MATRIX SCALAR Z . ERROR
' |
I+S B>I->S _
| i
VECTOR VECTOR VECTOR MATRIX VECTOR VECTOR ERROR
I+S B+I->S
MATRIX MATRIX MATRIX VECTOR i MATRIX MATRIX ERROR
BIT STRING INTEGER SCALAR VECTOR MATRIX INTEGER ERROR
|
B>T B>1I+S B>I-+S B>I-+S B>I, B->T |
| CHARACTER
STRING ERROR ERROR ERROR ERROR ERROR ERROR
X J
= = d: dimension check
Special: 1) Vector DOT product V.V
2) .Vector cross product V*V

(£19)

0v81-898

»+ 6€120 SLL3ISNHOVSSVYIN '3DQIMENWVO « 13341S N33ED 08¢ » Q3LVHOJHOONI SOIHLIWHILNI

. Operation Division : OPERANDl/OPERANDZ
OPERAND, _
INTEGER SCALAR VECTOR MATRIX BIT STRING CH??ggggR
OPERAND,
| INTEGER SCALAR SCALAR ERROR ERROR SCALAR ERROR
‘! I+S, I-S IS I+S, B>I-»>S
SCALAR SCALAR SCALAR ERROR ERROR SCALAR ! ERROR
I->S B~+I+S
VECTOR VECTOR VECTOR ERROR ERROR VECTOR ERROR
= I+S B+I-+S
4 _
m .
MATRIX MATRIX MATRIX ERROR ERROR MATRIX ERROR
I-+S ' B>I~+>S
BIT STRING SCALAR SCALAR ERROR ERROR SCALAR ERROR
B+I+>S, I+S B+I->S B+I~+S
CHARACTER ,
STRING ERROR ERROR ERROR . ERROR ERROR ERROR
Y J
Table 6.4-4

'OBLVHOdUOONISDMLBWHHLNI

« 6€120 S1L3ISNHOVSSVIN 3DAIHGANYD - 13341S NI3YD 08¢

0+v81-898 (£19)

67-9

, . .
. Operation Exponentiation 5 OPERANDl OPERANDZ
OPERAND2 .
INTEGER SCALAR VECTOR MATRIX BIT STRING CH??ggggR
OPERANDl
INTEGER SCALAR SCALAR ERROR ERROR SCALAR ERROR
(See Note 1) | (See Note 1) (See Note 2)
{
SCALAR SCALAR SCALAR ERROR ERROR SCALAR ERROR
I+S B>I->S
VECTOR ERROR ERROR ERROR ERROR ERROR ERROR
MATRIX All Error$ except if "bPERANDZ" = {-1]T};i.e. INVERSE or TRANSPOSE
:BIT STRING SCALAR SCALAR ERROR ERROR SCALAR ERROR
B+I+S, I-=S -B+I*8 B+I+S, B+I-+S
(See Note 3) | (See Note 3) (See Note 4)
CHARACTER
STRING ERROR ERROR ERROR ERROR ERROR ERROR
Table 6.4-5
Notes: ,
1. Result is INTEGER if OPERAND2 is a whole number literal > 0.

Result is INTEGER if OPERAND2

unsigned integer (B-I).

Same as

(2) except (B>I, B>T).

Result is INTEGER if OPERAND, is a whole number literal > 0 (B-I).

is a bit string literal which may be converted to an

<P> <P> =_{= I-‘=}

OPERAND OPERAND :
l{<Q>} 2 {= | 7= |>]|<|<=|>=]|"<]|">}

<Q>

Operation Relational :

Table shows valid relational operators; the result is always true or false.

U3LVHOJHOONI SOIHLIWHILNI

1
OPERAND..|
2 INTEGER | SCALAR VECTOR MATRIX BIT STRING | CHARACTER
: STRING
OPERANDY
INTEGER <> <Q»> ERROR ERROR <Q> ERROR
g I>S BT
. O ;
o i
2 SCALAR <p> <0> ERROR ERROR <Q> g ERROR .
Z I+S B+I~+S ;
w ' !
= ki
i . :
1 VECTOR ERROR ERROR - <P>' ERROR ERROR ' ERROR
o T
T o
% .
g MATRIX ERROR " ERROR ERROR | ' <p> ERROR ERROR
m \
s
= .
4 BIT STRING <0> <0> ERROR ERROR <0> ERROR
% ‘ BT B>I~+S : 1
c
on
m
- CHARACTER
m 4
- SRR ERROR ERROR ERROR ERROR ERROR <0>
S _ 1
w 5 4
({o]

—_— >
Special: <structure><{P><structure> 1: OPERAND padded to make

<array><P><array> lengths equal if necessary.
: Table 6.4-6

—
o
—
~
™
o)
@

g

o
-
o

= <P> = I

Z g <P>

Z OPERAND. {2 JOPERAND |

e . . 17<0 2 <Q> = AND

E Operation String : OR"

O

wn 1
: g OPERAND,,

2 INTEGER SCALAR VECTOR MATRIX BIT STRING CH??@%%ER

z OPERAND

1

9 .

>

% | .

o | INTEGER |~% ERROR . <P>

. | CHARACTER

& I-C

o

o < P>

5 SCALAR -z ERROR ! CHARACTER

3 ' S+C

wn

_..{ \
0 . .] i
m ; _ _ |
j2 , VECTOR -< ERROR- * .

S o

) I

po wm

<., = \
o5} |
z MATRIX |-z . ERROR : &> |
') : ' ' ' |
m ' |
<

> "

§ BIT STRING |=< ERROR : - <o ERROR

o ; . BIT STRING

c

wn

= <P> <P>

— . P> P

» CHARACTgR CHARACTER CHARACTER ERROR ERROR CHZRACTER Raita

S SLRAN I-+C S+C AT CHARACTER

w K g |

@O

0+81-893 (£19)

7.0 STATEMENTS

7.1 Assignment Statements

The assignment statement is used to evaluate an expression
and to assign its value to one or more target variables, The
target variables may be integer, scalar, vector, matrix, bit and
character variables, array variables of these types,
subscripted variables, or structures.

GENERAL FORMAT:

[<label>:]<variable-name>[,<variable-name>] = <data-expression>;
where,
<data-expression> = {<arithmetic|<string|<array}-expression

GENERAL RULES:

1. An assignment is performed in the following steps:
a. subscripts of the target variables are evaluated;
b. the expression on the right hand side of = is evaluated;
c. the target variables are assigned.

2. If more than one <variable name> appears on the left hand
side of = then all the names must be of identical dafa
organization, (Several different data types may be included.)

3. The dimensionality of the right hand side expression must |
be identical to that of the left hand side variables with
the following exceptions:

a. string assigﬁments (see Sec. 7.1.2):;
b. assigning zero (0) to arithmetic variables; e.qg.,

p— — * |
VvV, R=0; [M] = 0; A,B,C,D = 0; are acceptable forms;

S M

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

c. array assignments (see Sec. 7.1.3)

EXAMPLES:

A, B, C, D = VECTOR (1, 0, 0, P/C);

i -y * o -
D=AP+ MF + LOG(A)Z;

BAKER: By oy g ® Cg mg 4I[A;

M = A*B;
*,3

ABLE: [A]f[i] = BIT2,10:([P]20 ap g’

are all valid assignment statements.

1=2

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

7.1.1 Impliecit Conversions

7.1.1.1 Type Conversions. Implicit conversions are performed

on the following assignments:

1. Scalar and bit expressions to integer target
variables.

2. Integer and bit expressions to scalar target
variables. The bit result is first converted to
intéger, and then to scalar.

3. Integer and scalar expressions to bit target variables.
The scalar result is first converted to integer, and
then to bit.

4, Integer, scalar and bit expressions to character
target variables. The bit result is first converted

to integer, and then to character.

EXAMPLES :
A = éllé;
I = a%;
A=1I-8;

ABLE: TEXT = é[]ﬁ;

7.1.1.2 Precision Conversion. The resultant precision of an

expression is converted to the precision of the target variable:
EXAMPLES: (32 bit word length)
1 DECLARE PRECISION (10)VECTOR A;

X = A * B;

All vectors are floating point; the components of A are

=3

INTERMETRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

held in double precision. B is first converted to double

precision, the cross-product is performed, and the result is

converted to single precision on assignment to X.

2. DECLARE PRECISION(5,12) A,B;
DECLARE PRECISION(21,12) C;
A'=B + C;
All guantities are fixed point; A and B are single length;
C is double length. The number of fractional bits for each
variable fills out the word length (less sign bit); thus,
effectively,
A and B become (5,26)
C becomes (21,42)
The precision conversions are as follows:
a. B is converted to double precision and added to C.
b. The result is converted back to single precision;

i.e. (5,26) when assigned to A.

7.1.2 String Assignments

7.1.2.1 Bit Strings. When the length of a bit string expression

and the target variable are unequal, the expression result is
truncated on the left if it is too long, or padded with zeros
on the left if it is too short. The resulting value is assigned

to the target variables.

7-4

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

EXAMPLE:

51 1m0 6 = 52 mo 47

BAKER: Sl TO 6 B20 AT p’

are examples in which padding and truncation will occur.

7.1.2.2 "Boolean" Assignments. A one-bit string may be viewed

as a Boolean variable and can be assigned as follows:
A = {{TRUE|ON|BIN'1'}|{FALSE|OFF|BIN'0"'}};

Note that TRUE and ON are literally the binary constant BIN'1l'.

A long bit string may be zeroed by an assignment; i.e.,

,Bl TO 18 ~ FALSE;

B1 ro 18
equal to 0.

However, = TRUE;sets bit 18 equal to 1 and the rest

7.1.2.3 Pseudo-Variable Bit String Assignment. BIT strings

may be assigned directly to the bit representation of other data
types by using the pseudo-variable BIT.
GENERAL FORMAT:

BIT (<variable-name>) = <bit-string-expression>:;

<index-expression>

GENERAL RULES:
1. <variable-name> may be the name of an integer, scalar, bit,

or character variable, or an array variable of these types.

7-5
" INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

EXAMPLES :

1.

e rqpr.
BIT6 TO lO(A) = BIN(5)'1l"';
The scalar A is interpreted as a bit string and the bits 6
to 10 are assigned all 1's.
7 . .
BIT o g(Cie) = H||A;

The character C is interpreted as a bit string and

16
bits 1 to 8 are assigned the result of the string concatenation.
BIT(A) = S| |MANTISSA||EXPONENT;

The scalar A is interpreted as a bit string and is assigned

a floating (or fixed) point format directly from a bit

string expression.

7.1.2.4 Fixed Character Strings. Assignment is similar to that

of bit strings except that extension or truncation is applied

on the right. Thus, the expression value is truncated on the -

right if it is too long or padded on the right with blanks if it

is too short. The resulting is assigned to the target variables.
EXAMPLES :
7 ’ ’
1. C = "ABC'; sets Cl mo 3 = 'ABC' and blanks the rest of C.
r 4
e ¥ V.
2 Cl TO 3 = ABC'; leaves the rest of C alone.
r ’
= |
3 C3 TO 5 ABC'; leaves the rest of C alone.
14
4, C3 TO 80 = 'ABC'; leaves characters 1 and 2 alone, and blanks
characters 6 to 80.
7 ’
P 1 —]
5 C3 TO 4 = ABC'; sets C3 TO 4 AB' and leaves the rest

14
of C alone.

=6

INTERMETRICS INCORPORATED -« 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

7.1.2.5 Varying Character Strings.

GENERAL RULES:

1. If the value of the expression'is ldnger than the maximum
length declared for the variable, thg value is truncated on
the right. The target string obtains a current length
equal to its maximum length.

2. If the value of the expression is not greatér than the maximum
length, the value is assigned; the target string obtains a
current length equal to the length of the value.

3. If the target string is subscripted, the string partition
is considered a fixed length character string and the expres-
'sion is assigned according to the rules of Sec. 7.1.2.3.

If the target variable length is shorter than the upper index
of the subscript expression, the target variable is padded

on the right with blanks and the expression assigned. If

the length is longer than the upper index, the expression is
assigned, leaving the other characters alone. If the upper
index exceeds the string maximum length, the assignment is
truncated at the maximum length.

EXAMPLES: (let é be a varying string of maximum length 10)

i é = 'ABC';sets the length of é to 3

14
'"ABC'||'BFG'isets the length of C to 6

Q-
Il

2

’
€3 10 ¢ T
to the end; i.e. the length is set to the maximum length

CHAR(3) 'ABC';assigns;'ABCABCAB' from character 3

. of 10.

7-7

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

C7 TO 9 = 'POP';assigns POP to characters 7, 8, 9. If the
original length is <6, the string is extended with blanks
and the length set to 9. For example, suppose C were

equal to 'ABC', then the result of this assignment would be

' ABCBBBPOP' .

7.1.3 Array Assignments

GENERAL FORMAT:
[<label>:]<array-variable-name>[,<array-variable-name>]...

= {<type—expression>|<type—array—expression>};

GENERAL RULES:
l. If the expression on the right hand side of = is a <type-
expression>, the result of the expression is assigned

to every target array element in sequence.

2. If the expression on the right hand side of = is a <type-
array-expression>, the result of the expression is assigned
to the target variables, in sequence, on an element-

by-element basis.

EXAMPLES:
[a] = 5; [V],[W] = VECTOR(A,B,C,D):;
[a] = [A] + 5; [A] = [B][C]i;are all valid array assignment
statements.
7-8

INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840°

7.2 Declaration Statements

See Secticn 5.0.

7.3 Control Statements

7.3.1 The GO TO Statement

The GO TO statement causes control to be transferred to
the specified statement.

GENERAL FORMAT:
GO TO <label>;

EXAMPLE:
X = A;
GO TO BAKER;
ABLE: P = 7

- % o
BAKER: V = M Y;

7.3.2 DO Statements

The DO statements constitute a set of four executable

statements. Each DO statement defines a group of statements
which are treated as a single unit. The four DO statements
are: the simple DO, the iterative DO WHILE and DO FOR,
and the selective DO CASE.

A GO TO statement can transfer control from outéide a group
to a statement within a group. Special care mﬁst be taken to
initialize necessary quantities in the cases of the iterative

DO statements.

=9

INTERMETRICS INCORPORATED - 380 GREEN STREET} CAMEHMDGE,PAASSACHUSETTS 02139 + (617) 868-1840

7.3.2.1 The Simplg DO Statement.

GENERAL FORMAT:
[<label>:]DO;[[<label>:]<statement>]...[<1abel>:]END[<label>];

GENERAL RULES:

1. <statement> may be any executable statement including

another DO statement.

EXAMPLES :
BAKER: DO;
X = A;
Y = B;
DO;
Z = C;
— *
W=MYV;
END;
END BAKER;

Note that this example has been indented for clarity and does
not imply an established input source-output listing format

design.

7.3.2.2 DO WHILE Statement. The DO WHILE statement serves

as a means of executing a group of statements repetitively as long as
a cbndiﬁion is met.
GENERAL FORMAT:

[<label>:] DO WHILE <logical-condition>;

[[<label>:]<statement>]...[<label>:]END[<label>];

I=10

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

where
<logical-condition> = {<relational-expression>{AND|OR}
<relational~expreésion>|[NOT]<single~bit—expression>}
and the <single-bit-expression> is a bit string expression
with only single bit operands (Booleans).
GENERAL RULES:
1. The <logical-condition> is within the loop structure of the
DO WHILE group and is re-evaluated each time before

execution of the group of statements.

2. When the <logical-condition> is not satisfied the DO WHILE loop is

terminated and control is transferred to the first executable

statement following the END statement.

EXAMPLE;
ABLE: DC WHILE (X>YHAND’B6=TRUE)OR([A] = [B]);
P = LOG(Z);
* * *
M =N + Q;
Y = M3'2;

END ABLE;

7.3.2.3 The DO FOR Statement. The DO FOR statement serves as

a means of executing a group of statements repetitively for a list
of values of a control variable and a logical condition.

GENERAL FORMAT:

scalar

[<label>:1DO FOR<{integer

} variable> =

<for-list element>[,<for-list element>]...
[WHILE<logical-condition>];

[[<label>:]<statement>]...[<label>:]END[<label>];

-3

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868

-1

8

40

where
<for-list element> = <{§calar } expression> [<to-expression>
integer
[<by-expression>]]
. scalar .
<to-ex > = < {% : n>
to-expression TO {lnteger}expre551on
and
: . ¢SCalar .
<by- s 5 = <1 >
by-expression BY {lnteger}express1on
GENERAL RULES:
1. The scalar or integer assignment means that a single variable

(control variable) will be assigned scalar or integer values.

24 The control variable takes on the successive values specified
by the <for-list elements>. If the element is simply a scalar
or integer expression, the control variable is set equal to
‘this value prior to a pass through the loop. If the element
involves <to- and <by-expressions>, the control variable is
compared with the value of the <to-expression> prior to each
pass, and is incremented by the <by-expression> at the con-
clusion of each pass.

3. If the <by-expression> is not provided, the group of statements
will be evaluated repeatedly, incrementing the assigned con-
trol variable by 1 until the control variable is gfeater than
the value of the <to-expression>.

4. If the <by-expression> is provided, the group will be evalﬁated
repeatedly, incrementing the assigned control variable by the
value of the <by-expression> until the control variable
exceeds (if the <by-expression> is positive) or is less
than (if the <by-expression> is negative) the value of the

<to-expression>.

7=12

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

5. 'The effect of the <logical-condition>, if provided, is the

same as for the DO WHILE statement.

6. The <to- and <by-expressions> are not within the loop struc-
ture of the DO FOR group and are evaluated only once. The
€logical—condition> is within the loép and is evaluated before
each pass.

EXAMPLES:

1. DO FOR I = 1 TO 10 BY 2;

X =1Y;

Y X2 + Z;

I

END;
This loop will be executed five times.
2. BAKER: L = Q/R;

ABLE: DO FOR I = P TO (N/S) BY L WHILE N > (0.046;
2

X =Y + AI;
N =N - .006 X;
END ABLE;

Note that the value of the <to-expression> (N/S) is only
computed once. The condition N >0.046 is applied before

each pass.

7.3.2.4 DO CASE Statement. The DO CASE statement provides a

means of executing a selected statement from a group of statements.
GENERAL FORMAT:
[<label>:] DO CASE <case-expression>;
[[<label>:<statement>]...[<label>:]END[<label>];
where the <case-expression> can be either an integer expression
=13

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

or a scalar expression. The result of a <case-expression> is

rounded to the nearest integer before use.

GENERAL RULES:

1. The <case-expression> results in an integer, used to designate
which one of the included statements will be executed. A
-value of 1 specifies the first statement, 2 the second, and
so on. An integer result outside the case range will be in
error. The compiler will annotate the listing, indicating
Case 1, Case 2, etc.

2. The <statements> may be any of the executable statements,

including other DO statements.

EXAMPLES:

ABLE: DO CASE N;

X = v?; /*CASE 1%/

DO CASE P; /*CASE 2%/
F = A + B; f*CASE 1*/
G =M v; /*CASE 2%/

END;
GO TO CHARLIE; /*CASE 3%/
7z =W + B; /*CASE 4%/

END ABLE;

7.3.3 END Statement

The END statement delimits the do-graups.

GENERAL FORMAT:

[<label>:]END[<label>];

7-14

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

GENERAL RULES:
1. The END statement terminates the group headed by the
nearest preceding DO statement which has not already been

‘terminated by an END statement.

2. If a label follows END, the corresponding DO statement

must have that same label.

7.3.4 .The IF Statement

The IF statement specifies the evaluation of a logical
condition and a consequent flow of control dependent on whether

the condition is true or false.

GENERAL FORMAT:
[<1abel>:]IF<logical—condition>THEN[<label>:]{<statement>]
<basic—statement>ELSE[<label>:]<statem¢nt>}
where
a. the <logicai—condition> has a true or false result; its
format was described in Sec. 7.3.2.2.
b. the <basic-statement> is any executable statement except

an IF or END statement.

7=15

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617} 868-1840

c. the <statement> is any executable statement (including

another IF statement) except an END statement.

GENERAL RULES:

i I 'If ELSE is not included, a true condition will cause
execution of the statement following, and a false condition
will cause control to pass to the statement following the
IF statement.

2. 1If ELSE is present then a true condition will cause execution
of the <basic-statement> following THEN and a false condition
will cause transfer of control to the statement following
ELSE.

3. The IF statement format requireé that an ELSE be preceded
by an IF and not by another ELSE. As a result the execution .
of a <statement> following ELSE occurs only if the <logical-

condition> associated with the nearest preceding IF* is false.

EXAMPLES:
1. ABLE; IF é THEN IF é THEN X = 5;
ELSE D: GO TO BAKER;
CHARLIE: Y = 6;
2. IF X>100 AND ¥Y<3 THEN P: GO TO ABLE;

ELSE IF B OR C THEN

DO;

END;

ELSE Y = A - B;

. * IF statements within preceding do-groups do not apply.
: 7-16
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

74

3.5 The NULL Statement

The NULL statement is a no-operation.

GENERAL FORMAT:

[<label>:];

EXAMPLE:

IF X<5 THEN ABLE:;

ELSE IF X<10 THEN GO TO HOME;

7.3.6 REPLACE Statement

The REPLACE statement provides a means of specifying the

substitution of a string of characters for an identifier. The

character string must be contextually correct where substituted.

is a compile-—-time feature and not a run-time executable statement.

GENERAL FORMAT:

REPLACE<identifier>BY'<character-string>"';

GENERAL RULES:

1.

The <identifier> may not be a keyword or any word used

by the language syntax (e.g.,TO or WHILE).

The <character-string> must be written in one-line format.

The <character-string> will be substituted, literally, whenever
the identifier is encountered within the program. Substitution
is accomplished within the compiler and does not appear in che
listing.

The <identifier> may not be a <parameter> in the PROCEDURE or

FUNCTION statements.

7-17

TERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

This

EXAMPLES :
1. REPLACE P BY 'LOG(F) + Y*%2°';
B=Z+P;'

2. REPLACE D BY 'GO TO ABLE;';
IF B>6 THEN G ELSE D

3. REPLACE A BY' (106.2B-32)"';
DECLARE B INITIAL A ;

4. REPLACE FIRE_JETS BY 'GO TO F_J;';

FIRE JETS

F-d: DO - = =~ = =

END;

INTERMETRICS INCORPORATED + 380 GREEN STREET « CAMBRID

, MASSACHUSETTS 021

o}
.

Q

39 .
3

(
\

O

17) 868-1840

7.4 Procedures and Functions

Procedures and functions are subroﬁtines consisting of one
or more statements which are intended to be written once but
used at various points throughout a program. The primary distinc-
tion between procedure and function is that the procedure must be
invoked by a CALL statement, and may accept and return lists of para-
meters of different data types, while a function is invoked by the
appearance of its name as an operand and can return only a single
data type or result.

7.4.1 Procedures

7.4.1.1 PROCEDURE Statement. The PROCEDURE statement identifies the

the entry point and specifies the input and output parameters.
GENERAL FORMAT: |
<procedure—label>:PROCEDURE[<procedurewparameters>] ‘
[ASSIGN<assign—parameters>];
{[<label>:]<statement>|[<label>:]RETURN;}...
[<label>:] CLOSE [<procedure-label>]; |

where
<procedure-parameters> = (<name>][,<name>]...)

and

<assign-parameters> = (<name>[,<name>]...)
GENERAL RULES:
l. The <procedure-parameters> are interpreted as input data to

the procedure. They are formed parameters; that is, they do

719

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

l beginning of a block of statements which forms a procedure; it defines

)

not exist in of themselves and are no more than dummy variables
that indicate what to do, within the procedure block, with

the actual <call-arguments> in the CALL statement (see Sec.
-7.4.1.2). If the <call-arguments> are names (not expressions),
the <procedure-parameters> are in fact the same data locations
as the <call-arguments>.

The <procedure-parameters> may not be assigned values within
the procedure block; i.e., they may not appear on the left
hand side of an assignment-statement“

The <assign—-parameters> are also dummy variables and represent
the computed output data of the procedure. They are in fact
the same data locations as the <assign-arguments> in the CALL
statement.

The data-types and attributes of corresponding <call- and
<assign-arguments>and <procedure- and <assign-parameters> must

be identical (see Sec. 7.4.2.3).

Execution of a procedure may be terminated by a RETURN statement

(see Sec. 7.6) or by logically reaching the CLOSE statement;
control is returned to the caller.

Local variables may be defined within a procedure block by

declaration statements and implicit declarations. See Sec.

8.1.1 for discussion of Scope of Names.

7-20

ICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

INTER

EXAMPLE:
TIME: PROCEDURE (A,B)ASSIGN(C) ;
C = A(F.+F ‘B+F B2) ;
12 3 g
IF B>L THEN RETURN;

C = 100 C;

CLOSE TIME;

7.4.1.2 CALL Statement. A procedure is invoked by a CALL

statement which may define a set of input and output arguments
and which transfers control to a specified entry poinﬁ.
GENERAL FORMAT:

[<label>:]CALL<procedure-label> [<call-argument>]

[ASSIGN<assign—-arguments>];
where <procedure-label> is the label associated with the PROCEDURE
statement and
<call-arguments> = ({<name>|<expression>}[,{<name>|<expression>}l...
<assign-arguments> = (<name>[,<nane>]...)

GENERAL RULES:
1. <call-arguments> will be used only as input information to

the procedure.
2. <assign-arguments> may be assigned values computed within
the procedure blocks and may also supply input information to

the procedure.

P=2L

ANACTDICS INAADDASD ATE nOA ADC TN v A oo ~r AACO ~ I HICCTTO N) e By) (> W 1e
METRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

EXAMPLE:
ABLE: PROCEDURE;

CALL TIME (V, T) ASSIGN(W);

S = W*V;
%
P =MS;

CLOSE ABLE;
TIME: PROCEDURE (A,B) ASSIGN(C);
o~ ; 2.

C = A(F1+F2 B+F; B)

IF B>L THEN RETURN;

C = 1006 C:

CLOSE TIME;

7.4.2 Functions

7.4.2.1 TFUNCTION Statement. The FUNCTION statement

the beginning of a block of statements which form a function;

defines the entry point and specifies the data-type

GENERAL FORMAT:

<function-label>:FUNCTION [<function-parameter>]

[<type-spec>];

{<statement>| RETURN (<expression>);}...

[<label>:]CLOSE [<function-label>];
where

<function-parameters> = (<name>[,<name>]...)

1-22

TRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 -

identifies

(617)

ik

of the result.

je¥age]

~
QOO 1%\

GENERAL RULES:

1. If <type-spec> is not provided and is not specified in a
declaration, default characteristics are used.

2. 'The <function-parameters> are interpreted as input data to
the function. They are formal parameters; that is, they do
not exist in of themselves and are no more than dummy variables
that indicate what to do, within the function block, with the
actual <function—arguments> in the function reference (See
Sec. 7.4.2.2). 1If the <function-arguments> are names (not
expressions), the <function-parameters> are in fact the same
data locations as the <function-arguments>.

3. The <type-spec> specifies the characteristics of the function
result. Arrays and structure organizations are not allowed.

4., The data~types and attributes of corresponding <function-
arguments> and <function-—-parameters> in the reference and
FUNCTION statements must be identical. (See Sec. 7.4.2.3)

5. A function must have at least one RETURN statement and
execution may only be terminated by a RETURN statement;
control is returned to the caller. An erroxr messageAwill be
generated at run-time if the process logically reaches the
CLOSE statement.

6. Local variables may be defined within a function block

(see Sec. 8.1.1).

=23

a0

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-184C

7.4.2.2 Function Reference. A function is invoked by a function

reference which may define a set of input arguments and which
transfers control to a specified entry point.
GENERAL FORMAT:
<function-label>[(<function-arguments>]...]
where
<function-arguments> = ({<name>|<expression>}[,{<name>]|
<expression>} ..
GENERAL RULES:
1. The <function-arguments> will be used only as input informa-
tion to the functionmn.
2. The <function-label> is treated as an operand whose value is
computed within the function.
EXAMPLE:
ABLE: A = M TRACER (B+C) ;
TABLE: GO TO BAKER;
TRACER: FUNCTION(é);
R=mracE@ 0t +0+806+800);
IF R>100 THEN RETURN R;

ELSE RETURN O0;

CLOSE TRACER;

7.4.2.3 Paraméter Declarations. Scalar, vector, matrix, bit

and character string parameters may be declared implicitly, with

default attributes, by their appearance in PROCEDURE and FUNCTION

SYCER OO E SA KA, MACOANIIICETTO AN4 120 g7y A0 40 AN
REEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

INTEF

statements with appropriate annotation. Thus, for example
ABLE: FUNCTION(A,ﬁ,é,b,é);

Array-parameters and parameters with other than default attri-

butés require explicit DECLARE statements internal to the proce-

dure or function blocks, in addition to appearing in the lists
of parameters (annotation being optimal).

For cerﬁain applications it may be convenient not to specify
the length or dimensions of parameters but instead, have the
parameters take on these characteristics from the corresponding
arguments in the CALL or function-reference statements. This
may be accomplished by substituting an asterisk (*) for the
length or dimensions in the DECLARE statements.

GENERAL RULES:

1. With reference to Sec. 5.1.1, vector length, bit length,
character length and varying character maximum length may
be specified by asterisks.

2. For arrays, shepe may be specified by combinations of
literals and/or asterisks.

3. For matrices, rows and columns may be specified combinations
of literals and/or asterisks.

EXAMPLES :

1. TIME: PROCEDURE (A) ASSIGN(C);

DECLARE VECTOR (*), A, C;

CLOSE TIME ;

METRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 863-1840

o K e
2. ABLE: PROCEDURE (V,M) ASSIGN(N);
DECLARE V VECTOR (*);
DECLARE M MATRIX (3,%);

DECLARE Y VECTOR (4);

- B o
Y = M V;

CLOSE ABLE;
ok =)
Comment: V, M, N are parameters. Y is a local variable.

Note that N is declared by appearance as an <assign-paramneter>.

%
With no explicit DECLARE statement for N, default attributes

are used.

7.4.2.4 Functions of an Array. When a <function—-argument>

is an array, the corresponding <function-parameter> may be either

a single variable or an array-variable of the same data-type.
If a single variable, the function has been designed to operate
on each array element sequentially, element-by-element. If an
array, the function accepts the input array as a unit.
EXAMPLES:
1. DECLARE B ARRAY (4);
DECLARE C ARRAY (4);
[C] = FUZZ ([B]);
FUZZ: FUNCTION (X) ;
TEM = 1 + X/2 + x2/6 + X3/24;
RETURN (TEM) ;

CLOSE F¥UZZ;

)

aTatels DATE 19 N T owil o CTMCE SANADYDIT = AIACCANCIICETTR ne47y Qo
INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 888-

1840

r.

FUZZ will be executed 4 times and return 4 scalar results
which will be assigned to the component of array C, in sequence.

If the <function-parameter> is an array-variable, then the

‘function accepts the input array as a unit. The function

will operate on the "inner-most" free indices of the array
argument consistent with the expression.
DECLARE B ARRAY (4) VECTOR;
BUZZ: FUNCTION ([X]);
DECLARE X ARRAY (4) VECTOR;
ADD = X), + Xy, + Xy, + Xy,
RETURN (ADD) ;
CLOSE;
A = BUZZ ([B]);
BUZZ returns a single vector.
DECLARE A ARRAY (5), B ARRAY (5,4);
[A] = suM([B]);
This statement is equivalent to the following "DO FOR-loop"
sequence of operations:
-DO FOR I = 1 TO 5;
Ay = SUM([BI’*]);

END;

Note that SUM is a linear array function.

7.5 Programs

In HAL, a program is the smallest compilable unit. It
may contain all of the program elements and statements defined,
except PROGRAM statements; i.e. declarations, executable state-

ments, procedures, etc.

Tabel PROGKAM_QEggggppt

GENERAL FORMAT:
<program-label>:PROGRAM;
{<all-statements>}...

[<label>:]CLOSE [<program-label>];

GENERAL RULES:

l. <all-statements> may contain all valid syntax.

2. A progrém may be called using the CALL statement with the
<program-label> (no parameters may be passed).

3. Execution of a program may be terminated by a RETURN state-
ment (See Sec. 7.6) or by logically reaching the CLOSE
statement; control is returned to the caller. (Also, see
the real-time control statement TERMINATE in Sec. 9.)

4. A program can be scheduled in real-time through the system

executive (see Sec. 9).

> INCORFORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868

-1840-

7.5.1.1 Program Calls. [The CALL statement may be used to call

one program from another program. The logical result is similar
to calling a procedure; i.e., control is transferred to the program
called and returned when the program is completed. The CALL state-
ment is of the form:
CALLA<prooram—label>;
In calling a program:
1. No arguments may be passed; all communications must
be through a COMPOOL.
2. All static variables are allocated on program initiation,
and released when the program ends; i.e., variables with the
INITIAL attribute are initialized, others take on unspecified
values.
3. Control is returned to the caller at the statement following
the CALL statement, when a RETURN or CLOSE statement is
reached.

4. A program cannot call itself.

7-29

NSO ADA TS nON ODOEEN CTREET AN RRINGE L AACOANLIICETTO A4 A ATy Qo0 OAN
INCORPORATED « 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

7.6 RETURN Statement

The RETURN statement terminates the execution of a procedur
function or program.
GENERAL FORMAT:
[<label>:]RETUﬁN[<expression>];
GENERAL RULE S:
1. In terminating a procedure or program, the RETURN statement
must not include an expression.

2. In terminating a function the data type of the <expression>

must agree with the type specified for the function.

3. The result of <expression> may not be an array.
4. The RETURN statement returns control to the caller.
7-30
IETRICS INC(CRATED) GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617)

€y

7.7 CLOSE Statement
The CLOSE statement delimits the blocks of HAL statements

which have name scope¥*; viz. procedures, functions, programs,

tasks** and update** blocks.

GENERAL FORMAT:

[<label>:]CLOSE [<label>];

GENERAIL: RULES:

1. The CLOSE statement delimits the block headed by the
nearest preceding PROCEDURE, FUNCTION, PROGRAM, TASK or
UPDATE statement which has not already been delimited
by a CLOSE statement.

2. If a label follows CLOSE, the corresponding "heading"
statement must have that same label.

3 For a procedure, program or task, execution of the CLOSE
statement returns control to the caller.

4, For an update block, execution of the CLOSE statement
causes no operation.

5. For a function, execution of the CLOSE statement is an

€Xrror.,

* See Sec. 8.1.1

*% See Sec. 9.

F=31.

~ ~ONODOND A T "o IR OO ~ SO TACOAALIIOETTO n N~y
S INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617)

INTERMETRICS INCORPORATED -

8.0 HAL PROGRAM ORGANIZATION

A HAL program organization consists of one or more indepen-
dently compilable programs and absymbolic library. The library
maf contain a common data pool (COMPOOIL) and all valid HAL
syntax. Variables declared in the COMPOOL are available for
use in any program. Library routines may be compiled into
any program‘by directive. The organization is designed to
provide programmer convenience and flexibility and yet maintain

control and visibility of commonly used data.

8.1 Program Structure
A program (<program-block>) is the smallest compilable
unit and is delimited by PROGRAM and CLOSE statements. The
<program-block> may contain the following elements:
<program~block> = <program—étatement>[<declare"gr0up>]
{<all-statements>|<task-block> |<sub-block>}...
<close-statement>

where,

<declare~group> = [<replace-statements>] [<outer*-statements>]

[<default**-statements>][<declare~statements>]

<all-statements> = all executable statements including
do-groups and update***-blocks
<task-block> = <task***-gtatement> [<declare-group>]

{<all-statements>|<sub-~blockss}...<close-statement>

* See Sec. 8.1.2
** See Sec. 5.5
*** GSee Sec. 9.4.2

380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

<sub-block> = {<procedure-statement>|<function-statement>}

[<declare-group>]

{<all-statements>|<sub-blocks>}...<close-statement>

<program-blocks> and contained <taékmblocks> and <sub-
block> (and further nested <sub-blocks>) define boundaries,
or regions,iwithin which names and labels are recognized and
may be used for computation and control. The region in which

a name or label is potentially recognizable is called its scope.

8.1.1 Scope of Names

The scope of a name is defined as the block in which it
is declared and extends to all contained (and nested) blocks.
For example, names defined in the COMPOOL are potentially recog-
nized throughout every <program-block>; names defined in a
<program-block> may be recognized in all enclosed <task- and
<sub-blocks>; names defiﬁed in <task- and <sub-blocks> may be
recognized in all nested <sub-blocks>, etc. Note that a name
defined within an inner block is never recognized in an outer
block. (To be more precise, the named variable or constant is
never recognized in an outer block; the name itself, designating

various data quantities, may appear in a number of blocks.)

Identical name declarations for two or more quantities

cannot exist within the same name scope; however, duplicate

names are allowed in different scopes. The following example

illustrates this principle:

ABLE: PROGRAM:

DECLARE VECTOR(5) A, B;

BAKER: TASK;

DECLARE A INTEGER;

CHARLIE: PROCEDURE;
DECLARE A BIT;

DECLARE X;

CLOSE CHARLIE:
CLOSE BAKER;
GRAB PROCEDURE;

DECLARE X VECTOR(4);

CLOSE GRAB;

CLOSE ABLE;

'

Comments:

1. The vectors A and B have been declared at the program level
and their scope is the entire program unless superseded by
a declaration in an inner block (or obscured by omission

from an CUTER statement, see Sec. 8.1.2).

2. In the task BAKER, A is an integer (the vector A
will no longer be recognized); B is recognized.

3. In. the inner procedure CHARLIE, A is re-defined again, being
recognized within CHARLIE as a bit string. The scope of B
remains the entire program.

4, 1In the procedure GRAB, A and B remain defined at the program
level and X is declared at a local level. Note that although
the names are the same, the variables represented by X in

GRAB and X in CHARLIE are different.

8.1.2 §Selective Inclusion of Outer Names

In the previous example names declared in an outer block
were known to the inner block unless the inner block declared the
same name. Another mechanism is provided to include (or reject)
outer names selectively. The OUTER statement is an explicit.

means of specifying which "outer" names are to be known within the

84

CS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-

[

COINACTDICO - OO A - ~r O OTDEET N ANADIT
RMETRICS INCORPORATED + 380 GREEN STREET « CAMB!

block; outer names which would have beéeen known but which are

not listed are hidden. Thus, for example,

ABLE: PROGRAM;
DECLARE A, B, C, D, E;

BAKER: TASK;
OUTER B, D;
DECLARE A;

.

The program ABLE has declared names A, B, C, D, E which would

be known in the task BAKER. However, the OUTER statement in
BAKER only allows B and D to be known, and further BAKER redefines
A locally. Note that the absence of an OUTER statement means

that all outer names will be recognized within aparticular inner

block, while the inclusion of OUTER with no list of names completely

isolates the inner block from any outer-declared names.

8.1.2.1 1Inclusion of Structure Names. Structure names may also

be included by listing the structure name(s) in the OUTER state-
ment according to the following rules:
1. For a qualified structure, only the major structure name

may be listed; the result being that all associated minor

structure and terminal names are included implicitly.

2. For a not-qualified structure, the major structure name
and all associated minor structure and terminal names may
be listed. Only those names that are listed will be

recognized within the block.

8.1.2.2 Implicit Declaration of Names. Implicit declaration

of names wi]l not be allowed unless the block contaings an OUTER
statement. Only those names appearing in an OUTER statement
and those explicitly declared within a block will be unavailabie
for implicit declaration.

When no declarations precede the PROGRAM-statement, the
compiler permits implicit declarations at the program level as

though an OUTER-statement with no list had been included.

8.1.3 Scope of Labels

Labels are used for control purposes; to transfer control
as in GO TO <label> or CALIL <label>. The labels "name" the
entry-points to programs, tasks, functions, procedures, updates,
do-groups and statements. The scope of labels generally follows
the same rules as for names with the following exceptions:

1 The GO TO and CALL statements imply the'existence of a
label. If the label does not appear in the block in which
the statement is written, the GO TO or CALL must refer
to a lébel in an outer block; if the label does appear in
the same block (before or after the statement), the state-

ment. refers to this label.

e T e T T e e R S = | G e

RATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

2., If a GO TO or CALL

statement refers to a label in an

outer block, the label must appear in the listing prior

to the statement

statement.

3. Function names (i.e.

or be declared explicitly in a DECLARE

<function-labels>) must always

be defined in the listing prior to their use, even if the

FUNCTION statement and the function reference appear

within the same block.

A function name may be defined

by its appearance in a FUNCTION statement or by explicit

declaration in a DECLARE statement.

EXAMPLES :

L #1

A: PROGRAM;

X: Y =7 + 3;

B: PROCEDURE;

GO TO X;

CLOSE B;

CLOSE A;

#2

A: PROGRAM;
X:e Y =172 + 3;

B: PROCEDURE;

GO TO X;

X: F = G + H;

CLOSE B;

CLOSE A;

- CAMBRIDGE, MASSACHUSETTS 02139 - (617) 8£8-1840

B L e e R R L R SRENENARARNETNNEENEe EEE=—=

If #1, no label X appears in B, therefore control is trans-

ferred to the X appearing in A. In #2, control will be transferred
to the X which appears in the same block as the GO TO X. With
reference to #1, if the label X would have appeared in A after

B, i.e., after its use in the GO TO statément, then X would have

to he declared explicitly, prior to B, in a DECLARE statement.

2 . 2
A: PROGRAM; A: PROGRAM;
ZAP: FUNCTION VECTOR; DECLARE ZAP FUNCTION
VECTOR;

CLOSE ZAP; B: PROCEDURE;

B: PROCEDURE; ¥ = X + Zap;

Y = X + ZAP; .
. CLOSE B;
CLOSE B;

ZAP: FUNCTION VECTOR;

.
.

B B
CLOSE A; CLOSE ZAP;

- CLOSE A;

In #1, the function ZAP is recognized in B because its definition
precedes its use. In #2 the definition has been relocated after
its use, therefore ZAP must be declared, first, using a DECLARE

statement.

8.1.4 Scope of the REPLACE Statement

With reference to the description presented in Sec. 7.3.6,
the scope of a REPLACE statement is the same as that for a
DECLARE statement with the following exception: the <identifier>
in a REPLACE statement is never "replaced" as a result of another
REPLACE statement located in an outer block.
EXAMPLE :

ABLE: PROCEDURE;
REPLACE X BY 'Y';

DECLARE X INTEGER;

BAKER: PROCLEDURE;

REPLACE X BY 'Z';

.
.

CLOSE BAKER;
CLOSE ABLE;
The identifier X appearing in BAKER is replaced by Z. X outside

of BAKER is replaced by Y.

8.1.5 Scope of the DEFAULT Statement

With reference to the description presented in Sec. 5.5,
the scope of the DEFAULT statement is the same as that for a

DECLARE statement,

EXAMPLE :
ALPHA: PROGRAM;

DEFAULT MATRIX(4,7) BIT LENGTH(24);

o0 6 0 8

BETA: PROCEDURE;
DEFAULT BIT LENGTH (10) ;

DECLARE E, F, BIT;

.
.

CLOSE BETA;

CLOSE ALPHA;

In procedure BETA, which is nested within ALPHA, the
default-type established in ALPHA remains valid so that E is
a 4x7 matrix. F is a 16-bit string by virtue of the DEFAULT

statement in BETA.

8.2 The COMPOOL

The COMPOOL is a centrally defined and centrally maintained
group of statements. The statements are limited to REPLACE,
OUTER and DECLARE (the <declare-group>), and the attributes in
the DECLARE statements are further restricted to LABEL;
FUNCTION, dimensions, and PRECISION (also VARYING for character
strings). The names and labels declared in the COMPOOL are
potentially known to all programs and, in fact, provide the only
means of communication between programs.

In order to take advantage of the COMPOOL as a data sharing
mechanism, the programmer must include the COMPOOL statements
before the PROGRAM statement during compilation. In a sense,
the COMPOOL is placed "outside" the program block and its scope
encompasses the program. If another program is compiled in a
similar manner, using the same COMPOOL, the variables declared
in the COMPOOL will be recognized in both programs. Thus, for

example,

INCLUDE COMPOOL A INCLUDE COMPOOL A
A: PROGRAM; B: PROGRAM;
CLOSE A; CLOSE. Bj

It should be noted that if the COMPOOL is included after the
PROGRAM statement; i.e., yi;ﬁig the program block then its
scope can encompass only the program itself, and declared

variables cannot be shared by another program.

IN
(B}

8.3 The Symbolic Library

The symbolic library is a centrally defined and centrally

maintained pool of symbolic source code.

The library is avail-

able to all programs and may be added to a program by use of the

compiler directive#®

INCLUDE<library-entry>

The appearance of this directive causes the symbolic code in

the object file to be included in the compilation and inserted

at that point. For example:
INCLUDE NAVDATA
A: PROGRAM;
INCLUDE AGLOBALS

INCLUDE ALOCALS

B: TASK;
X = A;
Y = B;

INCLUDE LOGIC

CLOSE B;

C: PROCEDURE;

IF L>100 GO TO ABLE;
"ELSE

INCLUDE CHOICE

G TERKMETRIDR
\iL!\x..‘_ Niuo

* Compiler directives require a D in column 1 of input source

code line.

« (617) 868-1840

ABLE:

CLOSE €

CLOSE A;

GENERAL RULES:

The symbolic library may contain source code identical to that

within a program except that INCLUDE directives are not allowed.

9.0 REAL TIME CONTROL

The real-time control of HAL programs consists of the
interrelated scheduling of <program- and <task-blocks>,
the reliable sharing of common data, and the recovery from
abnormal error conditions.

The concepts and language features introduced in this
section have been designed for general applicability to real-
time control programming. It is recognized that depending upon
specific hardware environments and operating system designs,

certain features may not find utility.

9.1 TASK Statement

A task is a subroutine which is intended to be scheduled
in real-time through an executive system. The TASK staﬁement
identifies the beginning>of a block of statements which form a
task and defines the entry point.
GENERAL FORMAT:

<task-label>: TASK;
{[<label>:]<étatement>|[<label>:]RETURN;}. . .

[<1label>:]CLOSE [<task-label>];

GENERAL RULES:

1. Unlike procedures, tasks do not provide for parameter
passage and return. Rather, data exchange must be accomplished
9=1

METRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840

9.1l

through variables with common data scope (i.e., variables
defined at the COMPOOL or program levels).

Local variables and constants may be declared as in
procedures and functions.

Execution of a task may be terminated by a RETURN state-

- ment, a TERMINATE* statement or by logically reaching

the CLOSE statement. If the task is activated by the
executive, termination causes control to be returned to
the executive. If the task is simply called, as a
procedure, RETURN and CLOSE return control to the caller;

TERMINATE always returns control to the executive.

Task Calls

The CALL statement may be used to call a task. The

logical result is similar to calling a procedure; i.e.,

control is transferred'to the task called and returned when the

task is completed. The CALL statement is of the form:

CALL<task-label>;

In calling a task:

1) No arguments may be passed.

2) Control is returned to the caller at the stateﬁent
following the CALL statement, when a RETURN or CLOSE
statement is reached.

3) A task cannot call itself.

* See Section 9.2.4

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 8

INTER

r\ﬁ/

9.2 Scheduling Statements

9.2.1 SCHEDULE Statement

The SCHEDULE statement is used to request initiation
of a program or task based on three criteria:

a) at a specific time (<spec~time>)

b) in an incremental time (<inc-time>)

c) onhevents or combinations of events (<event-expression>)
where time is expressed in seconds or units specified by
implementation, and an event is a programmer-defined (see
Sec. 9.3.1) or system-defined occurrence. The general format

of the SCHEDULE statement is:

< o S
<program-label> AT <spec-time

[<label>:]SCHEDULE{
<task-label>

IN <inc-time>

ON <event-expression>
[PRIORITY ({<p>|PRIO + <g>})] [, INDEPENDENT] [,<task-id>];

<spec-time> and <inc-time> may be <scalar- or <integer-operands>.

<event-expression> has the same form as the <single-bit-expression>

(see Sec. 7.3.2.2); i.e., a logical combination (AND, OR, NOT)

of event names.

GENERAIL RULES:

L A SCHEDULE statement within one <program-block> may be
used to schedule the program itself, any task within the
block, or another program. A task within one <program-

block> may not be scheduled from another <program-block>.

9-3

TRICS INCORPORATED + 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868

oro

18+

1
H

n-

2 Procedures, functions and labelled statements may not
be scheduled.
3 <spec-time> and <inc-time> are rounded to the nearest
integral number of time units before use.
4. PRIORITY(<p>) specifies the priority of initiation. If
two programs (or a task and a program, etc.) are scheduled
- for the same time (or on the same event(s)), the one of
higher priority will be initiated first. <p> may be a
positive <scalar- or <integer-operand> and represents an
absolute priority. Relative priorities may be established
by'using the function PRIO which returns the current
program or task priority. Thus, PRIORITY(PRIO + <g>)
requests a priority of <g> greater than current priority.
<g> may be a positive or negative <scalar-or <integer-
operand>.
5. If PRIORITY is not provided, scheduling will take place
with current priority.
6. If INDEPENDENT is provided, the scheduled program or task
is to be independent of the block in which it is scheduled.
This means that an independent program or task can'continue
in an active state even after the schedulihg block has
been terminated. However, a task with STATIC variables
or.one which contains reference to identifiers declared
at the program level cannot be scheduled as an independent

task.

94

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

F o If INDEPENDENT is not provided, dependent scheduling will
take place. All dependent programs and tasks are terminated
when the block in which they were scheduled is terminated.

8. <task—id>vis a name which will contain the unique identifica-
tion data for the scheduled prograﬁ or task.

9. If AT, IN, ON are not provided, initiation will take

place as soon as possible (consistent with priority).

EXAMPLES:
L. SCHEDULE PROGRAM 20 PRIORITY(10), PROG_20;
PROGRAM 20 is scheduled as a dependent block (program or
task), priority 10, with identification stored in the
variable PROG_20. Initiation will begin as soon as possible.
2. SCHEDULE ABLE PRIORITY (PRIO + 1);
ABLE is scheduled as a depedent block at a priority 1 higﬁer
than the current priority.
3. SCHEDULE RADAR ON R RUPT PRIORITY (HIGH) ;
RADAR will be initiated on the occurrence of the event
R RUPT at priority HIGH.
4. SCHEDULE STEERING AT TIG-5 PRIORITY (6) ,INDEPENDENT;'
STEERING is scheduled, as an independent block, to begin
at the time TIG-5 with priority 6.
5. SCHEDULE TRACK IN 5;
TRACK is scheduled to begin in 5 units of time from the

time the SCHEDULE statement is executed.

D=5

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMERIDGE, MASSACHUSETTS 02139 + (617) 868-

4
i

04
04

0

INTE

EQNE
Ve

6. SCHEDULE ABLE ON (A AND B) OR C;

ABLE is scheduled to begin on the occurrence of either
both events A and B, or event C.
A IF X>10 AND %RACKFLAG = ON
THEN SCHEDULE AUTOMANEUVER PRIORITY(S);
ELSE GO TO BEGIN;
The SCHEDULE statement may be included as another executable
statemént. AUTOMANEUVER will be scheduled if X>10 and

the TRACKFLAG is ON.

9.2.2 WAIT Statement

The WAIT statement is used to suspend an active program
or task and reactivate it based on three criteria:
a) a specific time
b) an incremental time
c) a particular event or combination of events.
GENERAL FORMAT:
UNTIL <spec—-time>
[<label>:]WAIT <inc-time> s
FOR <event-expression
where <spec-time>, <inc-time>, <event-expression> are the same
as in Sec. 9.2 (SCHEDULE statement).
EXAMPLES:
1. WAIT 5;

The current block (program or task) is suspended for 5 units

of time and then reactivated.

956

‘RICS INCORPORATED +« 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

2. WAIT UNTIL TIG-5;
The current block is suspended until the time TIG-5 and
then reactivated.

3 WAIT FOR ABLE;
The current block is suspended until the event ABLE occurs
(i.e., ABLE is turned ON) and then reactivated.

4. WAIT FOR NOT(T1 AND T2) OR T3;
The current block is suspended until the events Tl and

T2 are OFF, or the event T3 is ON, and then reactivated.

9.2.3 PRIO CHANGE Statement

This statement is used to change the priority of a

task or program.
GENERAL FORMAT:

[<label>:]PRIO_CHANGE ({<p>|PRIO + <qg>}) [<task-id>]

[({<p>|PRIO + <g>}),<task-id>]. . .;

where <p>, <g> are defined in Sec. 9.2.1.
GENERAL RULES:
1. <p> or <g> are new absolute and relative priorities,

respectively, for the corresponding <task-id's>.
2 The current program or task priority may be changed by

the statement

PRIO CHANGE ({<p>| PRIO + <g>});

EXAMPLES :

1. IF AFLAG THEN PRIO_CHANGE (PRIO + 5);

If AFLAG is on then current priority is increased by 5.

Q=7
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

T P

/

9.2.4

PRIO_CHANGE (8), (10) TAsxK 1, (13) TASK 2, (PRIO + A) TASK 3;

The current priority is changed to 8, TASK 3's priority
is changed to the current priority plus A (i.e., 8 + A).
Note that a <task-id> can be omitted only before the first

comma, meaning the current task or program.

TERMINATE Statement

This statement is used to terminate a program or task

and return control to the executive.

GENERAL FORMAT:

[<label>:]TERMINATE [<task-id>[,<task-id>]. . .];

GENERAL RULES:

L ‘Execution of this statement terminates all identified
tasks and programs and all their dependent tasks and
programs.

25 If <task-id> is not provided, the current program or
task and all dependent programs and tasks are terminated.

EXAMPLES:

1. TERMINATE PROG_ZO, T2
The blocks (task or program) identified by PROG 20 and T2
are terminated.

2. TERMINATE;

The current program or task is terminated.

9=8

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

INTE

nA
mniv

AETRICS INCORPORATED « 380 GREEN

9.3 Events and Signals

Programs and tasks may be scheduled by the occurrence of

events or combinations of events. An event is a programmer-named

condition and can be stimulated only by the execution of the

SIGNAL statement.

9.3.1 Events
<event-variables> must be declared using DECLARE state-
ments. The format is similaf to that described_for data
declarations, thus:
GENERAL FORMAT:
‘DECLARE<event-variable>EVENT [LATCHED [INITIAL{ON/OFF}1];
GENERAL RULES:
1 <event-variables> may only be declared at the COMPOOL
and program levels. Scope rules are the same as for data.
2. If the attribute LATCHED is provided, the <event-variable>
will hold its signalled value; i.e., if signalled on,
it will remain on.
3. If LATCHED is not provided, the <event-variable> when
signalled on, will remain on only for a short interval
of time. The time interval is implementation dependent.
4. The declaration of an <event-variable> can be incorporated
in the same DECLARE statement with other identifiers; e.g.

DECLARE V VECTOR, M MATRIX, B EVENT;

99

w

TREET - CAMBRIDGE, MASSACHUSETTS 02133 « (617) 868-18¢

A
1

0

5 EVENT, LATCHED, INITIAL may be factors in a DECLARE state-

ment; e.g.'

DECLARE EVENT, A, B, C INITIAL(ON):;

6. If INITIAL is not provided for <event-variables> with the

LATCHED attribute, a default value of OFF is presumed.
EXAMPLE:

DECLARE EVENT, A, B LATCHED;

A and B are declared "unlatched" and "latched" events.

Both are set off initially. It should be noted that an

unlatched event cannot be set on initially.

9.3.2° SIGNAL Statement

This statement is used to cause the occurrence of an event.
The specific effect depends upon whether the <event-variable>
has the attribute LATCHED.
GENERAL FORMAT:
[<label>:]SIGNAL<event-~variable> [ON/OFF] [, <event-variable>
[ON/OFF]]. . . ;.
GENERAL RULES for LATCHED <event-variables>:
1.4 <event-variables> may be on or off initially.
2 If an <event-variable> is off:
a) it may be turned on by SIGNAL<event-variable>ON;
b) it may be left off by SIGNAL<event-variable>OFF;
c) 1if ON or OFF is not provided, SIGNAL<event-variable>;
turns the <event-variable> on for a short time interval,
and then off. The time interval is implementation

dependent.
9=10

INTERMETRICS INCORPORATED -« 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

s If an <event-variable> is on:
a). it may be turned off by SIGNAL<event-variable>OFF;
b) it may be left on by SIGNAL<event-variable>ON;
c) 1if ON or OFF is not provided,'SIGNAL<event—variable>;

turns the <event-variable> off after a short interval.

GENERAL RULES for "unlatched" <event-variables>:

t 99 <event-variables> are always off intially.

2% SIGNAL<event-variable>[ON]; turns the <event-variable>
on for a short interval, and then off. The time
interval is implementation dependent.

3. SIGNAL<event-variable>OFF; causes no action.

EXAMPLE:

SYNCHRO: PROGRAM;
DECLARE EVENT LATCHED, A, B;
SCHEDULE ABLE INDEPENDENT;
SCHEDULE BAKER INDEPENDENT;

SCHEDULE CHARLIE ON A AND B;

E = W + V;
_— e
M = 7 N;
TERMINATE;
ABLE: TASK; /*INDEPENDENT TASK*/
SIGNAL A ON;
CLOSE ABLE;
9-11
NTERMETRICS INCORPORATED -« 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

e T B L L e e I sy = 1

BAKER: TASK; /*INDEPENDENT TASK*/

SIGNAL B ON;
CLOSE BAKER;

CHARLIE: TASK;

CLOSE CHARLIE;

CLOSE SYNCHRO;

INTERMETRICS INCORPORATED - 380 GREEN STREET

+ CAL

VIBRID(

o o

GE,

MASSACHUSETTS 02139 -

(617) 8

[©)}

9.4 Dynamic Control of. Shared Data

HAL provides features to control the sharing of variables
in order to prevent conflicts in their utilization. These
features include the attribute LOCK_TYPE to designate shared
-variables and an update block of stateﬁents in which shared
variables may be changed in é controlled environment. Although
the approach taken is basically implemented in software, it
does depend on the ability to perform an "uninterruptable"
instruction similar to the Test and Set instruction available

on IBM 360 computers.

9.4.1 Conflicts in Sharing Data

In order to illustrate the problems that can arise in

Example 1: Read/Write Conflicts

A: TASK; B: TASK;
P — TS
! Interruption -

*
M

CLOSE A; » CLOSE B;

~

>,

Example 2: Serial Updating Conflicts

A: TASK; . B: TASK;

v TASK .
=Y - X; | 4y =Y - Z;
. Interruption 8

b4

CLOSE A; CLOSE B:

l sharing data consider the following two examples:

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

M

o d e e b el o at e maa ey o paas o, e o L IR

In both examples TASK B interrupts TASK A during the
execution of a statement. The interruption may be caused by
a hardware of software (SIGNAL) interrupt or by a "job swap"
based on priority. In Example 1, presume that the interruption
occurred while the matrix ﬁ was being feaa. When TASK A resumes,
the computation of M will continue using some "old" ﬁ data-
and the "new" § data assigned in TASK B. 1In ofder to prevent
this confliét, initiation of TASK B would have to be stalled
until the reading of ﬁ in TASK A is completed.

In Example 2, presume that the interruption occurs first
after the current value of Y is loaded into the accumulator.
When TASK A resumes, the "old" value of Y (i.e., not reflecting
the update of Y in TASK B) is restored into the accumulator,

X is subtracted and the result assigned to Y. 1In order to
prevent this conflict, the initiation of TASK B would have to
be stalled until the value of Y is updated in TASK A (i.e.,
each variable declared with the LOCK TYPE attribute, see Secs.
4.3.4, 5.l.lf3).

The approach taken in solving the Eroblems represented above,
using HAL, is to confine the read and write accesses of shared
variables to identified update blocks and for the compiler to
assign a locking control variable to each shared variable
(i.e., to each variable declared with the LOCK TYPE attribute).
The value of the "lock" is examined at run-time and only con-

sistent (i.e., safe) accesses are permitted.

9-14

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

s TN

T e S gy = .

)

9.4.2 The Update Block -

The <update-block> of statements provides a controlled
environment for the reading and writing of shared data variables.v
All LOCK _TYPE(l) variables, and LOCK TYPE(2) variables to be
assigned new values (i.e., updated) mus£ appear within <update-
blocks>. LOCK _TYPE(2) variabies which are to be read only need
not be confined to these blocks. The <update-block> may contain
the following elements:

<update-block> = <update-statement>[<declare-group>]
{<all-statements>|<sub-blocks>}. . .<close-statement>
subject to the restrictions below.

GENERAL FORMAT:

[<update-label>:]UPDATE;
{[<label>:]<statement>}. .

[<label>:]CLOSE [<update-label>];

GENERAL RULES:

1. <statements> within an <update-block> (and enclosed <sub-
blocks>) may not include I/0O statements (see Sec. 10),
or additional UPDATE statements.

2. Name scope rules are the same as described in Sec. 8.1.1
except <statements> may not contain <procedure-labels>
or <function-labels> defined outside the block. (HAL

built-in function names are permitted.)

INTERMETRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

Exgcution of the UPDATE statement attempts "to lock" all
shared variables within the block. A va&iable to be
assigned will be write-locked, variables to read only will
be read-locked. Once locks are established they are not
opened until execution of the CLOSE statement at the end
of the block.

If all desired locks cannot be established at the UPDATE
statement because one or all of the shared variables are
not available (i.e., they are already locked elsewhere),
the current program or task will be stalled (placed in
"wait" by the executive) until all variables become avail-
able.

After all locks are established, copies are made of the

shared variables to be assigned (if any), and the <statements>

within the <update-block> are executed using this copy-
data.

Execution of the CLOSE statement first opens all read-

locks and then attempts to transfer the updated copy-data
into the actual shared variables (to be assigned).. If read-
locks are in effect on these variables (i.e., they are

still locked within other <update-blocks>), the current
program or task will be stalled until these locks are
opened. After the copy-data has been transferred all
write-locks are opened and execution continues at the state-

ment following CLOSE.

9-16

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-

G b b = e i e el

In conjunction with (4) above, a stall will occur at the

UPDATE statement if any of the shared variables to be

assigned in the block already are write-locked.

word

that

In other
s, a write—-lock cannot be established on a variable

is already write-locked. A stall will also occur if

any shared variables to be read are currently being

written in other <update-blocks> , i.e., a read-lock cannot

be e

stablished while the variable is being assigned a new

value.

Tran

statement or in response to an error condition (see Sec.

is considered an

writ

not be confined to update blocks.

only

in a

9.4.2.1

\\\

sferring control outside the update block by a GO TO

9.5)
all read- and

"error exit". As a result,

e-locks are opened and no copy-cycle is performed.

LOCK_TYPE (2) variables which are to be read only need

This attribute should
be applied to those data types which can be accessed

single uninterruptable instruction.

Summary on Entering an Update Block (LOCK_TYPE (1) Variables.)

Pr
t

Variables

esent

ake Free Read-Locked Write-Locked Writing

T~

To be ass
in block

Write- Stall Stall

Lock

Write-
Lock

igned

be rea
block

To
in

Stall

v Read-

Lock

d Read-

Lock

1
)

=

ETRICS INCORP

Table 9-1

§-17

ORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

Table 9-1 indicates that on entering an <update-block>,
if variables to be assigned aré free or read-locked, write-locks
will be established; otherwise execution will stall until
variables are available. If variables to be read are free,
read-locked or write-locked, read-locks will be established;
otherwise execution will stall until variables are available.

(Y means read-lock already established, new lock is unnecessary.)

9.4.2.2 Summary on Leaving an Update Block (LOCK TYPE(1l) Variables.)

Present
State _
Actual Free Read-Locked Wrlte-Locked Writing
Variables
To be written N.A. Stall ' Copy N.A.
Table 9-2

Table 9-2 indicates that on leaving an <update-block>, if
variab%es to be written are write-locked the copy-cycle will
proceed} otherwise execution will stall until variables are
available. (N.A. means not applicable. Once in‘an <update-block>,

variables cannot be free nor in the process of being written

within another <update-block>.)

9-18

DGE, MASSACHUSETTS 0213

9 « (617) 868-1840°

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRI

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 -

9.4.2.3 Examples. Consider the two examples at the beginning
of Sec. 9.4.1 and suépose that the statements in question were
enclosed within <update-blocks>, e.g.,

A: TASK;

UPDATE;

.
.

CLOSE A;

Example 1

In TASK A a read-lock is established for §. After the
interruption, a write-lock is established for ﬁ and TASK B
proceeds toward completion using copy-data for ﬁ. At the
end of the <update-block> in TASK B the process stalls because
of the read—-lock imposed in TASK A. As a result, TASK A is
allowed to‘continue with consistent "old" § data. After com-
pletion of TASK A, the copy-cycle in TASK B is effected and
ﬁ is updated. All conflicts are eliminated.
Example 2

In TASK A read- and write-locks as well as copy-data are
established for Y. As before, the value of Y (now copy-data)

is placed in the accumulator. After the interruption, execution

9= 19

(617) 868-1840

of the UPDATE statement in TASK B attempts to establish read—
and write-locks for Y. The process stalls because‘a write-
lock already exists for Y. Therefore, control is transferred
back to TASK A and execution allowed to continue. Y is updated
in TASK A by X and a copy-cycle comple£ed. TASK B now begins
again. This time Y is free and read- and write-locks are
established. TASK B runs through in a straightforward manner.

Y is updated properly by both X and Z with no conflicts.

9.4.3 Exclusive Subroutines

The attribute EXCLUSIVE may be applied to programs,
procedures, functions and tasks which are intended to be exe-
cuted serially. The object is to avoid reentrant use of a sub-

routine either because the variables are not protected by locks

(i.e., have not been declared with LOCK_TYPE attributes) or because

dynamic design dictates serial use.
GENERAL FORMAT:
{<program—]<procedure~]<function—]<task~otatement>}EXCLUSIVE;

GENERAL RULES:

I The cdﬁpiler will insert code at the beginning of the sub-
routine to cause the current program or task to stall if
the subroutine is in use. At the end of the subroutine,
the stalled programs or tasks of highest priority will

be reactivated.

J= 20

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

O

i e Y A pasabeedi i v w b Al oo o s e B

EXAMPLES :
1 ABLE: PROCEDURE (A,B) ASSIGN(C) EXCLUSIVE;

2. BAKER: TASK EXCLUSIVE;

The above are valid statements using the EXCLUSIVE attribute.

9.4.4 Access Rights

The general use of COMPOOL data within programé may
be restricted by attaching access rights to the DECLARE state-
ments within the COMPOOL. Programs are identified by number
and permitted to access only those variables which have been
declared with corresponding identification numbers. An illegal
reference to a COMPOOL variable will prevent successful com-
pilation of the problem.
GENERAL FORMATS:
<program statement>ID CODE<p>;
<declare—statemeqt>ACCESS(<p>[<p>]...);
where <p> is an unsigned integer literal.
GENERAL RULES:
ds If ACCESS is provided, declared variables will only be
recognized in programs whose identification numbers are
listed.
2 If ACCESS is not provided, declared variables will be
recognized in all programs.
ds Compilation will abort if proper access rights have not

been established for a reference to a COMPOOL variable.

D=~ 31

55 |

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

9.5 Error Recovery

During execution of HAL programs an error condition may be
detected by the system. Examples of errors might be:
overflow/underflow
divide by zero
negative sqﬁare root argument
sine argument greater than 1
subscript out of range
Depending upon implementation such errors may be hardware or
software detected. In any case, execution cannot continue and
the system must offer generally applicable alternatives (e.g.
aborting the current task, etc.).
In order to provide the programmer with some control after
the occurrence of an error, perhaps to reset flags or previously
initiated I/O commands, HAL permits programmer-defined error

conditions and alternatives.

9.5.1 ON Statement

The ON statement may be used to direct the transfer of
control on the occurrence of one or more specific error conditions.
GENERAL FORMAT:

[<label>:] ON ERROR y [{co To <label>|SYSTEM}];

<p> [TO<qg>
where <p> and <g> are integer literals.
GENERAL RULES:

l. For any implementation,unique <literals> are assigned to

every system error condition; e.g.

d= 33

INTERMETRICS INCORPORATED -« 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

i 1 -

ERROR5 - floating point overflow

ERROR6 floating point underflow

and to programmer-defined error conditions.

"A group of error conditions may be specified using the

subscript range expression (e.g., ERRORl 7O 10).

Upon execution of the ON statement the alternatives GO TO
<label> or SYSTEM are made available for the scope of the
statement. The scope of an ON statement follows the same
rules as the name scope of a variable (i.e. from the "outer-
most" block toward the inner, see Sec. 8.1.1).

If the specified error condition occurs within the defined
scope the desired alternative is activated (i.e. control

is either transferred to the statement <label> indicated

or to the system).

If GO TO <label> or SYSTEM is not provided the default is

SYSTEM.

9.5.2 ER _RUPT Statement

The ER_RUPT statement is used to announce the occurrence

ivof programmer-defined error conditions.

GENERAL FORMAT:

ER_RUPT ERROR .. (06 <g>]’

where <p> and <g> are integer literals.

9-23

INTERMETRICS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

EXAMPLE:

D= B° ~ 4k €

IF D<0 THEN ER_RUPT ERRORSO;

X (-B - SQRT(D),/2A;

9.5.3 EXAMPLES

1. ©ON ERRORl TO

If any of error conditions 1 through 5 occurs within the

5 GO TO ABLE;

scope of this statement, control is transferred to ABLE.

2. ON ERROR SYSTEM;

1 TO 5

If any of error conditions 1 through 5 occurs within the
scope of this statement, system action is taken.

3. A: PROCEDURE;

ON ERROR, GO TO BETA;

B;

i 4

CAL

CRCNC

B: PROCEDURE;

ON ERRORl GO TO ALPHA

.
.

/ CLOSE B;

ALPHA: %LAGl = OFF;
TERMINATE ;

BETA: ﬁLAGZ = OFF;
TERMINATE;

CLOSE B;

9= 24

If ERRORl

to ALPHA,

4., A: TASK;

occurs during procedure B control is transferred

otherwise it is transferred to BETA.

DECLARE X - - —;

ON ERROR

1 TO 10 GO TO RECOVERY1];

= *
RETRY: R = M X;

CALL B

ON ERROR

(R, V, TD...);

1 TO 10 GO TO RECOVERY2;

CALL JETS;

ON ERROR

1 TO 10 SYSTEM;

B: PROCEDURE (-—--):

CLOSE B;

RECOVERY1l: X = X + DECTAX;

GO TO RETRY;

RECOVERY2: CALL JETS_ OFF;

GO TO ABORT;

CLOSE A;

REQOVERYI

and RECOVERY2 are established as different recovery

points for TASK A. Control is transferred to either one

depending
action is
procedure

This

arbitrary

on where the error conditions occur. The system
established after control is returned from the

JETS.

example illustrates that the programmer can develop

restarting points within a HAL program.

S=25

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

10.0 INPUT-OUTPUT

The HAL ihput—output statements provide for the filing,
retrieval, reading and writing of data to and from external
storage media. Filing is record-oriented in that a file state-
ment causes a single record to be transmitted to or from a.
storage device; transmission is direct without any conversions.
Reading and Writing are stream-oriented in that data is considered
to be a continuous stream of characters; conversions may occur
during transmission.

The HAL I/O syntax consists of four statements and a small

set of control functions.

10.1 FILE Statement
The FILE statement has the appearance of an assignment
statement and may be used for both filing and retrieving data

depending upon which side of the = sign FILE appears.

GENERAL FORMAT:
1. for filing data
[<label>:]FILE(<device>,<redord—i.d.>)={<data—expression>[
<structure>};
25 for retrieving data

[<label>:]<variable-name>=FILE (<device>,<record-i.d.>);

10~1

INTERMETRICS INCORPORATED + 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840°

P Jo R .. T T N TR TH . PRI 2 T 1 it T e e v 0 O Tl LT,

GENERAL RULES:

1. <device> is an integer literal identifying the external
device. The maximum number of digits is implementation
’dependent.

2. <record-i.d.> is the record identification number and may
be an integer or scalar expression. The result of <record-
i.d.> is rounded to the nearest integer before use.

3. In retrieving data, the size of the record, i.e., the number
of words (or perhaps bytes, etc.), must match the size
(dimension) attributes of the <variable-name> on the left
hand side of =. Because the filed information does not
carry data-type or attributes,conversion errors can occur

even if the sizes match properly.

EXAMPLES:
FILE (TAPE,I) = [A];
{B} = FILE(DISC,A;);
are valid FILE statements, where TAPE and DISC represent
integer literals.
/
10.2 READ Statements
Two READ statements are defined in HAL: READ and READ_ALL.
READ is used to process data presented in standard formats;

READ ALL admits all characters and provides the flexibility to

accept data in non-standard (arbitrary) formats.

10«2

METRICS INCORPORATED -« 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 » (617) 868-1840

10.2.1 READ Statement

The READ statement causes data, in standard formats

from an external source,to be assigned to a list of variables.

GENERAIL FORMAT:
READ (<device>) [<read-control>|<variable-name>]
[, [<read-control>|<variable-name>1]...;
where
<read-control> = {SKIP (<p>) |TAB (<p>) | COLUMN (<p>) }
and
<p> is an integer or scalar expression, rounded to the nearest

integer before use.

GENERAL RULES:

1. The READ statement implies the input transmission of a
stream of data fields, each field being separated by a
comma or a semi-colon. (A blank or blanks may be used
optionally instead of a comma, between data fields.)

2. The <variable-names> in the list may be of single elements,
arrays of elements and/or structures. The number of
fields transmitted, for each <variable-name>, corresponds
to the size, or dimension, attribute of the <variable-name>.
For example, READ ﬁ; (where ﬁ is a 4x4 matrix) will cause 16
fields of data to be transmitted. It is presumed that vectors,
matrices and arrays will be filled according to the rules
and conversions for processing <lists>, as described in

Sec. 6.2.2.1. The arrangsment of structure data is described

1.0~-3

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-

1840

in (5) below. The absence of a <variable name> in the list of

names; i.e., nothing between commas, or leading or trailing

commas causes the "read-mechanism" to skip over one data field

(for example: READ(CARDS), A, , B, ;).

The external device is visualized as being two-dimensional
in that data occupies horizontal lines, éach line being
made up of column positions. A data field is defined as:
a segmenf of contiguous columns, delimited by commas
(blanks) or semi-colons. (The first column of line n+l
follows the last column of line n.) The <read-control>
functions locate the "read-mechanism" on this "grid".

If a <read-control> function is not provided immediately
following READ(<device>), blanks being ignored, a default
SKIP (1), COLUMN(l) is presumed; i.e. READ (<device>) causes
the next line to be selected and reading to begin at
column 1.

The appearance of SKIP (<p>) and/or COLUMN (<p>) within the
list of <variable-names> sets up the "read-mechanism"

to skip <p> lines and/or begin reading at column <p> when
the next data field is encountered. The TAB(<p>) function
causes a relative column location; i.e. TAB(8) would cause

the "read-méchanism" to "move" eight columns. The presence

of a semi-colon, separating fields of data causes termination

of the current READ statement. Unassigned <variable-names>
in the statement are left with their previous values. If

additional data fields follow the semi-colon, on the same

10-4

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 863-1840°
- "

line, they may be processed by the next read statement if

a SKIP(0) is provided; e.g. the data card,
5:6,7:8:;9310;

could be processed by the following READ statements:

READ (CARDS) A,B,C,D,E;

READ (CARDS) SKIP(0), F,G,H,I,J;

READ (CARDS) SKIP(0), K,L,M,N,P;
The firsf semi-colon on the data card causes termination of the
first READ statement after A,B and C are assigned. The second
READ statement begins "reading" immediately after C, on the
same line, because of the SKIP(0), and assigns F and G only.
The last READ statement assigns K. Note that after the three
READ statéments D,E,H,I,J3,L,M,N,P will retain their previous
values.
If the <variable—~name> is a structure, the elements of the
structure are transmitted in the order specified in the
structure_declaration. Multiple-copy structures are transmitted
one copy at a time. For the structure

DECLARE 1 A(5), 2B ARRAY(4,5), 2C VECTOR(4);
the statement .
READ{A};

would result in an input transmission order of

A.B

131, BeBy gy meas BeBy.g g 13 1:4
A:B2;l,l @ @ 9 0 0 8 0o 0 0 0 A¢B2;4’5 chz;luou A-C2;4
A.BS,l,l A B5;1,2 .. A.B5,4'5 A.Csll. ‘ A.C5;4

10-5

VETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-

EXAMPLES :

1. READ (CARDS) A,B,C,D,[E],{E};
This statement causes transmission of enough data fields
to assign the variables listed. Note that CARDS represents
an integer literal.
2. READ (CARDS) COLUMN(20),A,B,
SKIP (1), COLUMN(20),C,D,

SKIP (1), COLUMN(20),E,F,

etc.
This statement causes two fields of data to be read on each
successive card. The data will be read starting in column 20.
3. READ (CARDS) A, TAB(40), C; -
This statement is designed to skip over some data fields

(40 columns) known to be on the input cards.

10.2.2 Standard Input Data Formats

The list of variables in a READ statement may be of
any data type. Each type requires the input data to be presented

in a standard format.

10.2.2.1 Standard Arithmetic Data Formats. Integer, scalar,

vector, matrix and bit string data may be presented in the
following format:

{[+]|-)¥<digits> [{BE|¥B|BHIE{ [+] |-}<integer>]...
where ¥ represents optional blanks. Note that this is almost
the same form as an arithmetic literal except for the optional

blanks. Sce Sec. 2.3.3.1 for definition of terms.

10-6

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

GENERAL RULES:

1. For integers and bit strings the data form must represent
integral values. Bit string data is first converted to a
full word bit string and then assigned to the corresponding
bit variable according to the rules stated in Sec. Tels21s

2. The data forms for scalars} vectors and matrices are identical.

EXAMPLES:

1. 369.0, 8, -8.36E+2 B-1 are valid forms of integer and bit

string input data.
2. +0.123E6 B-3 H4, 1E-75, 3, 456.789 are valid forms of

scalar, vector and matrix input data.

10.2.2.2 Standard Character Data Format. Character data may

be presented as any character or string of characters (in the

HAL set) enclosed in apostrophes. If it is desired to place an
apostrophe in the string, it must be represented by an adjacent

pair of apostrophes.

EXAMPLES:

1. '‘ap''''c', '57.3/C', 'NUMBER ONE', 'ON,OQFF,0OFF,ON' are
valid forms of character data.

2. The following input data field and statements will assign a

bit string variable using an octal input data form.

|

0-7
INTERMETRICS INCORPORATED -« 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

DECLARE B BIT(lSX;
DECLARE C CHARACTER(10) VARYING;

1 4
READ C;
. ’ .
B = BIT@OCT(C);

column (1)

input data: '37776"

10.2.2.3 Arrays and Structures. Arrays and structures consist

of the above data types,and the forms presented are acceptable

as required.

10.2.3 READ _ALL Statement

The READ_ALL statement allows data in non-standard form
to be assigned to HAL character-string variables. This is
accomplished by not defining fields of data but accepting all
characters encountered in the input stream, including blanks,

commas, semi-colons and apostrophes.

GENERAL FORMAT:
Same as for the READ statement except READ ALL replaces

READ and the <variable-names> may pertain to character strings

only.

GENERAL RULES:
l. The READ ALL statement implies the input transmission of

a continuous stream of characters.

_ 10-8
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840"

2. The <variable-names> in the list may be of character strings,
arrays of character strings and/or structures containing

only character strings.

EXAMPLE :

Suppose the following data.card has been generated at a
computer facility. It is desired to process this data in a HAL
program.

column (1) (30) (60)

DATE: 25/12/70 8,632 06 101101

where the scalar starting in column(20) is equivalent to
8.632E06 and the data starting in column (40) is a set of six
boolean variables.

DECLARE B BIT(6) ;

DECLARE CHARACTER(20), C,D,E;

READ ALL (CARD) C’I, COLUMN (30) , IS , COLUMN (¢0) , E"I;

C PUT SCALAR IN PROPER FORM

52 = ','; /*CHANGE COMMA TO PERIOD%*/
I = 3;
LOOP: DO WHILE ﬂl'v= ' '; /*LOOK FOR BLANK*/
I=1I+ 1;
END LOOP;
B = 'E'; / *CHANGE BLANK TO E* /

14
A = SCALAR(D); / *ASSIGN SCALAR TO A* /

10~9

RMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840"

% PUT BOOLEAN VALUES IN PROPER FORM
/*FINISH*/

10.3 WRITE Statement

The WRITE statement causes the transmission of data to
an external device. Data items transmitted are the character
string representations, in standard formats, of values of HAL

expressions.

GENERAL FORMAT:

WRITE (<device>) [<write-control>|{<variable-name>|<data-expression>}]

where
<data-expression>={<arithmetic-|<string-|<array}-<expression>
and
<write-control>={SKIP (<p>) |TAB (<p>) | COLUMN (<p>) |
PAGE (<p>) |LINE (<p>)}
<p> is an integer or scalar expression, rounded to the néarest

integer before use.

GENERAL RULES:
1. The WRITE statement implies the output transmission of a
continuous stream of characters.

2. The <variable-names> in the list may be the same as defined

1010

l [,[<write—control>l{<variable—name>]<data-expression>}]]..,;

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840
AR T Ee——

for the READ statement. The <data-expressions> may be

any valid arithmetic, string and/or array expressions.
The externél device is visualized as being two-dimensional
in that output data will occupy horizontal lines, each line
being made up of column positions. A.page is defined as a
default number of lines. The <write-control> functions
locate the "write-mechanism" on this "grid". If a <write-
control>‘function is not provided immediately following
WRITE (<device>), blanks being ignored, a default SKIP (1),
COLUMN (1) is presumed; i.e. WRITE (<device>) causes the next
line to be selected and writing to begin at column 1.
The appearance of <write-control> functions within the
list of <variable-names> and/or <data-expressions> sets up
the "write-mechanism" for execution when the next name or
expression is encountered. SKIP, COLUMN and TAB perform the
same functions as in the READ statement.

LINE (<p>) redefines the value of the current line. If <p>

is greater than the current line, blank lines are inserted

h line of the current

so that the next line will be the pt
page. If <p> is less than the current line, the next line
will be the pth line on the next page.

PAGE (<p>) causes ~<p> pages to be skipped upon
execution.

If COLUMN and/or TAB functions are not provided the presence

of a comma will cause a tab of a default number of columns.

For example,

10-11

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840°

l‘

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -

WRITE A, TAB(10), B, COLUMN(SO), C;
causes A to begin in Eolumn 1, B to begin 10 columns
after A, and C to begin in column 50.
WRITE A, B, C;
causes A to begin in column 1, B to begin a default number
of columns after A, and C to begin a default number of'célumns
after C.
If the <variable-name> is a vector,.matrix, or array,
the effect is to unravel these types by rows (Sec. 6.2.2),
separating each element by the tab default.
If the <variable-name> is a structure the effect is
to unravel the structure into the order in which i£ was
declared, copy-by-copy, (see READ statement), sgparating each

element by the tab default.

EXAMPLES:

WRITE (LISTING) A,é,'C',fS, [E],{F};
This statement causes transmission of all the named

data to the output device. The data is converted to a
continuous stream of characters with the elements separated
by the tab default. Note that LISTING represents an
integer literal.
DO FOR I = 1 TO 3;

WRITE (LISTING) COLUMN (20), MI,*;
END;

*
These statements will cause the matrix M to be printed

in rectangular form, each row starting in column (20).

10-12

(617) 868-1840

o e U

10.3.1 Standard Output Data Formats

The list of variables and expressions in a WRITE
statement may be of any data type. Each type produces a standard

output character format.

10.3.1.1 Scalars, Vectors, and Matrices. The standard output

format for scalar, and components of vectors and matrices is:
sx.<digits>PEsyy

where s is a blank or a minus sign,

X and y are single digits, 0 to 9,

<digits> is a string of digits, 0 to 9,

B is one blank. |
sx.<digits> represents the mantissa, syy represents the
exponent power of 10. The number of digits in <digits> is fixed
and set by machine implementation. The total field of characters
in this standard form is 8 plus the number of <digits>.
EXAMPLES:

8.0603478E 06, -7.5436210E-11, 0.0000000E 00, are standard

scalar output data.

10.3.1.2 Integers and Bit Strings. The standard output

format for integers and bit strings is:
<blankes>s<digits>

where <blanks> is a string of blanks
s is a blank or a minus sign

<digits> is a string of digits, 0 to 9.

10-=13

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-

The total field of characters in this standard form is
fixed in size to be the same as that for scalars; leading zeros
are suppressed and appear as blanks, except for a single zero.
For example, suppose the character field has been fixed by
implementation at 15, then integers might appear as:

(1) (15)
5
-4673
0
2684736
Note that when bit strings appear in the WRITE statement they
are converted to integers according to the rules stated in

Sec. 6.2.1.30

10.3.1.3 Characters. The standard output format for

characters is simply a variable field size equal to the string
length of the character variable or expression in the WRITE
statement.
EXAMPLES:
1. WRITE(LISTING)COLUMN (20),'DIST.='||A]|'MILES';
This statement might result in the following printed
line:

(20)

DIST.=3.0654767E 06 MILES
2. Suppose it is desired to print the same data as above

in the non-standard format sxxx.xxxX, where s is a blank or

10-14

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

minus, and the x's represent digits. Then,
WRITE (LISTING) COLUMN (20) 'DIST.="]| |
PICTURE('sxxx;xxx',A)]['MILES';

The function PICTURE could be a programmer-defined
function which accepts the character,literal 'SXXX.xXXX'
and a scalar, A, and returns a character variable repre-
senting the scalar quantity in the desired form.

3. Print an array of bit strings in octal format.

WRITE (LISTING) CHAR ([B1);

@oCT
Note that the character strings representing the octal
values will be separated, on each line, by the tab default.

The result might be

03664 04662 37774 03725

06437 77172 46162 - 12346
etc.

10.4 Input/Output Manipulations
In addition to the <read- and <write-control> functions
SKIP, TAB, COLUMN, PAGE and LINE, several others are defined for

programmex convenience.

10.4.1 T/0 Functions
PAGE_OF (<device>)
LINE_ OF (<device>)

COLUMN_OF (<device>)

10~15

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840

e b,

are functions which result in the current page, line and

column numbers.

10.4.2 Character String Functions

LEFT (<character—expression>)
RIGHT (<character-expression> ,<p>)
are functions for the left and right justification of character
strings.
LEFT removes all leading blanks of the <character-expression>.
RIGHT creates a string of length <p> and truncates on the
left or pads with blanks on the left depending on whether the

<character-expression> length is greater or less than <p>.

10-16

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

APPENDIX A

Built-In Functions on Pseudo Variables

The built-in functions and péeudo—variables available in
HAL are given in this appendix, and are presented in alphabetical
order under their respective headings. The allowable data-types

for the arguments are indicated using the following abbreviations:

i: integer
S: scalar
V: vector
M: matrix
B: bit
C: character
A. Conversion Functions (see Sec. 6.2.2).

1. INTEGER

Arguments: B,I,S,C. Converts an argument to an integer,

or a list of arguments to an array of integers.
2 SCALAR
Arguments: B,I,S,C. Converts an argument to an integer,
(or fixed-) point scalar, or a list of argu-

ments to an array of scalars.

A-1

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

INTERMETE

ICS INCORPORATED

3. BIT

Arguments:

4. CHARACTER:

Arguments:

5. VECTOR

Arguments:

6. MATRIX

Arguments:

String Functions

B,I;S,V;M,;C. Converts an argument to a
bit string or a list of arguments to an
array of bit strings (V,M are interpreted

as lists_of scalars).

B,I1,S,V,M,C. Converts an argument to a
character string or a list of arguments
to an array of character strings (V,M are

interpreted as lists of scalars).

B,I,S,V,M,C. Converts a list of arguments

to a vector, or an array of vectors.

B,I,S,V,M,C. Converts a list of arguments

to a matrix or an array of matrices.

1. INDEX (string, config)

Arguments:

B,C. Searches a string for a specified
bit or character configuration. The
starting location of that configuration
within the string is returned as an integer

data type.

2. LENGTH (string)

Arguments:

B,C. Finds the string length and returns

it as an integer data type.

A-2

- 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -+ (617) 868-1840°

3. LEFT (character-string)
Result: LEFT removeé all the leading blanks of a
character string operand and returns the
" resultant character string.

4. RIGHT (character-string, p)

Result: RIGHT creates a new character string of length,p.

The character string argument is truncated on
the left, or padded with blanks on the left,
depending on whether its length is greater
or less than p. p is a scalar expression
which is rounded to the nearest integer
before use.
cs Arithmetic. Functions
These functions return the same data type as the argument
(bit arguments are first converted to integers; the fﬁnction
returns an integer).
1. ABS
Finds the absolute value of the argumént.
2. CEIL, CEILING
Determines the smallest integral value that is greater
than or equal to the argument.
3. FLOOR
Determines the largest integral value that does not
exceed the argument.
4, ROUND
Rounds the argument to nearest integral value.
5. SGN, SIGNUM

Returns 0, +1, -1 as argument is positive or zero, and

A3

@

INTERMETRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-

eo)
I
o

negative, respectively.

SIGN

Returns +1, -1 as argument is positive or zero, and
negative, respectively.

TRUNC, TRUNCATE

Returns 0 if argument is less than +1 but greater than
-1; otherwise equivalent of SIGN (argument) times the
lafgest positive integral value that does not exceed ABS

(argument) .

Mathematical Functions

These functions return a scalar data type. Arguments may

be B,I,S. (Bits and integers are converted to scalars.)

Array arguments yield array results.

l.

ACOS, ARCCOS

Trigonometric cosine; argument in closed interval [-1, 1];
resuits in closed interval [0, 7].

ARCCOSH

Inverse hyperbolic cosine; arg not less than 1.

ARCSIN

Inverse trigonometric sine; arg in closed interval

[-1, 1]; result in closed interval [-m/2, w/2].

ARCSINH

Inverse hyperbolic arc sine; arg any value.

ARCTAN

Inverse trignonometrictangent; arg any value; result in
open interval (-m/2, 7w/2).

ARCTANH

Inverse hyperbolic tangent; |arg]<1l
Z‘\.\" 4 -

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

-y J————

7. Cos
Trigonometric cosine; arg in radians; ’arg|<K1.
8. COSsH
Hyperbolic cosine; Iargr<K3.
9. EXP
Exponential, (earg); Iarg|<K3.
10. 1LOG
Natural logarithm; arg positive and non-zero
11. REMAINDER, REM
Result is the remainder from the division of two
arguments.
12. SIN

Trigonometric sine; arg in radians; |arg]|<Kl

Hyperbolic sine; largl<K3
14. TAN
Trigonometric tangent; arg in radians; arg not odd
multiple of m/2; |arg|<K2
15. TANH
Hyperbolic tangent; arg any value.
16. SQRT
Square root; arg positive.
Note: Kl, K2 and K3 are upper limits which depend upon

target machine characteristics.

E. Matrix-Vector Functions

Arguments may be vectors or matrices (as applicable).

A-5 _
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 62139+ (617) 868-1840
R

I 13. SINH

1. ABVAL k
Absolute value of magnitude of vector; argument may be a
vector of any length.

2. ADJOINT, ADJ
Adjoint; argument is ipvertible square matrix of any’
dimension; result is equal to DETERMINANT (argument)
INVERSE (argument)

3. DETERMINANT, DET
Determinant; argument is a square matrix

4, INVERSE
Inverse; argument is square matrix; result is inverse
if argument is invertible. |

5. TRACE, TR
Trace; argument is square matrix; result is sum of
diagonal matrix elements.

6. TRANSPOSE
Transpose; argument is matrix of any dimensions; result
is the interchange of the rows and columns of the argument.

7. UNIT
Unit vector; argument is vector of any length; result is
a vector of magnitude 1 and in line with argument.

"F. Linear Array Functions
These functions have the following general format:
<function-label> (<linear-array>)
where the function will operate on the <linear-array> repre-

senting the "inner-most" free index of the array argument.

A-6

INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840"

T e T e LR e e o SR S e T T e Y MY Jot T ms Lo D

The <linear-array> may be of (B,I,S,V,M)'data types. The
functions return a scalar result.
1. SUM
Result is sum of the array elements.
2. PRODUCT, PROD
Result is product of the array elements.
3. MAXIMUM, MAX
Result is the maximum value of the array elements.
4, MINIMUM, MIN
Result is the minimum value of the list élements.
‘ 5. POLY
POLY forms a polynomial from a linear-array and from
an independent variable. The elements of the array
form the polynomial coefficients. The array may be
of (B,I,S) data types. The general format is
POLY (<independent-variable>,<linear—array>)
POLY defines the following polynomial:
2 n-1

v+ a,v + ... a_v

* ar 3 n

41
where a, 6 are the elements of the <linear-array>, and

v is the <independent variable>.

A-7

INTERMETRICS INCORPORATED - 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-18¢

A

T

0

G. Miscellaneous Functions
1. RANDOM
Result is the current basé random number in the pseudo-
random number generator. This function enables the
programmer to make successive runs of a program without
repeating sequences of pseudo-random numbers.
2. TIME-
Returns current time.
3. DATE
Returns current date
H. Pseudo-variables
A pseudo-variable, in HAL, is a function that can only
appear on the left of an equal sign (=) in an assignment or
DO statement. The only defined pseudo-variable is BIT.

See Sec. 7.1.2.3.

A-8
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-184

——i B e SO Sr Nt PR 1.1

APPENDIX B
Standard Defaults

B.1l DEFAULTS WITH DATA DECLARATIONS

B.1.1 Within DECLARE Statements

B.l.l.1l $&Epecifications (See Bec. 5.1.1). If noA<specifications>

are provided; i.e. no <array-spec>, <type-spec> and <attribute
list>, the following defaults apply to the declared name(s):
1. At the COMPOOL level,

SCALAR PRECISION (6)

2. At the PROGRAM level,

SCALAR PRECISION(6); initial value is unspecified.

3. At other levels, , |
SCALAR PRECISION(6) AUTOMATIC; initial value
is unspecified.
4, Por a function (Secs. 5.1:1.5, 7:4.2.1), 1if <type—spec> is
not provided,
SCALAR PRECISION(6)
Note: For fixed point machine PRECISION default is‘single
precision, with zero integer bits.

B.1.1.2 Precision, Dimensions and Length (Sec. 5.1.1.2).

1 If scalar, vector, or matrix PRECISION is not provided,

the precision default is the same as in B.l.1l.1 above.

23 If vector <length> is not provided, a length = 3 is
presumed.
3. If matrix <rows> and <columns> are not provided, 3

rows and 3 columns are presumed.

B-1
| INTERMETRICS INCORPORATED -+ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

4, If bit <length> is not provided, a length = 1 is
presumed.
5. If fixed character <length> is not provided, a

length = 8 is presumed.

B.1.1.3 Attributes (See Sec. 5.1.1.3)

B.1.1.3.1 Initialization Attributes. If INITIAL or CONSTANT
is not provided, the identifier is presumed to be a variable

with unspecified initial value.

B.1.1.3.2 Storage Class Attributes. If STATIC or AUTOMATIC

is not provided, the STATIC storage class is used.

B.1.1.3.3 Dynamic Sharing Control Attributes. If LOCK_TYPE (<n>)

is not specified, for a variable, no controlled sharing is provided.

B.1.1.3.4 Storage Optimization Attributes. If DENSE or ALIGNED

is not provided, the ALIGNED attribute is presumed.

B.1.1.3.5 Structure Qualification. If QUALIFIED or NOT_QUALIFIED
is not provided in a structure declaration NOT_QUALIFIED is

presumed.

B.1.2 Implicit Declarations (See Sec. 5.3)

For the implicit declaration of SCALAR, VECTOR, MATRIX,
BIT and CHARACTER the default characteristics of length, precision,

initialization, sharing class, and storage optimization are the

B-2
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840

same as described in B.1l above for the explicit declaration of

these data types.
B.2 WITHIN EXPLICIT CONVERSION FUNCTIONS (See Sec. 6.2.2)
B.2.1 Data-type

B.2.1.1 BIT (<single-operand>). If BIT is not subscripted, the

result is a full word bit string. Integers and scalars are
converted tc full word bit strings; character operands are
converted to the bit length representing the total character

string.

B.2.1.2 CHARACTER (<single-operand>). If CHARACTER is not
subséripted, an integer or scalar operand is converted to a
character representation; a bit string is first converted to an

integer, and then to a character representation.

B.2.1.3 VECTOR (<list>). If VECTOR is not subscripted, the

dimension and the number of elements in the list equals one
or three, the dimension is presumed equal to 3. If the list
consists of a single-operand, each vector component is assigned

the value of this operand.

B.2.1.4 MATRIX (<list>). If MATRIX is-not subscripted, and

the number of elements in the list equals one or nine, the
dimensions are presumed to be 3x3. If the <list> consists of
a <single-operand>, each matrix element is assigned the value

of this operand.

B-3
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

B.2.2 Array-Type

B.2.2.1 INTEGER(<1list>) and SCALAR (<list>). If these functions

are not subscripted with <array-shape>, a one dimensional array
of n elements is presumed, where n is the number of elements. in

the list.

B.2.2.2 BIT (<list>) and CHARACTER (<list>»). If these functions are

not subscripted with <array-shape>, one dimensional arrays of

length n are presumed, where n is the number of elements in the list.
If these functions afe not subscripted with <index-expression>

then a full word bit string is presumed for BIT and a.character

string of length 8 for CHARACTER.

B.,2.2.3 VECTOR(<list>). If VECTOR is not subscripted with-

<dimension> and:
1. the list consists of a single operand, a dimension of
3 is presumed. Each vector component is assigned the
value of this operand.
2, the list consists of more than a single element, the
dimension of each vector array-element will be equal to

the number of elements in the list.

Note that the array-type function, VECTOR, must always be
subscripted by <array-shape> to distinguish it from the data-type

conversion function, VECTOR.

B-4
INTERMETRICS INCORPORATED -+ 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840

e e e e AR e Tatey o Bl = can

B.2.2.4 MATRIX(<list>)." If MATkIX is not subscripted with
<dimension> and: | |

1. the list consists of a single'operand, dimensions of
3 x 3 are presumed. Each matrig element is assigned
the value of this operand.

2; the list consists of nine elements, dimensions of
3 x.3 are presumed. Each matrix array-element will
be assigned this list values.

3. the list contains multiples of 9 elements (18, 27,
etc.), dimensions of 3x3 are preéumed. (In this case
the number of list elements must be consiéteﬁt with
the <array-shape> and the default, 3x3.)

Note that the array-type function, MATRIX, must always

type conversion function, MATRIX.

B-5
INTERMETRICS INCORPORATED + 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 868-1840°

l be subscripted by <array-shape> to distinguish it from the data-
1
1

for any other use.

ACCESS
AND"

ARRAY
ASSIGN

AT
AUTOMATIC
BIN

BIT

BIT ARRAY
BIT LENGTH
BY

CALL

CASE

CAT

CHAR
CHARACTER
CHAR_ARRAY
CHAR LENGTH
CLOSE
COLUMN
CONSTANT
DECLARE

DO

ELSE

END

ERROR
ER_RUPT
EVENT
EXCLUSIVE

‘RICS INCORPORATED - 380 G

=
—
m
T
<
=5
—
3
X

I 5
i

APPENDIX C
HAL Keywords

(not including built-in functions)

EXIT PRIO_CHANGE
FALSE PRIORITY
FILE PROCEDURE
FOR QUALIFIED
FUNCTION READ
GO READ ALL
“HEX REPLACE
ID CODE RETURN
IF SCALAR
IN SCHEDULE
INCLUDE SIGNAL
INDEPENDENT SKIP
INITIAL STATIC
INTEGER SYSTEM
LABEL TAB
LATCHED TASK
LINE THEN
MATRIX TERMINATE
MATRIX DIM TO
NOT TRUE
NOT QUALIFIED UNTIL
OCT UPDATE
OFF VARYING
ON VECTOR
OR VECTOR_LENGTH
OUTER WAIT
PAGE WHILE .
PRECISION WRITE
PRIO
=1
EN STREET « CAMBRIDGE, MASSACHUSETTS 02139 -

The following words are HAL keywords and are usually unavailable

(617) 868-1840

T T T e o e

