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FOREWORD TO THIS DRAFT 

’ This document is a draft of The Programming Language, HAL - 

A Specification (Document # M S G - 0 1 8 4 8 i .  The content is_subr I 

stantially complete. An inaex will_be'included.in the final 

'docpment. 

This geport was prepared by Intermetrics, Inc. finder 

contract NAS-9-10542 from the Manned Spacecraft Center of 

the Natibnal Aeronautics and Space Administration. The 

Technical Monitor of this contract is Mr. Jack Garman/FSS. 

The publication of this draft does not constitutea 

“document release by Intermetrics and information contained 

herein shall not be disclosed outside the Government. 

A, , _  . . . _ ‘__ ._ ‘ ._ . .A_-__  ,: .-_..- - ~ - A _  _ , -. . . _ _ . ‘  n u  . . . _  . _  n. _ . . ; - . _ . ‘ _ . . .  h—ru _-- .. # 
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_ ‘ PREFACE 

TheHAL Programming Language has been developed by the 

staff of Intefmetrics, Inc. based on many years of eXperiefice 

in producing software for aerbspace applications. 

. HAL accomplishes three significant objectives: (1) indreased 

readabiiity, through the use of a natural two-dimensional-mathe- 

‘ matical format; (2) increased reliability, by providing for. 

selective recognition of common data and subroutines, and by 

incorfiorating specific data—protéct features; (3) real-time 

contrbl facility, by including a comprehensive set of real—time 

control commands and Signal conditions. Although HALis designed 

primarily for programming on-board computers, it is general 

enough to meet nearly all the needs in the production, verifica- 

tion and support of gerospace, and other real-time applicatiéns. 

The design of HAL exhibits a numbér of influences, the 

‘greatest being the syntax of PL/l and ALGOL, and the two—dimen— 

sional format of MAC/360, a language developed at the M.I.T. 

Draper Laboratory. With respect to the latter, Intermétrics 

wishes to acknowledge the fundamental contiibution, to the 

concept and implementation of MAC, made by Dr; J. Halcombe Laning 
'9... 

of thé M.I.T. Draper Laboratory. 

March 1, 1971 
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1.0 BRIEE'DESCRIPTION- OF HAL A 

HAL is a programming language deveioped by Intermetrics, Inc. 

for aerospace computer applications. Ifi is intended to satisfy 

the tequirements for both on—board and support software. The' 

language contains features which provide for réalétime control, 

vector-matrig and array data handling, and bit and character 

string'manipulations. 

1.1 .The Basic Characteristics of HAL” 

1.1.1 Source Input/Source Listing 

A singular feature of HAL is that it accepts source code 

in a multi-line format, corresponding to the natural notation 

of ordinary algebrat_ An equation whiéh involves exponents and 

subscripts may be written, for example, as 

2 
J 

2 3/2 C = (XHA + Y B K )  I 

instead of (as in FORTRAN or PL/l) 

C(I) = (X*A(J)**2+Y*B(K)**2)**(3{/é) 

HAL also permits an optional single-line format; its construction 

is similar to the example above; with some minor changes; thus 

C$I = (X A$J**2+Y B$K**2)**3/2 

11-1 
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HAL source code may be input on cards or by data terminal. 

‘ The input stream is free—form in that, for the most part, card 

_ or carriage column locations have no meaning; statements axe 

separated simply By semi—colons. 

'In an effort to increase program reliabiiity and promotg 

HAL as a mofe direct communications medium between specifications 

and‘code; the HAL program listing is anfiotated with special 

marks. Vectors, matrices and arrays of data are instantly 

:ecognized by bars, stars and brackets. Thus; a vectcr becomes 

V} a matyix fl, afid an array [A]. Further, bit strings appear 

with a dot, i.e., g and character strings With a domma, 6. 

With these special méfks as aids, the source listing is more 

easily understood and serves as an important step toward' 

‘self-documentation. In addition to data marks, logical para— 

graphs, or blocks of code, are automatically indented so that 

dependence of one block on another may be seen clearly. - 

HAL is a higher-order language, designed to allow programmers, 

analysts.and engineers to communicate with the computer in a 

form which approximates natural mathematical expression. Parts 

'of the English language are combined wi£h standard notafiion to 

provide a tool that readily encourages programming without 

'demanding computer hardware expertise. 

1-2 
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1.1.2 Data Types and Computations 

HAL provides facilities for manipulating a number of 

.different data types. Arithmetic data may be declared as 

scalar, véctor, matrix or integer (whole number). 'Individual. 

bits may be treated as Boolean qUantities or grouped together- 

in strings. The language permits the user to manipulate 

character strings, via special instructibns. Organizations of 

data may also be constructed; multi-dimensional arrays of any 

single type can be formulated, partitioned, and used in expressions. 

A hierarchical oréanization called a structure can be declared, 

in which related data of differenfi tYPES may be stored and re+ 

trievgd as-a unit or By individual reference. 

HAL requires that most data types be described explicitly; 

i.e., by declarations which assign a name and specify desired ‘- 

attributes. However, for data types with default attributes 

the programmer can fake advantage of HAL's implicit declaratiofis 

and let the compiler assign these variables appropriately. 

The arithmetic data types together with the appropriate 

operators and built-in functions constitute a useful mathematical 

subset. HAL can be used directly as a "vector—matrix" language 

in implementing large portions of both on—board and support softdv 

”ware. For example, a simplified equation of motion might appear as 

K = 13 ice; 

'6 = —MU'UNIT(§)/'fi.’fi; 
VDOT = X'+ E} 

_§DOT = V} 1 

1—3 
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where the matrix-g transforms acceleration from.meééurement_ 

toIreference'coordinates. 

I By combining data types within expressions and utilizing. 

both implicit and explicit conversions from one type to another, 

’HAL may be applied to a wide variety of'problems with a powefful 

and versatile capabilityr' I 

'i.1.3 Real;time‘Control 

HAL is a real-time control language; that is, certain 

~defined blocks of codé called programs and tasks can be scheduled 

based on time of the occurrence of-anticipated events. These 

events may include external interrupts, specific data conditions, 

and programmer-defined software signals.‘ Ufidesirable or un— 

expected events, such as abnofmal conditions, may be handled 

by instructions which enable the programmer to specify appro- 

priate actidn. ‘ ‘ 

HAL's real-time control features permit the initiation and 

schedfiling of a number of active tasks. This is a necessity 

for any complex onboard space application. 

1.1.4 Program Reliabiligy 

Program reliability is enhanced when a software system 

can create effective isolation for various subsections of code 

as well as maintain and control commdnly used data. HAL is a 

>block-oriented language in that a b;ock of code can be established 

with locally defined variables that cannot be altered by sections 
1 

6f program located-Outside thé block. Independent programs 

_ 1-4 
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can be compiled and run~togethef with communication among the 

.programs permitted through a centrally managed and highly visiblé 

data pool. For a real-time environment, HAL couples these préé 

cautions with a locking mechanism which can protect, by pro- 

.grammer directive, a block from being entered, a task from 

being initiated, and even an individual variable from being 

Written intq, until the lock is removed. 

These measures cahnot in themselves ensure total software 

reliability but HAL does offer fhe tools by which many anticipéted' 

problems, especially those prevalent in-real-time control, can 

be-isolated and solved. « 
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2.0 ‘HAL LANGUAGE ELEMENTS 

A HAL program consists of statements terminated by semi- 

colons ( ; ) ,  groups of associated statements which are treated as 

a single statement (do-groups), and blocks of statements organized 

as subroutines (e.g. procedures and functions). The statements and/6r 

blocks must be compiled as a program unit, or as sets of indépen— 

dently compilable program units. Communication between programs 

is through a common data pool (COMPOOL) within a symbolic library 

(see Seé. 8), 

HAL is composed of five basic syntactical eléments: identi- 

fiers, keywords, literals, special characters, and built-in 

functions. Complex syntactical units (i;e., statements) are 

constructed from these basic elements using a common set of_~ 

input characiers. 

2.1 -Syntax Notation 

The following rules are used throughout this Specification 

to describe the syntax of the various constructs in HAL. 

2.1.1 Syntactical Elements 

Syntactical elements represent the defined language 

elements which comprise HAL. Elements are denoted by lower 

case letters (allowing imbedded hyphens) enClosed by angle. 

' brackets. Some examples are: 

2-1 
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<3igit> 

<identifier> 

<expression> 

<operand> 

<1abe1? 

2.1.2 fKeywords 

A keyword is the literal occurrencé in the language of 

the characters represehted. They are made up of upper caée 

letters and break characters. Some examples are: 

DECLARE I 

INTEGER 

AND 

OR . 

NOT 

ICALL 

PROCEDURE 

PRIO_CHANGE 

2.1.3 ’Vertical Strokes 

The Vertical stroke | indicates that a choice of s y n - ‘  

tactical units or other meaningful symbols is to be made; e.g; 

<identifier>I<expression> 

<name>l<1abel> 

o|1|2|3|4 

etc.— 

2-2 
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2;l.4- Braces 

Braces { } are used to denote that a choice of one Of the 

enclosures must be made. The choices may be stacked vertically, 

or horizontally using the vertical stroke. For example; 

MATRIX} 
DECLARE<name$fVECTOR 

and ' 

DECLARE<name${MATRIXIVECTOR} 

are identical. 

2.1.5 Brackets 

Brackets [ ] are used to denoté that a choice bf one or 

none is to be made. For example 

[<label>:]END; 

specifies that an END may but need not be, labeled; e.g.;. 

MARK: END; 

or just 

END; 

2.1.6 Three Dots 

. Three dots ,.. denote that the immediately preceding 

syntactical unit may occfir ofie or more times in succession; e;g., 

[<digit>]... ' 
specifies a sequence of §g£9_or more digits, while 

'{<digit>}... 

specifies a sequence of one or more digits. 
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2.2 HAL Character Set 

HAL's language syntax includes a total of 35 basic characters. 

These are:  

52 

10 

23 

English language alphabetic lgtters: upper case A 

through Z and Iowa: case a through 2. (Lower dasé. 

is optional and may be used in identifiers when 

available.) 

digits 0 through 9. 

special chafacters. Each special character or com- 

bination of characters has a particular meaning witfiin 

the language syntax. (Theii uses are discfissed in ‘ 

Section 2 . 3 . 4 ; )  They are: 

= (equals sign) . (period) 

+ (plué sign) , (comma) 

- (minus éign) ' (apostrophe) 

/ (slash)' ( >(1eftpafenthesis) 

* (asterisk) ) (right parenthesis) 

< '(1ess than symbol) .$ (dollai sign) 

> (greater than symbol) _; (break character) 

1 (not symbol; also A) # (number sign) 

I (OR symbol; also :)_ @ (AT Sign) 

& (ampersand) [] (brackéts) 

: (semi-colon) '{} (braces) 

(colon) 
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[HAL will also accept other characters; restricting their 

use to within comments énd character strings.. Some examples 

a r e :  
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(exClamation point) 

(percent sign). 

(question mark) 

(double quotation marks) 
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2.3 Basic Syntax Elements 

2.3.1 'Identifiers 

An identifier is a name which is assigned by the programmer 

to a data elément, statement label, etc. Each identifier must 

satisfy the following rules: 

The first character must be a letter. 

It may contain 0 to 31 additiofial charactérs; which may 

be any combination of letters, digits, or break characters, 

except that it must not end with a break character. 

It must nbt be a compiler reserved word. 

A qualified structure name will contain imbedded 

periods and must not end in a period or break charactér. 

A structure name must be 31 characters or leSSJincluding 

periods. 

‘Examples of valid identifiers: 

A 

R05 

INTEGRATION;BOUTINE 

SE XTANT_TO__NAVIGATION_BAS E__MAT 

STATE . COV_MATRIX 
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Examples of invalid identifiers: 

1A ' begins with digit 

. SAMPLE_. ‘ ends in-a break character 

DECLARE . . resérved word 

POS VEC contains a blahk 

STATEMENTLfiZOO contains a # character 

2 . 3 . 2  Keywords 

Keywords are words recognized by the compiler to have 

standard meanings within the language, and are usually unavailable 

for any other use; for example, operators, commands, attributgs, 

and built—in function names. A list-of HAL keywords is presented 

in Appendix C. Some examples are: 

DECLARE 

INTEGER‘ 

AND 

VECTOR 

SQRT 

TRANSPOSE 

PRIO_CHANGE 
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2 . 3 . 3  Literals 

A literal is a group of characters or digits 

which expresses its own value. For example, 248 a n d .  

12.6 are literals in that the compiler will assign these values 

to these "names". Literals are constants during program execution. 

There are two types of literals: arithmetic and string. 

2.3.3.17 Arithmetic Literals. An arithmetic literal has the 

following general format: 

<digits>{{EIBIH}<integer>]... 

where 

<digits> - one or more decimal digits with an 

Optional decimal point. 

<integer> - signed or unsigned whole number. 

GENERAL RULES: 
1. E, B, H represent powers of 10, 2, 16 respectively. 

(That is, 1.023E+2 3 102.3, 32B-5 ' l.) 

2. No distinction is made by form between scalar and integer 

literals. (See Sec. 6.2.1.2 for thé use of literals 

in expressions.) 
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 EXAMPLES: 

- 0.123E63—3E10, 1375, 1E—75, 456.789, 3 aré all valid ‘ 

arithmetic literals. 

2.3.3.2 Bit String Literals. Three forfis bf bit string literals 

' are defined: . 

BINI(<repetition>)] '<binary digit string>' 

0CT[(<repetition>)] '<octa1 digit string>' 

. HEX[(<repetition>)] '<hexadecimal digit string>' 

where <repetition> is ah unsigned integer and the digit strings 

are of length l or more. When <repetitibn> is provided the resulting 

string length is equal to <repétition> times the number of digits in 

the particular <digit string>. Imbedded blanks are allowed 

between the apostr0phes, but have no_significance.' 

. GENERAL RULES : 

1.' Binary digit strings may contain only zeros, ones, or 

blanks. 

2. There are 4 special forms of bit string literals: 

. TRUE : , . { 0N=} - BIN 1 _ 

- FALSE = . . 
{ OFF } _ BIN o 

'EXAMPLES: 

TRUE, BIN'lOllO', HEX 'ABéD', BIN(32)'1', 0CT'3777' are 

yall valid bit string literals. 

. . . 2‘9 . 
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2.3.3.3 Character Strigg Literals. -Two forms of character 

string literals are defined: 

'<te£t>' 

CHAR.[(<repetition>)]f<text>' 

where <text> may contain any characfier in the aécepted character 

s e t . ‘  If it is desired to have an apostrophe in the resulting 

literal, it inst be_represented by an adjacent pair of apostrophes. 

The length of the resulting string is equal to the count of the 

characters plus the number of apostrophe pairs. 

EXAMPLES: 

'AB""C', CHAR'57.3/C', CHAR(26)'POP', are all valid character- 

literals, having lengths of 5, 6, and 78 respectively. 

NOTE: The character pair /* is always 

interpreted as an opening Comment 

bracket by the compiler, even if 

it occurs within a character string 

literal. 

2.3.4 §Eecial Characters 

Special characters or Combinations of characters are.used 

in HAL between or with identifiers as operators, separatbrs, 

or other delimiters. These Characters and their uses are definéd 

below and described in more detail ih Sec. 6.. 
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2.3.4.1, grithmetic Operators, 

S .  '01 _ ' A Definition 

+ .‘ .addition (or prefix pius) 

- ' subtracfiion (or prefix minfisi 

/ ’ division (other uses also) 

(see note below+) multiplication I 

* - vector cross product (other uses aléo) 

. ‘ _ - vector dot product (other uses aiso) 

** exponentiation (single-lihe) 

+ Note that HAL does nOt utilize a character as a multiplication 

Operator. Instead; - . I 

(l) a space (or spaces) between two distinct identifiers; 

is interpreted as multipliéation. . 

(2) one of the operands (identifer or expression) must be 

enclosed in parentheses. 

' (3) the leftmost Operand must end with a parenthesis 

(function form; e.g., SIN(X)). 
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S- 01 _ _ - Definition 

# i _ equal to 

" =  ‘ pOt equal to (or “=) 

< . less than 

> - . ' greater than _ 

<= ‘ less than or equal t0 

>= greater than or equal to 

'”> not gréater than (or ‘>) 

“ <  ._ nqt less than (or A<) 

The word NOT is equivalent to (“I“) and may be applied to the 

combinations above. 

2.3.4.3 String and Logical Qgerators. 

S 01 ‘ Definition 

AND (or &) . Boolean AND 

. OR (or I) Boolean OR 

NOT for "lor *) Boolean NOT 

CAT (or II or ::) I Concatenation 

WOrd‘operators (e.g., AND) may be substituted for symbols (e}g., &) 

except that they do not act as delimiters and must be appropriately 

delimited by blanks or otherwise. The use of these operators is 

described in more detail in Sec. 6. 
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2.3.4;4_ Other Operators. 

szmbbl 

# 

- - - - -  

Definition 

indicates repetition within 
a list, or the last member 
of an array or string. 

Scaling operator,'or character- 
to-bit modifier ' 

Subscript Operator (single— 
line) 

. 2 . 3 . 4 . 5  Separators. The following characters have meaning 

' as separators in HAL: 

Szmbol 

comma. ‘ , (a) 

(b) 

(C) 

(a) 

(b) 

semicolon 

‘
0

 

(a) cqlon 

(b) 

Definition 

separates elements of a list; 

separates indices in index 
expressions; 

separates clauses in declare 
statements. 

terminates statements; 

separates structure indices 
from array element indices.‘ 

associates a statement label.' 
with the succeeding statement; 

separates array element 
indices from sub-element indices. 

apostrophe ' . delimits string literal values 
‘ (Character or hit). 

equals indicates replace in assignment 
and DO FOR statements. 
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period . ' separates component names of 
‘ qualified structures. - 

* . 

4/ - - encloses comments. 

(_) Parentheses have many uses in 
the language. They are u s e d -  
in expressions, for enclosing 
lists, function arguments, 

, data dimension and initializa- 
tion values, etc. 

2.3.4.6 Built-in Function Names. Built-in function names a r e ‘  

identified by the compiler as names of functions which are part 

of the language. A complete list of £hese functions appears 

in Appendix A. Some examples are: 

ABS 

TRUNCATE 

COS 

TAN 

INVERSE 

UNIT 

2.3.4.7 Compiler-Generated Annotation. The following charactérs 

are used by the compiler to annotate various data types as they 

appear in the listing. Identical usage is also acceptable in 

the input stream. 
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1— .... .._ . 7 » , t 

I . 
I 

S». 01 ’ " _ - » Definitipn 

l * ' _ ' - 'Over a name denotes a matrix type. 

I - ‘ Over a name denotes a vector type. 

. Over a name denotes a bit string type. 

I , P . Over a name defiotes a charact-Lei: string 
type. ' 

I I ] .Denotes an array of a particular 
' data type. - 

I .{ } , Denotes a structure organization. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I . 
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3.0 SOURCE LANGUAGE INPUT 

A sburce language program is presented to the compiler 

in the form of statements. Statements can be Written in 

single line, one-dimensional format, as in FORTRAN, PL/I, 

and most languages, as (for example) 

A = B**4 + 2(C+D)**2 ; 

Z R/(A-Z) **2; 

c = A**B**2 + E**4; 

However, one of the unique features incorporated into HAL, in 

order to improve readability and clarity, is that statements 

may also be written using a multi-line or‘tddimensional 

format. That is: 

A = B4 + 2(C+D)2; 

z = R/(A-mz‘; 
32 4 C = A  + E ;  

The multi—line format.introduces the added dimension of optional 

.exponent and subscript lines. These lines are used for the 

exponentiating and subscripting of daté on the main line of the 

statement. The exponent line is also used for annotation of 

‘variable names in order to indicate data types.‘ Examples of 

the multi-line format are: 
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(3) 
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‘an assignment‘statement'involving scalar array 

elements: 

2 2 
A = B + C2K+3’ I ' J  J '  

a vector-matrix equation: 

~ 3% = (15.37) UNIT (E) + ET (rim; 
a complicated exPression in multi-line format in- 

volving multiple exponents and multiplé,indices; 

KSN __ . 2K 
Y -" -5 BM{ERINDEX_TABLE + COMBUF *: 

I,J ¥’J' 
A 

The standard source ;anguage input is expected to.be in 

two-dimensidnal format. The single—iine format is provided. 

as an alternaté; If single—line input is used, the compiler 

will expand the single—line to multi-line in the output listing;. 

The definitions and restrictions of the two-dimensional a n d .  

sihgle-line formats are described below. 

3-2 
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3.1 Two—Dimensional Forfiht 

. Source langUagé input statements must always have a main 

‘ . o r  "M" line.‘ An WM" line may optibnally have associated with 

it zero or more "E lines“ (exponent lines) and zéro or more 

"S linés" (subscript lines). An input statement may be thbuéht 

of as fl qontinuous parallel streams of characters on the E-, M4,: 

8 lines that comprise the statement. A étatement terminator (semi—colon) 

is uéed to terminate the n-line stream. .The terminator must be I 

on the main line afid occfir after (to thé right of) all information 

on the main line and any associated E and S lines. Another state— 

ment may begin following the terminatof. I - O 

The first character of each line of input musE bé the parti- 

cular letter that identifies the line. The various identification — 
.1 

letters recognized, are: 

First character of 
line ' Meaning 

E .This line contains exponents for the main 

line, or another E line below it. 

A M  This line is a main-line; a blank is .7 

assumed to be an M line. 

S ‘ This line contains subscripts for thg 

main line-or another S line above it. 

C This line contains comments. . a) 

D This line contains compiler directives. 
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Statements and comments may.occupy any part of fhe rest of the 

lavailable lines (e.g. columns 2 through 80 for cards). 

Confiinuation of a statemént from one set of E; M, and 

S lines to another is permitted. _For this purpose,'column(é)' 

2 of the next set is considered equivalent to column(s) 81 of 

the current set. A statement may be continued in this manner. 

'until a terminator appears on an M line. The number o f l E  and 

S lines in thesucceeding set(s) need not bé the same as the number-' 

of E and S lines used originally. An»M line, however, must always 

be present in every set. For éxample,- 

E ., 5 a 
E K .  
M A = B + C ‘ 
S ‘I I 

E 2 1 
M + D + E  ' 

I I ‘  I .  , i Wth lS equlvalent to 
4 

E 5 ' 
E K 2 W 
M , A = B + C + D + E ;  I 
s I ; 

3.1.1 E and S Line Expressions.‘ The E and S lines contain‘ ‘ ' ' 4 

exponent and subscript expressions respectively, as well as H ? 

certain data type annotations. Labels, terminators, statements, 

and expressions resulting in vectors, matrices, and character I 

strings are not permitted on E or S lines. 
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S lines are evaluated from the loweSt S line up to the 

main line; E lines are evaluated from the upper—most E line 

. dOwn to the main line. Subscripting is always evaluated prior 

to exponentiation. Exponent_and subscript expressions follow. 

the same arithmetic rules as for expressions on the main line 

(See Section 6). 

, Examples 

»M 'Q = A ; J is an index for C, the result of 
S B ' which is used to index B; the result is.- 
S C then used to index A. 
S J 

E 2 _ w 
' E  3 9 ' 

E 2 2 512 - 
M .B = A ; means B=A 3 or B = A - . ; '  ' 

E 
E 2(D+E) 
M 'A.= B +D ; 
s 2 (TABLE__1 +TABLE__2. ) K 
S J K 

Expressions on an E or S line must appear following (to, 

the right of) the associated identifier on the M line. Also, 

M line information cannot appear directly above S line or 

below E line expressions. Similar rules apply to E and S 

lines associated with bther E or S lines. 

The number of E and S lines allowed in a statement will 

. be determined by the compiler implementation. 
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3.2 HAL Single—Line Format 

iMost HAL statements can_be written in a single liné, similar 

to FORTRAN or PL/l. The single line format réquires the use of 

the following operators: ‘ . - . I 

*f for exponentiation 

$ for subscripting 

EXAMPLES: 

Multi—Line Single—Line 

1. X = A2 + B2; x = A**2 + B**2; 

I _ I; A$I + BSI:  

If the exponent or subscript is an expression(or a multiple 

subscript)-rather than a simple name or literal, the expression, 

in single-line format, must be enclosed in parentheses: 

"'2? A$(J;K)**(2P) 3. x '= AJ'K _ x = ‘ 
4. x = B: x = 13$ (A$ (J,K+3))**2 

J,K+3 . 
When subscripting an exponent or-exponentiating a subscript, 

it-becomes necessary to introduce the single—line format into the 

multi-liné statement as well; thus ' .' k 

' P - ** ** ' 
5} x = A<B$J) x ~ A (BSJ) p . 

3.2.1 Implicit Data Declarations. 

Since data type annotétibn ( — ) ,  (*), (.); (,) cannot be 

supplied by the programmer over-a variable name using a single 

line, implicit data declarations (See Sec. 5.3) are not possible 

in this format. - - ' ' 1 
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3.3 Comments— 

3.3.1 Comments on Statement Lines. 

Comments can be inserted on any E! M; or'S line in a 

statement. A.commept consists of ggx set of characters encléséd 

in the /* */ pair. These are the comment open and close brackets 

resbectively. The */ combination cannot be used within a cofiment 

since it wouid be interpreted as the comment close bracket. 

Comments on ofie M.1ine, initiated by /*, can be continued 

to other M lines until terminating bracket */ appears on a 

succeeding M line. Comments initiated on an E or S line must be 

terminated before the end of the line (e. g., column 80 for 

cards). For example: i 

E 2 2 2 /*THE$ IS A COMMENT*/ - 
M RgMAG = X + Y + z /*WHICH IS TO ~— , 
S I I I /* SHOW HOW COMMENTS*/ 
M CONTINUE */ + ALPHA; 

Note that imbedding a comment within a statement is allowed. In 

general, comments are permitted wherever blanks.are légal. 

3.3.2 Cémment Lines. 

Comments may also be introduced by the use of comment 

lines.' A comment line begins with a C in the first Character 

position of the input line.. The rest of the liné contains the 

commenfi made up of characters recognized by the compiler imple? 

mentatibn. Comment lines may only appear between statement line 
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groups; i.e., they are not permitted within the EMS combination - 

that comprises a statement line. -' ' .”I ,’ - * 

EXAMPLE: 

E . 2 
M =B ,- 
3 ° I 

.'c THIS IS AN EXAMPLE WHICH 
c ‘ ' 2 . 
c SHOWS'A = B, AND IS 
c I 
c COMPUTED ONLY WHEN FLAG 1 IS SET 

M ._ =Y; 
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3.4 Use of B1anks_ A 

Blanks are significant as separators between identifiers, 

keywords, and literals. The use of consecutive blanksis syntac- 

tically equivalent to the use of only one blank with the following 

exceptions: ' 

(1) within EMS combinations when the horizontal position of 

itefis is important relative to the associated data abové'or 

below; ' 
(2) within charactér strings. 
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A. 0 DATA ELEMENTS 

HAL classifies data elements by type and permits collections 

of types into data organizations. Types are further-specified 

by data attributes. There are six data éypes in HAL; integer,. 

scalar; vector, matrix, and chéracter and bit strings. The type 

classifiéatign of an identifier determines the contexts in which 

it may be used. - i 

The data types may also be combined into data organizations. 

Tfiere are two types of organizations in HAL: arrays and structures. 

Fig. 4-1 summarizes the relationship among the types and organiza- 

tions. 
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4.1 Data Types 

4 . 1 . 1  ,Arithmetic Data 

An-arithmetic data item is one that has a numeric value 

and may be used in an arithmetiC'expression. There are four 

arithmetic types in HAL: scalar, integér, vector, and matrix; 

4 . 1 . 1 . 1  Scaiar. Scalar variables are numbers represented in a 

fixed or floating point form. The choice of form will depend on 

the-target machine for a particular compiler implementation of 

the language (i.e., a compiler will implement either fixed or 

floating POintI'bUt not b0th)- Fixed and fléating point are 

alternate forms of scalars and are not mixed or used together.‘ 

. 4 . 1 . 1 . 2  Integer." An integer is a signed number containing 

only integral values — a whole number. 

4 . 1 . 1 3 3  Vector. A vector corresponds to its normal mathematical 

definition, having magnitude and direction and represented by 

n-componefits within a coordinate system.- The individual components . 

of a vector item are scalars, by definition. Vectors obey the 

standard rules of vector arithmetic. 
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4 . 1 . 1 . 4  Matrix. A matrix corresponds to its normal mathematical 

definition, being a rectangular array of m rows and n columns 

of scalar elements. -A.matrix obeys the standard rules of matrix 

arithmetic. 

4 , 1 . 2  _String Data 

There‘are two types of strings in HAL: character stfifigs“ 

and bit strings. 'String data has a length property.' A bit string 

6f length one is a Boolean variable which may take on values.of 

only 1 or 0. A-bit string of length n can be considered as the 
.\ ‘, 

K. 

concatenation (joining together) of'n bit strings 6f length one. A 

character string may have fixed or varying length. A fixed length Chara 

acter string ofssize n always contains n characters. A varying character 

time. A varying character string requires specification of 

its maximum size. 

EXAMPLE . 

'ABCD? HELP!‘ is a character string of 

length 11, including the space between ? and 

'11”. 

4-4 

I string is one whose length is dynamically controlled at execution 
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4.2 Data Organizations 

A data organization is a Collection of data items. _There 

are two kinds of data organizations in HAL: arrays and structureS.’ 

4.2.1 Arraxs 

An array is an ordered collection of elements, known by 

one name, all of which have the same dgta type and attributes. 

For example, every vector in an array of vectors must have the 

same number of components; every character string in an array 

I I P..- I - 
Of varying character strlngs must have 1dent1ca1 max1mum length. The 

maximum number of dimensions of an array is implementation dependent. 

4g2.2 Structures 

- A structure is a hierarchical organization 6f.data‘which*l 

may contain other structures, arrays, or individual data types. 

A structure need not consist of identical data elements. 

Briefly, when a structure name is declared it is immediatelf 

followed by a list of the names and attributes of the elements 

within it. Each name is preceded by a.l§3gl number (nonézero 

integer literal) which identifies the level of ofgahization. All 

elements having the same leVel number are at the same level of 

organization. 

The outermost-structure is called the major structure and 

is always at level one; all contained structures are minor struc- 

tureso All elements of the structure must be at a 1eVeI greater 

than one. If a minor structuré is at the nth level, 
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its e1ements.must be specified at the n+1 level. Each item in-- 

a structure is given a name.‘ If the name.of a structure is 

' ‘referenced, the entire structure, i.e., all elements, are addressed. 

If {he name of an element_which is a minor structure is referenced, 

all of the elements of that minor structure are addressed. 

If any of the names assigned to items of a major structure 

_are not unique within a name scape (See Sec; 8), the item must be 

referred to by the major structure name, the name of the minor 

structure in which the element is contained} and the name of the 

element.‘ In referencing,'all names of the hierarchy are Separated 

-by periods and the entire compound or Qualified name becdmes the 

element name. This type of structure, which requires all element 

names to bé fully qualified, is called a qualified structure, 

and is specified with the attribute QUALIFIED in its declaratiofi. 

Multiple copies of major or minor Structures (i.e., arrays of 

structures) are permitted; these are limited to one—dimensional- 

arrays; 

4 . 2 . 2 ; 1  A Not Qualified Example. One example of a hierérchical 

organiza£ion is the table of contents of a book. The name of a 

structure might be the name of the book and would contain as 

élements other structures Which would be chapters in the b o o k ; _  Each 

chapter, as a minof structure could contain dther elements which 

wduld be the sections of the chapter, and so forth. Thus, 

H4—6 
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DECLARE 1 BOOK.fiOT_9UALIFIED, 

2 CHAPTER;QNE, 

.3 INTRODUCTION, 

3 THEORY,‘ . 

3 SUMMARY, 

2.CHAPTER;IWO, 

3 BACKGROUND, 
3 DEVELOPMENT, 

2 CHAPTER_THREE , 

3 ORIENTAEISfi, 

3 FUNCTIONAL_SPECIFICATION} 
2 CHAPTER_FOUR, 

3 CONCLUSIONS, 

4.2.2.2 A Qualified Example. An example of a structure which 

must be qualified is: 

DECLARE 1 A QUALIFIED, 

23, 

2C, 

3A, 

BB, 

'2D, 

3B, 

3C; 

” 4 - 7  

I 3 FUTURE__PLANS; 
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1 l 
. 

A 

A.B 

A.C 

A.C.A 

‘A.C.B 

A.D 

A.D;B 

A.D.C 

DECLARE, 

1' is 

is 

4.2.2.3 An Aerospace Application. 

elements of different types. 

3 TIME, 

the major structure 

Since the element names are not unique within the structure, each 

element must have a qualified_name§ The qualified names are: 

element B (at level 2) 

minor structure C 

element A of minor 

element B of minor 

minor structure D 

_element B of minor 

element C of minor 
._.-. 7 

NAVIGATION_DATA;EILE structure; i.e., 

l NAVIGATION_DATA_FILE, 

2 STATE_VECTOR, 

3 POSITION VECTOR, 
3 VELOCITY VECTOR, 

2 W;MATRIX MATRIX, 
2 STATE_CONTROLfiFLAGS, 

4-8 

structure 0 

structure C 

structure D 

structure D 

In a space application a 

hstructure can be used to collect and name sets of associated data 

Structure commands pefmit move- . 

ment of data as well as other limited operations. For example, 

coasting flight navigation data can be grouped in a 
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3 CENTRAL_BODY_FLAG.BIT, 
3 PERTURBATION_FLAG BIT, 
3 MISSION_§TATUS_FLAGS, 

4 RENDEZVOUS_ELAG BIT, 
4 ORBITALurLAG BIT, 
4 IN_IRANSIT_FLAG BIT; 
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n 

. 4 . 3 '  Attfibgtes 

Attributes are used in conjunction With type and organizatiofi 

to specify to the compiler ofiher characteristics aSsociated with 

a type or organization name. There are five classes of attributes' 

in HAL: - 

(1) ”Initialization 

(2) Storage class 

(3) Memory Optimization 

(4) Dynamic memory protection 

(5)  Specia1 

4.3.1 Initialiiation Attributes 

There are two forms of initialization attributes, INITIAL 

and CONSTANT. Both forms provide a technique which enables the'. 

programmer to preset valges (numeric and string) into data.elements. 

The use of the CONSTANT attribute will additionally make it illegai - 

to assign new values to the identifier; i.e., to "write" into it. 

When either form is used as an attribute the other form may not 

be used. Both initialization attributes may be used with all 

data types (and arrays of data types). Neither can be used with 

major or minor structure names; but may be appliéd to the data 

elements of a structure. 

4.3.2 Storage Class Attributes 

- Storage class attributes are used to specify storage alldca~ 

tipn characteristics of data eflements. There are two storage 
E 

4—10 

INTERMETRIQS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 
. 'J- ‘ 4 



I 
' 

r 
. 

- 
- - .. .

-
 -

.
.

_
.

 
I o 

-
 

- 
-
 

- 
‘
 

. 
I 

c 

class attributes: STATIC and AUTOMATIC.I STATIC‘specifies that 

storage for the data element or organization is to be Allocated 

when the program containing the data is loaded and initiated, and 

is not to be released until the.program'execution has been 

completed or terminated. 

AUTOMATIC specifies that storage is t6 be allocated upon - 

entry into the procedure, function, or task block containing the declar— 

ation. IAumoMamgc.atorgge,iawrelgaaed.upqn exit.£rqm.th§ block.“ Since a 

program may contain pgbéedureég=fugéti§nsg and tasks, data fiith ‘ 

AUTOMATIC attributes require stbrage only while the Specific 

procedure, function, or task is active$ 
H o .  

4 . 3 . 3  Memory Optimization Attributes 

These attributes are used to control the storage assign— 

ment and packing of data elements and organizations. There are 

two attributes: DENSE and ALIGNED. DENSE means that the amount‘ 

of mémory space occupied by the variable is more important than 

the time required to access it. Consequently, the compiler will 

attempt to conserve storage space by packing items. The result 

of packing by the compiler is dependent on the target computer 

characteristics and the compiler implementation. 

ALIGNED means that the time required to acceés this data 

is more important than the space it occupies. This attribute 

* See Secs. 7 and 9 for definitions of program; procedure, 

‘function, and task. 
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. 

will cause the compiler to store the data for efficient 

I 

access . 

4 . 3 ; 4  Dynamic Memory Protectioh Attributes 

A real time system application may require the coexistence 

of many processes and the use of common data elements.‘ The control 

‘techniques nécessary to share these common data elements must 

include mechanisms for: 

a. blocking other users from reading data-elements, or 

organizations, while their currént values_are being 

changed (written). A 

be preventing changes (writing) Wheh data is being used 

(read). 

For example, one job may be in the middle of using a matrix when 

it is interrupted by another job which updatés the matrix. When 

the first job was interrupted it had used part of the 'old' matrix 

values, and when it continues it will be using the updated matrix. 

This problem could, of course, apply to any data element or 

organiiation which is shared among jobs in a real time system. 

HAL provides the sharing control attribute LOCK_TYPE 

which specifies the type of sharing cofitrol that is to be uéed.’ 

The LOCKé$YPE attribute causes the compiler to perform checking on 

all programs which use the specified variable to help insure that 

the proper locking statements have been employed by the programmer. 

. 4-12 
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The LOCKéiYPE attribute is only useful for STATIC storage 

.and may be included in declarations at the prOgram and COMPOOL* 

levels.. If this attribute is not.assigned to a variable, locking 

statements cannot be used (i.e., there wéll be no controlled . 

sharing). ‘ - - . 

'The defined locktypes are: 

l-LOCK_¢YPE (1) This cléss of sharing allows the data 

to be read by any number of users. 

Read accesses will wait for writes. 

Write accesses will wait for any writes 

and for all previously initiated reads 

to be completed prior to writing. 

LOCKgiYPE (2) This type of sharing requires that 

write accesses wait for other writes. 

- Read accesses can occur at any time. 

4.3.5 'Special Attributes 

There are some attributes which can only be appligd to 

certain data types or organizations. These are as follows: 

(1) QUALIFIED and NOT_QUALIFIED are attributes which can only 

be applied to major structures. The attribute specifies whether 

the element names within that structure will always be qualified, 

‘ or never qualified. If the NOT_QUALIFIED attribute is used, all 

/ 

* See Section 8 
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_ the names within the structure must follow the rules that apply 

to unstructured identifiers. If the QUALIFIED attribute is used, 

then item names within the structure may be duplicated elsewhere,. 

and all references to structure élements must be fully qualified. 

(2) VARYING is an attribute which can only be applied to charac- 

ter strings. It signifies that the Charaéter string length may 

change at execution time. The maximum site of the string must be 

declared when VARYING is Specified. 

(3) The PRECISION attribute is applied to fixed and floating 

point scalars, vectors, and matrices, and arrays of these data» 

types. It specifies tfie desired hinimum precision of the numerical 

representation of data wifihin the computer. 

(4) The dimension (or length) attribute is applied to.vec- ‘ 

tors, matricéé, arrays; bit strings, fixed and varying character strings. 

It specifies the size and shape of vectors, matrices and arrays, 

the length of bit and fixed character strings, and the maximum 

length of varying character strings. 
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5.0 DATA DECLARATION 

5.1 DECLARE Statement 

_ The DECLARE statement is a non-excfable statement used to 

specify explic;tly the data organization; type, and attributes. 

of identifiers. There are three forms of the DECLARE statements: 

1. Simgle DECLARE statement . 

2. Factored DECLARE statement 

3. Structure DECLARE statement 

5.1.1 Simple DECLARE Statement 

The simple DECLARE statement is uSed to specify individually 

the organization, type and attributes of one or more identifiers. 
I‘ 

GENERAL FORMAT : 

DECLARE<name><specifications>[,<name><specifications>]...; 

where'<specifications>'if“ “V - - 

'{[<array-spec>][<typeéspec>][<attribute—list>]l - .  

'{PROGRAMILABELIFUNCTION[<type-spec>]}} 

When no <specifications> are included, the compilérassigns 

defau1t* type and attributes. 

*_ HAL standard defaults are pfiesented in Appendix B. (Also 

see Sec. 5.5, DEFAULT Statement.) 
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5.1.1.1 <array-spec>?fi An <array—spec> is written as follows:' 

ARRAY (<dimensionélist>) 

Thé array <dimension-list> can specify multiple dimensions- 

in the-form <m>[,<m>]... where <m> must be an unsigned integer 

literal greater.than one; e.g., ARRAY ( 2 , 3 )  specifies a 2x3 

array. 

. * . ‘ _ 
5-1-1-2 <type—spec>. A <type-spec? is written in one of the follow- 

ing forms: 

INTEGER 

SCALAR [PRECISION (<p>[,<q>])] 

VECTOR [(<length>)][PRECISION (<p>[,<q>])] 

MATRiX [(<rows><cols>)J[PRECISION (<p>f,<q>])] 

BIT ‘ [(<length>)] . ‘ 

CHARACTER [(<1ength>)] 

CHARACTER (<max—length>) VARYING 

GENERAL RULES: 

1.. The <rows> and <cols> in the matrix declaration must be unsigned 

integer literals greater than one; Ehey define the dimensions 

of the matrix. I 

2. For vectors, the <1ength> defines the vector dimension (i.e., the 

number of scalar components) and must be an unsigned integér 

literal greater than one. For bit and charactér strings, the <1engths> 

define the number of bits or characters.in the object string 

and must be unsigned integer literals. For varying character 

'* See Sec. 5.4 for alternate form of specifying €array—spec> and 
<t e—s ec>._ YP P _ - 5_2 

INTERMETRI’CS INCORPORATED - 38-0 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 

\— 

u 

v 

u 



strings, the <max91efigth> defines the maximum number  

_ pf characters that may be assigned.to that charactér variable. 

3. The form PRECISION (£p>[,<q>]) defines the desired fiXed or flbat- 

ing point precision of scalars, vectors and matrices. 

(a, For floating point, <p> must be an unsigned integér. 

‘ literai which specifies the desired minimum number 9f 

significant decimal digits. . t 

(b) For fixed point, (<p>,<q>) are integer literals suéh that 
<p> 
2 > maximum absblute value to be represented 

(<p> being the number of integer bits) 

2-<q> §_minimum absolute vélue £6 be repreéentéd 

(<q> being the number of fractional bits) 

and <p>+<q> = the minimum number of bits necessary to 

express the desired range of the scaiar. 

(c) In general, the compiler will assign eifiher a single 

word or a double word for scalars. For floating point, 

- a double word will be assigned if <p> is greater than the 

number of decimal digits that can be repreéented in 

single precision in a particular machine. 

For fixed point, a double word will be assigned 

if <p>+<q>-+the number of sign bits exceeds the numbef of 

bits for single precision representatibn in a particuiar machine. 

( d ) .  Examples: 

(1) PRECISION(5,3) requires a minimum of 8 bits to 

accommodate a magnithde range of .125 §_magnitude 
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‘ 

:.< 32. in this case, presuming a word lengtt$8; 

kfiot including sign hits) the compiler would assign 

‘5 intéger bits, and a number of fractional bits equal to 

L - 5 - the number of sign bits. O 

‘(ii) PRECISION(-5,39) requires a minimum of 34 bits to 
39 accommodate a magnitude rafige of 2- ‘§_magnitude 

<2—5. In this case, presuming a DP word is necessary, 

the compiler would assign —5 integer bits and 

‘ a number of fractional bits equal to -5 +'2L - the 

A number of sign bits. f 

4Q'“If.PRECISION and diméfisions are not inéluded in a <typé¥spec> 

the compiler will assign defaults. Defaults are presented 

in Appendix B. 

5.1.1.3 <attribute 1ist>, An <attribute 1ist> may be specifiied' 

by including zero or one attribute from each of the fgllowing 

classes, in any order: 

1. Initialization attributes: 

INITIAL (<value>) 

CONSTANT (<value>) 

where <value> must be a literal or a list of literals (see 
. Sec, 5.1.1.4). 

2. Storage class attributes: 

STATIC 

AUTOMATIC 

'3. Dynamic Sharing Control Attributes: 

LOCK_TYP% (<n>) 
i 
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wheré <n> is an unsigned integer greater.than:zero literal 

defining the claSS of sharing control. 

45 Storage optimization attributes:. 

DENSE 

ALIGNED 

GENERAL RULES: 

1., If an attribute does fibt appear in a simple declaration, 

the compiler will assign the default* fialue for thaii ‘ 1 

attribute. H‘ - ‘ H ‘ . ' 

2. Restrictions on use of classes of attributes (also see 

Sec. 8): 

a. Initialization attributes_may not be used at the COMPOOL 

level, nor in declaring <procedure-parameters> and <function- 

b. Storage class attributes may only be used at the task, 

procedure, and function levels. 

c; Sharing control attributes may only be used at the program 

and COMPOOL levels. 

d. Stqrage optimization attributes may not be used in 

declaring <procedure-parameters> and <function%paramefiers>, 

5-1-1-4 Initializapigg. 'INITIAL and CONSTANT values 

of vectors, matrices, and arrays may be specified by lists of 

literals. 
. . . . .  

* See Appendix B. 
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GENERAL FORMAT: 

'{iNITIALICONSTANT}({<1ist~of—litera1s>| . 
<list-of-literals$,*}) 

where 

<1ist—of-1iterals> = [<n>#]{[<1itera1>]l<1ist~of—1itera1s>} 

[:[<n>#]:{[<litefal>]I<list—0f—literals>}] 

<n> is an unsigned integer literal. 

GENERAL RULES; 

1. 
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'<n>#<litera1> specifies that there are <n> consecutive 

entries of this <literal> in the liSt. 

<n># specifies <n> consecutive entries causing no initializa- 

tion. . 

<n>#<list—of-literals> specifies that there are <n> conSedutive 

entries of this "sub" <1ist4of—1iterals> within the list. . 

,* indicates a partial initialization, That is, for a 

vector, matrix, array, and structure of data types not 

enough literals have been specified. After component-by- 

component assignment, all the rest are left uninitialized. 

For vector and matrix declarations, if the number of‘<literals> 

in the <1ist-of—1iterals>: ‘ 

a. is equal to one, all the components are initialized 

to the <literal>. 

b. is equal exactly to the declared number of components, 

the vector or matrix is initialized, component-by- 

component, from the list. 
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C-' In (b), -if.£he number of <literals> is not exactly 

that required, the lLSt must include a * as its last item 

and the rest of the vector or matrix will be uninitialized. 

6. .For array declarations of vectors and matrices, if the number 

of <literals$ in the <list—of—literéis>: 

a. is equal to one, all of the vector or matrix componenté 

1g all the array elements are initialized to the 

<litera1>. I 

b. is exactly equal to the déclared number of components 

in a vector or matrix element, each array element is 

initialized identically, component—by-cdmponent, from 

the list. 

C-.' is exactly equal to the total number of components, 

the entire array is initialized, componént-by-componefit, 

from the list. i 

d. In (b) and (c) above, if the number of <literals> 

is not exactly that required thén the list must 

include a * as its last item and the rest of the array 

-will be uninitialized. 

7. For array declarations of scalars, integers, and bit and 

character strings, if the number of <literals> in the <list— 

of—literals>{ 

a. .iS'equal to one, all of the cbfiponents are initialized 

to the <litera1>. 

b- is equal exactly to the total number of components, 

the array is initia¥ized, component—by-component, from 

the list. i ' 

. . 54-7 . 
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c. In (b), if the number cf <literals? is not exactiy 

that required, see 6(d) above. 

EXAMPLES: 

._1. “DECLARE v VECTOR(9) CONSTANT (1,0,o,o,o,o,o,o,o,0); 
may also be written as . '  -‘ 

DECLARE V VECTOR (9) CONSTANT (1, 8 # 0 ) ;  

»2. DECLARE A ARRAY (4,4) BIT (2) . 

INITIAL (BIN'lO', BIN‘lo', l4#BIN'Ol'); 

3. ARRAY B ARRAY (3,3) VECTOR (5) INITIAL (b); 
All the components of the 9 vecforé in the array B, 

‘ are initialized to 0. 

4. DECLARE B_ARRAY ( 3 , 3 )  VECTOR (5) INITIAL (25,0,5,0,l); 

All 9 vectors in the array, B, are initialized to 

(25,0,S,0,1). . ’ 

5. DECLARE B ARRAY ( 3 , 3 )  VECTOR (5) 

INITIAL (15#0, 15#1, 15#2) 

The number of literals in the initialization list is 

equal to the total number of components in the array. The 

components of the three vectqrs in the first row are initial- 

ized to 0, in the second row to l, and in the third_row to 2 . .  l. 

6. DECLARE B ARRAY (100) ‘ 

INITIAL (5#(l,2,3,4,5),25#, 5#(6’7’8’9’10)’*);. , 

The first 25 items of the array B are initialized g 

with the repeating pattern (1,2,3,4,5). The néxt 25 are i 

left uninitialized. Items 51-75 are initialized to the 
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repeating pattern (6;7,8,9,10). The remaining items are_ 

not initialized. 

7. DECLARE 'A ARRAY (10) ‘INITIAL (2); 

_ B ARRAY (10) INITIAL (#,2,*) 
All the scalars of A are initialized to 2. ‘Only  the 

sécond scalar of B is initialized to 2, the rest beiné left 

uninitialized. 

5.1.1.5 Declaration of Program, Function, and Statement Labels. 

The scopes of procedure, function and statement labels; i.e., 

the regions of the program in which théy are recognized, are 

defined in Sec. 8. 

GENERAL RULES : 

1. Statement and procedure labels must be defined (by appearance 

or by DECLARE statement) before their use in the listing, 

or at least in the block (i.e. prdgram, function or procedure) 

in which they are used. 

2. Function labels must be defined (by appearance or by DECLARE 

.statement) before their use, regardless of whether the 

FUNCTION statement and function reference appear in the same block. 
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3. <typeispec> specifies the data type returned by a function. 

4. LABEL and FUNCTION may not be used at the COMPOOL level. 

5.1.1.6 Examples of Simple Declaration Statements (Floating 
Point Implementation). . 

1. DECLARE. I INTEGER INITIAL ( 6 5 ) ;  

I is an integer with an initial value = 65. 

2. DECLARE x PRECISION (8) AUTOMATIC INITIAL (6.061); 

X is a floating point scalar with at least 8 significant 

decimal digits. 

3. DECLARE COMMAND_MODULE_STATE VECTOR (6) STATIC}. 
COMMAND_MODULE_STATE is a 6-dimensional vectOr with 

single precision components (by default). I 

4. DECLARE SXT_mo_NB_MAT MATRIX CONSTANT 

(1, 01 O, 0, l, 0, 0, 0, 1); . ‘ H 

The matrix is a constant 3x3 identity matrix. I. 

5. DECLARE A ARRAY (5, 3, 4) VECTOR (6) PRECISION (10); 

A is a 5x3x4 array of vectors. Each element is a 6-dimensiofial 

vector with components represented to at least 10 significant 

decimal digits. 

6. DECLARE s BIT (100) INITIAL (BIN (100) '1f);  
S is a bit string of length = 1 0 0 .  The initial value is 

all 1's. 

7. DECLARE TRAKFLAG BIT AUTOMATIC; 

TRAKFLAG is a bit string of length = 1 (i.e. a.Boolean). 

.. ' ' 5—10 ' - 
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'8. DECLARE MESSAGE CHARACTER (3) INITIAL (CHAR(3)'H'); 

MESSAEE is a fixed character string of length = 3.. 

'mThe initial value is HHH. I 

9.’ DECLARE OUT ARRAY (132) CHAR (1) iNIyIAL'('_'); 
OUT is a linear array of 132 character strings of length'l; 

‘Initially, all characters are blank. 

5.1.2 Factofed Declaration Statemeng. 

A factored declaration statement eliminates the need for 

repeated specifications when an attribute or type is applicable I 

to more than oné identifier. All of the factors afe placed prior 

to the first name in the declaration statement; other names; with 

or without specifications, are separated by commas. 

GENERAL FORMAT: ‘ ' 
DECLARE <factors>,<name>[<specifications>] 

[,<name>[<specifications>]].5.; 

where both the <factors> and <specifications> are of the following 

form and order: 

[<array-spec>][<type-spec>][<attribute-list>] 

GENERAL'RULES: 

-l. A <factor> applies to all names appearing in the factored 

declaration statement, where applicable (e.g., PRECISION 

will not be applied as a <factor> to a string type included 

in the statemeht). 

5-11 



2.. If either INITIAL or CONSTANT is used as a <factor>, the other 

may not be used in the {specifications>; . 

.3. yIf either STATIC or AUTOMATIC is used as a <factor>, the dther 

may not be used in the <specifications>. I 

4.- If either LOCK_TYPE(1) or LOCK_$YPE(2) is used as a <faétor>, 

the othef may not be used in the <specifications$."‘ . 

5. If either DENSE or ALIGNED is used as a <factor>, the other 

may not be used in the <specifications>. 

5.1.2.1 Examples of Factored Declaratioqi; 

1; DEéLARE PRECISION (8), A VECTOR (6) ,  B MATRIX (2,2) INITIAL 
( 1 , 0 , 0 , 0 ) ;  . 

A11 elements of A and B are repreéented to at least 8 signi— 
ficant decimal digits. I 

2. DECLARE STATIC, 

A VECTOR (4) INITIAL (0 ,0 ,o ,1) ,  

B MATRIX (5,5), 

C ARRAY ( 2 0 ) ;  

A, B, and C are allocated STATIC storage. 

'3. DECLARE MATRIX (3,4) INITIAL (0) AUTOMATIC, 

A, B, C PRECISION ( 1 0 ) ;  

A, B, and C are all (3,4) matrices with AUTOMATIC storage. 

Initially, all components are set to zero. 

5—12 
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4. DECLARE INTEGER, A, B, C, D INITIAL ( 5 ) ;  

5- DECLARE BIT DENSE INITIAL (OFF), TRACKING, RENDFLAG; 

5.1;3 Structure Declaration Statement 

-The structure declaration statement is used £0 declare 

a structure organization. 

GENERAL FORMAT: 

DECLARE 1 <struct-name>[(<copies>)][<struct-attributes>], 

{ . 2 {  
GENERAL RULES: 

<minor-struct—declaration>}} , 
<terminal—declaration> " "  

l. <copies> must be an unsigned integer literal gréater than 1; 

it defines the number of copies of the structure. For 

example, DECLARE l A (100), 2 B --- etc. 

declares that there are 100 copies of the structure A. 

2. <struct-attributes> are attributes limited to 

QUALIFIEDINOT_QUALIFIED 

DENSEIALIGNED 

STATICIAUTOMATIC 

LOCK_TYPEC<n>) 

a. If any attributes are not provided in the declaration, 

the compiler will assign default* values; - 

b. It should be noted that attributes apply to the entire 

structure andywith the exception of DENSE and ALIGNED, 

cannot be overridden in the minor structures or terminal. 

declarations. 

* See Appendix B 
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5.1.3.1 <terminal-declaration>. The <terminal-declaration> is 

similar to a simple declaration (Sec. 5.1.1);-however, only a 

single name may be declared and the attribute list is limited to 

INITIAL or CONSTANT, and DENSE or ALIGNED. 

GENERAL FORMAT: 

[<next-leve1>]<name>[<array-spec>][<type-spec>] \ 

[INITIALICONSTANT](évalue>)[DENSEIALIGNED]]{,|;} 

GENERAL RULES: 

1. If the <termina1-declaration> is contained in a <minor—struct- 

declaration> then . 

<next-level> equals <this~leve1> + 1, whefe <this~level> 

is the level of the <minor-struct—declaration>,,otherwiée 

.<next-leve1> equals 2. 

2. The semi-colon (;) is used if the declaration is the laét 

<termina1-declaration> of the structure declaration statement. 

5.1.3.2 <minor—structedeclaration>. 

GENERAL FORMAT : 

<this—1evel><name>[(<copies>)][DENSEIALIGNED]; 

-{<minor—struct~declaration>} 
<termina1~declaration> "' 

GENERAL RULES : 

1. <this—leve1> is an unsigned integer litéral 3 _ 2  which identi- 

fies the level of hierarchy. 

2. If a second <minor—struct—declaration> is contained within. 

a first <minor—struct-declaration> then <this-1eve1> of the 
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second declaration must be 1 greater than <this~1eve1> of 

the first declaration. 

5.1.3.3 Examples. 

  1. Notes 

DECLARE l A, (1) major structure A 
_ f 

2 B, (2) minor structure B contains 
minor structure C and 

3 C, terminal element F 

4 D VECTOR(9), (3) minor structure C contains 
terminal elements D and E 

4 E MATRIX (4,4), - - 
3 F INTEGER; . Notes 

2. DECLARE 1 NAV;$TATE(2)LOCK_IYPE(l)NOT_QUALIFIED, (1) 

2 STATE, (2) 

3 TIME PRECISION(8), (3) 

3 R VECTOR(3) PRECISION(10), (4) 

3 V VECTOR(3) PRECISION(10): (5) 

2 STATE_FLAGS DENSE, (6) 

3 BODY BIT INITIAL(TRUE), (7) 

3 PHASE BIT, (7) 

2 W MATRIX(9,9) PRECISION(10); 

Notes: 

1. This is a structure whose name is 

(8) 

NAv_sTATE. 

The number of copies is 2 and it has a sharing class of 1. 

- 2 .  This is a minor structure called STATE whose elements are 

defined at the next level. 
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. This is a terminal declaration of a scalar element, TIME. 

. _This is a terminal declaration Of the vector, R. H 

. Same as (4) above except name is V. 

. This is a minor structure ca11e§STATE_ELAGS whosé 

' elements are defined below at the next levélt 

7. These are terminal declarations of the Boolean variables, 

BODY and PHASE. i 

8. This is a terminal declaration of the matrix, W. 

5.1.3.4 Structure Initialization. A structure may be initialized 

by including the INITIAL or CONSTANT attribute in the <terminal- 

declarations>. If a <terminal—declaration> represents a single 

.copy of the declared data item (i.e. the major structure and minor 

structures containing this item are single copies themselves) 

then initialization may be accomplished as described in Sec. 531.1.4. 

If multiple copies are implied (i.e.,the major structure 

or minor structure(s) containing this item, or both, have mqre 

than 1 copy), two possibilities exiét: (l) the data item may be 

initialized as if it were a single copy; or-(Z) the initialization 

<list—of~literals> may be designed to account generally for all copies. 

GENERAL RULES :— - 
.n 

1.' If multiple copies exist and the data item is initialized 

as if it were a single copy, but 29; partiglly initialized, 

(see Rule 4 of Sec. 5.1.1.4), all cOpies will receive 

identical initialization fér this data item. 
3. 
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If multiple copies exist and it is desired to initialize 2. 

copies individually, or partially initialized the structure, 

the <1ist-of—literals> specifies consecutive'entries for the 

data item, component—by-component, with copies running 

serially. . 

EXAMPLES : 

1. DECLARE I A 

2 B INITIAL (6.061), 

2 C ARRAY(5) INITIAL(1,4#O); 

The structure A is initialized by initializing B and C. 

DECLARE 1:A (20), M 
' .2 B INITIAL (6.061), 

2 c ARRAY(5) INITIAL(1,4#0); 

The structure A has 20 copies; each is initialized identically. 

DECLARE 1 A ( 2 0 ) ,  

2 B INITIAL (15#6.061,*), 

'2 c ARRAY(5) INITIAL(15#(1,4#O),*); 

The structure A has 20 copies; the first 15 are initialized 

-identically. The remaining copies are uninitialized. 

DECLARE l A (20), 

2 B INITIAL (6.06l,*), 

-2 c ARRAY(5) INITIAL(19#(5#).(1,4#0)); 

The structure A has 20 cépies. The first copy of B is 

initialized to 6.061, the rest are uninitialized. ‘The 

first 19 copies of C are uninitialized; the last copy is 

initialized to (1,0,o,o,0)._ 
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5.2 Notation of Data Types and Organiéationé 

..5.2.1 Data Tyge'flptation. 

The compiler will annotate certain names in order t6 

enhance the readability of the dutput listing. The notation Which 

signifies data type will be placed on the E line directly over 

the name on the M line. The notation Characters are described 

below. 

Data Notational 
~ Type Character Examples 

VECTOR - ’ POSITION .= 'fi’ 
M * * 

MATRIX * A REFMMAT = M 

BIT_ . - COM;BUFFER9:TRACKFLAG 
l I 

? CHARACTER , MSG = B 

There is no data type notation for INTEGER or SCALAR types. Thesé 

types must be determined from context or from the deClaration I 

statements (of symbol table listing). 

GENERAL RULES : ' ' - 

The annotation of an operand depends upon thé resulting 

type of the Operand itself and not upon éhe type associated with 

the identifier being referenced; for example: V 

1. When an element of a vector is referenced, it is not annotated; 

i.e., it is a scalar. ‘Fdr example, V2 is the second scalar 

' element of the vector V} 
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2. When an element of a matrix is referenced, it is not annotated 

since it is a scalar.' For example, M1 2 is the scalar 
’ ‘ 

. ~ * 
element in the lst row, 2nd column of M. 

‘ 3. When a row or column of a matrix is referenced, vector 

notation is used; for example, 
- __ *’ 

M* 2 is the 2nd column of the matrix M 
I 

4. When a partition of a matrix is referenced, matrix notation 

.is used; for example, 
1: 'k _ 
M is a partition of the matrix M; i.e. 
1 TO 3, 1 TO 2 

rows 1, 2, 3 and columns 1, 2. 

5 . 2 . 2  Array Notation 

The compiler will annotate arrays of data types with 

enclosing square brackets (i.e.. I l). b 

If the array consists of vectors, matrices; bit or charac- 

ter strings, then the appropriate data type notation will also 

be presented.” For example, 

[X] A,is an array of vectors, 

[i] A is an array of matrices, 

[A] ‘ A is an array of bit strings, 

[A] . A is an array of character strings. 

GENERAL RULES: 

1. When a single array element is referenced, the comfiiler 

annotation will.be consistent with.the‘re3u1ting data type. 

For example, suppose A is an array 6f matrices; then,Ké:*’1 

has vector notation because the referenced item is a vector 
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(i.e., the first cblfimn vector from the second matrix elément, 

of A ) . ’  

2. When a partition of an array is reférenced, array notation 

'is used; for example, . 

[A]2 To 4 is an array of elements A2, A3, A4 from 

array A. . 

The programmer may inblude the notation above as part of 

the input source code. This notation must be consistent With 

its use (e.g., a * must not be placed over a vector, etc.). 

If notation is not included then the compiler will annotate 

the output listing as described. 

5 . 2 . 3  Structure Notation 

The compiler will annotate major and minor structure 

names with enclosing braces (e.g. {A}). 

GENERAL RULES: 

1. When a single copy of a structure terminal is referenced, the 

compiler annotation will be consistent with the resuiting 

data type or array. The notation will be the same as described 

in Secs. 5.2.1 and 5.2.2. 

2. When multiple c0pies of a structure terminal are referenced, 

thé compi;er will annptate the terminal name with enclosing 

brackets and the appropriate data type. This reference remains 

a structure organization subject to the restrictions on 

structure manipulations imposed in Secs. 6 and 7. 
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_EXAMPLES: 

l. DECLARE 1 A (5): 

2 B BIT(10), 

2 C VECTOR, 

2 D MATRIX; 

a. '{A}2 is the second copy of A. 

b.. $4; is the bit string in the 4th bopy of A. 

c. '{E} is a structure of all copies of the vector C. 

a. '{6}3 To 5 
matrix D. 

is a structure of the last three copies of the 

.2: DECLARE 1 A (5), 

2 B CHARACTER(10); 

'{é} is a structure of all copies of the string B. 

3. DECLARE 1 A, 

2 B ARRAY(5) CHARACTER(10); 

[$1 is the array terminal. 

_Note that while {5} in 2 and [$1 in 3 contain the same data they 

are not identical in form and cannot be used.interchangeab1y. 
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5 . 3 '  Implicit Declarations 

In general, HAL requires that all data quantities be declared 

explicitly. The syntax of expiicit data declarations has been 

preéented in Sections 5.1 and 5 . 2 .  HAL also permits certain 

variables to be declared implicitly; namely,vector, matrix, bit 

and character string data tyfies, by providing a ( - ) ,  (*), (Q), 6r 

(,) respectiVely, on the E line over the name of the-data quantityq 

.In the absence of an identifying symbol on the E line, the compiler 

will interpret thé variable to be of a scalar type} The implicit 

declaration of integers; arrays, and structures is not allowed. 

The compiler will assign characte£istics, valid throughout 

the current scope (see Section 8 for further detail on scape bf 

names), to implicitly declared names based on their first appearance 

in the listing. Thereafter, nétation need not be supplied. Fo£ 

example, if V'is used to declare a variable implicitly, then that 

variable may be referred to as V in any succeeding statement 

within the current scope. The compiler will supply the bar (-) 

on appropriate succeeding appearances of V when it has not been  

included by the programmer. 

The implicit declaration of names as scalar, véctor, matrix, 

bit Cr character string causes the assignment of default* values 

for all appropriate attributes. 

* See Appendix B 
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5.4 Alternate DECLARE Féfm 

All of the HAL data types, and arrays of theSe types, may Jfl 

be declared using an alternate form of the DECLARE statement; 

GENERAL FORMAT: 
<note> 

DECLARE <name> .<Sizes>[INTEGER][PRECISION(<p>[,q])] 

[<attribute-list>]; 

where . 

<note> = [ - l * l o l : ]  

and ’ 

'<sizes> = [<array—shape>|<array—shape>:][<dimension>[ 

<string length>] ~ . 

<array-shape> = <m>[,<m>]... 

<dimehsion> = . <m> [,n] 

<string-length> = <r>. 

<m>, <n>, <p>, <q>, <r> must be integer literals. In additioni 

<m>, <n> must be greater than 1; <r> must be greater than 0. 

GENERAL RULES: 

1. ( ~ ) ,  (*), (.), (,) appearing over the name specifies véctor, 

matyix, bit string and character string data types reSpectively. 

If <note> and INTEGER are not provided, <name> is a scalar. 

2. <dimension> specifies either vector length or the number 

of rows and columns. . 

3. <string-length> specifies bit 6r charaCter lehgth for fixed_ 

length strings or maximum length for varying strings. 
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4. Use of INTEGER, PRECISION, ahd <attribute-1ist> are described 

in secs. 5.1.1.2, 5.1.1.3, and Sec. 5.1.2. 

5. When declaring <procedure- or <function—parameters> (see Sec. 

7.4), <note> may be omitted if the proper annotatiohs are - 

included on the parameters appearing in the CALL and function' 

,referencg étatéments. I . 

EXAMPLES : 

1. DECLARE V5,3,4:6; 

- a 5x3x4 array of vectors. Each vector is of length 6. 

2. _DECLARE $100; 

- a bit striné of length 100 .  
' I 

3. DECLARE OUT132:1'; 

— a linear array of 132 character strings. Each string is 

of length 1. 
b it 

4 . DECLARE M 6,6; 
— a 6x6 matrix. 

5. DECLARE A50; 

- a linear array of 50 scalars. 
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5.5 DEFAULT Statement 

When variables are implicitly decléred, or fihen variables ‘ 

or functions are explicitlydeclaréd with not all characterisj 

fiics specified, the unspecified chéractefisfiics are suppiied 

from a set of default characteristicg. The standard set of. 

these is described in Appendix B. 

In some cases it may be convenient to modify the standard 

default set to reduce the amount of source program coding required 

to achieve the given objective. For this purposé, the DEFAULT 

statemeht is provided. 

GENERAL FORMAT: 

DEFAULT {<type-spec>l[<type-spec>]<1ength-defau1t-list>}; 

where 

<type-spec> is defined in Sec. 5.1.1.2 

<1ehgth—default-list> = {<length-default>}... 

<1ength-defau1t> may be one of the following for-ms: 

BIT_LENGTH (<m>) 

VECTOR;LENGTH (<m>) 
MATRIX_pIM (<m>,<n>) 

CHAR‘LENGTH (<m>) [VARYING] 
where-<m> and <n> are literals of integral value. 

<type—spec> is used to specify default type; e.g. 

' DEFAULT MAT?IX(3,4); 

DECLARE A, E, c SCALAR;‘ 
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A and B are declared (3x4)  matriées by default.' The exPlicit form, 

SCALAR, becomes necessary because of this change in default type. 

<1ength—spec> is.used to specify defaults for bit-string length, 

vector length, matrix row—column dimensipn, and chafacter—string 

length fiand VARYING~iength). . In the case of character strihgs, 

ifVARYING is provided a maximum length (<m>) E253 be provided, 

whether in a.DEFAULT or DECLARE statement. For example, the. 

f0110Win§ twé statements will cause an error message; - 

DEFAULT CHAR_LENGTH(20); 

DECLARE C CHARACTER VARYING; 

EXAMPLES: r 

1. ALPHA: PROGRAM; 

DEFAULT MATRIX(4,7) BIT_LENGTH(24); 

DECLARE A MATRIX, B, C BIT(10), D BIT; 

CLOSE ALPHA;' ‘ 
A and B are (4x7 )  matrices. D is a bit string of length 24. 

2. BETA: PROCEDURE; “ 

DEFAULT BIT_LENGTH(16); 

. DECLARE E, F BIT, G CHARACTER; 

.CLOSE BETA; 
E is a scalar and G is a character string of standard 

default lefigth. F is a bit string of length 16. 
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6 . 0 DATA. MANIPULATION. 

6.1 Expressions - 

An expression is an algorithm used for computing a value; 

Variables, constants, literals, built-in'functioné, and programmer- 

defined functions combined with operators, form expressiofis. 

Expressions are of four types: arithmetic, string, array and 

reiational. fThe type of an expressiofi is the type of its result 

and is independent of the types of its operands. In thé defini- 

tions that follow 

<type—operand>={<type-name>|<type-function>|<type~gxpression>| 

I (<type-expression>)} 

where, 

. . ' * 
<type—name>={<type~variable>|<type-constant>|<type-literal>} 

and 

<type— >é{<integer- |<scalar— |<vector- |<matrix- I 

' <bit— |<charactei- >} 

6.1.1 Arithmetic Expressions r 

Arithmetic expressions yield arithmetic values; e.g.,a 

scalar expression is defined to be an expression yielding a scalar 

Lresult. There are four types of arithmetic eXpressions: integer, 

scalar, vector and matrix. 

* literals fire only defined as being arithmetic, bit and chafacter 

strings. 
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. 6.1.1.1 Intgger ExEressions. An <integer-expression> is composed 

of the following elementary operations: 

GENERAL‘FORMAT: 

{{[+]I—}<integer-operand>l 

<integef-operand${+ljl<mu1t>}<integer-operand>I 

<integer-operand>**<positive-integer-litera1>} 

where 

{positive-integer-literal> is a positive tle.number 

Vliteral- or a bit string literal (interpreted by the compiler 

in this context as a positivé whole number). 

GENERAL RULES: 

<mu1t> denotes multiplication by logical adjacency. The 

aSsociated operands must be separated by at least one space 

(blank) unless one or bdth of the operands are parenthesized. 

<integer-operands> and <positive-integer—literals> may be 

either integers or hit strings. Bit strings are converted 

implicitly to integers. b 

An integer result can only be derived from operations on 

<integer—operands>; 

Division is ESE an integer operation; dividing one integer_ 

by another yields a scalar result. ‘ 

In general, exponentiation will result in a scalar, excegt 

when the exponent is a <positive-integer-literal>. 

6I—2 
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EXAMPLES: 
3 4P.'Q+R. F . Q é. (—P)4. 

are all integer expressions if P, Q,-R, F are declared as integers. 

6.1.1.2 Scalar Expressions.-'A <sca1ar—expression> is composed 

of the following elementary operations: 

GENERAL FORMAT: 

'{{[+]I-}<scalar-operand>l 

<scalar-operand>{+l-I/|<mu1t>}<scalar-operand>I 

<scalar-operand>**<sca1ar-operand5I 

<vector-operand>.<vector—operand>} 

GENERAL RULES : 

1. The <sca1ar-operand> may be a scalar, integer, or hit s£ring 

except where the above format reduces to an <integer-exfiression>. 

Integers are converted implicitly to scalars. Bit strings 

are converted implicitly, ggggg to integers and then to scalars. 

2. Exponentiation is undefined when the <sca1ar-opérand> is 

negative and the <scalar-operand> exponent has a non—integral. 

vaiue. 

3. <vector-operand>.<véctor-operand> denotes the vector inner 

product (dot-product); The dimensions of thg two <vector-. 

opefands> must be equal. 

'EXAMPLES:. . ' . P2 ‘__* __ . . 
~P, P/R, P/S, R , v.M v, s + S/R 

are all Valid scalar expressions if P is declared a scalar, 

and R is deciared to be either an integer 6r a scalar. 

- . . 5—3 ' .. 
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6.1.1.3 Vector Expressidns, A <vector-expression> is composed 

of the following elementary operations: 

GENERAL‘FORMAT: 

'{{[+]I-}<vector-operand>| 

<ve¢tor~operand>T+|-I*}<vector—operand>| 

<vector—operand>{/I<mult>}<sca1ar-operand>l 

<scalar—operand><mult><vector-operand>I 

<matrix-operand><mu1t><vector-operand>I 

<vector-operand><mu1t><matrix-operand>} 

GENERAL RULES:V 

The <sca1ar-operand> may_be a scalar, an integer or a bit 

string. Integers and bit strings are converted implicitly 

to scalars. 

Addition and subtraction must involVe two vectors Of idéntical 

dimensions. I 

<vector-operand>*<vector-operand> denotes vector cross-product, 

which is defined only for three4dimensional vectors.. 

Multiplication and division of a <vector—operand> by a <sca1ar— 

opérand>, and negation of a vector, denote operations on each 

vector component. 

<matrix-operand><mult><vector—operand> denotes formal mathé- 

matical matrix-vector multiplication; the vector dimension 

.must equal the column dimension of the matrix. 

<vector-pperand><mult><matrix-operand> denotes formal 

mathematicai vector—matrix multiplication; the vector 
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dimension must equal the row dimension of the matrix. 

EXAMPLES : 

_ . _ .  _ . _ .  _ ,_ ' _. f _ ._ .  _. w _. _. _._ * ' 
“P*V, P+V, 5V, V S, P/(A+S), (V.P)2F, M.V, F/(V.V M) are 

all valid vector expressions. . 

6.1.1.4 Matrix Expressions. A <matrix—expression> is compdsed 

of the following elementary operations: 

'{{[+][-}<matrix-operand>| 

<matrix-operand>{+l-I<mu1t>}<matrix—operand>I 

<matrix-operand>**{-1IT}I ‘ 

<sca1ar-operand><mu1t><matrix-operand>I 

<matrix—operand>{/l<mu1t>}<scalér—operand>I 

<vector-operand><mu1t><vector~operand>} 

GENERAL RULES: 

1. The (scalar-operand> may be a scalar, an integer, or a bit' 

string. Integers and bit strings are converted implicitly 

to.scalars. 

2. Matrix addition and subtraction must involve mafirices of 

identical row and column dimensions. ‘ 

3. <matrix—operand><mult><matrix~operand> denotes formal 

mathematical matrix multiplication; the column dimension of 

the left operand must equal the row dimension of the right. 

4; Exponentiation of a matrix is restricted to the inverse (-1) 

and transpose (T) fufictions. These may also be written in ' 
* '1: 

functional form as INVERSE‘M), TRANSPOSE(M). 
' 1. 

1 
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5. Mulfiiplication and division of a matrix by a scalar, and 

' negation of a matrix, denote operations oh each matrix 

element. 

6. <vector-operand><mu1t><vector~operand> denotes the véctor 

_outer product; the result is a matrix whose row and column 

dimensions are the dimensions of the-left and right Operands, 

respectively. 

EXAMPLES: 

* * * * *_1 *‘* T * ° * -_._. , . 
-M N, M+N, M *, (M N) , M/S, A N, V V are all valld matrlx 

.. 

expreSsions. 

6.1.2 String Expressions 

I String expressions yield string results; e.g., a bit 

string expression is defined as an expression yielding a bit 

stfing result. There are two types of string expressiOnS: bit 

and character; 

6.1.2.1 Bit String Expressions. Bit string expressions 

may contain bit string operands only. A <bit-expression> is 

compoSed of the following elementary operationé: 

GENERAL FORMAT : 

”([NOT] bit-operand>[ 

<bit-operand>{AND|0R|CAT}<bit-operahd>} 
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GENERAL RULES : 

1. NOT COmplements each bit in the string. 

2; AND, OR perform bit—by-bit ldgical AND and OK on the 

.corresponding bits of the two operands. 

3. Whenthe string lengths are unequal, the shortef string is 

padded on the left with zeros until the strings are of equal 

length. 

4. Concatenation, CAT or ( I I ) ,  links together two bit strings. The 

length of the result is the sum of the lengths of the two operands. 

EXAMPLES : 

NOT A, A OR (B AND C), AIINOT BI I (B 0R C) are all valid 
bit string expressions. 

6.1.2.2 Character String Expressions. A character string 

expression must involve the concatenation of a character string 

and a bit string, integer, or scalar operand. A {character- 

expression> is composed of the following elémentary operations: 

GENERAL FORMAT: - 

I i{<character-operand>|Igdata—operand>| 

<data—operand>lI<character-operand>l 

<character-operand>|I<bit~operand>}. 

where <data—operand>é{<integer-operand>I<scalar-0perand>I 

<Character—operand>} 

GENERAL.RULES: 

1, <integex- and <$calar-oper%nds> are converted implicitlyx 
3 
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'to character numerical'representatioh. 

'2. <bit-bperands>- are converted first to integers-and then 

‘ to characters. 

EXAMPLES: 

éExTII 'HELP' ,  AIIéEXT, éEXT||(A/é), éEXTl l (g l l é )  are all 

valid character expressions. 

6.1.3 Array Expressions . ' - " I . a 

Array expréssions yield array results. In geneiai, most 

ofthe operations described in-Sections 6.1.1 and 6.1.2 are valid 

for arrays if the operation is valid for elements of the arrays. 

There are two classes of afray expressions: 1)where both operands, 

are arrays; 2) where one operand is an array. I 

6.1.3L1 Two-array Expressons. For two-Array expreséions, all of 

the expressions detailed in Secs; 6.1.1 and 6.1.2 are valid by.’ 

replacing the.<type-0perands> by <type-array-operandS>. For 

example, in Sec. 6.1.1.2 the Qscalar—operand> becomes a <scaiaf— 

array-operand> and the <ve¢tor-operand> beéomes a <vectorearray- 

Operand>. 

GENERAL RULES: 

1. The two <afray-0perands> must be dimensionally idEhtical. 

2. The indicated operation is performed element-by-element, in_ 

sequence, on corresponding elements Of the two arrays. For 

example, let [P] and [S] be twp-dimensional arrays. Then 

[P] + [S] will be executed in the following sequence: 
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n,m n,m 

.3. The resulting array will be of the same dimensions as the 

<type-array-operands>. . 

EXAMPLES: 

--'-[P], [Pl/[é], ['5]*[V],[V][é], [R] [P]. [Along], [AllltéEXTl 
are all valid array expressions. 

6.1.3.2 One-array Expressions. For one-array expresSions, all 

' o f  the expressions detailed in Secs. 6.1.1 and 6.1.2 are valid 

if gag of the <type-operands> is replaced by a <type-array-0perand>. 

GENERAL RULES: 

1. The indicated operatioh is performed, in sequence, using 

the single operand and each element of the array. ' 

2. The resulting array will be of the same dimensions as the 

<type-array-operand>. 

EXAMPLES: 

P] [Pl/é. [P1*'<r'. Vtél. R[ . [A] 01253. Alllri'Ex'rl. V/[A]. u‘hfi. 
[A]+5 are all valid array eipressions. 

6.1.4 Structure Expressions 

There are no structure expressions defined in HAL. 
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6.1.5 Relational EXpressions 

Relational expressions yield a single true (TRUE/ON) or 

' false (FALSE/OFF) result of a comparison of.0perands. Relationai_ 

Operators are grouped as follows for use in different contekts: 

‘1: not equal 

(P) = . 
= equal 

n1: not_equal ' T 
= equal 

< less than 

> greater than 
<Q> = 4 $ 

<= less than or equal 

>= greater than or equal 

fi <  not less than 

L1> not greater than. 

6.1.5.1 Bit String Comparisons. 

GENERAL FORMAT: 

'f<bit-opérand><Q><bit~bperand>I[w]<sing1e-bit-operand>} 

where ‘ 

ksingle-bit-operand>#{<single-bit-name>I<single-bi£-funct10n>I 

<single-bitéexpression>l(<single-bit-expression>)} 

A <single-bit-expression> is a string expression whose result is. 

a bit string of length one. 

GENERAL RULES : 

1. When string lengths are unequal the shorter string is padded 

on the left with sufficient zeros to make the strings of 

equal length.- . ! I 

2. When comparing bits: 
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a, Proceeding from left to right, if the first comparison 

which is not équal is ">" thén the total bifi-string I 

comparisoh is £523 for the relational operators >} 

>=, 1 < , ' 1 = ,  and Egigg for the operators <, < = , ' 1 > ,  =; 

b. Proceeding from left to right, if the first comparison 

which is not equal is "<" then the total bit—strihg' 

comparison is EEEE for the relational operators <, 

<=,'1>,'1=, and Eglgg for the operators >, >=, 1<, =. 

c. The total bit—string comparison is true for the°relationa1 

operator = (and false for‘1=) if and only if Ell.bit . 

comparisons are =. 

3. The <single—bit—operand> implies the comparison} 

<single-bit—operand> = TRUE ‘ ,J 

EXAMPLES: 

A=B, A>B, Afi<B, etc. are all valid bit string comparisons. 

6.1.5.2 Arithmetic Comparisons. 

'{€integer-operand><Q><integeivoperand>I 

<sca1ar-operand><Q><scalar—operand>[ 

<vector—0perand><P><vector~operand>I 

<matrix-operand><P><matrix-operand>} 

GENERAL RULES: 

1. The <integer-operand> may be either an integer or a bit ' 

.string except where the <integer-operand> comparison reduces 

to a <bit-operand> comparison. Bit strings are converted 

implicitly to integers. 
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*2._ -The <scalar-0perand> may be a scalar, integer, or bit string 

excépt where the <éca1ar-operand> comparison reduces to. 

either an <integer- or <bit-operand> comparison. Integers 

are converted implicitly to scalars. Bit strings are 

converted implicitly, EEEEE to integers and_then to scalars 

EXAMPLES: A . 
.. .. _... ... it. ‘1: 

DJ, I<A, A‘1=S, S<=(A+P.V), V=B, M'1=N are all valid , 
'arithmetic bomparisons. 

6.1.5.3 Character Stiing Comparisons. Character comparisons 

have the following general format: 

<character—operand><Q$<character~§perénd> 

GENERAL RULES: ‘ 

1. When the string lengths are unequal, the shorter string 

is padded ofi the EEEEE with Sufficient blanks to maké. 

the strings of equal lepgth. 

2. The character comparison involves left-to-right comparisén 

of corresponding characters in each éperand according to 

a cgllating sequence which may be implementa£ion dependent. 

3. Total character-string comparisons follow the same rules 

és described for bits in Sec. 6.1.5.1 (Rule 2). 

6.1.5.4 Array Comparisons. Axray comparisons are valid in 

comparing.two <type-array-operands>, or one <type-array-operand> 

and one <type—operand>. The result must b e . a  single true or 

false answer. 
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GENERAL FORMAT : 

‘{<type—0perand>I<type—array-0perand>}<P> 

'{<type-operand>I<type~array-operand>} 

GENEfiAL RULES: 

1. Comparisons are on an element—by-element basis.“ 

2. For the operator =, the comparison is true only if gii 

the array elements are equal. 

3. For the operator'1=, the comparison is true if E21 of. 

the array elements are not equal. 

EXAMPLES: 

[I] = [A], [ A ] ' 1 =  S, [ P ] = [ S ]  are valid array comparisons. 

6.1.5.5 Structure Comparisons. 

GENERAL FORMAT : 

sstructure-operand><P><structure-operand> 

GENERAL RULES : 

1. The two <structure-operands> must be identical in organization. 
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6.1.6 Precedence Order 

In the evaluation of an expression, the order of operations 

is determined by parentheses and operator precedence. The 

_ precedence is divided into two-groups, I,and II; I.is of higher 

priority. The groups are further ordered by relative priority 

number (the highest number being the highest priority). 

1 

6.1.6.1 Group I Arithmetic Operations 

Qgeration 

Exponentiation 

Matrix transpose (short form) 

Matrix inverse (short form) 

Scalar-scalar product 

Scalar—vector or vector scalar product 

Scalar-matrix or matrix-scalar product 

Vector-matrix product 

‘Matrix-vedtor product 

Vector outer product 

Matrix-matrix product 

Vector cross product 

. Vector inner (dot) product 

Scalar-scalar quotient 

Vector-scalar quotient 
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.Matrix—scalar quotient I 2 fi / S 

-Scalar sum 6r difference 1 S i S 

- Vector sum or difference 1 V :‘V 

Matrix sum or differencé 1 fi i E 

_. * ‘ ‘ . 
S, V, M represent scalar (also integer and bit strlng), 

vector, and matrix operands. 

6.1.6.2 Group II Relational and String Operations. 

Operation .firiority ' “Form 

NOT (“, A) 5 ' B 

CAT (l l)  . 4 . AIIB 

(=1 “i=1 > 1  .1): (‘1' 3 31 >= 52 

AND (a)   " 2 1;; & £3 

OR ( I )  1 ’ . AIB 

6.1.6;3‘ Further Cqmments on the Order oé Operations. 

1. Operations within an expression are performed in the order. 

of decreasing priority. For example, in the expression 

A+B**3, exponentiation is performed before addition. If an 

expression involves operations of the same priority, the general 

rule is that the operations are performed left to right._ 

Exceptions are noted belbw, 

-6... 
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Exponentiation is right to left.. Thus, 
C A**B**C 5 AB- :5 A**(B**C) 

Division is right to left. However, vector and matrix 

expressions may never appear as a denominator in a quotient. 

a. A/B/C = A/(B/C) = A C/B 

b- A/BX/CY/D = A/(B x((c Y/D)) = A c Y/B x n 
c. V/A/p V7(A/B) = B V/A 

d. VVA/fi = V7(A/§) is illegal 

e. V/ECV' = V/(§.V) 

Within priority 5, in Group I, deviation from_left—to-right 

arder of scalar-véctor-matrix proaficts is permitted in order 

to simplify the computations. For example, in 

V'= fi S s s V 

the scalars are first multiplied together, then thé vector 

is multiplied and finally the matrix. Strict left—to-right 

evaluation would cause 3 matriscalar and 1 matrix—vector 

product. However, since multiplications are associative, 

the forms are mathematically equivalent. If an expression 

is enclosed in parentheses, it is tféated as a single Operand . ‘  

The parenthesized expression is evaluated before its _ 

associated operation is performed. 
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6.2 Conversions 

'Conversions of data type and precision can be accomplished- 

implicitly within expressions, and explicitly by special con- 

version functions. These conversions are detailed below. 

6.2.1 Implicit Conversions 

6.2;1.1 Data Type. Sevéral implicifi data-fiype conversions 

are described in Sec. 6.1 as occurring when operands of differént 

types are combined by an operator. These conversions are also 

noted in the expressions summary of Sec. 6.4. In general, but 

with Cértain restrictions, implicit cbnversions within expressions 

follow a progression: 

to-scalar-to-character 
from bit—to—integer ' 

‘ to-character 

+3 + c 
B + I 

' +C 

and from single precision (SP) to double precisioh ( D P ) .  Vector 

and matrix operands cause the same effects as scalars. 

GENERAL RULES : - 

1. The prefix operations + and - applied to bit strings cause 

conversion of the strings to integers. 

2. For arithmetic operations, other than exponentiation, 

involving two bit strings or'a bit string and an integer, 

the strings are converted to integers, and the result is an 

integer. 
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.Exponentiation involving integers énd bit strings always 

causes conversion of integers to scalars, and conversion of 

hit strings first to integers, and then to scalars; the 

result is a scalar. There is an exéeption for the exponentia- 

tiog of an integer by a <§ositive~integer~literal> (see 

Sec. 6.1.1.1). In thié case the result is an integer. 

For arithmetic operations involving a bit string ahd a 

scalar, the string is first Converted to an integer and then 

to a scalar, and the result is a scalar. 

For arithmetic operations involving an integer and a écalar, 

the integer is converted to a scalar, and the result is a 

scalar. ’ 

Division always causes the conversions of numerator and. 

denominator to scalars, and produces a scalar result. 

The concatenation of a chéracter string and a scalar, integer 

or hit string causes conversion of the scalar or integer 

to a character string, and the conversion of a-bit string first 

~to an integer and then to a character string. Conversion 

of scalar to character produces a character string of 

specific length to be determined by the implementation. 

Conversion of integer to character produces a character string 

of minimum length sufficient to represent the integer as a 

Signed decimal number. 
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6.2.1.2j Arithmetié Litégals. -If'the representation of an 

arithmetic literal in thé target machine is exactly an integra1  

number (whole number) the literal will be treated as an <integer- 

0perand> in operations and expressions, and with respect to 

the-data-type conversions detailed in Séc. 6.2.lfl. Thus, 2,; 

2.00, 27.3E+3, 0.1024E+4B-5 ' are examples of “integer literals". 

If the literal has a fractional part, it_will be treated as a 

Sifigle preciéion <scalar—0perand>. Thus 1.5, 2.386E¥2, etc. 

are examples of "scalar lifierals". 

6.2.1.3 Precision. Implicit conversion of precision occurs 

when operands of different types or precisions are combined 

by an operator. 

GENERAL RULES : . 

1. Conversion from bit t6 integer: 

Bit strings of length less than a machine werd length 

are converted to integers by regarding the string as an 

unsigned integer. The result wiil be a full word positive 

integer. For sfring length exactly equal to word length, 

a Sign bit is presumed, and the resulting integer will be a 

full word signed integer. For string lengths greater than. 

a word length, conversion will not be performed; the compiler 

. will issue an error statement. 

2. Integer to Scalar: 

a. Floating Point 

. When an integer can be represented exactly in single 

precision floating point then thg conversion will be exact. 
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For larger integers, conversion will approximate the 

integer by the most significan£ portion that can bé 

represented in a single precision floating point number. 

b. Fixed Point 

> In conversion from integer to fixed point if the 

second operand is g scalar then the number of integer. 

bitg after conversion will be set equal to that of the 

scalar operand; otherwise the integer Will be treated 

as a fixed-point quantity of all integer bits and no 

fractional bits; 

3. Conversions within Expressions: 

a. Floating'Point'Operations I 

For operations involving two single precision 

operands, the result will always be single precision. 

For operations involving single and double precision, 

the single precision éuantity Will be converted to ' 

double precision and the operations will be performed 

in, and the result will be, double precision. 

b. Fixed Point Operations 

For operations involving tWo fixed point single 

precision operands (single word length) the result will 

be single precision.* For operations involving single 

* For a particular target machine, the product of two single 

precision operands may be available to double precision. 

6-20 

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868—1340 



1 i 
. 

‘
 

0 
~ 

' 

Q 

a 

and double precision operands, the cbnversioh to double 

~1éngth will-follow the same rules as for fiqating point. 

The result of an operation also carries with it an 

implicit scaling based on the operation involved and the 

scaling of the operands. ' 

- GENERAL RULES : 

1. Addition and subtraction 

‘ The resultant number of integer bits equals the 

maximum of the integer bits of the two operands. 

2.- Multiplication 

The resultant number of integer bits equals the 

sum of the integer bits of-the two operands. 

3. Division 

The resultant number of integér bits equals the 

difference in the integer bits befween numerator 

and denominatoi. 

4.. Exponentiation 

I The resultant number of integer bits equals the 

product of the number of integer bits in the argu- 

ment and the maximum absolute value of the exponent. 

5. 'Fractional bits for all operations 

The resultant number of fractionai bits equals 

that necessary to fill out a single or double word 

length, depending upon the context, and the sum 

of thé integer and Sign bits. 
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EXAMPLES: 

l. 

Presuming a 32 bit word length.including 1 Sign bit:' 

DECLARE A PRECISION(5,12); 

DECLARE B PRECISION(15,13)3' 

x = A + B; 

The implicit scaling of the expressions A + B is 

.(15,16). That is, the numbér of integer bits equals 

the maximum number of integer bits of A and B. The 

number of fractional bits equals 32 - (15+l). 

DECLARE A PRECISION(5,12); 

DECLARE B PRECISICN(20,20); 

X - = A B ; .  

The implicit scaling of the expression A B is 

(25,38). That is, the number of integer bits equais 

the sum of the integer bits of A and B. The number 

of fractional bits equals 64 - (25+1). Cofiversiofi 

to double length is caused by the presence of B 

“which requires a double word based on the declaration 

statement. 

DECLARE PRECISION(3,12)A,B; 

x =‘AB 
The implicit scaling of the exfiression AB is (24,7). 

That is, the humber of integer bits equals the pro- 

duct of the integer bits of A and the maximum value_ 

of B; i.e., 3x23 = 24. The number of fractional bits 

equals 32 — (24+1fl. 
1 
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of Conversion of Literals 

In converting a literal to a fixed point scalar; only 

the necessary number of integer bits will be used. Fixst 

the literal is divided by 2N éo_that its value is <1 

but‘: 0.5. 2N is therefore the.maximum range and N 

becomes the number of ihteger bits in the fixed péifit. 

scaling. P-N-l bits are assigned-as fractional whefe 

P 13 the word length. (This preéumes 1 Sign bit.) For 

example, for the literal 250.87 the compiler would assign 

PRECISION(8, P-8—sign bits).~ For the literal .004875 

the precision is PRECISION(-7, P+7~sign bits). 

6.2.2 Explicit Convefsions 

Three classes of explicit conversions are specified: a 

data-type conversion to convert from one data—type to another, 

an arrayétype to convert a list of mixed data types to ah array 

6f a single type, and a set of special bit and character Con- 

versions. 

6.2.2.1 Data Type. The explicit conversion of data types can 

be accbmplished with the following set of conversion functions: 

1. INTEGER (<single-operand>) 

2. SCALAR (<single—operand>) 

3 ”/BIT ’ (< ‘ l — A d>) ' [<index-expression>] Sing e operan. 

4 . CHARACTE R 
[<index—expression>](<Slngle—oper

and>) 

5. _VECT0R t>) [<cilimension>](<11S 

6a. MATRIX[<dimenSion>]((11312)) 

6-2’3. _ _ _ 
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where <single-operand> = {<type-bperand>l<type~array~operand>} 

<list> = <single-operand>[,<single-opérand>]. . . 

and _ <dimension>‘ = <m>I,<n>] 

<m> and <n> may be <bit-, <integer-, or'<scalar-operands>; 

their values are converted to integers: <m> and <n> must be i 2. 

<index—expressions>, in the form of subscripts, are detailed 

in Sec. 6 . 3 ; 1 .  

.GENERAL RULES: 

1. INTEGER converts bit strings, scalars and character strings 

to integers, and arrays of these gypes to arrays of integers. 

A bit string is cénverted according to the rules stated in 

Sec. 6.2.1.3. A scalar is converted to a signed full 

word integer by rounding to the nearest whole number. .A 

character representatioh of a whole number is converted to 

a signed full word integei. 

2. SCALAR converts bit strings, integers and character strings 

to scalars, and arrays of these types to grrays of scalars. 

A bit string is converted first to an integer (as in (1) 

above) and then to a scalar. An integer is converted to a 

scalar according to the rules stated in Sec. 6.2.1.3. A 

character representation of a decimal number is converted.to 

a goalar. 

A bit string may be converted directly to a floating 

(or fixed point) scalar, i.e. not converting t6 integer 

first, By use of fhe BIT pseudo—variable, described in 

Sec. 7.1.2.3. 
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BIT dbnverts integers, scalars and character strings to bit 

strings. Integers and scalars are converted to full word 

bit strings; character Strings are converted to the bit 

length representing the total character string. "BIT may be - 

subscripted by an <index—expression$ to select a desired. 

range of bits (see Sec. 6.3.1). 

BIT also converts arrays of integers, scalars, or 

charactérs to arrays of bit strings. I I 

CHARACTER converts bit strings, integers, and scalars to 

character strings. Scalars are converted to specific ' 

length character strings; integers are converted to 

minimum length character representations (sée Rule 7 of 

Séc. 6.2.1.1). Bit strings are convérted to integers first 

and then to characters. CHARACTER may be subscripted by an‘ 

<index-expression> to select a desired range of characters 

(see Sec. 6.3.1). 

CHARACTER also converts an array of bit strings, integers, 

or scalars, to an array of character strings. 

VECTOR may be applied to a mixed list of all <type-Qperands> 

and <type-array-operands>. The VECTOR conversion-ffinction 

may be thought of as constructing a scalar one—dimensional 

list of all the included elements. (Conversions follow 

SCALAE rules.) Vector, matrix, and array list-elements 

are equivalent to lists of their components. Matrices are 

unraveled by rows; arrays are unraveled by the "right-most". 

index first (i.e. 1,1,1; %,1,2 ;  1,1,3; ... 1,2,1, 1,2,2,; étc.). 

K 
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The rules for "filling" VECTOR are similar to those 

for initialization (see Sec. 5.1.1.5). The resulting vector- 

is filled elementfiby—element from the <1ist>. The number 

of elements in the list may equal one, or the desired 

' Vector dimension. If equal to one ge.g., VECTQR6(O)), the 

function may be subscripted by the desired dimension and 

all the components will bé assigned values equal to this 

single element. The default dimension is used if a sub- 

script is not provided. 

If equal to the desired vector dimension (e.g., VECTOR 

(3#A2,BZ,C2,D2) or VEéTOR4((A,B,C,D)), the function may or 

may not be subscripted by the coriect dimension. In either 

case the vector dimension equals the number of elements 

in the list. 

The MATRIX conversion-function constructs a one—dimensionai 

list according to the same rules as for VECTOR. The resulting 

matrix is "filled" (element-by-element) by rows, and the 

shape (rows, columns) may be specified by~subscripting the 

function. The number of elements in the list may equal one, 

or the desired total number of matrix elements. Fof V 

example, 

MATRIX4'4(1) 

MATRIX4’4 ( A ’ 4 # 0 ’ A ' 4 # O , A ’ 4 # 0 ' A )  

V-u— . 

aré acceptable forms. If equal to one, the function may be 

subscripted by the desired dimension and all the components 
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will be assigned values equal to this single glement. When 

subscripts are not provided, the default matrix dimensionali£y 

is used, and the number Of elements ifi the list must equal 

. one, or be consistent with the default. 

EXAMPLES: ' . 

INTEGER(§), SCALAR(é||é), BIT([A]),CHARACTERl TO 5(A), 

VECTOR(%,§,I,A2), MATRIX4'4(A,é,I,A2,P), 

scALAR([é]), MATRIX8’8(1). 
are all valid conversion-function applications. 

6.2.2.2 Array-Type. The explicit formulation of arrays can be 

accomplished by adding "array shaping" subscripts to the functions 

presented in Sec. 6.2.2.1, thus: 

1. INTEGER[<array—shape>](<llSt>) 

2. SCALAR shape>}(<115t>) [<array- 

3. BI n>](<l:l..st>) 
T[<array-shape>:][<index—expressio 

4' CHARACTER[<array—shape>;]I<index-expression>](<llSt>) 

5' VECTOR<array-shape>:[<dimension>](<liSt>) 

6' MATRIX<array~shape>=[<dimension>](<liSt>) 

'where 

<arrazjshape> = <m>[,<m>]... 

I <m> may be <bit-, <integer—, or <scalar—operand>; the value of 

<m> is converted to an integer before use and must be 3_2. 
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GENERAL RULES: 

1 .  INTEGER and SCALAR may be applied to mixed lists of all 

<type—0perands> and <type-array-operands>. Conversions are 

-the same as for the corresponding data—type functions. 
I 

Except where these forms reduce to the dataetype fuhctions 

of Sec. 6.2.2.1, the number of elements in the lists may 

equal qne, or the total number of array elements.. Thus, 

a) if equal to one, the <array-shape> must be Specified 

and all the elefients in the array will be assigned 

values equal to this single list element. 

b) If equal to the total, the <array-shape> may be 

specified and the elements assigned on an element— 

by-element basis. If <array-shape> is not provided, 

a oneadimensional array of length n is presumed,‘ ' 

where n is the number of elements in the list. 

BIT and CHARACTER may be applied to mixed lists of all 

<type-operands> and <type—array-0perands>. Conversions are 

the same as for the corresponding da£a~type functions; 

Except where these forms reduce to the data-type functions 

of Sec. 6.2.2.1, the number of elements in the list may 

equal one, or the total number of array elements. 

a) If equal to one, the <array-shape> must be: 

*~ specified and all the elements in the array wi;l 

be assigned values equal to this single list 

element. If <index—expression> is not provided,' 

default* string Pength will be used. 
- 1 

' m  
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b) If equal t6 the total, the <ariéy~shape> may be 

specified and the.e1ements assigned on én'element~ 

by—element basis. If <array-shape> is not_provided 

a one-dimensional array of length n is presumed, 

where n is the number of elements in the list. If 

<index—expression> is nbt provided, a défault* 

string length ié used. 

3‘. VECTOR and MATRIX may be applied to mixed list of all <£ype- 

operands> and <type-array-operands>. Conversions are the 

same as for the corresponding data-type functions. Except 

where these forms reduce to the data-type functions of 

Sec. 6.2.2.1, the number 6f elements in the list may equal 

one, or the number of components in a single vector or matrix 

array—element, or the total number of vector or matrix com- 

ponents in the array. .Thus, 

a). if equal to bne,_the <array—shape> must be specified 

and all the vec£dr or matrix components in the - 

array will be assigned values equal to this single 

list elemeht. If <dimensiofis> are nét provided, 

default vector of matrix dimensions will be used. 

b) If equal to the number of components in a single 

vector or matrix array-element, the <array-shape> 

must be specified and all the vectors or matrices 

- in the array will be assigned these list values. 

If MATRIX—<dimension> is not provided then the 

default matrix dimensions is used. (In this case 

the number of list elements must be consistent with 

. *See Appendix B 
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the default.) If VECTOR-<dimension> is fiot pro“ 

vided, the vector dimension equals the number of 

elemen£s in the list. 

0) If equal to the total num§er of components, the 

<array—shape> and the VECTOR~<dimension> mfist be 

specified. If MATRIX-<dimensi6n> is not provided, 

the rule of (b) above applies. The components 

will be assigned, from the list, on an element—by- 

. element basis. 

EXAMPLES : 
, ' 7 

INTEGER (ACE ) 3 , 4 

w A 3x4 array of integer-elements.‘ Each element is equal 

to INTEGER(ACE). ACE must be the character representatipn 

of an integer (e.g., '-604'). . 

SCALAR(A,é,c,15#I) ' 
- A one-dimensional array of 18 scalar values. 

BIT(A,BZ,C,D,E) ' 

- A one-dimensional array of 5 default length bit strings. 

BIT3,2:1 TO 8(A) . 
- A 3x2 array of 3-bit bit strings. All array elements 

are equal to the eight "left most" bits of A. 

VECT939:4(A,0,0,0) 

— A one dimensional array of 9 fofir-component vectors. 

Each vector equals (A,0,0,0). 

\ 
1 
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6. VECTOR2’2:(B) . 

- A 2x2 array of éefault length vectors. 'Every vector. 

component is equal to B. 

7. VECTOR (6#A,6#B,1,0,0,l,0,0,6#D) 2,2:6 

- A 2x2 array of 6-component vectprs. 

8. fiATRIXlO:(A,B,c, -------- .) 
- A one-dimensional array of 10 default size matrices, 

(Note that list length must be consistent with the 

default.) 

9. MATRIX2’3’4:5"5(5#A,5#B,5#C,5#D,5#E) 

— A 2x3x4 array of 5x5 matrices. 

6.2.2.3 Special Character-to-Bit, Bit-to-Character'Funct103§ 

In addition to the BIT and CHARACTER functions presented 

in Sec. 6.2.2.1, special subscripting allows binary, octal and 

hexadecimal conversion from characters to bit string and vice- 

vefsa. The general forms are: 

a) BITl<form>l(<chayacter-0perand>) 

b) CHARACTERI<form>1(<b1t-0perand>) 

where- 

<form> =‘{@BIN[@OCT|@DEC|@HEx} 

GENERAL RULES: 
1. BIT converts a character string (or array of character $form> 

strings) of binary, octal, decimal or hexadecimal digits into 

a corresponding bit string (or array of bit strings). @BIN 
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requires the character gtfing to be made up of only 1'3 

and 0's, @OCT of only 0 to 7, étc. 
2. CHARACTER< converts a bit string (or array of bit form> 

strings) into a character string of binary, odtal, decimal or 

hexadecimal digits, depending on the subscript. If.the- 

bit string is too short for the required form, it will be 

padded on the left with zeros. 

3. If <form> is not provided, these conversion functions revert 

to the unsubscripted functions of Sec. 6.2.2.1. 

EXAMPLES: 

' I ‘ . 

U ' . I i I 

are all valid applications. 

6.2.2.4 Precision. The precision of expression results can be 

specified or changed explicitly by the use of the <precision- 

expression>. That is: 

{<type—operand>I<type-array-0perand<}<precision_expression> 

I where 

<type—operand>é{<integer-’[<sca1ar- l<vector-,l<matrix- I 

<bit- }operand> - 

and likewise for <type—array-operands>. If the <type-0perahd> 

is an expression or a Subscripted name, thé <operand> must appear 

within parentheses. 
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A. Floating pdint: 

GENERAL FORMAT: 

- <precision-expression> % @p 

. GENERAL RULES: 

1. p must be an unsighed integer literal and is equal to 

the minimum number of significafit decimal places (same 

meaning as in thé PRECISION attribute of the declaration 

statement). - I I 

EXAMPLES (presuming a 32-bit word): 

1. DECLARE A PRECISION(10); 

DECLARE B ARRAY(5); f 

A = (BI)@10+C; 

BI is converted from single to double precision (i.e., 

afi least 10 significant decimal places) and the sum 

.is performed in doublg precision. Note that an indexed 

name requires parentheses. - 

2. REPLACE SP*BY ' 4 ' ;  
REPLACE DP BY I'10'; 

DECLARE X PREC (DP); 

A = B +(X Y)@SP; 

The double precision result of X Y will be converted 

to single precision. The final sum is computed in 

single precisiOn. 

B. Fixed point: 

GENERAL FORMAT: 

$precisi0n—éxpression> = 

'{@p[,q1l{@<name§|@np|@sp|@*}[+k -k]} 

*See Sec. 7.3.6 . 6-33 . 
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where @DP and @SP ére keywords; i.e., no spaces are allbwed 

between characters.‘ 

.GENERAL RULES: 

1; @p, q specifies the number of integer and fractional 

. bits (same meaning as in the PRECISION attribute of 

the declaration statement). . 

.2. @<name>ik specifies the precision to be the same as 

that of <name> except with the binary point shifted 

relatively to the right (+) or left (-) by k places;- 

i.e., increasing or decreasing, respectively, the 

Inumber of infiéger bits. 

.3. @DPik specifies conversion, first to doubié wbrd length 

I while maintaining the number of integer bits, and then 

a relative shift of the binary point right (+) or left ( - ) '  

by k places. ‘ 

4. @SPik specifies a relative shift of the binary point_ 

to the right (+) or left (-) by k places first, and 

théh.conversion t6 single word length while maintaining 

the new number of integer bits. 

5. @*1k Specifies the current wogd length with the binary 

point shifted relativel? to the right (+) or left (-) 

by k places. . 

EXAMPLE: 

Presuming a 32-bi£ word, 

A = E@*-5 + (B + CGDP-8)D)@E-5 
C is converted from single to double precision and the 

. , .5e34 
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binary point éhifted ieft eight places. B f C is 

performed in double precision and the result of the 

‘ multiplication with D is rescaled to the same Scaling 

as E except that the binary ppint is shifted left. 

five places. This quantity is added to B after thé 

binary point of E is also shifted left five places, 

6.2.2;5 Summary* of Explicit DatabTypE'Conversibhs. The 

following table describes the resulting conversion for each 

function and operand type (I+S means integer to scalar, etc.): 

TYPe 
Function I S B ' C   

INTEGER ./ s+I B+I' ‘ C+I(1). 

SCALAR 1+5 ' /' B+I+s c+s(1) 

BIT(3) 1+3 §+B(2) / C+B(2) 

CHARACTER .I+C s+c - B+I+C / 

/: Restores original argument (no operation). 

Notes: (1) INTEGER and SCALAR only accept character string 

arguments which represent whole numbers and scalars, 

respectively. For example, INTEGER('30672') a n d '  

SCALAR('362.06E+1') are valid applications. 

* This section summarizes the conversions presented in Secs. 
6.2.2.1 and 6.2.2.3. 
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(2) BIT converts~scalaré and character strings directly 

to bit strings. That is a'floating point Scalar 

argument would result in the string representing the 

'machine "bit—pattern" of the floating point quantity. 

A character is cogverted to its bit pattern. 

' ( 3 )  BIT and CHARACTER.may be subscripted in order to 

select particular bits and characters, or to modify ' 

hsage (see Secfiion 6.2.2.3). A character string which 

represents binary, octal or hexadecimal digits can 

be converted to a corresponding bit string; i.e., 

I I , ' B:T@BIN( lOll ) becomes 101; 

I I BIT@OCT( 657 ) becomes 110 101 111. 

I I 

Likewise bit strings can be converted to binary, octal 

or hexadecimal character digits; e.g., 

CHARACTER (BIN'lllllOlO') 
@HEX 

(4) VECTOR and MATRIX cause the same conversions as SCALAR. 
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6.3 Subscripts 

Subscript notation is used in HAL to spedify single elements, 

or multiple-element.partitions,of vectors, matrices, bit- and 

chafacter—strings, arrays, and structures. “ 

The first element of a vectof, the first bit in a bit—string 

("left-most" bit) and the first character in a character string 

("left—most" character) are noted by the subscript i, the second 

by 2, etc. up to the total number of components; Thus, for a 

9-elémeht vector the components may be written as 

V V . 0 . . . v  l 3 V 9 
2. 

For a matrix, the first of the two subscripts refers to the row 

number, running from 1 up to the number of rows, and the second 

to the column number, running from 1 up to the number of columné. 

For example the elements of a 2x3 matrix could be referred to by 

_writing: 

B1,131,231,332,1Bz,232,3 

The above data-types (including integers and scalars) may 

. be arrayed in one, or multiple dimensions, and also organized 

into hierarchical data structures. In order to select and 

partition all quanfities uniquely it is necessary to distinguish 

levels of subscripts. In the most general case, this is accomplished 

by seéarating structure subscripts from array subscripts with 

a semi-colon (;) and array subscripts from data-type subscripts' 

' with a colon ( z ) .  For example; 
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X“Y5:3:3,4 

refers to the scalar element in the 3rd row, 4th column of the 

3rd component of the array Of matrices Y which is in the 5th 

copy of the structure X. 

6.3.1 Subscfipting Data-Types and'ArréYS'of'DataéTypes 

Subscripting (i.e., selecting or partitioning) is 

accomplished by attaching a <subscript—expreséion> to a name, thus 

GENERAL FORMAT: 

£<tYPe’name>I(tYPe'arraY'name>}<subscript-expression> 

where 

<subscript-expression> 

.= [[<index-expression>[,<index-expression>]...]:] 

[<index—expression>I,<indei-expression>]] 

and 

<index-expression> ‘ 

= <scalar4expression>[TO<sca1ar-expression>]I 

._I<sca1ar~expression>ATJ<scalar—expression>} 

<scalar-expressions> are evaluated and converted to the nearest 

integer before use. <sca1ar-expressions> must be 3_l. 

6.3.2 Single~Element Reference 

When referencing a single element the general formafi of 

Sec. 6;3.1 reduces to I 

I[fiscalar-expression>{,<scalar—expression>]...]z] 

[<scalar—expression>[,<sca1ar-expression>]]' 
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GENERAL RULES: . 

1. The expressions to the left of the colon (:) feferénce the 

particular array element; the expressions to the right may 

.be used to reference a matrix, vector, or string component. 

2. For an array} if "left~expressions" are not pro§ided, the 

colon being optional in this case{ reference is made to an 

array of the particular matrix, vectdr, or string cpmponents. 

3. For a veétor or matrix( one or two <scalar-expressions> are 

usgd to reference a vector or matrix component. 

4. For a bit- or character-string, one <scalar-expression> is 

used to feference a éingle bit or character in the string. 

5. 'Usg  of a number Sign (#) in place of a <scalar-expression> 

means "the last of a particular index". 

EXAMPLEsé 

l. M3,4 references the matrixfcomponeht in the third row, fourth 

column. ‘ 

2. A2’3'4 references a scalar or integer array element in the 

second plane, third row, fourth column. 

-3. A2’3'4:3’4 references the component in the third row; fourth 

column of the matrix located in the second plane, third row, 

fourth column of the array, A. 

4. BIT16(A) references the 16th bit in the bit representation of A. 
I 

5. TEXT~ references the 8th character in the string. 
8. * . ' 

6. M references the matrix in the third row, fourth column, 3 , 7 :  
. - * 

of the array of matrices, [ M ] .  

‘_ 6—39 _ 
' IN'TERMETR-IQS INCORPORATED - 380 GREEN STREET -- CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868—1840 ' 



u 

7. [V5] references an afray of the 5th components of all the . 

vectors in the array of vectors [V]. [V5] is an array of 

scalars. 

6.3.3 'Multiple~Element Partitions 

6.3.3.1 The Use of *. An asterisk (f) may be used in place of 

<scalar-expression> to indicate "all of a particular index",j 

thus establiéhing a cross-section of a matrix or an array. 

EXAMPLES: 
1. fi;’4 references the fourth column of the matrix, which is 

a vector. (That is, all rows, fourth column.) - I 

2. HIV]2’*: references the vectors in the second row of the array 

of vectors; Note that [V12 * is itself a one-dimensional 
I 

array. 

6.3.3.2 The "T0" Operator. The TO—operatdr may be used to 

reference (or partition) a set of elements by specifying the 

index limits. . 

GENERAL RULES: 

1. The value of the expression to the left of T0 refers t6 

the element at which the partition begins. 

2. The value of the expression to the right Qf TO refers to the 

element at which the partition ends.  

EXAMPLES: 

1‘ BS TO 10 ’selects bits 5, 6, 7, 8, 9, 10 from the bit string B. 
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* V 
2. M1 To P, 1 To Qtpart1t1ons a larger matrlx and selects the 

.first P rows and the first Q columns. 

3. partitions a two-dimensional [AJP TO(P+2){_;  go ;:4.TQ'# 
'array of bit strings. The reSult islan array of 3 rows and 

3 colfimns. Each array element is a partition from bit 4 to 

the last bit of the corresponding original bit string. 

' 6 . 3 . 3 . 3  The "AT" Operator. The AT—0perator may be used t6 

referenée (or partition) a set of elements by specifying the 

size (or length) and the beginning index. 

GENERAL RULES : -- 

1. .The value of the expression to the left of AT indicates 

the size 6f the partition. 

2. The value of the expression to the right of AT refers 

I to the element at which the partition begins. 

EXAMPLES : 

1. B6 AT 5 selects 6 bits from the bit string B; i.e.,bits' 

5 ' 6 ' 7 ’ 8 ’ 9 ' 1 0 0  

2. BITlo AT P(A) first converts the floating point (or fixed- 

point) scalar, A, to a bit string and then selects 10 bits 

starting at P. 
* 

3. M4 AT 5' 4 AT 7 partltlons a larger matrlx by selectlng 

a 4x4 sub—matrix. 

4. ,PQ T0 # partitions a character string by selecting the rest. 

of the string starting at a. 

i ; 
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6.3.4 Subscripting Structures 

Subscripts may be used to specify terminal déta elements 

and specific copies of the major structure, or contained minor 

structures. 

GENERAL FORMAT: 

<structure—n me>, . ‘ . 
_ a <structure—subscript—expre551on><subscr1pt- 

expression> 

where 

<structure-subscript-expression> 

= [[<index—expression>[,<index-expression>]...];] 

<structure—name> = {<fully-qualified-name>I<not-qualified—namé>} 

and <index—expression> and <subscript-expression> are defined 

in Sec. 6.3.1. 

GENERAL RULES: 

1. When the <structure-subscript-expression> is included, all 

structure subscripts-(major and minor) must be indicated. 

2. ~The use of an asterisk * means "all of the particular index"L 

Thus, {A.B.D} means D in all the copies of B which are in 
2 6 1 * ;  

the 26th copy of A. If all indices are filled with * then 

the <index-expressions> may be omitted optionally; for example, 

A.B.D*'*; s A.B.D 
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EXAMPLES: 

DECLARE l A(50)NOT QUALIFIED, 

2 3(25), 

3 c ARRAY(4,4) MATRIX(3;3), 

3 D INTEGER, 

2 E(15). 

3 G VECTOR(3): 
2 F BIT(1); 

The folloWing examples refer to the above structure'declaration. 

l. C8,1o;4,2:1,2 

_IThis represents the scalar comppnent in the first row, second 

column of the matrix which occupies the 4,2 position in the 

array C. This array is in the 10th copy of B which is in the 

8th copy of A. 

G2 
This represents the second component of the vector G in 

all copies of E which are in all copies of A. 

F25; . . 
This represents the single 1—bit bit-string in the 25th 

copy of A. 

. * ' 

{C}23,*;4,*: 

This represents all the matrices in the "4th row" of the 

array C, in all the copies of B which are in the 23rd copy 

of A. 
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6.4 Expression Summary 

Tables 6 ; 4 — 1  through 6 ; 4 - 7  summarize the allowable 

operations between two operands. In most dases the valid result— 

type (or error) and any implied data Conyersions are indicated ‘ 

within the boxes. Array Operations are generally valid wherever 

corresponding data—type operations are also valid. 
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Operation Prefix 

OPERAND ‘ INTEGER 

<p> 

INTEGER 

*
3
 

' SCALAR 

<P> 

SCALAR 

.{<P? <Q>}OPERAND 

VECTOR 

<P> 

VECTOR 

* -B+I means conversion from bit to integer 

<Q> = 

MATRIX 

' <p> 
MATRIX 

NOT 

CHARACTER ' 
STRING 

BIT.STRING 

2P> <Q> 
Integer Bit ERROR 
B+1* String, ' 
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OPERAND2 ‘ 
INTEGER ' SCALAR VECTOR MATRIX BIT STRING CHARACTER STRING OPERANDl . 

INTEGER INTEGER SCALAR ERROR ERROR INTEGER ERROR 
I+S B+I 

SCALAR SCALAR SCALAR ‘ERROR. ERROR SCALAR ERROR 
‘I+S 

B+I+S 

m_;VECTOR ERROR ERROR VECTOR ERROR ERROR ERROR- 

VMATRIX ERROR ' ERROR ERROR ‘E'MATRIX ERROR ERROR ' ' 

. r . _ 

BIT STRING .INTEGER _SCALAR ERROR ERROR INTEGER ERROR 
B+I B+I+s ' B+I ' ' 

CHARACTER . ' w -' ' ' STRING ERROR ERROR ERROR ERROR ERROR ERROR 

d; dimension check 
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E ' Operation Mpltiplication!’ ' ' OPERANDl<mu1t>OPERAND2 
a ' ' ' 6 
o .0, 

. g  OPERAND2L - . 7 

8 INTEGER - ' SCALAR VECTOR MATRIX BIT” STRING CHARACTER 
3 OPERANDl ' . STRING. 
I] ‘ ‘. 
3:- 
Fr“ . a , 

O ' INTEGER INTEGER SCALAR _ VECTOR MATRIX INTEGER ERROR 

8 1+8 I+S 1+3 . 3+1 
0 

_ FR SCALAR ~ SCALAR SCALAR VECTOR MATRIX SCALAR ' .=ERROR 'z , _ _ 
0) 1+8 . - . B+I+S 
—« . ‘ ‘ :3 . 

‘j -- "VECTOR VECTOR VECTOR ' MATRIX _ VECTOR ‘ VECTOR ERROR 

g c'n IT’S I d B+I+S ' 
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03 ‘1 . . 
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g MATRIX MATRIX , MATRIX VECTOR ' 'IMATRIX MATRIX ERROR ‘ 
1'" 1+8 ' d ‘1 B+I+S 
g . 
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:3 2) .Vector cross product VH7 
8 
8” 
F23 
8 

. - .....—-...:.—-—-o-«..w 



, , 7 — , V ”  W h . m m — — g — u — — m ~ — m — _ W fi r _ r ~ _  - w — v - ‘ i v v  ' . 
. . - ‘ 

0 , ' , u . ‘ u I 
- 

G
S

L
Z

O
 

s
u

a
a

o
v

s
s

v
w

 
‘

a
a

o
l

u
e

y
w

o
 

. 
1

3
3

m
 

N
S

E
H

E
)

 
0

8
8

 
- 

o
a

i
v

a
o

a
a

o
o

m
 

S
‘

O
I

H
L

B
W

H
B

L
N

I
 

.
o

L
-

Q
Q

Q
 

(
L

L
Q

)
 

8
V

-
9

 

Operatidn' Division 

'VOPERAND 

1 

'OPERAND 

l 

INTEGER 

SCALAR 

VECTOR 

MATRIX 

BIT STRING 

CHARACTER 
STRING' 

INTEGER 

SCALAR 

I+S, I+S 

SCALAR 

I+S 

VECTOR 

I+S 

MATRIX 

I+S 

SCALAR 
B+I+§, I+s 

ERROR 

’ ' SCALAR 

SCALAR' 
I+S 

SCALAR 

VECTOR 

.MATRIX 

SCALAR 

B+I+S 

ERROR 

OPERANDl/OPERAfiD2 

VECTOR MATRIX. 

ERROR-- I ERROR 

ERROR ERfiOR 

ERROR. ‘ERROR 

a ERROR ’ERROR 

ERROR 

ERROR 

Table 6.4-4 

ERROR 

‘.ERROR 

BIT,STRING 

SCALAR 

I+S, B+I+S 

SCALAR ‘ 

B+I+S 

VECTOR“ 
B+I+S 

MATRIX 

_B+I+s 

§CALAR 
B+I+S 

ERROR 

CHARACTER 
STRING 

ERROR ' 

ERROR 

ERROR 

ERROR 

ERROR 

ERROR 
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**OPERAND 

l. Result is INTEGER if OPERAND2 is a whole number literal Z 0. 

III IIII III IIII IIII III IIII II- IIII IIII III III! - 

. Operation  Exponentiation : OPERANDI 2 

OPERAND2 -_ - _ . . CH TE 
, INTEGER, SCALAR VECTOR MATRIX BIT STRING giggNGR 

OPERANDl 1 ' ' 

INTEGER ‘ SCALAR SCALAR ERROR. ERROR SCALAR ERROR 
' 1+3, 1+3 1+3 - ' 1+3, B+I+s 
(See Note 1) (See Note 1) 3- . ' (See Note 2) 

SCALAR _ SCALAR SCALAR 'ERROR ' ERROR ' I SCALAR_ ‘ ERROR 
’ I+s - .’ ‘B+I+S ' ’ 

VECTOR ERROR ERROR ' ERRdR ERROR » ERROR ERROR _ 

MATRIX All.Error$ éxcept if "bPERANDz" = {-1WT};i.e. INVERSE or TRANSPOSE 

EBIT STRING SCALAR SCALAR ERROR ERROR SCALAR ERROR 
B+I+s, I+s -B+I+s . , ., B+I+s, B+I+s 
(See Note 3) (See Note 3) . ' (See Note 4) 

J 
l . 

_ '  

CHARACTER ‘ ‘ . " - , : _ - 
STRING ERROR .ERROR ERROR - ERROR '. ERROR ERROR 

Tablé 6.4-5 
Notes: 

2. Result is INTEGER if OPERAND2 iS~a bit string literal which may be converted to an 
unsigned integer (B+I). 

3. Result is INTEGER-if OPERAND2 is a whole number literal 3_0 (B+I). 
A- Rama a g - ( 2 )  excebt (B41. B+I). , -  ,H WL_,;H 
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QPERAND ‘ . A 
2 INTEGER, SCALAR VECTOR MATRIX. BIT STRING CHARACTER - STRING OPERAN 1 

INTEGER <Q> <QV ERROR ERROR <Q>‘ ERROR 
1+3 3+1 

SCALAR -<Q> <Q> ERROR ERROR <Q> ERROR 
1+3 B+I+s 

VECTOR ERROR ERROR <Py ‘ERROR ERROR ERROR m . 
I 
U1 
0 

MATRIX ERROR ERROR ERROR <P> ERROR ERROR 

BIT STRING <Q> <Q> ERROR_ ERROR. $Q> ERROR 
' ' fi+I B+I+S 

CHARACTER " STRING ERROR ERROR ERROR ERROR ERROR <Q> 

1 

. Special: <structure><P><structure>_ l: OPERAND padded to make. 
<array><P><array> lengths equal if necessary. 
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‘ Table 6.4—7 

. . <P> <P> = H OPERAND {< >}0PERAND -|| . . a 1 Q 2 <Q> = AND 
Operatlon Strlng : ' OR' 

OPERANDZ . 
INTEGER SCALAR- VECTOR MATRIX BIT STRING CHARACTER STRING . OPERANDl . 

INTEGER <5 ‘ERROR a>' <P> 
. CHARACTER 

I+C 

_ <p> 
' SCALAR ' «r ERROR ~ * CHARACTER- - , 

S+C 

VECTOR #6 ERROR— ‘ * 

MATRIX <a ERROR 

BIT STRING 4 - ERROR ’ 4» ‘9 ERRCSR *_ - . * BIT STRING 

<P> <P> . . . ‘ , . P CHggggggR CHARACTER CHARACTER ERROR .ERROR CH;:;CTER <,> 
' I+c s+c ' B+I+c . CHARACTER 



7.0 STATEMENTS 

7.1 Assignment Statements 

. The assignment statement is used to evaluate an expressioh 

and to assign its value to one or more target variables; The 

target variables may be integer, scalar, vector, matrix, bit and 

character variables, arfay varigbles of these types, , 5 

subscripted §ariab1es, or structures. 

GENERAL FORMAT: 

[<label>:]<variable-name>[,<variable-name>] = <data-expression>; 

where, ‘ i - 

<data-expression> = {<arithmeticI<stringI<array}-expression 

GENERAL RULES : 

1. An assignment is performed in the following steps; 

a. subscripts of the target variables are evaluafed; 

b. the expression on the right hand side of = is evaluated; 

0. the target variables are asSigned. 

2. If more than one <variable name> appears on the left hand 

side of = then all the names must be of identical da£a 

organization. (Several different data types may be included.) 

3. The dimensionality of the right hand side expression must I 

be identical to that of the left hand side variables wifih' 

the following exceptionsi 

a, string assigfiments (See Sec. 7.1.2); 

b. assigning zéro (0) to arithmetic variables; e . g r ,  
. l _. _. * . v, R = o; [M] = 0; A,B¢C,D = 0;are acceptable forms; 

7—1_- 
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c. harray assignmentg (see Set. 7.1.3) 

EXAMPLES : 

A, E} E } fi ' =  VECTOR (1, o, o, P/C);‘ 
. . . . '  .. * _  .. 
D = A P + M F + L O G ( A ) Z ;  

BAKER: Bl TO 8 = C3 TO 4I|A’ 
E = EVE; *:3 

ABLE: [A15LE] = BIT2’10:([P]20 AT J); 
are all valid assignment statements. 
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7.1.1 Implicit Conversions 

7.1.1.1 Type Conversions. Implicit conversioné are performed 

on the fOllowing-assignmehts: . 

l.' Scalar and bifi expressions t6 integer target 

'variables. 

21 Integer and bit expressions to scalar target 

variables. The bit result is first converted to 

' intéger, and then to scalar. 

3. Integer and scalar expressions to bit target variables. 

The scalar result is first.converted to integer, and 

then to bit. 

4. Integer, scalar and bit expreésions to character 

target variables} The bit result is first converted 

to integer, and then to character. 

EXAMPLES: 

A = é l l é f  

'I = A2; 

A = I — é; 

ABLE: éExm = é l l é ;  

7.1.1.2 Precision ConverSion. The resultant precision of an 

expression is converted to the pfecision of the target variable: 

EXAMPLES: (32 bit word length) I I 

1. DECLARE PRECISION (lO)VECTOR A; 

D §'= K'* E; 

All-vectdrs are floating point; the components of K are 

.. 
' 7 - 3  
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held in double precision. filis first converted to double 
.precision, the cross-product is performed, and the result is 

converted to single precision on assignment’to i} 

2. DECLARE PRECISION(5,12) A,B; 

DECLARE PRECISION(21,12) C; 

AI: B + C; 

All quantities are fixed point; A and B are single length; 

C is double length; The fiumber of fractional bits for each 

variable fills out the word length (less sign bit); thus, 

effectively, 

. A  and B become (5,26) 

C becomes (21,42) 

The precision conVersions are as follows: 

b. The result is converted back to single precision; 

i.e. (5,26) when assigned to A. 

7.1.2 String Assignments- 

7.1.2.l Bit Strings. When the length of a bit string expression 

and the target variable are unequal, the expression result is 

truncated on the left if it is too long, or padded with zeros 

on the left if it is too short. The resulting value is assigned 

to the target variables. 

7’4. 
INTERMETRIQS INCORPORATED ° 380 GREEN STREET -‘ CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840 

I a. B is converted to double precision and added to C. 



EXAMPLE: 

S1 T0 6 = S2 TO 4’ 

S1 TO 6 = B20 AT P; BAKER: 

are examples in which padding and truncation will occur. 

7.1.2.2 "Boolean" Assignments. A one-bit stringmay be viewed 

as a Boolean variable and can be assigned as follows: 

-'A = {{TRUEIONIBIN'l'}|{FALSEIOFFIBIN'O'}}; 

Note that TRUE and ON are literally the binary constant BIN‘l'. 

A long bit string may be zeroed by an assignment; i.e.: 

_B1 TO 18 = FALSE; 

However, B1 TO 18 = TRUE;sets bit 18 equal to 1 and the rest 

equal to 0. 

7.1.2.3 Pseudo—Variable Bit String_Assignment. BIT strings 

may be assigned directly to the bit representation of other data 

types by using the pseudo—variable BIT. 

GENERAL FORMAT : 

BIT (<variab1e—name>) = <bitrstring-expression>: <index-expression> 

GENERAL RULES : 

1. ,<variable—name> may be the name of an integer, scalax, bit, 

or character variable, or an array variable of thése types. 
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EXAMPLES: 
. . .. ' l .  
1. BIT6 TO 10(A) — BIN(5) 1', 

The scalar A is interpreted as a bit string and the bits 6 

to 10 are assigned all l'é. 

bits 1 to 8 are assigned the result of the string concatenation. 

. I O o 

2. BIT1 TO 8(cm) = Hl lA;  

The character C16 is interpreted as 

-3. BIT(A) = SIIMANTISSAIIEXPONENT; 

The scalar A is interpreted as a bit string and is assigned 

'é floating (or fixed) point format directly from a bit 

string expression. 
. .  

7 ; 1 . 2 . 4  Fixed Character Strings. Assignmeht is similar to that 

a bit string and 

of bit strings except that extension or truncation is applied g 

on the right. Thus, the expressiofi value is truncated on the- 

right if it is too.long or padded on the 

is too short. The resulting is assigned 

right with blanks if it ; 
to the target variables. 

EXAMPLES: 

I II I 
1. C = 'ABC'; sets Cl TO 3 = 'ABC' and blanks the rest of C. 

.I 7 - I - 
‘ , .._ l I .  2. Cl TO 3 — ABC , leaves the rest of C alone. 

I I ' i . ._._. I I .  3. , 3  TO 5 ABC , leaves the rest of C alone. 1 
I 

4. .3 TO 80 = 'ABC'; leaves characters 1 and 2 alone, and blanks 

characters 6 to 80. 
I I 
. __.._. I I .  = | g V V. 5. C3 T0 4 ABC , sets C3 TO 4 AB and lgaves the rest 

_ I 
of C alone. 
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7.1.2.5 Vafying Character Strings. 

GENERALRULES: 

1. If the value of the expressiofi is lénger than the maximum 

length declared for the variable, thg value is truncated dn 

the right? The target string obtains a current length' 

equal to its maximum length. O 

2. If the value of the expression is not greatér than the maximum 

length, the value is assigned; the target string obtains a 

current length equal to the length of the value. 

3. If the target string is subscripted, the string partition 

is considered a fixed length character string and the expres- 

'sion is assigned according to the rules of Sec. 7.1.2.3. 

If the target variable length is Shorter than the upper index 

of the subscript expression, the target variable is padded 

on the right with blanks apd the expression assigned. If 

‘ t h e  length is longer than the upper index, the expression ié 

assigned, leaving the other characters alone. If-the upper 

index exceeds the string maximum length, the assignment is 

truncated at the maximum length. 

EXAMPLES: (let 6 be a varying string of fiaximum length 10) 
I I 

l. C = 'ABC';sets the length of C to 3 
I I 

2. C 'ABC'||'BFG';sets the length of C to 6 
I 

C3 To# 
to the end; i.e. the length is set to the maximum length 

3. = CHAR(3)'ABC';assigns;'ABCABCAB' from character 3 

. of 10. 
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C7 TO 9 = 'POP';assiéns POP to characters 7, 8, 9. If the 

original length is <6, the string is extended with blanks. 

and the length set to 9. For example, suppose C werev 

.equal to 'ABC', then the result of this assignment would be 

'ABCMMMPOP'. 

7.1.3 Array‘Assignments 

GENERAL FORMAT: 

[<label>:]<array-variab1e-name>[,<array—variab1e-name>]... 

='{<type-expression>l<type—array-expression5}; 

GENERAL RULES: 

1. If the expressidn on the right hand side of = is a <type— 

expression>, the result of the expression is assigned 

to every target array element in sequence. 

2. If the expression on the right hand side of = is a (type— 

array—expression>, the result of the expression is assigned 

to the target variables, in sequence, on an element- 

by-element basis. 

EXAMPLES: . . 

[A] = 5; [V1,[W] = VECT0R(A,B,C,D); 

[A] 

statements. 

[A] + 5; [A] = [B][C]:are all valid array assignment 

7 - 8 .  
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7.2 Declaration Statements 

See Section 5 . 0 .  

7.3_ Control Statements 

7 .3 .1 '  The GO TO Statement 

The GO TO statement causes control to be transferred to 

the specified statement. 

GENERAL‘FORMAT: 

GO TO. <labe1>; 

EXAMPLE: 

X = A; 

GO TO BAKER; 

ABLE; P = Z; 

Y; 3
*
 

BAKER: V'= 

7.3.2 DO Statements 

The DO statements constitute a set of four executable 

statements. Each DO statement defines a-group of statements  

which are treated as a single unit. The four DO statements 

are: the simple DO, the iterative DO WHILE and DO FOR, 

and the selective D0 CASE. ‘ ' 

A GO TO statement can tranéfer control from outéide a group 

to a statement within a group.. Special care must be taken to 

initialize necessary quantities in the cases of the iterative 

DO statements. 
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7.3.2.1 Th§9§;mg}§wDO StatemeQE. 

GENERAL FORMAT: 

[<1abe1>:]DO;[[<label>;]<statement>]...[<label>:]END[<1abel>]; 

GENERAL RULES: 

1. <statement> may be any executable statement including 

_ another DO statement. 

EXAMPLES; 

"BAKER: DO; 

Y = B; 

D0; 

Z = C; 

_. * _. 
W = M V; 

END; 

END BAKER; 

Note that this example has been indented for clarity and does 

not imply an established input source—output listing format 

design. 

7 . 3 . 2 . 2 '  DO WHILE Statement. The DO WHILE statement serves 

as a means of executing a group of statements repetitively as long as 

a cbndifiion is met. I 

' GENERAL FORMAT: 

[<1abel>:] DO WHILE <iogical—condition>; 

[[<1abel>:]<statement>]...[<labe1>:]END[<label>]; 

7 + 1 0 _  ' . 
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where 

.<ldgical-condition> = {<re1ational—expression>{ANDIOR} 

<relational—expreésion>l[NOT]<single—bit-expressiOn>} _ 

and the <single-bit-expression> is a bit string expression 

with only single bit operands (Booleans). 

‘GENERAL RULES: 

1; The <1ogica1-c0ndition> is within the loop structure of the 

DO WHILE group and is re—evaluated each time before 

execution of the group of statements: 

2. When the <logica1—condition> is not satisfied the DO WHILE loop is 

terminated and control is transferred to the first executable 

statement following the END statement. 

EXAMPLE; . 

‘ . ABBEtfpo WHILE (X>Y AND B6=TRUE)OR([A] = [3 ] ) ;  
P = LOG(Z); l 
* * * - 1 
M = N + Q ;  i 

Y = ”3,23 
END ABLE; ' ‘ _ j 

7 ; 3 . 2 . 3  The DO FOR Statement. The DO FOR statement serves as 

a means of executing a group of statements repetitively for a list 

of values of a control variable and a logical condition. 

GENERAL FORMAT : 

scalar [<label>:]DO FOR<{integer } variable> = 

<for—list element>[,<for-1ist element>]... 

IWHILE<logical—condition>]; 

[[<label>:]<statement>]...[<label>:]END[<label>]; 

' i 
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where 

' . ' . - scalar . _ . 
<for-llst element> = < ; ex 5'1 n> <-o~ex ress n>. _ . _ {1nteger} pre 5 o. [ t p_ . .10 

[<by—expression>]] 

. " ‘ scalar I L <to-expre531on> = TO<{. }expre551on>. 
1nteger 

and 

. - scalaf . ’  
<b —ex re351on> = BY< . ex re551on> 

y p {1nteger} p 

GENERAL RULES: 

1. The sdalar or integer assignment means that a single variable 

(control variable) will be assigned scalar or integer values. 

The_control variable takes on the successive values specified 

by the <for—1ist elements>. 'If the element is simply a scalar 

or integer expression, the control variable is set equal to 

-this value prior to a pass through the 100p. If the element 

involves <to— and <by—expressions>, the control variable is 

compared with the value of the <to—expression> prior to each 

pass, and is incremented by the <by—expression5 at the con- 

clusion of each pass. 

If the <by-expression> is ndt provided, the group bf statements 

wil; be evaluated repeatedly, incrementing the assigned con- 

trol variable by 1 until the control variable is g¥eater than‘ 

the value of the <to-expression>. 

If the <by-expression> is provided, thé group will be evalfiated 

repeatedly, incrementing the assigned control variable by the 

value of the <by-expression> until the control variable 

exceeds (if the <by-expression> is positive) or is less_ 

than (if the <by-expression> is negative) the value of the ‘ _ 
<to—exPression>. 3 
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' 5; .The effect of the <1ogical-condition>; if provided, is the 

. same as for the DO WHILE statement. ’ 

6. The <to— and <by-expressions> are not within the loop struc- 

ture of the DO FOR group and are evaluated only once. The 

{logical—condition> is within the 105p and is evaluated before 

each pass. . A I 

EXAMPLES: 

1; DO FOR I-= 1 T0 10 BY 2; 

X = Y; 

Y = X + 2? 

END; 

This loop will be executed five times. 

2. BAKER: L = Q/R; 

ABLE: DO FOR I = P TO (N/S) BY L WHILE N > 6.046; 

X = Y2 + AI; 

- N  = N - . 0 0 6  X; 

END ABLE;w 

Note that the value of thé <to-expression> (N/S) is only 

computed once. The condition N >0.046 is applied before- 

each pass. 

7.3.2.4 DO CASE Statement. The DO CASE statemenf provides a 

means of executing a seleéted statement from a grbup of statements. 

GENERAL FORMAT: 

[<1abel>:] DO CASE <case—exfiression>; 

[[<label>:<statement>]...[<1abe1>:]END[<label>];_ 

where the <case—expression> can be éither an integer expression 
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or'a scalar expréssion. The result of a <case—expression> is 

rounded to the nearest integer before use. 

GENERAL RULES: I 
l; The <case—expression> results in an integer, used to designaté- 

which one of the included statements will be executed. A 

.value of l specifies thé first stategefit, 2 the second, and 

so on. An integef result outside the case rangé will be in 

error. The compiler will annotate the listing, indicating 

Case 1, Case 2, etc. 

2. The <statements> may be any of the executable statements, 

including other DO statements. 

EXAMPLES: 

ABLE: DO CASE N; 

' 2  ~x’= Y ; /*CASE 1*/ 

DO CASE P; /*CASE 2*/ ' 
F = A + B; /*CASE 1*/ 

6': fl V3 /*CASE 2*/ 

END; 

GO TO CHARLIE; /*CASE 3*/ 

2'= W”+ E; /*CASE 4*/ 

END ABLE; 

7.3.3 END Statement 

The END statement delimits the do—greups. 

GENERAL FORMAT: 

[<label>:]END[<labe1>]; 

2 
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GENERAL RULES: 

1, The END statement terfiinates the group headed by £he 

.nearest preceding DO statement which has not already been 

'terminated by an END statement. 

.2. If a label follows END, the corresponding DO statement   

must have that same label. 

7 ; 3 . 4  .The IF Statemegp 

The IF statement specifies the evaluation of a logiCal 

condition and a consequent flow of control dependent on Whether 

the Condition is true or falée. 

GENERAL FORMAT : 

[<1abel>:]IF<logical-condition>THEN[<label>:]{<statement>l 

<basic-statement>ELSE[<1abe1>:]<statem§nt>} 

where 

a. the <logicai—condition> has a true or false result; its 

formét was described in Sec. 7.3.2.2. 

b. the <basic-statement> is any executable statement except 

- an IF or END statement. 
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c. the <statement> is any executable statement (including 

another IF statement) except an END statement. 

GENERAL RULES: 

1. .If ELSE is not included, a true condition will cause 

execution of the statement following, and a false condition 

will cause control to paSs to the statement following the 

IF statefient. 

2. If ELSE is present then a true condition will cause execution 

of the <basic-statement> following THEN and a false condition 

will cause transfer of control to.the statement following 

ELSE. 

3.‘ The IF statement format requireé that an ELSE be preceded 

by an IF and not by another ELSE. As a result the executiog. 

of a <statement> following ELSE occurs only if the <logica1f 

dondition> associated with the nearest preceding iF* is false. 

EXAMPLES: 

l. ABLE: IF é THEN IF é THEN X = 5; 

. ELSE D: GO TO BAKER;I 

CHARLIE: Y = 6; 

2. IF X>100 AND Y<3 THEN P: GO TO ABLE; 

ELSE IF é OR 6 THEN 

DO; 

Y = A + B; 

ABLE: §'= fi V; 

END; 

ELSE Y = A I -  B; 

.*-IF statements within preceding do-groups do not apply. 

' 3 7—16 - 
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7.3.5 The_NULL Stqtemggt 

The NULL statement is a nOroperation.' 

GENERAL FORMAT: 

[<label>:]; 

EXAMPLE: 

IF X<5 THEN ABLE:; 

ELSE IF X<10 THEN GO TO HOME; 

7.3.6 REPLACE Statement 

The REPLACE statement provides a means of spedifying the 

substitution_of a string of charaéters for an identifier; The 

character string must be contextually correct where'substituted. This 

is a compile~time feature and not a run—time executable statement. 

'GENERAL FORMAT: 

REPLACE<identifier>BYf<character~string>': 

GENERAL RULES; 

1. The <identifier> may not be a keyword or any word used 

by the language syntax (e.g.,TO or WHILE). 

2. The <Character-string> must be written in one—line format. 

3. The <Character-string> will be substituted, literally, whenever 

the identifier is encountered within the progfam. Substitution 

is accomplished within the compiler and does not appear in the 

listing. 

4. The <identifier> may not be a <parameter> in the PROCEDURE or 

FUNCTION statements. 
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EXAMPLES: 

1. REPLACE P BY 'LOG(F) + Y**2‘; 

B = z +.P; ' 

2; REPLACE D BY 'GO TO ABLE:'; 

IF B>6 THEN G ELSE D 

3. REPLACE A BY'(106.ZB—32)'; 

DECLARE B INITIAL A; 

4. REPLACE FIRE_JETS BY 'GO TO F_J;‘; 

FIRE_JETS 
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7. 4 Procedures and Functions' 

Procedureé and functions are subrofitines consisting of one 

or more statements which are intended to be written once but 

used at various points throughout a program. The primary distinc— 

tion between procedure and function is that the procedure must be 

invoked by a CALL statement, and may accept and return lists of para— 

meters of different data types, while a function is invoked by the 

appearance of its name as an operand and can return only a single 

data type or result. - 

7.4.1 Procedures 

7.4.1.1 PROCEDURE Statement. The PROCEDURE statement identifies the 

beginning of a block of statements which forms a procedure; it defines 

the entry point and specifies the input and output parameters. 

. GENERAL FORMAT: 

<procedure-label>:PROCEDURB[<procedure-parameters>] 

[ASSIGN<assign-parameters>]; 

{[<1abe1>:]<statement>|[<1abe1>:]RETURN;}...' 

[<label>=]CLOSE[<procedure-label>]; . 

where 
<procedure—parameters> = (<name>[,<name>]...) 

and 

<assign—parameters> = (<name>[,<name>]...) 

GENERAL RULES: 

1. The <procedure~parameters> are interpreted as input data to- 

the procedure. They are fqrmed parameters; that-is, they do 
. I. ‘ 
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not exist in of themsel§es and are no more than dummy variablés 

£hat'indicate what.to do, within the procedure block, with 

the actual <call—argumenté> in the_CALL statement (see Sec. 

-7.4.l.2). If the <Call—arguments> age names (not expressions), 

the <prodedure—parameters> are in fact the same data locations 

as the <call—arguments>. 

2. The <procedure-parameters> may not be assigned values within 

-the procedure block; i.e., they may not appear on the left 

hand side of an assignment statement. 

3. The <assign-parameters> are also dummy variables and represent 

the computed output data of the procedure. They are in fact 

the same data locations as the <assign—arguments> in the CALL 

statement. 

<assign~apguments>and <procedure— and <assign—parameters> must 

be identical (see Sec. 7.4.2.3). 

5. EXecution of a procedure may be terminated by a RETURN statement 

(see Sec; 7.6) or by logically reaching the CLOSE statement; 

' control is returned to the caller. 

6. Local variables may be defined within a prodedure block by 

declaration statements and implicit declarations. See Sec. 

8 . 1 . 1  for-discussion of Scope of Names. 

I 4. The data-types and attributes of corresponding <call- and 
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EXAMPLE: 

TIME: PROCEDURE(X}B)ASSIGN(E); 

_--— ‘ 2 .  C — A(F1+F2 B+F3 B ), 

IF B>L THEN RETURN; 

E = 1 o o E ;  

CLOSE TIME; 

7.4.1.2 CALL Statement. A procedure is invokéd by a CALL 

statement which may define a set of input and output arguments 

and which transfers control to a specified entry poinf. 

GENERAL FORMAT: 

[<label>:]CALL<procedure—label>[<call—argument>] 

[ASSIGN<assign~arguments>]; 

where <procedure-label> is the label associated with the PROCEDURE 

statement and ‘ 

<call~arguments> = ({<name>l<expression>}[}{<name>l<expression>}]... 

<assign—arguments> = (<name>[,<name>]...) 

GENERAL RULES: 

1. <call—arguments> will be used only as input information to 

the procedure. ' 

.2. <assign—arguments> may be assigned values computed within 

the procedure blocks and may also supply input information to 

the procedure. 

7 ~ 2 1  
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EXAMPLE: 

ABLE: PROCEDURE; 

' V = 3 { ' + Y ;  

CALL TIME (V) T) ASSIGN(W); 

§'= *V} 

3
*

 
i

n
 

W
I
 

P =  ,; 

" CLOSE ABLE; 

TIME: PR0CEDURE(X)B) ASSIGNKE); 

6': X(F1+F2 B+F3 32) ;  

IF B>L THEN RETURN; 

5 : 1 0 0  E; 

CLOSE TIME; 

7.4.2 Functions 

7.4.2.1 FUNCTION Statement. The FUNCTION statement identifies 

the beginning of a block of statements which form a function; it 

defines the entry point and specifies the data—type of-the result. 

GENERAL FORMAT : - 

<function—label>:FUNCTION[<function—parameter>] 

[<type—spec>]; 

{<statement>IRETURN(<expression>);}... 

[<label>:]CLOSE[<function—label>]; 

where 

<function—parameters> = (<name>[,<name>]...) 
L 
I 
I 
I 
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GENERAL RULES: 

1. If <type—spéc> is not provided and is.not specified in a 

declaration, default characteristics are-used. 

'The <function—parameters> are interpreted as input data to 

the function. They are formal paraméters; that is, they do 

not exist in of themselves and are no more than dummy variables 

that indicate what to do, within the function block, with the 

actual <functipn—arguments>'in the function reference (See 

Sec. 7.4.2.2). If the <function-arguments> are names (not 

-expressions), the <function—parameters> are in fact the same 

data locations as the <function-arguments>. 

The <type—spec> specifies the characteristics of the function 

fesult. Arrays and structure organizations are not allowed. 

The data~types and attributes of corresponding <function— 

arguments> and <function—parameters> in the reference and 

FUNCTION statements must be identical. (See Sec. 7.4.2.3) 

A function must have at least one RETURN statement and 

execution may only be terminated by a RETURN statement; 

control is returned to the caller. An error message will be 

generated at run-time if the process logically reaches the 

CLOSE statement. 

Local variables may be defined within a function block' 

(see Sec. 8.1.1). 
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7 . 4 . 2 . 2  Function Referenbe. A function is invoked by a function 

reference which may défine a set-of input arguments and whiCh' 

transfers control t o ' a  specifiéd entry point. 

GENERAL FORMAT: 

' <function~label>[(<funpti0n—arguments>]...] 

where. 

<function-arguments> = ({<name>l<expression>}[;{<namé> 

I <expression>}]... ' g 

GENERAL RULES: ‘ 

l. The <function—arguments> will be used only as input infofma- 

tion to the function. . 

2. The <function—labe1> is treated as an Operand whose value is 

computed within the function. 

EXAMPLE: ' 

ABLE: 3 = E TRACER(§+E); 

TABLE: GO TO EAKER; 

TRACER: FUNCTION(5); 

R = TRACE(5'5'1 + 5 + 5 5 + 5 5 5); 
IF R>100 THEN RETURN R; 

ELSE RETURN OF 

CLOSE TRACER; 

.7.4.2.3 Paraméte: Declarations. Scalar, vector, matrix, bit 

and character string parameters may be declared implicitly, with 

default attributes, by their appearance in PROCEDURE and FUNCTION 
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statements with appropriate annotation. Thus, for example 

’ I. ABLE: FUNCTION(A,§,E,£),é); 

Array—parameters and parameters with other than default attri— 

butés require explicit DECLARE statementé internal to the proée— 

dure or function blocks, in addition to appearing in the lists 

of parameters (annotation being optimal). 

For cerfain applicationsit may be convenient not to specify 

the length or dimensions of parameters but instead, have the 

parameters take on these Characteristics from the corresponding 

arguments in the CALL or function—reference statements. This 

may be accomplished by substituting an asterisk (*) for the 

length or dimensions in the DECLARE statements. 

GENERAL RULES: I 

1. With reference to Sec. 5.1.1, vector length, bit length, 

character length and varying character maximum lehgth may 

be specified by asterisks. 

2. Fof arrays, shape may be specified by combinations of 

literals and/or asterisks. 

3. For matrices, rows and columns may be specified combinations 

of literals and/or asterisks. 

EXAMPLES: 

1'. TIME: PROCEDURmK) ASSIGN(E); 

DECLARE VECTOR (*), '23:, E; 

CLOSE TIME; i 
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2. ABLE: PROCEDURE(§}§)‘ASSIGN(§); 

'-DECLARE v VECTOR (*); 

DECLARE M MATRIX (3,*); 

DECLARE Y VECTOR ( 4 ) ;  
w. * _. 
Y = M V; 

O \ 

CLOSE ABiE; 
Comment? V} fi, K are parameters. Yhis a local variable. 

Note that fi'is declared by appearance as an <assign—parameter>; 

With no explicit DECLARE statement for fi, default attributes 

-are used. 

7 . 4 ; 2 . 4  Functions of an Array. When a <function—argument> 

is an array, the cdrresponding <function—parameter> may be éither 

a single variable or an array~variab1e of the same data—type. 

If a single variable, the function has been designed to Operate 

on each array element sequenfially, element—by-element, If an 

array, the function accepts the input array as a unit. 

EXAMPLES: 

1.. DECLARE B ARRAY (4); 
DECLARE C ARRAY (4); 

[C] = FUZZ([B]); 

F U Z Z :  FUNCTION ( X ) ;  

TEM = 1 + x/2 + X2/6 + x3/24; 

‘RETURN(TEM); 

-CLOSE FUZZ; 
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FUZZ will be executed 4 times and return 4 séalar results 

which will‘be assigned to the component of array C, in sequence. 

'If the <function—parameter> is an array—variable, theh the 

'function accepts the input array as g unit. The function- 

will operate on the "inner—most" frée indices qf the array 

argument consistent with the expression. . ' 4 

2. DECLARE B ARRAY (4) VECTOR; 

BUZZ: FUNCTION([21); 

DECLARE X ARRAY (4) VECTOR; 

ABD. == 3E1: + 352: + X3: + 354:; 

' RETURN (A513): 
CLOSE; 

3': BUZZ ( [§ ] ) ;  
BUZZ returns a single vector. 

3. DECLARE A ARRAY(5) , B ARRAY(5,4); 

[A] = SUMHBJ); 

This Statement is equivalent to the following "DO FOR-loop" 

sequence of operations: 

. D O  F O R I  = 1 T 0  5; 

I 

END; 

A = SUM([BI’*]); . 3 

Note that SUM is a linear array function. 
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7.5 Programs 

'In HAL, a program is the smallest compilable unit. It 

may contain ail of the program elements and statements defined, 

except PROGRAM statements; i.e. declarations, executable state- 

ments, procedures, etc. 

7.5.1 PROGRAM Statement 

GENERAL FORMAT : 

<program—label>:PROGRAM; 

{<all—statements>}... 

[<1abel>:]CLOSE[<pnram—label>]; 

GENERAL RULES : 

l. <all~statemehts> may contain all valid syntax. 

2. 'A program may be called using the CALL statement with the 

<program-label>(no parameters may be passed). 

3. Execution of a program may be terminated by a RETURN state- 

ment (See Sec. 7.6) or by logically reaching the CDOSE 

statement; control is returned to the caller. (Also, see 

the real-time contrbl statement TERMINATE in Sec. 9.) 

4. A program can be scheduled in real—time through the system _ 

executive (see Sec. 9). 

7-28 

INTERMETRKSS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840' 



7.5.1.1 Program Calls. The CALL stafiement méy be used to call 

one.program from another program. The logical result is similar 

to calling a procedure; i.e., control is transferred to the program 

called and returned when the program is completed. The CALL state— 

ment is of the form: 

CALL.<program—label>; 

In célliné a program: 

1. No arguments may be passed; all communications must 

be through a COMPOOL. - 

2. All static variables are allocated on program initiation, 

and released when the program ends; i.e., variables with the 

INITIAL attribute are initialized, others take on unspecified 

values. 

~3. Control is returned to the caller at the statement following 

the CALL statement, when a RETURN or CLOSE statement is ' f 

reached. - 

4. A program cannot call itself. 
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7.6 RETURN Statement 

The RETURN statement terminateS'the execution of a procedure; 

function or program. 

GENERAL FORMAT: 

[<1abel>:]RETUhN[<exPression>]; 

GENERAL RULES : 

1. In terminating a procedure or program, the RETURN statement 

must not include an expression. 

2. In terminating a function the data type of the <expression> 

must agree with-the type specified for the function. 

3. The result of <expression> may not be an array. 

4. The RETURN statement returns control to the caller. 
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7.7 CLOSE Statement 

The CLOSE statémenfi delimit; the blocks of HAL statemen£s 

lwhich have name scope*; viz. probedures, functions, programs, 

tasks** and updaté** blocks. 

GENERAL FORMAT: 

[<label>:]CLOSE[<labe1>]; 

GENERAL RULES: 

1. The CLOSE statement delimits the block headed by the 

nearest preceding PROCEDURE, FUNCTION, PROGRAM, TASK or 

UPDATE statement which has not already been delimited 

by'a CLOSE statement. 

2. If a label follows CLOSE, the corresponding "heading" 

‘sta£ement must have that same label. 

3. For a procedure, program or task, execution of the CLOSE 

statement returns control to the caller} 

4. For an update block, execution of the CLOSE statement 

causes no operation. 

5. For a functiOn, execution of the CLOSE statement is an 

error. 

* See Sec; 8.1.1 

** See Sec. 9. 
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8.0 HAL PROGRAM ORGANIZATION 

A HAL prégram organization consists of one or more indepefi~ 

dently compilable programs and a symbolic library. The library 

maf‘contain a common data pool (COMPOOL) and all valid HAL ' ' 

syntax. Variables declared in the COMPOOL are available e 

use in any program. Library routines may be compiled into 

any program by directive. The organization is designéd to 

prbvide programmer convenience and flexibility and yet maintain 

control and visibility of commonly used data. 

8.1 Program Structure 

A program (<program-block>) is the Smallest compilable 

unit and_is delimited by PROGRAM and CLOSE statements. The 

<program~block> may contain the following elements: 

<program~block> = <program#étatement>[<declére—group>] 

'{<all-statements?I<task~block>|<sub-block>}..; 

<close—statement> 

where, 

<declare—group> = [<replace-statements>][<Outerf-statements>] 

> [<default**-statements>][<declare—statements>] 

<a11-statements> = all executable statements including 

do-groups and update***-blocks 

<task4block> = <task***—statement>[<declare-group>] 

'{<all—statements>I<sub~blocks$}...<close—statement> 

* See Sec. 8.1.2 , g 
** See Sec. 5.5 
*** See Sec. 9.4.2 
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'<sub-block> = {<procedure95tatément>I<function~statement>} 

I<declare~group>]. 

{<all-statements>|<sub-blocks>}...<closééstatement> 

<program-blocks> and contained <taékeblocks> and <sub- 

block> (and further nested <sub—blocks>) define boundaries, 

or regions, within which names and labels are recognized and 

may be used for computation afid control. The region in which 

a name or label is potentially recognizable is called its scope. 

8.1.1 Scope of Nameg 

The scope of a name is defined as the block in which it 

is declared and extends to all Contained (and nested) blocks. 

For example, names defined in the COMPOOL are potentially recog- 

nized throughout every <program-bloék>; names defined in a 

<program—block> may be recognized in all enclosed <task— and 

<sub-blocks>; names defified in <task- and <sub~blocks> may be 

recognized in all nested <sub~blocks>, etc. Note that a name 

defined within an inner block is 23333 fecognized in an outer 

block. (To be more precise, the named variable or constant is 

never recognized in an outer block; the name itself} designating 

various data quantities, may appear in a number of blocks.) 
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Identical name declarations for twé or more quantities 

cannot exist within the same name scepe; however, duplicate 

names are allowed in different scopes. The following example 

illustrates this principle: 

ABLE: PROGRAM: 

DECLARE VECTOR(5) A, B; 

BAKER: TASK; 

DECLARE A INTEGER; 

CHARLIE: PROCEDURE} 

DECLARE A BIT? 

DECLARE X ; 

CLOSE CHARLIE: 

CLOSE BAKER; 

'GRAB PROCEDURE; 

DECLARE X VECTOR ( 4) ; 

CLOSE GRAB; 

CLOSE ABLE; 
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Comments: 

lv The vectors K and E have been declared at the program level J 

and their scope is the entire program unless superseded by 

a declaration in an inner blOck (or obscured by omission 

from an OUTER statement, see Sec. 8.1.2). 

2. In the task BAKER, A is an integer (the vector X 

‘will no longer be recognized); fi is recognized. 

3. In.the inner procedure CHARLIE, A is re~defined again, being 

remains the entire program. 

4. In the procedure GRAB, X and E remain defined at the program 

level and i is declared at a local level; Note that although 

the names are the same, the variables represented by X in 

GRAB a n d - X _ i n  CHARLIE are different. 

8.1.2 Selective Inclusion of Outer Names 

In the previous example names declared in.an outer block 

were known to the inner block unless the inner block declared the 

same name. Another mechanism is provided to include (or reject) 

outer names selectively. The OUTER statement is an explicit. 

means of specifying which "outer" names are to be known within the 
1 

! 
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block; outer names which would.have been known but which are 

nqt listed are hidden. Thus, for example, 

ABLE : PROGRAM; 

DECLARE A, B, C, D; E; 

BAKER: TASK; 

OUTER B, D; 

DECLARE A ; 

The program ABLE has deélared names A, B, C, D, E which would 

he known in the task BAKER. However, the OUTER statement in 

BAKER only allows B and D to be known, and further BAKER redefifies 

A locally. Note that the absence of an OUTER statement means 

that all outer names will be recognized withinaaparticular inner 

block, while the inclusion of OUTER with no list of names completely 

isolates the inner block from any outer-declared names. 

8.1.2.1"Inc1usion'o ‘Structure Names. Structure names may also 

be included by listing the structure name(s) in the OUTER state~ 

ment according to the following rfiles: 

1. For a qualified structure, ohly the major structure name 

may be listed; the result being that all associated minor 

structure and terminal names are included implicitly. 

S 
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2. For a not—qualified structure, the major structure name 

and all associated minor structure and terminal names may 

be listed. Only those names that are listed will be 

recognized within the block. 

8 . 1 . 2 , 2  Implicit’DeClaration'bf‘Names. Implicit declaration- 

of names wil} not be allowed unleés the block contains an OUTER- 

statement. Only those names appearing in an OUTER statement 

and those exfilicitly declared within a block will be undvailabie' 

for implicit declaration. 

-When no declarations pfecede the PROGRAM-statement, the 

compiler permits implicit declarations at the program level as 

though an OUTER—statement with no list had been included. 

8.1.3 Scope of Labels 

Labels are used for control purposes; to transfer control 

as in GO TO <label> or CALL <label>. The labels "name" the 

entry—points to programs, tasks, functions, procedures, updates, 

do—groups and statements. The scope of labels generally follows 

the same rules as for names with the following exceptions: 

l. The GO TO and CALL statements imply the existence of a 

label. If the label does not appear in the block in which 

the statement is written, the GO T0 or CALL must refer 

to a label in an outer block; if the label does appear in 

the same block (before or after the statemeht), the state-v 

ment refers to this label. 
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2. If a GO T0 or CALL statement refers to a label in an 

outer block, the label must appear in the listing prior 

to the s£atement or be declared éxplicitl? in a DECLARE 

statement. 

3. Function names (i.e., <function—labels>) must always 

.be defined in the listing prior to their use, even if the 

FUNCTION statement and the function reference appear 

within the same block.‘ A function namé may be defined 

by its appearance in a FUNCTION statement or by explicit 

declaration in a DECLARE statement. 

EXAMPLES: 

A: PROGRAM; A: PROGRAM; 

X: Y = Z + 3; X: Y = Z + 3; 

B: PROCEDURE; B: PROCEDURE; 

90 TO x; GO TO x; 

CLOSE B; ‘ _ ’ X: F = G + H; 

CLOSE B; 
CLOSE A; 

CLOSE A; 
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If #1, no label X appears in B, therefore control is trans— 

ferred to the X appearing in A. In #2, control will be transferred_ 

to the X which appears in the same block as the GO_TO X._ With 

reference to #1, if the label X would have appeared in A after 

B, i.e., after its use in the GO TO statément, then X would have 

to be declared explicitly, prior to B, in a DECLARE statement; 

2. #1 _ #2 

A:pmmmm; Azpmmmm; 

ZAP: FUNCTION VECTOR; >DECLARE ZAP FUNCTION 
VECTOR; 

CLOSE ZAP; 
B: PROCEDURE; 

B: PROCEDURE; ‘f _ §'+ ZAP' 
-‘ I 

Y = i + EAP; . 

CLOSE B; ~ ZAP: FUNCTION VECTOR; 

CLOSE A; CLOSE ZAP; 

’ CLOSE A; 

In #1, the function ZAP is recognized in B because its definition 

precedes its use. In #2 the definition has been relocated after 

its uSe, therefore ZAP must be declared, first, using a DECLARE 

statement. 
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8.1.4 Scope of the REPLACE Statement 

With reference to the deScription presented in Sec. 7.3.6, 

the scope of a REPLACE statément is the same as that for a 

DECLARE statement with the following excgptiofi:'the <identifier> 

in a REPLACE statement is never “replaced" as a result of anothér 

REPLACE statement located in an outer block. 

EXAMPLE: 

ABLE: PROCEDURE; 

REPLACE X BY 'Y'; 

DECLARE X INTEGER? 

BAKER: PROCEDURE; _ 
REPLACE X BY ' Z ' ;  

CLOSE BAKER; 

CLOSE ABLE; 

The identifier X appearing in BAKER is replaced by Z. X outside 

of BAKER is replaced by Y. 

8.1.5 Scope of the DEFAULT Statemept 

With reference to the description-presented in Sec. 5.5, 

the scope of the DEFAULT statement is the same as.that for a 

DECLARE statement, 
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EXAMPLE: 

ALPHA: PROGRAM; 

DEFAULT MATRIX(4,7) BIT_LENGTH(24); 
'0' 

J , 1 

- BETA: PROCEDURE? 

DEEAULT BIT__LENGTH (10) ; 

DECLARE E, F, BIT; 

CLOSE BETA; 

CLOSE ALPHA; 

In procedure BETA, which is nested within ALPHA, the 

defaultwtype established in ALPHA remains valid so that E is 

a 4x7 matrix. F is a 16—bit string by virtue of the DEFAULT 

statement in BETA. 
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8.2 The COMPOOL 

The COMPOOL is a centrally defined and Centraliy maintained 

gioup of statements. $he statemefits are limited to REPLACE, ' 

OUTER and DECLARE (the <declareugroup>), and the attributes in 

the DECLARE statements are further restricted to LABEL; 

FUNCTION, dimensions, and PRECISION (also VARYING for charactér 

strings). The names and labels declared in the COMPOOL are 

potentially known t6 all programs and, in fact, provide the only 

means of communication between programs. 

In order to take advantage of the COMPOOL as a data sharing 

mechanism, the programmer must include the COMPOOL statements 

before the PROGRAM statement during compilation. In a sense, 

the COMPOOL is placed "outside" the program block and its scope 

encompasses the program. If another program is compiled in a 

similar manner, using the same COMPOOL, the variables declared 

in the COMPOOL will be recognized in both programs. Thus, for 

example, 

INCLUDE COMPOOL A INCLUDE COMPOOL A 

A: PROGRAM; B: PROGRAM; 

CLOSE A; - CLOSE B; 

It should be noted that if the COMPOOL is included after the 

PROGRAM statement; i.e., within the program block then its 

scope can encompass only the program itself, and declared 

variables cannot be shared by another program. 
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8.3 The Symbolic Library 

I The symbolic library is a centrally defined and centrally 

maintained pool of symbolic sourég code. The library is avail- 

able to all pfograms and may be added to a program by use of the 

compiler directive* 

" INCLUDE<librarynentry> 

The afipearance of this directive causes the symbolic code in 

the object file to be included in the compilation and inseited 

at that point. For example: 

INCLUDE NAVDATA 

A: PROGRAM; I 

INCLUDE AGLOBALS 

INCLUDE ALOCALS 

B' TASK; 

X = A, 

Y = B; 

INCLUDE LOGIC 

CLOSE B; 

C: PROCEDURE; 

IF L>100 GO TO ABLE; 

"ELSE 

INCLUDE CHOICE 

* Compiler directives réquire a D in column 1 of input source 
code line. ' ' 
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ABLE: 

CLOSE C; 

CLOSE A; 

GENERAL RULES: 

The symbolic library may contain source code identical to that 

within a program except that INCLUDE directives are not allowed. 
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9.0 -REAL TIME.CONTROL¢ 

The real~£ime control of HAL programs consiSts of the 

interrelated séheduling of <program— and <task-blocks>, 

lthe reliable sharing of common data, and the recovery from 

abnormal error conditions; 

The concepts and language features introduced in this 

section have been designed for general applicébility to real- 

time control programming. It is recognized that depending upon 

Specific hardWare environments and operating system designs, 

certain features may not find utility.. 

9.1 .TASK Statement 

A task is a subroutine Which is intended to be scheduled 

in real-time through an executive System, The TASK‘stafiement . ' I w 

identifies the beginfiing of a block of statements which form a 

task and defines the entry-point. . ? 

GENERAL FORMAT: 

<task-label>: TASK; 

'{[<label>:]<étatement>l[<label>:]RETURN;}. . . 

[<1abel>:]CLOSE[<task—label>]; ' _' _ 1 

GENERAL RULES: 

1. 'Unlike procedures, tasks do not provide for parameter 

passage and return. Rather, data exchange must be accomplished 

9-1 . _ - 1 
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throuéh variables with common data scope (i.e.; variables' 

defined at the COMPOOL or program levels). 

2, Local variables and.constants may be declared éS.in 

procedures and fundtions. . 

3. Execution of a fiask may be terminé£ed by a RETURN state“ 

-ment, a TERMINATE* Statement or by logically reaching . 

the CLQSE statement. If the task is activated by the- 

executive, termination_causes control t6 be returned to 

the executive. If the task is simply called, as a 

procedure, RETURN and CLOSE return control to the caller; 

' TERMINATE always returns control to the execfitive. 

9.1.1 Task Calls 

The CALL statement may be used to call a task. The 

logical result is similar to calling a procedure; i.e., 

control is transferred to the task called and returned Qhen the 

task is completed. The CALL statement is of the form: 

. CALL<task-label>; 

In calling a task: 

1) No arguments may be passed. 

2) Control is returned to the caller at the statefient 

following the CALL statement, when a RETURN or CLOSE 

statement is reached. 

3) A task cannot call itself. 

v 

* See Section 9.2.4 
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. ' , 9 . 2  SCheduling Statements 

9.2.1 SCHEDULE Statement 

The SCHEDULE statement is used to request initiation 

of'a program or task based on three criieria: 

a) at a specific time (<spec-time>) 

b) in an incremental time (<inc-time>) 

c) onjevents 6r combinations of events (<event—éxpression>) 

where time is expressed in seconds or units specified by 

implementation, and an event is a programmer-defined (see 

Sec. 9.3.1) or system-defined occurrence. The general format 

of the SCHEDULE statement is: 

<program-label> AT <spec-t1me> 
[<label> : ] SCHEDULE{ IN <inc—time> 

<task-label> ON <event-expression> 

[PRIORITY({<p>IPRIO + <q>})][,INDEPENDENT][,<task-id>]; 

<spec-time> and <inc-time> may be <sca1ar— or <integer-operands>. 

<event—expression> has the same form as the <single—bit-expression> 

(éee Sec. 7.3.2.2); i.§-, a logical combination (AND, OR, NOT) 

of event names. 

GENERAL RULES : 

1. A SCHEDULE statement within one <program—block> may be 

used to schedule the program itself, any task within the 

block, or another program. A task within one <program- 

biocka may not be scheduled from another <program-block>. 
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2. Procedures; functions and labelled-sfatements may not 

‘be scheduled._ 

3. <spec—time> and <inc—time> are rounded to the fiearest 

integral number'of timé units befoxe use. 

4.' PRIORITY(<p>) specifies the priofity of initiation. If' 

_two programs (or a task and a program, etc.) are scheduled 

,for the same time (or on the same event(s)), the one 6f 

higher priority will be initiated first. <p> may be a 

posifiive <scalar- or <integer-operand> and represents an 

absolute priority. Relative priorities may be established 

. by using the function PRIO which returns the current 

program or task priority. Thus, PRIORITY(PRIO + < q > )  

requeSts a priority of <q> greater than current pridrity. 

<q> may be a positive or negative <scalarfior <integer- 

operand>. 

5. If PRIORiTY is not provided, scheduling will take place 

with current priority. 

6. if INDEPENDENT is provided, the scheduled program 6r task 

is to be independent of the block in which it is scheduled. 

This means that an independent program or task can continué 

in an active state even after the schedulihg block has 

been terminated. However, a task with STATIC variables 

‘ or one which contains reference to identifiers declaged 

at thé program level cannot be scheduled as an independent 

task. 
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7. If INDEPENDENT is not provided, dependent schedulifig will 

ltake plaqe. IAll dependent programs and tasks are terfiinatéd 

when the block in which_they were scheduled is terminated. 

8.” _<task—id> is a name which will éontain the unique identifica— 

tion data for the scheduled prografi or task. 

9. If AT, IN, ON are not provided, initiation will take 

place as soon as possible (consistent with priority). 

EXAMPLES: 

1. SCHEDULE PROGRAM_20 PRIORITY(10), PROG_20; 

PROGRAMgzo is scheduled as a dependent block (program or 

task), priority 10, with identification storéd in they 

variable PROG_20. Initiation will begin as soon as possible. 

2.3 SCHEDULE ABLE PRIORITY(PRIO + l); > 

ABLE is scheduled as a depedent block at a priority 1 higfier 

than the current priority. ‘ 

3. SCHEDULE RADAR 0N R_RUPT PRIORITY(HIGH); 

RADAR will be initiatéd on the occurrence of the event 

R_RUPT'at priority HIGH. 

4. SCHEDULE STEERING AT TIG-5 PRIORITY(6),INDEPENDENT{ 

STEERING is scheduled; as an independent block, to begin 

at the time TIC-5 with priority 6. 

5; SCHEDULE TRACK IN 5; 

TRACK is scheduled to begin in 5 units of time from the 

time the SCHEDULE statement is executed. 

‘ 9 - 5  
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6. SCHEDULE ABLE ON (5 AND B) OR c; 
ABLE is scheduled to begin on the occurrence of either 

both evégts A agd B, or évent C. 

7. IF X>10 AND 'i'RACKFLAG = 0N . 

THEN SCHEDULE AUTOMANEUVER PRIORITY(5); 

‘ ELSE GO TO BEGIN; . 

The SCHEDULE statement may be included as another executable 

statemént. AUTOMANEUVER will be scheduled if X510 and 

the TRACKFLAG is ON. 

9.2.2 WAIT Statement 

The WAIT statement is used to suspend an active program 

or task and reactivate it based on three criteria: 

a) a specific time 

b) an incremental time 

c) a particular event or combination of events. 

GENERAL FORMAT: ‘ f I 
UNTIL <spec-time> 

[<label>:1WAIT <inc-time> . ; 
FOR <event-expre531on 

where <spec-time>, <inc-time>, <event~expression> are the same 

as in Sec. 9.2 (SCHEDULE statement). 

EXAMPLES: ‘ 
1. WAIT 5; 

The current block (program or task) is suspended for 5 units 

of tifie and then reactivated. 

9-6 
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2. WAIT UNTIL TIG-S; 

The current block is suspended uhti1.the timé TIG—S and 

then reaétivated. 

3. WAIT FOR ABLE; 

The current block is suspended until the event ABLE occurs 

(i.e., ABLE is turned ON) ané then reactivated. 

4. 'WAIT. FOR NOT(T1 AND T2) OR T3; 

The cufrent block is suspended until the events T1 and 

T2 are OFF, or the event T3 is ON, and then reactivated. 

9-2{3_ Pq_cHANGE-Statement 

This statement is used to change the priority of a i 

task or program. 

GENERAL FORMAT: 

[<label>:]PRIQ_CHANGE({<p>IPRIO + <q>})[<task—id>] 

[({<p>[PRIo + <q>}),<task-id>]. . .; 
where <p>, <q> are defined in Sec. 9.2.1. 

GENERAL RULES: 

1. <p> or <q> are new absolute and relatiVe priorities, 

respectively, for fihe cprresponding <task—id's>. 

2. The current program or task priority may be changed by 

the statement 

PRIomcHANGE({<p>|'PRIo + <q>}); 

EXAMPLES: ' 

1. IF AFLAG THEN PRIQ_CHANGE (PRIO + 5); 

“If AFLAG is on then current priority is increased by 5. 

9-7 
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2. PRIO_CHANGE (8 ) ,  (10) TASK_;, (13).TASK_2, (PRIO + A) TASK_3; 

O The current priority is changed to 8, TASK_3'S priority 

is chéngéd to the current priority plus A (i.e.; 8 + A); 

Note that a <task-id> can be omitted only béfore the first 

comma, meaning the current task of program. 

9.2.4 TERMINATE‘StatEment 

This statement is used to terminate a program 6r task 

and return control to the executivé. 

_ GENERAL FORMAT: 

[<1abe1>:JTERMINATE[<£ask-id>[,<task—id>]... .1; 

GENERAL RULES: 

1. 'EXecution of this étatement terminates all identified 

tasks and programs and all their dependefit tasks and 

programs. 

2. If <task-id> is not provided, the current program or 

task and all dependent programs and tasks are terminated. 

EXAMPLES: 

1. TERMINATE PROGflZO, T2; _ 
The blocks (task 6r program) identified by PROG_20 and T2 

are terminated. 

2 . TERMINATE; 

The current program or task is terminated. 
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9 . 3 ‘  Events and Signals 

Programs and tasks may be scheduled by the occurrence of 

events or combinations of evefits.’ An event is a proqrammer-named 

cdhdition and can be stimulated only by the execution of thé 

SIGNAL statement. 

9.3.1 Events 

<event-variables> hust be declared using DECLARE state? 

ments. The format is similaf to that described for data 

declarations,_thus: 

GENERAL FORMAT: 

-DECLARE<event-variab1e>EVENT[LATCHED[INITIAL{ON/OFF}]]; 

GENERAL RULES: 

1. <event-variables> may only be declared at the COMPOOL 

and program levels. Sc0pe rules are the same as for data. 

2. If the attribute LATCHED is provided, the <event-variab1e> 

will hold its signalled value; i.e., if signalled on, 

it will remain on. 

3. If LATCHED is not provided, the <event-variab1e> when 

signalled.on, will remain on only for a short interval 

of time. The time interval is implementation dependent. 

4. The declaration of an <event-variable> can be incorporated 

in the same DECLARE sfiatement with other identifiers; e.g. 

DECLARE v VECTOR, MMATRIX, B EVENT; 
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5. EVENT, LATCHED, INITIAL may be factors in a DECLARE state—- 

ment; e . é .   I 

DECLARE EVENT} A, B, c INITIAL(ON); 

6.. .If INITIAL is not provided for <event-variables> with the 

LATCHED attribute, a défault value of OFF is presumed. 

EXAMPLE: I 

DECLAfiE EVENT, A, B LATCHED; 

A and B are declared "unlatched" ahd "latched" evénts. 

Both are set off initially. It should be noted thatan 

unlatched event cannot be set on initially.. 

9 . 3 . 2 '  SIGNAL Statement 

This statement is used to cause the occurrence of an evgnt. 

The specific effect depends upon whether the <event-variable> 

has the attribute LATCHED. 

GENERAL FORMAT: fl 

[<1abel>:]SIGNAL<event—variable>[ON/OFF][,<event—variable> 

[ON/OFFJ]. . . ;_ 

GENERAL RULES for LATCHED <event—variables>: 

1. '<event-variab1es> may be on or off initially. 

2. If an <event—variable5 is off: 

a) it may be turned on by SIGNAL<event—variable>ON; 

b)! it may be left off by SIGNAL<event-variable>0FF; 

c) ‘if ON or OfiF is not provided, SIGNAL<event-variable>;, 

‘ turns the <event-variable> on for a short time interval,' 

and then Off. The tfime interval is implémentation 

dependent. _ 

9-10 
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3, If an <event-variable> is on: 

a). it may be turned f by SiGNAL<event~variable>OFF; 

b) it may be left on by SIGNAL<event—variable>ON; 

c) if ON or OFF is not provided, SIGNAL<event~variable>; 

turns the <event-variable> off after a short interval. 

GENERAL RULES for "unlatched" <event-variables>: 

- l. <event¥variables> are always off intially. 

2. SIGNAL<event~variab1e>[ON]; turns the <event—variable§ 

on for a short interval, and then off. The time— 

interval is implementation dependeht. 

3. SIGNAL<event~variab1e>OFF; causes no action. 

EXAMPLE: I 

SYNCHRO: PROGRAM; 

DECLARE EVENT LATCHED, A, B; 

SCHEDULE ABLE INDEPENDENT; 

SCHEDULE BAKER INDEPENDENT; 

SCHEDULE CfiARLIE ON A AND B; 

§'= W V} 

3
|
 

N
I
 

2
*

 
+ 

TERMINATE; 

ABLE: TASK; /*INDEPENDENT TASK*/ 

SIGNAL A ON; 

CLOSE ABLE; ' ‘_ 

9-11 
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BAKER: TASK; 

SIGNAL B ON; 

CLOSE BAKER; 

CHARLIE : TASK; 

CLOSE SYNCHRO; 

/*INDEPENDENT TASK*/ 

CLOSE CHARLIE; . 

9412 
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9.4 Dynamic Control of‘Shared'Data 

HAL provides features to control the sharing of variables 

,in order to prevent conflicts in their utilization. These' 

features include the attribute LOCK_IYPE to designate shared 

gvariables and an update block of statements in which shared 

variablés may be changed in a controlled environment. Although 

the approach taken is basically implemented in software, it- 

doés depend on the ability to perform an "uninterruptable" 

instruction similar to the Test and Set instruction available 

on IBM 360 computers. 

§ . 4 . 1  Conflicts in Sharing Data 

In order to illustrate the problems that can arise in 

. sharing data conSider the following two examples: 

Example 1: Read/Write Conflicts 

A: 'TASK; - B: TASK; 

§‘§+;  ”“ vfifyv - " Interruption " . 

CLOSE A: _ CLOSE B; \ _ 

Example 2: Serial Updating Conflicts 

A: TASK; , ~ B: TASK; 

: TASK : 
Y = Y - X ;  Y = Y - Z ;  

. Interruption . 

CLOSE A; _ . CLOSE B; 
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In both examples TASK B interrupts TASK A during the 

execution of a statement. The interruption may be caused by 

a hardware of software (SIGNAL) interrupt or by a "job swap“ 

based on priority. In Example 1, presume that the interruption 

occurred while the matrix § was being feafi. When TASK-A reéumes;' 

the computation of fi will continue using some "old" fi data; I 

and the "new" § data assigned in TASK B. In ofder to prevent 

this confliét, initiation of TASK B would have to be étalled 

until the reading of § in TASK A is completed. 

In Example 2, presume that the interruption occurs first 

after the current value of Y is loaded into the accumulator. 

When TASK A resumes, the "old" value of Y (i.e., not reflecting. 

the update of Y in TASK B) is restored into the accumulator, 

X is subtracted and the result assigned to Y. In order to 

prevent this conflict, the initiation of TASK B would have to 

be stalled until the value of Y is updated in TASK A (i.e., 

each variable declared with the LOCK4TYPE attribute, see Secs. 

4.3.4; 5.1.lf3). 

The approach taken in solving the Bioblems represented above, 

using HAL, is to confine the read and write accesses of shared 

variables to identified update blocks and for the compiler to 

assign a locking control variable to each shared variable 

(i.e., to each variable declared with the LOCK;IYPE attribute). 

The value of the "lock" is examined.at run-time and only con— 

sistent (i.e., safe) accesses are permitted. 

i l I 
1 
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9.4.2 The Update Blg¢k~ 
The <update-block> of statements provides a controlled 

environment for the reading and writing of shared data variables. 

All LOCK_TYPE(1) variables, and LOCK_TYPE(2) variables to be 

.assigned new values (i.e., updated) must appear within <updaté- 

blocks>. LOCK_IYPE(2) variables which are to be read only need 

not be conf§ned to these blocks. The <updéte-block> may cofitain 

the following elements: 

<update-block> = <update-statement>[<declare-group>] 

'{<all—statements>[<sub~blocks>}. . .<close-statement> 

subject to the restrictions below. ' 

GENERAL FORMAT: 

[<update-label>:JUPDATE; 

'{[<1abel>:]<statement>}. . . 

[<1abe1>:]CLOSE[<update—1abe1>]; 

GENERAL RULES :‘ 

l. <statements> within an <update—block> (and enclosed <sub— 

blocks>) may not include I/O statements (see Sec. 10), 

or additional UPDATE statements. 

2. Name scope rules are the same as described in Séc. 8.1.1- 

except <statements> may not contain <procedure-labels> 

or <function—1abels> defined outside the block. (HAL 

built-in function names are permitted.) 
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Exgcufiion of the UPDATE sfiatement attempts "to lock" all 

shared variables within.the block. A va£iable to be 

assigned will be writeFIQcked, variables to read only will_ 

be read-locked. Once loCks are establishéd they are not 

opened until execution of the CLOSE statemént at the end 

of the block. 

If all desired locks cannot be established at the UPDATE 

‘statement because one or all of the shared variables aré 

not available (i.e., they are already locked elsewhere), 

the current program or task will be stalled (placed in 

"wait" by the executive) until all variables become avail— 

able. 

Aftef all locks are established, cofiies are made of the 

shared variables to be assigned (if any), and the <statements> 

within the <update-block> are executed using this copy- 

data. 

Execution of the CLOSE statement first opens all read- 

1ocks and then attempts to transfer the updated copy-data 

into the actual shared variables (to be assigned).. If read? 

locks are in effect on these variables (i.e., they are 

still locked within other <update-blocks>), the current 

program or task will be stalled until these locks are 

opened. After the cepy-data has been transferred all 

write-locks are opened and execution continues at the state— 

ment following CLOSE. 
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7. In conjunction with (4) above, a Stall will occur at the 

UPDATE statement if any of the shared variables to be 

assigned in the block already are writé—locked. In other 

words, a write-lock cannot be eSfiablished on a variable 

that is-already write-locked. A stall will also occur if 

any shared 

written in 

variables to be read are currently being 

other <update-blocks> , i.e., a read-lock Cannot 

be established while the variable is being assigned a new 

value. 

8. 'Transferring control outside the update block by a GO TO 

statement or in response to an error condition (see Sec. 9 . 5 )  

is considered an "error exit". As a result, all read- and 

-write-locks are opened and no copyécycle is performed. 

9. LOCK_$YPE(2) variables which are to be read only need 

not be confined to update blocks. This attribute should 

only be applied to those data types which can be accessed 

in a single uninterruptable instruction. 

9.4.2.1 Summapy on Entering an Update Block (LOCKfiTYPEfil) Variables.) 

\ 

Present 
> tate 

Variables 

To be assigned 
in block 

To be read 
in block 

INTERMETRICS INCORPORATED 

Free Read-Locked Write—Locked Writing 

Write— Write— Stall Stall 
Lock Lock 

Read- - /* Read— _ Stall 
Lock Lock 

3 
Table '941 
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Table 9-1 indicates that on entering an <update—block?, 

if Variables to be assigned aré free or read-locked, write-locks 

will be established; otherwise execution will stall until 

variables are available. If variables to be read are free,‘ 

read-locked or write-locked, read—lécks_will be established;' 

otherWise execution will stall until variables are availabléQ 

(/ means read-lock already established, new lock is unnecessary.) 

9.4.2.2 SUmmary on Leaving-an Update Block (LOCK;TYPE(1)'variables.) 

Present } 
State ‘ 

Actual Free Read-Locked ete-Locked etlng 

Variables 

To be written N.A. Stall ‘ Capy N.A. 

Table'9-2 

Table 9—2 indicates that.on leaving an <update—block>, if 

variables £0 be written are write-locked the copy-cycle will 

proceed} otherwise execution will stall until variables are 

available.(N.A. means not gpplicable. Once in an <update-blo¢k>; 

variables cannot be.free nor in the process of being written . 

within another <update-block>.) 
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9.4.2.3 Examples. Consider the two examples at the_beginning 

of Sec. 9 . 4 . 1  and sufipose that the statements in question were”. 

analosed within <update-blocks>, e.g., 

A: TASK; 

UPDATE; 

.* * ' *  
M - = N + P ;  

CLOSE;‘ 

CLOSE A; 

Example 1 

In TASK A a read-lock is established for . After the 

2
3
$
.
Z
»
 

interruption, a write-lock is established for and TASK B 

proceeds toward campletion using_copy—data for fi. At the 

end Of the <update—block> in TASK B the process stalls because 

.of the read-lock imposed in TASK A. As a result, TASK A is 

allOwed to fiontinue with consistent "old" fi data. After com- 

pletion of TASK A, the fiopy-cycle in TASK B is effected and 

fi is updated. All conflicts are eliminated. I 

Exampie 2 

In TASK A :ead- and write-locks as well as copy—data are. 

established for Y. As before, the value of Y (now copy-data) 
I . 

is placed in the accumulator.{ After the interruption, execution 

9 — 1 9  
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of the UPDATE statement in TASK B attempts to establish read- 

and write—locks for Y. The process stalls because a write- ' 

loCk already exists for Y.‘ Therefore, cdntrol is transferred 

bapk to TASK A and execution allowed to continfie. Y is updated 

in TASK A by X and a copy-cycle compleéed. TASK B now begins 

again. This time Y is free and read- and write-locks are 

established: TASK B runs through in a straightforward manner. 

Y is updated properly by both X and Z with no conflicts. 

‘ 9.4.3 Exclusive Subroutines 

The attribute EXCLUSIVE may be applied to programs, 

procedures, functions and tasks which are intended to be exe- 

cuted serially. The object is to avoid reentrant use of a sub— 

routine either because the variables are not protected by locks. 

(i.e., have not been declared with LOCK_TYPE attributes) or because 

dynamic design dictates serial use r  

GENERAL FORMAT: V 

’{<program-I<procedure-I<function~I<task—statement>}EXCLUSIVE; 

GENERAL RULES: 

1. The céfipiler will insert code at the beginning of the sub- 

routine to cause the current program or task to stall if 

the subroutine is in use. At the end of the subroutine, 

the stalled programs or tasks of highest priority will 

be reactivated. 
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EXAMPLES: 

l. ABLE: PROCEDURE(A,B) ASSIGN(C) EXCLUSIVE; 

2. BAKER: TASK EXCLUSIVE; 

The above are valid statements using the EXCLUSIVE attribute. 

9 . 4 ; 4  Access Rights 

The general use of COMPOOL data within programé may 

be restricted by attaching access rights to the DECLARE state- 

ments within the COMPOOL. Programs are identified by number 

and permitted to access only those variables whiqh have been 

deciared with corresponding identifidation numbers. An illegal 

reference to a COMPOOL variable will prevent successful com- 

pilation of the problem. 

GENERAL FORMATS : 

<program statement>ID_CODE<p>; 

<declare-stafiemeQF>ACCESS(<p>[<p>]...); 

where <p> is an unsigned integer literal. 

GENERAL RULES : 

1. If ACCESS is provided, declared variables will only be 

recognized in programs whose identification numbers are 

listed. 

2. If ACCESS is not provided, declared variables will be 

recognized in all progfémé. 

3‘ Compilation will abort if prpper access rights have not 

been established for a reference to a COMPOOL variable. 
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' 9.5— Error Recovery . ~ 

During exgcution of HAL programs an-erfor conditibn may bé 

detected by the system. Examples of errors might be: 

overflow/underflow 

divide by zero 

negative sqfiare root argument 

sine argument greater than 1 

sabscript out of range A 

Depending upon implementation such errors may be hardware or 

software detected. In any case, execfition cannot continue and 

the éystem must offer generally appliCablé alternatives (e.g. 

aborting the current task, etc.). ' 

In order to provide the programmer with some control after 

the occurrence of an error, perhaps to reset flags or previously 

initiated I/O commands, HAL permits programmer—defined error. 

conditions and alternatives.' 

9.5.1 ON Statement. 

The UN statement may be used to direct the transfer of 

control on the occurrence of one or more specific error conditions. 

GENERAL FORMAT: 

[<1abel>:] ON ERROR [T0<q>][{GO TO <1abe1>|SYSTEM}]; <p> 

where <p> and <q> are integer literals. 

GENERAL RULES : 

.1. For any implementation,unique <1iterals> are assigned to 

every system error condition; e.g. 

9- 22- 
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ERROR5 floating point overflow 

ERROR floating point underflow 6 

and to programmer-defined error conditions. 

'A group of error conditions may be specified using the 

subscript range expression (e.g., ERRORl TO 1 0 ) . .  

Upon execution of the ON statement the alternatives GO TO 

<1abel> or SYSTEM are made available for the scope bf the 

statement. The scope of an ON statement follows the same 

rules as the name scope of a variable (i.e. from the "outer— 

most" block toward the inner, see Sec. 8.1.1).' 

If the Specified error condition odours within the defined 

scope the desired alternative is activated (i.e. control 

is either transferred to the statement <label> indicated 

or to the system). 

Ifcx) TO <1abe1> or SYSTEM is not provided the-default is 

SYSTEM. 

9 . 5 . 2 -ER__RUPT Statement 

The ER;BUPT statement is used to announce the occurrence 

% . 
iof programmer—defined error condltlons. 

GENERAL‘FORMAT: 

ER;3UPT ERROR<p>[TO <q>]: 
Where <p> and <q> are integer literals. 
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‘EXAMPLE: 

D = B2 - 4A C; 

IF D<O THEN ER_RUPT ERRORSO; 

X = (-B " SQRT (D) ,/2A; 

9.3.3 EXAMPLES 

1. ON ERROR1 TO 

If any of error conditions 1 through 5 occurs within the 

5 GO TO ABLE; 

scope of this statement, control is transferred to ABLE. 

2. ON ERROR SYSTEM; 1 TO 5 

If any of error conditions 1 through 5 occurs within the 

_scope of this statement, system action is takeh. 

3. A: PROCEDURE; 

0N ERROR 

B; 

1 GO TO BETA; 

CAL 

o
o

o
t

‘
l

 

AB: PROCEDURE; 

ON ERRORl GO TO ALPHA 

/ CLOSE B; 

ALPHA: fiLAGl = OFF; 
TERMINATE; 

'BETA: ELAGZ = OFF; 
TERMINATE;. 

CLOSE B; t 

9- 24 
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If ERROR1 occurs during procedure B control is tranSferred 

to ALPHA, otherwise it is transferred to BETA. 

4. A: TASK; 

DECLARE X - - ~, 

ON ERROR 

RETRY: 

CALL B 

0N ERROR 

1 TO 10 GO TO RECOVERYl; 

_. * 
R = M X; 

('15, V, TD...); 

1 TO 10 GO TO RECOVERYZ; 

CALL JETS; 

ON ERROR1 TO 10 SYSTEM; 

B: PRQCEDURE (——-~)z 

.CLOSE B; 

_GO TO RETRY; 

RECOVERYZ: CALL JETs_pFF; 
GO TO ABORT; 

CLOSE A; 

REQOVERYI and RECOVERYZ are established as differeht recovery 

points for TASK A. Control is transferred to either one 

depending 

action is 

procedure 

This 

'arbitrary 

ll RECOVERYl: 2': §’+ BECTAX; 

on where the error conditions occur. The system 

established after control is returned from the 

JETS. 

example illustrates that the programmer éan deve10p 

restarting points within a HAL program. 

1 
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1 0 . 0  INPUT~OUTPUT 

The HAL ifiput-output statements provide for the fi;ing, 

retrieval, reading and writing Of data to and from external 

storage media. Filing is record—oriented in that a file statef 

ment causes a single récord to be transmitted to or from a. 

storage device; transmission is direét without any conversions. 

Reading and firiting are stream-oriented in that data is considered 

to be a continuous stream of characters; conversions may obcur 

during transmission. 

The HAL I/O syntax consists of four statements and a small 

set of control functions. 

10.1 FILE Statement 

The FILE statement has the appearance of an assignment' 

statement and may be used for both filing and retrieving data 

depending upon which side of the = Sign FILE appears. 

GENERAL FORMAT : 

1. for filing data 

[<1abel>:JFILE(<deVice5,<redbrd-i.d;>)é{<data—expression>I 

<struéture>}; 

2. for retrieving data V 

[<1abel>:]<variable—name>=FILE(<device>,<record-i.d.>); 

1041 
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GENERAL RULES : 

1. <device> is an integer literal identifying the external 

device. The maximum number of digits is implementation 

‘dependent. 

2. <record—i.d.> is the record identifiéation numbér and may 

be an integer or scalar expression. The result of <record— 

i.d.> is rounded to the nearest integer before use. 

3. In retrieving data, the size of the recérd, i.e., the number 

of words (or perhaps bytes,_etc.),must match the size 

(dimensioh) attributes of the <variable-name> on the left 

hahd side df =. Because the filed information does not 

carry data-type or attributes,conversion errors can occur 

evén if the sizes match properly. 

EXAMPLES: 

FILE(TAPE,I) = [A]; 

{B} = FILE(DISC,AI); 

are valid FILE statements, where TAPE and vise represent 

integer literals. 

/ 

10.2 READ Statements 

Two READ statements are defined in HAL: READ and READ_ALL. 

READ is used t6 process déta presentéd in standard formats; 

READ_ALL admits all characters and provides the flexibility to 

accept data in non-standard (arbitrary) formats. 

3 
I 
l 
v 
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10:231 READ Statement 

The READ statement causes data, in standard formats 

'from an external source,to be assigned to a list of variables.- 

GENERAL FORMAT : 

READ(<device>)[<read-control>I<variable-name>] 

[,[<read-control>I<variab1e~name>1]...; 

where 

<read-control> = {SKIP(<p>)|TAB(<p>)ICOLUMN(<p>)} 

and 

<p> is an integer or scalar expression, rounded to the nearéSt 

integer before use.  

GENERAL RULES : 

1.. The READ statement implies the input transmission of a 

stream-of data fields, each field being separated by a 

comma or a semi—colon. (A blank or blanks may be used 

Optionally instead of a comma, between data fields.) 

2. The <variable-names> in the list may be of single elements, 

arrays of elements and/or structures. The number of 

fields transmitted, for éach <variable-name>, corresponds 

to the size, Or dimension, attribute of the <variab1e—name>. 

For example, READ fi; (where a is a 4x4 matrix) will cause 16 

. fields of data to be transmitted. It is presumed that vectors, 

matrices and arrays will be filled according to the rules 

and éonversions for processéng <lists>, as described i n '  

Sec. 6 . 2 . 2 . 1 .  The arrangemeht of structure data is described 
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in (5) beldw. The absence of‘a <variable name> in the list O f .  

names; i.e., nothing between commas, or leading or trailing 

commas Causes the "réad-mechanism" to skip over one data field 

(for example: READ(CARDS), A, , B, ; ). 

-The external device is visualized as'being two—dimensional‘ 

in.that data occupies horiéontal lines, éach line being 

made up of column positions. A data field is defined as: 

a segmené of contiguous columns, delimited by commés 

(blanks) or semi-colons. (The first column of line n+1 

follows the last column of line n.) The <read—control> 

functions locate the "read-mechanism" on this "gridV.: 

If a <read-control> function is not provided immediately 

following READ(<device>), blanks being ignored, a default 

SKIP(1), COLUMN(1) is presumed; i.e. READ (<device>) causes 

the next line to be seledted and reading to begin at 

column 1. 

The appearance of SKIP(<p>) and/or COLUMN(<p>) within the 

list of <variab1e-names> sets up the "read-mechanism" 

to skip <p> lines and/or begin reading at column <p> when 

the.next data field is encountered. The TAB(<p>) function 

causes a relative column location; i.e. TAB(8) would cause. 

thé "read—mechanism" to "move" eight columns. The presence 

of a semi-colon, separating fields of data causes termination 

of the current READ statement. Unassigned <variable-names> 

in the statement are left with their prévious values. If 

additional data fields follow the semi—colon, on the same 
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line,_they may be processed by the next read statement if 

a SKIP(O) is provided; e.g. the data card, 

3 5 ,6 ,7 ;8 ,9 ;10 ;  

could be processed by the following READ statements; 

READ(CARDS) A,B,C,D,E; 

READ(CARDS) SKIP(0), F,G,H,I,J; 

READ(CARDS) SKIP(0), K,L,M,N,P; 

The firsfi semi-colon on the data card causes termination of the 

first READ statement after A,B and C are assigned. The second 

READ statement begins "reading" immediately after C, on the 

same line, because of the SKIP(0), and assiéns F and G only. 

The last READ statement assigns K. Note that after the three 

READ statéments D,E,H,I,J,L,M,N,P will retain their previous 

values. 

If the <variable~name> is a structure, the elements of the 

_ structure are tranSmitted in the order specified in the 

structure declaration. Multiple-cepy structures are txansmitted 

one cepy at a time. For the structure 

DECLARE l A(5), 2B ARRAY(4,5), 2C VECTOR(4); 

the statement ' _ 

READ{A}; 

would result in an input transmission order of 

A.C A.B 1:1,1 A'Bl;1,2"' A'Bl;4,5 A‘C1;1“’ 1:4 
A : B 2 ; l , l  . 0 0 0 0 0 0 0 0 0 0 0  A . B Z ; 4 , 5  A o C 2 ; 1 - o o  A - C 2 ; 4  

A'Bs;1,1 A'Bs;1,2"° A'B's;4,5 A‘C5;1"' A'C5;4 

10—5 
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 868-1840 



; EXAMPLES: 
1. READ(CARDS) A,B,C,D,[E]}{E}; 

'This stétement cauées transmission of enough data fields 

'to assign the variables listed. Note that CARDS represénts 

an integer literal. - 

2. READ(CARDS) COLUMN(20),A,B, 

‘ SKIP(1), COLUMN(20),C,D, 

SKIP(1), COLUMN(20),E,F, 

etc. 

q; 

This statement causes two fields of data to be read on each 

succeésive card. The data will be read starting in column 20. 

3. READ(CARDS) A, TAB(40), C; 

This statement is-designed to skip over some data fields 

(40 columns) known to be On the input cards. 

1 0 . 2 . 2  Standard Input Data Formats 

The list of variables in a READ statement may be of 

any data type. Each type requires the input data to be presented 

in a standard format. 

1 i 

{ 
10.2.2.1 Standard Arithmetic Data Formats. Integer, scalar,-» . 

vectof, matrix and bit string data may be presented in the 

following format: 

{[+1|~}b<digits>[{MElIwH}w{[+1[—}<integer>]... 

where M represents optional blanks. Note that this is almost 

the same form as an arithmetic literal except for the optional 

blanks. See Seé. 2.3.3.1 'for definition of terms. 
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GENERAL RULES:§ _‘ 

1. For integers and bit strings the data form must represent 

integral vélues. Bit string data is first converted to a 

full word bit string and then assigned to the cdrresponding 

bit variable according to the rules étated in Sec. 7.1.231, 

2. The data forms for scalars) vectors and matrices are identical. 

EXAMPLES: 

1. 369.0, 8, -8.36E+2 B-l are valid forfis of integer and bit 

string input data. ‘ 

2. +0.123E6 B—3 H4, lE—75, 3, 456.789 are valid ferms of 

,scalar, vector and matrix input data. 

10.2.2.2 Standard Character Data Format. Character data may 

be presented as any character or string of characters (in the 

HAL set) enclosed in apostrophes. If it is desired to place an 

apostrOphe in the string, it must be represented by an adjacent 

pair of apostrophes. 

EXAMPLES:. 

1. 'AB""C', '57.3/C', 'NUMBER;QNE', 'ON,0FF,OFF,ON' are 

valid forms of character data. ' 

2. The following input data field and statements Will assign a 

bit string variable using an octal input data form. 
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DECLARE B BIT(15[; 
DECLARE c CHARACTER(10) VARYING; 

' ,  

READ C; 
O ' . 

B = BIT@0CT(C)’ 
column (1) 

inputgata: '37776' 

10.2.2.3 Arrays and Structures. Arrays and structures consist 

.of the above data types,and the forms presented are acceptable 

as required. 

10.2.3 READ_ALL Statement 

The READ_ALL statement allows data in non-standard form 

to be assigned to HAL character-string variables. This is 

accomplished by not defining fields of data but accepting all 

characters encountered in-the input stream, including blanks, 

'commas, semiecolons and apoStrophes.. 

GENERAL FORMAT: 

Same as for the READ statement except READ_ALL replaces 

READ and the <variable—names> may pertain to_character stringS' 

only. 

GENERAL RULES : 

1. The READ_ALL statement implies the input transmission of 

a continuous stream of characters. 
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— 2. The <variable-names>‘in the list may be of character strings, 

arrays of character strings and/or structures containing 

only character sfirings; 

EXAMPLE : 

Suppose the following data card has been generated at a 

computer facility. It is desired to process this data in a HAL; 

program; . I 

column (1) ' (30) I (60) 
' DATE: 25/12/70 8,632 06 101101 

where the scalar starting in column(26) is equivalént to 

8.632E06 and the data starting in column(40) is a set of six 

boolean variables. 

DECLARE B BIT(6); 
DECLARE CHARACTER (2 0) , C , D , E; 

READ__ALL (CARD) 5:, COLUMN (3 0) , 13, COLUMN (5 0) , E; 
c PUT SCALAR IN PROPER FORM 

I 

D = ' . ' ;  /*CHANGE COMMA TO PERIOD%/ 2 
I I =  3; 

'LOOP: DO WHILE 61*n= ' '; /*LOOK FOR BLANKf/ 

I = I + 1; 

END LOOP; 

'61 = ' E ' ;  ‘/*CHANGE BLANK TO E * ‘ /  
' _ 

A = SCALAR(D); ,/*ASSIGN SCALAR TO A*,/ 
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c PUT BOOLEAN VALUES IN PROPER FORM . r 
o . I ' 

. B = BIT@BIN(E); 
/*FINISH*/ 

1 0 . 3  WRITE Statement 

The WRITE statement causes the transmission of data td 

an external device.’ Data items transmitted are the character 

. string representations, in standard formats, of values of HAL 

expressions. 

GENERAL FORMAT : 

WRITE(<device>)[<write—control>|{<variable-name>|<data—expression>}] ; 

l,[<write-control>l{<variable-name>|<data~expression>}]]..{; 

where ‘ 

<data—expression>é{<arithmetic~i<string~|<array}-<eXpression> 

and 

<write-control>={SKIP(<p>)|TAB(<p>)|COLUMN(<p>)| I 
PAGE(<p>)|LINE(<p>)} l 

<p> is an integer or scalar expression, rounded to the néarest 1 

% integer before use. 

GENERAL RULES: - " i 
1. The WRITE statement implies the output transmission of a 1 

continuous stream of characters. I 

2. The <variable—names> in the list-may be the same as defined 
l . - , 

z- . ~ i  

. . 10—10 . _ . . 
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for the READ statemenfi. The-<data~expressions> may be 

any valid arithmetic, string and/or array expressions. 

The externéi device is visualized as being two—dimensional'V 

in that output data will occupy horizontal lines, each.line 

being made up of cdlumn positions. A page is defined as a. 

default number of lines. The <write—control> functions 

locate the "write—mechanism" on this "grid". If a <write— 

control) function is not provided immediately folléwing 

WRITE(<device>), blanks being ignored, a default SKIP(1), 

COLUMN(1) is presumed; i,e. WRITE(<dev§ce>) causes the next 

line to be selected and writing to begin at column 1. 

The appearance of <write-control> functions within the 

list of <variab1e4names> and/or <data—expressions> sets up 

the "write—mechanism" for execution when the next name Or 

expression is encountered. SKIP, COLUMN and TAB perform the 

same functions as in the READ statement, 

LINE(<p>) redefines the value of the current line. If <p> 

is greater than the current line, blank lines are inserted 

so that the next line will be the pth line of the current 

page. If <p> is less than the current line, the next line 

will be the pth line on the nextApage. 

PAGE(<p>) causes. <p> pages to be skipped upon 

execution. 

If COLUMN and/or TAB functions are not provided the presence 

of a comma will cause a tab of a default number of columns. 

For example, 
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WRITE A, TABCLO), B, COLUMN(50), C; 
\ 

causes A to begin in column 1, to begin 10 columns 

after A, afid C to begin in column 50. 

WRITE A, B, 0; 

causes A to begin in column 1, B to begin a defafilt number 

of columns after A, and C to begin a default number of célfimns 

after C. 

'If the <Variable-name> is a vector, matrix, or array, 

' the effect is to unravel these types by rows ( Sec. 6.2,2), 

separating each element by the tab default. 

If the <variab1e-name> is a structure the effect is 

to unravel the structure into {he 6rdér in which i£ was 

declared, c0py-by-copy, (see READ statement), sgparating each 

element by the tab default. 

EXAMPLES:. 

1. WRITE(LISTING) A,é,E,3,[E],{F}; 

This statement causes transmisSion of all the named 

data to the output device. The data is converted to a 

continuous stream of characters with the elements separated 

by the tab default. Note that LISTING represents an 

integer literal. 

DO FOR I = 1 TO 3;- 

WRITE(LISTING) COLUMN(20), MI,*; 

END; 

Thesé statements will cause the matrix fi to be printed 

in rectangular fbrm, each row starting in column (20). 
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10.3.1 Standard Output Data Formats_ 

.The list of variables and expressions in a WRITE 

statement may be of any data type. Each type produces a.standard 

output character format. 

_ 1 0 . 3 . 1 . 1  Scalars, Vectors, find Matrices. The standard ouiput 

.format for scaiar, and components of vectors and matrices is: 

‘sx.<digits>MEsyy 

where s is a blank or a minus sign, 

x and y are single digits, 0 to 9, 

<digits> is a string of digits, 0 to 9, 

b is one blank. . 

sx.<digits> represents the mantissa, syy represents the 

' 
' ' 
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.

 
.

‘
-

.
 —

-
.

.
.

_
.

 
.

_
_

 
_

.
 . .. . 

_
.

.
_

-
_

 
.

4
.

 
_

_
_

_
 .. 

__ 
.

.
-

,
 

_
_

_
‘

_
 

_ 

exponent power of 10. The number of digits in <digits> is fixea 

and set by machine implementation. The total field of characters 

in this standard form is 8 plus the number of <digits>. 

EXAMPLES: 

8.0603478E 06, -7.5436210Efll, 0 . 0 0 0 0 0 0 0 E  00, are standard 

scalar output data. 

1 0 . 3 . 1 . 2  Integers and Bit Strings.y The standard outfiut 

fOrmat for integérs and bit strings is: 

<blanks>s<digits> 

wheré <blanks> is a string of blanks 

s is‘a blank or a minus Sign 

<digits> is a string ofidigits, 0 to 9. 
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The total field of characters'in this standard form is 

fixed in size to be the same as that for scalars; leading zeros 

are suppressed and appear as blanks, except for a single zero. 

For example, suppose the character field has been fixed by 

_implementation at 15, then integers might appear as:' 

(l) , (15) 

5 

~4673 

0 

2684736 .  

Note that when bit strings appear in the WRITE stafement they 

are converted to integers according to the rules stated in 

S E C .  6 . 2 . 1 . 3 0  

10.3.1.3 Characters. The standard output format for 

characters is simply a variable field size equal to the string 

length of the character variable or expression in the WRITE- 

statement. 

EXAMPLES: 

1. WRITE(LISTING)COLUMN(20),‘DIST.='IIAII'MILES'; 

' This statement might result in the following printed 

line: 

( 20 )  

DIST.=3.0654767E 06 MILES 

2. Suppose-it is desired to print the same data as above 

in the non—standard format sxxx.xxx, where s is a blank or 
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minus, and the x's represent digits. Then, 

WRITE (LISTING).COLUMN(20) 'DIST.=' | l . 
.PICTURE('sxxx;xxx’,A)I]'MILES'; 

The function.PICTURE could be a programmer-defined 

function which accepts the character literal ' skxx .xxx'  

and a scalar, A, and returns a character variable repree 

senting the scalar quantity in the desired form. 

3. Print an array of bit strings in octal format. 

WRITE(LISTING) CHAR@OCT([é]); 

Note that the character strings representing the octal 

values will be separated, on each line, by the tab default. 

The result might be 

03664 04662 37774 03725 

06437 77172 46162 . 12346 

etc. 

1 0 . 4  Input/Output Manipulations 

In addition to the <read- and <write-control> functions 

SKIP, TAB, COLUMN, PAGE and LINE. several others are defined for 

programmer convenience. 

1 0 - 4 - 1  g/o Functions 

PAGE_pF(<device>) 

LINE_pF(<device>) 

COLUMN_QF(<device>) 

! 
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T 

. are functions which result in the current page, line and 

column numbers; 

10.4.2 Character String Functions 

LEFT(<charactér—expression>) 

RIGHT(<character-expression>,<p>) 

are functions for the left and right justification of character 

strings. 

LEFT removes all leading blanks of the <character—éxpression>. 

RIGHT creates a string of length <p> and truncates on the 

léft or pads with blanks on the left dépendihg on whether the 

<character—éxpression> length is greater or less than <p>. 
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APPENDIX A 
Built—In Functions on Pseudo Variables 

The built-in functions and péeudo—variables available in 

HAL are givén in this appendix, and are presented in alphabetical? 

order under their respective headings. The allowable data-types 

‘for the arguments are indicated using the following abbreviations: 

I: integer 

S: scalar 

V: vector 

M: matrix 

B: bit 

C: character 

. A. Conversion Functions (see Sec. 6.2.2). 

1. INTEGER 

Arguments: BII:S,C. Converts an argument to an integer, 

or a list of arguments to an array of integers; 

2. SCALAR I 

Arguments: B,I,S,C. Converts an argument to an integer, 

(or fixed—) point scalar, or a list of argu~ 

ments to an array of scalars. 
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3. BIT . .  .‘ 

Arguments: B,I}S,V,M,C. -Converts an argument to a .  

bit string or a list of argumenfis to an_ 

array of bit strings (V,M are interpreted 

as lists of scalars). ‘ 

4. CHARACTER: 

Arguments: B,I,S,V,M,C.I Converts an argument to a 

character string or a list of arguments 

to an array of character strings (V,M are 

rinterpreted as lists of Scalars). 

5. VECTOR ' 
Arguments: B,I,S,V,M,C. Converts a list of arguments 

to a vector, or an array of vectors. 

6. MATRIX 

Arguments: B,i,S,V,M,C. Converts a list of arguments 

to a matrix or an array of matrices. 

B. String Functions 

1. INDEX (string, config) 

Arguments: B,C. Searches a string for a specified‘ 

bit or character configuration; The 

starting location of that configuration 

within the stiing is returned as an integer 

data type. ' 

2. ’LENGTH (string) 

Arguments: B,C. Finds the string length and returns 

it as an integer dafia type. 

A—2 
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LEFT (character~string) 

Result: LEFT removeé all the leading blanks of a 

' character string Operand and returns the 

‘resultant character string. . - 

RIGHT (character-string, p) 

Result: RIGHT cregtes a new character string of length,p 

. The character string afgument is truncated on 

the left, or padded with blanks on the ieft, 

depending on whether its length is greater 

or less than p. p is a scalar expression 

which ié rounded to the nearest integer 

before use. 

C. Arithmetic_Functions 

These functions return the same data type as the argument 

(bit arguments are first converted to integers; the ffinction 

returns an integer). 

1. 
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ABS 

Finds the absolute value of the argumeht. 

CEIL, CEILING 

Determines the smallest integral value that is greater 

than or equal to the argument. » 

FLOOR 

IDetermines the largest integral value that does not 

‘exceed the argument. 

ROUND 

Rounds the argument to nearest integral value. 

SGN, SIGNUM 

Returns 0, +1, -1 as argument is positive or Zero, and 

0 
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1. 

negative, respectively. 

SIGN ' ' 

Retufns +1} -1 as argument is positive or Zero, and 

negative, respectively. ‘ 

TRUNC, TRUNCATE' ' 
Returns 0 if argument is less fihan +1 but greater than 

-1; otherwise equivalent of SIGN (argument) times the 

largest positive integral value_that does not exceed ABS 

'(argument). 

D. Mathematical Functions 

These functions return a scalar data type. Arguments may 

be B,I,S. (Bits and integers are converted to scalars.) 

Array arguments yield array results. 

ACOS, ARCCOS 

Trigonometric cosine; argument in closed interval [-1, 1]; 

resuits in closed interval [0, w]. 

ARCCOSH 

InverSe hyperbolic cosine; arg not less than 1. 

ARCS I N 

Invegse trigonometric sine; arg in closed interval 

[—1, 1]; result in closed interval [ -w/Z ,  fl / Z ] .  

ARCS INH 

Inverse hyperbolic arc sine; arg any valué. 

ARCTAN 

Inverse trignonometrictangent; arg any value; result in 

open interval ( — w / 2 , . fi / 2 ) .  
- - I 
ARCTAN H 

Inverse hyperbolic tafigent; Iarg|<l 
' A—4 . 
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11. 

13. 

14. 

15. 

16. 

12. 

COS 

Trigonometric Cosine; arg in radians; Iarg|<Kl. 

COSH" 

Hyperbolic cosine} Iarg l<K3.  

EXP ‘ 

Exponential, (earg); larg l<K3.  

LOG 

Natural logarithm; arg positive and non-zero 

'REMAINDER, REM 

Result is the remainder from the division of two 

arguments. 

SIN 

Trigonometric sine; arg in radians; |arg|<K1 

SINH 

Hyperbolic sine; larg|<K3 

TAN 

Trigonometric tangent; arg in radians; arg not odd 

multiple of n/Z; larg|<K2 

TANH 

Hyperbolic tangent; arg any value. 

SQRT 

Square root; arg positive. 

Note:K1, K2 and K3 are upper limits which depend upon 

target machine characteristics. 

E. ‘Matrix—Vector Functions 

Arguments.may be vectors or matrices (as applicable). 

A—S 
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I. ABVAL ' “ 

Absolute value of magnitude of §ector; argument may be a 

vector of any length. - 

2. ‘ADJOINT, ADJ 

Adjoint; argument is finvertible square matrix of anyf 

dimension; result is equal to DETERMINANT (argument) 

INVERSE (argument) ' 

. 3. DETERMINANT, DET 

Determinant; argument is a squafe matrix 

4. INVERSE 

Inverse; argument is square matrix; result is inverse 

if argument is invertible. . 

5. TRACE, TR 

Trace; argument is square matrix; result is sum of 

diagonal matrix élements. V 

6 . TRANSPOSE 

Transpose; argument is matrix of any dimensions; result 

is the interchange of the rows and columns bf the argument. 

7. UNIT 

‘ Unit vector; argument is vector of any length; result is 

a vector of magnitude 1 and in line with argument. 

'F. Linear Array Functions 

These functions have the following general format: 

‘<function-label>(<linear-array>) 

where the function will operate on the <1inear—array> repre- 

senting the "inner-most" free index of the array argument. 

A-6 
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The <linear—arréy> may be of (B,I,S,V,M) data types. The 

fuhctions return a scalar feéult. 

.1. SUM ' 
Result is sum of the array elements. 

2.' PRODUCT, PROD 
Result is product of the array elements. 

3. MAXIMUM, MAX 

Reéult is the maximum value of the arréy elements. 

4. MINIMUM, MIN 

Result is.the minimum value of the list élements. 

. 5 .  POLY 

' POLY forms a polynomial from a linear—array and from 

an independent variable. The elements of the array 

form the polynomial coefficients. The array may be 

of (B,I,S) data types. The general format is 

_ POLY(<independent~variable>,<1inear—array?) 

POLY defines the following polynomial: 

‘ 2 n—l a1 + a2v + a3v. + ... anv 

where ah are the elements of the <linear-array>, and 

v is the <independent variable>. 

A-7 
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G; Miscellaneous Functions 

1. RANDOM ' 

Result is the current basé random number in the psefido- 

random number generator. This function énables the' 

programmer td make successive runs of a program without 

repeating sequences of pseudo-random numbers. 

2 . TIME ‘ I ' 

Returns current time. 

3 . DATE 

Returns current date 

H. Péeudo—variables 

A pseudo-variable, in HAL, is a function that can only 

DO statement. The only defined pseudo-variable is BIT. 

See Sec. 7.1.2.3.. 

|. 
E A-8 

I ' appear on the' left of an equal sign (=) in an assignment or 
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B.l DEFAULTS WITH DATA DECLARATIONS 

3.1;1 Within DECLARE Statements 

B 0 1 0 1 0 ] -  

are provided; i.e. no <array-spec>, <type-spec> and <attribute 

list>, the following defaults apply to the declared name(s): 

1 .  

Note: For fixed point machine PRECISION default is single‘ 

B.l.l.2 

l. 
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At the COMPOOL level, 

APPENDIX B 

”Standard Defaults 

Specifications (See Sec. 5.1.1). If nd <specifications> 

SCALAR PRECISION(6) 

At the PROGRAM level, 

SCALAR PRECISION(6)7 initial value is unspeéified. 

At other levels, 

SCALAR PRECISION(6) AUTOMATIC; ini£ia1 value 

is unspecified. ' 

For a function (Secs. 5.1.1.5, 7.4.2.1), if <type-spec> is 

not provided, . ‘ ‘ 

SCALAR PRECISION(6) 

precision, with zero integer bits. 

Precision, Dimensions and Length (Sec. 5}1.l.2). 

. I f  scalar, véctor, or matrix PRECISION is not provided, 9 

the precision default is the same as in B.l.l.1 above. - 

If vector <length> is not provided, a lengfih = 3 is 

presumed. 
i 

If matrix <rows> andg<columns> are not provided, 3 

rows and 3 columns are presumed. 

B-l 



If bit <length> is not proVided, a length = 1 is 

presumed. 

.If fixed character <length> is not provided, a 

length = 8 is presumed. 

3.1.1.3 Attributes (See Sec. 531.1.3) 

3.1.1.3.1 Initialization Attributes. If INITIAL or CONSTANT 

is not provided, the identifier is presumed to be a variable 

with unspecified initial value. 

3.1.1.3.2 Storage Class Attributes. If STATIC or.AUTOMATIC 

is not provided, the STATIC storage class is used. 

3.1.1.3.3 Dynamic Sharing Control Attributes. If LOCK_IYPE(<n>) 

3.1.1.3.4 Storage Optimization Attributes. If DENSE or ALIGNED 

is not provided, the ALIGNED attribute is presumed. 

B.1y1.3.5 Structure Qualification.. If QUALIFIED or NOT_QUALIFIED 

is not provided in a structure declaration NOT_QUALIFIED is 

'presumed. 

B.1.2 Implicit Declarations (See Sec. 5.3) 

For the implicit declaration of SCALAR, VECTOR, MATRIX, 

BIT and CHARACTER the default characteristics of length, precision, 

initialization, sharing class, and storage optimiZation are the 

_ B-2 
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same as described in B.1 above for the explicit declaration of 

these data types, 

3.2 WITHIN EXPLICIT CONVERSION FUNCTIONS (see Sec. 6.2.2y 

8.2.1 Data-type 

B . 2 . 1 . 1  BIT (<single-Qperand>). If BI& is not subscripted, the 

result is a full word bit string. Integers and scalars are ‘ 

converted t9 full Word bit strings; character operands are 

confierted to the bit length representing the total character 

string. 

B.2.1.2 CHARACTER (<single-operand>). If CHARACTER is not 

subscripted, an integer or scalar operand is converted to a 

_character representation; a bit string is first converted to an 

integer, and then to a character representation. 

3.2.1.3 VECTOR (<list>). If VECTOR is not subscripted, the 

dimension and the number of elements in the list equals one 

of three, the dimension is firesfimed equal to 3. If the list 

consists of 5 single-operand, each vector componenfi is assigned 

the value of tfiis operand. 

3.2.1.4 MATRIX (<list>). If MATRIX is-not subscripted, and 

the number of elements in the list equals one or nine, the 

dimensions are presumed to be 3x3. If the <1ist$ consists of 

a <single-operand>, each matrix element is assigned the value 

of this operand. 

B-3 . 
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3 . 2 . 2  Array-Type 

B.2.2.1 INTEGER(<list>) and SCALAR (<list>). if these functions 

are not subscripted with <afray~shape>, a one dimensional array 

of n-elements is presumed, where n is the number of elements.in 

the list. 

3 . 2 . 2 . 2  BIT'(<list§) and CHARACTER (<liét>). If these functions are 

not subscripted with <array-shape>, 6ne dimensional arfays of 

length n are presumed, where n is the number of elements in the list. 

If these functions age not subscripted with <index-expression>— 

then a full word bit string is presuméd for BIT and a character 

'string of length 8 for CHARACTER. 

3.2.2.3 VECTOR(<1ist>). If VECTOR is not subscripted wiih' 

<dimension> and: n 

1. _the list consists of a single operand, a dimension of 

3 is presumed; Each vector component is assigned the 

value of this operand. 

2. the list consists of more than a single element, the 

dimension of each veétor array—element Will be equal to 

the number of elemefits in the list. 

Note that the array—type function, VECTOR, must always be- 

subscripted by <array-shape> to distinguish it from the data-type 

conversion function, VECTOR. 
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B l2 ;2 .4  MATfiIX(<1ist>).‘ if MATfiIX is not subsCripted wifih 

<dimension> and: i f . 

'1. the list consists of a single operand, dimensions of   

3 x 3 are presumed. :Each matrig element is assigned 

the value of this opgrand. I 

2; the list consists of nine elements, dimensions of 

3 x.3 ate presumed. Each matrix array—element will. 

be assigned this list values. 

3.. the list contains multiples of 9 elements (18, 27, 

etc.), dimensioné of 3x3 are preéumed. (In this case. 

the number of list elements must be gonSiétefit With 

“the <array-shape> and the default, 3x3.) 

Note that the array-type function, MATRIX, must always 

be subsbripted by <érray-shape> to distinguish it from thé data-' 

type conversion function, MATRIX. 
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I ' APPENDIX C 

g . HAL Kelwords 

; I (not including built-in functions) 

; The following Words are HAL keywords and are usually unavailable. 

' I for any other use. 

I ACCESS EXI'If PRIO__CHANGE 
r . AND ‘ FALSE PRIORITY 
‘ I ARRAY FILE , . PROCEDURE 
I 'ASSIGN j FOR f QUALIFIED 

AT. _ ' FUNCTION READ 
- I ' AUTOMATIC GO READ-"ALL 

BIN .HEX . REPLACE 
I BIT . ID_CODE RETURN 

BIT__ARRAY IF " SCALAR ' 
I BIT LENGTH IN ' SCHEDULE 

BY INCLUDE SIGNAL 
' CALL _ INDEPENDENT SKIP ' 

CASE INITIAL STATIC 
CAT ' INTEGER I SYSTEM 

I CHAR . LABEL TAB 
CHARACTER ' - LATCHED TASK 

I CHAR__ARRAY LINE . THEN 
CHAR__LENGTH MATRIX TERMINATE 

I CLOSE ‘ ‘ MATRIX_DIM . 'I'O 
COLUMN NOT *TRUE 

I CONSTANT NOT__QUALIFIED UNTIL 
DECLARE OCT UPDATE 

I DO OFF _ VARYING 
ELSE ‘ 0N VECTOR . 

' END- ' OR VECTOR;LENGTH 
I ERROR ' OUTER ' WAIT 

ER__RUPT PAGE - WHILE . 
I EVENT ‘ . PRECISION WRITE- 

EXCLUSIVE . PRIO I - ‘ . 
I C-l 
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