
Ul—l

DRAFT.DOCUMENT

The Programming Language
HAL '

- A specification

1 March 1971 ~

LJ
[—1

INTERITIETHIL'S

306 W} A? (I

.
u
‘

u
'

_

.
4V ,
1

,
,

.

_-
.

,
I ai

DRAFT-DOCUMENT

The Programming Language

HAL '
- A specification

1 March 1971

.a

Submitted to:

National Aeronautics and Space Administration .
Manned Spacecraft Center '
Houston, Texas 77058

.
V)

. ~ .

INTERM‘ET'RIC'S INCOnbRATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840
, 7 ,7i,,, 7k, _ H____,._..._...g. ,- 1 ”a; - L A , .._...A A. .-

r “ Q . , , , ._ A-r -_-.. .m- .I. ” a ...l A.)..l‘., in}. r s A 0 . ' . _ . . .-... . _ .. ml..- r.“ .. A .. .‘A .. Anu‘. ..._‘ . _ L . . »

A
.

4
_

.
.

v
A

_
_’

.
4 _ 4

’
<

-

I
'

.
.

‘
o

A
I

'
I

o
:

‘

FOREWORD TO THIS DRAFT

’ This document is a draft of The Programming Language, HAL -

A Specification (Document # M S G - 0 1 8 4 8 i . The content is_subr I

stantially complete. An inaex will_be'included.in the final

'docpment.

This geport was prepared by Intermetrics, Inc. finder

contract NAS-9-10542 from the Manned Spacecraft Center of

the Natibnal Aeronautics and Space Administration. The

Technical Monitor of this contract is Mr. Jack Garman/FSS.

The publication of this draft does not constitutea

“document release by Intermetrics and information contained

herein shall not be disclosed outside the Government.

A, , _ . . . _ ‘__ ._ ‘ ._ . .A_-__ ,: .-_..- - ~ - A _ _ , -. . . _ _ . ‘ n u . . . _ . _ n. _ . . ; - . _ . ‘ _ . . . h—ru _-- .. #

INTERMETRIQS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-4840

1
-

"
‘
.

.
.

.
w

.

w

I
.

-
‘

l

.
-

.
»

_

‘

_
.

_ ‘ PREFACE

TheHAL Programming Language has been developed by the

staff of Intefmetrics, Inc. based on many years of eXperiefice

in producing software for aerbspace applications.

. HAL accomplishes three significant objectives: (1) indreased

readabiiity, through the use of a natural two-dimensional-mathe-

‘ matical format; (2) increased reliability, by providing for.

selective recognition of common data and subroutines, and by

incorfiorating specific data—protéct features; (3) real-time

contrbl facility, by including a comprehensive set of real—time

control commands and Signal conditions. Although HALis designed

primarily for programming on-board computers, it is general

enough to meet nearly all the needs in the production, verifica-

tion and support of gerospace, and other real-time applicatiéns.

The design of HAL exhibits a numbér of influences, the

‘greatest being the syntax of PL/l and ALGOL, and the two—dimen—

sional format of MAC/360, a language developed at the M.I.T.

Draper Laboratory. With respect to the latter, Intermétrics

wishes to acknowledge the fundamental contiibution, to the

concept and implementation of MAC, made by Dr; J. Halcombe Laning
'9...

of thé M.I.T. Draper Laboratory.

March 1, 1971

lN-TERMETRICS INCORPORATED . 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 - (617) 8-68—1840
I H .4; ,4 ,. . A... k ,u. r m , k_.,4.._...‘k _,, l ‘ A - J — ‘ h J ‘ d — i .

.
w.—

TABLE OF CONTENTS

1.0 BRIEf DESCRIPTION OF HAL

1.1 The Basic Characteristics of HAL

1 . 1 . 1 Source Input/Source Listigg

"1.l.2 Data Types and Computations

1.1.3 Real-time Control

1 . 1 . 4 Pregram Reliability

2 . 0 . HAL LANGUAGE ELEMENTS

2.1 Syntax Nétation

2.1.1 Syntactical ElemenEE

2.1.2 Keywords '

' 2.1.3. Vertical Strokes

2.1.4 Braces

2.1.5 Brackets

2.1.6 'Three Dots

N

o
N

HAL Character Set

N

0
L0

Basic Syntax Elements

~2.3.1 Identifiers

2.3.2 Kaywords

2 . 3 % 3 Literals

2.3.3.1 Arithmetic Literals

2.3.3.2 Bit String Literals

2.3.3.3 Charécter String Literals

2.3.4 Special Characters

2.3.4.1 Arithmetic Operators.

2.3.4.2 Relational Oeators.

1

2-10

2-10

2-11

2 - 1 2 .

INTERMETRIQS- INCORPORATED ' 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868-1840 .

.

v

'3

3.2

3.3

09
-

o M

INTERMETRICS INCORPORATED ° 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 -

2.3.4.3 String & Logical Opefa£0rs

2 . 3 . 4 . 4 ' Other Operators-

2 . 3 . 4 . 5 Separators

2.3.4.6 Built-in FunctiofiNamés

.2.3.4.7 Compiler—Generated AnnokatiOn

SOURCE LANGUAGE INPUT

.Two-Dimensional Format

3.1.1 E and S Line Expressions

HAL Single-Line Format

332.1 Implicit Data Declarations

Comments ' ”

3.3.1 Comments on Sfatement Lines

3.3.2 Commént Lines

Use of Blanks

DATA ELEMENTS '
- Data Types -a

l 4 . l . l .Arithmetic Data

. 4 - 1 ° 1 ' 1 Scalar-

4.1.1.2 Integer

' 451.1.3 Vector

4.1.1.4~ Matrix

Data Organizations

4 . 2 . 1 Arrazs

4.2.2 Strgctures

' 4.2.2.1 A Not Qualified Example

4.2.2.2 A Qualified Example :

ii

2-12

2-12

2—13

2-14

2-14

3-3 .

' 3 - 4

3-6

3-6

3-7

3-7

3-7

3-9

4-1

4-3

4-3

4-3

4-4

4-4

4-5

4-5

4-6

. 4 - 7

(617) 868-1840'
.. ”L...

J .

_ _ A _ _ _

l

.
.

a

l

I

' 4.2.2.3 An Aerospace Application

4.3 Attributes

5.1

I 4 . 3 . 1

_4.3.2
4 . 3 . 3

. 4 . 3 . 4

4.3.5.

Initialization Attributes

Storage Class Attributes .

_Memory Optimization Attributes

Dynamic Memory Protection Attributes

Special Attributes

DATA DECLARATION

DECLARE Statement

5.1;1

'5

5.1.2

5 . 1 . > 3

Simple DECLARE Statement

5‘151.1 <array-spec>

5.1.1.2 <type—spec>

5.1.1.3 <attribute list>

5 . 1 , 1 . 4 Initialization

5.1.1.5 Qgclaratibn of Program, Function'g;
- Statement Labels

5.1.1.6 Exémples of Simple Declaration
§fatements (Floating Point Implementation)

Factored Declaration Statement .

5.1.2.1 Examples of Factored Declarations

Structure Declaration Statement

5.1.3.1 <terminal-declaration>

5.1.3.2 <minor-struct—declaration>

5.1.3.3 Examgles

5.1.3.4 Structure Initialization

iii

4-8

4-10

4-10

4-10

4-11

4-12

4-13

5-1

5-1

5-1

5-2

5—4

5-5.
5-9

5-10'

5-11

5-12

5-13

‘5-14-
5-14

5-15

5-16

INTERMETRICS INCORPORATED ' 3'80 GREEN STREET '- CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868—1840
7” ,4; , _ 7 # . — _ J

.
.

.
.

.
.

5.2 Notatibfi of Data Type; and Organizations

5 .2-1 Data Type Notation - I

..5.2.2' Array Notation

5 . 2 . 3 Structure Notation

5 . 3 . Implicit Declarations

5.4 Alternate DECLARE Form

5;5‘ DEFAULT Statement

6 . 0 ‘ I DATA MANIPULATION

6.1 Expressions

6.1.1 Arithmetic Expressions

“ 6.1.1.1 Integer Expressions

6.1.1.2 Scalar Expressions

6.1.1.3 Vector Exgressions

6.1.1.4 Matrix Expressions

7 6.1.2 String Expressions

6.1.2.1 Bit String Expressions

'6.1.2.2 Chagacter String EXpressions

6.1.3 Array Expressions

6.1.3.1 Two—array Expressions

6.1.4 Strudture Expressions

6.1.5 Relatidnal Expressions

. 6 ' 1 ' 5 ' 1 Bit String Comparisons

6.1.5.2 Arithmetic Comparisons

6.1.5.3' Character Siring Comparisons

6.1.5.4 'Array Compapigons'

6.1.5.5 Structure Comparisons

iv

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS 02139

5-18

i5~18

5e19

5-20
5-22

5-23

5-25

- (617) 868-1840 -
7 - . “ . A

fl

:
3

I N

0
‘

o (
.
0

6.1.6 Pgegédence Order'

,6 .1 .6 .1

6.1.6.2

6;1.6.3

Conversions

6.2;1- Imglicit

I 6.2.1.1

6.2;1.2

. 6.2.1.3

6.2{2
\

Explicit

6.2.2.1

6 . 2 . 2 . 2

6.2.2.3

6.2.2.4

6.2.2.5

Subscripts

6.3.1

6.3.2

6.3.3

6.3.3.1

6.3.3.2

6.3.3.3

'Single—Element Reference

Group I ArithmétiC‘Operations

Group II Relational and Strifig Operations

Further Comments on the Order of
Operations

Conversions -

Data Type

Arithmetic Literals

Precision

Conversions

Data Tyge

Array-Type

Special Character-To—Bit, Bit-To-
Character Functions

Precision

Summary of Explicit DataQType Conversions

".".

Subscripting Data-Types and Arrays of Data-Types
:0!

Multiple—Element Partitions

The Use of *

The "T0" Operator

The "AT" Operator

6.3.4 Subscripting Structures

6.4 Expression Summary

v”

V

6‘14
6—14
6-15 .

6-15

6-17

6-17 .

6-17

5-19'
6519

6-23

6-23
6~27

6-31

6-32

6-35

6-37

6-38'
6-38
6-40
6-40

6-40
6-41

6-42

6-44

ENTERMETRIQS INCORPORATED ° 380 .GREEN STREET - CAMBRIDGE, MASSACHUSETTS Q2139 ° (617-) 868-1840"

'
a

.
.

a
.

7,0 STATEMENTS

7.1 Assignment Statements

l 7 . l . 1 . Implicit Conversions

7.1.i.1 gype Conversions

7.1.1.2, Precision Conversion

'7.1.2 String Assignments

I 7.1.2.1 'Bit Strings

7.1.2.2 "Booléan" Assignments

7.1.2.3 Pseudo-Variable Bit String AsSignment

7 . 1 . 2 . 4 Fixed Charactef Strings

_ 7.1.2.5 varying Charaéter Strings

7.1;3 Array Assignments ~

7.2 Declaration Statements

7.3 Control Statements , 1

7 . 3 . 1 The GO TO statements

7 . 3 . 2 DO Statemenfis

. 7.3.2.1 Th; Simple DO Statement

7 . 3 . 2 ; 2 DO WHILE Statement

7 . 3 . 2 . 3 The D9 FOR Statement

7 . 3 . 2 } 4 D0 CASE S£atement

7.3.3 END Statement

7 . 3 . 4 The IF Statement

. 7.3.5 The NULL Statement

7.3.6 REPLACE Statement

7.4 Procedures and Functions

7.4.1” Procedures

7 . 4 . 1 . 1 PROCEDURE Statement

vi

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 0213-9 .' (617) 868-1840 .

7-10
7-10
7-11
7-13
7-14
7-15
7-17

’7-17
7-19

7‘19

7-19

_‘_1

7.5

7.4.1.2 CALL Statement‘i
7 . 4 . 2 Functions I .

7 . 4 . 2 ; 1 FUNCTION Statemént

7 . 4 . 2 . 2 Function Reference

7 .4 ;2 .3 Parameter Declarations.

7 . 4 . 2 . 4 Functiohs of An Array

Programs

7:5.1 PROéRAM Statement

'7.5.1.l Program Calls

RETURN Statement

CLOSE Statement

HAL PROGRAM ORGANIZATION

Program Structure

8 . 1 . 1 Scope of Names

8;l.2 Selective Inclusion of Outer Names

8.1.2.1 Iné;usion of Structure Names

8.1.2.2 Implicit Declaration of flames

8.1.3 Scope of Labels

8 . 1 . 4 Scope of the REPLACE Statement

8.1.5. Scope of the DEFAULT Statement

The COMPOOL

The Symbolic Library

REAL TIME CONTROL

TASK Statement I

9.1.1 Task Calls

Schedfiling-Statefients

9.2.1 SCHEDULE Statement

vii

7-21
7-22
7—22
7-24‘
7-24'

. 7426'
7-28

7-28

' 7 - 2 9

7-30

7431

8-11

8-12

9-1

. 9 - 2

9-3

.9-3.

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 " (617) 868—1840'

. 9.2.2 WAIT Statement ‘ . - 9-6.
9.2.3 PRIO_CHANGE Statement . ‘ ' 9-7

9.2.4 TERMINATE Statement . I. ' . 9-8

9.3 VEvents and Signals _ ' ‘ ' .' 9-9

9;3.l Events . , ' I } ' 9-9

9.3.2 SIGNAL Statement - . ‘ - 9—10
9.4 Dypémic Control of Shared Data ‘ H . fi - 9-13

9 ; 4 . 1 Conflicts in Sharing Data 9-13

9.4.2 .The Update Block ' 7 9-15

9.4.2.1 Summary on Entering an Update'Block V ' '-9-17 .
(LOCK__ TYPE (1) Variables)

9.4.2.2 Summary on Leaving an Update Block 9-18
(LOCK_ TYPE(1) Variables

9.4.2.3 Examgles . ’ ‘ M 9-19

9 . 4 . 3 Exclusive Subroutines .,, ' 9-20

9 . 4 . 4 Access Rights I . 9-21

9.5 Error Recovery I - . '~ 9-22

9.5.1 ON Statemeng. ' ‘ ' ' 9 ‘ 9-22

9.5.2 ER_RUPT Stafiement “ - ' .. 9-23

9.5.3 EXAMPLES ' ' I ' 9—24
10.0 INPUT-OUTPUT ' ' _ ' 10-1w
10 .1 FILE Statement - 10-1

1 0 . 2 READ Statements ’ _ ‘ 10—2

. 1 0 . 2 . 1 READ Statement .' V - 10-3

16.2.2 Standard Input Data formats . - ' I l l o - G
1 0 . 2 . 2 . 1 Standard Arithmetic Data Formats 10-6

10.2.2.2 Standard Character Data Fbrmat ‘ - 10-7

10.2.2.3 Arrays and Structures V l " ' 10-8

viii'

INTERMETRICS INCORPORATED ° 3'80 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840
- _ . , , -

a

10.2.3 READiALL Statemefit
1 0 . 3 WRITE Statement

10.3.1 Standard Output-Data Formats

- 10.3.1.1 Scalars, Véctors, and Matrices

10.3.1.2 Integers and Bit Strings

10.3.1.3 Characters ‘ I
1 0 . 4 Input/Output Manipulations

1 0 . 4 . 1 I/O Functions

1 0 . 4 . 2 Character String Functions

APPENDIX_A Built-In Functions on Pseudo Variableé

APPENDIX B Standard Defaults

.APPENDIX C HAL Keywords . w

ix

10*8

‘10-10
10-13

10-13

10-13 .

10-14

10-15

'10-15

lO-lG.

A91

B-l

C-l

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ° (617) 868-1840

u
'

.
a

< ‘
-

.

o

.

.
‘

.
'

o

1.0 BRIEE'DESCRIPTION- OF HAL A

HAL is a programming language deveioped by Intermetrics, Inc.

for aerospace computer applications. Ifi is intended to satisfy

the tequirements for both on—board and support software. The'

language contains features which provide for réalétime control,

vector-matrig and array data handling, and bit and character

string'manipulations.

1.1 .The Basic Characteristics of HAL”

1.1.1 Source Input/Source Listing

A singular feature of HAL is that it accepts source code

in a multi-line format, corresponding to the natural notation

of ordinary algebrat_ An equation whiéh involves exponents and

subscripts may be written, for example, as

2
J

2 3/2 C = (XHA + Y B K) I

instead of (as in FORTRAN or PL/l)

C(I) = (X*A(J)**2+Y*B(K)**2)**(3{/é)

HAL also permits an optional single-line format; its construction

is similar to the example above; with some minor changes; thus

C$I = (X A$J**2+Y B$K**2)**3/2

11-1

INTERMETRICS iNCORPORATED ° 380 GREEN STREET - CAM/BRJDGE, MASSACHUSETTS 02139 ' (617) 868-1840

HAL source code may be input on cards or by data terminal.

‘ The input stream is free—form in that, for the most part, card

_ or carriage column locations have no meaning; statements axe

separated simply By semi—colons.

'In an effort to increase program reliabiiity and promotg

HAL as a mofe direct communications medium between specifications

and‘code; the HAL program listing is anfiotated with special

marks. Vectors, matrices and arrays of data are instantly

:ecognized by bars, stars and brackets. Thus; a vectcr becomes

V} a matyix fl, afid an array [A]. Further, bit strings appear

with a dot, i.e., g and character strings With a domma, 6.

With these special méfks as aids, the source listing is more

easily understood and serves as an important step toward'

‘self-documentation. In addition to data marks, logical para—

graphs, or blocks of code, are automatically indented so that

dependence of one block on another may be seen clearly. -

HAL is a higher-order language, designed to allow programmers,

analysts.and engineers to communicate with the computer in a

form which approximates natural mathematical expression. Parts

'of the English language are combined wi£h standard notafiion to

provide a tool that readily encourages programming without

'demanding computer hardware expertise.

1-2

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 - (617') 86841840

.

0

1.1.2 Data Types and Computations

HAL provides facilities for manipulating a number of

.different data types. Arithmetic data may be declared as

scalar, véctor, matrix or integer (whole number). 'Individual.

bits may be treated as Boolean qUantities or grouped together-

in strings. The language permits the user to manipulate

character strings, via special instructibns. Organizations of

data may also be constructed; multi-dimensional arrays of any

single type can be formulated, partitioned, and used in expressions.

A hierarchical oréanization called a structure can be declared,

in which related data of differenfi tYPES may be stored and re+

trievgd as-a unit or By individual reference.

HAL requires that most data types be described explicitly;

i.e., by declarations which assign a name and specify desired ‘-

attributes. However, for data types with default attributes

the programmer can fake advantage of HAL's implicit declaratiofis

and let the compiler assign these variables appropriately.

The arithmetic data types together with the appropriate

operators and built-in functions constitute a useful mathematical

subset. HAL can be used directly as a "vector—matrix" language

in implementing large portions of both on—board and support softdv

”ware. For example, a simplified equation of motion might appear as

K = 13 ice;

'6 = —MU'UNIT(§)/'fi.’fi;
VDOT = X'+ E}

_§DOT = V} 1

1—3

INTERMETRIQS INCORPORATED { 38.0 GREEN STREET -_ CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868-1840

u

where the matrix-g transforms acceleration from.meééurement_

toIreference'coordinates.

I By combining data types within expressions and utilizing.

both implicit and explicit conversions from one type to another,

’HAL may be applied to a wide variety of'problems with a powefful

and versatile capabilityr' I

'i.1.3 Real;time‘Control

HAL is a real-time control language; that is, certain

~defined blocks of codé called programs and tasks can be scheduled

based on time of the occurrence of-anticipated events. These

events may include external interrupts, specific data conditions,

and programmer-defined software signals.‘ Ufidesirable or un—

expected events, such as abnofmal conditions, may be handled

by instructions which enable the programmer to specify appro-

priate actidn. ‘ ‘

HAL's real-time control features permit the initiation and

schedfiling of a number of active tasks. This is a necessity

for any complex onboard space application.

1.1.4 Program Reliabiligy

Program reliability is enhanced when a software system

can create effective isolation for various subsections of code

as well as maintain and control commdnly used data. HAL is a

>block-oriented language in that a b;ock of code can be established

with locally defined variables that cannot be altered by sections
1

6f program located-Outside thé block. Independent programs

_ 1-4
INTERMETRICS INCORPORATED -'380 GREEN STREET - CAMBRtDGE. MASSACHUSETTS 02139 - (617) 868-1840-

can be compiled and run~togethef with communication among the

.programs permitted through a centrally managed and highly visiblé

data pool. For a real-time environment, HAL couples these préé

cautions with a locking mechanism which can protect, by pro-

.grammer directive, a block from being entered, a task from

being initiated, and even an individual variable from being

Written intq, until the lock is removed.

These measures cahnot in themselves ensure total software

reliability but HAL does offer fhe tools by which many anticipéted'

problems, especially those prevalent in-real-time control, can

be-isolated and solved. «

1-5

INTERMETRICS INCORPORATED - 380 GREEN STREET ° CAMBRIDGE. MASSACHUSETTS 02139 ° (617) 868-1840' ‘

2.0 ‘HAL LANGUAGE ELEMENTS

A HAL program consists of statements terminated by semi-

colons (;) , groups of associated statements which are treated as

a single statement (do-groups), and blocks of statements organized

as subroutines (e.g. procedures and functions). The statements and/6r

blocks must be compiled as a program unit, or as sets of indépen—

dently compilable program units. Communication between programs

is through a common data pool (COMPOOL) within a symbolic library

(see Seé. 8),

HAL is composed of five basic syntactical eléments: identi-

fiers, keywords, literals, special characters, and built-in

functions. Complex syntactical units (i;e., statements) are

constructed from these basic elements using a common set of_~

input characiers.

2.1 -Syntax Notation

The following rules are used throughout this Specification

to describe the syntax of the various constructs in HAL.

2.1.1 Syntactical Elements

Syntactical elements represent the defined language

elements which comprise HAL. Elements are denoted by lower

case letters (allowing imbedded hyphens) enClosed by angle.

' brackets. Some examples are:

2-1

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ‘ (617) 868-1840'

.

<3igit>

<identifier>

<expression>

<operand>

<1abe1?

2.1.2 fKeywords

A keyword is the literal occurrencé in the language of

the characters represehted. They are made up of upper caée

letters and break characters. Some examples are:

DECLARE I

INTEGER

AND

OR .

NOT

ICALL

PROCEDURE

PRIO_CHANGE

2.1.3 ’Vertical Strokes

The Vertical stroke | indicates that a choice of s y n - ‘

tactical units or other meaningful symbols is to be made; e.g;

<identifier>I<expression>

<name>l<1abel>

o|1|2|3|4

etc.—

2-2

7 ' INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840..
A ” . _ . _ . ,,_ . . ‘ A , A A7, _

.

.

.

v

o

2;l.4- Braces

Braces { } are used to denote that a choice of one Of the

enclosures must be made. The choices may be stacked vertically,

or horizontally using the vertical stroke. For example;

MATRIX}
DECLARE<name$fVECTOR

and '

DECLARE<name${MATRIXIVECTOR}

are identical.

2.1.5 Brackets

Brackets [] are used to denoté that a choice bf one or

none is to be made. For example

[<label>:]END;

specifies that an END may but need not be, labeled; e.g.;.

MARK: END;

or just

END;

2.1.6 Three Dots

. Three dots ,.. denote that the immediately preceding

syntactical unit may occfir ofie or more times in succession; e;g.,

[<digit>]... '
specifies a sequence of §g£9_or more digits, while

'{<digit>}...

specifies a sequence of one or more digits.

2-3

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBfiiDGE, MASSACHUSETTS 02139 - (617) 868-1840'

2.2 HAL Character Set

HAL's language syntax includes a total of 35 basic characters.

These are:

52

10

23

English language alphabetic lgtters: upper case A

through Z and Iowa: case a through 2. (Lower dasé.

is optional and may be used in identifiers when

available.)

digits 0 through 9.

special chafacters. Each special character or com-

bination of characters has a particular meaning witfiin

the language syntax. (Theii uses are discfissed in ‘

Section 2 . 3 . 4 ;) They are:

= (equals sign) . (period)

+ (plué sign) , (comma)

- (minus éign) ' (apostrophe)

/ (slash)' (>(1eftpafenthesis)

* (asterisk)) (right parenthesis)

< '(1ess than symbol) .$ (dollai sign)

> (greater than symbol) _; (break character)

1 (not symbol; also A) # (number sign)

I (OR symbol; also :)_ @ (AT Sign)

& (ampersand) [] (brackéts)

: (semi-colon) '{} (braces)

(colon)

2-4

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRlDGE, MASSACHUSETTS 02139 - (61-7,) 868-1840'

.
r

."
“”
.-

‘
A

?
“

:

i
}

}
;

’
:

:
R

-
;

[HAL will also accept other characters; restricting their

use to within comments énd character strings.. Some examples

a r e :

INTERMETRICS INCORPORATED: - 380 .GREEN STREET - CAMBRIDGE, MASSACHUSETTS 6213-9 - (617) 868-1840‘

(exClamation point)

(percent sign).

(question mark)

(double quotation marks)

2-5

_
.

.
.

..

_

a
»

.

a

.
¢

-
A

-
.

.
.

4
.

-
.

~
_

.
_

.
.

‘
_

.

n
.

.
—

_ -

.
_

.
_

.
m

r
l

x

._
.

m
.
.
-

_ .
-

_
.

.
.

..

.
h

-

M
M

-
-

-
.

.
.

.
_

.
.

_
.

.
.

_
.

.
.

.

.
.

,

.

.
_

l
.

._
.

-
-

«
-

- -

'
u

A
.

‘
i

.
.

‘

.
.

O
‘ -

a.

b.

2.3 Basic Syntax Elements

2.3.1 'Identifiers

An identifier is a name which is assigned by the programmer

to a data elément, statement label, etc. Each identifier must

satisfy the following rules:

The first character must be a letter.

It may contain 0 to 31 additiofial charactérs; which may

be any combination of letters, digits, or break characters,

except that it must not end with a break character.

It must nbt be a compiler reserved word.

A qualified structure name will contain imbedded

periods and must not end in a period or break charactér.

A structure name must be 31 characters or leSSJincluding

periods.

‘Examples of valid identifiers:

A

R05

INTEGRATION;BOUTINE

SE XTANT_TO__NAVIGATION_BAS E__MAT

STATE . COV_MATRIX

2-6

INTERMETRICS INCORPORATED ° 38‘O.GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

.
-

.

v
w

.
w

.
_

n
.

u
—

.
-

-
u

u
-

-
.

_
.

 . .
,

.

.

.
u

.
._ .

. . . .
_

.
.

.
.

_

.

._ .. 4
‘

-

I _
y

.
.

A
.

_
 ._

.
—

 _.
.

_
.

.
_

_,_____

:-

-
"

"
'

A

.
. .,

_. . —
‘

a
,

.

0

Examples of invalid identifiers:

1A ' begins with digit

. SAMPLE_. ‘ ends in-a break character

DECLARE . . resérved word

POS VEC contains a blahk

STATEMENTLfiZOO contains a # character

2 . 3 . 2 Keywords

Keywords are words recognized by the compiler to have

standard meanings within the language, and are usually unavailable

for any other use; for example, operators, commands, attributgs,

and built—in function names. A list-of HAL keywords is presented

in Appendix C. Some examples are:

DECLARE

INTEGER‘

AND

VECTOR

SQRT

TRANSPOSE

PRIO_CHANGE

‘ 2-7 .
7 INTERMETRIQS INCORPORATED - 380 GREEN STREEf - CAMBRIDGE, MASSACHUSETTS. 02139- (617) 868-1840 ’ 5

‘1 . - . . ._ . .J'I

.
.

_
<

.

_
.

.
‘

.
.

.
_

.
-

.

.‘ -
_

-
u
u
u
—

.
.

.
.

.
.

.
.

.
.

.. . ‘

_
.

-
-

-
>

-
—

.
o

.
.
-
4
_

A
.
.

.
.

.
.

.
.

-

-
n
-
u
’
p
‘

.
A

.
v

_
-

_
V

A
.

n
c

»

0

2 . 3 . 3 Literals

A literal is a group of characters or digits

which expresses its own value. For example, 248 a n d .

12.6 are literals in that the compiler will assign these values

to these "names". Literals are constants during program execution.

There are two types of literals: arithmetic and string.

2.3.3.17 Arithmetic Literals. An arithmetic literal has the

following general format:

<digits>{{EIBIH}<integer>]...

where

<digits> - one or more decimal digits with an

Optional decimal point.

<integer> - signed or unsigned whole number.

GENERAL RULES:
1. E, B, H represent powers of 10, 2, 16 respectively.

(That is, 1.023E+2 3 102.3, 32B-5 ' l.)

2. No distinction is made by form between scalar and integer

literals. (See Sec. 6.2.1.2 for thé use of literals

in expressions.)

2-8

"INTERMETRICS INCORPORATED ' 3.80 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS 02139 f (617) 7868-1840

 EXAMPLES:

- 0.123E63—3E10, 1375, 1E—75, 456.789, 3 aré all valid ‘

arithmetic literals.

2.3.3.2 Bit String Literals. Three forfis bf bit string literals

' are defined: .

BINI(<repetition>)] '<binary digit string>'

0CT[(<repetition>)] '<octa1 digit string>'

. HEX[(<repetition>)] '<hexadecimal digit string>'

where <repetition> is ah unsigned integer and the digit strings

are of length l or more. When <repetitibn> is provided the resulting

string length is equal to <repétition> times the number of digits in

the particular <digit string>. Imbedded blanks are allowed

between the apostr0phes, but have no_significance.'

. GENERAL RULES :

1.' Binary digit strings may contain only zeros, ones, or

blanks.

2. There are 4 special forms of bit string literals:

. TRUE : , . { 0N=} - BIN 1 _

- FALSE = . .
{ OFF } _ BIN o

'EXAMPLES:

TRUE, BIN'lOllO', HEX 'ABéD', BIN(32)'1', 0CT'3777' are

yall valid bit string literals.

. . . 2‘9 .
INTERMETRICS INCORPORATE-D ° 380 GREEN STREET -,CAMBR|DGE, MASSACHUSETTS 02139 ° (617) 868-1840

2.3.3.3 Character Strigg Literals. -Two forms of character

string literals are defined:

'<te£t>'

CHAR.[(<repetition>)]f<text>'

where <text> may contain any characfier in the aécepted character

s e t . ‘ If it is desired to have an apostrophe in the resulting

literal, it inst be_represented by an adjacent pair of apostrophes.

The length of the resulting string is equal to the count of the

characters plus the number of apostrophe pairs.

EXAMPLES:

'AB""C', CHAR'57.3/C', CHAR(26)'POP', are all valid character-

literals, having lengths of 5, 6, and 78 respectively.

NOTE: The character pair /* is always

interpreted as an opening Comment

bracket by the compiler, even if

it occurs within a character string

literal.

2.3.4 §Eecial Characters

Special characters or Combinations of characters are.used

in HAL between or with identifiers as operators, separatbrs,

or other delimiters. These Characters and their uses are definéd

below and described in more detail ih Sec. 6..

2—10
‘INTERMETRIQS.INCORPORATED - 380 GREEN STREET f CAMBRIDGE. MASSACHUSETTS 02139 . (617) 868-1840

n
.

1
-

.
v

2.3.4.1, grithmetic Operators,

S . '01 _ ' A Definition

+ .‘ .addition (or prefix pius)

- ' subtracfiion (or prefix minfisi

/ ’ division (other uses also)

(see note below+) multiplication I

* - vector cross product (other uses aléo)

. ‘ _ - vector dot product (other uses aiso)

** exponentiation (single-lihe)

+ Note that HAL does nOt utilize a character as a multiplication

Operator. Instead; - . I

(l) a space (or spaces) between two distinct identifiers;

is interpreted as multipliéation. .

(2) one of the operands (identifer or expression) must be

enclosed in parentheses.

' (3) the leftmost Operand must end with a parenthesis

(function form; e.g., SIN(X)).

2-11

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRiDGE, MASSACHUSETTS 02139 ° (617) 8684840

S- 01 _ _ - Definition

i _ equal to

" = ‘ pOt equal to (or “=)

< . less than

> - . ' greater than _

<= ‘ less than or equal t0

>= greater than or equal to

'”> not gréater than (or ‘>)

“ < ._ nqt less than (or A<)

The word NOT is equivalent to (“I“) and may be applied to the

combinations above.

2.3.4.3 String and Logical Qgerators.

S 01 ‘ Definition

AND (or &) . Boolean AND

. OR (or I) Boolean OR

NOT for "lor *) Boolean NOT

CAT (or II or ::) I Concatenation

WOrd‘operators (e.g., AND) may be substituted for symbols (e}g., &)

except that they do not act as delimiters and must be appropriately

delimited by blanks or otherwise. The use of these operators is

described in more detail in Sec. 6.

2-12

INTERMETRIQS INC-ORPOFIATED " 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 * (617) 868-1840'

u

-
I

s
.

.

2.3.4;4_ Other Operators.

szmbbl

- - - - -

Definition

indicates repetition within
a list, or the last member
of an array or string.

Scaling operator,'or character-
to-bit modifier '

Subscript Operator (single—
line)

. 2 . 3 . 4 . 5 Separators. The following characters have meaning

' as separators in HAL:

Szmbol

comma. ‘ , (a)

(b)

(C)

(a)

(b)

semicolon

‘
0

(a) cqlon

(b)

Definition

separates elements of a list;

separates indices in index
expressions;

separates clauses in declare
statements.

terminates statements;

separates structure indices
from array element indices.‘

associates a statement label.'
with the succeeding statement;

separates array element
indices from sub-element indices.

apostrophe ' . delimits string literal values
‘ (Character or hit).

equals indicates replace in assignment
and DO FOR statements.

2-13

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

.
‘
_
_
~

,
L
‘
:
‘
4
A
~
_
«
~
_
_
I

4
‘1
1‘
1

1

i
J.
1
l \

i

. l
- ’ A .

period . ' separates component names of
‘ qualified structures. -

* .

4/ - - encloses comments.

(_) Parentheses have many uses in
the language. They are u s e d -
in expressions, for enclosing
lists, function arguments,

, data dimension and initializa-
tion values, etc.

2.3.4.6 Built-in Function Names. Built-in function names a r e ‘

identified by the compiler as names of functions which are part

of the language. A complete list of £hese functions appears

in Appendix A. Some examples are:

ABS

TRUNCATE

COS

TAN

INVERSE

UNIT

2.3.4.7 Compiler-Generated Annotation. The following charactérs

are used by the compiler to annotate various data types as they

appear in the listing. Identical usage is also acceptable in

the input stream.

‘2—14 _
I-NTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139» (617) 863-1340

1—_ . 7 » , t

I .
I

S». 01 ’ " _ - » Definitipn

l * ' _ ' - 'Over a name denotes a matrix type.

I - ‘ Over a name denotes a vector type.

. Over a name denotes a bit string type.

I , P . Over a name defiotes a charact-Lei: string
type. '

I I] .Denotes an array of a particular
' data type. -

I .{ } , Denotes a structure organization.

I
I
I
I
I
I
I
I
I
I
I .

. . 2-15

I INT‘ERMETRICS INCORPORATED ' 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

.

.

.
r

o

c

3.0 SOURCE LANGUAGE INPUT

A sburce language program is presented to the compiler

in the form of statements. Statements can be Written in

single line, one-dimensional format, as in FORTRAN, PL/I,

and most languages, as (for example)

A = B**4 + 2(C+D)**2 ;

Z R/(A-Z) **2;

c = A**B**2 + E**4;

However, one of the unique features incorporated into HAL, in

order to improve readability and clarity, is that statements

may also be written using a multi-line or‘tddimensional

format. That is:

A = B4 + 2(C+D)2;

z = R/(A-mz‘;
32 4 C = A + E ;

The multi—line format.introduces the added dimension of optional

.exponent and subscript lines. These lines are used for the

exponentiating and subscripting of daté on the main line of the

statement. The exponent line is also used for annotation of

‘variable names in order to indicate data types.‘ Examples of

the multi-line format are:

3-1

INTERMET'RICS INCORPORATED ' 380 GREEN STREET! CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840 '

. _ _ _ , A .. ._._. A ‘ ._.____‘.,M,,..._ . .h . 4 .,_.__._, “ J _ _ 4 . u _ . _ _ _ _ _ _ . _ . _ . _ ‘ . , _ . ____._.J

o

.

7(2)

(3)

INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 °

‘an assignment‘statement'involving scalar array

elements:

2 2
A = B + C2K+3’ I ' J J '

a vector-matrix equation:

~ 3% = (15.37) UNIT (E) + ET (rim;
a complicated exPression in multi-line format in-

volving multiple exponents and multiplé,indices;

KSN __ . 2K
Y -" -5 BM{ERINDEX_TABLE + COMBUF *:

I,J ¥’J'
A

The standard source ;anguage input is expected to.be in

two-dimensidnal format. The single—iine format is provided.

as an alternaté; If single—line input is used, the compiler

will expand the single—line to multi-line in the output listing;.

The definitions and restrictions of the two-dimensional a n d .

sihgle-line formats are described below.

3-2

(617) 868.4840.‘

3.1 Two—Dimensional Forfiht

. Source langUagé input statements must always have a main

‘ . o r "M" line.‘ An WM" line may optibnally have associated with

it zero or more "E lines“ (exponent lines) and zéro or more

"S linés" (subscript lines). An input statement may be thbuéht

of as fl qontinuous parallel streams of characters on the E-, M4,:

8 lines that comprise the statement. A étatement terminator (semi—colon)

is uéed to terminate the n-line stream. .The terminator must be I

on the main line afid occfir after (to thé right of) all information

on the main line and any associated E and S lines. Another state—

ment may begin following the terminatof. I - O

The first character of each line of input musE bé the parti-

cular letter that identifies the line. The various identification —
.1

letters recognized, are:

First character of
line ' Meaning

E .This line contains exponents for the main

line, or another E line below it.

A M This line is a main-line; a blank is .7

assumed to be an M line.

S ‘ This line contains subscripts for thg

main line-or another S line above it.

C This line contains comments. . a)

D This line contains compiler directives.

3-3 ' _

INTERMETRICS INCORPORA'ILED ° 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-184Q' _ '

Statements and comments may.occupy any part of fhe rest of the

lavailable lines (e.g. columns 2 through 80 for cards).

Confiinuation of a statemént from one set of E; M, and

S lines to another is permitted. _For this purpose,'column(é)'

2 of the next set is considered equivalent to column(s) 81 of

the current set. A statement may be continued in this manner.

'until a terminator appears on an M line. The number o f l E and

S lines in thesucceeding set(s) need not bé the same as the number-'

of E and S lines used originally. An»M line, however, must always

be present in every set. For éxample,-

E ., 5 a
E K .
M A = B + C ‘
S ‘I I

E 2 1
M + D + E '

I I ‘ I . , i Wth lS equlvalent to
4

E 5 '
E K 2 W
M , A = B + C + D + E ; I
s I ;

3.1.1 E and S Line Expressions.‘ The E and S lines contain‘ ‘ ' ' 4

exponent and subscript expressions respectively, as well as H ?

certain data type annotations. Labels, terminators, statements,

and expressions resulting in vectors, matrices, and character I

strings are not permitted on E or S lines.

3-4

INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 °- (617) 868-1840

J

S lines are evaluated from the loweSt S line up to the

main line; E lines are evaluated from the upper—most E line

. dOwn to the main line. Subscripting is always evaluated prior

to exponentiation. Exponent_and subscript expressions follow.

the same arithmetic rules as for expressions on the main line

(See Section 6).

, Examples

»M 'Q = A ; J is an index for C, the result of
S B ' which is used to index B; the result is.-
S C then used to index A.
S J

E 2 _ w
' E 3 9 '

E 2 2 512 -
M .B = A ; means B=A 3 or B = A - . ; ' '

E
E 2(D+E)
M 'A.= B +D ;
s 2 (TABLE__1 +TABLE__2.) K
S J K

Expressions on an E or S line must appear following (to,

the right of) the associated identifier on the M line. Also,

M line information cannot appear directly above S line or

below E line expressions. Similar rules apply to E and S

lines associated with bther E or S lines.

The number of E and S lines allowed in a statement will

. be determined by the compiler implementation.

3- 5

INTERMETRICS INCORPORATED 380 GREEN STREET CAMBRIDGE, MASSACHUSETTS 02139 (617) 868 1840

1

3.2 HAL Single—Line Format

iMost HAL statements can_be written in a single liné, similar

to FORTRAN or PL/l. The single line format réquires the use of

the following operators: ‘ . - . I

*f for exponentiation

$ for subscripting

EXAMPLES:

Multi—Line Single—Line

1. X = A2 + B2; x = A**2 + B**2;

I _ I; A$I + BSI:

If the exponent or subscript is an expression(or a multiple

subscript)-rather than a simple name or literal, the expression,

in single-line format, must be enclosed in parentheses:

"'2? A$(J;K)**(2P) 3. x '= AJ'K _ x = ‘
4. x = B: x = 13$ (A$ (J,K+3))**2

J,K+3 .
When subscripting an exponent or-exponentiating a subscript,

it-becomes necessary to introduce the single—line format into the

multi-liné statement as well; thus ' .' k

' P - ** ** '
5} x = A<B$J) x ~ A (BSJ) p .

3.2.1 Implicit Data Declarations.

Since data type annotétibn (—) , (*), (.); (,) cannot be

supplied by the programmer over-a variable name using a single

line, implicit data declarations (See Sec. 5.3) are not possible

in this format. - - ' ' 1

3-6 _ _
INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 e (617) 868-1840

uh“... . .

.

3.3 Comments—

3.3.1 Comments on Statement Lines.

Comments can be inserted on any E! M; or'S line in a

statement. A.commept consists of ggx set of characters encléséd

in the /* */ pair. These are the comment open and close brackets

resbectively. The */ combination cannot be used within a cofiment

since it wouid be interpreted as the comment close bracket.

Comments on ofie M.1ine, initiated by /*, can be continued

to other M lines until terminating bracket */ appears on a

succeeding M line. Comments initiated on an E or S line must be

terminated before the end of the line (e. g., column 80 for

cards). For example: i

E 2 2 2 /*THE$ IS A COMMENT*/ -
M RgMAG = X + Y + z /*WHICH IS TO ~— ,
S I I I /* SHOW HOW COMMENTS*/
M CONTINUE */ + ALPHA;

Note that imbedding a comment within a statement is allowed. In

general, comments are permitted wherever blanks.are légal.

3.3.2 Cémment Lines.

Comments may also be introduced by the use of comment

lines.' A comment line begins with a C in the first Character

position of the input line.. The rest of the liné contains the

commenfi made up of characters recognized by the compiler imple?

mentatibn. Comment lines may only appear between statement line

3- 7

. I INTERMETRICS INCORPORATED 380 GREEN STREET CAMBRIDGE, MASSACHUSETTS 02139 (617) 868-1840.

‘M' . A ‘ , ,7 7 71‘ " i g i t m fl ‘ : fi

\

groups; i.e., they are not permitted within the EMS combination -

that comprises a statement line. -' ' .”I ,’ - *

EXAMPLE:

E . 2
M =B ,-
3 ° I

.'c THIS IS AN EXAMPLE WHICH
c ‘ ' 2 .
c SHOWS'A = B, AND IS
c I
c COMPUTED ONLY WHEN FLAG 1 IS SET

M ._ =Y;

3-8

INTERMETR‘ICS. INCORPORAfED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139;- (617) 868-1840 _

3.4 Use of B1anks_ A

Blanks are significant as separators between identifiers,

keywords, and literals. The use of consecutive blanksis syntac-

tically equivalent to the use of only one blank with the following

exceptions: '

(1) within EMS combinations when the horizontal position of

itefis is important relative to the associated data abové'or

below; '
(2) within charactér strings.

3*9

INTERMETRIQS INCORPORAfED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ° (617) 868-1840'

_ _ _ — _ _ , _ - _ _ _ , _ . __.___ ._ __ . . _. _ . . . __ : .--— __ _____. T' _. _ . "'. _.___,_ __ q, _. . _ . _ T _ _ -.__‘

A. 0 DATA ELEMENTS

HAL classifies data elements by type and permits collections

of types into data organizations. Types are further-specified

by data attributes. There are six data éypes in HAL; integer,.

scalar; vector, matrix, and chéracter and bit strings. The type

classifiéatign of an identifier determines the contexts in which

it may be used. - i

The data types may also be combined into data organizations.

Tfiere are two types of organizations in HAL: arrays and structures.

Fig. 4-1 summarizes the relationship among the types and organiza-

tions.

’ ’ . 4-1

INTER‘METRICS INCORPORATED ' 380 GREEN STREET ° CAM BRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840‘

“m

u —_ r

u .

HAL Data Types and Organizations

_.___...—_..__._-- .,._.. “-— -—-.-- --.-——. --—:v-——-

Types , ’ “ w ' Orgar‘li‘zations
Arithmetic . String - ' ' Array Structure

Scalar =-¥ Bit l‘) ‘ .
' __lndividual . 1 , Array

.5. ' Data-Type
N ._ Integer L— Character I

—-—»Vector ' ' . ' ' ‘ V' . f Combinations I
of. Data -Types' '

Matrix

‘ 'Figure 451

Li
‘

:

4.1 Data Types

4 . 1 . 1 ,Arithmetic Data

An-arithmetic data item is one that has a numeric value

and may be used in an arithmetiC'expression. There are four

arithmetic types in HAL: scalar, integér, vector, and matrix;

4 . 1 . 1 . 1 Scaiar. Scalar variables are numbers represented in a

fixed or floating point form. The choice of form will depend on

the-target machine for a particular compiler implementation of

the language (i.e., a compiler will implement either fixed or

floating POintI'bUt not b0th)- Fixed and fléating point are

alternate forms of scalars and are not mixed or used together.‘

. 4 . 1 . 1 . 2 Integer." An integer is a signed number containing

only integral values — a whole number.

4 . 1 . 1 3 3 Vector. A vector corresponds to its normal mathematical

definition, having magnitude and direction and represented by

n-componefits within a coordinate system.- The individual components .

of a vector item are scalars, by definition. Vectors obey the

standard rules of vector arithmetic.

4-3 '

INTERMETRIQS INCORPORATED - 3.80 GREEN STREET} CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

4 . 1 . 1 . 4 Matrix. A matrix corresponds to its normal mathematical

definition, being a rectangular array of m rows and n columns

of scalar elements. -A.matrix obeys the standard rules of matrix

arithmetic.

4 , 1 . 2 _String Data

There‘are two types of strings in HAL: character stfifigs“

and bit strings. 'String data has a length property.' A bit string

6f length one is a Boolean variable which may take on values.of

only 1 or 0. A-bit string of length n can be considered as the
.\ ‘,

K.

concatenation (joining together) of'n bit strings 6f length one. A

character string may have fixed or varying length. A fixed length Chara

acter string ofssize n always contains n characters. A varying character

time. A varying character string requires specification of

its maximum size.

EXAMPLE .

'ABCD? HELP!‘ is a character string of

length 11, including the space between ? and

'11”.

4-4

I string is one whose length is dynamically controlled at execution

INTERMETRIQS INCORPORATED ° 380 GREEN STREET ° CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868-1840

,__.__..__._.._‘.__._‘
-—-—-—_.. _.___._ _ “ w ‘ m u A . ‘ _

4.2 Data Organizations

A data organization is a Collection of data items. _There

are two kinds of data organizations in HAL: arrays and structureS.’

4.2.1 Arraxs

An array is an ordered collection of elements, known by

one name, all of which have the same dgta type and attributes.

For example, every vector in an array of vectors must have the

same number of components; every character string in an array

I I P..- I -
Of varying character strlngs must have 1dent1ca1 max1mum length. The

maximum number of dimensions of an array is implementation dependent.

4g2.2 Structures

- A structure is a hierarchical organization 6f.data‘which*l

may contain other structures, arrays, or individual data types.

A structure need not consist of identical data elements.

Briefly, when a structure name is declared it is immediatelf

followed by a list of the names and attributes of the elements

within it. Each name is preceded by a.l§3gl number (nonézero

integer literal) which identifies the level of ofgahization. All

elements having the same leVel number are at the same level of

organization.

The outermost-structure is called the major structure and

is always at level one; all contained structures are minor struc-

tureso All elements of the structure must be at a 1eVeI greater

than one. If a minor structuré is at the nth level,

4—5
INTERMETRIQS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (.617) 868-1840

its e1ements.must be specified at the n+1 level. Each item in--

a structure is given a name.‘ If the name.of a structure is

' ‘referenced, the entire structure, i.e., all elements, are addressed.

If {he name of an element_which is a minor structure is referenced,

all of the elements of that minor structure are addressed.

If any of the names assigned to items of a major structure

_are not unique within a name scape (See Sec; 8), the item must be

referred to by the major structure name, the name of the minor

structure in which the element is contained} and the name of the

element.‘ In referencing,'all names of the hierarchy are Separated

-by periods and the entire compound or Qualified name becdmes the

element name. This type of structure, which requires all element

names to bé fully qualified, is called a qualified structure,

and is specified with the attribute QUALIFIED in its declaratiofi.

Multiple copies of major or minor Structures (i.e., arrays of

structures) are permitted; these are limited to one—dimensional-

arrays;

4 . 2 . 2 ; 1 A Not Qualified Example. One example of a hierérchical

organiza£ion is the table of contents of a book. The name of a

structure might be the name of the book and would contain as

élements other structures Which would be chapters in the b o o k ; _ Each

chapter, as a minof structure could contain dther elements which

wduld be the sections of the chapter, and so forth. Thus,

H4—6

: INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868—1840

DECLARE 1 BOOK.fiOT_9UALIFIED,

2 CHAPTER;QNE,

.3 INTRODUCTION,

3 THEORY,‘ .

3 SUMMARY,

2.CHAPTER;IWO,

3 BACKGROUND,
3 DEVELOPMENT,

2 CHAPTER_THREE ,

3 ORIENTAEISfi,

3 FUNCTIONAL_SPECIFICATION}
2 CHAPTER_FOUR,

3 CONCLUSIONS,

4.2.2.2 A Qualified Example. An example of a structure which

must be qualified is:

DECLARE 1 A QUALIFIED,

23,

2C,

3A,

BB,

'2D,

3B,

3C;

” 4 - 7

I 3 FUTURE__PLANS;

lNTERMETRIQS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

1 l
.

A

A.B

A.C

A.C.A

‘A.C.B

A.D

A.D;B

A.D.C

DECLARE,

1' is

is

4.2.2.3 An Aerospace Application.

elements of different types.

3 TIME,

the major structure

Since the element names are not unique within the structure, each

element must have a qualified_name§ The qualified names are:

element B (at level 2)

minor structure C

element A of minor

element B of minor

minor structure D

_element B of minor

element C of minor
._.-. 7

NAVIGATION_DATA;EILE structure; i.e.,

l NAVIGATION_DATA_FILE,

2 STATE_VECTOR,

3 POSITION VECTOR,
3 VELOCITY VECTOR,

2 W;MATRIX MATRIX,
2 STATE_CONTROLfiFLAGS,

4-8

structure 0

structure C

structure D

structure D

In a space application a

hstructure can be used to collect and name sets of associated data

Structure commands pefmit move- .

ment of data as well as other limited operations. For example,

coasting flight navigation data can be grouped in a

INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 .- (617) 868-1840

3 CENTRAL_BODY_FLAG.BIT,
3 PERTURBATION_FLAG BIT,
3 MISSION_§TATUS_FLAGS,

4 RENDEZVOUS_ELAG BIT,
4 ORBITALurLAG BIT,
4 IN_IRANSIT_FLAG BIT;

4-9

lNTERMETRICS INCORPORATED . 380. GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139- (617) 868-1340-

b

‘
n

. 4 . 3 ' Attfibgtes

Attributes are used in conjunction With type and organizatiofi

to specify to the compiler ofiher characteristics aSsociated with

a type or organization name. There are five classes of attributes'

in HAL: -

(1) ”Initialization

(2) Storage class

(3) Memory Optimization

(4) Dynamic memory protection

(5) Specia1

4.3.1 Initialiiation Attributes

There are two forms of initialization attributes, INITIAL

and CONSTANT. Both forms provide a technique which enables the'.

programmer to preset valges (numeric and string) into data.elements.

The use of the CONSTANT attribute will additionally make it illegai -

to assign new values to the identifier; i.e., to "write" into it.

When either form is used as an attribute the other form may not

be used. Both initialization attributes may be used with all

data types (and arrays of data types). Neither can be used with

major or minor structure names; but may be appliéd to the data

elements of a structure.

4.3.2 Storage Class Attributes

- Storage class attributes are used to specify storage alldca~

tipn characteristics of data eflements. There are two storage
E

4—10

INTERMETRIQS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840
. 'J- ‘ 4

I
'

r
.

-
- - .. .

-
 -

.
.

_
.

I o

-

-
-

-
‘

.
I

c

class attributes: STATIC and AUTOMATIC.I STATIC‘specifies that

storage for the data element or organization is to be Allocated

when the program containing the data is loaded and initiated, and

is not to be released until the.program'execution has been

completed or terminated.

AUTOMATIC specifies that storage is t6 be allocated upon -

entry into the procedure, function, or task block containing the declar—

ation. IAumoMamgc.atorgge,iawrelgaaed.upqn exit.£rqm.th§ block.“ Since a

program may contain pgbéedureég=fugéti§nsg and tasks, data fiith ‘

AUTOMATIC attributes require stbrage only while the Specific

procedure, function, or task is active$
H o .

4 . 3 . 3 Memory Optimization Attributes

These attributes are used to control the storage assign—

ment and packing of data elements and organizations. There are

two attributes: DENSE and ALIGNED. DENSE means that the amount‘

of mémory space occupied by the variable is more important than

the time required to access it. Consequently, the compiler will

attempt to conserve storage space by packing items. The result

of packing by the compiler is dependent on the target computer

characteristics and the compiler implementation.

ALIGNED means that the time required to acceés this data

is more important than the space it occupies. This attribute

* See Secs. 7 and 9 for definitions of program; procedure,

‘function, and task.

4-11

'INTEBMETRIQ-s INCORPORATED - 380 GREEN STREET: CAMBRIDGE. MASSACHUSETTS 02139 - (617) 8684840
‘ yAwH;AA#w;_##_#________flfl_____L;____________;________________d

A
.

will cause the compiler to store the data for efficient

I

access .

4 . 3 ; 4 Dynamic Memory Protectioh Attributes

A real time system application may require the coexistence

of many processes and the use of common data elements.‘ The control

‘techniques nécessary to share these common data elements must

include mechanisms for:

a. blocking other users from reading data-elements, or

organizations, while their currént values_are being

changed (written). A

be preventing changes (writing) Wheh data is being used

(read).

For example, one job may be in the middle of using a matrix when

it is interrupted by another job which updatés the matrix. When

the first job was interrupted it had used part of the 'old' matrix

values, and when it continues it will be using the updated matrix.

This problem could, of course, apply to any data element or

organiiation which is shared among jobs in a real time system.

HAL provides the sharing control attribute LOCK_TYPE

which specifies the type of sharing cofitrol that is to be uéed.’

The LOCKé$YPE attribute causes the compiler to perform checking on

all programs which use the specified variable to help insure that

the proper locking statements have been employed by the programmer.

. 4-12

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

The LOCKéiYPE attribute is only useful for STATIC storage

.and may be included in declarations at the prOgram and COMPOOL*

levels.. If this attribute is not.assigned to a variable, locking

statements cannot be used (i.e., there wéll be no controlled .

sharing). ‘ - - .

'The defined locktypes are:

l-LOCK_¢YPE (1) This cléss of sharing allows the data

to be read by any number of users.

Read accesses will wait for writes.

Write accesses will wait for any writes

and for all previously initiated reads

to be completed prior to writing.

LOCKgiYPE (2) This type of sharing requires that

write accesses wait for other writes.

- Read accesses can occur at any time.

4.3.5 'Special Attributes

There are some attributes which can only be appligd to

certain data types or organizations. These are as follows:

(1) QUALIFIED and NOT_QUALIFIED are attributes which can only

be applied to major structures. The attribute specifies whether

the element names within that structure will always be qualified,

‘ or never qualified. If the NOT_QUALIFIED attribute is used, all

/

* See Section 8

4413

INTERMETRIQS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840
“47 , , J

_ the names within the structure must follow the rules that apply

to unstructured identifiers. If the QUALIFIED attribute is used,

then item names within the structure may be duplicated elsewhere,.

and all references to structure élements must be fully qualified.

(2) VARYING is an attribute which can only be applied to charac-

ter strings. It signifies that the Charaéter string length may

change at execution time. The maximum site of the string must be

declared when VARYING is Specified.

(3) The PRECISION attribute is applied to fixed and floating

point scalars, vectors, and matrices, and arrays of these data»

types. It specifies tfie desired hinimum precision of the numerical

representation of data wifihin the computer.

(4) The dimension (or length) attribute is applied to.vec- ‘

tors, matricéé, arrays; bit strings, fixed and varying character strings.

It specifies the size and shape of vectors, matrices and arrays,

the length of bit and fixed character strings, and the maximum

length of varying character strings.

4—14

INTERMETRIQS INCORPORATED ~ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 868—1840

5.0 DATA DECLARATION

5.1 DECLARE Statement

_ The DECLARE statement is a non-excfable statement used to

specify explic;tly the data organization; type, and attributes.

of identifiers. There are three forms of the DECLARE statements:

1. Simgle DECLARE statement .

2. Factored DECLARE statement

3. Structure DECLARE statement

5.1.1 Simple DECLARE Statement

The simple DECLARE statement is uSed to specify individually

the organization, type and attributes of one or more identifiers.
I‘

GENERAL FORMAT :

DECLARE<name><specifications>[,<name><specifications>]...;

where'<specifications>'if“ “V - -

'{[<array-spec>][<typeéspec>][<attribute—list>]l - .

'{PROGRAMILABELIFUNCTION[<type-spec>]}}

When no <specifications> are included, the compilérassigns

defau1t* type and attributes.

*_ HAL standard defaults are pfiesented in Appendix B. (Also

see Sec. 5.5, DEFAULT Statement.)

5—1

INTERMETRICS INCORPORATED - 380 GREEN STREET _°' CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868-1840

5.1.1.1 <array-spec>?fi An <array—spec> is written as follows:'

ARRAY (<dimensionélist>)

Thé array <dimension-list> can specify multiple dimensions-

in the-form <m>[,<m>]... where <m> must be an unsigned integer

literal greater.than one; e.g., ARRAY (2 , 3) specifies a 2x3

array.

. * . ‘ _
5-1-1-2 <type—spec>. A <type-spec? is written in one of the follow-

ing forms:

INTEGER

SCALAR [PRECISION (<p>[,<q>])]

VECTOR [(<length>)][PRECISION (<p>[,<q>])]

MATRiX [(<rows><cols>)J[PRECISION (<p>f,<q>])]

BIT ‘ [(<length>)] . ‘

CHARACTER [(<1ength>)]

CHARACTER (<max—length>) VARYING

GENERAL RULES:

1.. The <rows> and <cols> in the matrix declaration must be unsigned

integer literals greater than one; Ehey define the dimensions

of the matrix. I

2. For vectors, the <1ength> defines the vector dimension (i.e., the

number of scalar components) and must be an unsigned integér

literal greater than one. For bit and charactér strings, the <1engths>

define the number of bits or characters.in the object string

and must be unsigned integer literals. For varying character

'* See Sec. 5.4 for alternate form of specifying €array—spec> and
<t e—s ec>._ YP P _ - 5_2

INTERMETRI’CS INCORPORATED - 38-0 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

\—

u

v

u

strings, the <max91efigth> defines the maximum number

_ pf characters that may be assigned.to that charactér variable.

3. The form PRECISION (£p>[,<q>]) defines the desired fiXed or flbat-

ing point precision of scalars, vectors and matrices.

(a, For floating point, <p> must be an unsigned integér.

‘ literai which specifies the desired minimum number 9f

significant decimal digits. . t

(b) For fixed point, (<p>,<q>) are integer literals suéh that
<p>
2 > maximum absblute value to be represented

(<p> being the number of integer bits)

2-<q> §_minimum absolute vélue £6 be repreéentéd

(<q> being the number of fractional bits)

and <p>+<q> = the minimum number of bits necessary to

express the desired range of the scaiar.

(c) In general, the compiler will assign eifiher a single

word or a double word for scalars. For floating point,

- a double word will be assigned if <p> is greater than the

number of decimal digits that can be repreéented in

single precision in a particular machine.

For fixed point, a double word will be assigned

if <p>+<q>-+the number of sign bits exceeds the numbef of

bits for single precision representatibn in a particuiar machine.

(d) . Examples:

(1) PRECISION(5,3) requires a minimum of 8 bits to

accommodate a magnithde range of .125 §_magnitude

5-3

INTERMETVRICS INCORPORATED. "3380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840-

t

O

.

‘

:.< 32. in this case, presuming a word lengtt$8;

kfiot including sign hits) the compiler would assign

‘5 intéger bits, and a number of fractional bits equal to

L - 5 - the number of sign bits. O

‘(ii) PRECISION(-5,39) requires a minimum of 34 bits to
39 accommodate a magnitude rafige of 2- ‘§_magnitude

<2—5. In this case, presuming a DP word is necessary,

the compiler would assign —5 integer bits and

‘ a number of fractional bits equal to -5 +'2L - the

A number of sign bits. f

4Q'“If.PRECISION and diméfisions are not inéluded in a <typé¥spec>

the compiler will assign defaults. Defaults are presented

in Appendix B.

5.1.1.3 <attribute 1ist>, An <attribute 1ist> may be specifiied'

by including zero or one attribute from each of the fgllowing

classes, in any order:

1. Initialization attributes:

INITIAL (<value>)

CONSTANT (<value>)

where <value> must be a literal or a list of literals (see
. Sec, 5.1.1.4).

2. Storage class attributes:

STATIC

AUTOMATIC

'3. Dynamic Sharing Control Attributes:

LOCK_TYP% (<n>)
i

' .5_4 . ° ‘ .

INTERMETRIQS INCORPORATED - 3'80 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868-1840

wheré <n> is an unsigned integer greater.than:zero literal

defining the claSS of sharing control.

45 Storage optimization attributes:.

DENSE

ALIGNED

GENERAL RULES:

1., If an attribute does fibt appear in a simple declaration,

the compiler will assign the default* fialue for thaii ‘ 1

attribute. H‘ - ‘ H ‘ . '

2. Restrictions on use of classes of attributes (also see

Sec. 8):

a. Initialization attributes_may not be used at the COMPOOL

level, nor in declaring <procedure-parameters> and <function-

b. Storage class attributes may only be used at the task,

procedure, and function levels.

c; Sharing control attributes may only be used at the program

and COMPOOL levels.

d. Stqrage optimization attributes may not be used in

declaring <procedure-parameters> and <function%paramefiers>,

5-1-1-4 Initializapigg. 'INITIAL and CONSTANT values

of vectors, matrices, and arrays may be specified by lists of

literals.
.

* See Appendix B.

5—5
lNTE-RMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ,' (617) 868—1840

I ' parameters> within procedures and functions (see Sec. 7- .,4') .

GENERAL FORMAT:

'{iNITIALICONSTANT}({<1ist~of—litera1s>| .
<list-of-literals$,*})

where

<1ist—of-1iterals> = [<n>#]{[<1itera1>]l<1ist~of—1itera1s>}

[:[<n>#]:{[<litefal>]I<list—0f—literals>}]

<n> is an unsigned integer literal.

GENERAL RULES;

1.

l-NTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 858-1840

'<n>#<litera1> specifies that there are <n> consecutive

entries of this <literal> in the liSt.

<n># specifies <n> consecutive entries causing no initializa-

tion. .

<n>#<list—of-literals> specifies that there are <n> conSedutive

entries of this "sub" <1ist4of—1iterals> within the list. .

,* indicates a partial initialization, That is, for a

vector, matrix, array, and structure of data types not

enough literals have been specified. After component-by-

component assignment, all the rest are left uninitialized.

For vector and matrix declarations, if the number of‘<literals>

in the <1ist-of—1iterals>: ‘

a. is equal to one, all the components are initialized

to the <literal>.

b. is equal exactly to the declared number of components,

the vector or matrix is initialized, component-by-

component, from the list.

I 5—6

C-' In (b), -if.£he number of <literals> is not exactly

that required, the lLSt must include a * as its last item

and the rest of the vector or matrix will be uninitialized.

6. .For array declarations of vectors and matrices, if the number

of <literals$ in the <list—of—literéis>:

a. is equal to one, all of the vector or matrix componenté

1g all the array elements are initialized to the

<litera1>. I

b. is exactly equal to the déclared number of components

in a vector or matrix element, each array element is

initialized identically, component—by-cdmponent, from

the list.

C-.' is exactly equal to the total number of components,

the entire array is initialized, componént-by-componefit,

from the list. i

d. In (b) and (c) above, if the number of <literals>

is not exactly that required thén the list must

include a * as its last item and the rest of the array

-will be uninitialized.

7. For array declarations of scalars, integers, and bit and

character strings, if the number of <literals> in the <list—

of—literals>{

a. .iS'equal to one, all of the cbfiponents are initialized

to the <litera1>.

b- is equal exactly to the total number of components,

the array is initia¥ized, component—by-component, from

the list. i '

. . 54-7 .
INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

c. In (b), if the number cf <literals? is not exactiy

that required, see 6(d) above.

EXAMPLES:

._1. “DECLARE v VECTOR(9) CONSTANT (1,0,o,o,o,o,o,o,o,0);
may also be written as . ' -‘

DECLARE V VECTOR (9) CONSTANT (1, 8 # 0) ;

»2. DECLARE A ARRAY (4,4) BIT (2) .

INITIAL (BIN'lO', BIN‘lo', l4#BIN'Ol');

3. ARRAY B ARRAY (3,3) VECTOR (5) INITIAL (b);
All the components of the 9 vecforé in the array B,

‘ are initialized to 0.

4. DECLARE B_ARRAY (3 , 3) VECTOR (5) INITIAL (25,0,5,0,l);

All 9 vectors in the array, B, are initialized to

(25,0,S,0,1). . ’

5. DECLARE B ARRAY (3 , 3) VECTOR (5)

INITIAL (15#0, 15#1, 15#2)

The number of literals in the initialization list is

equal to the total number of components in the array. The

components of the three vectqrs in the first row are initial-

ized to 0, in the second row to l, and in the third_row to 2 . . l.

6. DECLARE B ARRAY (100) ‘

INITIAL (5#(l,2,3,4,5),25#, 5#(6’7’8’9’10)’*);. ,

The first 25 items of the array B are initialized g

with the repeating pattern (1,2,3,4,5). The néxt 25 are i

left uninitialized. Items 51-75 are initialized to the

5-8 .

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 '

repeating pattern (6;7,8,9,10). The remaining items are_

not initialized.

7. DECLARE 'A ARRAY (10) ‘INITIAL (2);

_ B ARRAY (10) INITIAL (#,2,*)
All the scalars of A are initialized to 2. ‘Only the

sécond scalar of B is initialized to 2, the rest beiné left

uninitialized.

5.1.1.5 Declaration of Program, Function, and Statement Labels.

The scopes of procedure, function and statement labels; i.e.,

the regions of the program in which théy are recognized, are

defined in Sec. 8.

GENERAL RULES :

1. Statement and procedure labels must be defined (by appearance

or by DECLARE statement) before their use in the listing,

or at least in the block (i.e. prdgram, function or procedure)

in which they are used.

2. Function labels must be defined (by appearance or by DECLARE

.statement) before their use, regardless of whether the

FUNCTION statement and function reference appear in the same block.

5—9 '
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

3. <typeispec> specifies the data type returned by a function.

4. LABEL and FUNCTION may not be used at the COMPOOL level.

5.1.1.6 Examples of Simple Declaration Statements (Floating
Point Implementation). .

1. DECLARE. I INTEGER INITIAL (6 5) ;

I is an integer with an initial value = 65.

2. DECLARE x PRECISION (8) AUTOMATIC INITIAL (6.061);

X is a floating point scalar with at least 8 significant

decimal digits.

3. DECLARE COMMAND_MODULE_STATE VECTOR (6) STATIC}.
COMMAND_MODULE_STATE is a 6-dimensional vectOr with

single precision components (by default). I

4. DECLARE SXT_mo_NB_MAT MATRIX CONSTANT

(1, 01 O, 0, l, 0, 0, 0, 1); . ‘ H

The matrix is a constant 3x3 identity matrix. I.

5. DECLARE A ARRAY (5, 3, 4) VECTOR (6) PRECISION (10);

A is a 5x3x4 array of vectors. Each element is a 6-dimensiofial

vector with components represented to at least 10 significant

decimal digits.

6. DECLARE s BIT (100) INITIAL (BIN (100) '1f);
S is a bit string of length = 1 0 0 . The initial value is

all 1's.

7. DECLARE TRAKFLAG BIT AUTOMATIC;

TRAKFLAG is a bit string of length = 1 (i.e. a.Boolean).

.. ' ' 5—10 ' -
JNTERMETRIQS INCORPORATED! 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-91840

INTERMETRICS INCORPORATED - 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840'

'8. DECLARE MESSAGE CHARACTER (3) INITIAL (CHAR(3)'H');

MESSAEE is a fixed character string of length = 3..

'mThe initial value is HHH. I

9.’ DECLARE OUT ARRAY (132) CHAR (1) iNIyIAL'('_');
OUT is a linear array of 132 character strings of length'l;

‘Initially, all characters are blank.

5.1.2 Factofed Declaration Statemeng.

A factored declaration statement eliminates the need for

repeated specifications when an attribute or type is applicable I

to more than oné identifier. All of the factors afe placed prior

to the first name in the declaration statement; other names; with

or without specifications, are separated by commas.

GENERAL FORMAT: ‘ '
DECLARE <factors>,<name>[<specifications>]

[,<name>[<specifications>]].5.;

where both the <factors> and <specifications> are of the following

form and order:

[<array-spec>][<type-spec>][<attribute-list>]

GENERAL'RULES:

-l. A <factor> applies to all names appearing in the factored

declaration statement, where applicable (e.g., PRECISION

will not be applied as a <factor> to a string type included

in the statemeht).

5-11

2.. If either INITIAL or CONSTANT is used as a <factor>, the other

may not be used in the {specifications>; .

.3. yIf either STATIC or AUTOMATIC is used as a <factor>, the dther

may not be used in the <specifications>. I

4.- If either LOCK_TYPE(1) or LOCK_$YPE(2) is used as a <faétor>,

the othef may not be used in the <specifications$."‘ .

5. If either DENSE or ALIGNED is used as a <factor>, the other

may not be used in the <specifications>.

5.1.2.1 Examples of Factored Declaratioqi;

1; DEéLARE PRECISION (8), A VECTOR (6) , B MATRIX (2,2) INITIAL
(1 , 0 , 0 , 0) ; .

A11 elements of A and B are repreéented to at least 8 signi—
ficant decimal digits. I

2. DECLARE STATIC,

A VECTOR (4) INITIAL (0 ,0 ,o ,1) ,

B MATRIX (5,5),

C ARRAY (2 0) ;

A, B, and C are allocated STATIC storage.

'3. DECLARE MATRIX (3,4) INITIAL (0) AUTOMATIC,

A, B, C PRECISION (1 0) ;

A, B, and C are all (3,4) matrices with AUTOMATIC storage.

Initially, all components are set to zero.

5—12

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 # (617) 868-1840 .

_
V H _

‘ A A.-
‘

r

‘
-

A
-

.
.

a.—

L
.

.
-

 \
.

.
.

.
-

.‘

.
A

.
,

4. DECLARE INTEGER, A, B, C, D INITIAL (5) ;

5- DECLARE BIT DENSE INITIAL (OFF), TRACKING, RENDFLAG;

5.1;3 Structure Declaration Statement

-The structure declaration statement is used £0 declare

a structure organization.

GENERAL FORMAT:

DECLARE 1 <struct-name>[(<copies>)][<struct-attributes>],

{ . 2 {
GENERAL RULES:

<minor-struct—declaration>}} ,
<terminal—declaration> " "

l. <copies> must be an unsigned integer literal gréater than 1;

it defines the number of copies of the structure. For

example, DECLARE l A (100), 2 B --- etc.

declares that there are 100 copies of the structure A.

2. <struct-attributes> are attributes limited to

QUALIFIEDINOT_QUALIFIED

DENSEIALIGNED

STATICIAUTOMATIC

LOCK_TYPEC<n>)

a. If any attributes are not provided in the declaration,

the compiler will assign default* values; -

b. It should be noted that attributes apply to the entire

structure andywith the exception of DENSE and ALIGNED,

cannot be overridden in the minor structures or terminal.

declarations.

* See Appendix B

4 ' 5-13
INTERMETRIQS INCORPORATED - 380 GREEN STREET o.CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

5.1.3.1 <terminal-declaration>. The <terminal-declaration> is

similar to a simple declaration (Sec. 5.1.1);-however, only a

single name may be declared and the attribute list is limited to

INITIAL or CONSTANT, and DENSE or ALIGNED.

GENERAL FORMAT:

[<next-leve1>]<name>[<array-spec>][<type-spec>] \

[INITIALICONSTANT](évalue>)[DENSEIALIGNED]]{,|;}

GENERAL RULES:

1. If the <termina1-declaration> is contained in a <minor—struct-

declaration> then .

<next-level> equals <this~leve1> + 1, whefe <this~level>

is the level of the <minor-struct—declaration>,,otherwiée

.<next-leve1> equals 2.

2. The semi-colon (;) is used if the declaration is the laét

<termina1-declaration> of the structure declaration statement.

5.1.3.2 <minor—structedeclaration>.

GENERAL FORMAT :

<this—1evel><name>[(<copies>)][DENSEIALIGNED];

-{<minor—struct~declaration>}
<termina1~declaration> "'

GENERAL RULES :

1. <this—leve1> is an unsigned integer litéral 3 _ 2 which identi-

fies the level of hierarchy.

2. If a second <minor—struct—declaration> is contained within.

a first <minor—struct-declaration> then <this-1eve1> of the

5-14

‘ INTERMETRIQS INCORPORATED ' .380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

—
..

-
-

‘
-

-

|
.

v

v
-

.

.

r

t

.
I1

. '
\ ,

- \
._

_n
u

-7
.

second declaration must be 1 greater than <this~1eve1> of

the first declaration.

5.1.3.3 Examples.

 1. Notes

DECLARE l A, (1) major structure A
_ f

2 B, (2) minor structure B contains
minor structure C and

3 C, terminal element F

4 D VECTOR(9), (3) minor structure C contains
terminal elements D and E

4 E MATRIX (4,4), - -
3 F INTEGER; . Notes

2. DECLARE 1 NAV;$TATE(2)LOCK_IYPE(l)NOT_QUALIFIED, (1)

2 STATE, (2)

3 TIME PRECISION(8), (3)

3 R VECTOR(3) PRECISION(10), (4)

3 V VECTOR(3) PRECISION(10): (5)

2 STATE_FLAGS DENSE, (6)

3 BODY BIT INITIAL(TRUE), (7)

3 PHASE BIT, (7)

2 W MATRIX(9,9) PRECISION(10);

Notes:

1. This is a structure whose name is

(8)

NAv_sTATE.

The number of copies is 2 and it has a sharing class of 1.

- 2 . This is a minor structure called STATE whose elements are

defined at the next level.

5-15

INTERMETRICS INCORPORATED ~ 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 0.2139 - (617) 8684840

. .

I
I

a

.
U

-
a

. This is a terminal declaration of a scalar element, TIME.

. _This is a terminal declaration Of the vector, R. H

. Same as (4) above except name is V.

. This is a minor structure ca11e§STATE_ELAGS whosé

' elements are defined below at the next levélt

7. These are terminal declarations of the Boolean variables,

BODY and PHASE. i

8. This is a terminal declaration of the matrix, W.

5.1.3.4 Structure Initialization. A structure may be initialized

by including the INITIAL or CONSTANT attribute in the <terminal-

declarations>. If a <terminal—declaration> represents a single

.copy of the declared data item (i.e. the major structure and minor

structures containing this item are single copies themselves)

then initialization may be accomplished as described in Sec. 531.1.4.

If multiple copies are implied (i.e.,the major structure

or minor structure(s) containing this item, or both, have mqre

than 1 copy), two possibilities exiét: (l) the data item may be

initialized as if it were a single copy; or-(Z) the initialization

<list—of~literals> may be designed to account generally for all copies.

GENERAL RULES :— -
.n

1.' If multiple copies exist and the data item is initialized

as if it were a single copy, but 29; partiglly initialized,

(see Rule 4 of Sec. 5.1.1.4), all cOpies will receive

identical initialization fér this data item.
3.

5-16

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868-1840

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840 I

If multiple copies exist and it is desired to initialize 2.

copies individually, or partially initialized the structure,

the <1ist-of—literals> specifies consecutive'entries for the

data item, component—by-component, with copies running

serially. .

EXAMPLES :

1. DECLARE I A

2 B INITIAL (6.061),

2 C ARRAY(5) INITIAL(1,4#O);

The structure A is initialized by initializing B and C.

DECLARE 1:A (20), M
' .2 B INITIAL (6.061),

2 c ARRAY(5) INITIAL(1,4#0);

The structure A has 20 copies; each is initialized identically.

DECLARE 1 A (2 0) ,

2 B INITIAL (15#6.061,*),

'2 c ARRAY(5) INITIAL(15#(1,4#O),*);

The structure A has 20 copies; the first 15 are initialized

-identically. The remaining copies are uninitialized.

DECLARE l A (20),

2 B INITIAL (6.06l,*),

-2 c ARRAY(5) INITIAL(19#(5#).(1,4#0));

The structure A has 20 cépies. The first copy of B is

initialized to 6.061, the rest are uninitialized. ‘The

first 19 copies of C are uninitialized; the last copy is

initialized to (1,0,o,o,0)._

5-17

7 J

'
.

-
.

-

-
'

-
-

.
I

u
.

I

5.2 Notation of Data Types and Organiéationé

..5.2.1 Data Tyge'flptation.

The compiler will annotate certain names in order t6

enhance the readability of the dutput listing. The notation Which

signifies data type will be placed on the E line directly over

the name on the M line. The notation Characters are described

below.

Data Notational
~ Type Character Examples

VECTOR - ’ POSITION .= 'fi’
M * *

MATRIX * A REFMMAT = M

BIT_ . - COM;BUFFER9:TRACKFLAG
l I

? CHARACTER , MSG = B

There is no data type notation for INTEGER or SCALAR types. Thesé

types must be determined from context or from the deClaration I

statements (of symbol table listing).

GENERAL RULES : ' ' -

The annotation of an operand depends upon thé resulting

type of the Operand itself and not upon éhe type associated with

the identifier being referenced; for example: V

1. When an element of a vector is referenced, it is not annotated;

i.e., it is a scalar. ‘Fdr example, V2 is the second scalar

' element of the vector V}

5-18

INTERMETRICS INCORPORATED} 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 8684840

.
I

n
V

v
|

-
-

-
-

I

.
u

2. When an element of a matrix is referenced, it is not annotated

since it is a scalar.' For example, M1 2 is the scalar
’ ‘

. ~ *
element in the lst row, 2nd column of M.

‘ 3. When a row or column of a matrix is referenced, vector

notation is used; for example,
- __ *’

M* 2 is the 2nd column of the matrix M
I

4. When a partition of a matrix is referenced, matrix notation

.is used; for example,
1: 'k _
M is a partition of the matrix M; i.e.
1 TO 3, 1 TO 2

rows 1, 2, 3 and columns 1, 2.

5 . 2 . 2 Array Notation

The compiler will annotate arrays of data types with

enclosing square brackets (i.e.. I l). b

If the array consists of vectors, matrices; bit or charac-

ter strings, then the appropriate data type notation will also

be presented.” For example,

[X] A,is an array of vectors,

[i] A is an array of matrices,

[A] ‘ A is an array of bit strings,

[A] . A is an array of character strings.

GENERAL RULES:

1. When a single array element is referenced, the comfiiler

annotation will.be consistent with.the‘re3u1ting data type.

For example, suppose A is an array 6f matrices; then,Ké:*’1

has vector notation because the referenced item is a vector

5-19

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

W . . 4 . — - . _ ~ . 4 _ — A ¥ W A A “ , . . , 7 , A , ,

.
.

_
_

.
.

.

I
»

.

.

.
.

.

‘
b

.
L

_
.

.
.

A

V
.

A
.

.

A
....

.

.

-

.
_

-
_

.
_

.
_

:
_

.
_

.

.
‘

.
A

.

.-

(i.e., the first cblfimn vector from the second matrix elément,

of A) . ’

2. When a partition of an array is reférenced, array notation

'is used; for example, .

[A]2 To 4 is an array of elements A2, A3, A4 from

array A. .

The programmer may inblude the notation above as part of

the input source code. This notation must be consistent With

its use (e.g., a * must not be placed over a vector, etc.).

If notation is not included then the compiler will annotate

the output listing as described.

5 . 2 . 3 Structure Notation

The compiler will annotate major and minor structure

names with enclosing braces (e.g. {A}).

GENERAL RULES:

1. When a single copy of a structure terminal is referenced, the

compiler annotation will be consistent with the resuiting

data type or array. The notation will be the same as described

in Secs. 5.2.1 and 5.2.2.

2. When multiple c0pies of a structure terminal are referenced,

thé compi;er will annptate the terminal name with enclosing

brackets and the appropriate data type. This reference remains

a structure organization subject to the restrictions on

structure manipulations imposed in Secs. 6 and 7.

5-20

INTERMETRICS INCORPORATED ° 380. GREEN STREET - bAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

_EXAMPLES:

l. DECLARE 1 A (5):

2 B BIT(10),

2 C VECTOR,

2 D MATRIX;

a. '{A}2 is the second copy of A.

b.. $4; is the bit string in the 4th bopy of A.

c. '{E} is a structure of all copies of the vector C.

a. '{6}3 To 5
matrix D.

is a structure of the last three copies of the

.2: DECLARE 1 A (5),

2 B CHARACTER(10);

'{é} is a structure of all copies of the string B.

3. DECLARE 1 A,

2 B ARRAY(5) CHARACTER(10);

[$1 is the array terminal.

_Note that while {5} in 2 and [$1 in 3 contain the same data they

are not identical in form and cannot be used.interchangeab1y.

5-21

‘

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 86-8-1840

_ . _ . _ . — _ . _ . _ — _ _ ____ _ ___._ _ . — — _ _ . _ _ _ _ _ _ n . _ . _ . _ . _ . — A — _ _ _ . _ ‘ . — _ — ~ _ _ . _ _ — L — _ _ . _ — — — _ _ . — _ - — j

t
o

A
.

s

‘
5

‘
“

_

-
.

.
—

r
.

_
.

§
h

.
fi

_. .

.
A

.
 ..

.
v

.
a

.
.

_
‘

.

‘
.

.
_

-

5 . 3 ' Implicit Declarations

In general, HAL requires that all data quantities be declared

explicitly. The syntax of expiicit data declarations has been

preéented in Sections 5.1 and 5 . 2 . HAL also permits certain

variables to be declared implicitly; namely,vector, matrix, bit

and character string data tyfies, by providing a (-) , (*), (Q), 6r

(,) respectiVely, on the E line over the name of the-data quantityq

.In the absence of an identifying symbol on the E line, the compiler

will interpret thé variable to be of a scalar type} The implicit

declaration of integers; arrays, and structures is not allowed.

The compiler will assign characte£istics, valid throughout

the current scope (see Section 8 for further detail on scape bf

names), to implicitly declared names based on their first appearance

in the listing. Thereafter, nétation need not be supplied. Fo£

example, if V'is used to declare a variable implicitly, then that

variable may be referred to as V in any succeeding statement

within the current scope. The compiler will supply the bar (-)

on appropriate succeeding appearances of V when it has not been

included by the programmer.

The implicit declaration of names as scalar, véctor, matrix,

bit Cr character string causes the assignment of default* values

for all appropriate attributes.

* See Appendix B

-5—22

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE MASSACHUSETTS 02139 - (617) 868-1840.

5.4 Alternate DECLARE Féfm

All of the HAL data types, and arrays of theSe types, may Jfl

be declared using an alternate form of the DECLARE statement;

GENERAL FORMAT:
<note>

DECLARE <name> .<Sizes>[INTEGER][PRECISION(<p>[,q])]

[<attribute-list>];

where .

<note> = [- l * l o l :]

and ’

'<sizes> = [<array—shape>|<array—shape>:][<dimension>[

<string length>] ~ .

<array-shape> = <m>[,<m>]...

<dimehsion> = . <m> [,n]

<string-length> = <r>.

<m>, <n>, <p>, <q>, <r> must be integer literals. In additioni

<m>, <n> must be greater than 1; <r> must be greater than 0.

GENERAL RULES:

1. (~) , (*), (.), (,) appearing over the name specifies véctor,

matyix, bit string and character string data types reSpectively.

If <note> and INTEGER are not provided, <name> is a scalar.

2. <dimension> specifies either vector length or the number

of rows and columns. .

3. <string-length> specifies bit 6r charaCter lehgth for fixed_

length strings or maximum length for varying strings.

5-23 _ ,

._ INTERMETRICSINCORPORATED ' 380 GREEN STREET (CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868—1840‘

4. Use of INTEGER, PRECISION, ahd <attribute-1ist> are described

in secs. 5.1.1.2, 5.1.1.3, and Sec. 5.1.2.

5. When declaring <procedure- or <function—parameters> (see Sec.

7.4), <note> may be omitted if the proper annotatiohs are -

included on the parameters appearing in the CALL and function'

,referencg étatéments. I .

EXAMPLES :

1. DECLARE V5,3,4:6;

- a 5x3x4 array of vectors. Each vector is of length 6.

2. _DECLARE $100;

- a bit striné of length 100 .
' I

3. DECLARE OUT132:1';

— a linear array of 132 character strings. Each string is

of length 1.
b it

4 . DECLARE M 6,6;
— a 6x6 matrix.

5. DECLARE A50;

- a linear array of 50 scalars.

- 5-24 ..

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ° (617) 868-1840“

a
w

-
-

.

.- . w
—

_

A
.

A
. <

.

,
n

<

v.
. .

_
“

A
.

.
.

.

.

- -
-

A

.
.
 .

.

5.5 DEFAULT Statement

When variables are implicitly decléred, or fihen variables ‘

or functions are explicitlydeclaréd with not all characterisj

fiics specified, the unspecified chéractefisfiics are suppiied

from a set of default characteristicg. The standard set of.

these is described in Appendix B.

In some cases it may be convenient to modify the standard

default set to reduce the amount of source program coding required

to achieve the given objective. For this purposé, the DEFAULT

statemeht is provided.

GENERAL FORMAT:

DEFAULT {<type-spec>l[<type-spec>]<1ength-defau1t-list>};

where

<type-spec> is defined in Sec. 5.1.1.2

<1ehgth—default-list> = {<length-default>}...

<1ength-defau1t> may be one of the following for-ms:

BIT_LENGTH (<m>)

VECTOR;LENGTH (<m>)
MATRIX_pIM (<m>,<n>)

CHAR‘LENGTH (<m>) [VARYING]
where-<m> and <n> are literals of integral value.

<type—spec> is used to specify default type; e.g.

' DEFAULT MAT?IX(3,4);

DECLARE A, E, c SCALAR;‘

' 5 -25

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

—
_
-
—
-
-
.
—

H
-

p
. .

. 4
. .

. .
_

. -
. .

_
_

~
. _

_
. _

. .
. .

. .
-

_
.

_
-

. .
. .

.
.

‘
I
—

—
—
-

a
a
“
-

-
. .

. _
_

. .
. .

.
.

A and B are declared (3x4) matriées by default.' The exPlicit form,

SCALAR, becomes necessary because of this change in default type.

<1ength—spec> is.used to specify defaults for bit-string length,

vector length, matrix row—column dimensipn, and chafacter—string

length fiand VARYING~iength). . In the case of character strihgs,

ifVARYING is provided a maximum length (<m>) E253 be provided,

whether in a.DEFAULT or DECLARE statement. For example, the.

f0110Win§ twé statements will cause an error message; -

DEFAULT CHAR_LENGTH(20);

DECLARE C CHARACTER VARYING;

EXAMPLES: r

1. ALPHA: PROGRAM;

DEFAULT MATRIX(4,7) BIT_LENGTH(24);

DECLARE A MATRIX, B, C BIT(10), D BIT;

CLOSE ALPHA;' ‘
A and B are (4x7) matrices. D is a bit string of length 24.

2. BETA: PROCEDURE; “

DEFAULT BIT_LENGTH(16);

. DECLARE E, F BIT, G CHARACTER;

.CLOSE BETA;
E is a scalar and G is a character string of standard

default lefigth. F is a bit string of length 16.

5—26

lNTER-METRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS. 02139 . (617) 858-1340

.. -
.

.
.

.
_

_
v

“

u
p

.
-

.
“

_....

-
.

.
.

.
.

.
-

_

.
.

.
_

-
.

_
-

-
_

_

.. -
‘-

_
.

.

-
w

.
_

_
y

.
.

_
,

_

.
.

.
 _

.

.

3
g .

I

1 I
E
3
1
l

2 '

6 . 0 DATA. MANIPULATION.

6.1 Expressions -

An expression is an algorithm used for computing a value;

Variables, constants, literals, built-in'functioné, and programmer-

defined functions combined with operators, form expressiofis.

Expressions are of four types: arithmetic, string, array and

reiational. fThe type of an expressiofi is the type of its result

and is independent of the types of its operands. In thé defini-

tions that follow

<type—operand>={<type-name>|<type-function>|<type~gxpression>|

I (<type-expression>)}

where,

. . ' *
<type—name>={<type~variable>|<type-constant>|<type-literal>}

and

<type— >é{<integer- |<scalar— |<vector- |<matrix- I

' <bit— |<charactei- >}

6.1.1 Arithmetic Expressions r

Arithmetic expressions yield arithmetic values; e.g.,a

scalar expression is defined to be an expression yielding a scalar

Lresult. There are four types of arithmetic eXpressions: integer,

scalar, vector and matrix.

* literals fire only defined as being arithmetic, bit and chafacter

strings.

6-1

HINTERMETRIQS INCORPORATED ' 380.GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 -- (617) 868—1840

1.

~‘...._
‘

-
m

.
.

_
.

_
_

n
.

_
v

-
.

~
v

-
-

.

.
 .. - *

.Q L
i

.

-
H

.

_
-

.

.
‘

-

.
.

.
,

.
‘

_

.
.

-
_

.
.

.
.

A

._
_

5;

. 6.1.1.1 Intgger ExEressions. An <integer-expression> is composed

of the following elementary operations:

GENERAL‘FORMAT:

{{[+]I—}<integer-operand>l

<integef-operand${+ljl<mu1t>}<integer-operand>I

<integer-operand>**<positive-integer-litera1>}

where

{positive-integer-literal> is a positive tle.number

Vliteral- or a bit string literal (interpreted by the compiler

in this context as a positivé whole number).

GENERAL RULES:

<mu1t> denotes multiplication by logical adjacency. The

aSsociated operands must be separated by at least one space

(blank) unless one or bdth of the operands are parenthesized.

<integer-operands> and <positive-integer—literals> may be

either integers or hit strings. Bit strings are converted

implicitly to integers. b

An integer result can only be derived from operations on

<integer—operands>;

Division is ESE an integer operation; dividing one integer_

by another yields a scalar result. ‘

In general, exponentiation will result in a scalar, excegt

when the exponent is a <positive-integer-literal>.

6I—2
_ I INTERMETRIQS INCORPORATED ' 380 .GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868-1840‘

Hwy-— . m n _ - _ _ - - ‘ _ . . r ,4 .__....

EXAMPLES:
3 4P.'Q+R. F . Q é. (—P)4.

are all integer expressions if P, Q,-R, F are declared as integers.

6.1.1.2 Scalar Expressions.-'A <sca1ar—expression> is composed

of the following elementary operations:

GENERAL FORMAT:

'{{[+]I-}<scalar-operand>l

<scalar-operand>{+l-I/|<mu1t>}<scalar-operand>I

<scalar-operand>**<sca1ar-operand5I

<vector-operand>.<vector—operand>}

GENERAL RULES :

1. The <sca1ar-operand> may be a scalar, integer, or hit s£ring

except where the above format reduces to an <integer-exfiression>.

Integers are converted implicitly to scalars. Bit strings

are converted implicitly, ggggg to integers and then to scalars.

2. Exponentiation is undefined when the <sca1ar-opérand> is

negative and the <scalar-operand> exponent has a non—integral.

vaiue.

3. <vector-operand>.<véctor-operand> denotes the vector inner

product (dot-product); The dimensions of thg two <vector-.

opefands> must be equal.

'EXAMPLES:. . ' . P2 ‘__* __ . .
~P, P/R, P/S, R , v.M v, s + S/R

are all Valid scalar expressions if P is declared a scalar,

and R is deciared to be either an integer 6r a scalar.

- . . 5—3 ' ..
INTERMETRICS INCORPORATED ° ‘380.GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840"

l.

.
—

-
—

a

n
.

w

‘
H
m
.
-
-

.

t
.

‘

l.
..

-
.

-
-

.

.
m

.
-

.

«
u

p
-

.
.

A.

u
_

_
<

.
n

.
-

-

-
‘

4

'
4

-

.
.

-
.

.
 _ --

.
.

-
 w

.
.

-

-
.

. .

A

_
..

‘
H

.
.

.

.
.

a

.
A

«

.

6.1.1.3 Vector Expressidns, A <vector-expression> is composed

of the following elementary operations:

GENERAL‘FORMAT:

'{{[+]I-}<vector-operand>|

<ve¢tor~operand>T+|-I*}<vector—operand>|

<vector—operand>{/I<mult>}<sca1ar-operand>l

<scalar—operand><mult><vector-operand>I

<matrix-operand><mu1t><vector-operand>I

<vector-operand><mu1t><matrix-operand>}

GENERAL RULES:V

The <sca1ar-operand> may_be a scalar, an integer or a bit

string. Integers and bit strings are converted implicitly

to scalars.

Addition and subtraction must involVe two vectors Of idéntical

dimensions. I

<vector-operand>*<vector-operand> denotes vector cross-product,

which is defined only for three4dimensional vectors..

Multiplication and division of a <vector—operand> by a <sca1ar—

opérand>, and negation of a vector, denote operations on each

vector component.

<matrix-operand><mult><vector—operand> denotes formal mathé-

matical matrix-vector multiplication; the vector dimension

.must equal the column dimension of the matrix.

<vector-pperand><mult><matrix-operand> denotes formal

mathematicai vector—matrix multiplication; the vector

6-4

INTERMETRICS INCORPORATED - 380 GREEN STREET fiCAMBRlDGE. MASSACHUSETTS 02139 ° (617) 868-1840

.
.

.

u.
..
 A

4 .
.—

dimension must equal the row dimension of the matrix.

EXAMPLES :

_ . _ . _ . _ . _ ,_ ' _. f _ ._ . _. w _. _. _._ * '
“P*V, P+V, 5V, V S, P/(A+S), (V.P)2F, M.V, F/(V.V M) are

all valid vector expressions. .

6.1.1.4 Matrix Expressions. A <matrix—expression> is compdsed

of the following elementary operations:

'{{[+][-}<matrix-operand>|

<matrix-operand>{+l-I<mu1t>}<matrix—operand>I

<matrix-operand>**{-1IT}I ‘

<sca1ar-operand><mu1t><matrix-operand>I

<matrix—operand>{/l<mu1t>}<scalér—operand>I

<vector-operand><mu1t><vector~operand>}

GENERAL RULES:

1. The (scalar-operand> may be a scalar, an integer, or a bit'

string. Integers and bit strings are converted implicitly

to.scalars.

2. Matrix addition and subtraction must involve mafirices of

identical row and column dimensions. ‘

3. <matrix—operand><mult><matrix~operand> denotes formal

mathematical matrix multiplication; the column dimension of

the left operand must equal the row dimension of the right.

4; Exponentiation of a matrix is restricted to the inverse (-1)

and transpose (T) fufictions. These may also be written in '
* '1:

functional form as INVERSE‘M), TRANSPOSE(M).
' 1.

1

6-5

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1340 '

. . _ . . , , ,

u o
o

I

5. Mulfiiplication and division of a matrix by a scalar, and

' negation of a matrix, denote operations oh each matrix

element.

6. <vector-operand><mu1t><vector~operand> denotes the véctor

_outer product; the result is a matrix whose row and column

dimensions are the dimensions of the-left and right Operands,

respectively.

EXAMPLES:

* * * * *_1 *‘* T * ° * -_._. , .
-M N, M+N, M *, (M N) , M/S, A N, V V are all valld matrlx

..

expreSsions.

6.1.2 String Expressions

I String expressions yield string results; e.g., a bit

string expression is defined as an expression yielding a bit

stfing result. There are two types of string expressiOnS: bit

and character;

6.1.2.1 Bit String Expressions. Bit string expressions

may contain bit string operands only. A <bit-expression> is

compoSed of the following elementary operationé:

GENERAL FORMAT :

”([NOT] bit-operand>[

<bit-operand>{AND|0R|CAT}<bit-operahd>}

6—6

INTERMETRICS INCORPORATED 0' 580 GREEN STREET ' CAMBRIDGE MASSACHUSETTS 02139 - (617) 868-1840

3
:

1
‘

-

.
_

'
.

-
’

.

.-"
‘;é

.‘=
'rd

-‘-
i'.

~'.
' .

‘

III

I
I

-
l

I

I
I

I

I
I
I

I
I
I
I

I
I

I
I

I

I
I

I

I
I

l
-

I
I

I
I

I
I
I

I
I
I
I

III.

I
I
I

I
I

-
I

IIII

I
I
I

‘
I

I
I

I
‘

I
I

I
I

I
I
I

1

GENERAL RULES :

1. NOT COmplements each bit in the string.

2; AND, OR perform bit—by-bit ldgical AND and OK on the

.corresponding bits of the two operands.

3. Whenthe string lengths are unequal, the shortef string is

padded on the left with zeros until the strings are of equal

length.

4. Concatenation, CAT or (I I) , links together two bit strings. The

length of the result is the sum of the lengths of the two operands.

EXAMPLES :

NOT A, A OR (B AND C), AIINOT BI I (B 0R C) are all valid
bit string expressions.

6.1.2.2 Character String Expressions. A character string

expression must involve the concatenation of a character string

and a bit string, integer, or scalar operand. A {character-

expression> is composed of the following elémentary operations:

GENERAL FORMAT: -

I i{<character-operand>|Igdata—operand>|

<data—operand>lI<character-operand>l

<character-operand>|I<bit~operand>}.

where <data—operand>é{<integer-operand>I<scalar-0perand>I

<Character—operand>}

GENERAL.RULES:

1, <integex- and <$calar-oper%nds> are converted implicitlyx
3

6-7

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS 02139 f (617) 868-1840

'to character numerical'representatioh.

'2. <bit-bperands>- are converted first to integers-and then

‘ to characters.

EXAMPLES:

éExTII 'HELP' , AIIéEXT, éEXT||(A/é), éEXTl l (g l l é) are all

valid character expressions.

6.1.3 Array Expressions . ' - " I . a

Array expréssions yield array results. In geneiai, most

ofthe operations described in-Sections 6.1.1 and 6.1.2 are valid

for arrays if the operation is valid for elements of the arrays.

There are two classes of afray expressions: 1)where both operands,

are arrays; 2) where one operand is an array. I

6.1.3L1 Two-array Expressons. For two-Array expreséions, all of

the expressions detailed in Secs; 6.1.1 and 6.1.2 are valid by.’

replacing the.<type-0perands> by <type-array-operandS>. For

example, in Sec. 6.1.1.2 the Qscalar—operand> becomes a <scaiaf—

array-operand> and the <ve¢tor-operand> beéomes a <vectorearray-

Operand>.

GENERAL RULES:

1. The two <afray-0perands> must be dimensionally idEhtical.

2. The indicated operation is performed element-by-element, in_

sequence, on corresponding elements Of the two arrays. For

example, let [P] and [S] be twp-dimensional arrays. Then

[P] + [S] will be executed in the following sequence:

6-8

INTERMETRIQS INCORPORATED ° 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS. 02139 ° (617) 868—1840

n,m n,m

.3. The resulting array will be of the same dimensions as the

<type-array-operands>. .

EXAMPLES:

--'-[P], [Pl/[é], ['5]*[V],[V][é], [R] [P]. [Along], [AllltéEXTl
are all valid array expressions.

6.1.3.2 One-array Expressions. For one-array expresSions, all

' o f the expressions detailed in Secs. 6.1.1 and 6.1.2 are valid

if gag of the <type-operands> is replaced by a <type-array-0perand>.

GENERAL RULES:

1. The indicated operatioh is performed, in sequence, using

the single operand and each element of the array. '

2. The resulting array will be of the same dimensions as the

<type-array-operand>.

EXAMPLES:

P] [Pl/é. [P1*'<r'. Vtél. R[. [A] 01253. Alllri'Ex'rl. V/[A]. u‘hfi.
[A]+5 are all valid array eipressions.

6.1.4 Structure Expressions

There are no structure expressions defined in HAL.

1 6-9
INTERMETRICS INCORPORATED - 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

6.1.5 Relational EXpressions

Relational expressions yield a single true (TRUE/ON) or

' false (FALSE/OFF) result of a comparison of.0perands. Relationai_

Operators are grouped as follows for use in different contekts:

‘1: not equal

(P) = .
= equal

n1: not_equal ' T
= equal

< less than

> greater than
<Q> = 4 $

<= less than or equal

>= greater than or equal

fi < not less than

L1> not greater than.

6.1.5.1 Bit String Comparisons.

GENERAL FORMAT:

'f<bit-opérand><Q><bit~bperand>I[w]<sing1e-bit-operand>}

where ‘

ksingle-bit-operand>#{<single-bit-name>I<single-bi£-funct10n>I

<single-bitéexpression>l(<single-bit-expression>)}

A <single-bit-expression> is a string expression whose result is.

a bit string of length one.

GENERAL RULES :

1. When string lengths are unequal the shorter string is padded

on the left with sufficient zeros to make the strings of

equal length.- . ! I

2. When comparing bits:

6-10
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 - (617) 8684840

._ , , 1 , , # — _ _ — _ — . _ _ _ _ — _ — . 4

a, Proceeding from left to right, if the first comparison

which is not équal is ">" thén the total bifi-string I

comparisoh is £523 for the relational operators >}

>=, 1 < , ' 1 = , and Egigg for the operators <, < = , ' 1 > , =;

b. Proceeding from left to right, if the first comparison

which is not equal is "<" then the total bit—strihg'

comparison is EEEE for the relational operators <,

<=,'1>,'1=, and Eglgg for the operators >, >=, 1<, =.

c. The total bit—string comparison is true for the°relationa1

operator = (and false for‘1=) if and only if Ell.bit .

comparisons are =.

3. The <single—bit—operand> implies the comparison}

<single-bit—operand> = TRUE ‘ ,J

EXAMPLES:

A=B, A>B, Afi<B, etc. are all valid bit string comparisons.

6.1.5.2 Arithmetic Comparisons.

'{€integer-operand><Q><integeivoperand>I

<sca1ar-operand><Q><scalar—operand>[

<vector—0perand><P><vector~operand>I

<matrix-operand><P><matrix-operand>}

GENERAL RULES:

1. The <integer-operand> may be either an integer or a bit '

.string except where the <integer-operand> comparison reduces

to a <bit-operand> comparison. Bit strings are converted

implicitly to integers.

6-11 _
INTER'METRICS INCORPORATED.- 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868~1840‘

V.

*2._ -The <scalar-0perand> may be a scalar, integer, or bit string

excépt where the <éca1ar-operand> comparison reduces to.

either an <integer- or <bit-operand> comparison. Integers

are converted implicitly to scalars. Bit strings are

converted implicitly, EEEEE to integers and_then to scalars

EXAMPLES: A .
.. .. _... ... it. ‘1:

DJ, I<A, A‘1=S, S<=(A+P.V), V=B, M'1=N are all valid ,
'arithmetic bomparisons.

6.1.5.3 Character Stiing Comparisons. Character comparisons

have the following general format:

<character—operand><Q$<character~§perénd>

GENERAL RULES: ‘

1. When the string lengths are unequal, the shorter string

is padded ofi the EEEEE with Sufficient blanks to maké.

the strings of equal lepgth.

2. The character comparison involves left-to-right comparisén

of corresponding characters in each éperand according to

a cgllating sequence which may be implementa£ion dependent.

3. Total character-string comparisons follow the same rules

és described for bits in Sec. 6.1.5.1 (Rule 2).

6.1.5.4 Array Comparisons. Axray comparisons are valid in

comparing.two <type-array-operands>, or one <type-array-operand>

and one <type—operand>. The result must b e . a single true or

false answer.

6-12

INTERMETRIQS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ° (617) ‘868-1840'

GENERAL FORMAT :

‘{<type—0perand>I<type—array-0perand>}<P>

'{<type-operand>I<type~array-operand>}

GENEfiAL RULES:

1. Comparisons are on an element—by-element basis.“

2. For the operator =, the comparison is true only if gii

the array elements are equal.

3. For the operator'1=, the comparison is true if E21 of.

the array elements are not equal.

EXAMPLES:

[I] = [A], [A] ' 1 = S, [P] = [S] are valid array comparisons.

6.1.5.5 Structure Comparisons.

GENERAL FORMAT :

sstructure-operand><P><structure-operand>

GENERAL RULES :

1. The two <structure-operands> must be identical in organization.

6*13
INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840'

6.1.6 Precedence Order

In the evaluation of an expression, the order of operations

is determined by parentheses and operator precedence. The

_ precedence is divided into two-groups, I,and II; I.is of higher

priority. The groups are further ordered by relative priority

number (the highest number being the highest priority).

1

6.1.6.1 Group I Arithmetic Operations

Qgeration

Exponentiation

Matrix transpose (short form)

Matrix inverse (short form)

Scalar-scalar product

Scalar—vector or vector scalar product

Scalar-matrix or matrix-scalar product

Vector-matrix product

‘Matrix-vedtor product

Vector outer product

Matrix-matrix product

Vector cross product

. Vector inner (dot) product

Scalar-scalar quotient

Vector-scalar quotient

INTERMETRIQS INCORPORATED {380 GREEN STREET

Priority1 Form2

S S

4
|

o.
‘

H
<l

U
)

U
)

3:
:-

0 H
 3:
!-

U
J

U
)

m <
:

_

\

i
n

J

3
*

<

1

3
*

<

:
:

-

3
!

-

3
!

-

m
m

4
'

<

fl

3

<
3

<

3

3
<1

\

6-14 -
° CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

.Matrix—scalar quotient I 2 fi / S

-Scalar sum 6r difference 1 S i S

- Vector sum or difference 1 V :‘V

Matrix sum or differencé 1 fi i E

_. * ‘ ‘ .
S, V, M represent scalar (also integer and bit strlng),

vector, and matrix operands.

6.1.6.2 Group II Relational and String Operations.

Operation .firiority ' “Form

NOT (“, A) 5 ' B

CAT (l l) . 4 . AIIB

(=1 “i=1 > 1 .1): (‘1' 3 31 >= 52

AND (a) " 2 1;; & £3

OR (I) 1 ’ . AIB

6.1.6;3‘ Further Cqmments on the Order oé Operations.

1. Operations within an expression are performed in the order.

of decreasing priority. For example, in the expression

A+B**3, exponentiation is performed before addition. If an

expression involves operations of the same priority, the general

rule is that the operations are performed left to right._

Exceptions are noted belbw,

-6...

INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

Exponentiation is right to left.. Thus,
C A**B**C 5 AB- :5 A**(B**C)

Division is right to left. However, vector and matrix

expressions may never appear as a denominator in a quotient.

a. A/B/C = A/(B/C) = A C/B

b- A/BX/CY/D = A/(B x((c Y/D)) = A c Y/B x n
c. V/A/p V7(A/B) = B V/A

d. VVA/fi = V7(A/§) is illegal

e. V/ECV' = V/(§.V)

Within priority 5, in Group I, deviation from_left—to-right

arder of scalar-véctor-matrix proaficts is permitted in order

to simplify the computations. For example, in

V'= fi S s s V

the scalars are first multiplied together, then thé vector

is multiplied and finally the matrix. Strict left—to-right

evaluation would cause 3 matriscalar and 1 matrix—vector

product. However, since multiplications are associative,

the forms are mathematically equivalent. If an expression

is enclosed in parentheses, it is tféated as a single Operand . ‘

The parenthesized expression is evaluated before its _

associated operation is performed.

6-16

INTERMETRIQS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS '02139 '- (617) 868-1840

o
.

.
3

.
-

-

-

-
.

a

u
.

6.2 Conversions

'Conversions of data type and precision can be accomplished-

implicitly within expressions, and explicitly by special con-

version functions. These conversions are detailed below.

6.2.1 Implicit Conversions

6.2;1.1 Data Type. Sevéral implicifi data-fiype conversions

are described in Sec. 6.1 as occurring when operands of differént

types are combined by an operator. These conversions are also

noted in the expressions summary of Sec. 6.4. In general, but

with Cértain restrictions, implicit cbnversions within expressions

follow a progression:

to-scalar-to-character
from bit—to—integer '

‘ to-character

+3 + c
B + I

' +C

and from single precision (SP) to double precisioh (D P) . Vector

and matrix operands cause the same effects as scalars.

GENERAL RULES : -

1. The prefix operations + and - applied to bit strings cause

conversion of the strings to integers.

2. For arithmetic operations, other than exponentiation,

involving two bit strings or'a bit string and an integer,

the strings are converted to integers, and the result is an

integer.

6-17

INTERMETRICS lNCORPORATED ' 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868-1840

t
.

\

.Exponentiation involving integers énd bit strings always

causes conversion of integers to scalars, and conversion of

hit strings first to integers, and then to scalars; the

result is a scalar. There is an exéeption for the exponentia-

tiog of an integer by a <§ositive~integer~literal> (see

Sec. 6.1.1.1). In thié case the result is an integer.

For arithmetic operations involving a bit string ahd a

scalar, the string is first Converted to an integer and then

to a scalar, and the result is a scalar.

For arithmetic operations involving an integer and a écalar,

the integer is converted to a scalar, and the result is a

scalar. ’

Division always causes the conversions of numerator and.

denominator to scalars, and produces a scalar result.

The concatenation of a chéracter string and a scalar, integer

or hit string causes conversion of the scalar or integer

to a character string, and the conversion of a-bit string first

~to an integer and then to a character string. Conversion

of scalar to character produces a character string of

specific length to be determined by the implementation.

Conversion of integer to character produces a character string

of minimum length sufficient to represent the integer as a

Signed decimal number.

_6—18
INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868—1840'

6.2.1.2j Arithmetié Litégals. -If'the representation of an

arithmetic literal in thé target machine is exactly an integra1

number (whole number) the literal will be treated as an <integer-

0perand> in operations and expressions, and with respect to

the-data-type conversions detailed in Séc. 6.2.lfl. Thus, 2,;

2.00, 27.3E+3, 0.1024E+4B-5 ' are examples of “integer literals".

If the literal has a fractional part, it_will be treated as a

Sifigle preciéion <scalar—0perand>. Thus 1.5, 2.386E¥2, etc.

are examples of "scalar lifierals".

6.2.1.3 Precision. Implicit conversion of precision occurs

when operands of different types or precisions are combined

by an operator.

GENERAL RULES : .

1. Conversion from bit t6 integer:

Bit strings of length less than a machine werd length

are converted to integers by regarding the string as an

unsigned integer. The result wiil be a full word positive

integer. For sfring length exactly equal to word length,

a Sign bit is presumed, and the resulting integer will be a

full word signed integer. For string lengths greater than.

a word length, conversion will not be performed; the compiler

. will issue an error statement.

2. Integer to Scalar:

a. Floating Point

. When an integer can be represented exactly in single

precision floating point then thg conversion will be exact.

6-19 .
INTERMETRICS INCORPORATED ° 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 (617.) 868-1840” _

v
‘—

v

For larger integers, conversion will approximate the

integer by the most significan£ portion that can bé

represented in a single precision floating point number.

b. Fixed Point

> In conversion from integer to fixed point if the

second operand is g scalar then the number of integer.

bitg after conversion will be set equal to that of the

scalar operand; otherwise the integer Will be treated

as a fixed-point quantity of all integer bits and no

fractional bits;

3. Conversions within Expressions:

a. Floating'Point'Operations I

For operations involving two single precision

operands, the result will always be single precision.

For operations involving single and double precision,

the single precision éuantity Will be converted to '

double precision and the operations will be performed

in, and the result will be, double precision.

b. Fixed Point Operations

For operations involving tWo fixed point single

precision operands (single word length) the result will

be single precision.* For operations involving single

* For a particular target machine, the product of two single

precision operands may be available to double precision.

6-20

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868—1340

1 i
.

‘

0
~

'

Q

a

and double precision operands, the cbnversioh to double

~1éngth will-follow the same rules as for fiqating point.

The result of an operation also carries with it an

implicit scaling based on the operation involved and the

scaling of the operands. '

- GENERAL RULES :

1. Addition and subtraction

‘ The resultant number of integer bits equals the

maximum of the integer bits of the two operands.

2.- Multiplication

The resultant number of integer bits equals the

sum of the integer bits of-the two operands.

3. Division

The resultant number of integér bits equals the

difference in the integer bits befween numerator

and denominatoi.

4.. Exponentiation

I The resultant number of integer bits equals the

product of the number of integer bits in the argu-

ment and the maximum absolute value of the exponent.

5. 'Fractional bits for all operations

The resultant number of fractionai bits equals

that necessary to fill out a single or double word

length, depending upon the context, and the sum

of thé integer and Sign bits.

6-21

INTERMETRIQS INCORPORATED - 380 GREEN STREET ~ CAMBRIDGE. MASSACHUSETTSIO213_9 - (6i?) 868-1840

I
I

I
I

-

I
I
I
I

I
I

I
I

I

I
I

I

I
I

I
I

I
I
I

I
I
I
I

I
I

I
I

'
I

I
I

I

I
I
I
I

I
I
I

I
I

I
I

IIII

I

I
I

I

I
I
I
I

I
I
I
I

I
I
I
I

I
I

I
I

IIII

EXAMPLES:

l.

Presuming a 32 bit word length.including 1 Sign bit:'

DECLARE A PRECISION(5,12);

DECLARE B PRECISION(15,13)3'

x = A + B;

The implicit scaling of the expressions A + B is

.(15,16). That is, the numbér of integer bits equals

the maximum number of integer bits of A and B. The

number of fractional bits equals 32 - (15+l).

DECLARE A PRECISION(5,12);

DECLARE B PRECISICN(20,20);

X - = A B ; .

The implicit scaling of the expression A B is

(25,38). That is, the number of integer bits equais

the sum of the integer bits of A and B. The number

of fractional bits equals 64 - (25+1). Cofiversiofi

to double length is caused by the presence of B

“which requires a double word based on the declaration

statement.

DECLARE PRECISION(3,12)A,B;

x =‘AB
The implicit scaling of the exfiression AB is (24,7).

That is, the humber of integer bits equals the pro-

duct of the integer bits of A and the maximum value_

of B; i.e., 3x23 = 24. The number of fractional bits

equals 32 — (24+1fl.
1

6-22

lNTER-METRICS INCORPORATED ° 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 - (617) 8684840

’
I

I
I

I

I
I

I

I
I

I
I

III

I

I
I

I

I
I

I

I
I

I
I

'
I

I
I

I

III

I
I

I
I

I

I
I

.

of Conversion of Literals

In converting a literal to a fixed point scalar; only

the necessary number of integer bits will be used. Fixst

the literal is divided by 2N éo_that its value is <1

but‘: 0.5. 2N is therefore the.maximum range and N

becomes the number of ihteger bits in the fixed péifit.

scaling. P-N-l bits are assigned-as fractional whefe

P 13 the word length. (This preéumes 1 Sign bit.) For

example, for the literal 250.87 the compiler would assign

PRECISION(8, P-8—sign bits).~ For the literal .004875

the precision is PRECISION(-7, P+7~sign bits).

6.2.2 Explicit Convefsions

Three classes of explicit conversions are specified: a

data-type conversion to convert from one data—type to another,

an arrayétype to convert a list of mixed data types to ah array

6f a single type, and a set of special bit and character Con-

versions.

6.2.2.1 Data Type. The explicit conversion of data types can

be accbmplished with the following set of conversion functions:

1. INTEGER (<single-operand>)

2. SCALAR (<single—operand>)

3 ”/BIT ’ (< ‘ l — A d>) ' [<index-expression>] Sing e operan.

4 . CHARACTE R
[<index—expression>](<Slngle—oper

and>)

5. _VECT0R t>) [<cilimension>](<11S

6a. MATRIX[<dimenSion>]((11312))

6-2’3. _ _ _

lNTERME‘TRiCS INCORPORATED ' 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS Q2139 ' (617) 868-1840'
A . —

1

x

where <single-operand> = {<type-bperand>l<type~array~operand>}

<list> = <single-operand>[,<single-opérand>]. . .

and _ <dimension>‘ = <m>I,<n>]

<m> and <n> may be <bit-, <integer-, or'<scalar-operands>;

their values are converted to integers: <m> and <n> must be i 2.

<index—expressions>, in the form of subscripts, are detailed

in Sec. 6 . 3 ; 1 .

.GENERAL RULES:

1. INTEGER converts bit strings, scalars and character strings

to integers, and arrays of these gypes to arrays of integers.

A bit string is cénverted according to the rules stated in

Sec. 6.2.1.3. A scalar is converted to a signed full

word integer by rounding to the nearest whole number. .A

character representatioh of a whole number is converted to

a signed full word integei.

2. SCALAR converts bit strings, integers and character strings

to scalars, and arrays of these types to grrays of scalars.

A bit string is converted first to an integer (as in (1)

above) and then to a scalar. An integer is converted to a

scalar according to the rules stated in Sec. 6.2.1.3. A

character representation of a decimal number is converted.to

a goalar.

A bit string may be converted directly to a floating

(or fixed point) scalar, i.e. not converting t6 integer

first, By use of fhe BIT pseudo—variable, described in

Sec. 7.1.2.3.

6-24

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 8684840

BIT dbnverts integers, scalars and character strings to bit

strings. Integers and scalars are converted to full word

bit strings; character Strings are converted to the bit

length representing the total character string. "BIT may be -

subscripted by an <index—expression$ to select a desired.

range of bits (see Sec. 6.3.1).

BIT also converts arrays of integers, scalars, or

charactérs to arrays of bit strings. I I

CHARACTER converts bit strings, integers, and scalars to

character strings. Scalars are converted to specific '

length character strings; integers are converted to

minimum length character representations (sée Rule 7 of

Séc. 6.2.1.1). Bit strings are convérted to integers first

and then to characters. CHARACTER may be subscripted by an‘

<index-expression> to select a desired range of characters

(see Sec. 6.3.1).

CHARACTER also converts an array of bit strings, integers,

or scalars, to an array of character strings.

VECTOR may be applied to a mixed list of all <type-Qperands>

and <type-array-operands>. The VECTOR conversion-ffinction

may be thought of as constructing a scalar one—dimensional

list of all the included elements. (Conversions follow

SCALAE rules.) Vector, matrix, and array list-elements

are equivalent to lists of their components. Matrices are

unraveled by rows; arrays are unraveled by the "right-most".

index first (i.e. 1,1,1; %,1,2 ; 1,1,3; ... 1,2,1, 1,2,2,; étc.).

K

6-25

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

The rules for "filling" VECTOR are similar to those

for initialization (see Sec. 5.1.1.5). The resulting vector-

is filled elementfiby—element from the <1ist>. The number

of elements in the list may equal one, or the desired

' Vector dimension. If equal to one ge.g., VECTQR6(O)), the

function may be subscripted by the desired dimension and

all the components will bé assigned values equal to this

single element. The default dimension is used if a sub-

script is not provided.

If equal to the desired vector dimension (e.g., VECTOR

(3#A2,BZ,C2,D2) or VEéTOR4((A,B,C,D)), the function may or

may not be subscripted by the coriect dimension. In either

case the vector dimension equals the number of elements

in the list.

The MATRIX conversion-function constructs a one—dimensionai

list according to the same rules as for VECTOR. The resulting

matrix is "filled" (element-by-element) by rows, and the

shape (rows, columns) may be specified by~subscripting the

function. The number of elements in the list may equal one,

or the desired total number of matrix elements. Fof V

example,

MATRIX4'4(1)

MATRIX4’4 (A ’ 4 # 0 ’ A ' 4 # O , A ’ 4 # 0 ' A)

V-u— .

aré acceptable forms. If equal to one, the function may be

subscripted by the desired dimension and all the components

6-26

INTERMETRICS INCORPORATED ' 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

will be assigned values equal to this single glement. When

subscripts are not provided, the default matrix dimensionali£y

is used, and the number Of elements ifi the list must equal

. one, or be consistent with the default.

EXAMPLES: ' .

INTEGER(§), SCALAR(é||é), BIT([A]),CHARACTERl TO 5(A),

VECTOR(%,§,I,A2), MATRIX4'4(A,é,I,A2,P),

scALAR([é]), MATRIX8’8(1).
are all valid conversion-function applications.

6.2.2.2 Array-Type. The explicit formulation of arrays can be

accomplished by adding "array shaping" subscripts to the functions

presented in Sec. 6.2.2.1, thus:

1. INTEGER[<array—shape>](<llSt>)

2. SCALAR shape>}(<115t>) [<array-

3. BI n>](<l:l..st>)
T[<array-shape>:][<index—expressio

4' CHARACTER[<array—shape>;]I<index-expression>](<llSt>)

5' VECTOR<array-shape>:[<dimension>](<liSt>)

6' MATRIX<array~shape>=[<dimension>](<liSt>)

'where

<arrazjshape> = <m>[,<m>]...

I <m> may be <bit-, <integer—, or <scalar—operand>; the value of

<m> is converted to an integer before use and must be 3_2.

6-27

INTERMETRICS INCORPORATED - 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

u

n
0

GENERAL RULES:

1 . INTEGER and SCALAR may be applied to mixed lists of all

<type—0perands> and <type-array-operands>. Conversions are

-the same as for the corresponding data—type functions.
I

Except where these forms reduce to the dataetype fuhctions

of Sec. 6.2.2.1, the number of elements in the lists may

equal qne, or the total number of array elements.. Thus,

a) if equal to one, the <array-shape> must be Specified

and all the elefients in the array will be assigned

values equal to this single list element.

b) If equal to the total, the <array-shape> may be

specified and the elements assigned on an element—

by-element basis. If <array-shape> is not provided,

a oneadimensional array of length n is presumed,‘ '

where n is the number of elements in the list.

BIT and CHARACTER may be applied to mixed lists of all

<type-operands> and <type—array-0perands>. Conversions are

the same as for the corresponding da£a~type functions;

Except where these forms reduce to the data-type functions

of Sec. 6.2.2.1, the number of elements in the list may

equal one, or the total number of array elements.

a) If equal to one, the <array-shape> must be:

*~ specified and all the elements in the array wi;l

be assigned values equal to this single list

element. If <index—expression> is not provided,'

default* string Pength will be used.
- 1

' m

6-28

I‘NTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 8-68-1840

s
.

b) If equal t6 the total, the <ariéy~shape> may be

specified and the.e1ements assigned on én'element~

by—element basis. If <array-shape> is not_provided

a one-dimensional array of length n is presumed,

where n is the number of elements in the list. If

<index—expression> is nbt provided, a défault*

string length ié used.

3‘. VECTOR and MATRIX may be applied to mixed list of all <£ype-

operands> and <type-array-operands>. Conversions are the

same as for the corresponding data-type functions. Except

where these forms reduce to the data-type functions of

Sec. 6.2.2.1, the number 6f elements in the list may equal

one, or the number of components in a single vector or matrix

array—element, or the total number of vector or matrix com-

ponents in the array. .Thus,

a). if equal to bne,_the <array—shape> must be specified

and all the vec£dr or matrix components in the -

array will be assigned values equal to this single

list elemeht. If <dimensiofis> are nét provided,

default vector of matrix dimensions will be used.

b) If equal to the number of components in a single

vector or matrix array-element, the <array-shape>

must be specified and all the vectors or matrices

- in the array will be assigned these list values.

If MATRIX—<dimension> is not provided then the

default matrix dimensions is used. (In this case

the number of list elements must be consistent with

. *See Appendix B
6-29

INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840'

o

.

l.

the default.) If VECTOR-<dimension> is fiot pro“

vided, the vector dimension equals the number of

elemen£s in the list.

0) If equal to the total num§er of components, the

<array—shape> and the VECTOR~<dimension> mfist be

specified. If MATRIX-<dimensi6n> is not provided,

the rule of (b) above applies. The components

will be assigned, from the list, on an element—by-

. element basis.

EXAMPLES :
, ' 7

INTEGER (ACE) 3 , 4

w A 3x4 array of integer-elements.‘ Each element is equal

to INTEGER(ACE). ACE must be the character representatipn

of an integer (e.g., '-604'). .

SCALAR(A,é,c,15#I) '
- A one-dimensional array of 18 scalar values.

BIT(A,BZ,C,D,E) '

- A one-dimensional array of 5 default length bit strings.

BIT3,2:1 TO 8(A) .
- A 3x2 array of 3-bit bit strings. All array elements

are equal to the eight "left most" bits of A.

VECT939:4(A,0,0,0)

— A one dimensional array of 9 fofir-component vectors.

Each vector equals (A,0,0,0).

\
1

6-30

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

,
.

\
.

.
"

"
.

_

.

6. VECTOR2’2:(B) .

- A 2x2 array of éefault length vectors. 'Every vector.

component is equal to B.

7. VECTOR (6#A,6#B,1,0,0,l,0,0,6#D) 2,2:6

- A 2x2 array of 6-component vectprs.

8. fiATRIXlO:(A,B,c, -------- .)
- A one-dimensional array of 10 default size matrices,

(Note that list length must be consistent with the

default.)

9. MATRIX2’3’4:5"5(5#A,5#B,5#C,5#D,5#E)

— A 2x3x4 array of 5x5 matrices.

6.2.2.3 Special Character-to-Bit, Bit-to-Character'Funct103§

In addition to the BIT and CHARACTER functions presented

in Sec. 6.2.2.1, special subscripting allows binary, octal and

hexadecimal conversion from characters to bit string and vice-

vefsa. The general forms are:

a) BITl<form>l(<chayacter-0perand>)

b) CHARACTERI<form>1(<b1t-0perand>)

where-

<form> =‘{@BIN[@OCT|@DEC|@HEx}

GENERAL RULES:
1. BIT converts a character string (or array of character $form>

strings) of binary, octal, decimal or hexadecimal digits into

a corresponding bit string (or array of bit strings). @BIN

6-31

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 021'39 ° (617) 868-1840'

_ A A , i

requires the character gtfing to be made up of only 1'3

and 0's, @OCT of only 0 to 7, étc.
2. CHARACTER< converts a bit string (or array of bit form>

strings) into a character string of binary, odtal, decimal or

hexadecimal digits, depending on the subscript. If.the-

bit string is too short for the required form, it will be

padded on the left with zeros.

3. If <form> is not provided, these conversion functions revert

to the unsubscripted functions of Sec. 6.2.2.1.

EXAMPLES:

' I ‘ .

U ' . I i I

are all valid applications.

6.2.2.4 Precision. The precision of expression results can be

specified or changed explicitly by the use of the <precision-

expression>. That is:

{<type—operand>I<type-array-0perand<}<precision_expression>

I where

<type—operand>é{<integer-’[<sca1ar- l<vector-,l<matrix- I

<bit- }operand> -

and likewise for <type—array-operands>. If the <type-0perahd>

is an expression or a Subscripted name, thé <operand> must appear

within parentheses.

6-32

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840'

q.
. .

A. Floating pdint:

GENERAL FORMAT:

- <precision-expression> % @p

. GENERAL RULES:

1. p must be an unsighed integer literal and is equal to

the minimum number of significafit decimal places (same

meaning as in thé PRECISION attribute of the declaration

statement). - I I

EXAMPLES (presuming a 32-bit word):

1. DECLARE A PRECISION(10);

DECLARE B ARRAY(5); f

A = (BI)@10+C;

BI is converted from single to double precision (i.e.,

afi least 10 significant decimal places) and the sum

.is performed in doublg precision. Note that an indexed

name requires parentheses. -

2. REPLACE SP*BY ' 4 ' ;
REPLACE DP BY I'10';

DECLARE X PREC (DP);

A = B +(X Y)@SP;

The double precision result of X Y will be converted

to single precision. The final sum is computed in

single precisiOn.

B. Fixed point:

GENERAL FORMAT:

$precisi0n—éxpression> =

'{@p[,q1l{@<name§|@np|@sp|@*}[+k -k]}

*See Sec. 7.3.6 . 6-33 .
INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGEtMASSACHUSETTS 02139 ' (617) 868-1840

where @DP and @SP ére keywords; i.e., no spaces are allbwed

between characters.‘

.GENERAL RULES:

1; @p, q specifies the number of integer and fractional

. bits (same meaning as in the PRECISION attribute of

the declaration statement). .

.2. @<name>ik specifies the precision to be the same as

that of <name> except with the binary point shifted

relatively to the right (+) or left (-) by k places;-

i.e., increasing or decreasing, respectively, the

Inumber of infiéger bits.

.3. @DPik specifies conversion, first to doubié wbrd length

I while maintaining the number of integer bits, and then

a relative shift of the binary point right (+) or left (-) '

by k places. ‘

4. @SPik specifies a relative shift of the binary point_

to the right (+) or left (-) by k places first, and

théh.conversion t6 single word length while maintaining

the new number of integer bits.

5. @*1k Specifies the current wogd length with the binary

point shifted relativel? to the right (+) or left (-)

by k places. .

EXAMPLE:

Presuming a 32-bi£ word,

A = E@*-5 + (B + CGDP-8)D)@E-5
C is converted from single to double precision and the

. , .5e34
INTERMETRiQS INCORPORATED ' 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

binary point éhifted ieft eight places. B f C is

performed in double precision and the result of the

‘ multiplication with D is rescaled to the same Scaling

as E except that the binary ppint is shifted left.

five places. This quantity is added to B after thé

binary point of E is also shifted left five places,

6.2.2;5 Summary* of Explicit DatabTypE'Conversibhs. The

following table describes the resulting conversion for each

function and operand type (I+S means integer to scalar, etc.):

TYPe
Function I S B ' C

INTEGER ./ s+I B+I' ‘ C+I(1).

SCALAR 1+5 ' /' B+I+s c+s(1)

BIT(3) 1+3 §+B(2) / C+B(2)

CHARACTER .I+C s+c - B+I+C /

/: Restores original argument (no operation).

Notes: (1) INTEGER and SCALAR only accept character string

arguments which represent whole numbers and scalars,

respectively. For example, INTEGER('30672') a n d '

SCALAR('362.06E+1') are valid applications.

* This section summarizes the conversions presented in Secs.
6.2.2.1 and 6.2.2.3.

6-35

lNT-ERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (61-7) 868-1840‘

u

(2) BIT converts~scalaré and character strings directly

to bit strings. That is a'floating point Scalar

argument would result in the string representing the

'machine "bit—pattern" of the floating point quantity.

A character is cogverted to its bit pattern.

' (3) BIT and CHARACTER.may be subscripted in order to

select particular bits and characters, or to modify '

hsage (see Secfiion 6.2.2.3). A character string which

represents binary, octal or hexadecimal digits can

be converted to a corresponding bit string; i.e.,

I I , ' B:T@BIN(lOll) becomes 101;

I I BIT@OCT(657) becomes 110 101 111.

I I

Likewise bit strings can be converted to binary, octal

or hexadecimal character digits; e.g.,

CHARACTER (BIN'lllllOlO')
@HEX

(4) VECTOR and MATRIX cause the same conversions as SCALAR.

6536

INTERMETRIQSIINCORPORATED ' 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 .' (617) 868—1840‘

.
-
v
'
u
-

»
. .

_
. .

. s
. _

-

9
:

.

.
J

.

~
.

.
-

v
—

_
.

.
.

.

—
.

_
- .

. —
- .

A
_

.
n

—

v—r

A
u

‘

. -
A

<
v

.
.

A

-

.
A

.
 .

_
.

.
.

.

.
. ‘

.
‘

.
 .

_ .
A

,
.

¢
.

‘

-
-

O

a

.

c

6.3 Subscripts

Subscript notation is used in HAL to spedify single elements,

or multiple-element.partitions,of vectors, matrices, bit- and

chafacter—strings, arrays, and structures. “

The first element of a vectof, the first bit in a bit—string

("left-most" bit) and the first character in a character string

("left—most" character) are noted by the subscript i, the second

by 2, etc. up to the total number of components; Thus, for a

9-elémeht vector the components may be written as

V V . 0 . . . v l 3 V 9
2.

For a matrix, the first of the two subscripts refers to the row

number, running from 1 up to the number of rows, and the second

to the column number, running from 1 up to the number of columné.

For example the elements of a 2x3 matrix could be referred to by

_writing:

B1,131,231,332,1Bz,232,3

The above data-types (including integers and scalars) may

. be arrayed in one, or multiple dimensions, and also organized

into hierarchical data structures. In order to select and

partition all quanfities uniquely it is necessary to distinguish

levels of subscripts. In the most general case, this is accomplished

by seéarating structure subscripts from array subscripts with

a semi-colon (;) and array subscripts from data-type subscripts'

' with a colon (z) . For example;

6&37
INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE.- MASSACHUSETTS 02139 ° (6177) 868-1840

1"
.

|

.

i

.

L I

I .

.

X“Y5:3:3,4

refers to the scalar element in the 3rd row, 4th column of the

3rd component of the array Of matrices Y which is in the 5th

copy of the structure X.

6.3.1 Subscfipting Data-Types and'ArréYS'of'DataéTypes

Subscripting (i.e., selecting or partitioning) is

accomplished by attaching a <subscript—expreséion> to a name, thus

GENERAL FORMAT:

£<tYPe’name>I(tYPe'arraY'name>}<subscript-expression>

where

<subscript-expression>

.= [[<index-expression>[,<index-expression>]...]:]

[<index—expression>I,<indei-expression>]]

and

<index-expression> ‘

= <scalar4expression>[TO<sca1ar-expression>]I

._I<sca1ar~expression>ATJ<scalar—expression>}

<scalar-expressions> are evaluated and converted to the nearest

integer before use. <sca1ar-expressions> must be 3_l.

6.3.2 Single~Element Reference

When referencing a single element the general formafi of

Sec. 6;3.1 reduces to I

I[fiscalar-expression>{,<scalar—expression>]...]z]

[<scalar—expression>[,<sca1ar-expression>]]'

6-38 .

INTERMETRICS INCORPORATED ' 380 GREEN. STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

GENERAL RULES: .

1. The expressions to the left of the colon (:) feferénce the

particular array element; the expressions to the right may

.be used to reference a matrix, vector, or string component.

2. For an array} if "left~expressions" are not pro§ided, the

colon being optional in this case{ reference is made to an

array of the particular matrix, vectdr, or string cpmponents.

3. For a veétor or matrix(one or two <scalar-expressions> are

usgd to reference a vector or matrix component.

4. For a bit- or character-string, one <scalar-expression> is

used to feference a éingle bit or character in the string.

5. 'Usg of a number Sign (#) in place of a <scalar-expression>

means "the last of a particular index".

EXAMPLEsé

l. M3,4 references the matrixfcomponeht in the third row, fourth

column. ‘

2. A2’3'4 references a scalar or integer array element in the

second plane, third row, fourth column.

-3. A2’3'4:3’4 references the component in the third row; fourth

column of the matrix located in the second plane, third row,

fourth column of the array, A.

4. BIT16(A) references the 16th bit in the bit representation of A.
I

5. TEXT~ references the 8th character in the string.
8. * . '

6. M references the matrix in the third row, fourth column, 3 , 7 :
. - *

of the array of matrices, [M] .

‘_ 6—39 _
' IN'TERMETR-IQS INCORPORATED - 380 GREEN STREET -- CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868—1840 '

u

7. [V5] references an afray of the 5th components of all the .

vectors in the array of vectors [V]. [V5] is an array of

scalars.

6.3.3 'Multiple~Element Partitions

6.3.3.1 The Use of *. An asterisk (f) may be used in place of

<scalar-expression> to indicate "all of a particular index",j

thus establiéhing a cross-section of a matrix or an array.

EXAMPLES:
1. fi;’4 references the fourth column of the matrix, which is

a vector. (That is, all rows, fourth column.) - I

2. HIV]2’*: references the vectors in the second row of the array

of vectors; Note that [V12 * is itself a one-dimensional
I

array.

6.3.3.2 The "T0" Operator. The TO—operatdr may be used to

reference (or partition) a set of elements by specifying the

index limits. .

GENERAL RULES:

1. The value of the expression to the left of T0 refers t6

the element at which the partition begins.

2. The value of the expression to the right Qf TO refers to the

element at which the partition ends.

EXAMPLES:

1‘ BS TO 10 ’selects bits 5, 6, 7, 8, 9, 10 from the bit string B.

6-40

INTERMETRICS INCORPORATED . 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ~ (6175’) 868-1840

* V
2. M1 To P, 1 To Qtpart1t1ons a larger matrlx and selects the

.first P rows and the first Q columns.

3. partitions a two-dimensional [AJP TO(P+2){_; go ;:4.TQ'#
'array of bit strings. The reSult islan array of 3 rows and

3 colfimns. Each array element is a partition from bit 4 to

the last bit of the corresponding original bit string.

' 6 . 3 . 3 . 3 The "AT" Operator. The AT—0perator may be used t6

referenée (or partition) a set of elements by specifying the

size (or length) and the beginning index.

GENERAL RULES : --

1. .The value of the expression to the left of AT indicates

the size 6f the partition.

2. The value of the expression to the right of AT refers

I to the element at which the partition begins.

EXAMPLES :

1. B6 AT 5 selects 6 bits from the bit string B; i.e.,bits'

5 ' 6 ' 7 ’ 8 ’ 9 ' 1 0 0

2. BITlo AT P(A) first converts the floating point (or fixed-

point) scalar, A, to a bit string and then selects 10 bits

starting at P.
*

3. M4 AT 5' 4 AT 7 partltlons a larger matrlx by selectlng

a 4x4 sub—matrix.

4. ,PQ T0 # partitions a character string by selecting the rest.

of the string starting at a.

i ;

6-41
INTERMETR‘IQS INCORPORATED ° 380 GREEN STREET - CAMBRiDGE. MASSACHUSETTS 02139 ' (617) 868-1840

'
.

. -
‘

A
-

-
 ._.

:
‘

A

_.
A .

.
.

 .
.

" _

A ._

5. Note that

S2 TO_10 l
I

U
)

9 AT 2

6.3.4 Subscripting Structures

Subscripts may be used to specify terminal déta elements

and specific copies of the major structure, or contained minor

structures.

GENERAL FORMAT:

<structure—n me>, . ‘ .
_ a <structure—subscript—expre551on><subscr1pt-

expression>

where

<structure-subscript-expression>

= [[<index—expression>[,<index-expression>]...];]

<structure—name> = {<fully-qualified-name>I<not-qualified—namé>}

and <index—expression> and <subscript-expression> are defined

in Sec. 6.3.1.

GENERAL RULES:

1. When the <structure-subscript-expression> is included, all

structure subscripts-(major and minor) must be indicated.

2. ~The use of an asterisk * means "all of the particular index"L

Thus, {A.B.D} means D in all the copies of B which are in
2 6 1 * ;

the 26th copy of A. If all indices are filled with * then

the <index-expressions> may be omitted optionally; for example,

A.B.D*'*; s A.B.D

6942

INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868-1840

EXAMPLES:

DECLARE l A(50)NOT QUALIFIED,

2 3(25),

3 c ARRAY(4,4) MATRIX(3;3),

3 D INTEGER,

2 E(15).

3 G VECTOR(3):
2 F BIT(1);

The folloWing examples refer to the above structure'declaration.

l. C8,1o;4,2:1,2

_IThis represents the scalar comppnent in the first row, second

column of the matrix which occupies the 4,2 position in the

array C. This array is in the 10th copy of B which is in the

8th copy of A.

G2
This represents the second component of the vector G in

all copies of E which are in all copies of A.

F25; . .
This represents the single 1—bit bit-string in the 25th

copy of A.

. * '

{C}23,*;4,*:

This represents all the matrices in the "4th row" of the

array C, in all the copies of B which are in the 23rd copy

of A.

6-43-

.ilNTERMETRICS INCORPORATED ~ 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 0222.39. ° (617) 868-1840

6.4 Expression Summary

Tables 6 ; 4 — 1 through 6 ; 4 - 7 summarize the allowable

operations between two operands. In most dases the valid result—

type (or error) and any implied data Conyersions are indicated ‘

within the boxes. Array Operations are generally valid wherever

corresponding data—type operations are also valid.

6-44

I INTERMETRIQS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

L‘_ ,i"

'
0

1
7

9
1

'
8

9
8

(

U
9

)

-
G

S
L

Z
O

S

L
L

E
S

O
H

O
V

S
S

V
W

'

B
O

G
I

H
S

W
V

O

°
1

3
3

8
1

8

N
3
3
8
?
)

0
8

8

°
G

H
L

V
H

O
d

H
O

O
N

I
S

O
I

H
L

B
W

H
B

L
N

I
.

S

V
—

9

Operation Prefix

OPERAND ‘ INTEGER

<p>

INTEGER

*
3

' SCALAR

<P>

SCALAR

.{<P? <Q>}OPERAND

VECTOR

<P>

VECTOR

* -B+I means conversion from bit to integer

<Q> =

MATRIX

' <p>
MATRIX

NOT

CHARACTER '
STRING

BIT.STRING

2P> <Q>
Integer Bit ERROR
B+1* String, '

9
V

-
9

t ‘
 l

Operation .Additioh & Subtract : OPERAND 'i OEERAND

_
.

.
'

0
7

8
L

°
8

9
8

 (
u

g
)

-

e
m
a
o
 s

u
a

a
o

v
s

s

'
a

s
o

l
a

a
w

v
o

-

1
3

3
8

1
.

8

N
B

B
H

-
E

)

0
8

8

-
o

a
w

a
o

a
a

o
d

w

S
O

I
H

E
W

H
B

L
N

I

OPERAND2 ‘
INTEGER ' SCALAR VECTOR MATRIX BIT STRING CHARACTER STRING OPERANDl .

INTEGER INTEGER SCALAR ERROR ERROR INTEGER ERROR
I+S B+I

SCALAR SCALAR SCALAR ‘ERROR. ERROR SCALAR ERROR
‘I+S

B+I+S

m_;VECTOR ERROR ERROR VECTOR ERROR ERROR ERROR-

VMATRIX ERROR ' ERROR ERROR ‘E'MATRIX ERROR ERROR ' '

. r . _

BIT STRING .INTEGER _SCALAR ERROR ERROR INTEGER ERROR
B+I B+I+s ' B+I ' '

CHARACTER . ' w -' ' ' STRING ERROR ERROR ERROR ERROR ERROR ERROR

d; dimension check

- , I ' .
o

. .
- - . .

-

E -+.
Q. . ‘ _ .
E ' Operation Mpltiplication!’ ' ' OPERANDl<mu1t>OPERAND2
a ' ' ' 6
o .0,

. g OPERAND2L - . 7

8 INTEGER - ' SCALAR VECTOR MATRIX BIT” STRING CHARACTER
3 OPERANDl ' . STRING.
I] ‘ ‘.
3:-
Fr“ . a ,

O ' INTEGER INTEGER SCALAR _ VECTOR MATRIX INTEGER ERROR

8 1+8 I+S 1+3 . 3+1
0

_ FR SCALAR ~ SCALAR SCALAR VECTOR MATRIX SCALAR ' .=ERROR 'z , _ _
0) 1+8 . - . B+I+S
—« . ‘ ‘ :3 .

‘j -- "VECTOR VECTOR VECTOR ' MATRIX _ VECTOR ‘ VECTOR ERROR

g c'n IT’S I d B+I+S '
g 4:- ‘ .
03 ‘1 . .
:U ‘ . -
g MATRIX MATRIX , MATRIX VECTOR ' 'IMATRIX MATRIX ERROR ‘
1'" 1+8 ' d ‘1 B+I+S
g .

g BIT STRING . INTEGER SCALAR - VECTOR MATRIX ‘ INTEGER ERROR o -::. . - w ' - E B+I _ B+I+S ' - B+I+S 3 B+I+S B+I , B+I '
U, ..
E. . (—04 CHARACTER ' , ‘ , ‘ - , ‘ .
o - STRING ERROR - ERROR ERROR ERROR . ERROR ERROR
M ' I - ‘

co V ' _

,1. . ' —- -- d: dimension check 9 Spec1al: .1)- Vector DOT product V..V _ ‘ -
:3 2) .Vector cross product VH7
8
8”
F23
8

. -—-...:.—-—-o-«..w

, , 7 — , V ” W h . m m — — g — u — — m ~ — m — _ W fi r _ r ~ _ - w — v - ‘ i v v ' .
. . - ‘

0 , ' , u . ‘ u I
-

G
S

L
Z

O

s
u

a
a

o
v

s
s

v
w

‘

a
a

o
l

u
e

y
w

o

.
1

3
3

m

N
S

E
H

E
)

0

8
8

-

o
a

i
v

a
o

a
a

o
o

m

S
‘

O
I

H
L

B
W

H
B

L
N

I

.
o

L
-

Q
Q

Q

(
L

L
Q

)

8
V

-
9

Operatidn' Division

'VOPERAND

1

'OPERAND

l

INTEGER

SCALAR

VECTOR

MATRIX

BIT STRING

CHARACTER
STRING'

INTEGER

SCALAR

I+S, I+S

SCALAR

I+S

VECTOR

I+S

MATRIX

I+S

SCALAR
B+I+§, I+s

ERROR

’ ' SCALAR

SCALAR'
I+S

SCALAR

VECTOR

.MATRIX

SCALAR

B+I+S

ERROR

OPERANDl/OPERAfiD2

VECTOR MATRIX.

ERROR-- I ERROR

ERROR ERfiOR

ERROR. ‘ERROR

a ERROR ’ERROR

ERROR

ERROR

Table 6.4-4

ERROR

‘.ERROR

BIT,STRING

SCALAR

I+S, B+I+S

SCALAR ‘

B+I+S

VECTOR“
B+I+S

MATRIX

_B+I+s

§CALAR
B+I+S

ERROR

CHARACTER
STRING

ERROR '

ERROR

ERROR

ERROR

ERROR

ERROR

47

o
0

1
7

8
1

-
8

9
8

(

£
1

9
)

'

6
8
1
3
0

S
l
l
E
J
S
fl
H
O
V
S
S
V
W

'
S

E
D

G
I

H
B

W
V

Q

°
i

E
B

H
i

S

N
B

B
H

S

0
8
8

°
O

B
L

V
H

O
d

H
O

Q
N

I

S
Q

I
H

L
B

W
U

B
L

N
I

6
v

-
9

**OPERAND

l. Result is INTEGER if OPERAND2 is a whole number literal Z 0.

III IIII III IIII IIII III IIII II- IIII IIII III III! -

. Operation Exponentiation : OPERANDI 2

OPERAND2 -_ - _ . . CH TE
, INTEGER, SCALAR VECTOR MATRIX BIT STRING giggNGR

OPERANDl 1 ' '

INTEGER ‘ SCALAR SCALAR ERROR. ERROR SCALAR ERROR
' 1+3, 1+3 1+3 - ' 1+3, B+I+s
(See Note 1) (See Note 1) 3- . ' (See Note 2)

SCALAR _ SCALAR SCALAR 'ERROR ' ERROR ' I SCALAR_ ‘ ERROR
’ I+s - .’ ‘B+I+S ' ’

VECTOR ERROR ERROR ' ERRdR ERROR » ERROR ERROR _

MATRIX All.Error$ éxcept if "bPERANDz" = {-1WT};i.e. INVERSE or TRANSPOSE

EBIT STRING SCALAR SCALAR ERROR ERROR SCALAR ERROR
B+I+s, I+s -B+I+s . , ., B+I+s, B+I+s
(See Note 3) (See Note 3) . ' (See Note 4)

J
l .

_ '

CHARACTER ‘ ‘ . " - , : _ -
STRING ERROR .ERROR ERROR - ERROR '. ERROR ERROR

Tablé 6.4-5
Notes:

2. Result is INTEGER if OPERAND2 iS~a bit string literal which may be converted to an
unsigned integer (B+I).

3. Result is INTEGER-if OPERAND2 is a whole number literal 3_0 (B+I).
A- Rama a g - (2) excebt (B41. B+I). , - ,H WL_,;H

v, w , v .
‘

u
'

I I ' _ . ’

u

b _, ; “ _ ‘ =
OPERAND {<P>}OPERAND , (P) "'{' I }

1 (Q) 2 (Q) = { - '"= | > |<]<= |>= [‘< | ”$ }v
Operation Relational : '
Table shows valid relational operators; the result is always true or false;

O
t

‘
B

l
’

8
9

8

(
U

9
)

-

6
8

1
3

0

S
L

L
B

S
‘

H
H

O
V

S
S

V
W

'

B
D

O
I

H
B

W
V

O

-
4

.
3

3
8

1
8

N

B
B

H
S

0

8
8

'

(
E

L
V

H
O

d
H

O
O

N
I

'

S
O

I
H

L
B

W
H

B
L

N
I

QPERAND ‘ . A
2 INTEGER, SCALAR VECTOR MATRIX. BIT STRING CHARACTER - STRING OPERAN 1

INTEGER <Q> <QV ERROR ERROR <Q>‘ ERROR
1+3 3+1

SCALAR -<Q> <Q> ERROR ERROR <Q> ERROR
1+3 B+I+s

VECTOR ERROR ERROR <Py ‘ERROR ERROR ERROR m .
I
U1
0

MATRIX ERROR ERROR ERROR <P> ERROR ERROR

BIT STRING <Q> <Q> ERROR_ ERROR. $Q> ERROR
' ' fi+I B+I+S

CHARACTER " STRING ERROR ERROR ERROR ERROR ERROR <Q>

1

. Special: <structure><P><structure>_ l: OPERAND padded to make.
<array><P><array> lengths equal if necessary.

. . - . . = _ o .
. . _ . . l ' _ .

I ‘ I
| , . p- . ‘ .

n
-

68
L3

0
s

u
a

a
o

v
s

s
v

w

'
B

S
O

I
H

B
W

V
O

-

13
38
18

N
3

3
8

?
)

0

8
8

-

o
é

a
w

a
o

c
s

a
o

o
m

'

s
o

m
a

w
u

a
m

n

o
v

a
l

-
8

,
9

9

(
1

1
9

)

T
S

-
Q

l

‘ Table 6.4—7

. . <P> <P> = H OPERAND {< >}0PERAND -|| . . a 1 Q 2 <Q> = AND
Operatlon Strlng : ' OR'

OPERANDZ .
INTEGER SCALAR- VECTOR MATRIX BIT STRING CHARACTER STRING . OPERANDl .

INTEGER <5 ‘ERROR a>' <P>
. CHARACTER

I+C

_ <p>
' SCALAR ' «r ERROR ~ * CHARACTER- - ,

S+C

VECTOR #6 ERROR— ‘ *

MATRIX <a ERROR

BIT STRING 4 - ERROR ’ 4» ‘9 ERRCSR *_ - . * BIT STRING

<P> <P> . . . ‘ , . P CHggggggR CHARACTER CHARACTER ERROR .ERROR CH;:;CTER <,>
' I+c s+c ' B+I+c . CHARACTER

7.0 STATEMENTS

7.1 Assignment Statements

. The assignment statement is used to evaluate an expressioh

and to assign its value to one or more target variables; The

target variables may be integer, scalar, vector, matrix, bit and

character variables, arfay varigbles of these types, , 5

subscripted §ariab1es, or structures.

GENERAL FORMAT:

[<label>:]<variable-name>[,<variable-name>] = <data-expression>;

where, ‘ i -

<data-expression> = {<arithmeticI<stringI<array}-expression

GENERAL RULES :

1. An assignment is performed in the following steps;

a. subscripts of the target variables are evaluafed;

b. the expression on the right hand side of = is evaluated;

0. the target variables are asSigned.

2. If more than one <variable name> appears on the left hand

side of = then all the names must be of identical da£a

organization. (Several different data types may be included.)

3. The dimensionality of the right hand side expression must I

be identical to that of the left hand side variables wifih'

the following exceptionsi

a, string assigfiments (See Sec. 7.1.2);

b. assigning zéro (0) to arithmetic variables; e . g r ,
. l _. _. * . v, R = o; [M] = 0; A,B¢C,D = 0;are acceptable forms;

7—1_-
INTERMETRICS INCORPORATED - 38-0 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

c. harray assignmentg (see Set. 7.1.3)

EXAMPLES :

A, E} E } fi ' = VECTOR (1, o, o, P/C);‘
. . . . ' .. * _ ..
D = A P + M F + L O G (A) Z ;

BAKER: Bl TO 8 = C3 TO 4I|A’
E = EVE; *:3

ABLE: [A15LE] = BIT2’10:([P]20 AT J);
are all valid assignment statements.

752

INTERMETRICS INCORPORATED - .380 GREEN STREET ' CAMBRIDGE; MASSACHUSETTS 02139 ° (617) 868-1840.

7.1.1 Implicit Conversions

7.1.1.1 Type Conversions. Implicit conversioné are performed

on the fOllowing-assignmehts: .

l.' Scalar and bifi expressions t6 integer target

'variables.

21 Integer and bit expressions to scalar target

variables. The bit result is first converted to

' intéger, and then to scalar.

3. Integer and scalar expressions to bit target variables.

The scalar result is first.converted to integer, and

then to bit.

4. Integer, scalar and bit expreésions to character

target variables} The bit result is first converted

to integer, and then to character.

EXAMPLES:

A = é l l é f

'I = A2;

A = I — é;

ABLE: éExm = é l l é ;

7.1.1.2 Precision ConverSion. The resultant precision of an

expression is converted to the pfecision of the target variable:

EXAMPLES: (32 bit word length) I I

1. DECLARE PRECISION (lO)VECTOR A;

D §'= K'* E;

All-vectdrs are floating point; the components of K are

..
' 7 - 3

lNTERMETR-IQS INCORPORATED " 3'0 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

' ”VH“‘V-‘v' "mu—.i—u.__L_..__.._._.__-__A. .4- ...__.,_‘ _‘,_ - _ .- ___..._._.A,r-..__. .-. _ . _ A __ . . . ” — —

held in double precision. filis first converted to double
.precision, the cross-product is performed, and the result is

converted to single precision on assignment’to i}

2. DECLARE PRECISION(5,12) A,B;

DECLARE PRECISION(21,12) C;

AI: B + C;

All quantities are fixed point; A and B are single length;

C is double length; The fiumber of fractional bits for each

variable fills out the word length (less sign bit); thus,

effectively,

. A and B become (5,26)

C becomes (21,42)

The precision conVersions are as follows:

b. The result is converted back to single precision;

i.e. (5,26) when assigned to A.

7.1.2 String Assignments-

7.1.2.l Bit Strings. When the length of a bit string expression

and the target variable are unequal, the expression result is

truncated on the left if it is too long, or padded with zeros

on the left if it is too short. The resulting value is assigned

to the target variables.

7’4.
INTERMETRIQS INCORPORATED ° 380 GREEN STREET -‘ CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

I a. B is converted to double precision and added to C.

EXAMPLE:

S1 T0 6 = S2 TO 4’

S1 TO 6 = B20 AT P; BAKER:

are examples in which padding and truncation will occur.

7.1.2.2 "Boolean" Assignments. A one-bit stringmay be viewed

as a Boolean variable and can be assigned as follows:

-'A = {{TRUEIONIBIN'l'}|{FALSEIOFFIBIN'O'}};

Note that TRUE and ON are literally the binary constant BIN‘l'.

A long bit string may be zeroed by an assignment; i.e.:

_B1 TO 18 = FALSE;

However, B1 TO 18 = TRUE;sets bit 18 equal to 1 and the rest

equal to 0.

7.1.2.3 Pseudo—Variable Bit String_Assignment. BIT strings

may be assigned directly to the bit representation of other data

types by using the pseudo—variable BIT.

GENERAL FORMAT :

BIT (<variab1e—name>) = <bitrstring-expression>: <index-expression>

GENERAL RULES :

1. ,<variable—name> may be the name of an integer, scalax, bit,

or character variable, or an array variable of thése types.

745

'INTERMETRIQSINCORPORATED ' 380 GREEN STREET _- CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868—1840

-

-

'
.

EXAMPLES:
. . .. ' l .
1. BIT6 TO 10(A) — BIN(5) 1',

The scalar A is interpreted as a bit string and the bits 6

to 10 are assigned all l'é.

bits 1 to 8 are assigned the result of the string concatenation.

. I O o

2. BIT1 TO 8(cm) = Hl lA;

The character C16 is interpreted as

-3. BIT(A) = SIIMANTISSAIIEXPONENT;

The scalar A is interpreted as a bit string and is assigned

'é floating (or fixed) point format directly from a bit

string expression.
. .

7 ; 1 . 2 . 4 Fixed Character Strings. Assignmeht is similar to that

a bit string and

of bit strings except that extension or truncation is applied g

on the right. Thus, the expressiofi value is truncated on the-

right if it is too.long or padded on the

is too short. The resulting is assigned

right with blanks if it ;
to the target variables.

EXAMPLES:

I II I
1. C = 'ABC'; sets Cl TO 3 = 'ABC' and blanks the rest of C.

.I 7 - I -
‘ , .._ l I . 2. Cl TO 3 — ABC , leaves the rest of C alone.

I I ' i . ._._. I I . 3. , 3 TO 5 ABC , leaves the rest of C alone. 1
I

4. .3 TO 80 = 'ABC'; leaves characters 1 and 2 alone, and blanks

characters 6 to 80.
I I
. __.._. I I . = | g V V. 5. C3 T0 4 ABC , sets C3 TO 4 AB and lgaves the rest

_ I
of C alone.

7—6
INTERMETR1CS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 8684840

__ — . 4 — ‘ . ‘ — . — — A

n l
.

.
'

1

7.1.2.5 Vafying Character Strings.

GENERALRULES:

1. If the value of the expressiofi is lénger than the maximum

length declared for the variable, thg value is truncated dn

the right? The target string obtains a current length'

equal to its maximum length. O

2. If the value of the expression is not greatér than the maximum

length, the value is assigned; the target string obtains a

current length equal to the length of the value.

3. If the target string is subscripted, the string partition

is considered a fixed length character string and the expres-

'sion is assigned according to the rules of Sec. 7.1.2.3.

If the target variable length is Shorter than the upper index

of the subscript expression, the target variable is padded

on the right with blanks apd the expression assigned. If

‘ t h e length is longer than the upper index, the expression ié

assigned, leaving the other characters alone. If-the upper

index exceeds the string maximum length, the assignment is

truncated at the maximum length.

EXAMPLES: (let 6 be a varying string of fiaximum length 10)
I I

l. C = 'ABC';sets the length of C to 3
I I

2. C 'ABC'||'BFG';sets the length of C to 6
I

C3 To#
to the end; i.e. the length is set to the maximum length

3. = CHAR(3)'ABC';assigns;'ABCABCAB' from character 3

. of 10.

7-7

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

n
t

-

C7 TO 9 = 'POP';assiéns POP to characters 7, 8, 9. If the

original length is <6, the string is extended with blanks.

and the length set to 9. For example, suppose C werev

.equal to 'ABC', then the result of this assignment would be

'ABCMMMPOP'.

7.1.3 Array‘Assignments

GENERAL FORMAT:

[<label>:]<array-variab1e-name>[,<array—variab1e-name>]...

='{<type-expression>l<type—array-expression5};

GENERAL RULES:

1. If the expressidn on the right hand side of = is a <type—

expression>, the result of the expression is assigned

to every target array element in sequence.

2. If the expression on the right hand side of = is a (type—

array—expression>, the result of the expression is assigned

to the target variables, in sequence, on an element-

by-element basis.

EXAMPLES: . .

[A] = 5; [V1,[W] = VECT0R(A,B,C,D);

[A]

statements.

[A] + 5; [A] = [B][C]:are all valid array assignment

7 - 8 .

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840'

-
4

.

4

L
A

;

_ _
.

9

.
4

.
 .

c
.

‘

.

.

.

.

7.2 Declaration Statements

See Section 5 . 0 .

7.3_ Control Statements

7 .3 .1 ' The GO TO Statement

The GO TO statement causes control to be transferred to

the specified statement.

GENERAL‘FORMAT:

GO TO. <labe1>;

EXAMPLE:

X = A;

GO TO BAKER;

ABLE; P = Z;

Y; 3
*

BAKER: V'=

7.3.2 DO Statements

The DO statements constitute a set of four executable

statements. Each DO statement defines a-group of statements

which are treated as a single unit. The four DO statements

are: the simple DO, the iterative DO WHILE and DO FOR,

and the selective D0 CASE. ‘ '

A GO TO statement can tranéfer control from outéide a group

to a statement within a group.. Special care must be taken to

initialize necessary quantities in the cases of the iterative

DO statements.

7-9

INTERMETRIQS INCORPORATED - 380 GREEN STREET} CAMBRIDGE, MASSACHUSETTS 02-139 5 (617) 868-1840

1

7.3.2.1 Th§9§;mg}§wDO StatemeQE.

GENERAL FORMAT:

[<1abe1>:]DO;[[<label>;]<statement>]...[<label>:]END[<1abel>];

GENERAL RULES:

1. <statement> may be any executable statement including

_ another DO statement.

EXAMPLES;

"BAKER: DO;

Y = B;

D0;

Z = C;

_. * _.
W = M V;

END;

END BAKER;

Note that this example has been indented for clarity and does

not imply an established input source—output listing format

design.

7 . 3 . 2 . 2 ' DO WHILE Statement. The DO WHILE statement serves

as a means of executing a group of statements repetitively as long as

a cbndifiion is met. I

' GENERAL FORMAT:

[<1abel>:] DO WHILE <iogical—condition>;

[[<1abel>:]<statement>]...[<labe1>:]END[<label>];

7 + 1 0 _ ' .

INTERMETRICS INCORPORATED ' 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS 02139 ' (617) ‘8684840‘

where

.<ldgical-condition> = {<re1ational—expression>{ANDIOR}

<relational—expreésion>l[NOT]<single—bit-expressiOn>} _

and the <single-bit-expression> is a bit string expression

with only single bit operands (Booleans).

‘GENERAL RULES:

1; The <1ogica1-c0ndition> is within the loop structure of the

DO WHILE group and is re—evaluated each time before

execution of the group of statements:

2. When the <logica1—condition> is not satisfied the DO WHILE loop is

terminated and control is transferred to the first executable

statement following the END statement.

EXAMPLE; .

‘ . ABBEtfpo WHILE (X>Y AND B6=TRUE)OR([A] = [3]) ;
P = LOG(Z); l
* * * - 1
M = N + Q ; i

Y = ”3,23
END ABLE; ' ‘ _ j

7 ; 3 . 2 . 3 The DO FOR Statement. The DO FOR statement serves as

a means of executing a group of statements repetitively for a list

of values of a control variable and a logical condition.

GENERAL FORMAT :

scalar [<label>:]DO FOR<{integer } variable> =

<for—list element>[,<for-1ist element>]...

IWHILE<logical—condition>];

[[<label>:]<statement>]...[<label>:]END[<label>];

' i
.7-11

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868-1840

where

' . ' . - scalar . _ .
<for-llst element> = < ; ex 5'1 n> <-o~ex ress n>. _ . _ {1nteger} pre 5 o. [t p_ . .10

[<by—expression>]]

. " ‘ scalar I L <to-expre531on> = TO<{. }expre551on>.
1nteger

and

. - scalaf . ’
<b —ex re351on> = BY< . ex re551on>

y p {1nteger} p

GENERAL RULES:

1. The sdalar or integer assignment means that a single variable

(control variable) will be assigned scalar or integer values.

The_control variable takes on the successive values specified

by the <for—1ist elements>. 'If the element is simply a scalar

or integer expression, the control variable is set equal to

-this value prior to a pass through the 100p. If the element

involves <to— and <by—expressions>, the control variable is

compared with the value of the <to—expression> prior to each

pass, and is incremented by the <by—expression5 at the con-

clusion of each pass.

If the <by-expression> is ndt provided, the group bf statements

wil; be evaluated repeatedly, incrementing the assigned con-

trol variable by 1 until the control variable is g¥eater than‘

the value of the <to-expression>.

If the <by-expression> is provided, thé group will be evalfiated

repeatedly, incrementing the assigned control variable by the

value of the <by-expression> until the control variable

exceeds (if the <by-expression> is positive) or is less_

than (if the <by-expression> is negative) the value of the ‘ _
<to—exPression>. 3

7-12

INTERMETRICS INCORPORATED" 380 GREEN STREET ' CAMBRiDGE. MASSACHUSETTS 02139 - (617') 868—1840

..

_ _ _
‘

.
_

.
_

_
—

.
.

.
_

_
'

_
-

.
’

-
.

'
.

'
:

n
_

-
.

_
.

=
_

:
_

.
-

.
_

_
‘

l
_

_
a

-
_

-

-
"

I

-
'

-

' 5; .The effect of the <1ogical-condition>; if provided, is the

. same as for the DO WHILE statement. ’

6. The <to— and <by-expressions> are not within the loop struc-

ture of the DO FOR group and are evaluated only once. The

{logical—condition> is within the 105p and is evaluated before

each pass. . A I

EXAMPLES:

1; DO FOR I-= 1 T0 10 BY 2;

X = Y;

Y = X + 2?

END;

This loop will be executed five times.

2. BAKER: L = Q/R;

ABLE: DO FOR I = P TO (N/S) BY L WHILE N > 6.046;

X = Y2 + AI;

- N = N - . 0 0 6 X;

END ABLE;w

Note that the value of thé <to-expression> (N/S) is only

computed once. The condition N >0.046 is applied before-

each pass.

7.3.2.4 DO CASE Statement. The DO CASE statemenf provides a

means of executing a seleéted statement from a grbup of statements.

GENERAL FORMAT:

[<1abel>:] DO CASE <case—exfiression>;

[[<label>:<statement>]...[<1abe1>:]END[<label>];_

where the <case—expression> can be éither an integer expression

7-13

INTERMETRICS INCORPORATED - 380 GREEN STREET: - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

or'a scalar expréssion. The result of a <case—expression> is

rounded to the nearest integer before use.

GENERAL RULES: I
l; The <case—expression> results in an integer, used to designaté-

which one of the included statements will be executed. A

.value of l specifies thé first stategefit, 2 the second, and

so on. An integef result outside the case rangé will be in

error. The compiler will annotate the listing, indicating

Case 1, Case 2, etc.

2. The <statements> may be any of the executable statements,

including other DO statements.

EXAMPLES:

ABLE: DO CASE N;

' 2 ~x’= Y ; /*CASE 1*/

DO CASE P; /*CASE 2*/ '
F = A + B; /*CASE 1*/

6': fl V3 /*CASE 2*/

END;

GO TO CHARLIE; /*CASE 3*/

2'= W”+ E; /*CASE 4*/

END ABLE;

7.3.3 END Statement

The END statement delimits the do—greups.

GENERAL FORMAT:

[<label>:]END[<labe1>];

2
7—14

INTER-METRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 021-39 - (617) 868-1840"

_
_

4
.

.
1

v
.

.

7
.

_ _

A _
M

..
.

.
‘

-._

.
.

r
.

A

.
.

.
-

-
_

\
_

-
 .

v
.

.

.
 ..

.
a

.
-

A

-
A

U

_
.
-

-
:
r
.

.
:
-

GENERAL RULES:

1, The END statement terfiinates the group headed by £he

.nearest preceding DO statement which has not already been

'terminated by an END statement.

.2. If a label follows END, the corresponding DO statement

must have that same label.

7 ; 3 . 4 .The IF Statemegp

The IF statement specifies the evaluation of a logiCal

condition and a consequent flow of control dependent on Whether

the Condition is true or falée.

GENERAL FORMAT :

[<1abel>:]IF<logical-condition>THEN[<label>:]{<statement>l

<basic-statement>ELSE[<1abe1>:]<statem§nt>}

where

a. the <logicai—condition> has a true or false result; its

formét was described in Sec. 7.3.2.2.

b. the <basic-statement> is any executable statement except

- an IF or END statement.

7-15.

INTERMETRICS INCORPORATED - 380 GREEN STREET * CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868—1840

c. the <statement> is any executable statement (including

another IF statement) except an END statement.

GENERAL RULES:

1. .If ELSE is not included, a true condition will cause

execution of the statement following, and a false condition

will cause control to paSs to the statement following the

IF statefient.

2. If ELSE is present then a true condition will cause execution

of the <basic-statement> following THEN and a false condition

will cause transfer of control to.the statement following

ELSE.

3.‘ The IF statement format requireé that an ELSE be preceded

by an IF and not by another ELSE. As a result the executiog.

of a <statement> following ELSE occurs only if the <logica1f

dondition> associated with the nearest preceding iF* is false.

EXAMPLES:

l. ABLE: IF é THEN IF é THEN X = 5;

. ELSE D: GO TO BAKER;I

CHARLIE: Y = 6;

2. IF X>100 AND Y<3 THEN P: GO TO ABLE;

ELSE IF é OR 6 THEN

DO;

Y = A + B;

ABLE: §'= fi V;

END;

ELSE Y = A I - B;

.*-IF statements within preceding do-groups do not apply.

' 3 7—16 -
INTERMETRICS INCORPORATED - 380 GREEN STREET 3 CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

7.3.5 The_NULL Stqtemggt

The NULL statement is a nOroperation.'

GENERAL FORMAT:

[<label>:];

EXAMPLE:

IF X<5 THEN ABLE:;

ELSE IF X<10 THEN GO TO HOME;

7.3.6 REPLACE Statement

The REPLACE statement provides a means of spedifying the

substitution_of a string of charaéters for an identifier; The

character string must be contextually correct where'substituted. This

is a compile~time feature and not a run—time executable statement.

'GENERAL FORMAT:

REPLACE<identifier>BYf<character~string>':

GENERAL RULES;

1. The <identifier> may not be a keyword or any word used

by the language syntax (e.g.,TO or WHILE).

2. The <Character-string> must be written in one—line format.

3. The <Character-string> will be substituted, literally, whenever

the identifier is encountered within the progfam. Substitution

is accomplished within the compiler and does not appear in the

listing.

4. The <identifier> may not be a <parameter> in the PROCEDURE or

FUNCTION statements.

7-17

INTERMETRICS INCORPORATED - 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 - (.617) 868—1840

.

_
I

‘ l

EXAMPLES:

1. REPLACE P BY 'LOG(F) + Y**2‘;

B = z +.P; '

2; REPLACE D BY 'GO TO ABLE:';

IF B>6 THEN G ELSE D

3. REPLACE A BY'(106.ZB—32)';

DECLARE B INITIAL A;

4. REPLACE FIRE_JETS BY 'GO TO F_J;‘;

FIRE_JETS

7-18

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

A“ __, . — l

7. 4 Procedures and Functions'

Procedureé and functions are subrofitines consisting of one

or more statements which are intended to be written once but

used at various points throughout a program. The primary distinc—

tion between procedure and function is that the procedure must be

invoked by a CALL statement, and may accept and return lists of para—

meters of different data types, while a function is invoked by the

appearance of its name as an operand and can return only a single

data type or result. -

7.4.1 Procedures

7.4.1.1 PROCEDURE Statement. The PROCEDURE statement identifies the

beginning of a block of statements which forms a procedure; it defines

the entry point and specifies the input and output parameters.

. GENERAL FORMAT:

<procedure-label>:PROCEDURB[<procedure-parameters>]

[ASSIGN<assign-parameters>];

{[<1abe1>:]<statement>|[<1abe1>:]RETURN;}...'

[<label>=]CLOSE[<procedure-label>]; .

where
<procedure—parameters> = (<name>[,<name>]...)

and

<assign—parameters> = (<name>[,<name>]...)

GENERAL RULES:

1. The <procedure~parameters> are interpreted as input data to-

the procedure. They are fqrmed parameters; that-is, they do
. I. ‘

7-19

INTERMETRICS INCORPORATED 380 GREEN STREET CAMBRIDGE, MASSACHUSETTS 02139 (617) 868-1840

not exist in of themsel§es and are no more than dummy variablés

£hat'indicate what.to do, within the procedure block, with

the actual <call—argumenté> in the_CALL statement (see Sec.

-7.4.l.2). If the <Call—arguments> age names (not expressions),

the <prodedure—parameters> are in fact the same data locations

as the <call—arguments>.

2. The <procedure-parameters> may not be assigned values within

-the procedure block; i.e., they may not appear on the left

hand side of an assignment statement.

3. The <assign-parameters> are also dummy variables and represent

the computed output data of the procedure. They are in fact

the same data locations as the <assign—arguments> in the CALL

statement.

<assign~apguments>and <procedure— and <assign—parameters> must

be identical (see Sec. 7.4.2.3).

5. EXecution of a procedure may be terminated by a RETURN statement

(see Sec; 7.6) or by logically reaching the CLOSE statement;

' control is returned to the caller.

6. Local variables may be defined within a prodedure block by

declaration statements and implicit declarations. See Sec.

8 . 1 . 1 for-discussion of Scope of Names.

I 4. The data-types and attributes of corresponding <call- and

INTERMETRICS INCORPORATED - 380 GREEN STREET JCAMBRIDGE, MASSACHUSETTS 02139 " (617) 868-1840

EXAMPLE:

TIME: PROCEDURE(X}B)ASSIGN(E);

_--— ‘ 2 . C — A(F1+F2 B+F3 B),

IF B>L THEN RETURN;

E = 1 o o E ;

CLOSE TIME;

7.4.1.2 CALL Statement. A procedure is invokéd by a CALL

statement which may define a set of input and output arguments

and which transfers control to a specified entry poinf.

GENERAL FORMAT:

[<label>:]CALL<procedure—label>[<call—argument>]

[ASSIGN<assign~arguments>];

where <procedure-label> is the label associated with the PROCEDURE

statement and ‘

<call~arguments> = ({<name>l<expression>}[}{<name>l<expression>}]...

<assign—arguments> = (<name>[,<name>]...)

GENERAL RULES:

1. <call—arguments> will be used only as input information to

the procedure. '

.2. <assign—arguments> may be assigned values computed within

the procedure blocks and may also supply input information to

the procedure.

7 ~ 2 1

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 8684840

EXAMPLE:

ABLE: PROCEDURE;

' V = 3 { ' + Y ;

CALL TIME (V) T) ASSIGN(W);

§'= *V}

3
*

i

n

W
I

P = ,;

" CLOSE ABLE;

TIME: PR0CEDURE(X)B) ASSIGNKE);

6': X(F1+F2 B+F3 32) ;

IF B>L THEN RETURN;

5 : 1 0 0 E;

CLOSE TIME;

7.4.2 Functions

7.4.2.1 FUNCTION Statement. The FUNCTION statement identifies

the beginning of a block of statements which form a function; it

defines the entry point and specifies the data—type of-the result.

GENERAL FORMAT : -

<function—label>:FUNCTION[<function—parameter>]

[<type—spec>];

{<statement>IRETURN(<expression>);}...

[<label>:]CLOSE[<function—label>];

where

<function—parameters> = (<name>[,<name>]...)
L
I
I
I

7w22

INTERMETRICS INCORPORATED ° 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868—1840

GENERAL RULES:

1. If <type—spéc> is not provided and is.not specified in a

declaration, default characteristics are-used.

'The <function—parameters> are interpreted as input data to

the function. They are formal paraméters; that is, they do

not exist in of themselves and are no more than dummy variables

that indicate what to do, within the function block, with the

actual <functipn—arguments>'in the function reference (See

Sec. 7.4.2.2). If the <function-arguments> are names (not

-expressions), the <function—parameters> are in fact the same

data locations as the <function-arguments>.

The <type—spec> specifies the characteristics of the function

fesult. Arrays and structure organizations are not allowed.

The data~types and attributes of corresponding <function—

arguments> and <function—parameters> in the reference and

FUNCTION statements must be identical. (See Sec. 7.4.2.3)

A function must have at least one RETURN statement and

execution may only be terminated by a RETURN statement;

control is returned to the caller. An error message will be

generated at run-time if the process logically reaches the

CLOSE statement.

Local variables may be defined within a function block'

(see Sec. 8.1.1).

7—23

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868—1840

7 . 4 . 2 . 2 Function Referenbe. A function is invoked by a function

reference which may défine a set-of input arguments and whiCh'

transfers control t o ' a specifiéd entry point.

GENERAL FORMAT:

' <function~label>[(<funpti0n—arguments>]...]

where.

<function-arguments> = ({<name>l<expression>}[;{<namé>

I <expression>}]... ' g

GENERAL RULES: ‘

l. The <function—arguments> will be used only as input infofma-

tion to the function. .

2. The <function—labe1> is treated as an Operand whose value is

computed within the function.

EXAMPLE: '

ABLE: 3 = E TRACER(§+E);

TABLE: GO TO EAKER;

TRACER: FUNCTION(5);

R = TRACE(5'5'1 + 5 + 5 5 + 5 5 5);
IF R>100 THEN RETURN R;

ELSE RETURN OF

CLOSE TRACER;

.7.4.2.3 Paraméte: Declarations. Scalar, vector, matrix, bit

and character string parameters may be declared implicitly, with

default attributes, by their appearance in PROCEDURE and FUNCTION

7-24

I

INTERMETR-lCS INCORPORATED -' 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 888-1840'

L , . . . _ _ . ; fl

statements with appropriate annotation. Thus, for example

’ I. ABLE: FUNCTION(A,§,E,£),é);

Array—parameters and parameters with other than default attri—

butés require explicit DECLARE statementé internal to the proée—

dure or function blocks, in addition to appearing in the lists

of parameters (annotation being optimal).

For cerfain applicationsit may be convenient not to specify

the length or dimensions of parameters but instead, have the

parameters take on these Characteristics from the corresponding

arguments in the CALL or function—reference statements. This

may be accomplished by substituting an asterisk (*) for the

length or dimensions in the DECLARE statements.

GENERAL RULES: I

1. With reference to Sec. 5.1.1, vector length, bit length,

character length and varying character maximum lehgth may

be specified by asterisks.

2. Fof arrays, shape may be specified by combinations of

literals and/or asterisks.

3. For matrices, rows and columns may be specified combinations

of literals and/or asterisks.

EXAMPLES:

1'. TIME: PROCEDURmK) ASSIGN(E);

DECLARE VECTOR (*), '23:, E;

CLOSE TIME; i

_7—25

INTERMETRICS INCORPORATED 1- 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

2. ABLE: PROCEDURE(§}§)‘ASSIGN(§);

'-DECLARE v VECTOR (*);

DECLARE M MATRIX (3,*);

DECLARE Y VECTOR (4) ;
w. * _.
Y = M V;

O \

CLOSE ABiE;
Comment? V} fi, K are parameters. Yhis a local variable.

Note that fi'is declared by appearance as an <assign—parameter>;

With no explicit DECLARE statement for fi, default attributes

-are used.

7 . 4 ; 2 . 4 Functions of an Array. When a <function—argument>

is an array, the cdrresponding <function—parameter> may be éither

a single variable or an array~variab1e of the same data—type.

If a single variable, the function has been designed to Operate

on each array element sequenfially, element—by-element, If an

array, the function accepts the input array as a unit.

EXAMPLES:

1.. DECLARE B ARRAY (4);
DECLARE C ARRAY (4);

[C] = FUZZ([B]);

F U Z Z : FUNCTION (X) ;

TEM = 1 + x/2 + X2/6 + x3/24;

‘RETURN(TEM);

-CLOSE FUZZ;

7-26

INTERMETRICS INCORPORATED ° 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840.-

FUZZ will be executed 4 times and return 4 séalar results

which will‘be assigned to the component of array C, in sequence.

'If the <function—parameter> is an array—variable, theh the

'function accepts the input array as g unit. The function-

will operate on the "inner—most" frée indices qf the array

argument consistent with the expression. . ' 4

2. DECLARE B ARRAY (4) VECTOR;

BUZZ: FUNCTION([21);

DECLARE X ARRAY (4) VECTOR;

ABD. == 3E1: + 352: + X3: + 354:;

' RETURN (A513):
CLOSE;

3': BUZZ ([§]) ;
BUZZ returns a single vector.

3. DECLARE A ARRAY(5) , B ARRAY(5,4);

[A] = SUMHBJ);

This Statement is equivalent to the following "DO FOR-loop"

sequence of operations:

. D O F O R I = 1 T 0 5;

I

END;

A = SUM([BI’*]); . 3

Note that SUM is a linear array function.

57-27

INTERMETRICS INCORPORATED '- 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS 02139 - (617) 868—1840

7.5 Programs

'In HAL, a program is the smallest compilable unit. It

may contain ail of the program elements and statements defined,

except PROGRAM statements; i.e. declarations, executable state-

ments, procedures, etc.

7.5.1 PROGRAM Statement

GENERAL FORMAT :

<program—label>:PROGRAM;

{<all—statements>}...

[<1abel>:]CLOSE[<pnram—label>];

GENERAL RULES :

l. <all~statemehts> may contain all valid syntax.

2. 'A program may be called using the CALL statement with the

<program-label>(no parameters may be passed).

3. Execution of a program may be terminated by a RETURN state-

ment (See Sec. 7.6) or by logically reaching the CDOSE

statement; control is returned to the caller. (Also, see

the real-time contrbl statement TERMINATE in Sec. 9.)

4. A program can be scheduled in real—time through the system _

executive (see Sec. 9).

7-28

INTERMETRKSS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840'

7.5.1.1 Program Calls. The CALL stafiement méy be used to call

one.program from another program. The logical result is similar

to calling a procedure; i.e., control is transferred to the program

called and returned when the program is completed. The CALL state—

ment is of the form:

CALL.<program—label>;

In célliné a program:

1. No arguments may be passed; all communications must

be through a COMPOOL. -

2. All static variables are allocated on program initiation,

and released when the program ends; i.e., variables with the

INITIAL attribute are initialized, others take on unspecified

values.

~3. Control is returned to the caller at the statement following

the CALL statement, when a RETURN or CLOSE statement is ' f

reached. -

4. A program cannot call itself.

7‘29

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868-1840'

o

n

I

7.6 RETURN Statement

The RETURN statement terminateS'the execution of a procedure;

function or program.

GENERAL FORMAT:

[<1abel>:]RETUhN[<exPression>];

GENERAL RULES :

1. In terminating a procedure or program, the RETURN statement

must not include an expression.

2. In terminating a function the data type of the <expression>

must agree with-the type specified for the function.

3. The result of <expression> may not be an array.

4. The RETURN statement returns control to the caller.

7—30

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 0213-9 ' (617) 868-1840.,

7.7 CLOSE Statement

The CLOSE statémenfi delimit; the blocks of HAL statemen£s

lwhich have name scope*; viz. probedures, functions, programs,

tasks** and updaté** blocks.

GENERAL FORMAT:

[<label>:]CLOSE[<labe1>];

GENERAL RULES:

1. The CLOSE statement delimits the block headed by the

nearest preceding PROCEDURE, FUNCTION, PROGRAM, TASK or

UPDATE statement which has not already been delimited

by'a CLOSE statement.

2. If a label follows CLOSE, the corresponding "heading"

‘sta£ement must have that same label.

3. For a procedure, program or task, execution of the CLOSE

statement returns control to the caller}

4. For an update block, execution of the CLOSE statement

causes no operation.

5. For a functiOn, execution of the CLOSE statement is an

error.

* See Sec; 8.1.1

** See Sec. 9.

7*31

INTEHMETRECS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868—1840

o

8.0 HAL PROGRAM ORGANIZATION

A HAL prégram organization consists of one or more indepefi~

dently compilable programs and a symbolic library. The library

maf‘contain a common data pool (COMPOOL) and all valid HAL ' '

syntax. Variables declared in the COMPOOL are available e

use in any program. Library routines may be compiled into

any program by directive. The organization is designéd to

prbvide programmer convenience and flexibility and yet maintain

control and visibility of commonly used data.

8.1 Program Structure

A program (<program-block>) is the Smallest compilable

unit and_is delimited by PROGRAM and CLOSE statements. The

<program~block> may contain the following elements:

<program~block> = <program#étatement>[<declére—group>]

'{<all-statements?I<task~block>|<sub-block>}..;

<close—statement>

where,

<declare—group> = [<replace-statements>][<Outerf-statements>]

> [<default**-statements>][<declare—statements>]

<a11-statements> = all executable statements including

do-groups and update***-blocks

<task4block> = <task***—statement>[<declare-group>]

'{<all—statements>I<sub~blocks$}...<close—statement>

* See Sec. 8.1.2 , g
** See Sec. 5.5
*** See Sec. 9.4.2

' 8—1 '
INTERMETRICS INCORPORATED . 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

, __ _ _ _ _ . . _ ,

t

o

'<sub-block> = {<procedure95tatément>I<function~statement>}

I<declare~group>].

{<all-statements>|<sub-blocks>}...<closééstatement>

<program-blocks> and contained <taékeblocks> and <sub-

block> (and further nested <sub—blocks>) define boundaries,

or regions, within which names and labels are recognized and

may be used for computation afid control. The region in which

a name or label is potentially recognizable is called its scope.

8.1.1 Scope of Nameg

The scope of a name is defined as the block in which it

is declared and extends to all Contained (and nested) blocks.

For example, names defined in the COMPOOL are potentially recog-

nized throughout every <program-bloék>; names defined in a

<program—block> may be recognized in all enclosed <task— and

<sub-blocks>; names defified in <task- and <sub~blocks> may be

recognized in all nested <sub~blocks>, etc. Note that a name

defined within an inner block is 23333 fecognized in an outer

block. (To be more precise, the named variable or constant is

never recognized in an outer block; the name itself} designating

various data quantities, may appear in a number of blocks.)

8-2

‘ INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868—1840

U .i

‘ '8

Identical name declarations for twé or more quantities

cannot exist within the same name scepe; however, duplicate

names are allowed in different scopes. The following example

illustrates this principle:

ABLE: PROGRAM:

DECLARE VECTOR(5) A, B;

BAKER: TASK;

DECLARE A INTEGER;

CHARLIE: PROCEDURE}

DECLARE A BIT?

DECLARE X ;

CLOSE CHARLIE:

CLOSE BAKER;

'GRAB PROCEDURE;

DECLARE X VECTOR (4) ;

CLOSE GRAB;

CLOSE ABLE;

8-3

INTERMETRICS INCORPORATED {380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

Comments:

lv The vectors K and E have been declared at the program level J

and their scope is the entire program unless superseded by

a declaration in an inner blOck (or obscured by omission

from an OUTER statement, see Sec. 8.1.2).

2. In the task BAKER, A is an integer (the vector X

‘will no longer be recognized); fi is recognized.

3. In.the inner procedure CHARLIE, A is re~defined again, being

remains the entire program.

4. In the procedure GRAB, X and E remain defined at the program

level and i is declared at a local level; Note that although

the names are the same, the variables represented by X in

GRAB a n d - X _ i n CHARLIE are different.

8.1.2 Selective Inclusion of Outer Names

In the previous example names declared in.an outer block

were known to the inner block unless the inner block declared the

same name. Another mechanism is provided to include (or reject)

outer names selectively. The OUTER statement is an explicit.

means of specifying which "outer" names are to be known within the
1

!

8—4

I recognized within CHARLIE as a bit string. The scope of E

INTERMETRICS |NCORPORATED * 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868—1840

block; outer names which would.have been known but which are

nqt listed are hidden. Thus, for example,

ABLE : PROGRAM;

DECLARE A, B, C, D; E;

BAKER: TASK;

OUTER B, D;

DECLARE A ;

The program ABLE has deélared names A, B, C, D, E which would

he known in the task BAKER. However, the OUTER statement in

BAKER only allows B and D to be known, and further BAKER redefifies

A locally. Note that the absence of an OUTER statement means

that all outer names will be recognized withinaaparticular inner

block, while the inclusion of OUTER with no list of names completely

isolates the inner block from any outer-declared names.

8.1.2.1"Inc1usion'o ‘Structure Names. Structure names may also

be included by listing the structure name(s) in the OUTER state~

ment according to the following rfiles:

1. For a qualified structure, ohly the major structure name

may be listed; the result being that all associated minor

structure and terminal names are included implicitly.

S
8—5

I INTERMETRICS INCORPORATED ' 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ~ (617) 868-1840

o
.

a

~

I

u

2. For a not—qualified structure, the major structure name

and all associated minor structure and terminal names may

be listed. Only those names that are listed will be

recognized within the block.

8 . 1 . 2 , 2 Implicit’DeClaration'bf‘Names. Implicit declaration-

of names wil} not be allowed unleés the block contains an OUTER-

statement. Only those names appearing in an OUTER statement

and those exfilicitly declared within a block will be undvailabie'

for implicit declaration.

-When no declarations pfecede the PROGRAM-statement, the

compiler permits implicit declarations at the program level as

though an OUTER—statement with no list had been included.

8.1.3 Scope of Labels

Labels are used for control purposes; to transfer control

as in GO TO <label> or CALL <label>. The labels "name" the

entry—points to programs, tasks, functions, procedures, updates,

do—groups and statements. The scope of labels generally follows

the same rules as for names with the following exceptions:

l. The GO TO and CALL statements imply the existence of a

label. If the label does not appear in the block in which

the statement is written, the GO T0 or CALL must refer

to a label in an outer block; if the label does appear in

the same block (before or after the statemeht), the state-v

ment refers to this label.

8—6

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868—1840

2. If a GO T0 or CALL statement refers to a label in an

outer block, the label must appear in the listing prior

to the s£atement or be declared éxplicitl? in a DECLARE

statement.

3. Function names (i.e., <function—labels>) must always

.be defined in the listing prior to their use, even if the

FUNCTION statement and the function reference appear

within the same block.‘ A function namé may be defined

by its appearance in a FUNCTION statement or by explicit

declaration in a DECLARE statement.

EXAMPLES:

A: PROGRAM; A: PROGRAM;

X: Y = Z + 3; X: Y = Z + 3;

B: PROCEDURE; B: PROCEDURE;

90 TO x; GO TO x;

CLOSE B; ‘ _ ’ X: F = G + H;

CLOSE B;
CLOSE A;

CLOSE A;

8—7

.
I

.

.

INTERMETRICS {NCORPORATED . 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

If #1, no label X appears in B, therefore control is trans—

ferred to the X appearing in A. In #2, control will be transferred_

to the X which appears in the same block as the GO_TO X._ With

reference to #1, if the label X would have appeared in A after

B, i.e., after its use in the GO TO statément, then X would have

to be declared explicitly, prior to B, in a DECLARE statement;

2. #1 _ #2

A:pmmmm; Azpmmmm;

ZAP: FUNCTION VECTOR; >DECLARE ZAP FUNCTION
VECTOR;

CLOSE ZAP;
B: PROCEDURE;

B: PROCEDURE; ‘f _ §'+ ZAP'
-‘ I

Y = i + EAP; .

CLOSE B; ~ ZAP: FUNCTION VECTOR;

CLOSE A; CLOSE ZAP;

’ CLOSE A;

In #1, the function ZAP is recognized in B because its definition

precedes its use. In #2 the definition has been relocated after

its uSe, therefore ZAP must be declared, first, using a DECLARE

statement.

8—8 _
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

T
8.1.4 Scope of the REPLACE Statement

With reference to the deScription presented in Sec. 7.3.6,

the scope of a REPLACE statément is the same as that for a

DECLARE statement with the following excgptiofi:'the <identifier>

in a REPLACE statement is never “replaced" as a result of anothér

REPLACE statement located in an outer block.

EXAMPLE:

ABLE: PROCEDURE;

REPLACE X BY 'Y';

DECLARE X INTEGER?

BAKER: PROCEDURE; _
REPLACE X BY ' Z ' ;

CLOSE BAKER;

CLOSE ABLE;

The identifier X appearing in BAKER is replaced by Z. X outside

of BAKER is replaced by Y.

8.1.5 Scope of the DEFAULT Statemept

With reference to the description-presented in Sec. 5.5,

the scope of the DEFAULT statement is the same as.that for a

DECLARE statement,

_ 8-9
' lNTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 8684840

. 1
.

.

.

,

.

u
.

EXAMPLE:

ALPHA: PROGRAM;

DEFAULT MATRIX(4,7) BIT_LENGTH(24);
'0'

J , 1

- BETA: PROCEDURE?

DEEAULT BIT__LENGTH (10) ;

DECLARE E, F, BIT;

CLOSE BETA;

CLOSE ALPHA;

In procedure BETA, which is nested within ALPHA, the

defaultwtype established in ALPHA remains valid so that E is

a 4x7 matrix. F is a 16—bit string by virtue of the DEFAULT

statement in BETA.

8—10

iN'l'ERMETRICS INCORPORATED - 380 GREEN STREET ‘ CAMBRIDGE, MASSACHUSETTS 02139 ' (817) 8684840
W

n
.

.
u

’
.

‘
-

-
.

IN'I‘ERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS 02139

8.2 The COMPOOL

The COMPOOL is a centrally defined and Centraliy maintained

gioup of statements. $he statemefits are limited to REPLACE, '

OUTER and DECLARE (the <declareugroup>), and the attributes in

the DECLARE statements are further restricted to LABEL;

FUNCTION, dimensions, and PRECISION (also VARYING for charactér

strings). The names and labels declared in the COMPOOL are

potentially known t6 all programs and, in fact, provide the only

means of communication between programs.

In order to take advantage of the COMPOOL as a data sharing

mechanism, the programmer must include the COMPOOL statements

before the PROGRAM statement during compilation. In a sense,

the COMPOOL is placed "outside" the program block and its scope

encompasses the program. If another program is compiled in a

similar manner, using the same COMPOOL, the variables declared

in the COMPOOL will be recognized in both programs. Thus, for

example,

INCLUDE COMPOOL A INCLUDE COMPOOL A

A: PROGRAM; B: PROGRAM;

CLOSE A; - CLOSE B;

It should be noted that if the COMPOOL is included after the

PROGRAM statement; i.e., within the program block then its

scope can encompass only the program itself, and declared

variables cannot be shared by another program.

8-11

- (617) 868-1840

a
A

.
n

-

-

'

o

8.3 The Symbolic Library

I The symbolic library is a centrally defined and centrally

maintained pool of symbolic sourég code. The library is avail-

able to all pfograms and may be added to a program by use of the

compiler directive*

" INCLUDE<librarynentry>

The afipearance of this directive causes the symbolic code in

the object file to be included in the compilation and inseited

at that point. For example:

INCLUDE NAVDATA

A: PROGRAM; I

INCLUDE AGLOBALS

INCLUDE ALOCALS

B' TASK;

X = A,

Y = B;

INCLUDE LOGIC

CLOSE B;

C: PROCEDURE;

IF L>100 GO TO ABLE;

"ELSE

INCLUDE CHOICE

* Compiler directives réquire a D in column 1 of input source
code line. ' '

. ' 8—12
INTERMETRICS INCORPORATED - 1380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 0213.9' (617) 868-1840

ABLE:

CLOSE C;

CLOSE A;

GENERAL RULES:

The symbolic library may contain source code identical to that

within a program except that INCLUDE directives are not allowed.

8~13

INTERMETRICS INCORPORATED ' 380 GREEN STREET ' CAMBRIDGE, MASSACl-{USETTS 02139 ' (617) 868-1840

9.0 -REAL TIME.CONTROL¢

The real~£ime control of HAL programs consiSts of the

interrelated séheduling of <program— and <task-blocks>,

lthe reliable sharing of common data, and the recovery from

abnormal error conditions;

The concepts and language features introduced in this

section have been designed for general applicébility to real-

time control programming. It is recognized that depending upon

Specific hardWare environments and operating system designs,

certain features may not find utility..

9.1 .TASK Statement

A task is a subroutine Which is intended to be scheduled

in real-time through an executive System, The TASK‘stafiement . ' I w

identifies the beginfiing of a block of statements which form a

task and defines the entry-point. . ?

GENERAL FORMAT:

<task-label>: TASK;

'{[<label>:]<étatement>l[<label>:]RETURN;}. . .

[<1abel>:]CLOSE[<task—label>]; ' _' _ 1

GENERAL RULES:

1. 'Unlike procedures, tasks do not provide for parameter

passage and return. Rather, data exchange must be accomplished

9-1 . _ - 1
. - ' ' I INTERMETRICS INCORPORATED . 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

throuéh variables with common data scope (i.e.; variables'

defined at the COMPOOL or program levels).

2, Local variables and.constants may be declared éS.in

procedures and fundtions. .

3. Execution of a fiask may be terminé£ed by a RETURN state“

-ment, a TERMINATE* Statement or by logically reaching .

the CLQSE statement. If the task is activated by the-

executive, termination_causes control t6 be returned to

the executive. If the task is simply called, as a

procedure, RETURN and CLOSE return control to the caller;

' TERMINATE always returns control to the execfitive.

9.1.1 Task Calls

The CALL statement may be used to call a task. The

logical result is similar to calling a procedure; i.e.,

control is transferred to the task called and returned Qhen the

task is completed. The CALL statement is of the form:

. CALL<task-label>;

In calling a task:

1) No arguments may be passed.

2) Control is returned to the caller at the statefient

following the CALL statement, when a RETURN or CLOSE

statement is reached.

3) A task cannot call itself.

v

* See Section 9.2.4

r
_

.
.

.
;

A
-

.
 .

A
‘

.

._..
.

.
-

.
 ‘

... .
.

 .
.

.
. ,

_
.

<

u
c

‘
-

. .

. 9-2 ' . .
I INTERMETRICS INCORPORATED ° 380 GREEN STREEf - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868-1840

j 1 M_;.‘_v,__r.__...._ _ 4.-.‘__.,V, . . , _ -. - - n 7 ~ , A ;

. ' , 9 . 2 SCheduling Statements

9.2.1 SCHEDULE Statement

The SCHEDULE statement is used to request initiation

of'a program or task based on three criieria:

a) at a specific time (<spec-time>)

b) in an incremental time (<inc-time>)

c) onjevents 6r combinations of events (<event—éxpression>)

where time is expressed in seconds or units specified by

implementation, and an event is a programmer-defined (see

Sec. 9.3.1) or system-defined occurrence. The general format

of the SCHEDULE statement is:

<program-label> AT <spec-t1me>
[<label> :] SCHEDULE{ IN <inc—time>

<task-label> ON <event-expression>

[PRIORITY({<p>IPRIO + <q>})][,INDEPENDENT][,<task-id>];

<spec-time> and <inc-time> may be <sca1ar— or <integer-operands>.

<event—expression> has the same form as the <single—bit-expression>

(éee Sec. 7.3.2.2); i.§-, a logical combination (AND, OR, NOT)

of event names.

GENERAL RULES :

1. A SCHEDULE statement within one <program—block> may be

used to schedule the program itself, any task within the

block, or another program. A task within one <program-

biocka may not be scheduled from another <program-block>.

9-3

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) '868-1840'

-
4

-
.

.
.

.
h

__

.
.

.
.

.
.

.
.

.
.

A

-

2. Procedures; functions and labelled-sfatements may not

‘be scheduled._

3. <spec—time> and <inc—time> are rounded to the fiearest

integral number'of timé units befoxe use.

4.' PRIORITY(<p>) specifies the priofity of initiation. If'

_two programs (or a task and a program, etc.) are scheduled

,for the same time (or on the same event(s)), the one 6f

higher priority will be initiated first. <p> may be a

posifiive <scalar- or <integer-operand> and represents an

absolute priority. Relative priorities may be established

. by using the function PRIO which returns the current

program or task priority. Thus, PRIORITY(PRIO + < q >)

requeSts a priority of <q> greater than current pridrity.

<q> may be a positive or negative <scalarfior <integer-

operand>.

5. If PRIORiTY is not provided, scheduling will take place

with current priority.

6. if INDEPENDENT is provided, the scheduled program 6r task

is to be independent of the block in which it is scheduled.

This means that an independent program or task can continué

in an active state even after the schedulihg block has

been terminated. However, a task with STATIC variables

‘ or one which contains reference to identifiers declaged

at thé program level cannot be scheduled as an independent

task.

. . 9-4

INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840 j

4
. .

. .
. .

.

.
.

.

_
.

.
_

—
,

‘
.

.
.

.

7. If INDEPENDENT is not provided, dependent schedulifig will

ltake plaqe. IAll dependent programs and tasks are terfiinatéd

when the block in which_they were scheduled is terminated.

8.” _<task—id> is a name which will éontain the unique identifica—

tion data for the scheduled prografi or task.

9. If AT, IN, ON are not provided, initiation will take

place as soon as possible (consistent with priority).

EXAMPLES:

1. SCHEDULE PROGRAM_20 PRIORITY(10), PROG_20;

PROGRAMgzo is scheduled as a dependent block (program or

task), priority 10, with identification storéd in they

variable PROG_20. Initiation will begin as soon as possible.

2.3 SCHEDULE ABLE PRIORITY(PRIO + l); >

ABLE is scheduled as a depedent block at a priority 1 higfier

than the current priority. ‘

3. SCHEDULE RADAR 0N R_RUPT PRIORITY(HIGH);

RADAR will be initiatéd on the occurrence of the event

R_RUPT'at priority HIGH.

4. SCHEDULE STEERING AT TIG-5 PRIORITY(6),INDEPENDENT{

STEERING is scheduled; as an independent block, to begin

at the time TIC-5 with priority 6.

5; SCHEDULE TRACK IN 5;

TRACK is scheduled to begin in 5 units of time from the

time the SCHEDULE statement is executed.

‘ 9 - 5

INTERMETRICS INCORPORATED -' 380 GREEN STREET - CAMBRIDGE,- MASSACHUSETTS 02139 - (617) 8684840

,
,

_‘
. .

r

.
_

.
_

A
_ .

_

a

6. SCHEDULE ABLE ON (5 AND B) OR c;
ABLE is scheduled to begin on the occurrence of either

both evégts A agd B, or évent C.

7. IF X>10 AND 'i'RACKFLAG = 0N .

THEN SCHEDULE AUTOMANEUVER PRIORITY(5);

‘ ELSE GO TO BEGIN; .

The SCHEDULE statement may be included as another executable

statemént. AUTOMANEUVER will be scheduled if X510 and

the TRACKFLAG is ON.

9.2.2 WAIT Statement

The WAIT statement is used to suspend an active program

or task and reactivate it based on three criteria:

a) a specific time

b) an incremental time

c) a particular event or combination of events.

GENERAL FORMAT: ‘ f I
UNTIL <spec-time>

[<label>:1WAIT <inc-time> . ;
FOR <event-expre531on

where <spec-time>, <inc-time>, <event~expression> are the same

as in Sec. 9.2 (SCHEDULE statement).

EXAMPLES: ‘
1. WAIT 5;

The current block (program or task) is suspended for 5 units

of tifie and then reactivated.

9-6

INTERMETRICS INCORPORATED f 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ° (617) 868—1840

2. WAIT UNTIL TIG-S;

The current block is suspended uhti1.the timé TIG—S and

then reaétivated.

3. WAIT FOR ABLE;

The current block is suspended until the event ABLE occurs

(i.e., ABLE is turned ON) ané then reactivated.

4. 'WAIT. FOR NOT(T1 AND T2) OR T3;

The cufrent block is suspended until the events T1 and

T2 are OFF, or the event T3 is ON, and then reactivated.

9-2{3_ Pq_cHANGE-Statement

This statement is used to change the priority of a i

task or program.

GENERAL FORMAT:

[<label>:]PRIQ_CHANGE({<p>IPRIO + <q>})[<task—id>]

[({<p>[PRIo + <q>}),<task-id>]. . .;
where <p>, <q> are defined in Sec. 9.2.1.

GENERAL RULES:

1. <p> or <q> are new absolute and relatiVe priorities,

respectively, for fihe cprresponding <task—id's>.

2. The current program or task priority may be changed by

the statement

PRIomcHANGE({<p>|'PRIo + <q>});

EXAMPLES: '

1. IF AFLAG THEN PRIQ_CHANGE (PRIO + 5);

“If AFLAG is on then current priority is increased by 5.

9-7
INTERMETRICS INCORPORATED * 380 GREEN STREET' * CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

I"

2. PRIO_CHANGE (8) , (10) TASK_;, (13).TASK_2, (PRIO + A) TASK_3;

O The current priority is changed to 8, TASK_3'S priority

is chéngéd to the current priority plus A (i.e.; 8 + A);

Note that a <task-id> can be omitted only béfore the first

comma, meaning the current task of program.

9.2.4 TERMINATE‘StatEment

This statement is used to terminate a program 6r task

and return control to the executivé.

_ GENERAL FORMAT:

[<1abe1>:JTERMINATE[<£ask-id>[,<task—id>]... .1;

GENERAL RULES:

1. 'EXecution of this étatement terminates all identified

tasks and programs and all their dependefit tasks and

programs.

2. If <task-id> is not provided, the current program or

task and all dependent programs and tasks are terminated.

EXAMPLES:

1. TERMINATE PROGflZO, T2; _
The blocks (task 6r program) identified by PROG_20 and T2

are terminated.

2 . TERMINATE;

The current program or task is terminated.

9-8

INTERMETRICS INCORPORATED - 380- GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

W

-
-

- A
- - .

.
r

.
a

 ..

l

9 . 3 ‘ Events and Signals

Programs and tasks may be scheduled by the occurrence of

events or combinations of evefits.’ An event is a proqrammer-named

cdhdition and can be stimulated only by the execution of thé

SIGNAL statement.

9.3.1 Events

<event-variables> hust be declared using DECLARE state?

ments. The format is similaf to that described for data

declarations,_thus:

GENERAL FORMAT:

-DECLARE<event-variab1e>EVENT[LATCHED[INITIAL{ON/OFF}]];

GENERAL RULES:

1. <event-variables> may only be declared at the COMPOOL

and program levels. Sc0pe rules are the same as for data.

2. If the attribute LATCHED is provided, the <event-variab1e>

will hold its signalled value; i.e., if signalled on,

it will remain on.

3. If LATCHED is not provided, the <event-variab1e> when

signalled.on, will remain on only for a short interval

of time. The time interval is implementation dependent.

4. The declaration of an <event-variable> can be incorporated

in the same DECLARE sfiatement with other identifiers; e.g.

DECLARE v VECTOR, MMATRIX, B EVENT;

9-9

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRiDGE, MASSACHUSETTS 02139 ' (617) 868-1840

5. EVENT, LATCHED, INITIAL may be factors in a DECLARE state—-

ment; e . é . I

DECLARE EVENT} A, B, c INITIAL(ON);

6.. .If INITIAL is not provided for <event-variables> with the

LATCHED attribute, a défault value of OFF is presumed.

EXAMPLE: I

DECLAfiE EVENT, A, B LATCHED;

A and B are declared "unlatched" ahd "latched" evénts.

Both are set off initially. It should be noted thatan

unlatched event cannot be set on initially..

9 . 3 . 2 ' SIGNAL Statement

This statement is used to cause the occurrence of an evgnt.

The specific effect depends upon whether the <event-variable>

has the attribute LATCHED.

GENERAL FORMAT: fl

[<1abel>:]SIGNAL<event—variable>[ON/OFF][,<event—variable>

[ON/OFFJ]. . . ;_

GENERAL RULES for LATCHED <event—variables>:

1. '<event-variab1es> may be on or off initially.

2. If an <event—variable5 is off:

a) it may be turned on by SIGNAL<event—variable>ON;

b)! it may be left off by SIGNAL<event-variable>0FF;

c) ‘if ON or OfiF is not provided, SIGNAL<event-variable>;,

‘ turns the <event-variable> on for a short time interval,'

and then Off. The tfime interval is implémentation

dependent. _

9-10
INTERMETRICS INCORPORATED ° 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 0213-9 ' (617) 868-1840

I
A .

A V
.

 .
A

.

_.

-
-

I
.

I
I

-

-
o

3, If an <event-variable> is on:

a). it may be turned f by SiGNAL<event~variable>OFF;

b) it may be left on by SIGNAL<event—variable>ON;

c) if ON or OFF is not provided, SIGNAL<event~variable>;

turns the <event-variable> off after a short interval.

GENERAL RULES for "unlatched" <event-variables>:

- l. <event¥variables> are always off intially.

2. SIGNAL<event~variab1e>[ON]; turns the <event—variable§

on for a short interval, and then off. The time—

interval is implementation dependeht.

3. SIGNAL<event~variab1e>OFF; causes no action.

EXAMPLE: I

SYNCHRO: PROGRAM;

DECLARE EVENT LATCHED, A, B;

SCHEDULE ABLE INDEPENDENT;

SCHEDULE BAKER INDEPENDENT;

SCHEDULE CfiARLIE ON A AND B;

§'= W V}

3
|

N
I

2
*

+

TERMINATE;

ABLE: TASK; /*INDEPENDENT TASK*/

SIGNAL A ON;

CLOSE ABLE; ' ‘_

9-11

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

0

o

BAKER: TASK;

SIGNAL B ON;

CLOSE BAKER;

CHARLIE : TASK;

CLOSE SYNCHRO;

/*INDEPENDENT TASK*/

CLOSE CHARLIE; .

9412
INTERMETRICS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 " (617) 868-1840

. _ A Am WA %__._____.4

9.4 Dynamic Control of‘Shared'Data

HAL provides features to control the sharing of variables

,in order to prevent conflicts in their utilization. These'

features include the attribute LOCK_IYPE to designate shared

gvariables and an update block of statements in which shared

variablés may be changed in a controlled environment. Although

the approach taken is basically implemented in software, it-

doés depend on the ability to perform an "uninterruptable"

instruction similar to the Test and Set instruction available

on IBM 360 computers.

§ . 4 . 1 Conflicts in Sharing Data

In order to illustrate the problems that can arise in

. sharing data conSider the following two examples:

Example 1: Read/Write Conflicts

A: 'TASK; - B: TASK;

§‘§+; ”“ vfifyv - " Interruption " .

CLOSE A: _ CLOSE B; \ _

Example 2: Serial Updating Conflicts

A: TASK; , ~ B: TASK;

: TASK :
Y = Y - X ; Y = Y - Z ;

. Interruption .

CLOSE A; _ . CLOSE B;

9-13

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ° (617) 868-1840'

In both examples TASK B interrupts TASK A during the

execution of a statement. The interruption may be caused by

a hardware of software (SIGNAL) interrupt or by a "job swap“

based on priority. In Example 1, presume that the interruption

occurred while the matrix § was being feafi. When TASK-A reéumes;'

the computation of fi will continue using some "old" fi data; I

and the "new" § data assigned in TASK B. In ofder to prevent

this confliét, initiation of TASK B would have to be étalled

until the reading of § in TASK A is completed.

In Example 2, presume that the interruption occurs first

after the current value of Y is loaded into the accumulator.

When TASK A resumes, the "old" value of Y (i.e., not reflecting.

the update of Y in TASK B) is restored into the accumulator,

X is subtracted and the result assigned to Y. In order to

prevent this conflict, the initiation of TASK B would have to

be stalled until the value of Y is updated in TASK A (i.e.,

each variable declared with the LOCK4TYPE attribute, see Secs.

4.3.4; 5.1.lf3).

The approach taken in solving the Bioblems represented above,

using HAL, is to confine the read and write accesses of shared

variables to identified update blocks and for the compiler to

assign a locking control variable to each shared variable

(i.e., to each variable declared with the LOCK;IYPE attribute).

The value of the "lock" is examined.at run-time and only con—

sistent (i.e., safe) accesses are permitted.

i l I
1

9-14

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868—1840

,. . - - A

r

'
ll

-

_
.

-
A

-
n

.

9.4.2 The Update Blg¢k~
The <update-block> of statements provides a controlled

environment for the reading and writing of shared data variables.

All LOCK_TYPE(1) variables, and LOCK_TYPE(2) variables to be

.assigned new values (i.e., updated) must appear within <updaté-

blocks>. LOCK_IYPE(2) variables which are to be read only need

not be conf§ned to these blocks. The <updéte-block> may cofitain

the following elements:

<update-block> = <update-statement>[<declare-group>]

'{<all—statements>[<sub~blocks>}. . .<close-statement>

subject to the restrictions below. '

GENERAL FORMAT:

[<update-label>:JUPDATE;

'{[<1abel>:]<statement>}. . .

[<1abe1>:]CLOSE[<update—1abe1>];

GENERAL RULES :‘

l. <statements> within an <update—block> (and enclosed <sub—

blocks>) may not include I/O statements (see Sec. 10),

or additional UPDATE statements.

2. Name scope rules are the same as described in Séc. 8.1.1-

except <statements> may not contain <procedure-labels>

or <function—1abels> defined outside the block. (HAL

built-in function names are permitted.)

9-15

INTERMETRICS INCORPORATED ' 3'80 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868-1840'

.
A

.
. .

7
-

.

_
. ..

’
r

‘
v

n
-

.
_

—

‘

_ v
.

.
 . _

.
-

-

,
V

.

A
‘

-
’

l

.7
u

1
—

—

«
- A

«
‘.

I
.

.
.

<

'
i

.
n

‘

Exgcufiion of the UPDATE sfiatement attempts "to lock" all

shared variables within.the block. A va£iable to be

assigned will be writeFIQcked, variables to read only will_

be read-locked. Once loCks are establishéd they are not

opened until execution of the CLOSE statemént at the end

of the block.

If all desired locks cannot be established at the UPDATE

‘statement because one or all of the shared variables aré

not available (i.e., they are already locked elsewhere),

the current program or task will be stalled (placed in

"wait" by the executive) until all variables become avail—

able.

Aftef all locks are established, cofiies are made of the

shared variables to be assigned (if any), and the <statements>

within the <update-block> are executed using this copy-

data.

Execution of the CLOSE statement first opens all read-

1ocks and then attempts to transfer the updated copy-data

into the actual shared variables (to be assigned).. If read?

locks are in effect on these variables (i.e., they are

still locked within other <update-blocks>), the current

program or task will be stalled until these locks are

opened. After the cepy-data has been transferred all

write-locks are opened and execution continues at the state—

ment following CLOSE.

9-16

INTERMETRICS INCORPORATED ' 380 GREEN STREET ~ CAMBRIDGE, MASSACHUSETTS 02139 9 (617) 868-1840

l

v
,

.
A

...
-

.
 .

1

.
.

-

7
.

.
"

.

.
.

A
.

.
_

_

.

y
.

.
l

.
l

_
‘

.
l

.
.

.

‘
.

‘

_

,
;

_ _
,

_

.

O

n

7. In conjunction with (4) above, a Stall will occur at the

UPDATE statement if any of the shared variables to be

assigned in the block already are writé—locked. In other

words, a write-lock cannot be eSfiablished on a variable

that is-already write-locked. A stall will also occur if

any shared

written in

variables to be read are currently being

other <update-blocks> , i.e., a read-lock Cannot

be established while the variable is being assigned a new

value.

8. 'Transferring control outside the update block by a GO TO

statement or in response to an error condition (see Sec. 9 . 5)

is considered an "error exit". As a result, all read- and

-write-locks are opened and no copyécycle is performed.

9. LOCK_$YPE(2) variables which are to be read only need

not be confined to update blocks. This attribute should

only be applied to those data types which can be accessed

in a single uninterruptable instruction.

9.4.2.1 Summapy on Entering an Update Block (LOCKfiTYPEfil) Variables.)

\

Present
> tate

Variables

To be assigned
in block

To be read
in block

INTERMETRICS INCORPORATED

Free Read-Locked Write—Locked Writing

Write— Write— Stall Stall
Lock Lock

Read- - /* Read— _ Stall
Lock Lock

3
Table '941

9 - 1 7 .
- 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

'

-
0

n

'
I

1

Table 9-1 indicates that on entering an <update—block?,

if Variables to be assigned aré free or read-locked, write-locks

will be established; otherwise execution will stall until

variables are available. If variables to be read are free,‘

read-locked or write-locked, read—lécks_will be established;'

otherWise execution will stall until variables are availabléQ

(/ means read-lock already established, new lock is unnecessary.)

9.4.2.2 SUmmary on Leaving-an Update Block (LOCK;TYPE(1)'variables.)

Present }
State ‘

Actual Free Read-Locked ete-Locked etlng

Variables

To be written N.A. Stall ‘ Capy N.A.

Table'9-2

Table 9—2 indicates that.on leaving an <update—block>, if

variables £0 be written are write-locked the copy-cycle will

proceed} otherwise execution will stall until variables are

available.(N.A. means not gpplicable. Once in an <update-blo¢k>;

variables cannot be.free nor in the process of being written .

within another <update-block>.)

9-18

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840'

9.4.2.3 Examples. Consider the two examples at the_beginning

of Sec. 9 . 4 . 1 and sufipose that the statements in question were”.

analosed within <update-blocks>, e.g.,

A: TASK;

UPDATE;

.* * ' *
M - = N + P ;

CLOSE;‘

CLOSE A;

Example 1

In TASK A a read-lock is established for . After the

2
3
$
.
Z
»

interruption, a write-lock is established for and TASK B

proceeds toward campletion using_copy—data for fi. At the

end Of the <update—block> in TASK B the process stalls because

.of the read-lock imposed in TASK A. As a result, TASK A is

allOwed to fiontinue with consistent "old" fi data. After com-

pletion of TASK A, the fiopy-cycle in TASK B is effected and

fi is updated. All conflicts are eliminated. I

Exampie 2

In TASK A :ead- and write-locks as well as copy—data are.

established for Y. As before, the value of Y (now copy-data)
I .

is placed in the accumulator.{ After the interruption, execution

9 — 1 9

lNTERMETRICS‘ INCORPORATED ° 3.80 GREEN STREET - CAM BRIDGE, MASSACHUSETTS 02139 - (617') 868-1840

r
-
.

\
<
-
.
.

T
.

‘
V

.
‘

.
.

.

.
..

A
._

y
.

‘

.

......._V
A

.
‘

,

‘
 ‘

‘
.

4
.

.
.

.
.

w
-

m

.
.

.

.
4

of the UPDATE statement in TASK B attempts to establish read-

and write—locks for Y. The process stalls because a write- '

loCk already exists for Y.‘ Therefore, cdntrol is transferred

bapk to TASK A and execution allowed to continfie. Y is updated

in TASK A by X and a copy-cycle compleéed. TASK B now begins

again. This time Y is free and read- and write-locks are

established: TASK B runs through in a straightforward manner.

Y is updated properly by both X and Z with no conflicts.

‘ 9.4.3 Exclusive Subroutines

The attribute EXCLUSIVE may be applied to programs,

procedures, functions and tasks which are intended to be exe-

cuted serially. The object is to avoid reentrant use of a sub—

routine either because the variables are not protected by locks.

(i.e., have not been declared with LOCK_TYPE attributes) or because

dynamic design dictates serial use r

GENERAL FORMAT: V

’{<program-I<procedure-I<function~I<task—statement>}EXCLUSIVE;

GENERAL RULES:

1. The céfipiler will insert code at the beginning of the sub-

routine to cause the current program or task to stall if

the subroutine is in use. At the end of the subroutine,

the stalled programs or tasks of highest priority will

be reactivated.

9- 20
INTERMETRUCS INCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 888-1840

.
.

.
_

‘
.

A
_

‘
<

l

n o
a

.

EXAMPLES:

l. ABLE: PROCEDURE(A,B) ASSIGN(C) EXCLUSIVE;

2. BAKER: TASK EXCLUSIVE;

The above are valid statements using the EXCLUSIVE attribute.

9 . 4 ; 4 Access Rights

The general use of COMPOOL data within programé may

be restricted by attaching access rights to the DECLARE state-

ments within the COMPOOL. Programs are identified by number

and permitted to access only those variables whiqh have been

deciared with corresponding identifidation numbers. An illegal

reference to a COMPOOL variable will prevent successful com-

pilation of the problem.

GENERAL FORMATS :

<program statement>ID_CODE<p>;

<declare-stafiemeQF>ACCESS(<p>[<p>]...);

where <p> is an unsigned integer literal.

GENERAL RULES :

1. If ACCESS is provided, declared variables will only be

recognized in programs whose identification numbers are

listed.

2. If ACCESS is not provided, declared variables will be

recognized in all progfémé.

3‘ Compilation will abort if prpper access rights have not

been established for a reference to a COMPOOL variable.

9- 21

lNTER-METRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 888-1840

"1'
21.

..

' 9.5— Error Recovery . ~

During exgcution of HAL programs an-erfor conditibn may bé

detected by the system. Examples of errors might be:

overflow/underflow

divide by zero

negative sqfiare root argument

sine argument greater than 1

sabscript out of range A

Depending upon implementation such errors may be hardware or

software detected. In any case, execfition cannot continue and

the éystem must offer generally appliCablé alternatives (e.g.

aborting the current task, etc.). '

In order to provide the programmer with some control after

the occurrence of an error, perhaps to reset flags or previously

initiated I/O commands, HAL permits programmer—defined error.

conditions and alternatives.'

9.5.1 ON Statement.

The UN statement may be used to direct the transfer of

control on the occurrence of one or more specific error conditions.

GENERAL FORMAT:

[<1abel>:] ON ERROR [T0<q>][{GO TO <1abe1>|SYSTEM}]; <p>

where <p> and <q> are integer literals.

GENERAL RULES :

.1. For any implementation,unique <1iterals> are assigned to

every system error condition; e.g.

9- 22-
INTERMETRICS INCORPORATED ' 380 GREEN STREET f CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840'

4
..

- <
.

.

. v -
J

w

.
.

.
.

.

¥

fi
.

-

-
,

_

'

.
4

-
-

.
‘

‘

.
_

.
.

.
.

<

- .
.

_

g
.

1

.
_

_

x
‘

V
,

V

_
_

o

ERROR5 floating point overflow

ERROR floating point underflow 6

and to programmer-defined error conditions.

'A group of error conditions may be specified using the

subscript range expression (e.g., ERRORl TO 1 0) . .

Upon execution of the ON statement the alternatives GO TO

<1abel> or SYSTEM are made available for the scope bf the

statement. The scope of an ON statement follows the same

rules as the name scope of a variable (i.e. from the "outer—

most" block toward the inner, see Sec. 8.1.1).'

If the Specified error condition odours within the defined

scope the desired alternative is activated (i.e. control

is either transferred to the statement <label> indicated

or to the system).

Ifcx) TO <1abe1> or SYSTEM is not provided the-default is

SYSTEM.

9 . 5 . 2 -ER__RUPT Statement

The ER;BUPT statement is used to announce the occurrence

% .
iof programmer—defined error condltlons.

GENERAL‘FORMAT:

ER;3UPT ERROR<p>[TO <q>]:
Where <p> and <q> are integer literals.

INTERMETRICS INCORPORATED ° 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 'I (617) 868~1840

9-23

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS 02139 'I (617) 868-1840

‘EXAMPLE:

D = B2 - 4A C;

IF D<O THEN ER_RUPT ERRORSO;

X = (-B " SQRT (D) ,/2A;

9.3.3 EXAMPLES

1. ON ERROR1 TO

If any of error conditions 1 through 5 occurs within the

5 GO TO ABLE;

scope of this statement, control is transferred to ABLE.

2. ON ERROR SYSTEM; 1 TO 5

If any of error conditions 1 through 5 occurs within the

_scope of this statement, system action is takeh.

3. A: PROCEDURE;

0N ERROR

B;

1 GO TO BETA;

CAL

o
o

o
t

‘
l

AB: PROCEDURE;

ON ERRORl GO TO ALPHA

/ CLOSE B;

ALPHA: fiLAGl = OFF;
TERMINATE;

'BETA: ELAGZ = OFF;
TERMINATE;.

CLOSE B; t

9- 24

H,_u.___.._..i

If ERROR1 occurs during procedure B control is tranSferred

to ALPHA, otherwise it is transferred to BETA.

4. A: TASK;

DECLARE X - - ~,

ON ERROR

RETRY:

CALL B

0N ERROR

1 TO 10 GO TO RECOVERYl;

_. *
R = M X;

('15, V, TD...);

1 TO 10 GO TO RECOVERYZ;

CALL JETS;

ON ERROR1 TO 10 SYSTEM;

B: PRQCEDURE (——-~)z

.CLOSE B;

_GO TO RETRY;

RECOVERYZ: CALL JETs_pFF;
GO TO ABORT;

CLOSE A;

REQOVERYI and RECOVERYZ are established as differeht recovery

points for TASK A. Control is transferred to either one

depending

action is

procedure

This

'arbitrary

ll RECOVERYl: 2': §’+ BECTAX;

on where the error conditions occur. The system

established after control is returned from the

JETS.

example illustrates that the programmer éan deve10p

restarting points within a HAL program.

1

9-25

lNTERMETRlCS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 021391 (617) 868-1840

1 w \ n
1 0 . 0 INPUT~OUTPUT

The HAL ifiput-output statements provide for the fi;ing,

retrieval, reading and writing Of data to and from external

storage media. Filing is record—oriented in that a file statef

ment causes a single récord to be transmitted to or from a.

storage device; transmission is direét without any conversions.

Reading and firiting are stream-oriented in that data is considered

to be a continuous stream of characters; conversions may obcur

during transmission.

The HAL I/O syntax consists of four statements and a small

set of control functions.

10.1 FILE Statement

The FILE statement has the appearance of an assignment'

statement and may be used for both filing and retrieving data

depending upon which side of the = Sign FILE appears.

GENERAL FORMAT :

1. for filing data

[<1abel>:JFILE(<deVice5,<redbrd-i.d;>)é{<data—expression>I

<struéture>};

2. for retrieving data V

[<1abel>:]<variable—name>=FILE(<device>,<record-i.d.>);

1041

IN'TERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840'

GENERAL RULES :

1. <device> is an integer literal identifying the external

device. The maximum number of digits is implementation

‘dependent.

2. <record—i.d.> is the record identifiéation numbér and may

be an integer or scalar expression. The result of <record—

i.d.> is rounded to the nearest integer before use.

3. In retrieving data, the size of the recérd, i.e., the number

of words (or perhaps bytes,_etc.),must match the size

(dimensioh) attributes of the <variable-name> on the left

hahd side df =. Because the filed information does not

carry data-type or attributes,conversion errors can occur

evén if the sizes match properly.

EXAMPLES:

FILE(TAPE,I) = [A];

{B} = FILE(DISC,AI);

are valid FILE statements, where TAPE and vise represent

integer literals.

/

10.2 READ Statements

Two READ statements are defined in HAL: READ and READ_ALL.

READ is used t6 process déta presentéd in standard formats;

READ_ALL admits all characters and provides the flexibility to

accept data in non-standard (arbitrary) formats.

3
I
l
v

10-2
INTERMETRICS INCORPORATED ' 380 GREENVSTREET - CAMBRIDGE, MéSSACHUSETTS 02139 ' (617) 868-1840

10:231 READ Statement

The READ statement causes data, in standard formats

'from an external source,to be assigned to a list of variables.-

GENERAL FORMAT :

READ(<device>)[<read-control>I<variable-name>]

[,[<read-control>I<variab1e~name>1]...;

where

<read-control> = {SKIP(<p>)|TAB(<p>)ICOLUMN(<p>)}

and

<p> is an integer or scalar expression, rounded to the nearéSt

integer before use.

GENERAL RULES :

1.. The READ statement implies the input transmission of a

stream-of data fields, each field being separated by a

comma or a semi—colon. (A blank or blanks may be used

Optionally instead of a comma, between data fields.)

2. The <variable-names> in the list may be of single elements,

arrays of elements and/or structures. The number of

fields transmitted, for éach <variable-name>, corresponds

to the size, Or dimension, attribute of the <variab1e—name>.

For example, READ fi; (where a is a 4x4 matrix) will cause 16

. fields of data to be transmitted. It is presumed that vectors,

matrices and arrays will be filled according to the rules

and éonversions for processéng <lists>, as described i n '

Sec. 6 . 2 . 2 . 1 . The arrangemeht of structure data is described

10-3

INTERMETRICS INCORPORATED - 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

_
,

.
A

.
.

—
r

‘
_

_

I
n
:

a
—
.

.
_

. .
_

—
—

A
.

in (5) beldw. The absence of‘a <variable name> in the list O f .

names; i.e., nothing between commas, or leading or trailing

commas Causes the "réad-mechanism" to skip over one data field

(for example: READ(CARDS), A, , B, ;).

-The external device is visualized as'being two—dimensional‘

in.that data occupies horiéontal lines, éach line being

made up of column positions. A data field is defined as:

a segmené of contiguous columns, delimited by commés

(blanks) or semi-colons. (The first column of line n+1

follows the last column of line n.) The <read—control>

functions locate the "read-mechanism" on this "gridV.:

If a <read-control> function is not provided immediately

following READ(<device>), blanks being ignored, a default

SKIP(1), COLUMN(1) is presumed; i.e. READ (<device>) causes

the next line to be seledted and reading to begin at

column 1.

The appearance of SKIP(<p>) and/or COLUMN(<p>) within the

list of <variab1e-names> sets up the "read-mechanism"

to skip <p> lines and/or begin reading at column <p> when

the.next data field is encountered. The TAB(<p>) function

causes a relative column location; i.e. TAB(8) would cause.

thé "read—mechanism" to "move" eight columns. The presence

of a semi-colon, separating fields of data causes termination

of the current READ statement. Unassigned <variable-names>

in the statement are left with their prévious values. If

additional data fields follow the semi—colon, on the same

10-4

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840.

o

,

‘

.

-

-

-
-

.
'

line,_they may be processed by the next read statement if

a SKIP(O) is provided; e.g. the data card,

3 5 ,6 ,7 ;8 ,9 ;10 ;

could be processed by the following READ statements;

READ(CARDS) A,B,C,D,E;

READ(CARDS) SKIP(0), F,G,H,I,J;

READ(CARDS) SKIP(0), K,L,M,N,P;

The firsfi semi-colon on the data card causes termination of the

first READ statement after A,B and C are assigned. The second

READ statement begins "reading" immediately after C, on the

same line, because of the SKIP(0), and assiéns F and G only.

The last READ statement assigns K. Note that after the three

READ statéments D,E,H,I,J,L,M,N,P will retain their previous

values.

If the <variable~name> is a structure, the elements of the

_ structure are tranSmitted in the order specified in the

structure declaration. Multiple-cepy structures are txansmitted

one cepy at a time. For the structure

DECLARE l A(5), 2B ARRAY(4,5), 2C VECTOR(4);

the statement ' _

READ{A};

would result in an input transmission order of

A.C A.B 1:1,1 A'Bl;1,2"' A'Bl;4,5 A‘C1;1“’ 1:4
A : B 2 ; l , l . 0 0 0 0 0 0 0 0 0 0 0 A . B Z ; 4 , 5 A o C 2 ; 1 - o o A - C 2 ; 4

A'Bs;1,1 A'Bs;1,2"° A'B's;4,5 A‘C5;1"' A'C5;4

10—5
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 868-1840

; EXAMPLES:
1. READ(CARDS) A,B,C,D,[E]}{E};

'This stétement cauées transmission of enough data fields

'to assign the variables listed. Note that CARDS represénts

an integer literal. -

2. READ(CARDS) COLUMN(20),A,B,

‘ SKIP(1), COLUMN(20),C,D,

SKIP(1), COLUMN(20),E,F,

etc.

q;

This statement causes two fields of data to be read on each

succeésive card. The data will be read starting in column 20.

3. READ(CARDS) A, TAB(40), C;

This statement is-designed to skip over some data fields

(40 columns) known to be On the input cards.

1 0 . 2 . 2 Standard Input Data Formats

The list of variables in a READ statement may be of

any data type. Each type requires the input data to be presented

in a standard format.

1 i

{
10.2.2.1 Standard Arithmetic Data Formats. Integer, scalar,-» .

vectof, matrix and bit string data may be presented in the

following format:

{[+1|~}b<digits>[{MElIwH}w{[+1[—}<integer>]...

where M represents optional blanks. Note that this is almost

the same form as an arithmetic literal except for the optional

blanks. See Seé. 2.3.3.1 'for definition of terms.

10—6

lNTERMETRl-CS INCORPORATED - 3.8.0 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 0213-9 - (617) 868—1840-

GENERAL RULES:§ _‘

1. For integers and bit strings the data form must represent

integral vélues. Bit string data is first converted to a

full word bit string and then assigned to the cdrresponding

bit variable according to the rules étated in Sec. 7.1.231,

2. The data forms for scalars) vectors and matrices are identical.

EXAMPLES:

1. 369.0, 8, -8.36E+2 B-l are valid forfis of integer and bit

string input data. ‘

2. +0.123E6 B—3 H4, lE—75, 3, 456.789 are valid ferms of

,scalar, vector and matrix input data.

10.2.2.2 Standard Character Data Format. Character data may

be presented as any character or string of characters (in the

HAL set) enclosed in apostrophes. If it is desired to place an

apostrOphe in the string, it must be represented by an adjacent

pair of apostrophes.

EXAMPLES:.

1. 'AB""C', '57.3/C', 'NUMBER;QNE', 'ON,0FF,OFF,ON' are

valid forms of character data. '

2. The following input data field and statements Will assign a

bit string variable using an octal input data form.

10-7

INTERMETRICS INCORPORATED ° 380'GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868-1840.

. J‘-

DECLARE B BIT(15[;
DECLARE c CHARACTER(10) VARYING;

' ,

READ C;
O ' .

B = BIT@0CT(C)’
column (1)

inputgata: '37776'

10.2.2.3 Arrays and Structures. Arrays and structures consist

.of the above data types,and the forms presented are acceptable

as required.

10.2.3 READ_ALL Statement

The READ_ALL statement allows data in non-standard form

to be assigned to HAL character-string variables. This is

accomplished by not defining fields of data but accepting all

characters encountered in-the input stream, including blanks,

'commas, semiecolons and apoStrophes..

GENERAL FORMAT:

Same as for the READ statement except READ_ALL replaces

READ and the <variable—names> may pertain to_character stringS'

only.

GENERAL RULES :

1. The READ_ALL statement implies the input transmission of

a continuous stream of characters.

10-8

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ~ (617) 868-1840'

- _
. .

.
_

A
_

.
A

_
‘

.
 .

4
4
A
A
_
.
.
_
-
_
_
u
_
 .
.

.

. 1

— 2. The <variable-names>‘in the list may be of character strings,

arrays of character strings and/or structures containing

only character sfirings;

EXAMPLE :

Suppose the following data card has been generated at a

computer facility. It is desired to process this data in a HAL;

program; . I

column (1) ' (30) I (60)
' DATE: 25/12/70 8,632 06 101101

where the scalar starting in column(26) is equivalént to

8.632E06 and the data starting in column(40) is a set of six

boolean variables.

DECLARE B BIT(6);
DECLARE CHARACTER (2 0) , C , D , E;

READ__ALL (CARD) 5:, COLUMN (3 0) , 13, COLUMN (5 0) , E;
c PUT SCALAR IN PROPER FORM

I

D = ' . ' ; /*CHANGE COMMA TO PERIOD%/ 2
I I = 3;

'LOOP: DO WHILE 61*n= ' '; /*LOOK FOR BLANKf/

I = I + 1;

END LOOP;

'61 = ' E ' ; ‘/*CHANGE BLANK TO E * ‘ /
' _

A = SCALAR(D); ,/*ASSIGN SCALAR TO A*,/

10-9

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

c PUT BOOLEAN VALUES IN PROPER FORM . r
o . I '

. B = BIT@BIN(E);
/*FINISH*/

1 0 . 3 WRITE Statement

The WRITE statement causes the transmission of data td

an external device.’ Data items transmitted are the character

. string representations, in standard formats, of values of HAL

expressions.

GENERAL FORMAT :

WRITE(<device>)[<write—control>|{<variable-name>|<data—expression>}] ;

l,[<write-control>l{<variable-name>|<data~expression>}]]..{;

where ‘

<data—expression>é{<arithmetic~i<string~|<array}-<eXpression>

and

<write-control>={SKIP(<p>)|TAB(<p>)|COLUMN(<p>)| I
PAGE(<p>)|LINE(<p>)} l

<p> is an integer or scalar expression, rounded to the néarest 1

% integer before use.

GENERAL RULES: - " i
1. The WRITE statement implies the output transmission of a 1

continuous stream of characters. I

2. The <variable—names> in the list-may be the same as defined
l . - ,

z- . ~ i

. . 10—10 . _ . .
INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (517) 868-1840

J
2
i
I
i
'

.

a

F
l

i

h

f i

i

5

l

'1

v

g
i

l
£
1 g
I

i

l

I

ll

1

l
i

l “ M ‘ , n-

for the READ statemenfi. The-<data~expressions> may be

any valid arithmetic, string and/or array expressions.

The externéi device is visualized as being two—dimensional'V

in that output data will occupy horizontal lines, each.line

being made up of cdlumn positions. A page is defined as a.

default number of lines. The <write—control> functions

locate the "write—mechanism" on this "grid". If a <write—

control) function is not provided immediately folléwing

WRITE(<device>), blanks being ignored, a default SKIP(1),

COLUMN(1) is presumed; i,e. WRITE(<dev§ce>) causes the next

line to be selected and writing to begin at column 1.

The appearance of <write-control> functions within the

list of <variab1e4names> and/or <data—expressions> sets up

the "write—mechanism" for execution when the next name Or

expression is encountered. SKIP, COLUMN and TAB perform the

same functions as in the READ statement,

LINE(<p>) redefines the value of the current line. If <p>

is greater than the current line, blank lines are inserted

so that the next line will be the pth line of the current

page. If <p> is less than the current line, the next line

will be the pth line on the nextApage.

PAGE(<p>) causes. <p> pages to be skipped upon

execution.

If COLUMN and/or TAB functions are not provided the presence

of a comma will cause a tab of a default number of columns.

For example,

10-11

I INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840‘

WRITE A, TABCLO), B, COLUMN(50), C;
\

causes A to begin in column 1, to begin 10 columns

after A, afid C to begin in column 50.

WRITE A, B, 0;

causes A to begin in column 1, B to begin a defafilt number

of columns after A, and C to begin a default number of célfimns

after C.

'If the <Variable-name> is a vector, matrix, or array,

' the effect is to unravel these types by rows (Sec. 6.2,2),

separating each element by the tab default.

If the <variab1e-name> is a structure the effect is

to unravel the structure into {he 6rdér in which i£ was

declared, c0py-by-copy, (see READ statement), sgparating each

element by the tab default.

EXAMPLES:.

1. WRITE(LISTING) A,é,E,3,[E],{F};

This statement causes transmisSion of all the named

data to the output device. The data is converted to a

continuous stream of characters with the elements separated

by the tab default. Note that LISTING represents an

integer literal.

DO FOR I = 1 TO 3;-

WRITE(LISTING) COLUMN(20), MI,*;

END;

Thesé statements will cause the matrix fi to be printed

in rectangular fbrm, each row starting in column (20).

10-12 ~
INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840'

“
-
4

10.3.1 Standard Output Data Formats_

.The list of variables and expressions in a WRITE

statement may be of any data type. Each type produces a.standard

output character format.

_ 1 0 . 3 . 1 . 1 Scalars, Vectors, find Matrices. The standard ouiput

.format for scaiar, and components of vectors and matrices is:

‘sx.<digits>MEsyy

where s is a blank or a minus sign,

x and y are single digits, 0 to 9,

<digits> is a string of digits, 0 to 9,

b is one blank. .

sx.<digits> represents the mantissa, syy represents the

'
' '

-
.

.

‘
-

.
 —

-
.

.
.

_
.

.

_
_

_

.

_
.

.
_

-
_

.

4
.

_

_
_

_
 ..

__
.

.
-

,

_
_

_
‘

_

_

exponent power of 10. The number of digits in <digits> is fixea

and set by machine implementation. The total field of characters

in this standard form is 8 plus the number of <digits>.

EXAMPLES:

8.0603478E 06, -7.5436210Efll, 0 . 0 0 0 0 0 0 0 E 00, are standard

scalar output data.

1 0 . 3 . 1 . 2 Integers and Bit Strings.y The standard outfiut

fOrmat for integérs and bit strings is:

<blanks>s<digits>

wheré <blanks> is a string of blanks

s is‘a blank or a minus Sign

<digits> is a string ofidigits, 0 to 9.

10-13

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

The total field of characters'in this standard form is

fixed in size to be the same as that for scalars; leading zeros

are suppressed and appear as blanks, except for a single zero.

For example, suppose the character field has been fixed by

_implementation at 15, then integers might appear as:'

(l) , (15)

5

~4673

0

2684736 .

Note that when bit strings appear in the WRITE stafement they

are converted to integers according to the rules stated in

S E C . 6 . 2 . 1 . 3 0

10.3.1.3 Characters. The standard output format for

characters is simply a variable field size equal to the string

length of the character variable or expression in the WRITE-

statement.

EXAMPLES:

1. WRITE(LISTING)COLUMN(20),‘DIST.='IIAII'MILES';

' This statement might result in the following printed

line:

(20)

DIST.=3.0654767E 06 MILES

2. Suppose-it is desired to print the same data as above

in the non—standard format sxxx.xxx, where s is a blank or

10-14

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840

,.
~ r

<
 .

A
-

. .
.

A .
.

. . .
.

 .
v 4

_
‘
 V

A A
.

~ ._.u.,.." -

.
.

.

.. .
.

.
.

.
.

 A.
.

.
\

‘
.

. .
U

.

.
..

.
V

.
.

“

x
.

-

-

minus, and the x's represent digits. Then,

WRITE (LISTING).COLUMN(20) 'DIST.=' | l .
.PICTURE('sxxx;xxx’,A)I]'MILES';

The function.PICTURE could be a programmer-defined

function which accepts the character literal ' skxx .xxx'

and a scalar, A, and returns a character variable repree

senting the scalar quantity in the desired form.

3. Print an array of bit strings in octal format.

WRITE(LISTING) CHAR@OCT([é]);

Note that the character strings representing the octal

values will be separated, on each line, by the tab default.

The result might be

03664 04662 37774 03725

06437 77172 46162 . 12346

etc.

1 0 . 4 Input/Output Manipulations

In addition to the <read- and <write-control> functions

SKIP, TAB, COLUMN, PAGE and LINE. several others are defined for

programmer convenience.

1 0 - 4 - 1 g/o Functions

PAGE_pF(<device>)

LINE_pF(<device>)

COLUMN_QF(<device>)

!

10-15

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02.139 - (617) 868-1840

T

. are functions which result in the current page, line and

column numbers;

10.4.2 Character String Functions

LEFT(<charactér—expression>)

RIGHT(<character-expression>,<p>)

are functions for the left and right justification of character

strings.

LEFT removes all leading blanks of the <character—éxpression>.

RIGHT creates a string of length <p> and truncates on the

léft or pads with blanks on the left dépendihg on whether the

<character—éxpression> length is greater or less than <p>.

10-16

, INTERMETRICS INCORPORATED * 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

r
-

I
'

F
.

O
r

'

-
.
—
m

.
.

APPENDIX A
Built—In Functions on Pseudo Variables

The built-in functions and péeudo—variables available in

HAL are givén in this appendix, and are presented in alphabetical?

order under their respective headings. The allowable data-types

‘for the arguments are indicated using the following abbreviations:

I: integer

S: scalar

V: vector

M: matrix

B: bit

C: character

. A. Conversion Functions (see Sec. 6.2.2).

1. INTEGER

Arguments: BII:S,C. Converts an argument to an integer,

or a list of arguments to an array of integers;

2. SCALAR I

Arguments: B,I,S,C. Converts an argument to an integer,

(or fixed—) point scalar, or a list of argu~

ments to an array of scalars.

Avl

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840

_
_

_
_ .

__ _ . .
‘

.
.

.

_
 __ v

.
.

a

.
.

o

3. BIT . . .‘

Arguments: B,I}S,V,M,C. -Converts an argument to a .

bit string or a list of argumenfis to an_

array of bit strings (V,M are interpreted

as lists of scalars). ‘

4. CHARACTER:

Arguments: B,I,S,V,M,C.I Converts an argument to a

character string or a list of arguments

to an array of character strings (V,M are

rinterpreted as lists of Scalars).

5. VECTOR '
Arguments: B,I,S,V,M,C. Converts a list of arguments

to a vector, or an array of vectors.

6. MATRIX

Arguments: B,i,S,V,M,C. Converts a list of arguments

to a matrix or an array of matrices.

B. String Functions

1. INDEX (string, config)

Arguments: B,C. Searches a string for a specified‘

bit or character configuration; The

starting location of that configuration

within the stiing is returned as an integer

data type. '

2. ’LENGTH (string)

Arguments: B,C. Finds the string length and returns

it as an integer dafia type.

A—2

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' 7(617) 868-1840

LEFT (character~string)

Result: LEFT removeé all the leading blanks of a

' character string Operand and returns the

‘resultant character string. . -

RIGHT (character-string, p)

Result: RIGHT cregtes a new character string of length,p

. The character string afgument is truncated on

the left, or padded with blanks on the ieft,

depending on whether its length is greater

or less than p. p is a scalar expression

which ié rounded to the nearest integer

before use.

C. Arithmetic_Functions

These functions return the same data type as the argument

(bit arguments are first converted to integers; the ffinction

returns an integer).

1.

INTERMETRICS INCORPORATED - 380 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840.

ABS

Finds the absolute value of the argumeht.

CEIL, CEILING

Determines the smallest integral value that is greater

than or equal to the argument. »

FLOOR

IDetermines the largest integral value that does not

‘exceed the argument.

ROUND

Rounds the argument to nearest integral value.

SGN, SIGNUM

Returns 0, +1, -1 as argument is positive or Zero, and

0

A—3

o

.

.

1.

negative, respectively.

SIGN ' '

Retufns +1} -1 as argument is positive or Zero, and

negative, respectively. ‘

TRUNC, TRUNCATE' '
Returns 0 if argument is less fihan +1 but greater than

-1; otherwise equivalent of SIGN (argument) times the

largest positive integral value_that does not exceed ABS

'(argument).

D. Mathematical Functions

These functions return a scalar data type. Arguments may

be B,I,S. (Bits and integers are converted to scalars.)

Array arguments yield array results.

ACOS, ARCCOS

Trigonometric cosine; argument in closed interval [-1, 1];

resuits in closed interval [0, w].

ARCCOSH

InverSe hyperbolic cosine; arg not less than 1.

ARCS I N

Invegse trigonometric sine; arg in closed interval

[—1, 1]; result in closed interval [-w/Z , fl / Z] .

ARCS INH

Inverse hyperbolic arc sine; arg any valué.

ARCTAN

Inverse trignonometrictangent; arg any value; result in

open interval (— w / 2 , . fi / 2) .
- - I
ARCTAN H

Inverse hyperbolic tafigent; Iarg|<l
' A—4 .

INTERMETRICS INCORPORATED ° 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868—1840

V
-

.
-.

.
< A

.
u

-

-

-

.
.

.

I |
 |

'
i

i0.

11.

13.

14.

15.

16.

12.

COS

Trigonometric Cosine; arg in radians; Iarg|<Kl.

COSH"

Hyperbolic cosine} Iarg l<K3.

EXP ‘

Exponential, (earg); larg l<K3.

LOG

Natural logarithm; arg positive and non-zero

'REMAINDER, REM

Result is the remainder from the division of two

arguments.

SIN

Trigonometric sine; arg in radians; |arg|<K1

SINH

Hyperbolic sine; larg|<K3

TAN

Trigonometric tangent; arg in radians; arg not odd

multiple of n/Z; larg|<K2

TANH

Hyperbolic tangent; arg any value.

SQRT

Square root; arg positive.

Note:K1, K2 and K3 are upper limits which depend upon

target machine characteristics.

E. ‘Matrix—Vector Functions

Arguments.may be vectors or matrices (as applicable).

A—S

INTERMETRICS INCORPORATED - 380 GREEN STREET ~ CAMBRIDGE, MASSACHUSETTS 02139- (617) 868-1840

.
.

.

. .V
.T__

..
.

1
_

A
_

 A
.

 V
.

.

._ .
.

.
.

.
.

A

-
.

,. .

.
.

. .

.
.

.
.

.
.

-
.

.

n rv
‘

A
-

.-._-‘-

A
.

_
.

H

.
.

‘
,

r

. A
A

.

.
, ‘

,

I. ABVAL ' “

Absolute value of magnitude of §ector; argument may be a

vector of any length. -

2. ‘ADJOINT, ADJ

Adjoint; argument is finvertible square matrix of anyf

dimension; result is equal to DETERMINANT (argument)

INVERSE (argument) '

. 3. DETERMINANT, DET

Determinant; argument is a squafe matrix

4. INVERSE

Inverse; argument is square matrix; result is inverse

if argument is invertible. .

5. TRACE, TR

Trace; argument is square matrix; result is sum of

diagonal matrix élements. V

6 . TRANSPOSE

Transpose; argument is matrix of any dimensions; result

is the interchange of the rows and columns bf the argument.

7. UNIT

‘ Unit vector; argument is vector of any length; result is

a vector of magnitude 1 and in line with argument.

'F. Linear Array Functions

These functions have the following general format:

‘<function-label>(<linear-array>)

where the function will operate on the <1inear—array> repre-

senting the "inner-most" free index of the array argument.

A-6

INTER‘METRICS INCORPORATED -' 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 8684840~

- -- m1

The <linear—arréy> may be of (B,I,S,V,M) data types. The

fuhctions return a scalar feéult.

.1. SUM '
Result is sum of the array elements.

2.' PRODUCT, PROD
Result is product of the array elements.

3. MAXIMUM, MAX

Reéult is the maximum value of the arréy elements.

4. MINIMUM, MIN

Result is.the minimum value of the list élements.

. 5 . POLY

' POLY forms a polynomial from a linear—array and from

an independent variable. The elements of the array

form the polynomial coefficients. The array may be

of (B,I,S) data types. The general format is

_ POLY(<independent~variable>,<1inear—array?)

POLY defines the following polynomial:

‘ 2 n—l a1 + a2v + a3v. + ... anv

where ah are the elements of the <linear-array>, and

v is the <independent variable>.

A-7

INTERMETRICS INCORPORATED - 380 GREEN STREET ' CAMBRIDGE. MASSACHUSETTS 02139 - (617) 863-1840

_ ' . _ _ _ _ I

G; Miscellaneous Functions

1. RANDOM '

Result is the current basé random number in the psefido-

random number generator. This function énables the'

programmer td make successive runs of a program without

repeating sequences of pseudo-random numbers.

2 . TIME ‘ I '

Returns current time.

3 . DATE

Returns current date

H. Péeudo—variables

A pseudo-variable, in HAL, is a function that can only

DO statement. The only defined pseudo-variable is BIT.

See Sec. 7.1.2.3..

|.
E A-8

I ' appear on the' left of an equal sign (=) in an assignment or

INTERMETRICS INCORPORATED ' 380 GREEN STREET. ' CAMBRIDGE, MASSACHUSETTS 02139 - (6-17) 86-8-1840

Ema-r...,—--........_._....._._._._,___uh”..- AVA,‘ A H ,. ., , ,A_ ”AAA _, , ,A A, .. , A A , ,4, i

B.l DEFAULTS WITH DATA DECLARATIONS

3.1;1 Within DECLARE Statements

B 0 1 0 1 0] -

are provided; i.e. no <array-spec>, <type-spec> and <attribute

list>, the following defaults apply to the declared name(s):

1 .

Note: For fixed point machine PRECISION default is single‘

B.l.l.2

l.

INTERMETRICS INCORPORATED ' 380 GREEN STREET ° CAMBRIDGE,” MASSACHUSETTS 02139 ° (617) 868-1840

At the COMPOOL level,

APPENDIX B

”Standard Defaults

Specifications (See Sec. 5.1.1). If nd <specifications>

SCALAR PRECISION(6)

At the PROGRAM level,

SCALAR PRECISION(6)7 initial value is unspeéified.

At other levels,

SCALAR PRECISION(6) AUTOMATIC; ini£ia1 value

is unspecified. '

For a function (Secs. 5.1.1.5, 7.4.2.1), if <type-spec> is

not provided, . ‘ ‘

SCALAR PRECISION(6)

precision, with zero integer bits.

Precision, Dimensions and Length (Sec. 5}1.l.2).

. I f scalar, véctor, or matrix PRECISION is not provided, 9

the precision default is the same as in B.l.l.1 above. -

If vector <length> is not provided, a lengfih = 3 is

presumed.
i

If matrix <rows> andg<columns> are not provided, 3

rows and 3 columns are presumed.

B-l

If bit <length> is not proVided, a length = 1 is

presumed.

.If fixed character <length> is not provided, a

length = 8 is presumed.

3.1.1.3 Attributes (See Sec. 531.1.3)

3.1.1.3.1 Initialization Attributes. If INITIAL or CONSTANT

is not provided, the identifier is presumed to be a variable

with unspecified initial value.

3.1.1.3.2 Storage Class Attributes. If STATIC or.AUTOMATIC

is not provided, the STATIC storage class is used.

3.1.1.3.3 Dynamic Sharing Control Attributes. If LOCK_IYPE(<n>)

3.1.1.3.4 Storage Optimization Attributes. If DENSE or ALIGNED

is not provided, the ALIGNED attribute is presumed.

B.1y1.3.5 Structure Qualification.. If QUALIFIED or NOT_QUALIFIED

is not provided in a structure declaration NOT_QUALIFIED is

'presumed.

B.1.2 Implicit Declarations (See Sec. 5.3)

For the implicit declaration of SCALAR, VECTOR, MATRIX,

BIT and CHARACTER the default characteristics of length, precision,

initialization, sharing class, and storage optimiZation are the

_ B-2

INTERMETRICS INCORPORATED ' 380 GREEN STREET ' CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840

, __ i____—.______._____-'-.i

l is not specified, for a variable, no controlled sharing is provided.

.
~

n
.

.

F—

same as described in B.1 above for the explicit declaration of

these data types,

3.2 WITHIN EXPLICIT CONVERSION FUNCTIONS (see Sec. 6.2.2y

8.2.1 Data-type

B . 2 . 1 . 1 BIT (<single-Qperand>). If BI& is not subscripted, the

result is a full word bit string. Integers and scalars are ‘

converted t9 full Word bit strings; character operands are

confierted to the bit length representing the total character

string.

B.2.1.2 CHARACTER (<single-operand>). If CHARACTER is not

subscripted, an integer or scalar operand is converted to a

_character representation; a bit string is first converted to an

integer, and then to a character representation.

3.2.1.3 VECTOR (<list>). If VECTOR is not subscripted, the

dimension and the number of elements in the list equals one

of three, the dimension is firesfimed equal to 3. If the list

consists of 5 single-operand, each vector componenfi is assigned

the value of tfiis operand.

3.2.1.4 MATRIX (<list>). If MATRIX is-not subscripted, and

the number of elements in the list equals one or nine, the

dimensions are presumed to be 3x3. If the <1ist$ consists of

a <single-operand>, each matrix element is assigned the value

of this operand.

B-3 .

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868-1840

'
-

a

.
.

 ,
_ __ _

_
_

_

_
. . .

.
.

_
.

, ..,.. -

\
-

—
-

.

.
.

.

.
,

.
.

.
.

.
w

.
.

.
.

. .

u
.

_
.

.
.

_
.

1

-
.

-
.

_
.

 “
u

m

-
-

-
-

.

.
.

.
.

_ . .

-

_
.

a

a

3 . 2 . 2 Array-Type

B.2.2.1 INTEGER(<list>) and SCALAR (<list>). if these functions

are not subscripted with <afray~shape>, a one dimensional array

of n-elements is presumed, where n is the number of elements.in

the list.

3 . 2 . 2 . 2 BIT'(<list§) and CHARACTER (<liét>). If these functions are

not subscripted with <array-shape>, 6ne dimensional arfays of

length n are presumed, where n is the number of elements in the list.

If these functions age not subscripted with <index-expression>—

then a full word bit string is presuméd for BIT and a character

'string of length 8 for CHARACTER.

3.2.2.3 VECTOR(<1ist>). If VECTOR is not subscripted wiih'

<dimension> and: n

1. _the list consists of a single operand, a dimension of

3 is presumed; Each vector component is assigned the

value of this operand.

2. the list consists of more than a single element, the

dimension of each veétor array—element Will be equal to

the number of elemefits in the list.

Note that the array—type function, VECTOR, must always be-

subscripted by <array-shape> to distinguish it from the data-type

conversion function, VECTOR.

B-4

INTEIRMETRICS INCORPORATED - 3'80 GREEN STREET ° CAMBRIDGE, MASSACHUSETTS 02139 - (61?) 8-68-1840'

B l2 ;2 .4 MATfiIX(<1ist>).‘ if MATfiIX is not subsCripted wifih

<dimension> and: i f .

'1. the list consists of a single operand, dimensions of

3 x 3 are presumed. :Each matrig element is assigned

the value of this opgrand. I

2; the list consists of nine elements, dimensions of

3 x.3 ate presumed. Each matrix array—element will.

be assigned this list values.

3.. the list contains multiples of 9 elements (18, 27,

etc.), dimensioné of 3x3 are preéumed. (In this case.

the number of list elements must be gonSiétefit With

“the <array-shape> and the default, 3x3.)

Note that the array-type function, MATRIX, must always

be subsbripted by <érray-shape> to distinguish it from thé data-'

type conversion function, MATRIX.

B-5

INTERMETRICS INCORPORATED ' 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 868-1840'

:l
I ' APPENDIX C

g . HAL Kelwords

; I (not including built-in functions)

; The following Words are HAL keywords and are usually unavailable.

' I for any other use.

I ACCESS EXI'If PRIO__CHANGE
r . AND ‘ FALSE PRIORITY
‘ I ARRAY FILE , . PROCEDURE
I 'ASSIGN j FOR f QUALIFIED

AT. _ ' FUNCTION READ
- I ' AUTOMATIC GO READ-"ALL

BIN .HEX . REPLACE
I BIT . ID_CODE RETURN

BIT__ARRAY IF " SCALAR '
I BIT LENGTH IN ' SCHEDULE

BY INCLUDE SIGNAL
' CALL _ INDEPENDENT SKIP '

CASE INITIAL STATIC
CAT ' INTEGER I SYSTEM

I CHAR . LABEL TAB
CHARACTER ' - LATCHED TASK

I CHAR__ARRAY LINE . THEN
CHAR__LENGTH MATRIX TERMINATE

I CLOSE ‘ ‘ MATRIX_DIM . 'I'O
COLUMN NOT *TRUE

I CONSTANT NOT__QUALIFIED UNTIL
DECLARE OCT UPDATE

I DO OFF _ VARYING
ELSE ‘ 0N VECTOR .

' END- ' OR VECTOR;LENGTH
I ERROR ' OUTER ' WAIT

ER__RUPT PAGE - WHILE .
I EVENT ‘ . PRECISION WRITE-

EXCLUSIVE . PRIO I - ‘ .
I C-l

' “INTERMETRICS {NCORPORATED ° 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 ° (617) 868-1840.

r
—

h

