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REVISION 1 CHANGES

This document is a revised version of the previous one dated February 1971,

and supersedes that document. The following is a summary of the major technical

changes included in this revision:

Ae The Filter-Weighting Matrix Extrapolation Equations

have been modified and expanded to account for the

cross-correlation terms when a weighting matrix in-

volving two state vectors is being extrapolated. The

concept of a (6 x d) filter-weighting sub-matrix

corresponding to a single state vector has been in-

troduced.

The earth's J
g gravity field has been elevated to

the status of the standard option for the perturbing

acceleration,
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FOREWORD

This document is one of a series of candidates for inclusion in a future re-

vision of MSC-04217, "Space Shuttle Guidance Navigation and Control Design Equa-
tions''. The enclosed has been prepared under NAS9-10268, Task No. 15-A,

"GN & C Flight Equation Specification Support", and applies to function 1 of the

Orbital Navigation Module (ON2) as defined in MSC-03690 Rev. A, ''Space Shuttle

Orbiter Guidance, Navigation and Control Software Functional Requirements",
dated 15 June 1971.

Gerald M. Levine, Director
APOLLO Space Guidance Analysis Division
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i INTRODUCTION

The Precision State and Filter Weighting Matrix Extrapola-
tion Routine provides the capability to extrapolate any spacecraft

geocentric state vector either backwards or forwards in time through
a force field consisting of the earth's primary central-forcegravita-
tional attraction and a superimposed perturbing acceleration. The

perturbing acceleration may be either the single dominant term (J 2)
of the earth's oblateness or a more complete expression involving
all significant perturbation effects. The Routine also. provides the

capability of extrapolating the filter-weighting matrix along the preci-

sion trajectory. This matrix, also known as the ''W-matrix", is a

square root form of the error covariance matrix and contains statisti-

cal informationrelative to the accuracies of the state vectors and

certain other optionally estimated quantities.

On any one call, the routine extrapolates only one state vec-

tor and only those six rows of the filter-weighting matrix relating to

this state vector. Two calls are required to extrapolate two separate

state vectors and a complete filter-weighting matrix pertaining to two

state vectors. The complete extrapolated filter-weighting matrix is

obtained by properly adjoining the two separately extrapolated sub-

matrices of six rows each,

The routine is merely a coded algorithm for the numerical

solution of modified forms of the basic differential equations which

are satisfied by the geocentric state vector of the spacecraft's center

of mass and by the filter-weighting matrix, namely:

B

r3(t)
a P(t) +

2
- r(t) =

a,(t)
dt

and

4 w(t) = F(t) W(t),
dt

where a gl t) is the vector sum of all the desired perturbing accelera-

tions, and F(t) is a matrix containing the gravity gradient matrix

and the identity matrix in its off-diagonal sub-blocks.

Because of its high accuracy and its capability of extrapola-

ing the filter-weighting matrix, this routine serves as the computa-

tional foundation for precise space navigation. It suffers from a

relatively slow computation speed in comparison with the Conic State

Extrapolation Routine.
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2, FUNCTIONAL FLOW DIAGRAM

The Precision State and Filter Weighting Matrix Extrapola-
tion Routine performs its functions by integrating modified forms of

the basic differential equations at a sequence of points separated by
intervals known as time-steps, which are not necessarily of the same

size, The routine automatically determines the size to be taken at

each step,

As shown in Fig, 1, the state vector and (optionally) the

filter-weighting sub-matrix are updated one step at a time along the pre-

cision trajectory until the specified overall transfer time interval is

exactly attained. (The size of the last time-step is adjusted as neces-

sary to make this possible, )
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Weighting Matrix Extrapolation Routine
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ao INPUT AND OUTPUT VARIABLES

The Precision State and Filter Weighting Matrix Extrapolation

Routine has the following input and output variables;

Input Variables

Geocentric state vector to be extrapolated(ro+¥%q)

to Time associated with (rq: Yq) and Wo

te Time to which it is desired to extrapolate

(rq S Yo) and optionally Wo

Wo Filter-weighting sub-matrix to be extra-

polated (optional) (Wo has dimension 6 x d)

d Number of columns in filter-weighting sub-

matrix (d=0, 6, 7, ..., where 0 indicates

no W-matrix extrapolation)

Spert Switch indicating the perturbing accelera-

tions to be included. (Snert
= 1 implies Jo

oblateness term only; Bert >1l implies a

more complete perturbing acceleration

model (or models).)

Output Variables

(rp Vy) Extrapolated geocentric state vector

WwF Extrapolated filter-weighting sub-matrix

of dimension 6 x d
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4, DESCRIPTION OF EQUATIONS

4.1 Precision State Extrapolation Equations

Since the perturbing acceleration is small compared with the

central force field, direct numerical integration of the basic differ-

ential equations of motion of the spacecraft state vector is inefficient,

Instead, a technique due to Encke is utilized in which only the devia-

tions of the state from a reference conic orbit are numerically integrated,
The positions and velocities along the reference conic are obtained

from the Kepler routine,

At time ty the position and velocity vectors, Lp and v,, define

an osculating conic orbit, Because of the perturbing accelerations,

the true position and velocity vectors r(t) and v(t) will deviate as

time progresses from the conic position and velocity vectors Donte)
and vena(t) which have been conically extrapolated from Xoand Yo:
Let

be the vector deviations, It can be shown that the position deviation

6(t) satisfies the differential equation

a? L
< 8(t) +——__]f(q) r(t) +5 (t)| = ay(t)2 $

dt r (t)
con

with the initial conditions

where



(6--2r) =6 2

Se Fiqy ey = Eads
r 1+ +p

and ag (t) is the total perturbing acceleration, The above

second order differential equation in the deviation vector 6(t)
is numerically integrated by a method described in a later sub-

section.

The term

£(q) r(t) +6 (t)
Foon

must remain small, i,e. of the same order as a,(t), if the method

is to be efficient, As the deviation vector 6(t) grows in magnitude,

this term will eventually increase in size, When

6 (t)] > O.01fr9 (t)] or [v(t)] > 0.01]¥0, (t)|

or when

| &(t)|>d,., or] v(t) |>vay

a new osculating conic orbit is established based on the latest preci-

sion position and velocity vectors r(t) and v(t), the deviations 6 (t)

and y(t) are zeroed, and the numerical integration of 6(t) and p(t)
continues. The process of establishing a new conic orbit is called

rectification.

The total perturbing acceleration ag (t) is in general the

vector sum of all the desired individual perturbing accelerations com-

prising the total force field, such as those due to the earth's oblate-

ness, the gravitational attractions of the sun and moon, and the earth's

atmospheric drag. Since many Shuttle applications will require only

the perturbing effect of the dominant term Jo of the earth's oblate-

ness, the use of only this term has been made a standard option in

the routine diagrammed in Section 5. However, provision has been

made for handling a completely general perturbing acceleration. The

form of this perturbing acceleration will depend primarily upon the

requirements of the Orbit Navigation function.
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The explicit expression for the earth's J
9

oblateness accel-

eration alone is;

2

ages | FE] ja-Ssin"9)i +2+09Sarl|
where

|

i. is the unit position vector in reference coordinates,

inole is the unit vector of the earth's north polar

axis expressed in reference coordinates,

eae iy
:

dole,

and

Tr is the mean equatorial radius of the earth.

4.2 Filter-Weighting (W) Matrix Extrapolation Equations

The position and velocity vectors which are maintained by the

spacecraft's computer are only estimates of the actual values of these

vectors. As part of the navigation technique it is also necessary for

the computer to maintain statistical information about the position

and velocity vectors. Furthermore, in particular applications it is

necessary to include statistical data on various other quantities, such

as landmark locations during Orbit Navigation and certain instrument

biases during Co-orbiting Vehicle Navigation. The filter-weighting

W-matrix is used for all these purposes.

If «(t) and n(t) are three dimensional vector random

variables with zero mean which represent the errors in the estimates

of a spacecraft's position and velocity at time t, then the six-dimen-

sional state error covariance matrix Eg (t) at time t is defined by:

e(t) c(t)? e(t) a(t)
E,(t)

= ee wn ,

n(t) c(t)? n(t) a(t)?

where the bar represents the expected value or ensemble average at

the fixed time t of each element of the matrix over which it appears.



If Y(t) is a j-dimensional vector random variable with zero,

mean which represents the errors in the estimates of the j additionally

estimated quantities such as landmark locations or instrument biases,

then a (6+j) - dimensional state and other parameter covariance matrix

Eig+4)'*? is defined by:

e(t) v(t)?
E g(t)

oe

v(t)e(t)? vty a(t)? x(t) y(t)
t

Further, if the statistical properties of the positions and ve-

locities of two separate spacecraft are to be maintained, a twelve-

dimensional state covariance matrix is defined by:

= IY. ae Ay

Ep cp =p pp Epeér Eptir

aE + Be +

Tp £p ip tp tper dep re

=
EE aE iE ake

ET Ep Eq7Ip ET ET Ec ir

- = TS =

Qyrép 17 2p el api

where the subscripts P and T refer to the primary and target ve-

hicles, respectively.

And finally, if the statistical properties of the j additionally
estimated quantities are also to be maintained along with the two state

vectors, a (12 +j) state and other parameter covariance matrix

Ei +3;'" is defined by:
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ppt

S52

Bg htk® E (3) cn?
(12 +4) 12 =T-

E

A

Be ae ar: . rE

Rather than use one of the above covariance matrices in the

navigation procedure, it is more convenient to use a matrix W gf t)

having the same dimension d as the covariance matrix E
d (t) and

defined by:

e

T

E, (t) = W y(t) W(t)

The matrix W Q(t) is called the filter-weighting matrix, and is ina

sense a square root of the covariance matrix.

Extrapolation of the W(t) matrix in time may be made

by direct numerical integration of the differential equation which it sat-

isfies: (where j = 0, 1, 2,... is the number of additionally estimated

quantities )

2
'3 Js W (t)

da zs | “(6xj) (6+j)
ade Veg! eo

|

Oj x8) | OGxi)

3
Oo iE Oo oO

a
| tees)

Gp) O | O oO

:
—

[-=---—-----L----

at Wue+j)'*)* Oo Oo oO T3 |
a Wiia+j)

o 6,6 05

mee el (
|

as SUp® aa

where I. is the 3x 3 identity matrix, the O's are zero matrices of

the required dimensions, and the G(t) are the 3 x 3 conic gravity

gradient matrices



Qi Sy | seis etty?= rc T,|rot)

associated with the vehicle under consideration or with the primary (P)

or target (T) vehicle.

Extrapolation of the Wy matrix may also be made by the

following technique, which is somewhat simpler to implement in an

on-board computer since matrix manipulations are reduced to more

tractable vector manipulations.

If the dx d filter-weighting matrix Wy
= [ i ] is

partitioned into three-dimensional column vectors Wa
which bear

the subscripts of their first component:

AN ca ae eae w

eG, 0 OFF “0, (d-1)
Wa

:

Ww Ww w

—~3; 0 —3,1
eee:

—3,(d-1)

Cees eas Bt Se ea a ee ee

except for the last row where the Wei
vectors may be one or two-

2

dimensional if d is not divisible by three, then the previous first

order differential equations are equivalent to:

a2
ete Sas

——
:

ee ee aes,

eee ae 0

Wa constant for k =6
re Rage

and
=3

ee ee
2

d
— =~ w,., = G,(t) we.

dt? —6,i - —6,i

Sait f= hose

=
M34 dt 051

ae peed 8,

—9,i Got 054

Woes
= constant for k 2 12



When written out in full, the above equations are:

2
d Hadas 2

w.., = )3 [£(8)+ w j(t)]E(t)= (t)w.. (t)
d 42 —0,i r

5
ty sgt —0,i — —0,i

=p

with £20; (d= 1)
=

d

3 dt W3i

Wi. ;

= constant for k = 6
ae

5 1

and

a*
w

oes 15 (t)> (t) (t) - 12K) (t)
fie hh Se [=P 0x JEP peo

P

a? Le stro we tye tt - v7) w,
—~ *,,.

2. 7 es ar owl Way
dt

-

lr (t)

with 0 td)

w = athe w
a feet

= sds
wot at ~6,i

Wij
= constant for k 2 12

ats 1

These second-order differential equations may be integrated using the

same numerical integration technique as is used for the spacecraft

positionvector. The vectors w vi and Wo i
bear the same relation-

ship to the spacecraft velocity vector as the vectors Post
and Wei

bear to the spacecraft position vector, and Wes i
and

Wei
area

by-product of the numerical integration of
Wok

and
Wei just as

the velocity vector is a by-product of the numerical integration of the

position vector.



4.3 Numerical Integration Method

The extrapolation of inertial state vectors and filter weight-

ing matrices requires the numerical solution of two second-order
vector differential equations, which are special cases of the general

form

a2
— y(t) = f(t, y(t), 2(t))
at?

where

pent;
eA

Nystrom's standard fourth-order method is utilized to numerically

solve this equation, The algorithm for this method is:

i 2

Yn
t 2, At + —(k+ ky + ky)(At)Ynt1

~

6

=

z

__ ss

ky itt, Ja?2a!

s

; 1 1 2 1

—
= f(t,+=At, ne +=, (At)", 2 +=k At)

8 ms

¥

ee

1 1 2 1

k,
=

SotmeisOE
iene ee (At) ot At)

& =f € at y +2 Ate) tat et
—4 —'n

2 Yn" 2n
ee

7 =n =3

where

y= Tt) = i?

and

LPre=ttat



As can be seen, the method requires four evaluations of
:

it, y, z) per integration step At as does the classical fourth-order

Runge-Kutta method when it is extended to second-order equations,

However, if f is independent of z, then Nystrom's method above only

requires three evaluations per step since k,
=

ky. (Runge-Kutta's
method will still require four),

The integration time step At may be varied from step to

step, The nominal integration step size is

At = ¢c ze 3/2/ J,
onnom nom c

where c is a program constant. (The value c = 0.3is
om nom

recommended and implies that about 21 steps will be taken per trajec-

tory revolution). The actual step-size is however limited to a maxi-

mum of At
max

, which is also a program constant. (A value of about

4000 seconds is suggested.) Also, in the last step, the actual step

size is taken to be the interval between the end of the previous step

and the desired integration endpoint, so that the extrapolated values

of the state or W-matrix are immediatelyavailable. Thus the integra-

tion step-size At is given by the formula

At = + minimum (| tp- tl, Atom’ “tmax?

where this the desired integration end-point and t is the time at the

end of the previous step, The plus sign is used if forward extrapola-

tion is being performed, while the negative sign is used in the back-

dating case,
:



5. DETAILED FLOW DIAGRAMS

This section contains detailed flow-diagrams of the Preci-

sion State and Filter Weighting Matrix Extrapolation Routine,

Each input and output variable in the routine and subroutine

call statements can be followed by a symbol in brackets. This symbol

identifies the notation for the corresponding variable in the detailed

description and flow diagrams of the called routine. When identical

notation is used, the bracketed symbol is omitted.
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6, SUPPLEMENTARY INFORMATION

Encke's technique is a classical method in astrodynamics

and is described in all standard texts, for example Battin (1964),

The f(q) function used in Encke's technique (and in the lunar-solar

perturbing acceleration computations) has generally been evaluated

by a power series expansion; the closed form expression given here

was derived by Potter, and is described in Battin (1964).

The oblateness acceleration in terms of a general spherical

harmonic expansion may be calculated in a variety of ways; three

different recursive algorithms are given in Gulick (1970). For low

order expansions, especially those involving mostly zonal terms, an

explicit formulation is generally superior computation-time-wise, as

only the non-zero terms enter into the calculation. The general ex-

pression for the zonal terms is given by Battin (1964), while Zeldin

and Robertson (1970) give explicit analytic expressions for each of

the tesseral terms up through fifth order; hence all combinations of

terms may easily be included in the oblateness acceleration by con-.

sulting the formulations in these references.

A full discussion of the use of covariance matrices in space

navigation is given in Battin (1964), Potter (1963) suggested theuse of

the W -matrix and developed severalof its properties, It should be noted

that strictly the gravity gradient matrix G(t) should also include the

gradient of the perturbing acceleration; however, these terms are so

small that they may be neglected for our purposes, The use of only

the conic gravity gradient, however, does not imply the W-matrix is

being extrapolated conically. (Conic extrapolation of the W-matrix

can be performed by premultiplying the W-matrix by the conic state

transition matrix, which can be expressed in closed form), Rather

the W-matrix is here extrapolated along the precision (perturbed )
trajectory, as can be seen from the detailed flow diagram of Section

5,
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The Nystrom numerical integration technique was first con-

ceived by Nystrom (1925), and is described in all standard texts on

the numerical integration of ordinary differential equations, such as

Henrici (1962), Parametric studies carried out by Robertson (1970)

on the general fourth-order Runge-Kutta and Nystrom integration

techniques indicate that the ''classic'' techniques are the best overall

techniques for a variety of earth orbiting trajectories in the sense of

minimizing the terminal position error for all the trajectories,

although for any one trajectory a special technique can generally be

found which decreases the position error after ten steps by one or

two orders of magnitude for.only that trajectory, The classical

fourth-order Runge-Kutta and Nystrom techniques are approximately

equally accurate, but the latter possesses the computational advant-

age of requiring one less perturbing acceleration evaluation per step

when the perturbing acceleration is independent of the velocity, This

fact has been taken into account in the detailed flow diagram of Section

5, in that the extra evaluation is performed only when the perturbing

acceleration depends explicitly on the velocity. Some past Apollo ex-

perience has suggested that extra evaluation effect with drag is so

small as to be negligible; further analysis will confirm or deny this

for the Space Shuttle. In regard to step-size, the constants and the

functional form of the nominal and maximum time-step expressions

have been determined by Marscher (1965).
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Klumpp

Kriegsman
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Laning

Larson

Larson

Levine (35)

Mc Kern

Millard

Muller

Nevins

Ogletree

Philliou

Phillips

Pu

Ragan

. Robertson

Schlundt

Sears

Stengel

Stubbs

» Tanner

Tempelman

White
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External Distribution List

Bradford

Caro

Cheatham

Cox

Hackler

Hambleton

Kubiak

Lawrence

Lawton

Lively (10)

Mann

Manry

Nobles
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EG

EG2

EG7

FD35

EG2

EG3
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EG2

FM?
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Olsson (5)

Peters

Price

Price

Reid

Rogers

Silver

Sollack

Smith

Suddath

Sunkel

Williams

EG/MIT
EG2

EG2

FS6

EG6

BC731(60)

EG/MIT

EG4

EG2

EG2

EG2

FS6


