INDEPENDENT ORBITER ASSESSMENT
ANALYSIS OF THE DPS SUBSYSTEM

24 OCTOBER 1986

This Working Paper is Submitted to NASA under
Task Order No. VA86001, Contract NAS 9-17650

PREPARED BY: H.J. Lowery

PREPARED BY: W.A. Haufler

PREPARED BY: K.C. Pietz

APPROVED BY: B.J. Robb
DPS Lead
Independent Orbiter
Assessment

APPROVED BY: G.W. Knori
Technical Manager
Independent Orbiter
Assessment

APPROVED BY: W.F. Huning
Deputy Program Manager
STSEOS
CONTENTS

1.0 EXECUTIVE SUMMARY 1

2.0 INTRODUCTION 4

2.1 Purpose 4
2.2 Scope 4
2.3 Analysis Approach 4
2.4 DPS Ground Rules and Assumptions 5

3.0 SUBSYSTEM DESCRIPTION 6

3.1 Design and Function 6
3.2 Interfaces and Locations 7
3.3 Hierarchy 7

4.0 ANALYSIS RESULTS 18

4.1 Analysis Results MDM 19
4.2 Analysis Results GPC 19
4.3 Analysis Results MCDS 19
4.4 Analysis Results DBC 19
4.5 Analysis Results DBIA 19
4.6 Analysis Results MMU 20
4.7 Analysis Results EIU 20

5.0 REFERENCES 21

APPENDIX A ACRONYMS A-1

APPENDIX B DEFINITIONS, GROUND RULES, AND ASSUMPTIONS B-1

B.1 Definitions B-2
B.2 Project Level Ground Rules and Assumptions B-4
B.3 Subsystem Specific Ground Rules and Assumptions B-7

APPENDIX C DETAILED ANALYSIS C-1

APPENDIX D POTENTIAL CRITICAL ITEMS D-1
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DPS OVERVIEW ANALYSIS SUMMARY</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>DPS SUBSYSTEM OVERVIEW</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>DPS MULTIPLEXER/DEMULTIPLEXER (MDM)</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>DPS GPC CENTRAL PROCESSING UNIT (CPU)</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>DPS GPC INPUT/OUTPUT PROCESSOR (IOP)</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>DPS MCDS FUNCTIONAL BLOCK DIAGRAM</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>DPS MCDS</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>DPS DATA BUS COUPLERS</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>DPS MASS MEMORY UNIT (MMU)</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>DPS ENGINE INTERFACE UNIT (EIU)</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>DATA PROCESSING SUBSYSTEM (DPS)</td>
<td>17</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>SUMMARY OF POSSIBLE FAILURE MODES AND CRITICALITIES</td>
<td>18</td>
</tr>
<tr>
<td>II</td>
<td>SUMMARY OF POTENTIAL CRITICAL ITEMS</td>
<td>18</td>
</tr>
</tbody>
</table>
1.0 EXECUTIVE SUMMARY

The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Mode and Effects Analysis / Critical Items List (FMEA/CIL). Direction was given by the STS Orbiter and GFE Projects Office to perform the hardware analysis using the instructions and ground rules defined in the Rockwell Desk Instructions 100-2G. The IOA approach features a top-down analysis of the hardware to independently determine failure modes, criticality, and potential critical items. This report documents the independent analysis results corresponding to the Orbiter Data Processing System (DPS) hardware.

The DPS hardware is required for performing critical functions of data acquisition, data manipulation, data display, and data transfer throughout the Orbiter. Specifically, the DPS hardware consists of the following components:

- Multiplexer/Demultiplexer (MDM)
- General Purpose Computer (GPC)
- Multifunction CRT Display System (MCDS)
- Data Buses and Data Bus Couplers (DBC)
- Data Bus Isolation Amplifiers (DBIA)
- Mass Memory Unit (MMU)
- Engine Interface Unit (EIU)

The IOA analysis process utilized available DPS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

Figure 1 presents a summary of the failure criticalities for each of the seven major subdivisions of the DPS. A summary of the number of failure modes, by criticality, is also presented below with hardware criticality first and functional criticality second.

<table>
<thead>
<tr>
<th>Summary of Failure Modes By Criticality (HW/F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality:</td>
</tr>
<tr>
<td>Number :</td>
</tr>
</tbody>
</table>
DPS OVERVIEW ANALYSIS SUMMARY

TABLE: DPS ANALYSIS SUMMARY

<table>
<thead>
<tr>
<th>CRIT.</th>
<th>#FM</th>
<th>#PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1R</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3/1R</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>3/3R</td>
<td>5</td>
<td>NA</td>
</tr>
</tbody>
</table>

GENERAL PURPOSE COMPUTER

CRIT. #FM #PCI
2/1R 1 1
3/1R 6 0
3/3R 2 NA

MULTIPLEXER/DEMULTIPLEXER

CRIT. #FM #PCI
3/1R 27 0
3/2R 9 0

ENGINE INTERFACE UNIT

CRIT. #FM #PCI
3/1R 5 0
3/3 1 NA

MASS MEMORY UNIT

CRIT. #FM #PCI
3/2R 12 0
3/3 1 NA

DATA BUS ISOLATION AMPLIFIERS

CRIT. #FM #PCI
3/2R 1 0

DATA BUS COUPLER

CRIT. #FM #PCI
3/1R 1 0

MULTIFUNCTION CRT DISPLAY SYSTEM

CRIT. #FM #PCI
3/1R 14 0
3/3 1 NA

CRIT - CRITICALITY
FM - FAILURE MODE
PCI - POTENTIAL CRITICAL ITEM
For each failure mode identified, the criticality and redundancy screens were examined to identify critical items. A summary of potential critical items is presented as follows:

<table>
<thead>
<tr>
<th>Criticality:</th>
<th>1/1</th>
<th>2/1R</th>
<th>2/2</th>
<th>3/1R</th>
<th>3/2R</th>
<th>3/3</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Due to the extensive redundancy built into the DPS the number of critical items are few. Those identified resulted from premature operation and erroneous output of the GPCs.
2.0 INTRODUCTION

2.1 Purpose

The 51-L Challenger accident prompted the NASA to readdress safety policies, concepts, and rationale being used in the National Space Transportation System (NSTS). The Space Transportation System (STS) Systems Office has undertaken the task of reevaluating the FMEA/CIL for the Space Shuttle design. The MDAC is providing an independent assessment of the Orbiter FMEA/CIL reevaluation results for completeness and technical accuracy.

2.2 Scope

The scope of the independent FMEA/CIL assessment activity encompasses those Shuttle Orbiter subsystems and GFE hardware identified in the Space Shuttle Independent FMEA/CIL Assessment Contractor Statement of Work. Each subsystem analysis addresses hardware, functions, internal and external interfaces, and operational requirements for all mission phases.

2.3 Analysis Approach

The independent analysis approach is a top-down analysis utilizing as-built drawings to breakdown the respective subsystem into components and low-level hardware items. Each hardware item is evaluated for failure mode, effects, and criticality. These data are documented in the respective subsystem analysis report, and are used to assess the NASA and Prime Contractor FMEA/CIL reevaluation results. The IOA analysis approach is summarized in the following Steps 1.0 through 3.0. Step 4.0 summarizes the assessment of the NASA and Prime Contractor FMEAs/CILs that is performed and documented at a later date.

Step 1.0 Subsystem Familiarization
1.1 Define subsystem functions
1.2 Define subsystem components
1.3 Define subsystem specific ground rules and assumptions

Step 2.0 Define subsystem analysis diagram
2.1 Define subsystem
2.2 Define major assemblies
2.3 Develop detailed subsystem representations

Step 3.0 Failure events definition
3.1 Construct matrix of failure modes
3.2 Document IOA analysis results
Step 4.0 Compare IOA analysis data to Rockwell/NASA FMEA/CIL
4.1 Resolve differences
4.2 Review in-house
4.3 Document assessment issues
4.4 Forward findings to Project Manager

2.4 DPS Ground Rules and Assumptions

The DPS ground rules and assumptions used in the IOA are defined in Appendix B. The subsystem specific ground rules were defined to limit the analysis to single-failed-parts for each failure mode. A subset of the failure mode keywords were identified for the DPS team. This allowed for commonality in the analysis results.
3.0 SUBSYSTEM DESCRIPTION

3.1 Design and Function

The DPS consists of that hardware required for data acquisition, data manipulation, data display, and data transfer on the Orbiter, and includes the five onboard computers and their interfaces. Reference Figure 2. More specifically, the DPS consists of the following components:

1. Twelve MDM units which convert and format data at the remote locations. Each MDM has internal redundancy and consists of a Multiplexer Interface Adapter (MIA), Sequential Control Unit (SCU), Input/Output Module, Analog To Digital Converter, and Power Supply. They convert and format serial digital GPC commands into parallel discrete, digital, and analog data for transfer to vehicle subsystem hardware. They also convert and format parallel discrete, digital, and analog data from vehicle subsystems into serial digital data for transmission to the GPCs. Reference Figure 3.

2. Five GPCs each consisting of a Central Processing Unit (CPU) and Input/Output Processor (IOP). The CPU functionally consists of an Arithmetic Logic Unit, Local Store, Master Bus Control Unit, Data Flow Multiplexer, Micro-code control unit, CPU Timer, Interrupt Logic, Main Memory Timing Page, Timers, Address Bus Control, Main Memory, and Power Supply. The IOP contains Control Monitor, IOP Main Memory, Channel Control, Direct Memory Access Queue, Arithmetic Logic Units, Local Store, Micro-code store and Decode, MIAs, and Time-slice and Multiplexing. One of the functions of the GPCs is to support guidance, navigation, and control requirements of the vehicle. They provide for the monitoring and control of vehicle subsystems. They also check for data transmission errors and crew input error. Vehicle system failures and out-of-tolerance conditions are annunciated by the GPCs. Reference Figure 4 and Figure 5.

3. The MCDS consisting of three Keyboard Units (KU), four Display Units (DU) and four Display Electronics Units (DEU). Each KU has a Key, Switch and Light. The DU consists of X/Y Deflection Amplifiers, Video Amplifiers, Cathode-Ray Tube, BITE and Power Supplies. The DEU has an Oscillator, Memory, Key-board Adapter, Symbol Generator, MIA, Control Logic, BITE, Load Switch, and Power Supplies. The subsystem provides for crew/vehicle interface via a keyboard and CRT display. The crew can interact with the subsystems with keyboard entries and executions. Reference Figure 6 and Figure 7.
4. Thirty serial digital data buses are connected to the Bus Terminal Units (BTUs) via 227 DBCs. The DBCs are shown in Figure 8.

5. Two DBIAs provide the amplification necessary to drive the stubs and provide isolation when the stubs are opened or shorted at the umbilicals.

6. Two MMUs containing MIAs, Read Electronics, Write Electronics, Mass Memory Control Logic, Power Supply with Switch, Tape Transport Mechanism with a motor, tape and heads. The mass memory unit stores programs for loading into the GPCs and the MCDS. Reference Figure 9.

7. Three EIUs which provide status and command capability of the main engines. The EIU contains an MIA, BITE, Status Buffer, Controller Interface Adapter, Operational Interface Element, Data Status and Power Supply. The EIU transfers main engine control commands from the GPC and main engine status for use by the GPC, the GSE launch processing system, and the operational instrumentation system. Reference Figure 10.

The DPS interfaces with many onboard Orbiter systems including the Main Propulsion System, Solid Rocket Boosters, Reaction Control System (RCS), Orbital Maneuvering System (OMS), Air Surface Controls used for guidance and control, Nose-wheel Steering, and the Master Timing Units.

3.2 Interfaces and Locations

The DPS hardware is located throughout the Orbiter. The composite data bus network provides the hardware interfaces between the GPCs and all other avionics subsystems that communicate via a digital data format. Reference Figure 11. GPCs 1 and 4 are located in Avionics Bay 1 while GPCs 2 and 5 are located in Avionics Bay 2, to provide separation of redundancy. GPC 3 is located in Avionics Bay 3. Each GPC interfaces to all Flight Critical MDMs, however only one GPC normally communicates to only one FF and one FA MDM during ascent and entry dynamic flight.

3.3 Hierarchy

Figure 2 illustrates the hierarchy of the DPS hardware and the corresponding subcomponents. Figures 3 through 10 comprise the detailed system representations.
DATA PROCESSING SUBSYSTEM OVERVIEW

Figure 2 - DPS SUBSYSTEM OVERVIEW

DATA PROCESSING SUBSYSTEM

GENERAL PURPOSE COMPUTER
(1 of 5)

MULTIPLEXER/ DEMULTIPLEXER
(1 of 12)

ENGINE INTERFACE UNIT
(1 of 3)

MASS MEMORY UNIT
(1 of 2)

MASTER TIMING UNIT
(1 of 1)

MULTIFUNCTION CRT DISPLAY SYSTEM
(1 of 1)

DATA BUSINES
(1 of 30)

ISOLATION AMPLIFIERS
(1 of 2)

PCM MASTER UNIT
(1 of 2)

MANIPULATOR CONTROLLER INTERFACE
(1 of 1)

CENTRAL PROCESSING UNIT
(1 per GPC)

INPUT/OUTPUT PROCESSOR
(1 per GPC)

DPS Interface but not considered in DPS Analysis
Figure 3 - DPS MULTIPLEXER/DEMULTIPLEXER (MDM)

- OPERATIONAL INSTRUMENTATION
 - MDM OF1
 - MDM OF2
 - MDM OF3
 - MDM OF4
 - MDM OA1
 - MDM OA2
 - MDM OA3

- PAYLOAD
 - MDM PF1
 - MDM PF2

- FLIGHT CRITICAL FORWARD
 - MDM FF1
 - MDM FF2
 - MDM FF3
 - MDM FF4

- FLIGHT CRITICAL AFT
 - MDM FA1
 - MDM FA2
 - MDM FA3
 - MDM FA4

- LAUNCH FORWARD
 - MDM LF1
 - MDM LF2
 - MDM LL1
 - MDM LR1
 - MDM LR2

- MULTIPLEXER INTERFACE ADAPTER
 - MIA

- SEQUENTIAL CONTROL UNIT
 - SCU

- INPUT/OUTPUT MODULES
 - IOM

- POWER SUPPLY

- ANALOG TO DIGITAL CONVERSION A/D

1. DIL - Discrete Input Low
2. DIH - Discrete Input High
3. DOL - Discrete Output Low
4. DOH - Discrete Output High
5. AID - Analog Input Differential
6. AIS - Analog Input Single-Ended
7. AOD - Analog Output Differential
8. SIO - Serial Input / Output
9. TAC - TACAN
Figure 4 - DPS GPC CENTRAL PROCESSING UNIT (CPU)
Figure 5 - DPS GPC INPUT/OUTPUT PROCESSOR (IOP)
Figure 6 - DPS MCDS FUNCTIONAL BLOCK DIAGRAM
Figure 7 - DPS MCDS
DPS DATA BUS COUPLERS

Figure 8 - DPS DATA BUS COUPLERS (DBC)

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>DATA BUS</th>
<th>QUANTITY</th>
<th>DATA BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>DISPLAY/KEYBOARD-1</td>
<td>5</td>
<td>INTER-COMPUTER-4</td>
</tr>
<tr>
<td>7</td>
<td>DISPLAY/KEYBOARD-2</td>
<td>5</td>
<td>INTER-COMPUTER-5</td>
</tr>
<tr>
<td>6</td>
<td>DISPLAY/KEYBOARD-3</td>
<td>3</td>
<td>INSTRUMENTATION/PCMMU-1</td>
</tr>
<tr>
<td>7</td>
<td>DISPLAY/KEYBOARD-4</td>
<td>3</td>
<td>INSTRUMENTATION/PCMMU-2</td>
</tr>
<tr>
<td>11</td>
<td>FLIGHT CRITICAL-1</td>
<td>3</td>
<td>INSTRUMENTATION/PCMMU-3</td>
</tr>
<tr>
<td>11</td>
<td>FLIGHT CRITICAL-2</td>
<td>3</td>
<td>INSTRUMENTATION/PCMMU-4</td>
</tr>
<tr>
<td>11</td>
<td>FLIGHT CRITICAL-3</td>
<td></td>
<td>INSTRUMENTATION/PCMMU-5</td>
</tr>
<tr>
<td>11</td>
<td>FLIGHT CRITICAL-4</td>
<td>16</td>
<td>LAUNCH/BOOST-1</td>
</tr>
<tr>
<td>12</td>
<td>FLIGHT CRITICAL-5</td>
<td>16</td>
<td>LAUNCH/BOOST-2</td>
</tr>
<tr>
<td>12</td>
<td>FLIGHT CRITICAL-6</td>
<td>6</td>
<td>MASS MEMORY-1</td>
</tr>
<tr>
<td>12</td>
<td>FLIGHT CRITICAL-7</td>
<td>6</td>
<td>MASS MEMORY-2</td>
</tr>
<tr>
<td>12</td>
<td>FLIGHT CRITICAL-8</td>
<td>4</td>
<td>PAYLOAD INTERFACE-1</td>
</tr>
<tr>
<td>5</td>
<td>INTER-COMPUTER-1</td>
<td>4</td>
<td>PAYLOAD INTERFACE-2</td>
</tr>
<tr>
<td>5</td>
<td>INTER-COMPUTER-2</td>
<td>9</td>
<td>PAYLOAD-1</td>
</tr>
<tr>
<td>5</td>
<td>INTER-COMPUTER-3</td>
<td>8</td>
<td>PAYLOAD-2</td>
</tr>
</tbody>
</table>
Figure 9 - DPS MASS MEMORY UNIT (MMU)
Figure 10 - DPS ENGINE INTERFACE UNIT (EIU)
Figure 11 - DATA PROCESSING SUBSYSTEM (DPS)
4.0 ANALYSIS RESULTS

Detail analysis results for each of the identified failure modes are presented in Appendix C. Table I presents a summary of the failure criticalities for each of the seven major subdivisions of the DPS. Further discussion of each of these subdivisions and the applicable failure modes is provided in subsequent paragraphs.

<table>
<thead>
<tr>
<th>TABLE I Summary of Possible Failure Modes and Criticalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality:</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>MDM</td>
</tr>
<tr>
<td>GPC</td>
</tr>
<tr>
<td>MCDS</td>
</tr>
<tr>
<td>DBC</td>
</tr>
<tr>
<td>DBIA</td>
</tr>
<tr>
<td>MMU</td>
</tr>
<tr>
<td>EIU</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Of the 85 failure modes analyzed, no single failures were determined to result in loss of crew or vehicle, and two were determined to result in loss of mission. A summary of the potential critical items is presented in Table II. Appendix D presents a cross reference between each potential critical item (PCI) and a specific worksheet in Appendix C.

<table>
<thead>
<tr>
<th>TABLE II Summary of Potential Critical Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality:</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>GPC</td>
</tr>
</tbody>
</table>
4.1 Analysis Results MDM

The MDM analysis considered nine failure modes for four groups of MDMs; namely FF, FA, PF, LF/LA as illustrated in Figure 3. Most of the criticalities were 3/1R. No PCIs were found.

4.2 Analysis Results GPC

The GPC analysis was subdivided into IOP and CPU failures. Generic black box failures were analyzed with causes stemming from failures of the subcomponents such as the MIA, as shown in Figure 4 and Figure 5. Two PCIs were identified and are listed in Appendix D.

4.3 Analysis Results MCDS

The MCDS consists of the KU, DU, and DEU. Functional failures of components were analyzed. These components are shown functionally in Figure 6 and Figure 7. Nine failure modes were identified and fifteen worksheets were generated. No PCIs were identified.

4.4 Analysis Results DBC

Thirty serial digital data buses connect the GPC IOPs to the BTUs via 227 DBCs. The DBCs functional components are shown in Figure 8. Two failure modes were identified and one worksheet was generated. No PCIs were identified.

4.5 Analysis Results DBIA

The DBIAs consist of components required to provide isolation between the Orbiter Launch/Boost Data Buses and the SRBs and associated GSE for each. Four failure modes were identified and one worksheet was generated. No PCIs were identified.
4.6 Analysis Results MMU

The MMU analysis investigated failures in the individual components of power supply, read and write electronics, tape transport mechanism, MIA and control logic. These are shown functionally in Figure 9. The power switch and RPC were also investigated. Most of the failures were criticality 3/2R. No PCIs were identified.

4.7 Analysis Results EIU

The EIU provides commands to and status of the Main Engines. There were no failure modes analyzed that resulted in a PCI being defined. The EIU is shown functionally in Figure 10.
5.0 REFERENCES

Reference documentation available from NASA and Rockwell was used in the analysis. The documentation used included the following:

1. ICD 13M15000, Vehicle/Main Engine Interface Control Document, Rev. U, 6-18-85
2. JSC-18819, DPS Console Handbook, 8-1-84
3. JSC-19041, MPS System Briefs, 10-1-84
4. JSC-18820, DPS System Briefs, 4-20-85
5. VS70-971102, Integrated System Schematic Rev. D, 9-28-85
6. JSC-17239, Booster Console Handbook, 10-17-85
8. JSC 12820, STS Operational Flight Rules, Final PCN-3, 6-28-85
10. 100-2G, Rockwell International Reliability Desk Instruction Flight Hardware FMEA and CIL, 1-31-84
APPENDIX A
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D</td>
<td>Analog to Digital</td>
</tr>
<tr>
<td>AID</td>
<td>Analog Input Differential</td>
</tr>
<tr>
<td>AIS</td>
<td>Analog Input Single-ended</td>
</tr>
<tr>
<td>ALU</td>
<td>Arithmetic Logic Unit</td>
</tr>
<tr>
<td>AOA</td>
<td>Abort Once Around</td>
</tr>
<tr>
<td>AOD</td>
<td>Analog Output Differential</td>
</tr>
<tr>
<td>ATO</td>
<td>Abort To Orbit</td>
</tr>
<tr>
<td>BFC</td>
<td>Backup Flight Controller</td>
</tr>
<tr>
<td>BFS</td>
<td>Backup Flight System</td>
</tr>
<tr>
<td>BITE</td>
<td>Built-In Test Equipment</td>
</tr>
<tr>
<td>BSS</td>
<td>Backup System Services</td>
</tr>
<tr>
<td>BTU</td>
<td>Bus Terminal Unit</td>
</tr>
<tr>
<td>CIL</td>
<td>Critical Items List</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRIT</td>
<td>Criticality</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray Tube</td>
</tr>
<tr>
<td>C&W</td>
<td>Caution and Warning System</td>
</tr>
<tr>
<td>DBC</td>
<td>Data Bus Coupler</td>
</tr>
<tr>
<td>DBIA</td>
<td>Data Bus Isolation Amplifier</td>
</tr>
<tr>
<td>DDU</td>
<td>Display Driver Unit</td>
</tr>
<tr>
<td>DEU</td>
<td>Display Electronics Unit</td>
</tr>
<tr>
<td>DIH</td>
<td>Discrete Input High</td>
</tr>
<tr>
<td>DIL</td>
<td>Discrete Input Low</td>
</tr>
<tr>
<td>DMA</td>
<td>Direct Memory Access</td>
</tr>
<tr>
<td>DOH</td>
<td>Discrete Output High</td>
</tr>
<tr>
<td>DOL</td>
<td>Discrete Output Low</td>
</tr>
<tr>
<td>DPS</td>
<td>Data Processing System</td>
</tr>
<tr>
<td>DU</td>
<td>Display Unit</td>
</tr>
<tr>
<td>EIU</td>
<td>Engine Interface Unit</td>
</tr>
<tr>
<td>EVA</td>
<td>Extra Vehicular Activity</td>
</tr>
<tr>
<td>FA</td>
<td>Flight Aft</td>
</tr>
<tr>
<td>FCOS</td>
<td>Flight Control Operating System</td>
</tr>
<tr>
<td>FF</td>
<td>Flight Forward</td>
</tr>
<tr>
<td>FM</td>
<td>Failure Mode</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Mode and Effects Analysis</td>
</tr>
<tr>
<td>GPC</td>
<td>General Purpose Computer</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>IMU</td>
<td>Inertial Measurement Unit</td>
</tr>
<tr>
<td>IOA</td>
<td>Independent Orbiter Assessment</td>
</tr>
<tr>
<td>IOM</td>
<td>Input/Output Module</td>
</tr>
<tr>
<td>IOP</td>
<td>Input/Output Processor</td>
</tr>
<tr>
<td>IPL</td>
<td>Initial Program Load</td>
</tr>
<tr>
<td>KU</td>
<td>Keyboard Unit</td>
</tr>
<tr>
<td>LF</td>
<td>Launch Forward</td>
</tr>
<tr>
<td>LL</td>
<td>Launch Left</td>
</tr>
<tr>
<td>LPS</td>
<td>Launch Processing System</td>
</tr>
<tr>
<td>LR</td>
<td>Launch Right</td>
</tr>
<tr>
<td>LRU</td>
<td>Line Replaceable Unit</td>
</tr>
<tr>
<td>MC</td>
<td>Memory Configuration</td>
</tr>
<tr>
<td>MCDS</td>
<td>Multifunction CRT Display System</td>
</tr>
<tr>
<td>MCIU</td>
<td>Manipulator Controller Interface Unit</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MDAC</td>
<td>McDonnell Douglas Astronautics Company</td>
</tr>
<tr>
<td>MDM</td>
<td>Multiplexer/Demultiplexer</td>
</tr>
<tr>
<td>MEC</td>
<td>Main Engine Controller</td>
</tr>
<tr>
<td>MIA</td>
<td>Multiplexer Interface Adapter</td>
</tr>
<tr>
<td>MM</td>
<td>Major Mode</td>
</tr>
<tr>
<td>MMU</td>
<td>Mass Memory Unit</td>
</tr>
<tr>
<td>MTU</td>
<td>Master Timing Unit</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NSTS</td>
<td>National Space Transportation System</td>
</tr>
<tr>
<td>OA</td>
<td>Operational Aft</td>
</tr>
<tr>
<td>OF</td>
<td>Operational Forward</td>
</tr>
<tr>
<td>OMRS</td>
<td>Operational Maintenance Requirements and Specifications Document</td>
</tr>
<tr>
<td>OMS</td>
<td>Orbital Maneuvering System</td>
</tr>
<tr>
<td>OPS</td>
<td>Operational Sequence</td>
</tr>
<tr>
<td>PCI</td>
<td>Potential Critical Item</td>
</tr>
<tr>
<td>PCM</td>
<td>Pulse Code Modulation</td>
</tr>
<tr>
<td>PF</td>
<td>Payload Forward</td>
</tr>
<tr>
<td>RCS</td>
<td>Reaction Control System</td>
</tr>
<tr>
<td>RHC</td>
<td>Rotational Hand Controller</td>
</tr>
<tr>
<td>RI</td>
<td>Rockwell International</td>
</tr>
<tr>
<td>RM</td>
<td>Redundancy Management</td>
</tr>
<tr>
<td>RMS</td>
<td>Remote Manipulator System</td>
</tr>
<tr>
<td>RPC</td>
<td>Remote Power Controller</td>
</tr>
<tr>
<td>RS</td>
<td>Redundant Set</td>
</tr>
<tr>
<td>RTLS</td>
<td>Return To Landing Site</td>
</tr>
<tr>
<td>SCU</td>
<td>Sequential Control Unit</td>
</tr>
<tr>
<td>SIO</td>
<td>Serial Input / Output</td>
</tr>
<tr>
<td>SM</td>
<td>Systems Management</td>
</tr>
<tr>
<td>SRB</td>
<td>Solid Rocket Booster</td>
</tr>
<tr>
<td>SSME</td>
<td>Space Shuttle Main Engine</td>
</tr>
<tr>
<td>STS</td>
<td>Space Transportation System</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>TAC</td>
<td>Tacan</td>
</tr>
<tr>
<td>TAL</td>
<td>Transatlantic Abort Landing</td>
</tr>
<tr>
<td>TD</td>
<td>Touch Down</td>
</tr>
<tr>
<td>THC</td>
<td>Translational Hand Controller</td>
</tr>
<tr>
<td>VDC</td>
<td>Volts Direct Current</td>
</tr>
</tbody>
</table>
APPENDIX B

DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions
B.2 Project Level Ground Rules and Assumptions
B.3 Subsystem-Specific Ground Rules and Assumptions
APPENDIX B
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions

Definitions contained in Reliability Desk Instruction, 100-2G
Rockwell International, 31 January 1984, were used with the
following amplifications and additions.

ABORT DEFINITIONS:

RTLS - begins at transition to OPS 6 and ends at transition to
OPS 9, post-flight.

TAL - begins at declaration of the abort and ends at transition
to OPS 9, post-flight.

AOA - begins at declaration of the abort and ends at transition
to OPS 9, post-flight.

ATO - begins at declaration of the Abort To Orbit (ATO) and ends
upon transition out of OPS 1.

CREDIBLE (CAUSE) - an event that can be predicted or expected in
anticipated operational environmental conditions. Excludes an
event where multiple failures must first occur to result in
environmental extremes.

EFFECTS/RATIONALE - Description of the case which generated the
highest criticality.

HIGHEST CRITICALITY - The highest criticalities determined in the
phase-by-phase analysis.

MAJOR MODE (MM) - major sub-mode of software operational sequence
(OPS).

MC - Memory Configuration of Primary Avionics Software System
(PASS).

MISSION - assigned performance of a specific orbiter flight with
payload/objective accomplishments such as launch window, orbit
phasing, and altitude.

MULTIPLE ORDER FAILURE - describes the failure due to a single
cause or event of all units which perform a necessary (critical)
function.

NORMAL GROUND TURNAROUND - begins at end of post-landing safing
operations and ends at beginning of prelaunch operations.

OPS - software operational sequence.
PHASE DEFINITIONS:

PRELAUNCH PHASE - begins at Orbiter launch count-down power-up and ends at moding to OPS Major Mode 102 (liftoff).

LIFTOFF MISSION PHASE - begins with SRB ignition (MM 102) and ends at transition out of OPS 1. (Synonymous with ASCENT).

ONORBIT PHASE - begins at transition to OPS 2 or OPS 8 and ends upon transition out of OPS 2 or OPS 8.

DEORBIT PHASE - begins at transition to OPS Major Mode 301 and ends at first main landing gear touchdown at landing site.

LANDING/SAFING PHASE - begins at first main gear touchdown at the landing site and ends with the completion of post-landing safing operations.

READILY DETECTABLE - easily and obviously observable and comprehensible by flight and/or ground personnel. Readily detectable requires the capability of getting a crewmember to respond to a problem notification via real-time monitored displays, on-board alerts, visual indications, or ground notification. (Ground notification must not be considered unless sufficient time is available to perform corrective action to preclude the critical consequences of the failure, using worst-case telemetry and data.)
B.2 IOA Project Level Ground Rules and Assumptions

The philosophy embodied in Reliability Desk Instruction, 100-2G Rockwell International, 31 January 1984, was employed with the following amplifications and additions.

1. The operational flight software is an accurate implementation of the Flight System Software Requirements (FSSRs).

 RATIONALE: Software verification is out-of-scope of this task.

2. After Lift-Off, any parameter which is monitored by system management (SM) or which drives any part of the Caution and Warning System (C&W) will support passage of Redundancy Screen B for its corresponding hardware item.

 RATIONALE: Analysis of on-board parameter availability and/or the actual monitoring by on-board personnel is beyond the scope of this task.

3. Any data employed with flight software is assumed to be functional for the specific vehicle and specific mission being flown.

 RATIONALE: Mission data verification is out-of-scope of this task.

4. All hardware (including firmware) is manufactured and assembled to the design specifications/drawings.

 RATIONALE: Acceptance and verification testing is designed to detect and identify problems before the item is approved for use.

5. All Flight Data File crew procedures will be assumed performed as written, and will not include human error in their performance.

 RATIONALE: Failures caused by human operational error are out-of-scope of this task.
6. All hardware analyses will, as a minimum, be performed at the level of analysis existent within NASA/prime contractor Orbiter FMEA/CILs, and will be permitted to go to greater hardware detail levels but not lesser.

RATIONALE: Comparison of MDAC IOA analysis results with other analyses requires that both analyses be performed to a comparable level of detail.

7. The presence of a failure detectability parameter in telemetry is sufficient justification for passing Redundancy Screen B. Verification that the parameter is actually monitored by ground based personnel is not required.

RATIONALE: Analysis of mission-dependent telemetry availability and/or the actual monitoring of applicable data by ground-based personnel is beyond the scope of this task.

8. For the purpose of passing Redundancy Screen A, the term "normal ground turnaround" shall include the prelaunch mission phase.

RATIONALE: Some items cannot be checked out until after propellant loading or main engine conditioning begins although the vehicle is still on the ground. This philosophy was adopted by the Level II PRCB.

9. At a minimum, loss of mission is declared when a failure results in a launch delay beyond the pre-planned launch window.

RATIONALE: Subsystem failures can occur near the nominal launch time. When these failures result in a launch delay, a loss of mission occurs even though the vehicle never enters into any in-flight mode.

10. The determination of criticalities per phase is based on the worst case effect of a failure for the phase being analyzed. The failure can occur in the phase being analyzed or in any previous phase, whatever produces the worst case effects for the phase of interest.

RATIONALE: Assigning phase criticalities ensures a thorough and complete analysis.
11. The "Next Related Failure" when used in determining hardware criticality 2 (one failure away from loss of crew/vehicle) is defined as the worst case failure of next redundant item. This definition applies only to dual redundancy by definition.

RATIONALE: The RI Desk Instruction Appendix B, 3.1.1.1 states the definition of criticality 2. For the purpose of this analysis "Next related Failure" is clearly defined to ensure project consistency.
APPENDIX B
DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.3 DPS-Specific Ground Rules and Assumptions

The IOA analysis was performed to the component or assembly level of the DPS subsystem. The analysis considered the worst case effects of the hardware or functional failure on the subsystem, mission, and crew and vehicle safety.

1. Electronics were considered to have the following credible failure modes.
 a. Premature operation
 b. Erroneous/erratic output
 c. No output

RATIONALE: These failure mode keywords were the most applicable for the DPS electronics hardware.
APPENDIX C
DETAILED ANALYSIS

This section contains the IOA analysis worksheets employed during the analysis of the DPS subsystem. The information on these worksheets is intentionally similar to the FMEA's written by Rockwell and the NASA. Each of these sheets identifies the item being analyzed, and parent assembly, as well as the function. For each failure mode, the possible causes are outlined, and the assessed hardware and functional criticality for each mission phase is listed, as described in the Rockwell Desk Instructions 100-2G. Finally, effects are entered at the bottom of each sheet, and the worst case criticality is entered at the top.

LEGEND FOR IOA ANALYSIS WORKSHEETS

Hardware Criticalities :
1 = Loss of life or vehicle
2 = Loss of mission
3 = Non loss of life or vehicle or mission

Functional Criticalities :
1R = Redundant identical hardware components or redundant functional paths all of which, if failed, could cause loss of life or vehicle.
2R = Redundant identical hardware components or redundant functional paths all of which, if failed, could cause loss of mission.

Redundancy Screen A :
1 = Is Checked Out PreFlight
2 = Is Capable of Check Out PreFlight
3 = Not Capable of Check Out PreFlight
4 = Do Not Know

Redundancy Screens B and C :
P = Passed Screen
F = Failed Screen
NA = Not Applicable
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 100

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: MDM FF1, FF2, FF3, FF4
FAILURE MODE: LOSS OF OUTPUT TO GPC

LEAD ANALYST: W. A. HAUFLEO SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL FORWARD MDM (FF1 .. 4)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1, 2, 3, 2
PART NUMBER: MC615-0004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW IGNORES
THAT DATA. FCOS BYPASSES MDM AFTER 2ND CONSECUTIVE COMMFAULT,
AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY RECOVER MDM,
BUT NOT ALLOWED DURING ASCENT UNTIL AFTER 2ND MDM FAILURE. IF
ALL REDUNDANCY FAILS, LOSE USE OF IMU TORQUING, FORWARD RCS JETS,
HAND CONTROLS (THC, RHC), MOST SWITCHES AND INDICATORS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86

HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS
MDAC ID: 101

ITEM: MDM FF1, FF2, FF3, FF4
FAILURE MODE: LOSS OF OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL FORWARD MDM (FF1..4)
4)...
5)...
6)...
7)...
8)...
9)...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1, 2, 3, 2
PART NUMBER: MC615-0004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE USE OF IMU TORQUING, FORWARD RCS JETS, HAND CONTROLS (THC, RHC), MOST SWITCHES AND INDICATORS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 102

ITEM: MDM FF1, FF2, FF3, FF4
FAILURE MODE: ERRONEOUS OUTPUT TO GPC

LEAD ANALYST: W. A. HAUFLE B. ROBB
SUBSYS LEAD:

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPL MUXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL FORWARD MDM (FF1..4)
4) 5) 6) 7) 8) 9) CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2,3,2
PART NUMBER: MC615-0004-6110,5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW IGNORES THAT DATA. FCOS BYPASSES MDM AFTER 2ND CONSECUTIVE COMMFAULT, AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY RECOVER MDM, BUT NOT ALLOWED DURING ASCENT UNTIL AFTER 2ND MDM FAILURE. IF ALL REDUNDANCY FAILS, LOSE USE OF IMU TORQUING, FORWARD RCS JETS, HAND CONTROLS (THC,RHC), MOST SWITCHES AND INDICATORS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 103

HIGHEST CRITICALITY
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: MDM FF1, FF2, FF3, FF4
FAILURE MODE: ERRONEOUS OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL FORWARD MDM (FF1..4)

LOCATION: AV BAY 1,2,3,2
PART NUMBER: MC615-0004-6110,5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE USE OF IMU TORQUING, FORWARD RCS JETS, HAND CONTROLS (THC, RHC), MOST SWITCHES AND INDICATORS.

REFERENCES:

C-5
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
HIGHEST CRITICALITY
SUBSYSTEM: DPS
MDAC ID: 104
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: MDM FF1, FF2, FF3, FF4
FAILURE MODE: PREMATURE OPERATION TO GPC

LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL FORWARD MDM (FF1..4)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREALUNCH</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1, 2, 3, 2
PART NUMBER: MC615-004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
THIS FAILURE ON EITHER PORT CAN INTERFERE WITH FCOS RETURNING DATA FROM OTHER BTU(S) AND CAUSE HEALTHY BTU(S) TO BE BYPASSED. PORT MODING WILL NOT FIX A BLABBING MDM. POWER CYCLING MAY RESET ELECTRONICS, BUT CANNOT BE PERFORMED DURING ASCENT (POWER SWITCHES CANNOT BE REACHED), AND WILL NOT ALWAYS STOP PREMATURE OPERATIONS. IF ALL REDUNDANCY FAILS, LOSE USE OF IMU TORQUING, FORWARD RCS JETS, HAND CONTROLS (THC, RHC), MOST SWITCHES AND INDICATORS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/1R
MDAC ID: 105 ABORT: 3/1R

ITEM: MDM FF1,FF2,FF3,FF4 FAILURE MODE: PREMATURE OPERATION TO LRU

LEAD ANALYST: W. A. HAUFLER SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL FORWARD MDM (FF1..4)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2,3,2
PART NUMBER: MC615-0004-6110,5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE USE OF IMU TORQUING, FORWARD RCS JETS, HAND CONTROLS (THC,RHC), MOST SWITCHES AND INDICATORS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 106
ITEM: MDM FF1, FF2, FF3, FF4
FAILURE MODE: SELECTED ALL CHANNELS WRONG
LEAD ANALYST: W. A. HAUFLE

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL FORWARD MDM (FF1..4)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2,3,2
PART NUMBER: MC615-0004-6110,5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
The GPC's FCOS and the LRUS would reject all data from that MDM except any data that happened to be in the same format as the expected data. Redundancy MGT. soon detects and bypasses that MDM, and the effects of wrong data input or output is minimized. If all redundancy fails, lose use of IMU torquing, forward RCS jets, hand controls (THC,RHC), most switches and indicators.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 107

ITEM: MDM FF1, FF2, FF3, FF4
FAILURE MODE: STUCK ON A CONSTANT OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL FORWARD MDM (FF1..4)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2,3,2
PART NUMBER: MC615-0004-6110,5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE USE OF IMU TORQUING, FORWARD RCS JETS, HAND CONTROLS (THC,RHC), MOST SWITCHES AND INDICATORS.

REFERENCES:

C-9
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 108

HIGHEST CRITICALITY
HDW/FUNC

FLIGHT: 3/1R
ABORT: 3/1R

ITEM: MDM FF1, FF2, FF3, FF4
FAILURE MODE: FALSELY STUCK ON BUSY MODE

LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL FORWARD MDM (FF1..4)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ON ORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DE ORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2,3,2
PART NUMBER: MC615-0004-6110,5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION, SCU BUSY CROSS-STRAP STUCK HIGH

EFFECTS/RATIONALE:
FCOS SETS COMMFault FLAG FOR THAT DATA. APPLICATION SW IGNORES THAT DATA. FCOS BYPASSES MDM AFTER 2ND CONSECUTIVE COMMFault, AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY RECOVER MDM, BUT NOT ALLOWED DURING ASCENT UNTIL AFTER 2ND MDM FAILURE. IF ALL REDUNDANCY FAILS, LOSE USE OF IMU TORQUING, FORWARD RCS JETS, HAND CONTROLS (THC,RHC), MOST SWITCHES AND INDICATORS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 120

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: MDM FA1, FA2, FA3, FA4
FAILURE MODE: LOSS OF OUTPUT TO GPC

LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL AFT MDM (FA1..4)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4, 5, 6, 6
PART NUMBER: MC615-0004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW IGNORES
THAT DATA. FCOS BYPASSES MDM AFTER 2ND CONSECUTIVE COMMFAULT,
AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY RECOVER MDM, BUT
NOT ALLOWED DURING ASCENT UNTIL AFTER 2ND MDM FAILURE. IF ALL
REDUNDANCY FAILS, LOSE USE OF AFT RCS, BODY FLAP, AILERONS,
RUDDER, SPEEDBRAKE, AND ABILITY TO PURGE SSMES AND TANKS.

REFERENCES:

C-11
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 121

ITEM: MDM FA1, FA2, FA3, FA4
FAILURE MODE: LOSS OF OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLE SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL AFT MDM (FA1..4)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4, 5, 6, 6
PART NUMBER: MC615-0004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE USE OF AFT RCS, BODY FLAP, AILERONS, RUDDER, SPEEDBRAKE, AND ABILITY TO PURGE SSMES AND TANKS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86

SUBSYSTEM: DPS

MDAC ID: 122

HIGHEST CRITICALITY: FLIGHT: 3/1R
ABORT: 3/1R

ITEM: MDM FA1, FA2, FA3, FA4

FAILURE MODE: ERRONEOUS OUTPUT TO GPC

LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:

1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL AFT MDM (FA1..4)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4, 5, 6, 6
PART NUMBER: MC615-0004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW IGNORES THAT DATA. FCOS BYPASSES MDM AFTER 2ND CONSECUTIVE COMMFAULT, AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY RECOVER MDM, BUT NOT ALLOWED DURING ASCENT UNTIL AFTER 2ND MDM FAILURE. IF ALL REDUNDANCY FAILS, LOSE USE OF AFT RCS, BODY FLAP, AILERONS, RUDDER, SPEEDBRAKE, AND ABILITY TO PURGE SSMES AND TANKS.

REFERENCES:

C-13
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 123

ITEM: MDM FA1, FA2, FA3, FA4
FAILURE MODE: ERRONEOUS OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLE R SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL AFT MDM (FA1...4)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4,5,6,6
PART NUMBER: MC615-0004-6110,5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE USE OF AFT RCS, BODY FLAP, AILERONS, RUDDER, SPEEDBRAKE, AND ABILITY TO PURGE SSMES AND TANKS.

REFERENCES: C-14
HIGHEST CRITICALITY
DATE: 10/03/86
SUBSYSTEM: DPS
HDW/.func
MDAC ID: 124
FLIGHT: 3/2R
ABORT: 3/1R

ITEM: MDM FA1, FA2, FA3, FA4
FAILURE MODE: PREMATURE OPERATION TO GPC

LEAD ANALYST: W. A. HAULFER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL AFT MDM (FA1..4)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/func</th>
<th>ABORT</th>
<th>HDW/func</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4, 5, 6, 6
PART NUMBER: MC615-0004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
THIS FAILURE ON EITHER PORT CAN INTERFERE WITH FCOS RETURNING
DATA FROM OTHER BTU(S) AND CAUSE GOOD BTU(S) TO BE BYPASSED.
PORT MODING WILL NOT FIX A BLABBING MDM. POWER CYCLING MAY RESET
ELECTRONICS, BUT CANNOT BE PERFORMED DURING ASCENT (POWER
SWITCHES CANNOT BE REACHED), AND WILL NOT ALWAYS STOP PREMATURE
OPERATIONS. IF ALL REDUNDANCY FAILS, LOSE USE OF AFT RCS, BODY
FLAP, AILERONS, RUDDER, SPEEDBRAKE, AND ABILITY TO PURGE SSMES
AND TANKS.

REFERENCES:

C-15
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 125

HIGHEST CRITICALITY
HDW/FUNC

FLIGHT: 3/1R
ABORT: 3/1R

ITEM: MDM FA1, FA2, FA3, FA4
FAILURE MODE: PREMATURE OPERATION TO LRU

LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL AFT MDM (FA1..4)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4,5,6,6
PART NUMBER: MC615-0004-6110,5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE USE OF AFT RCS, BODY FLAP, AILERONS, RUDDER, SPEEDBRAKE, AND ABILITY TO PURGE SSMES AND TANKS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
HIGHEST CRITICALITY
HDW/FUNC
SUBSYSTEM: DPS
MDAC ID: 126
FLIGHT: 3/1R
ABORT: 3/1R
ITEM: MDM FA1, FA2, FA3, FA4
FAILURE MODE: SELECTED ALL CHANNELS WRONG
LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:

1. DPS
2. MULTIPLEXER-DEMULTIPLEXERS (MDM)
3. FLIGHT CRITICAL AFT MDM (FA1..4)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT PHASE</td>
</tr>
<tr>
<td>PRELAUNCH:</td>
</tr>
<tr>
<td>LIFTOFF:</td>
</tr>
<tr>
<td>ONORBIT:</td>
</tr>
<tr>
<td>DEORBIT:</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4, 5, 6, 6
PART NUMBER: MC615-0004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:

THE GPC'S FCOS AND THE LRUS WOULD REJECT ALL DATA FROM THAT MDM EXCEPT ANY DATA THAT HAPPENED TO BE IN THE SAME FORMAT AS THE EXPECTED DATA. REDUNDANCY MGT. SOON DETECTS AND BYPASSES THAT MDM, AND THE EFFECTS OF WRONG DATA INPUT OR OUTPUT IS MINIMIZED. IF ALL REDUNDANCY FAILS, LOSE USE OF AFT RCS, BODY FLAP, AILERONS, RUDDER, SPEEDBRAKE, AND ABILITY TO PURGE SSMES AND TANKS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 127

ITEM: MDM FA1, FA2, FA3, FA4
FAILURE MODE: STUCK ON A CONSTANT OUTPUT TO LRU
LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) FLIGHT CRITICAL AFT MDM (FA1..4)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RLTS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4, 5, 6, 6
PART NUMBER: MC615-0004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE USE OF AFT RCS, BODY FLAP, AILERONS, RUDDER, SPEEDBRAKE, AND ABILITY TO PURGE SSMES AND TANKS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86

HIGHEST CRITICALITY

HDW/FUNC

FLIGHT: 3/1R

ABORT: 3/1R

SUBSYSTEM: DPS

MDAC ID: 128

ITEM: MDM FA1, FA2, FA3, FA4

FAILURE MODE: FALSELY STUCK ON BUSY MODE

LEAD ANALYST: W. A. HAUFLE

SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:

1) DPS

2) MULTIPLEXER-DEMULTIPLEXERS (MDM)

3) FLIGHT CRITICAL AFT MDM (FA1..4)

4)

5)

6)

7)

8)

9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4, 5, 6, 6

PART NUMBER: MC615-0004-6110, 5110

CAUSES: VIBRATION, CORROSION, CONTAMINATION, SCU BUSY CROSS-STRAP STUCK HIGH

EFFECTS/RATIONALE:

FCOS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW IGNORES THAT DATA. FCOS BYPASSES MDM AFTER 2ND CONSECUTIVE COMMFAULT, AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY RECOVER MDM, BUT NOT ALLOWED DURING ASCENT UNTIL AFTER 2ND MDM FAILURE. IF ALL REDUNDANCY FAILS, LOSE USE OF AFT RCS, BODY FLAP, AILERONS, RUDDER, SPEEDBRAKE, AND ABILITY TO PURGE SSMES AND TANKS.

REFERENCES:

C-19
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 140

ITEM: MDM PF1,PF2
FAILURE MODE: LOSS OF OUTPUT TO GPC

LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PAYLOAD FORWARD MDM (PF1..2)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFINING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC615-0004-6710,5710

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS/BSS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW IGNORES THAT DATA. SYSTEM SOFTWARE Bypasses MDM AFTER 2ND CONSECUTIVE COMMFAULT, AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY NOT RECOVER MDM. IF ALL REDUNDANCY FAILS, LOSE ABILITY TO RELEASE, OPEN, CLOSE, AND LATCH PAYLOAD BAY DOORS, AND ABILITY TO CRADLE AND LATCH RMS ARM WITHOUT AN EVA.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 141

ITEM: MDM PFI,PF2
FAILURE MODE: LOSS OF OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PAYLOAD FORWARD MDM (PFI..2)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC615-0004-6710,5710

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS/BSS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT PF MDMS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE ABILITY TO RELEASE, OPEN, CLOSE, AND LATCH PAYLOAD BAY DOORS, AND ABILITY TO CRADLE AND LATCH RMS ARM WITHOUT AN EVA.

REFERENCES:

C-21
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 142

ITEM: MDM PFI, PF2
FAILURE MODE: ERRONEOUS OUTPUT TO GPC

LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULITPLEXERS (MDM)
3) PAYLOAD FORWARD MDM (PF1..2)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC615-0004-6710,5710

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS/BSS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW
IGNORES THAT DATA. SYSTEM SOFTWARE BYPASSES MDM AFTER 2ND
CONSECUTIVE COMMFAULT, AND DISPLAYS FAULT MSG ON CRTS. PORT
MODING MAY NOT RECOVER MDM. IF ALL REDUNDANCY FAILS, LOSE
ABILITY TO RELEASE, OPEN, CLOSE, AND LATCH PAYLOAD BAY DOORS, AND
ABILITY TO CRADLE AND LATCH RMS ARM WITHOUT AN EVA.

REFERENCES:

C-22
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 143

<table>
<thead>
<tr>
<th>ITEM:</th>
<th>FAILURE MODE: ERRONEOUS OUTPUT TO LRU</th>
</tr>
</thead>
</table>

LEAD ANALYST: W. A. HAUFLE | SUBSYS LEAD: B. ROBB |

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMUX (MDM)
3) PAYLOAD FORWARD MDM (PF1..2)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC615-0004-6710,5710

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS/BSS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT PF MDMs. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE ABILITY TO RELEASE, OPEN, CLOSE, AND LATCH PAYLOAD BAY DOORS, AND ABILITY TO CRADLE AND LATCH RMS ARM WITHOUT AN EVA.

REFERENCES: C-23
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 144
HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/3

FAILURE MODE: MDM PF1, PF2
PREMATURE OPERATION TO GPC

LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PAYLOAD FORWARD MDM (PF1..2)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1, 2
PART NUMBER: MC615-0004-6710, 5710

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
THIS FAILURE ON EITHER PORT CAN INTERFERE WITH FCOS/BSS RETURNING DATA FROM OTHER PF MDM AND CAUSE GOOD MDM TO BE BYPASSED. PORT MODEING WILL NOT FIX A BLABBING MDM. POWER CYCLING MAY RESET ELECTRONICS, BUT WILL NOT ALWAYS STOP PREMATURE OPERATIONS. IF ALL REDUNDANCY FAILS, LOSE ABILITY TO RELEASE, OPEN, CLOSE, AND LATCH PAYLOAD BAY DOORS, AND ABILITY TO CRADLE AND LATCH RMS ARM WITHOUT AN EVA.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY: FLIGHT: 3/1R
SUBSYSTEM: DPS HDW/FUNC: 3/3
MDAC ID: 145

ITEM: MDM PF1, PF2
FAILURE MODE: PREMATURE OPERATION TO LRU

LEAD ANALYST: W. A. HAUFLE SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PAYLOAD FORWARD MDM (PF1..2)

CRITICALITIES
FLIGHT PHASE HDW/FUNC ABORT HDW/FUNC
PRELAUNCH: 3/2R RTLS: 3/3
LIFTOFF: 3/3 TAL: 3/3
ONORBIT: 3/1R AOA: 3/3
DEORBIT: 3/3 ATO: 3/3
LANDING/SAFING: 3/3

LOCATION: AV BAY 1,2
PART NUMBER: MC615-0004-6710,5710

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS/BSS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT PF MDMS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE ABILITY TO RELEASE, OPEN, CLOSE, AND LATCH PAYLOAD BAY DOORS, AND ABILITY TO CRADLE AND LATCH RMS ARM WITHOUT AN EVA.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 146

HDW/FUNC FLIGHT: 3/1R
ABORT: 3/3

ITEM: MDM PF1,PF2
FAILURE MODE: SELECTED ALL CHANNELS WRONG

LEAD ANALYST: W. A. HAUFLER SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PAYLOAD FORWARD MDM (PF1..2)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLs:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC615-0004-6710, 5710

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
THE GPC'S FCOS AND THE LRUS WOULD REJECT ALL DATA FROM THAT MDM EXCEPT ANY DATA THAT HAPPENED TO BE IN THE SAME FORMAT AS THE EXPECTED DATA. REDUNDANCY MGT. SOON DETECTS AND BYPASSES THAT MDM, AND THE EFFECTS OF WRONG DATA INPUT OR OUTPUT IS MINIMIZED. IF ALL REDUNDANCY FAILS, LOSE ABILITY TO RELEASE, OPEN, CLOSE, AND LATCH PAYLOAD BAY DOORS, AND ABILITY TO CRADLE AND LATCH RMS ARM WITHOUT AN EVA.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 147

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/3

ITEM: MDM PF1, PF2
FAILURE MODE: STUCK ON A CONSTANT OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PAYLOAD FORWARD MDM (PF1..2)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC615-0004-6710,5710

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS/BSS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT PF MDMs. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE ABILITY TO RELEASE, OPEN, CLOSE, AND LATCH PAYLOAD BAY DOORS, AND ABILITY TO CRADLE AND LATCH RMS ARM WITHOUT AN EVA.

REFERENCES:

C-27
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/1R
MDAC ID: 148 ABORT: 3/3

ITEM: MDM PF1, PF2
FAILURE MODE: FALSELY STUCK ON BUSY MODE

LEAD ANALYST: W. A. HAUFLER SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PAYLOAD FORWARD MDM (PF1..2)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1, 2
PART NUMBER: MC615-0004-6710, 5710

CAUSES: VIBRATION, CORROSION, CONTAMINATION, SCU BUSY CROSS-STRAP STUCK HIGH

EFFECTS/RATIONALE:
FCOS/BSS SETS COMMFault Flag for That Data. Application SW ignores that Data. System Software Bypasses MDM after 2nd consecutive COMMFault, and displays Fault MSG on CRTs. Port Moding MAY NOT RECOVER MDM. IF ALL REDUNDANCY FAILS, LOSE ability to release, open, close, and latch payload bay doors, and ability to cradle and latch RMS arm without an EVA.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 180

ITEM: MDM LF1, LA1
FAILURE MODE: LOSS OF OUTPUT TO GPC

LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PRELAUNCH FORWARD & AFT MDM (LF, LA)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td></td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ORBIT:</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SFING:</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,6
PART NUMBER: MC615-0004-6610,5600

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW IGNORES THAT DATA. FCOS BYPASSES MDM AFTER 2ND CONSECUTIVE COMMFAULT, AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY RECOVER MDM. IF ALL REDUNDANCY FAILS, LOSE ABILITY OF GSE TO MONITOR AND CONTROL SYSTEMS WHILE ATTACHED.

REFERENCES:

C-29
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 181

ITEM: MDM LF1, LA1
FAILURE MODE: LOSS OF OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PRELAUNCH FORWARD & AFT MDM (LF, LA)
4)
5)
6)
7)
8)
9)

<table>
<thead>
<tr>
<th>CRITICALITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT PHASE</td>
</tr>
<tr>
<td>PRELAUNCH</td>
</tr>
<tr>
<td>LIFTOFF</td>
</tr>
<tr>
<td>ONORBIT</td>
</tr>
<tr>
<td>DEORBIT</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1, 6
PART NUMBER: MC615-0004-6610, 5600

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE ABILITY OF GSE TO MONITOR AND CONTROL SYSTEMS WHILE ATTACHED.

REFERENCES:

C-30
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 192

ITEM: MDM LF1, LA1
FAILURE MODE: ERRONEOUS OUTPUT TO GPC

LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PRELAUNCH FORWARD & AFT MDM (LF, LA)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>/NA</td>
<td>ACA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,6
PART NUMBER: MC615-0004-6610,5600

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW IGNORES THAT DATA. FCOS BYPASSES MDM AFTER 2ND CONSECUTIVE COMMFAULT, AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY RECOVER MDM, BUT NOT ALLOWED DURING ASCENT UNTIL AFTER 2ND MDM FAILURE. IF ALL REDUNDANCY FAILS, LOSE ABILITY OF GSE TO MONITOR AND CONTROL SYSTEMS WHILE ATTACHED.

REFERENCES:

C-31
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 183

HIGHEST CRITICALITY

FLIGHT: 3/2R
ABORT: /NA

ITEM: MDM LF1, LA1
FAILURER MODE: ERRONEOUS OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLE SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PRELAUNCH FORWARD & AFT MDM (LF, LA)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>/NA</td>
<td>AOA: /NA</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,6
PART NUMBER: MC615-0004-6610,5600

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE ABILITY OF GSE TO MONITOR AND CONTROL SYSTEMS WHILE ATTACHED.

REFERENCES:

C-32
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
HIGHEST CRITICALITY: HDW/FUNC
SUBSYSTEM: DPS
MDAC ID: 184
FLIGHT: 3/2R
ABORT: /NA

ITEM: MDM LF1,LAI
FAILURE MODE: PREMATURE OPERATION TO GPC

LEAD ANALYST: W. A. HAUFLER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PRELAUNCH FORWARD & AFT MDM (LF,LA)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,6
PART NUMBER: MC615-0004-6610,5600

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
THIS FAILURE ON EITHER PORT CAN INTERFERE WITH FCOS RETURNING
DATA FROM OTHER BTU(S) AND CAUSE GOOD BTU(S) TO BE BYPASSED.
PORT MODING WILL NOT FIX A BLABBING MDM. POWER CYCLING MAY RESET
ELECTRONICS, BUT WILL NOT ALWAYS STOP PREMATURE OPERATIONS. IF
ALL REDUNDANCY FAILS, LOSE ABILITY OF GSE TO MONITOR AND CONTROL
SYSTEMS WHILE ATTACHED.

REFERENCES:

C-33
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 185

HIGHEST CRITICALITY: HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

ITEM: MDM LF1, LA1
FAILURE MODE: PREMATURE OPERATION TO LRU

LEAD ANALYST: W. A. HAUFLE SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PRELAUNCH FORWARD & AFT MDM (LF, LA)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS: /NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL: /NA</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>/NA</td>
<td>AOA: /NA</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: /NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,6
PART NUMBER: MC615-0004-6610,5600

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE ABILITY OF GSE TO MONITOR AND CONTROL SYSTEMS WHILE ATTACHED.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 186

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: /NA

ITEM: MDM LF1, LA1
FAILURE MODE: SELECTED ALL CHANNELS WRONG

LEAD ANALYST: W. A. HAUFLE
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PRELAUNCH FORWARD & AFT MDM (LF, LA)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1, 6
PART NUMBER: MC615-0004-6610, 5600

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
THE GPC'S FCOS AND THE LRUS WOULD REJECT ALL DATA FROM THAT MDM EXCEPT ANY DATA THAT HAPPENED TO BE IN THE SAME FORMAT AS THE EXPECTED DATA. REDUNDANCY MGT. SOON DETECTS AND BYPASSES THAT MDM, AND THE EFFECTS OF WRONG DATA INPUT OR OUTPUT IS MINIMIZED.
IF ALL REDUNDANCY FAILS, LOSE ABILITY OF GSE TO MONITOR AND CONTROL SYSTEMS WHILE ATTACHED.

REFERENCES:

C-35
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/2R
MDAC ID: 187 ABORT: /NA

ITEM: MDM LF1,LA1
FAILURE MODE: STUCK ON A CONSTANT OUTPUT TO LRU

LEAD ANALYST: W. A. HAUFLE SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PRELAUNCH FORWARD & AFT MDM (LF,LA)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,6
PART NUMBER: MC615-0004-6610,5600

CAUSES: VIBRATION, CORROSION, CONTAMINATION

EFFECTS/RATIONALE:
FCOS DOES NOT DIRECTLY DETECT THIS ERROR VIA MDM RETURN WORD PROCESSING. FAULT TOLERANCE DEPENDS ON REDUNDANT STRINGS TO VOTING LRUS. DETECTION DEPENDS ON SEPARATE, REDUNDANT FEEDBACK SIGNALS. IF ALL REDUNDANCY FAILS, LOSE ABILITY OF GSE TO MONITOR AND CONTROL SYSTEMS WHILE ATTACHED.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: /NA

SUBSYSTEM: DPS
MDAC ID: 188

ITEM: MDM LF1, LA1
FAILURE MODE: FALSELY STUCK ON BUSY MODE

LEAD ANALYST: W. A. HAUFLENDER
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIPLEXER-DEMULTIPLEXERS (MDM)
3) PRELAUNCH FORWARD & AFT MDM (LF, LA)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>/NA</td>
<td>TAL:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,6
PART NUMBER: MC615-0004-6610,5600

CAUSES: VIBRATION, CORROSION, CONTAMINATION, SCU BUSY CROSS-STRAP STUCK HIGH

EFFECTS/RATIONALE:
FCOS SETS COMMFAULT FLAG FOR THAT DATA. APPLICATION SW IGNORES THAT DATA. FCOS BYPASSES MDM AFTER 2ND CONSECUTIVE COMMFAULT, AND DISPLAYS FAULT MSG ON CRTS. PORT MODING MAY RECOVER MDM. IF ALL REDUNDANCY FAILS, LOSE ABILITY OF GSE TO MONITOR AND CONTROL SYSTEMS WHILE ATTACHED.

REFERENCES:

C-37
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/1R
MDAC ID: 201 ABORT: 3/1R

ITEM: INPUT/OUTPUT PROCESSOR (IOP) HDW/FUNC
FAILURE MODE: LOSS OF OUTPUT

LEAD ANALYST: T. B. CRIBBS SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) INPUT/OUTPUT PROCESSOR (IOP)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAYS
PART NUMBER:

CAUSES: MIA FAILS TO OUTPUT TO DATA BUS DUE TO PIECE/PART
FAILURE FROM CONTAMINATION OR MECHANICAL, THERMAL, OR ELECTRICAL
OVERSTRESS, OR POWER FAILURE

EFFECTS/RATIONALE:
LOSS OF A BUS-COMMANDING MIA RESULTS IN LOSS OF A GPC'S ABILITY
TO COMMUNICATE OVER THAT BUS, ATTACHED BUS TERMINAL UNITS
(BTU'S), AND ALL INPUTS AND OUTPUTS CONNECTED TO THOSE BTU'S. IN
DYNAMIC FLIGHT PHASES, WHERE A SINGLE BTU CONTROLS AN ACTUATOR,
THE CREW WOULD HAVE TO MANUALLY INTERVENE ON A SINGLE FAILURE,
AND SWITCHING TRANSIENTS COULD ARISE. LOSS OF ALL REDUNDANCY
WOULD CAUSE LOSS OF VEHICLE CONTROL.

REFERENCES: JSC 18820, JSC 11174, JSC 12770

C-38
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 202

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: INPUT/OUTPUT PROCESSOR (IOP)
FAILURE MODE: ERRATIC/ERRONEOUS OUTPUT

LEAD ANALYST: T. B. CRIBBS
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) INPUT/OUTPUT PROCESSOR (IOP)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAYS
PART NUMBER:

CAUSES: COMPONENT FAILURE DUE TO CONTAMINATION OR MECHANICAL, THERMAL, OR ELECTRICAL OVERSTRESS IN MIA, ALU, MUX, LOCAL STORE, OR MEMORY

EFFECTS/RATIONALE:
CRITICAL GPC OUTPUTS ARE VALIDATED BY SUMWORD COMPARISON; HOWEVER, ERRORS ARE DOWNLINKED AND LOGGED, BUT NOT CORRECTED. MDM/ACTUATOR HARDWARE CANCELS THE EFFECTS OF AN ERRONEOUS OUTPUT FROM A SINGLE CHANNEL BY "FORCE FIGHTING", BUT MULTIPLE FAILURES DURING CRITICAL FLIGHT PHASES WOULD LIKELY RESULT IN LOSS OF VEHICLE/LIFE.

REFERENCES: JSC 18820, JSC 11174, JSC 12770
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 203

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 2/1R
ABORT: 2/1R

ITEM: INPUT/OUTPUT PROCESSOR (IOP)
FAILURE MODE: PREMATURE OPERATION

LEAD ANALYST: T. B. CRIBBS
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) INPUT/OUTPUT PROCESSOR (IOP)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>2/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAYS
PART NUMBER:

CAUSES: CONTROL MONITOR, CHANNEL CONTROL, MSC, OR MICROCODE STORE FAILURE RESULTS IN INVALID EXECUTION OF PROGRAM. CAUSED BY PIECE/PART FAILURE.

EFFECTS/RATIONALE:
PREMATURE ISSUANCE OF CRITICAL OUTPUTS IS DETECTED BY OTHER GPC'S IN THE REDUNDANT SET. GPC FAILS TO SYNC AND STRINGS ARE BYPASSED BY OTHER GPC'S. FAULTY COMMANDS ARE STILL PASSED TO THE ACTUATOR BY FAILED GPC. PREMATURE COMMANDS TO ACTUATORS DURING DYNAMIC FLIGHT PHASES WOULD LIKELY RESULT IN LOSS OF VEHICLE/LIFE, IF ACTUATOR REDUNDANCY WAS LOST OR IF SIMULTANEOUS LOSS OF TWO OUTPUT CHANNELS.

REFERENCES: JSC 18820, JSC 11174, JSC 12770

C-40
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 204

HIGHEST CRITICALITY
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: INPUT/OUTPUT PROCESSOR (IOP)
FAILURE MODE: ERRONEOUS INPUT

LEAD ANALYST: T. B. CRIBBS SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) INPUT/OUTPUT PROCESSOR (IOP)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAYS

CAUSES: COMPONENT FAILURE DUE TO CONTAMINATION OR MECHANICAL, THERMAL, OR ELECTRICAL OVERSTRESS IN MIA, ALU, MUX, LOCAL STORE, MEMORY, OR DMA QUEUE

EFFECTS/RATIONALE:
CRITICAL GPC/IOP INPUTS ARE VALIDATED THRU PARITY CHECKING. RECURRING INPUT ERRORS RESULT IN EITHER GPC "FAIL-TO-SYNC" BRINGING DOWN AN ERRING GPC, OR IGNORING INPUTS FROM AN ERRING MDM VIA A GPC MASK. ERRONEOUS INPUTS, IF PROPAGATED THROUGH THE GPC, COULD RESULT IN ERRONEOUS COMMAND OUTPUTS AND LOSS OF VEHICLE/LIFE, IF COMPLETE FUNCTION WAS LOST.

REFERENCES: JSC 18820, JSC 11174, JSC 12770

C-41
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 205

HIGHEST CRITICALITY
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: CENTRAL PROCESSING UNIT (CPU)
FAILURE MODE: LOSS OF OUTPUT

LEAD ANALYST: T. B. CRIFFS
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) CENTRAL PROCESSING UNIT (CPU)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORB:</td>
<td>3/2R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
</tbody>
</table>

LOCATION: AV BAYS

PART NUMBER:

CAUSES: CPU FAILS TO FUNCTION DUE TO LOSS OF POWER OR FAILURE OF MEMORY TIMING PAGE

EFFECTS/RATIONALE:
IN DYNAMIC FLIGHT PHASES WHERE REDUNDANT SET (RS) IS OPERATING, OTHER GPC'S RECOGNIZE GPC FAILING TO SYNC AND ISSUE FAIL VOTES AGAINST IT. THE FAILING GPC'S VOTING LOGIC THEN REMOVES IT FROM THE RS. FOUR RS GPC'S CONTROL CRITICAL FLIGHT FUNCTIONS; IF AT LEAST THREE ARE LOST, THE 5TH GPC (BACKUP FLIGHT COMPUTER, BFS) IS ENGAGED. LOSS OF BFS WOULD RESULT IN LOSS OF VEHICLE/LIFE.

REFERENCES: JSC 18820, JSC 11174, JSC 12770
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 206

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: CENTRAL PROCESSING UNIT (CPU)
FAILURE MODE: ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: T. B. CRIBBS SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) CENTRAL PROCESSING UNIT (CPU)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAYS
PART NUMBER:

CAUSES: CPU OUTPUTS INVALID DATA TO IOP DUE TO MEMORY PARITY ERROR, OR FAILURE OF MASTER BUS CONTROL, ALU, DATA FLOW MUX, OR LOCAL STORE

EFFECTS/RATIONALE:
CRITICAL GPC OUTPUTS ARE VALIDATED BY SUMWORD COMPARISON TO OUTPUTS FROM REDUNDANT GPC'S; HOWEVER, DETECTED ERRORS ARE MERELY LOGGED AND DOWNLINKED WITHOUT CORRECTIVE ACTION. INVALID COMMAND OUTPUTS ARE PASSED THROUGH BUS TERMINAL UNITS (BTU'S) TO ACTUATORS WHICH "FORCE FIGHT" THE REDUNDANT COMMANDS IN ORDER TO VOTE OUT THE ERRONEOUS COMMAND. LOSS OF MORE THAN ONE OUTPUT CHANNEL TO THE SAME ACTUATOR WOULD REQUIRE CREW INTERVENTION, POSSIBLY CAUSING UNSTABLE SWITCHOVER TRANSIENTS.

REFERENCES: JSC 18820, JSC 11174, JSC 12770

C-43
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86

SUBSYSTEM: DPS
MDAC ID: 207

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: CENTRAL PROCESSING UNIT (CPU)
FAILURE MODE: DELAYED/PREMIATURE/INADVERTENT OPERATION

LEAD ANALYST: T. B. CRIBBS
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) CENTRAL PROCESSING UNIT (CPU)
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAYS
PART NUMBER:

CAUSES: CPU ATTEMPTS TO OUTPUT DATA AT INAPPROPRIATE TIME DUE TO PROCESSOR SLOW-DOWN WHILE SERVICING RECURRING I/O ERRORS, FAILURE OF INTERRUPT LOGIC, OR INTERMITTENCE IN TIMING PAGE.

EFFECTS/RATIONALE:
REDUNDANT SET GPC'S SYNC UP BY WAITING FOR SYNC POINT MESSAGES FROM OTHER GPC'S TO INDICATE COMPLETION OF IDENTICAL OPERATIONS. EXCESSIVE PROCESSOR LOAD COULD REQUIRE ALL GPC'S TO WAIT EXCESSIVELY, BUT EACH GPC WOULD RECOGNIZE THE SLOW DOWN AND ISSUE A FAIL-TO-SYNC VOTE, AND THE SLOW GPC'S VOTING LOGIC WOULD REMOVE IT FROM THE RS. IF PERFORMANCE OF ALL GPC'S WAS DEGRADED DURING DYNAMIC FLIGHT PHASES, VEHICLE INSTABILITY COULD OCCUR UNLESS CREW TOOK CONTROL.

REFERENCES: JSC 18820, JSC 11174, JSC 12770

C-44
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86

HIGHEST CRITICALITY
FLIGHT: 2/1R
ABORT: 2/1R

SUBSYSTEM: DPS
MDAC ID: 208

ITEM: CENTRAL PROCESSING UNIT (CPU)
FAILURE MODE: INADVERTENT OPERATION

LEAD ANALYST: T. B. CRIBBS
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) CENTRAL PROCESSING UNIT (CPU)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>2/1R</td>
<td>TAL:</td>
<td>2/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>2/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>2/1R</td>
<td>ATO:</td>
<td>2/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>2/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAYS
PART NUMBER:

CAUSES: CPU ATTEMPTS TO OUTPUT DATA ON INCORRECT DATA BUS DUE TO ERRORS IN MEMORY LOCATIONS CONTAINING CONFIGURATION OR BUS-STRINGING PARAMETERS.

EFFECTS/RATIONALE:
LOSS OF MEMORY IN BUS ASSIGNMENT TABLE (NBAT) COULD RESULT IN A GPC ATTEMPTING TO COMMAND A DATA BUS COMMANDED BY ANOTHER GPC. BOTH EXAMINE THEIR RESPECTIVE NBAT AND ASSUME NO ERROR CONDITION, AND CONTINUE TRANSMISSION ON THAT SAME BUS. THIS WOULD CAUSE ALL DATA ON THAT BUS TO BE ERRONEOUS. FURTHERMORE, IDLE BUS IS CREATED AND 2 COMMAND PATHS ARE LOST. POSSIBLE TO OUTVOTE GOOD COMMANDS: LOSS OF VEHICLE/LIFE.

REFERENCES: JSC 18820, JSC 11174, JSC 12770

C-45
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 209

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/3
ABORT: 3/3

ITEM: CPU POWER SWITCH
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: T. B. CRIBBS
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) CENTRAL PROCESSING UNIT (CPU)
4) CPU POWER SWITCH
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/3</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: PANEL 06
PART NUMBER:

CAUSES: CPU POWER SWITCH IS STUCK IN THE "ON" POSITION DUE TO CONTAMINATION

EFFECTS/RATIONALE:
FLIGHT RULES DICTATE THAT THE CREW SHOULD POWER OFF ANY GPC WHICH HAS RECURRING ERRORS DURING DYNAMIC FLIGHT PHASES, AS SOON AS POSSIBLE TO AVOID ERRONEOUS OUTPUTS BEING SENT TO ACTUATORS. IF THE CPU POWER SWITCH WERE STUCK IN THE "ON" POSITION AND ANOTHER GPC BEGAN SENDING ERRONEOUS DATA, THE ACTUATORS COULD NOT VOTE OUT THE ERRONEOUS COMMANDS AND THE CREW WOULD NEED TO TAKE MANUAL CONTROL.

REFERENCES: JSC 18820, JSC 11174, JSC 12770

C-46
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 210

ITEM: GPC MODE SWITCH
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: T. B. CRIBBS
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) CENTRAL PROCESSING UNIT (CPU)
4) GPC MODE SWITCH
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: PANEL 06
PART NUMBER:

CAUSES: CPU MODE SWITCH IS STUCK IN THE "HALT" OR "STANDBY" POSITION DUE TO CONTAMINATION

EFFECTS/RATIONALE:
IF THE MODE SWITCH FOR A GPC WERE STUCK IN A NON-RUN POSITION THE GPC WOULD IN EFFECT BE DISABLED, SIMILAR TO FAILING TO HALT. THE REMAINING GPC'S WOULD IGNORE THIS GPC, AND THE GPC WOULD NOT BE AVAILABLE AS A BACKUP OR REDUNDANT MEMBER. IF ALL GPC'S WERE STUCK IN THE STANDBY MODE, THE CREW COULD NOT PERFORM CRITICAL FLIGHT CONTROL FUNCTIONS.

REFERENCES: JSC 18820, JSC 11174, JSC 12770

C-47
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86

SUBSYSTEM: DPS
MDAC ID: 211

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: GPC OUTPUT SWITCH
FAILURE MODE: FAILS CLOSED

LEAD ANALYST: T. B. CRIBBS
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) CENTRAL PROCESSING UNIT (CPU)
4) GPC OUTPUT SWITCH
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: PANEL 06
PART NUMBER:

CAUSES: CPU OUTPUT SWITCH IS STUCK IN THE "TERMINATE" OR "BACKUP" POSITION DUE TO CONTAMINATION

EFFECTS/RATIONALE:
IF THE OUTPUT SWITCH WERE STUCK IN THE "TERMINATE" POSITION, THIS WOULD HAVE THE SAME EFFECT OF DISABLING THE GPC'S OUTPUT; ALL SWITCHES IN THIS POSITION WOULD CAUSE LOSS OF VEHICLE CONTROL.
IF THE SWITCH WERE STUCK IN THE "BACKUP" POSITION THIS GPC WOULD ONLY BE AVAILABLE AS BFS. IF ALL SWITCHES IN "BACKUP" GPC 5 WOULD BE BACKUP WHEN ENGAGED.

REFERENCES: JSC 18820, JSC 11174, JSC 12770
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 212

ITEM: IPL SOURCE SWITCH
FAILURE MODE: FAILS OPEN

LEAD ANALYST: T. B. CRIFFBS
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) CENTRAL PROCESSING UNIT (CPU)
4) MMU INITIAL PROGRAM LOAD (IPL) SOURCE SWITCH
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ON ORBIT:</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: PANEL 06

CAUSES: IPL SELECTOR SWITCH IS SHORTED OR POWER SOURCE IS LOST DUE TO CONTAMINATION

EFFECTS/RATIONALE:
IPL SOURCE SWITCH IS USED AT PRE-LAUNCH TO INITIALIZE GPC'S. THIS FAILURE COULD CAUSE LOSS OF A MISSION OPPORTUNITY DUE TO LAUNCH DELAY. DURING FLIGHT THE GPC'S ARE NOT TYPICALLY RE-IPL'ED, EVEN THOUGH THE MMU IS USED TO RETRIEVE NEW MEMORY OVERLAYS (AS OPPOSED TO THE IPL LOADING THE ENTIRE SYSTEM SOFTWARE, INCLUDING MCDS INITIALIZATION).

REFERENCES: JSC 18820, JSC 11174, JSC 12770
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/1R
MDAC ID: 213 ABORT: 3/1R

ITEM: GPC POWER SWITCH
FAILURE MODE: FAILS OPEN

LEAD ANALYST: T. B. C Ribbs SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) GENERAL PURPOSE COMPUTER (GPC)
3) CENTRAL PROCESSING UNIT (CPU)
4) GPC POWER SWITCH
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: PANEL 06

CAUSES: CPU POWER SWITCH IS STUCK IN "OFF" POSITION, OR GPC POWER IS LOST

EFFECTS/RATIONALE:
IF THE GPC POWER SWITCH WERE STUCK IN THE "OFF" POSITION, THE GPC COULD NOT FUNCTION, SAME AS CPU LOSS OF OUTPUT.

REFERENCES: JSC 18820, JSC 11174, JSC 12770
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY: HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/1R
MDAC ID: 300 ABORT: 3/1R

ITEM: KEYBOARD SWITCH
FAILURE MODE: OPEN/CLOSED

LEAD ANALYST: H J LOWERY SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) KEYBOARD
4) SWITCH
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA
PART NUMBER:

CAUSES: MECHANICAL FRACTURE/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF INPUTTING COMMAND CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING -APPROXIMATELY 400,000FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:

C-51
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 301

ITEM: X/Y DEFORMATION AMPLIFIERS
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DISPLAY UNIT
4) X/Y DEFORMATION AMPLIFIERS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA
PART NUMBER:

CAUSES: TEMPERATURE STRESS/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFTOFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
HIGHEST CRITICALITY: HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R
SUBSYSTEM: DPS
MDAC ID: 302

ITEM: VIDEO AMPLIFIER
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DISPLAY UNIT
4) VIDEO AMPLIFIER

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA
PART NUMBER:

CAUSES: TEMPERATURE STRESS/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:

C-53
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 303
HIGHEST CRITICALITY
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: CATHODE-RAY TUBE
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DISPLAY UNIT
4) CATHODE-RAY TUBE
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA
PART NUMBER:

CAUSES: SHOCK/ TEMPERATURE STRESS/ MECHANICAL FRACTURE/ VIBRATION/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 304

HIGHEST CRITICALITY
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: HI AND LOW VOLTAGE POWER SUPPLIES
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DISPLAY UNIT
4) HIGH AND LOW (+/-5, 15, 28 & 80 VDC) VOLTAGE POWER SUPPLIES
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA
PART NUMBER:

CAUSES: MECHANICAL FRACTURES/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000 FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:

C-55
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/1R
MDAC ID: 305 ABORT: 3/1R

ITEM: RPC
FAILURE MODE: OPEN/CLOSED/PREMATURE OPERATION

LEAD ANALYST: H J LOWERY SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DISPLAY UNIT
4) RPC
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREA AREA
PART NUMBER:

CAUSES: MECHANICAL FRACTURE/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFING - APPROXIMATELY 400,000FT (TD - 40 MIN) THROUGH SAFEING.

REFERENCES:

C-56
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86

SUBSYSTEM: DPS
MDAC ID: 306
HIGHEST CRITICALITY: MDAC
HDW/FUNC: 3/1R
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: MEMORY
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DEU
4) MEMORY
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA
PART NUMBER:

CAUSES: CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 307

HDW/FUNC ABORT HDW/FUNC
FLIGHT: 3/1R

ITEM: KEYBOARD ADAPTER
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DEU
4) KEYBOARD ADAPTER
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA
PART NUMBER:

CAUSES: CONTAMINATION/DEBRIS

EFFECTS/RATIONALE:
LOSS OF INPUTTING COMMAND CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD - 40 MIN) THROUGH SAFEING.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 308

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: SYMBOL GENERATOR
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DEU
4) SYMBOL GENERATOR
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA

PART NUMBER:

CAUSES: CONTAMINATION/DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:

C-59
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/1R
MDAC ID: 309 ABORT: 3/1R

ITEM: MIA
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DEU
4) MIA
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACA:</td>
<td>3/1R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA

PART NUMBER:

CAUSES: CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD - 40 MIN) THROUGH SAFEING.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 310

ITEM: CONTROL LOGIC
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DEU
4) CONTROL LOGIC
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA
PART NUMBER:

CAUSES: CONTAMINATION/DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:

C-61
INDEPENDENT ORBITER ASSESSMENT

ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>10/03/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>DPS</td>
<td>FLIGHT:</td>
<td>3/1R</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>311</td>
<td>ABORT:</td>
<td>3/1R</td>
</tr>
</tbody>
</table>

ITEM: POWER SUPPLIES
FAILURE MODE: NO OUTPUT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:

1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DEU
4) POWER SUPPLIES (+/-5, 12 & 15 VDC)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA

PART NUMBER:

CAUSES: CONTAMINATION/DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 312

HIGHEST CRITICALITY
HDW/FUNC
FLIGHT: 3/1R
ABORT: 3/1R

ITEM: RPC
FAILURE MODE: OPEN/CLOSED/PREMATURE OPERATION

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DEU
4) RPC
5) ...
6) ...
7) ...
8) ...
9) ...

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRLAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFFOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA
PART NUMBER:

CAUSES: TEMPERATURE STRESS/ MECHANICAL FRACTURE/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF MONITORING CAPABILITY. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD -40 MIN) THROUGH SAFEING.

REFERENCES:

C-63
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 313

ITEM: LOAD SWITCH
FAILURE MODE: OPEN/CLOSED/PREMATURE OPERATION

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DEU
4) LOAD SWITCH
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/3</td>
<td>RTLS: 3/3</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL: 3/3</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA: 3/3</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/3</td>
<td>ATO: 3/3</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA

PART NUMBER:

CAUSES: MECHANICAL FRACTURE/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
DEUS ARE NOT NORMALLY RELOADED DURING A MISSION. SWITCH IS NOT NEEDED.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 314

ITEM: FUNCTION SWITCH
FAILURE MODE: OPEN/CLOSED/PREMATURE OPERATION

LEAD ANALYST: H J LOWERY
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DEU
4) FUNCTION SWITCH
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: UPPER CREW AREA

PART NUMBER:

CAUSES: MECHANICAL FRACTURE/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
IMPROPER MAJOR FUNCTION IDENTIFICATION.

REFERENCES:

C-65
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 315

<table>
<thead>
<tr>
<th>ITEM:</th>
<th>DATA BUS COUPLER (DBC)</th>
<th>FAILURE MODE: OPEN/SHORT</th>
<th>LEAD ANALYST: H J LOWERY</th>
<th>SUBSYS LEAD: B. ROBB</th>
</tr>
</thead>
</table>

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DBC
4)
5)
6)
7)
8)
9)

CRITICALITIES
<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/1R</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>3/1R</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>3/1R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REDUNDANCY SCREENS:
A [1]
B [P]
C [P]

LOCATION: ALL AV BAYS
PART NUMBER:

CAUSES: MECHANICAL FRACTURE/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF DATA BUS. REDUNDANT HARDWARE WOULD NOT BE ACCESSIBLE DURING PERIODS OF ANTICIPATED HIGH ACCELERATION/DEACCELERATION FORCES. IE. 1. LIFT-OFF THROUGH MAIN ENGINE CUT-OFF - APPROXIMATELY 8 MIN 40 SEC; 2. ENTRY THROUGH SAFEING - APPROXIMATELY 400,000FT (TD ~40 MIN) THROUGH SAFEING.

REFERENCES:

C-66
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/2R
MDAC ID: 316 ABORT: /NA

ITEM: DBIA
FAILURE MODE: OPEN/SHORT/ERRONEOUS/ERRATIC OUTPUT

LEAD ANALYST: H J LOWERY SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MULTIFUNCTION CRT DISPLAY SYSTEM (MCDS)
3) DBIA
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td></td>
<td>3/2R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>/NA</td>
<td>AOA:</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAVING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 5
PART NUMBER:

CAUSES: MECHANICAL FRACTURE/ CONTAMINATION/ DEBRIS

EFFECTS/RATIONALE:
LOSS OF ONE COMMAND/DATA PATH.

REFERENCES:

C-67
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 400

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: 3/2R

ITEM: TAPE TRANSPORT MECHANISM
FAILURE MODE: LOSS OF OUTPUT

LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) TAPE TRANSPORT MECHANISM
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: WORN TAPE OR FOREIGN MATTER ON TAPE, MOTOR FAILURE (WORN
BRUSHES, ETC.), WORN HEADS, FAILURE OF NEGATOR SPRING CAUSING
TAPE SLIPPAGE DUE TO INCORRECT TENSION.

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 AND 3 SOFTWARE CANNOT BE LOADED.
HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 401

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/2R
ABORT: 3/2R

ITEM: TAPE TRANSPORT MECHANISM
FAILURE MODE: ERRONEOUS OUTPUT

LEAD ANALYST: K. PIETZ SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) TAPE TRANSPORT MECHANISM

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: WORN TAPE OR FOREIGN MATTER ON TAPE, TAPE SLIPPAGE DUE TO INCORRECT TENSION.

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 AND 3 SOFTWARE CANNOT BE LOADED. HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 402

HIGHEST CRITICALITY: HDW/FUNC
FLIGHT: 3/2R
ABORT: 3/2R

ITEM: READ ELECTRONICS
FAILURE MODE: LOSS OF OUTPUT

LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) READ ELECTRONICS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIRIT</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: ELECTRICAL FAILURE

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 AND 3 SOFTWARE CANNOT BE LOADED.
HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/2R
MDAC ID: 403 ABORT: 3/2R

ITEM: READ ELECTRONICS
FAILURE MODE: ERRONEOUS OUTPUT

LEAD ANALYST: K. PIETZ SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) READ ELECTRONICS
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: ELECTRICAL FAILURE

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 AND 3 SOFTWARE CANNOT BE LOADED.
HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 404

HIGHEST CRITICALITY

ABORT: 3/2R

FAILURE MODE: LOSS OF OUTPUT
LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) MIA
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: ELECTRICAL FAILURE

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 AND 3 SOFTWARE CANNOT BE LOADED. HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 405

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: 3/2R

ITEM: MIA
FAILURE MODE: ERRONEOUS OUTPUT

LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) MIA
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: ELECTRICAL FAILURE

EFFECTS/RATIONALE:
If both MMUs fail, OPS 2 and 3 software cannot be loaded. However, OPS 3 can be uplinked or BFS engaged for entry.

REFERENCES:

C-73
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 406

ITEM: WRITE ELECTRONICS
FAILURE MODE: LOSS OF OUTPUT

LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) WRITE ELECTRONICS

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: ELECTRICAL FAILURE

EFFECTS/RATIONALE:
IF THE ABILITY TO WRITE TO MMUS WERE LOST, THE MISSION COULD BE TERMINATED EARLY. NO DANGER TO CREW OR VEHICLE.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 407

ITEM: RPC
FAILURE MODE: FAILED OPEN

LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) POWER SUPPLY
4) RPC

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: BROKEN CONTACT

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 AND 3 SOFTWARE CANNOT BE LOADED.
HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY.

REFERENCES:

C-75
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 408

ITEM: SWITCH
FAILURE MODE: FAILED OPEN

LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) POWER SUPPLY
4) SWITCH

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td></td>
<td>3/2R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/2R</td>
<td></td>
<td>3/2R</td>
</tr>
<tr>
<td>ONORBIT</td>
<td>3/2R</td>
<td></td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td></td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td>/NA</td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: BROKEN CONTACT

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 AND 3 SOFTWARE CANNOT BE LOADED.
HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 409

ITEM: SWITCH
FAILURE MODE: FAILED CLOSED (ON)

LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) POWER SUPPLY
4) SWITCH
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL:</td>
<td>3/3</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/3</td>
<td>AOA:</td>
<td>3/3</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/3</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: STRAY PARTICLE

EFFECTS/RATIONALE:
NONE

REFERENCES:

C-77
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 410

ITEM: CONTROL LOGIC
FAILURE MODE: LOSS OF OUTPUT

LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) CONTROL LOGIC
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: /NA</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL: 3/2R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/2R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO: 3/2R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: ELECTRICAL FAILURE

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 OR 3 SOFTWARE CANNOT BE LOADED. HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 411

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: 3/2R

ITEM: CONTROL LOGIC
FAILURE MODE: ERRONEOUS OUTPUT

LEAD ANALYST: K. PIETZ
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) CONTROL LOGIC
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>TAL:</td>
<td>3/2R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>AOA:</td>
<td>3/2R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/2R</td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: ELECTRICAL FAILURE

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 OR 3 SOFTWARE CANNOT BE LOADED.
HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY.

REFERENCES:

C-79
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 412

HIGHEST CRITICALITY
FLIGHT: 3/2R
ABORT: 3/2R

ITEM: POWER SUPPLY
FAILURE MODE: FAILS OUT OF TOLERANCE OR INTERRUPT

LEAD ANALYST: K. PIETZ SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) MASS MEMORY UNITS (MMU)
3) POWER SUPPLY
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>/NA</td>
<td>/NA</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/2R</td>
<td>TAL: 3/2R</td>
<td>/NA</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>3/2R</td>
<td>AOA: 3/2R</td>
<td>/NA</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO: 3/2R</td>
<td>/NA</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 1,2
PART NUMBER: MC 615-0005

CAUSES: ELECTRICAL FAILURE

EFFECTS/RATIONALE:
IF BOTH MMUS FAIL, OPS 2 AND 3 SOFTWARE CANNOT BE LOADED.
HOWEVER, OPS 3 CAN BE UPLINKED OR BFS ENGAGED FOR ENTRY. NEITHER OF THESE OPTIONS REQUIRE THE USE OF MMUS.

REFERENCES:
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/1R
MDAC ID: 501 ABORT: 3/1R

ITEM: CIA
FAILURE MODE: LOSS OF OUTPUT TO MAIN ENGINE ON ONE CHANNEL

LEAD ANALYST: B. ROBB SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) ENGINE INTERFACE UNIT (EIU)
3) CONTROLLER INTERFACE ADAPTER
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>/NA</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4, 5, 6
PART NUMBER:

CAUSES: CONTROLLER INTERFACE ADAPTER FAILS

EFFECTS/RATIONALE:
LOSS OF THROTTLE COMMANDS, SHUTDOWN COMMANDS, LIMIT INHIBIT/ENABLE COMMANDS, GPC SHUTDOWN COMMANDS, AND MPS DUMP COMMANDS. LOSS OF ONE OF THREE COMMAND PATHS WILL BE VOTED INVALID. NO EFFECT ON ENGINE OPERATIONS.

REFERENCES:

C-81
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86

HIGHEST CRITICALITY HDW/FUNC

SUBSYSTEM: DPS FLIGHT: 3/1R

MDAC ID: 502 ABORT: 3/1R

ITEM: MIA
FAILURE MODE: LOSS OF OUTPUT TO MAIN ENGINE ON ONE CHANNEL

LEAD ANALYST: B. ROBB SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) ENGINE INTERFACE UNIT (EIU)
3) MULTIPLEXER INTERFACE ADAPTER

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT</td>
<td>/NA</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAfING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4,5,6

CAUSES: MULTIPLEXER INTERFACE ADAPTER FAILS

EFFECTS/RATIONALE:
LOSS OF THROTTLE COMMANDS, SHUTDOWN COMMANDS, LIMIT INHIBIT/ENABLE COMMANDS, GPC SHUTDOWN COMMANDS, AND MPS DUMP COMMANDS. LOSS OF ONE OF THREE COMMAND PATHS WILL BE VOTED INVALID. NO EFFECT ON ENGINE OPERATIONS.

REFERENCES:

C-82
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86 HIGHEST CRITICALITY HDW/FUNC
SUBSYSTEM: DPS FLIGHT: 3/1R
MDAC ID: 503 ABORT: 3/1R

ITEM: POWER CONTROL SWITCH
FAILURE MODE: LOSS OF OUTPUT TO MAIN ENGINE ON ANY OF THREE COMMAND CHANNELS

LEAD ANALYST: B. ROBB SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) ENGINE INTERFACE UNIT (EIU)
3) POWER CONTROL SWITCH
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH</td>
<td>3/2R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>3/1R</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF</td>
<td>/NA</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>ORBIT</td>
<td>/NA</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT</td>
<td>/NA</td>
<td></td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAVING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4,5,6
PART NUMBER:

CAUSES: EIU POWER CONTROL SWITCH FAILS OPEN

EFFECTS/RATIONALE:
LOSS OF ALL COMMANDS AND STATUS OF THE ENGINE FOR THIS FAILURE MODE THE LOSS OF THE ENTIRE EIU WILL RESULT IN ENGINE SHUTDOWN BY CREW BY SWITCHING AC POWER TO THE ENGINE TO OFF POSITION.

REFERENCES:

C-83
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

<table>
<thead>
<tr>
<th>DATE:</th>
<th>10/03/86</th>
<th>HIGHEST CRITICALITY</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYSTEM:</td>
<td>DPS</td>
<td>FLIGHT:</td>
<td>3/1R</td>
</tr>
<tr>
<td>MDAC ID:</td>
<td>504</td>
<td>ABORT:</td>
<td>3/1R</td>
</tr>
</tbody>
</table>

ITEM: INTERNAL POWER SUPPLIES
FAILURE MODE: LOSS OF OUTPUT TO MAIN ENGINE ON ANY OF THREE COMMAND CHANNELS

LEAD ANALYST: B. ROBB SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) ENGINE INTERFACE UNIT (EIU)
3) INTERNAL POWER SUPPLIES

LOCATION: AV BAY 4,5,6
PART NUMBER:

CAUSES: INTERNAL POWER SUPPLIES FAIL

EFFECTS/RATIONALE:
LOSS OF THROTTLE COMMANDS, SHUTDOWN COMMANDS, LIMIT INHIBIT/ENABLE COMMANDS, GPC SHUTDOWN COMMANDS, AND MPS DUMP COMMANDS. THE LOSS OF THE ENTIRE EIU WILL RESULT IN ENGINE SHUTDOWN BY CREW BY SWITCHING AC POWER TO THE ENGINE TO OFF POSITION.

REFERENCES:

C-84
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 505

ITEM: CONTROLLER INTERFACE ADAPTER
FAILURE MODE: LOSS OF OUTPUT TO ONE OR THREE GPC ON STATUS OF ENGINES.

LEAD ANALYST: B. ROBB
SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) ENGINE INTERFACE UNIT (EIU)
3) CONTROLLER INTERFACE ADAPTER
4)
5)
6)
7)
8)
9)

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/1R</td>
<td>TAL:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LONORBIT:</td>
<td>/NA</td>
<td>AOA:</td>
<td>3/1R</td>
</tr>
<tr>
<td>DEORBIT:</td>
<td>/NA</td>
<td>ATO:</td>
<td>3/1R</td>
</tr>
<tr>
<td>LANDING/SAFING</td>
<td>/NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4,5,6
PART NUMBER:

CAUSES: CONTROLLER INTERFACE ADAPTER FAILURE

EFFECTS/RATIONALE:
NO MAIN ENGINE MONITORING BY ONE OR THREE OF FOUR GPCS. MCC CONFIRMS COMMAND PATH GOOD BY MONITORING 3-G THROTTLE CONTROL. IF ENGINE IS NOT OPERATING, THE PUSHBUTTON FOR THE ENGINE MUST BE USED TO INFORM GUIDANCE FOR PREVALVE CLOSURES. FLIGHT RULE 2-17 PRECLUDES RESTRINGING DURING POWERED ASCENT THROUGH MECO.

REFERENCES:

C-85
INDEPENDENT ORBITER ASSESSMENT
ORBITER SUBSYSTEM ANALYSIS WORKSHEET

DATE: 10/03/86
SUBSYSTEM: DPS
MDAC ID: 506

HIGHEST CRITICALITY HDW/FUNC
FLIGHT: 3/3
ABORT: 3/IR

ITEM: OIE
FAILURE MODE: LOSS OF OUTPUT TO S-BAND, MAINTENANCE RECORDER, OR
LPS T-0 UMBILICAL

LEAD ANALYST: B. ROBB SUBSYS LEAD: B. ROBB

BREAKDOWN HIERARCHY:
1) DPS
2) ENGINE INTERFACE UNIT (EIU)
3) OPERATIONAL INTERFACE ELEMENT

CRITICALITIES

<table>
<thead>
<tr>
<th>FLIGHT PHASE</th>
<th>HDW/FUNC</th>
<th>ABORT</th>
<th>HDW/FUNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELAUNCH:</td>
<td>3/2R</td>
<td>RTLS: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LIFTOFF:</td>
<td>3/3</td>
<td>TAL: 3/1R</td>
<td></td>
</tr>
<tr>
<td>ONORBIT:</td>
<td>/NA</td>
<td>AOA: 3/1R</td>
<td></td>
</tr>
<tr>
<td>LANDING/SAFING:</td>
<td>/NA</td>
<td>ATO: 3/1R</td>
<td></td>
</tr>
</tbody>
</table>

LOCATION: AV BAY 4,5,6

CAUSES: OPERATIONAL INTERFACE ELEMENT FAILURE

EFFECTS/RATIONALE:
NO FM DATA RECORDING, NO MCC STATUS MONITORING OF ENGINE EXCEPT IN DOWNLIST DATA FROM GPC.

REFERENCES:
<table>
<thead>
<tr>
<th>MDAC ID</th>
<th>ITEM</th>
<th>FAILURE MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>IOP</td>
<td>Premature Operation</td>
</tr>
<tr>
<td>208</td>
<td>CPU</td>
<td>Inadvertent Operation</td>
</tr>
</tbody>
</table>