STS-135
SSP Flight Readiness Review

MS/Terri Murphy
June 21, 2011

Agenda

• Systems Engineering & Integration
 • SE&I FRR Roadmap
 • Flight Preparation Readiness
 • Integrated Debris Risk Summary
 • Integrated Hazard Report Summary
 • Integrated In-flight Anomalies (IFAs)
 • Imagery Status
 • Radar Status
 • Flight Software Readiness
 • Payload and General Support Computer Readiness
 • Non-Standard Open Work Summary
 • Alternate/Dissenting Opinions
 • Certificate of Flight Readiness
1. Mission Overview

2. Integration El Summary
 - L&L
 - Orbiter
 - ET
 - SRB
 - IRRM
 - SSME
 - MPS (physical) - NASA Provided
 - Imagery Integration
 - NASA Provided
 - Ops Readiness - NASA Provided
 - MOD Integration - NASA Provided
 - Backup

3. Analysis
 - TDDP
 - DSS
 - GN&C
 - Aerodynamics / Debris
 - Lift Off Debris - NASA Provided
 - Thermal
 - Loads & Dynamics
 - Propulsion Systems (MPS, functional)
 - Element Avionics I/F
 - EME
 - GSI
 - Natural Environments - NASA Provided
 - JSC/MSFC Engineering - NASA Provided
 - Backup

4. Integrated Safety
 - System Safety
 - BHR Cause Count
 - Integrated Risk (SIRMA) - NASA Provided
 - Backup

5. Requirements
 - ICDs
 - Integrated OMRS
 - LCCs
 - Flight Rules Evaluation
 - NSTS 07700 Changes/Waivers
 - Combined Element Verification
 - Configuration/Verification
 - Backup

6. Flight Software
 - Flight Software - NASA Provided
 - PGSC - NASA Provided

7. Cert Statements & SPOC Accountabilities
 - Open Work Summary
 - Readiness Statements
 - SPOC Accountabilities
 - NASA SE&I Accountabilities

8. LON Status

Flight Preparation Readiness

- All standard Systems Engineering and Integration flight preparation activities have been completed or are planned. Non-standard open work will be addressed.
 - System requirements verification
 - Design requirements and induced environment updates; verification of element incorporation
 - Integrated vehicle performance evaluation
 - Real-time mission support preparation and certification of personnel as applicable
 - Review and disposition of waivers, deviations, and exceptions
 - Updates to Integrated Hazards baseline
 - Flight Software verification/Payload and General Support Computer (PGSC) Readiness
 - Review of element requirements changes and verifications for integration impacts
STS-135 Debris Risk Assessment Summary

Debris Risk Assessment, 6/2011

IDBR-01 debris risks remain Infrequent/Catastrophic

- **Liftoff Debris** is expected to remain at this risk level for the life of the Program due to the diversity of potential Debris sources although rigorous controls have been implemented and continuous vigilance is policy.

- **ET Umbilical Ice:** Accepted Risk; Closely monitored during pre-launch

- **Putty Repair:** Windows zero impact allowable keeps any impact in the “catastrophic” category, forward work may be used to reduce the likelihood to “Remote”.

- **T-0 Umbilical Ice:** Accepted Risk; NSTS 08303 Updated to include 0.1 lbm allowable external ice

- **LOX IFR:** Implemented NDE of all IFR ramps to screen for large voids

- **ET Intertank Foam Loss:** Changed to Infrequent Catastrophic for STS-128
 - Continued Tensile Testing of ET high risk debris areas to mitigate risk

- **RCC Capability /ICE:** SIRMA Risk 2691 elevated to Infrequent for STS134 & 135
Issues & Integrated In Flight Anomalies

Presenter: MS/ Doug Drewry
Date: 6/21/11
Page: 7

- **STS-133-I-002 ET Intertank Stringer Cracks:**
 - CLOSED for STS-134 at 3/22/11 SICB
 - 6/15/11 STS-135/ET-138 Tanking Test
 - Reviewed at Special SICB on 6/17/11 and Closure pending NDE results from Test

- **STS-134-I-001 Unexpected Debris/Expected Debris Exceeding Mass Allowable Prior to PAD Clearance (Liftoff Debris):**
 - Reviewed at 6/6/11 DIG
 - CLOSED at 6/14/11 SICB

- **STS-134-I-002 Cylindrical Object Observed Near +Y Thrust Panel During SRB Separation**
 - Investigation team led by Sam Stephens/MP-71
 - Presented to 6/17/11 SICB for closure as UA

STS-114 through STS-134: Debris Instance Chronology

Presenter: MS/ Doug Drewry
Date: 6/21/11
Page: 8

<table>
<thead>
<tr>
<th>Mission (STS)</th>
<th>Total Item Count Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Item Count</td>
</tr>
<tr>
<td>114 - 134</td>
<td>45.65</td>
</tr>
<tr>
<td></td>
<td>STS-134</td>
</tr>
</tbody>
</table>

Baseline established with data from STS-114 through STS-127.

STS-133 debris count is below the baseline average and within family of the last several flights.
Summary of Lift Off Debris Categories

RTF - STS-134

Chris Riley/MP-71
Mike Mitchell/MP-71
MS/ Doug Drewry

Orbiter Debris Impact summary

RTF Summary thru STS-134, OV-105

Lisa Huddleston/KSC
Craig Madden/KSC

- Total # of TPS Hits = 118 / TPS Hits w/damage > 1" = 21
- Prior to RTF Average for >1" = 30.5 per flight / Average Since RTF = 17 per flight

- STS-134 elliptical volume Hits>1" = 9.421 in³ / RTF Average = 2.536 in³
- STS-134 Total elliptical volume ALL Hits = 10.065 in³ / RTF Average = 3.515 in³
• TPS putty repairs are listed as expected debris in NSTS 60559
• Putty Repair loss is listed in IDBR-01 as cause AK and carried as an Infrequent/Catastrophic Risk primarily because Windows have zero capability for impacts
 Since RTF, 3 losses have had transport to windows – largest mass was 0.0009 lbs
• One (1) loss experienced during STS-134

Missing Putty Repairs Since RTF

![Graph showing missing putty repairs since RTF]

IIFA STS-134-I-002
Cylindrical Object Observed Near +Y Thrust Panel During SRB Separation

SR4933

Sam Stephens, MP71
6/17/11
Cylindrical Object Observed Near +Y Thrust Panel During SRB Separation

- Right SRB ET Observation Camera (SRF110) recorded imagery of cylindrical object downstream of ET/SRB forward attach point.
 - Object not observed in any other camera view
 - Point of origin outside field of view
 - Observed in 7 frames approximately 0.4 sec after SRB separation (~125 sec MET)
 - Appears to be metallic with range of size from 0.25 to 2.78 in length with length to diameter aspect ratio between 2 – 5+. Maximum initial velocity ~ 33 ft/sec.
 - Object is tumbling end over end at approx. 900 rpm
- Large uncertainty on size, velocity, and direction due to large depth of field of camera and due to fact that both object and reference points on tank are moving relative to camera and each other.
- Potential correlation with debris radar
 - Object with Ballistic number (BN) of 3.9 psf is observed at ~125 sec in forward third of vehicle.
- Potential correlation to WLEIDS on panel 12R at approx 126.6 sec (2 Grms trigger)
 - No damage observed from postflight inspections

Investigation Approach

- Integrated logic tree developed with major branches as follows:
 - Foreign Object Debris (FOD)
 - Flight Elements
 - Ground Ops
 - Flight Hardware failure/liberation
 - Orbiter & SSME
 - Eliminated due to object upstream and Orbiter cleared via on orbit inspections
 - ET
 - RSRB
- Extensive reviews by Ground Ops, ET and RSRB of potential FOD and flight hardware sources:
 - Two possible RSRB sources were identified:
 - Ground Strap Coupler
 - Separation Bolt Lock Pin
RSRB Flight Hardware w/potential

Ground Strap Coupler

- RSRB Ground strap coupler used in RSS crossover assembly
 - Connects pins on grounding straps at RSRB and ET sides of separation plane
 - Coupler symmetric; can be retained with either pin at separation
 - Is retrieved approx ½ time
 - Remaining times most likely with ET, but could be lost during retrieval, or liberated
 - Liberation unexpected but cannot rule out possibility

Separation Bolt Lock Pin

- Separation bolt lock pin with epoxy located at head end and has never been lost in any ground tests
 - Data review showed thread end lock pin ejected in past
 - Different design
 - RSRB characterizes as unexpected
 - Dimensions fit with observations
 - Calculated BN of 9.3 is higher than radar observation

Comparison of Potential Sources to Observations

<table>
<thead>
<tr>
<th>Observation</th>
<th>Coupler</th>
<th>Lock Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Metallic Cylinder</td>
<td>Metallic Cylinder</td>
</tr>
</tbody>
</table>
| Length | 0.25 – 2.84 in
Visible Imagery
Radar (BN=3.9 object) | 0.625 in
<1.25 in. | 1.15 in |
| Diameter | .07 – 0.76 in
| | 0.22 – 0.23 in
| | 0.312 in |
| Aspect Ratio (L/D) | 2 - 5+
| | 2.68 – 2.86
| | 3.69 |
| Ballistic Number (Radar) | 3.9 +/−1.9 psf
| | 3.3 psf
| | 9.3 psf |

- Assessment insufficient to classify either object as most likely or to rule out other possibilities.
- However RSRB Ground Strap Coupler debris transport shows potential impacts and damage to RCC, tile and special tile regions.
 - RCC Front side coating damage expected due to the hard/strong nature of the impactor (10 times denser and about 100 times stronger than ice)
 - RCC Punch through failure is possible given Modeling uncertainties
 - Tile damage would require assessment during mission
DTA Timeline from ET/SRB Interface

- SRB Separation + 0.1 second debris traces
- SRB Separation + 0.7 seconds
- SRB Separation + 0.75 seconds
- SRB Separation + 1 second
- SRB Separation + 1.5 seconds

Ground Strap Coupler Impacts on Orbiter

Maximum Impact TKE = 1.23 ft-lbs

The following table lists worst case impact conditions for some key Orbiter components:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing RCC</td>
<td>0.0022</td>
<td>169</td>
<td>1.6</td>
<td>1.0</td>
<td>169</td>
<td>1.6</td>
</tr>
<tr>
<td>Orbiter Tile</td>
<td>0.0022</td>
<td>190</td>
<td>0.9</td>
<td>1.2</td>
<td>190</td>
<td>0.9</td>
</tr>
<tr>
<td>Body Flap</td>
<td>0.0022</td>
<td>154</td>
<td>1.2</td>
<td>0.8</td>
<td>154</td>
<td>1.2</td>
</tr>
<tr>
<td>Elevons</td>
<td>0.0022</td>
<td>187</td>
<td>1.4</td>
<td>1.2</td>
<td>187</td>
<td>1.4</td>
</tr>
<tr>
<td>Carrier Panels</td>
<td>0.0022</td>
<td>168</td>
<td>1.0</td>
<td>1.0</td>
<td>168</td>
<td>1.0</td>
</tr>
<tr>
<td>Main Gear/Special Tile</td>
<td>0.0022</td>
<td>136</td>
<td>13.7</td>
<td>0.6</td>
<td>136</td>
<td>13.7</td>
</tr>
</tbody>
</table>
FOD Potential

- ET/SRB attach hardware has locations with potential for holding FOD

- For STS-134 and STS-135, RSRB, ET, and Ground Ops reviewed documentation, close out photos, Baseline Configuration Imagery (BCI), tool box checks, parts kits, etc. No anomalous or unusual findings except as noted below:
 - STS-134/ET-122 stringer mods performed in integration cell after E/B-2 closeout
 - Controls in place including sealed enclosure for work
 - Possible some bolt fragments were left in intertank
 - No credible path from intertank to external
 - No external hardware or tools unaccounted for
 - For STS-135/ET-138, stringer mod work performed in c/o cell
 - Four bolt fragments in intertank unaccounted for
 - Will re-inspect intertank post tanking test

- STS-134 had a high wind event at pad
 - Inadequate BCI at pad to adequately examine E/B-2 area after event
 - For STS-135, will use improved process with visual access to both E/B areas

FOD Mitigation for STS-135

- Enhanced inspections performed in VAB to clear the vehicle for rollout which included borescope inspections behind RSS crossover cavity
- PAD A planned inspections
 - Borescope the crossover areas during final SRB inspections at L-3 or in the event of an off-nominal high wind event
Summary: Recommend closure of IIFA STS-134-I-002 as UA

- **Flight Rationale for FOD:**
 - Strength of controls for FOD prevention
 - Standard processing with ET mods performed in c/o cell prior to integration
 - Additional inspections of STS-135 E/B external area prior to rollout
 - Tool box checks, parts checks, paper reviews, close-out and BCI photo review
 - Enhanced imagery at pad

- **Flight Rationale for RSRB flight hardware:**
 - Coupler and Lock Pin remain “Unexpected” debris and RSRB assessment shows release is possible but unlikely.
 - 38 recent tests resulted in no liberations of coupler
 - Lock pin is bonded with epoxy and no history of loss
 - DTA indicates window where Coupler/Pin debris can impact Orbiter to be less than 1 sec. duration.
 - Front side RCC damage is expected and possibility of punch through should impact occur
 - Half of tile damages pass deterministically, 1/3 of damages have low risk of failure, remaining damages are marginal
 - On orbit inspections are capable of detecting RCC damage from metallic debris of this type

STTS-135
SSP Flight Readiness Review

Integrated Hazard Report and
Integrated In-flight Anomalies
Summary

MS3/Brenda Eliason
June 21, 2011
Integrated In-Flight Anomalies (IIFAs)

Summary

- **STS-133-I-002, ET Intertank Stringer Cracks**
 - Status – ECD 6/27/11
 - TPS crack observed on the LO2 Intertank (IT) flange closeout at ~Xt 852 on Panel 2 during tanking for STS-133 launch attempt on 11/5/10
 - Subsequent TPS removal revealed foam cracking caused by underlying stringer cracks
 - Tanking test performed post-repair stringer on 12/17/10
 - NDE following the tanking test revealed additional stringer cracks
 - ET-137 cracked stringers were repaired.
 - Radius block modification were implemented on all accessible stringers.
 - ET-137/STS-133 was loaded and launched successfully on 2/24/11.
 - Radius block mods were performed on the LO2 flange end of ET-138.
 - No impact of radius block mods on integrated loads.
 - STS-135/ET-138 Tanking Test performed 6/15/11.
 - No significant increase in the risk of TPS release due to re-spray in areas of stringer mods.
 - OPEN, ECD 6/27/11

- **STS-134-I-001, Unexpected Debris/Expected Debris Exceeding Mass Allowable Prior to Pad Clearance (Liftoff Debris)**
 - Status – CLOSED

- **STS-134-I-002, Cylindrical Debris Observed Near +Y Thrust Panel During SRB Sep**
 - Status – CLOSED

Table

<table>
<thead>
<tr>
<th>IFA Number: Title</th>
<th>Description</th>
<th>STS-135 Status and Rationale</th>
</tr>
</thead>
</table>
| STS-133-I-002: ET Intertank Stringer Cracks | • TPS crack observed on the LO2 Intertank (IT) flange closeout at ~Xt 852 on Panel 2 during tanking for STS-133 launch attempt on 11/5/10
• Subsequent TPS removal revealed foam cracking caused by underlying stringer cracks
• Tanking test performed post-repair stringer on 12/17/10
• NDE following the tanking test revealed additional stringer cracks | • ET-137 cracked stringers were repaired.
• Radius block modification were implemented on all accessible stringers.
• ET-137/STS-133 was loaded and launched successfully on 2/24/11.
• Radius block mods were performed on the LO2 flange end of ET-138.
 • No impact of radius block mods on integrated loads.
 • STS-135/ET-138 Tanking Test performed 6/15/11.
• No significant increase in the risk of TPS release due to re-spray in areas of stringer mods.
• OPEN, ECD 6/27/11 |
Integrated In-Flight Anomalies (IIFAs)

<table>
<thead>
<tr>
<th>IFA Number: Title</th>
<th>Description</th>
<th>STS-135 Status and Rationale</th>
</tr>
</thead>
</table>
| • STS-134-I-001: Unexpected Debris/Expected Debris Exceeding Mass Allowable Prior to Pad Clearance (Liftoff Debris) | • Multiple pieces of debris were found on pad post-launch that include liberated pad hardware, and foreign object debris. | • Risk Assessment indicates that given the proposed mitigations, observed debris poses no appreciable increase in risk.
• Liftoff debris risk is currently characterized as infrequent, catastrophic due to significant uncertainties in controls and significant limitations in analysis.
• Debris release has been mitigated for identified potential sources of critical debris by performing repairs and adding inspections for system-level components. Ongoing mitigations include FOD awareness, attrition-based hardware removal, routine inspections and monitoring for facility corrosion.
• CLOSED |

<table>
<thead>
<tr>
<th>IFA Number: Title</th>
<th>Description</th>
<th>STS-135 Status and Rationale</th>
</tr>
</thead>
</table>
| • STS-134-I-002: Cylindrical Debris Observed Near +Y Thrust Panel During SRB Sep | • A cylindrical shaped object was observed in seven frames of video from the right SRB ET Observation camera approximately 0.5 sec after SRB separation (~125 sec MET) | • Investigation ongoing to understand risk for STS-135
• Appears to be metallic with maximum length ~ 3", maximum diameter ~1"
• Potential sources are being evaluated.
• STS-134 processing reviewed for FOD potential.
• Flight hardware that could be a debris source is a grounding strap coupler between SRB and ET or a separation bolt lock pin
• All sources are unexpected debris
• Flight Rationale is based on:
• Strength of controls for FOD prevention
• Risk acceptance for potential flight hardware source
• CLOSED |
Integrated Hazard Report Changes Since STS-134

- None
Integrated Hazard Risk Matrix

"Controlled Risk" Hazard Reports

<table>
<thead>
<tr>
<th>Hazard Report Code</th>
<th>Description</th>
<th>Probability</th>
<th>Impact</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAPO-01</td>
<td>Aerodynamics Environment not per Specified Design</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>IEPS-01</td>
<td>Inability to Power Critical Functions</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>IFSSL-01</td>
<td>ET/SSR System Interface Failure</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IFSSL-02</td>
<td>ET/Orbiter System Interface Failure</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IFSSL-03</td>
<td>SSME/Orbiter System Interface Failure</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IFSSL-06</td>
<td>Outer Mold Line Configuration Error</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IFSSL-07</td>
<td>Flight Software Generic Problems can cause loss of vehicle command and control</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IFSSL-08</td>
<td>Error in Flights Software can cause loss of vehicle command and control</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IFSSL-09</td>
<td>Malfunction of Integrated Hydraulic System (Systems 1, 2 and 3)</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IMES-01</td>
<td>SSME Nozzle/CMC Pod/Bay Interface</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IMES-06</td>
<td>Over pressurization of the Integrated MPS H2 System</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IMES-07</td>
<td>Over pressurization of the Integrated MPS O2 System</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IMES-08</td>
<td>Under pressurization of the Integrated MPS O2 System</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IMES-12</td>
<td>Excessive O2 from ET/Orbiter/SSME External to SSV</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IMES-16</td>
<td>Loss of MPS He System</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IMFS-01</td>
<td>Independent SSME Shutdown</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IPR-01</td>
<td>Pyrotechnic System Malfunction</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ISPR-02</td>
<td>ET Vert Arm System (ETVAS) Umbilical System Malfunction</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ISPR-03</td>
<td>Tail Service Mark (TSM) T-0 Umbilical System Malfunction</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>NVL-02</td>
<td>System Instability Results to Structural Failure of SSV</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Controlled Risk Distribution Totals

- **Total**:
 - Probability: 291
 - Impact: 11
 - Risk: 267
 - Level: 148

- **Category**:
 - Low: 2
 - Medium: 131
 - High: 0
 - Severe: 0
Imagery Hardware

ELVIS

ET LO2 Feedline Camera (ET-138)
- Camera system installed and on schedule with nominal checkouts
 - ET-138 camera batteries exceeded the 3 year shelf-life requirement (3/14/2011)
 - Performed three charge/discharge cycles to verify battery life
 - Waiver EK10798 approved
 - Camera timer disabled to allow longer run time
 - Approved at 6/16/11 Daily PRCB
- **Ready to support. No open issues.**

Ground Network & TV
- Nominal ground network and TV truck status
 - Working additional assets for imagery recording late in ET trajectory
- **Ready to support. No open issues.**

SRB Cameras (BI-146)
- Hardware installation and closeouts on schedule with nominal checkouts
- **Ready to support. No open issues.**

Digital ET Thermal Protection System (DETTPS)
- Camera configured for **Daylight** settings through **27 JULY**
- **Ready to support. No open issues.**

Crew Handheld Digital Still and HD Video Cameras
- Reduced crew size affects imagery acquisition
 - Expected to be delayed by ~4-5 minutes
 - Likely will only get stills only, no video
- Expect dark conditions **2 – 16 AUGUST**
- **Ready to support. No open issues.**

DETTPS Camera Settings
- **Daylight:**
 - f/8, ISO 100, 1/250
 - Bracketing: 0EV=f/8, +1EV= f/5.6
- **Night**
 - f/2.8, ISO 200, 1/250
 - Bracketing 0EV=f/2.8, +1EV= f/2.0
Imagery Hardware
Non-ELVIS

Orbiter MiniCam
- Hardware installation and closeouts on schedule with nominal checkouts
- New configuration with PLT prelaunch activation (was done by crew on mid deck) at ~L-9 min
- Ready to support. No open issues.

Ground Cameras
- Cameras configured nominally per Launch & Landing PRD
- Patrick Distant Object Attitude Measurement System (DOAMS) site quality issue
 - Mitigation is to add tracker at Cocoa Beach DOAMS, as was done for STS-133, -134
- Numerous experimental cameras deployed
 - Not for operational use or analysis
- Ready to support. No open issues.

Photo Targets
- STS-134 FSS and MLP targets performed as expected
- Two photo targets on FSS 295° level were not in camera FOV
 - Resolved with camera set-up adjustments
- Most targets survived the STS-134 launch intact
 - Thermal degradation on some targets (as expected)
- All FSS and MLP targets are installed for STS-135
 - Survey of MLP targets and replaced FSS targets to be performed
- Ready to support. No open issues.
Launch*
- July 8 – July 20: DAYLIGHT
- July 21 – Aug 16: DARK
- Aug 17 – Aug 31: DAYLIGHT

ET Sep Imagery*
- July 8 – July 26: DAYLIGHT
- July 27: DAYLIGHT, Non-Optimal
- July 28 – Aug 16: DARK
- Aug 17 – Aug 31: DAYLIGHT

Handheld ET (post-pitcharound) Imagery*
- July 8 – July 29: DAYLIGHT
- July 30 – Aug 1: DAYLIGHT, Non-Optimal
- Aug 2 – Aug 16: DARK
- Aug 17 – Aug 18: DAYLIGHT, Non-Optimal
- Aug 19 – Aug 31: DAYLIGHT

Post ET-Sep Mvrs
- July 8 - Aug 1, Aug 17 – Aug 31: Nominal +X, Nominal Pitch
- Aug 2 – Aug 16: Nominal +X*, No Pitch

* Modified +X (20 sec) mvrs may be executed instead of the nominal (11 sec) burn on days with no pitch mvnr, provided MOD has no other prop, traj, or rndz constraints.

* Based on March reference trajectory; minor adjustments possible when updated reference trajectory released

CoFR Products & Readiness
- All 43 STS-134 NIRD Reportables have been closed with supporting rationale
- STS-135 Imagery Readiness Review with the IATs and hardware teams held 6/13/11

<table>
<thead>
<tr>
<th>Area of Responsibility</th>
<th>Statement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Integration Plan</td>
<td>NSTS 60540, Operations Integration Plan, Rev B approved at 06/27/06 SICB. End-to-end readiness level of hardware, procedures, tools, and facilities have been assessed to ensure Open Work and issues will be resolved prior to flight.</td>
<td>Ready</td>
</tr>
<tr>
<td>Engineering Image Analysis Products, Training, and Staffing</td>
<td>Imagery engineering analysis, and “I-Squared” SE&I personnel and tools are ready to support STS-135.</td>
<td>Ready</td>
</tr>
<tr>
<td>Imagery Laboratory Readiness</td>
<td>Imagery labs at JSC, KSC, and MSFC have the required capabilities and configurations to support anticipated and unexpected analysis.</td>
<td>Ready</td>
</tr>
<tr>
<td>Camera Hardware Readiness</td>
<td>All ground and vehicle requirements for imagery and other data collection assets have been implemented for flight and associated operational readiness has been demonstrated.</td>
<td>Ready</td>
</tr>
</tbody>
</table>
Debris Radar Configuration for STS-135:

- STS-135 NDR Configuration:
 - 1 MCR C-band radar
 - 2 NASA X-band radars
 - NASA #1 on SRB vessel Liberty Star
 - NASA #2 on Runnymede-Class ARMY LCU
 - Operational SRB tracking, following ASTT, by both X-bd radars
 - NDR Readiness has been completed
NDR Issues During STS-134:

NDR-C1 Radar:
Problem: None.

NDRX-3 Radar:
Problem: None.

NDRX-4 Radar:
Problem: IMU pointing data dropouts caused transient tracking errors.
Resolution: Evaluating IMU interface for potential software error. Either the software will be repaired and tested, or previous version of hardware will be used. ECD: 7/5/11

Readiness for STS-135:

- **Team Readiness**
 - Complete, both ascent and analysis teams ready
 - Training new team members for transition

- **Facility Readiness**
 - Complete

- **Radar Readiness**
 - NDR-C1 – GREEN
 - NDR-X3 - GREEN
 - NDR-X4 - GREEN
STS-135 FLIGHT SOFTWARE SUMMARY

- Eighth flight of PASS and BFS Operational Increment 34 (OI-34)
 - No logic changes from previous flight software systems

- Eighth flight of MEDS Multifunction Display Unit Function (MDUF) VI 6.00 and sixth flight of MEDS Integrated Display Processor (IDP) VI 7.01
 - No changes from previous flight software

- Ninth flight of MAGRS-3S Link 613-9966-008 GPS FSW
 - No changes from previous flight software
FSW READINESS SUMMARY

- Integrated Avionics Verification (IAV) is complete
 - A total of 14 cases were executed and analyzed in support of STS-135
 - Included testing of full flight system (PASS/BFS STS-135/OI-34 flight systems with flight-specific I-Loads; MEDS VI 7.01/6.00 (IDP/MDUF); MAGRS-3S Link 8; and SSME AD08/DA05 software)

- SAIL facility will be in a condition of readiness for mission support

- Formal Software Readiness Review (SRR) was conducted on 06/06/11
 - No known constraints

- With the completion of planned open work, FSW will be ready to support STS-135 launch

STS-135 FLIGHT SOFTWARE
FLIGHT READINESS STATEMENT

Full compliance with SPOC Flight Software CoFR requirements is documented in the STS-135 Software Readiness Review packages along with signed readiness statements and identification of open work.

Pending completion of standard open work and identified non-standard open work, Flight Software is ready to support flight.

/s/ Patti A. French 6/10/11
Patti A. French Date
Associate Program Manager
USA Flight Software
STS-135
SSP Flight Readiness Review
PGSC

Payload and General Support Computer Readiness – STS-135

- Hardware and Software Summary
 - STS-135 will be the fourteenth flight of the IBM ThinkPad A31p PGSC
 - 6 PGSC units (None currently planned for ISS transfer)
 - Sixteenth flight of the A31p Docking Station (OCA and WinDecom)
 - Fourteenth flight of Netgear Wireless Access Point.
 - Note: Network anomaly initially observed on STS-134; Resulted from incorrect Access Point being setup with STORRM payload; Anomaly eventually resolved with reconfiguration of STORRM with correct STORRM Access Point.
 - New software
 - TriDAR v4.2
 - IFA Summary
 1. KFX PGSC failure – system replaced with backup PGSC. KFX returned to nominal operations. Closed
 2. Color Printer – (1) Red text printed as yellow. Ground ceased using red text color in messages.
 (2) Multiple blank pages. Roller cleaning seemed successful. ECD: 6/24/11

- Major Milestones
 - SAIL Testing: 4/29
 - PGSC Review: 5/18
 - Bench Review: 5/25
 - Cable Testing: ~6/24
 - Late Update Disk**: **FD1 Late Update to be performed on ground at an earlier date
 - Launch: 7/8
Systems Safety

<table>
<thead>
<tr>
<th>ECD</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approval of Integrated Flight Anomaly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-STS-133-I-002, ET Intertank Stringer Cracks</td>
<td>06/27/11</td>
</tr>
<tr>
<td></td>
<td>PGSC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-STS-134-S-002, STS-134 Shuttle Color Printer Behavior</td>
<td>06/24/11</td>
</tr>
</tbody>
</table>

Alternate/Dissenting Opinions

- Alternate/dissenting opinions were actively solicited at the SE&I STS-135 Pre-FRR.
 - No dissenting opinions were identified.
The Space Shuttle Program, Systems Engineering and Integration Office's Flight Preparation Process Plan, documented in NSTS 08117, Requirements and Procedures for Certification of Flight Readiness have been satisfied. Required products and other responsibilities identified in NSTS 08117, paragraph 8.5.12 and Appendix M, have been or will be scheduled for completion. All technical functions and responsibilities are ready and the Systems Engineering and Integration Office is prepared to sign the Certificate of Flight Readiness for STS-135, pending completion of open work.

/s/Donald S. Noah

Donald S. Noah
Manager Systems Engineering and Integration Office