A Division of 3 {{ 4 ‘,}
Massachusetts \ \ \ i 4
X W foid
Institute hY]
: of Technology

The Charles Stark Dréper Laboratory

68 Albany Street, Cambridge, Massachusetts 02133 Telephone (617) 258-1475
Mail Station #35

SHUTTLE AVIONICS
COMPUTER SYSTEM STUDIES

TASK 28-S, VOLUME IV

DECEMBER 1972

PART I CONFIGURATION AND REDUNDANCY CONCEPTS

H. Blair-Smith
F. Gauntt

S. Rosenberg
G. Scrwartz

W. Weinstein

PART II LIGHTNING PROTECTION STUDY

E. Hall
J. Allen
W. Weinstein

PART III COMPUTER SYSTEM RELIABILITY

R. Filene

- Some material in this report is proprietary to IBM Corp. and

Singer-General Precision, Inc. and is subject to the restriction
stated on the following page.

RESTRICTIONS

Material on pages 44-46 :s proprietary to IBM Corp. and is
subject to the following restriction:

"These data shall not be disclosed outside MIT or the Government,
or be duplicated, used, or disclosed in whole or in part for any
purpose other than for the use in Space Shuttle Computer evalu-
ation in "fly-by-wire" applications as specifically authorized

by IBM. This restriction does not limit MIT's or the Government's
right to use information contained in such data if it is

obtained from another source without restriction."

Material on page 45 is proprietary to Singer-General Precision,
Inc. and is subject to the following restriction:

"Information disclosed herein is the property of Singer-General
Precision, Inc. It is furnished for evaluation purposes only
and shall not be disclosed or used for any purposes excep: as
specified by contract between the recipient and 5inger-General
Precision, Inc. Duplication of any portion of this data shall
include this legend.”

The uata.subject to these restrictions are contained in sheets
referring to these restrictive clauses by means of footnote.

- |

ACKNOWLEDGEMENTS

The assistance of Eldon C. Hall, Alan I. Green, and
Malcolm W. Johnston in the preparation of this volume is

gratefully acknowledged.

- |

S

S Sy 7 o

INTRODUCTION

This fourth volume of reports submitted under Task 28-S
consists of three major parts. Part I, ConfiqurrFion and
Redundancy Concepts, addresses questions arising in these areas
in the latter half of 1972; Part II, Lightning Protection Study,

was released to limited distribution under separate cover on

_November 24; and Part III, Computer System Reliability, supports

a larger avionics reliability modeling study, done for NR, and is

also available as Digital Development Memo #709.

We have been guided in a general way by the Knox Committee
Report(G), but without feeling strictly bound by it. Specifically,
we have written as if the controversy over whether the third GNCS
computer should be similar or dissimilar to the others had been
settled in favor of similarity (this issue is addressed separately

in reference 12).

It may be helpful here to comment on some of the terminology

.employed. "Digital Computation and Distribution System (DCDS)"

was coined to denote all computers, data buses, mass memory units,
and other digital logic supporting all the avionics in the Orbiter
vehicle. It replaces "DMS" (Data Managem=nt System), used in and
prior to Volumes I and II of this task, because many people now

use "DMS" as a synonym for "PMS" (Performance Monitor System).

The terms "rail" and "string" wilf cause no confusion if regarded
as strictly synonymous and meaning a non-redundant set of equipment,
especially a computer, a Bus Control Unit, and a data bus. A

useful distinction between these terms was made in reference 2,

but it does not apply here. Finally, the term "bus", which we

continue to use for "time dimension multiplexed data bus", is

-being supplanted among the contractor team personnel by "multiplex".

The possibility for confusion arises from the fact that, in
several of the referenced documents, we have used "multiplexer"
or "MUX", not for a bus, but for the interface between a bus and

a bus control unit or a subsystem interface unit.

A summary of this volume appears on the following pages,

in the form of an annotated table of contents.

iv

e
—

)

SUMMARY: AN ANNOTATED TABLE OF CONTENTS

PART I: CONFIGURATION AND REDUNDANCY CONCEPTS

1.0

1.1

2.0

2.1

"System Configuration". Introductory material.

"Assumed DCDS Configuration and Intercommunication
Concepts." A broadly stated set of functional relation-
ships among DCDS elements is assumed, primarily to serve
as a framework for the other reports in Part i. Inter-
computer communications are discussed, with a goal of
making interfaces between regions as simplé and control-

lable as possible.

"Implications of Single Compuéer Type in the Assumed DCDS."
This section explores the problems and benefits of requir-
ing all major computers in the DCDS (specifically, the

GNCS and PMS computers) to be identical. The question of a

dissimilar backup computer is also mentioned.

"Redundancy Management Concepts for the Assumed DCDS."

Introductory material, including some requirements.

"Improving Coverage (Error Detection and Isolation) Over
that Afforded by BITE." A rationale is developed for
implementing consistency tests at various points in the

GNCS control loops.

"Built-In Tests." Error detection techniques that are
complete in one computer are listed and classified as to
hardware or software implementation and effectiveness
against hard or transient failures. The BIT facilities of

several aerospace computers are compared.

"Consistency Tests." A detailed functional design for

this technique is presented, along with some potentially

difficult sample cases.
&

- Page

13

24

26

31

48

"Reconfiguration Control." A detailed functional

. 2.4

design for RCUs in the assumed DCDS is presented,
responsive to built-in tests, consistency tests,

manual control.

Appendix A: "A Data Bus Inter-Computer Communication

Scheme." This appendix reports earlier work
on intercommunication in a multi-regional but
integrated computer system. Some of the

material would apply to the assumed DCDS.

References for Part I

PART II: LIGHTNING PROTECTION STUDY

"Introduction and Conclusions."

"Lightning Properties and Effects on Aerospace Vehicle
Avionics." Experience with lightning strikes on air-

craft, both in-flight and experimental, is categorized.

"Design. Practices for Survivai in alightning Environment."
Techniques such as shielding and grounding for preventing

lightning from disturbing electronics are discussed.

"Architectural Considerations for Survival in a Lightning

Environment." Methods are described for computer system
recovery after lightning-induced errors of varying degrees
of severity.

Bibliography for Part II

PART III: COMPUTER SYSTEM RELIABILITY

"Introduction and Conclusions"

"Detailed Reliability Analysis of Computer System."
Equations are developed relating the probability of success

of the computer system to the coverage and MTBF of the

Page

58

67

76

78

80

87

110

118

137
141

142

146

Page

individual computers” in triplex and quadruplex systems.

Several abort strategies are considered.

3. “simplification of the Reliability Equations." The 161
exact equations of Section 2 are simplified by consider-
ation of dominantterms; and useful bounds and approxi-
mations are developed.

4. "Possible Refinements to Reliability Model." Alternatives 168
to certain assumptions upon which the reliability model
is based are examined. 4

References. for Part III 169

-

O

Institute
of Technology &

’ The Charles Stark Draper Laboratory

68 Albany Street, Cambridge, Massachusetts 02139 Telephone (617) 258-

PART I

CONFIGURATION AND REDUNDANCY CONCEPTS

Hugh Blair-Smith
Frank E. Gauntt
Sumner C. Rosenberg
Gary Schwartz

William W. Weinstein

1.0 SYSTEM CONFIGURATION

The DCDS configuration assumed in these reports and presented

in the following section is intended as an amalgam of current ideas
about Shuttle avionics from a number of sources, rather than an MIT
invention. Early in the reporting period, these ideas came from
MSC personnel; then increasingly from NR and contracting team
people. Later, some results from the November meetings at NR
influenced the work. The sources generally agreed on such points

as:

(a) Avionics must satisfy a Fail-Operation, Fail-Safe (FO-FS)

criterion from life-critical functions.

(b) Guidance, Navigation and Control (GN&C) is life-critical

and should be performed by a triply redundant computer.

(c) The Performance Monitor System (PMS) is mission-critical
but not life-critical, and should occupy a dual-redundant

computer.

(d) The probability of successful mission completion must be

at least .9; probability of crew survival at least .999.

One point on which little agreement has been reached is the
number and kind of data buses connecting computers to subsystems.
Accordingly, we have taken the s implest possible view, and de-

emphasized them in this volume.

1,1, ASSUMED DCDS CONFIGURATION AND INTERCOMMUNICATION

CONCEPTS
1,1,1 Configuration

As aframework in which to place theissues discussed in this volume,
a DCDS configuration has been assumed. The system is composed of three
regions: Guidance, Navigation and Control System (GNCS), Performance
Monitor System (PMS), and Power Distribution and Control System (PDCS).
Flight control is performed by GNCS. The chief function of the PMS will

CUMCWTTRETE

be the statu_s and health monitoring of the various subsystems of the vehicle,
and itis possible that payload management, payload manipulation, and CRT
display management will be performed by PMS. The Main Engine System

is considered a subsystem of GNCS.

The focus of this volume is on GNCS. Although little will be said

about the other regions, the concepts developed for GNCS can generally be
applied to PMS and PDCS. Inthis study we wish to emphasize the contractual

' advantages attributed tomulti-region systems,8 and with this in mind GNCS

is assu}ned to be, as much as possible, self-sufficient. It is our intention
that GNCS need not depend on PMS or PDCS operations to perform its
duties. At the same time, there has been a suggestion that GNCS computers
use fixed programs, possibly in a read-only memory, and that primary
preburn targeting routines, which can be expected to be changed for different
types of mission, would be located in the PMS computers, which have
read-write program memories. (GNCS would contain backup targeting

routines.) The DCDS presented here allows for this possibility.

The fault tolerance requirement on this system is fail-operational,

fail-safe (FO-FS). The avionics must be fully capable after a single failure,
and after a second failure enough of the system must still work to get the
crew home safely. The goal is that a mission can be completed despite a

failure, and two failures donot lead to loss of the crew or vehigle. Avionics

elements which are mission-critical must be duplicated, while those which
are life-critical are triplicated. Since GNCS is life-critical, it must be
triplex, and the same seems to be true for PDCS. PMS, which is

mission-critical but not life-critical, is assumed to be duplex.

Triplication of GNCS does not imply the three copies are the same,
and in fact the opposite may be the case. There is a concern that with
identical copies a software or other systematic flaw could defeat the entire
GNCS, replications and all; to avoid this hazard, it has been suggested
that one of the copies be dissimilar to the other two. We have not included
the element of dissimilarity in this system, but the question of a dissimilar
backup has been discussed,12 and thereis nothing sorigid here as to prevent
the eventual use of dissimilarity. There is a wide variety in the way
dissimilarity could be implemented in a triplex GNCS. Some examples:

1. There could ke two GNCS rails (as opposed to the three rails
shown in Figure 1.1.1), with backup navigation routines in
another region, namely PMS.lo

2. There could be three GNCS rails, the third of which is pro-
grammed differently, and could conceivably evenuse a different
computer type. Similarly, asystem éomposed of threeidentical
GNCS rails plus a dissimilar one is conceivable; such a system
wouldn't necessarily break the FO-FS groundrule, since the
third of the identical units might just be used for error detection.
For a discussion of the use of multiple computer types, which
isimplied if a dissimilar backup is to be employed, see Section
1.2.

3. There could be three identical GNCS rails, each containing

backup software.

A triplex GNCS is shown in Figure 1.1.1. Little detail is specified,
because the object hereis to present a flexible configuration as a background
for the intercommunication, redundancy management and computer type

discussions to follow. In general terms, the GNCS is composed of three

/f// 2 /’//dﬂ;/ to GNCS C
N e
”/ V% eNcs |1/ I/0 Data Bus_ .
” Compute
A RCU
to RCP
TO & FROM
IRB - -
(Replications GheS /o a;z%ﬁ/
not shown) B RCU wﬂ&l’p SYSTEMS
CETeol
to RCP%"N”;(/
GNCS 170 > 4
C RCU
l to RCP
to GNCS A
PMS o PMS I/O BUS
tetents computer | M7 =
/,/oﬂ/ A 'RCU
r PMS 1/0 —
B =
IRCU
Bus PDCS 1/0
Sequencer & Computer
Buffer A
(Replications
not shown)
Fower Qisrerbo how PDCS | 1/0 |
ﬁ#dl Pon/7£4 ¢ B Figure 1.1.1
Assumed DCDS
PDCS 1/0

GNCS

INTERRUPTS T

COMPUTER

PARALLEL
CHANNEL
ADDRESS

SERIAL

PARALLEL
- DATA
(1 WORD)

SERIAL
1/0

COMMANDS eI SUBSYSTEMS
AND DATA BUS

OTHER REGIONS COMMANDS
AND DATA
P ,ﬂf””’_/&
_ v

RCU

)K{Z;RETES

PARALLEL
DATA
(1 WORD)

OTHER RCUS

IN GNCS
VIA RCP

i

F/r
Ig coﬂ / f”

pl‘(o .g¢

Figure 1.1.2
Ff" |

[_ .

GNCS I/0 UNIT

OTHER GNCS
COMPUTERS

"loosely coupled" rails, each consisting of a GNCS computer, an I/O unit,
and a multiplexed data bus. ''Loose coupling'" mears that the GNCS
replications are not hardware synchronized, although it is understood that
the physics of the vehicle will cause the replications to be doing about the
same thing at about the same time.1’2'3’8 The I/O unit, some of which
might be supplied by the computer vendor and packaged in the computer
box, includes the logic for data bus control (BCU), reconfiguration control
(RCU), and interfaces to the other GNCS rails and to an Inter-Regional
Bus (IRB).. An I/O unit is shown in Figure 1.1.2.

Reconfiguration control within a region may be conceived either as
a unified "RCU complex'" which is at least as fault tolerant as the rest of
the system and controls the status (primary, backup, failed, etc.) of the
individual computers and other units, or as the interaction of distributed
RCUs, one per rail, each of which is sufficiently fault tolerant to assure
the validity of status information. The latter conception will be employed
in this volume, to achieve visibility into the ways that failures in the
reconfiguration control area are associated with, or are indistinguishable
from, failures of other units. It is expected that RCUs will be simple
devices, requiring little hardware. The natural location for this hardware
is in the I/O unit. An RCU issues a '"'please take over" (PTO) signal if

thereis a failureinits rail. A Reconfiguration Control Panel (RCP) allows

.manual control of rail primacy, and provides the means for overriding

automatic reconfiguration. RCU and RCP operations are describedin Section
2.4.

1.1.2. Intercommunication Concepts

The three levels of intercommunications in the assumed DCDS —

intra-rail, inter-rail, and inter-regional — will be discussed below.

Implementation details, such as message formats, will not be described.
1,2,4,5

The reader is referred to other studies for detailed treatments.

1.1.2.1 Intra-Rail Intercommunications

We have assumed that each GNCS computer communicates with the
appropriate subsystems solely by means of a time-multiplexed serial data
bus, and that there are no computer-to-subsystem paths of the dedicated
wire or dedicated bus type. This is in line with the thought that messages
between a GNCS computer and its subsystems are multiplexed at the computer
I/0O interface whether or not dedicated wires or buses are used. We are
not really ignoring the possibility that some dedicated interfaces might
exist; if so, they would have.the same form as the dedicated inter-rail and

inter-regional interfaces shown in Figure 1.1.2.

There are several design criteria which must be met, as well as
decisicns to be made in the near future.

1. Communications with certain subsystems, such as the Main Engine

System, are critical, and it is necessary that these messages

have priority over non-critical communications. This is a

problem which must be addressed whether or not dedicated

information paths are used; there are many straightforward
solutions, one of which is described below.

2. It is also necessary to ensure that no subsystem malfunction
causes all copies of the buses to be unusable, if the decision ié
made to cross-strap subsystems to buses; this too can be done.

3. Thetransmission code to beused on the bus must be determined.
Manchester code, which is used in telemetry systems, seems
popular with industry. Manchester code has limitations which
have made it unsuitable for some schemes we have described in
the past,1’4 but it is certainly adequate for the system assumed
here.

4. Another decision is bus bandwidth, although no problems are
expectedin obtaining adequate bandwidth. At leastone Manchester

coded bus exists which operates at 5 1\/Ib/sv,7 five times the rate

we have considered adequate in other studies.l’4

s e e e e e e

Bus traffic is managed by a Bus Control Unit (BCU). In addition to
performing reads and writes as requested by the computer, the BCU polls
éubsystems which do not require service on a scheduled basis, such as -
manual controllers. There probably are not enough of these in GNCS to

justify a demand actuated polling scheme, and in any event Manchester11

code doesnot lend itself to demand actuated polling. Instead, a round robin
polling algorithm seems appropriate. If there are subsystems — the Main
Engine System, for example — which require a quicker response time
than can be guaranteed with a round robin, the algorithm can be modified
td give thém high priority. Subsystems would be polled in order of

decreasing priority, and if any station replies ''yes' the BCU starts polling

again with the highest priority subsystem. The round robin is completed

only when all stations respond '"no." This is the algorithm that was used
by the DCA to satisy a 200 microsecond response time requirement at the
SIRU interface.5

In the remainder of this section, features which can beused to enhance
the fault tolerance of a data bus are listed. Detailed treatments of these

items are given in the referenced documents.

A single parity bit per bus message would provide good protection
against an error occurring while the message is in parallel form, just as

simple parity is used to protect data in a memory. But a failure during

‘serial transmission could cause a "burst" of errors; a single failure could

cause the bus to go to all zeros or all ones, half the time resulting in an
even number of errors. Many codes have been developed which protect
data against burst errors. One simple scheme uses two parity bits, one
even and the other odd, at the end of each message.4 In any event, a Bi-Phase
code such as Manchester is considerably less susceptible to this failure
mode than codes in which a single level is used to represent a bit. An

acknowledgement scheme should be used to verify the receipt of an output

message (computer to sub.system);3 acknowledgement of input messages

is not necessary. Another error detection technique is to simply count

1cC

the bits of a message; if variable length messages are used, bytes would

also' be counted.

Failureisolation could be aided by terminating the bus with a dummy
subsystem which, by responding correctly to a read command, verifies
the continuity of the signal path. Subsystems can be shielded from an
anomalous command due to delayed detection of a computer failure by using

. i 2;3
"arm and fire" sequences for critical commands.“’

I——

1.1.2.2 Inter-Rail Intercommunications

The degree of data exchange among the GNCS rails has not been

established. Minimal information exchange would be necessary if error
detection hardware and software in a rail is relied upon to "tell on itself,"
and backup computers canread sensors toobtain knowledge of the condition
of the vehicle. A higher rate of information exchange is needed if data
must be passed from rail to rail to perform consisténcy checks for error
detection, or if backups cannot interrogate sensors and must be told the
state of the vehicle by the prime computer. Error detection schemes

predicated on passing data between rails are discussed in Section 2.3. In

'any event, the rate of data exchange is not an issue which must be settled

immediately. With the computer types contemplated, it would be easy to
design the inter-rail interfaces for high-speed parallel transfers, as shown
in Figure 1.1.2, and if this is done the decision as to how much of the

capability is to be used can be postponed until the software design stage.

1.1.2.3 Inter-Regional Intercommunications

It is also necessary for GNCS, PMS, and PDCSto communicate with

each other. Sinceit isunderstood that different contractors will implement

these three regions, the communication path among regions whould be

specified for the easiest possible interface control among contractors.
Routing all such communications over an Inter-Regional Data Bus (IRB)
serves this end, as shown in the DCDS block diagram, Figure 1.1.1,

.“‘ i

There needs to be a mechanism for GNCS to report its health to
PMS, and further exchanges between these regions are needed if keyboards
and CRT displays are managed by PMS, Also, it has been suggested that

primary preburn targeting routines be located in the PMS computers, and
a data link between PMS and GNCS would be needed to support this
partitioning. Traffic between GNCS and PDCS consists mainly of requests
by GNCS to turn a GNCS subsystem on or off, routinely or because of a
failure, and there would be similar traffic between PMS and PDCS.

It would be possible for PMS to determine the health of GNCS if the
PMS buses ran to all GNCS subsystems, which could then be interrogated
by PMS. But a better arrangement would be for GNCS to interrogate its
own subsystems, perform some interpretation, and pass summary informa-
tion as to its health to PMS over an inter-regional data path. GNCS is
inherently better equipped for this task thanis PMS, and if PMS development
is postponed in the interests of smoothing the cost profile, GNCS would
originally have the responsibility for determining its own health. Also,
we are uncomfortable with the thought of cross-strapping GNCS subsystems

. to PMS buses. This would open the door to the kind of complex inter-con-

tructor relationships we are trying to avoid. We want to avoid the situation
where less critical PMS communication with a GNCS subsystem causes
more critical GNCS communication with that subsystem to be delayed. It
is our feeling that the design of a data bus system which is a secure medium
for critical messages is a straightforward proposition, but more difficult
if the bus must compete with a second, as yet undefined system for access

to its own subsystems.

The IRB configuration discussed above furnishes an attractive mecha-

nism to deal with a subsystem which has failed in such a way as to be
unable to respond to a shut down command over normal communication
channels. The GNCS or PMS can, as a last resort, use the IRB to direct
the PDCS to power down the offending subsystem.

12

The IRB is envisioned as having a very low bandwidth requirement.
The GNCS-to-PMS data transfers that indicate the health of GNCS are
expected to involve just a few words, and the repetition rate should be
low. Instructionsto PDCS to turn subsystems on or off should be infrequent.
If targeting is done by PMS, it would involve the transfer of only a few
words back and forth between GNCS and PMS, even though the computation

performed by PMS for this function may be extensive.

Thereis, however, acase for making the IRB a high capacity channel
that would be expected to b'e underused. If mass memory devices shared
among all regions are used, as indicated by proposed baseline changes,
the IRB could serve as the communication path. If payload management
and payload manipulation are to be performed by separate computers rather
than by PMS, the IRB could be used to integrate these computers with the
rest of the system. Also, if the IRB has adequate bandwidth, itis conceivable
that an additional computer could someday be added to the system, connected

via the IRB, to offload an overloaded region.

The use of the IRB for inter-rail (within a given region) traffic has
ahlé;o been considered, but we donot consider this a good plan. It is expected
.that the regions will be supplied by different contractors, with the idea
that the total DCDS can be divided into several nearly independent efforts.
If intra-GNCS communications are dependent on intra-PMS formats, for
example, the efforts would no longer be independent, changes in one region

would affect others, and inter-contractor disputes would be likely.

13

1.2 IMPLICATIONS OF SINGLE COMPUTER TYPE IN THE
ASSUMED DCDS

1.2.1 Introduction

The use of a single computer type, as opposed to multiple computer
types, for the different regions in the assumed DCDS will be examined in
this section. Single computer type means that all computers in all regions
are identical; that is, even the part numbers are the same. First, general

. advantages and disadvantages of a single computer type will be presented.

~ Second, the problems of enforcing a single computer type for separate regions

(and contractors) will be discussed, citing experiences from Apollo Guidance
Computer enforcement history. Finally, implementation of single computer
type and the effect that it will have on the DCDS will be considered.

1.2.2 Advantages and Disadvantages of Single Computer Type

The advantages and disadvantages of a single computer type can be

discussed in terms of management, hardware, énd software differences.
1.2.2.1' Advantages of a Single Computer Type

The advantages of a single computer type, or equivalently, disadvan-

-tages of multiple computer types, are largely based on the savings that

result from elimination of replication of effort. In the case of management,
this translates as less management overhead. Multiple computer types
would necessitate a duplication of the complete management structure at
the production facilities. Multiple computer types would imply the replication
of teams of experts who know the '"ins and outs" of each computer, and

maintaining those teams for the life of the project.

Replication costs also figure in hardware advantages of single com-
puter type. Single computer type eliminates duplication in the following

hardware areas:

14

a. Documentation and training.

b. Qualification tests and procedures.

c. Radiation hardening and lightning protection.

d. Design of mechanical and electrical interfaces with the vehicle.
e. GSE and special test equipment.

f. Test procedures.

g. Packaging.

h., Thermal design.

i. Mechanical configuration.

j. EMI shielding.
(The last four areas have less impact if the computers are truly off the
shelf.)

Another hardware advantage of a single computer type is that inter-
region communication should be much simpler. Mass memory interfaces
may also be simpler with a single computer type. Also, when considering
system reliability, a single computer type implies dealing with a smaller
total number of hardware design and production flaws.

Software advantages of a single computer type are similar in nature
to those of Hardware. Single computer type would eliminate replication of
teams of software experts for the life of the project, as well as replication
of generation, verification, and configuration control of the following areas:

"a. Executive.

b. 1I/0 routines.
c. Assemblers.
d. Compilers.

e. Simulators.

f. Documentation,

Finally, concentration of effort ona single set of software implies a smaller

total number of software development flaws,

15

In the operational phase of the Shuttle the problems of hardware
logistics are simpler for single computer type in the following areas:

a, Technology availability or obsolescence.

b. Spare inventory.

c. A documented history of retrofits to all computers.

d.

Training and field service.

Operational advantages of a single computer type include more
functional flexibility of the system, such as allowing the possibility of
re-allocation of computer function both during development and in flight.
Multiple computer types might well have different computer/crew inter-
faces. Unless these interfaces can be forced to be identical, a single
computer type would have theadvantage of avoiding the necessaryadditional

crew training. Furthermore, the operational experience with more com-

putefs of the same type will provide better confidence in their reliability,

PlosS SoFTrineeE
1.2.2,2 Advantages of Multiple Computer Types

The disadvantages of a single computer type, or equivalently, the
édvantages of multiple computer types for different regions, are based on
the notions of flexibility and limiting the possibility of a single error type

bringing down the whole system.

- In the area of management, multiple computer types allow more
managerial freedom, both in the choice of computersand in making changes
to one regional computer without having to consider the other regions.

LocRL opPTin Mvr/o//g
With multiple computer types there is less possibility of a single
software bug (in common software) bringing down all software systems.
Similarly, for hardware, a single type of development flaw is less likely

to bring down all computers,

16

The most influential argument for multiple computer types seems to
be the ability to tailor the computers to the particular regions. That is,
the hardware can be more efficiently utilized by designing or choosing the
features of each computer to meet the needs of the particular region.
Such features that may be considered in the computer design include the
speed of operation, the memory size, word length, floating point, micro-

program capability, and the instruction set.

To allow only one computer type would make it necessary that each

computer include all of the capabilities needed for eachregion. The memory ., /af.fo

size would have to be large enough for the most demanding region, even ﬁ:—j’f____{ﬁle
though that may make the memory much larger than other regions require.
Each computer will contain the special features of every region, even though
each region does not make use of all special features. Finally, if /
. L . ANy g X
microprogram is included, a single computer type probably implies identical
microcode, which means region-specific instructions must be carried in
other regions. Thus, it takes a combination of overlap and overkill to

make a single computer be all things to all regions.

Finally, the use of a single comnputer rules out selective upg: ading /1/07-{/9,
in particular regions. comprRTihiIb)‘7 Yes,

1.2.2.3 Evaluation of Advantages and Disadvantages

In weighing the advantages and disadvantages of a single computer

type, it is likely that the duplication of costs with multiple computer types
will be the greatest argument in favor of a single computer type, while the
inability to tailor the computers to each region seems to be the important
argument against a single computer type. The duplication costs are real
and unavoidable in use of multiple computer types. Tailoring to different
requirements by using multiple computer types is subject to a number of

considerations.

!

17

| ?
: @ WhAT Does &ewerrl FuRpoSE HeERM |

If different regions demand similar memory size, similar operations
and features, and similar speed, then a single computer type may easily
satisfy all regions. Obviously, the closer that the éeparate regional
requirements are, the less influence the tailoring argument carries. If
the only significant difference is in memory size requirements, it may be
possible to tailor to this need without violating the single computer type
concept, provided that the definition of a single computer type allows an
external add-on memory. Other types of differences in requirements may
tempt the system designer to use multiple computer types for the sake of
tailoring such featuresas speed, interfaces, and instruction set. However,
this is likely to be not worth the trouble. Selecting a single computer type
that meets all such needs in all regions will probably incur negligible
penalties of cost, size, power consumption, and reliability.

On the other hand, if regional requirements are very different, it

I may be undesirable or even impossible to have a single computer type.
\‘ The decision of whether or not to have a singile »computer type is then based
on a detailed analysis of these special requirements to determine if they

can be compromised.

Subjectively, we feel that a single computer type for all regions is
quite desirable, based on the factors previously discussed. Aside from
‘the cost factors discussed, the uniformity imposed on the system by a single
computer type seems technically desirable (of course, this also translates
into lower cost). By the same reasoning, if it is decided that multiple
compﬁter types are necessary, minimization of the number of computer

types is equally desirable.
1.2.3 Enforcement of Single Computer Type: Apollo Experience

Given that a single computer type is desirable for two or three regions,

the contractors and designers of the individual regions must each live with

T U ————

18

that computer. The problems and methods of enforcing adherence to an
established computer design iust be considered at the outset of the program,
or it may become difficult or impossible to adhere to a single computer
type. The Apollo Guidance Computer (AGC) history is a useful source of

experience on the subject of enforcement.

The AGC is the one computer which was imposed on both the Apollo
Command Module (CM) and Lunar Module (LM) guidance systems. In this
case, a single computer type wasmoreor lessacceptable since both modules
were to have the same guidance system. Here, the systems were similar
enough so that the tailoring factor was minimized and the elimination of
duplication was a strong desire. A brief summary of the Apollo history
illustrates the difficulty of making and enforcing the decision for common

computers, even in this rather ideal case,

NASA, of course, managed the Apollo project, and initially MIT and
North American were the contractors for the guidance system and the CM
respectively. Later Grumman came in as the LM contractor. At this
point it was necessary for NASA to impose a common guidance system
and co.nputer on the two spacecraft designers if uniformity of design was
to be acheived. NASA initiated and chaired a series of implementation
meetings where the three contractors worked out the requirements of the
system. A Block I AGC had already been designed for the Block I CM, but

- its functional capacity wasnot adequate for the LM guidance and navigation

system. In the absence of strong NASA management it would have been
very easy to suggest a different design for the LM, leaving the Block I
system in the CM. NASA continued to press towards a common design
even though it required a new design. All changes that led to the Block II
AGC required concurrence by all four parties. During this period of
functional definition, the NASA management decision to use common com-
puters was continually questioned and had to be re-enforced. During the
development phase, the instrument of control was the Interface Control
Document (ICD); it had to be the same (by NASA decree) for each system,

i s e ———— -

19

Once most of the computer design was frozen there was not much more
enforcement difficulty because things were then accepted and lived with.

Most of the problems, after the initial decisions, were related to the

interface specification since that was the last thing frozen, but these wereb

not allowed to impact the computer hardware design.

It wasnecessary that the Apollo computer be designed from scratch,
so MIT had the flexibility to try to accomodate the contractors' require-
ments. In going from Block I to Block II, changes to the AGC included
memory size, speed, op codes, interfaces, and design margins to accom-
modate the addition of the DAP, Consequently the design of the AGC was
considered flexible and this added to enforcement difficulties. However,
changes to the computer or changes to a spacecraft subsystem to bring it
in line with the computer were expensive and would result in changes to
both spacecrafts. Therefore, because of the strong NASA management
desire for a common system, enforcement was necessary on a continuing
basis.

The Apollo experience provides some lessons in enforcement of a
single computer type. First, it is necessary that there be one top level
group-willing and able to make the decision and enforce it. Second, the
computer should be chosen early in the project, and RFPs (request for

proposals) for subsystem contractors should be constrained to conform to

_the computer decision. Third, if possible, all system requirements should

be considered at the outset, such that a Block I-Block II situation is not
forced by an unplanned change in requirements. Fourth, the choice of an
off the shelf computer shouldaid enforcement, since most of its characteris-

tics will already be fixed, thus eliminating attempts to modify the computer.

One obvious difficulty is choosing the computer before the subsystems
are completely determined and their contractors selected, since the choice

of computer must be made without knowledge of the details of the system.

VPl S-3/ Srmwdped
FRes Jinsed .

£
AR

In the case of the shuttle DCDS, where an off the shelf computer will be
used, the choices of computers seem limited enough so that an intelligent
choice can be made without detailed knowledge of the subsystems. Such
considerations as reliability and space qualification should further limit
the candidates. Finally, based on past experience (Apollo), reasonable
decisions of computer size, speed, and features can be made and used to

select the computer.

In order for a single computer type to be enforced for the shuttle,
NR as prime contractor, must do the enforcing. To make enforcement
possible, NR must dictate at the time that the subsystem contracts are
negotiated that a single computer type will be used, and preferably what
that computer will be. This is especially important since it seems that
many bidders for the subcontracts will be in the computer business and
naturally will want to use their own computers. After the contracts are
let, and the project progresses through the actual design and manufacture
stages, NR must not allow any changes which will defeat the concept of

single computer type.
1.2.4 Effect of a Single Computer Type on the“Assumed DCDS

Theassumed DCDS is more centralized than the various configuration
which have recently served as baselines. Flight Control and Guidance,
Navigation and Control have been collapsed into one region; Payload
Management, Payload Manipulation, and Display Management may be func-
tions of the PMS (Performance Monitor System). The resulting computers
are required to perform all the tasks formerly done by several machines,
This tends to neutralize one advantage of different computer types = that

the computers could be tailored to their specific tasks.

For example, if one task uses 16-bit data exclusively while another

requires the precision of 32-bit data, it makes sense to use different

21

i
computer types when these tasks are done by separate computers. To
impose a 16-bit machine on the 32-bit task, or vice versa, would lead to
programming difficulties and inefficient storage utilization. But if both
these tasks are to be done by one computer, the machine chosen should be
able to process data in either 16-bit or 32-bit units. Clearly, the more
tasks performed by an individual computer, the closer the computer must
be to filling a comprehensive set of requirements.

In theassumed DCDS, the requirements on the computersin the GNCS
and PMS regions are similar, It is true that GNCS needs floating point

' operations, while if there are floating poirit instructions in PMS they might

never be executed; and PMS probably requires a higher I/O bandwidth, If
it were necessary to trade floating point against I/0O capability, the case
for using different computers would be clear. But computers are available
which meet both requirements, without sacrificing one for the other, Another
consideration is that GNCS targeting routines may be located in the PMS
machine; if this plan is followed, floating point would become a;(PMS
requirement also. ‘ ' ' ’

and desirable to have single types of all common system components, such

If a single computer typeisused for the GNCS and PMS, it is possible-}

as the RCU and BCU. This will simplify the inter-region communication
and simplify the subsystem communication. As a result of a single type

BCU and Data Bus Subsystem I/0,all interface problems will be constrained

to the subsystem SIUs, That is, the individual interface problems of a
subsystem are removed from the main computer to the SIU associated with
the subsystem. This is reasonable, since it is at the subsystems that the

regions will differ.

1.2.5 Dissimilar GNCS Backup

This report hasaddressed the implications of a single computer type

for all regions. The advantages and disadvantages of a dissimilar backup

\\

within the GNCS region are similar to arguments presented so far, except

that the desire to eliminate common mode failures carriesa greater weight.
As a result, it needs to be pointed out that there is a very limited set of
hardware failure modes which would be common to all redundant copies of
GNCS computersand would be eliminated by the introduction of a dissimilar
copy. Failures due to design errors are a very important class that would
be eliminated. However, these should be detected and corrected early in
development. Onthe other hand, some common mode failures not eliminated
by the introduction of a dissimilar backupare erroneous software, erroneous
specification of system parameters, erroneous crew procedures, and
iransient disturbances. The latter may be either induced by external
interference (lightning, power supply transients, radiation burst, or other
environmental excesses), or may originate within subsystems so as to
produce erroneous data at the computer interface. (Part II deals with

methods to minimize disturbances caused by lightning.)

In general, common mode failure problems must be solved for all
computers. Solving them just for a dissimilar backup is advantageous only
if the backupis much simpler than the primary. Since this seems unattainable

for the GNCS, the effort to eliminate these classes of failures would seem

- better directed toward the primary computers.

1.2.6 Candidate Computers

The application of single or minimal computer types will now be
considered with respect to a population of candidate computers. These
computers are the AP-101, SKC-2000, HDC-601, and the HDC-701,

If a single computer type is to be implemented throughout the DCDS,
exclusive of the engine controller system, either the AP-101 or the SKC-2600
must be chosen, because neither the HDC-601 nor the HDC-701 is large
enough to contain the entire GNCS. Furthermore, the Honeywell computers

do not include floating point, which is highly desirable for GNCS. If the

r be

1ese

CDS,
2000 |
large
uter
If the

23

AP-101 or SKC-2000, either of which is capable of performing the GNCS
task, is chosen, the selected computer would also satisfy the PMS require-
ments. This is especially true if computers which consist of a common
CPU but different memories are considered a single computer type. For
example, the AP-101 can be packaged with 8K, 16K, 24K, or 32K words in
the ATR box; add-on memory units at 32K words per ATR box, up to 128K

of memory, would be compatible with the architecture.

If it is decided that the AP-101 or SKC-2000 is so powerful as to be
wasteful for lessdemanding regions, a computer suchas the HDC-601 might
then be used for such regions. The system is then a two computer type
system, and it seems that this is the greatest number of computer types
that is desirable or necessary. Each region could then choose among the
two computer types for the one most suited to that region.

It may be argued that since the HDC-601 is already included in the
system asan engine controller, use of the HDC-601 elsewhere in the DCDS
would not be adding another computer type. In the context of this section,
that isnot valid. The engine controller consists of the HDC-601 components
péckaged with the engine control electronics, rather than the standard
HDC-601 package, and thus would not be considered the same type as an
HDC-601 computer, ‘

24

2.0 REDUNDANCY MANAGEMENT CONCEPTS FOR THE ASSUMED DCDS

’ . Redundancy management is a term that refers to the
techniques employed in a redundantly configured system to make
the redundancy work -- to use the redundancy té increase reliabili ty
and to gain fault-tolerance. Redundancy management aftempts to
optimize various parameters related to the operational integrity
of the system. Among these parameters are coverage, speed of
detection, speed of recovery, smoothness of recovery, reconfiguration
fiexibility, and overall system reliability. Some cf the techniques
for redundancy management which are discussed in the following
‘sections are: built-in-test-equipment (BITE), built-in-tests (BITs),

consistency tests, and reconfiguration control units (RCUs). -

The techniques that will be discussed are concerned with
improving system coverage (the ability to detect and recover from
an error). Coverage is the single most important parameter next
to simplex reliability in determining the overall reliability of a
% . redundant system. 1In order to obtain the prescribed mission success
and‘crew safety reliabilities for the DCDS, withiﬁ the general
framewcck of the assumed configuration, judicious use of redundancy

management techniques is required.

At present, the NR requirement for detection and recovery from
errors in the orbiter avionics is 0.4 seconds. We feel that the
detection aspect should be accomplished in no more than 0.1 seconds.
This number is chosen for several reasons: a critical failure
indication analysis by NASA (MSC Internal Note EG-71-38) mentions
~this number several times as a goal for detection and recovery;
after detection has been accomplished some time must be allocated
to recovery -- if re-initializations are necessary they could
consume most of the allotted 0.4 seconds; the faster the detection
time, the better the coverage parameter ——.this is critical to

overall system reliability; we feel that 0.1 seconds for detection

T TR WSS P WP-ae

25

is not an unreasonable goal.

‘ ; Even if reconfiguration is done manually and takes

Hm

conds to accomplish, certain safing procedures must be

N

ccomplished rapidly (hence automatically) to maintain vehicle
integrity. Rapid error detection is necessary if such safing

is to be done properly.

The question arises as to whether or not the present NR
avionics configuration can achieve the required mission success
and crew safety reliabilities. An important part of the answer
centers around the cerrage that can be achieved by this con-

f}gpration.

26

‘ 2.1 IMPROVING COVERAGE (ERROR DETECTION AND ISOLATION) OVER THAT

AFFORDED BY BITE

The GNCS portion of the assumed configuration is composed
of three "loosely coupled" computers, each of which has its
own bus for communication with subsystems. Only the outputs
of the prime computer are actually sent onto a bus; the outputs
of the backup computers are inhibited by the Reconfiguration
Control Unit. 1In the event that an error is deteqted in the
prime computer, the Reconfiguration Control Unit designates one
of the backup computers as prime. Designation of the prime
computer can also be done manually. Knowledge of primacy is

not contained wjthin the computers themselves -- this allows them

to operate ingsame manner. Error detection is accomplished by

BITE in the respective computers.

BITE can be fairly effective for detecting errors.

. Industry figures indicate that .95 coverage (over the appropriate

(2)

time frame) is not an unreasonable expectation. As good as

this may sound, however, our studies indicate that a coverage of
.99+ is needed even to approach the shuttle reliability requirement
(see Part III). The recommended approach to "beefing-up" existing
~compu£er BITE in a loosely coupled system is to include opinion-
of-performance testing in the software. Opinions-of-performance

fall into two categories: reasonableness tests and consistency tests.

A reasonableness test compares the result of an operation or
 computation with a value or range of values which have been
determined a priori. For example, determining whether or not an
indexed operation falls within valid address limits is a réason—
ableness test. Comparing orbital parameters to an expected mission

profile is also a reasonableness test. Reasonableness tests suffer

27

from *he basic weaknesses of BITE. in that they operate entirely
within a single computer and require the prediction of error modes.
They are unlike BITE in that, generally, they do not requiré a

commitment to hardware, so they can be applied selectively.

A consistency test compares the result of a computation
with the results of the same computation done by another computer.
When three or more computers take part, the result is a "software
vote." A tolerance (an amount by which the results from each

computer can legally differ From one another) is required, but the

" need for an a priori prediction of an absolute range for these

results is eliminated. This approach to error detection provides
the benefits of voting, but can be applied selectively where needed
without a committal to hardware. Some of the conceptual aspects of

implementing consistency tests are outlined below.

The most urgent need for arbitrarily high coverage (and thus
for consistency tests) is in detecting erroneous critical output
commands. Since such commands are often collections of discretes
rather than numerical values, the concept of a tolerance unfortunately
does not apply. Accordingly, a consistency test must either assume
bit- by-bit eguality of the outputs of each computer, or be able
to compare the "maneuvers" specified by each of these ouﬁputs.

The latter alternative 1is, clearly, very complicated, but the fact
that the computers are not phase-locked to the bit level means
that commands gener§§:§=§; flight control algorithms will not

always be exactly the same, in order or in value.

The easiest solution to this problem is to provide a common
set of input values to the output command routines in each computer.

Identical input values will result in identical output commands,

as long as the computers are functioning properly. The common

value is generated by employing a preliminary consistency test at

a point in the computation cycle where numerical variables can be
readily compared. This preliminary "test" does two things: first it
checks that the values from each computer fall within a certain

=
tolerance of one another: second, it computes a "consensus" of

28

those values which meet the tolerance criterion. There are various
algorithms for determining consensus, e.g., averaging and mid-value
selection. None of them are very complex, and the selection of one
or another will probably depend upon the nature of the sensors and
computations that provide inputs to the control loop. Since the
consensus value is used by each computer as input to the next step
of compuation, the outputs of the command routines should all be
bit-by-bit equal. The main consistency test can now be applied

to the output values with a zero tolerance criterion (bit-level
equality). This is effectively a software voting scheme. The
details of testing and consensus generation are described in

Section 2.3.

Figure 2.1.1 depicts the relation between the two consistency
tests. In Segment 1 the computer operations exhibit the character-
istics of "loose coupling": sensor data used by the computers is
slightly different and the order of some operations may be differ-
ent in each computer. Because of this, the operations in Segment
1 have a resistance to many common mode failure mechanisms --
particularly those mechanisms involving pattern sensitive data
and'subtle.software timing characteristics. However, the fact that
inputs to the computations are not equal allows for the possibility

that the computations will diverge.

In Segment 2 each computer operates on identical data (the
result of a "consensus") so the computations in each computer will
be identical. This solves divergence problems, but does not

provide any resistance to common mode failures.

The placement of the preliminary consistency test (and
consensus generator) determines the relative sizes of Segment 1
and Segmént 2. Appropriate placement strategies are yet to be
determined. One suggestion has been that the Preliminary test be
made on sensor input information (thus eliminating Segment 1). The

rationale given for this approach is that it allows the detection

. DR e
5\
.

computation advances in this direction——-—e

SEGMENT 1 SEGMENT 2
Iff——-""-——"\h--'-'----\\~ | . -]
(7~ \ |
SENSOR \ OUTPUT CONTROL
|_INPUTS COMERTATIOR ! COMMAND ROUTINES ':'l OUTPUTS
STRING A : |
. : !
| |
|]
OUTPU CONTROL N
TREDR "9| COMPUTATION 0 COMMAND ROUTINES ‘}’I OUTPUTS 0
STRING B i '
IRPUTS J~®| COMPUTATION ! Nb RO ﬁ GOTEUS
STRING C i
Preliminary test Main consistency '
and consensus test (bit-for-bit) |

generation

ONE ITERATION OF A COMPUTATION LOOP
SHOWING CONSISTENCY TEST PLACEMENT

Fig. 2.1.1

30

and elimination of sensor biases, and that the tolerance for the
test is easier to specify before possible computational divergence
takes place. Another approach is to place the preliminary test as
late as possible in the computation loop -- just prior to the
outpuﬁ command routine. This provides resistance to common mode

failures for most of the computation cycle.

In summary, it can be seen that consistency testing is a
very valuable tool for increasing the coverage provided by BITE
so as to meet the necessary reliability requirements. Consistency
testing has the following advantages over other possible approaches

to support BITE:

l. There is no commitment to hardware synchronization

and voting.

2. Consistency tests can bhe employed selectively --
the decision to apply them to any particular

process can be put off.

3. There is no impact on the basic hardware configu-
ration, other than the addition of an intercom-

munication channel among the redundant computers.

4. Each computer executes the same program so it is

not necessary to verify dual mode software.

A T A

3L

2,2 BUILT-IN TESTS
2,2.1 Introduction

In order for the redundant strings of the GNCS to achieve fault
tolerance, it is necessary that some mechanism exist for the purpose of
detecting faults or errors throughout each string in order that recovery
may beinitiated. With one exception, the error detection methods proposed
for the DCDS and described in this section are known as Built-In Tests
(BRITs) or, in reference. to additional hardwaré added for error detection,
as Built-In Test Equipment (BITE).

2,2,1.1 Hardware BITE

One important means of error detection is hardware BITE; that is,
detection by equipment additional to normal computing hardware. Some
basicimportant examples of hardware BITE will be discussed later in this
section, Intuitively, the more BITE employed to detect errors, the better
the probability of detecting any random error. On the other hand, for each
piece of hardware added to BITE, the problem of verifying the correct
operation of the BITE itself can be a difficult one. Furthermore, each
addition to the total part count due to additional BITE must lessen the
reliability of a string.

2,2,1,2 Software BITs

Software BITs involve including in the programs tests or exercises
which help to verify the status of the string. Software BITs are used in
additionto, and in conjunction with, hardware BITE toincrease the likelihood
of error detection. For example, self check routines may test each memory
location, or may test arithmetic units by making calculations and comparing
to predetermined results. Another example of a software BIT is reasonable-
ness tests, which will be discussed later in Section 2.2.5.7. All tests

mentioned so far are 'built-in," meaning that they are complete in one

32

computer string. On the other hand, the individual strings may cooperate
with each other to see if their views of the system agree. Such techniques
are called consistency tests and are discussed in Section 2,2.6. Software
testsdonot decrease the reliability of a string by requiring special additional
equipment (as BITE does), but they may have this effect if memory must
be re-sized to accomodate them, since memory size contributes strongly
to failure rates., Furthermore, extensive software tests involve coding
and verification costs and risks, and the associated computing overhead

may interfere with primary programs.
2.2.2 Coverage

The reliability of any multi-string system is a function of the reliability
of the individual strings, the reliability of switching primacy from one string
to another or restarting the same string, and the reliability of detecting
and signaling an error withina string. The latter parameter will be referred
to as detection coverage or simply coverage (coverage usually refers to
detection and recovery, but in this section we will use the term toc refer to
detection only), and is used to characterize the effectiveness of hardware

and software Built-In Tests. Coverage is measured as a percertage of

.errors detected within a specified time. In this definition there are three

variables that must be determined before the coverage number is mean-

ingful.

First, the percentage of errors may be calculated as a ratio of the
error types detected to the total possible error types, or each error type
may be weighted by its relative frequency. Error types are distinguished
by means of detection, regardless of failure types involved. For instance,
it is felt that errors in memory will occur more than other errors, so in
calculating coverage such errors may be given relatively more importance

(and therefore better detection techniques generallyareapplied to inemory

‘errors). The relative weight method of calculating percentage of coverage

seems more suitable for use in computing system reliability.

33

Second, the geneoral class of errors being measured by coverage must
be defined. In this gection, coverage will refer to single-point random
failures; that is, we will be concerned with only one failure at a time.
Double (or multiple) failures which occur at the same point in time, or so
close in time as to | effectively simultaneous, and combine diabolically
to defeat the BITE, ure so unlikely that they will not be considered in
coverage. Catastrojliic errors, where the system is massively interfered
with, as by radiation, or physically damaged by external forces, are not
addressed by BITs; however, such events are expected to produce some
errors that are detec(able by the BITs provided. If there is an undetected
failureinthe BITE hurdware such that the failed detection device will never
signal an error, a necond error which would have been detected by the
failed detection device can occur at some future time and go undetected as
a result. This is known as a "Pollyanna' failure. An example of this is a
failure in the parity clhecker such that a word with bad parity will not be
detected or signalled, wWwe will assume that a Pollyanna failure will be
considered the same 5 a normal undetected error with respect to coverage,
even though it may never affect the system adversely. This assumption is

not major, since if li{{le hardware is used for BITE, it is coasiderably

" morereliable than wi, 1t it is testing, soit dees not affect overall reliability

calculations very mugh,

Finally, the time within which an error must be detected is an important
parameter which mu:t he defined in order for coverage to be meaningful.
Obviously, the longer the allowed detection delay, the higher the error
coverage figure Will lyo, This is because as an error propagates it will
tend to cause other evyors (wrong values); and if a failure persists, it will
cause many errors, tiereby increasing the likelihood of detection. In the

. - . ; 2,4,8 .
synchronized voting =y y{ems we have previously discussed”’ ™" we claimed
coverage was 100% (i single point failures because discrepancies are

detected within the iwa(ruction step or before causing erroneous outputs,

Thisis the most demanding coverage detection time, and any system based
on BIT can only appraach it,

- v g

34

Our criterion for coverage for the GNCS will be detection, within
0.1 second, of errors caused by single point failures. This figure is based
on the assumption that in a time-critical mission phase an error must be

detected within 0.1 second to insure a safe recovery.
2.2.3 Hard Failures

Computer failures are either hard or transient. A permanent or
persistent failure is such that under the same conditions the same errors
would occur in the future, and the same failure will cause many other errors
in most related situations. Hard failures may be caught immediately by
some error detection logic (such as parity), or they may be discovered
after a short time delay by another BIT (such asa timing or activity alarm),
or they may be exposed by a test routine which exercises a failed piece of
hardware (such as self check). It is felt that BITE can do quite a good job
against hard failures, givena liberal detectionallowance suchas 0.1 second

in which the system can detect that it has failed.

The exceptiontodetectinganticipated errors may bethe test equipment

itself. The basic problem to testing the test equipment is to see that an

‘error presented to the BITE will cause detection and request switchover

to a new string. One suggestion is to induce an error while in some way
inhibiting switchover, but then the inhibitor must also be tested for failure,
and scon. Another suggestionis toactually force a switchover, and cbserve
that it occurs. As far as we know, this may be the only way to check out
the test equipment. But this would be totally impractical if the 0.1 second
detection criterion must be met, since continuous testing would cause
continual switching, and in addition, the original prime must be made to
reappear healthy to the other strings. Therefore it is felt that BITE must
be made simple and reliable enough so that it does not detract materially

from coverage and system reliability.

35

By way of contrast, it should be noted that a synchronized and voted
system minimizes in-flight testing problems by use of rs_:dundant voters.
The correct operation of voters still needs to be verified; nevertheless,
the ad hoc and distributed nature of BITE makesits correct operation much

harder to verify than that of voters.
2.2.4 Transient Failures

Errors can be caused by an external influence or by an intermittent
failure in the hardware. By the nature of these errors they are more
difficult to detect and may even be indistinguishable from good data. For
instance, an instruction may be altered, or the location counter affected in
such a way that the correct sequence is not followed. Data may also be
altered and eventually be used incorrectly. Sincetransienisare by definition

not repeatable, it is difficult to test for them.

Decisions must be made as to how much BITE can or should be added

_ to protect the system from transients, what the relative importance of

trensients is, and how good the protection is. It is difficult to study the
impact of transients because, by their insidious nature, they defy detection

and identification of origin.

Parity may catch one half (or more) of all memory transients
(assuming that multiple bits may be affected), and transients will more
often than not be so gross that they may be easily detected. Thus, much
of BITE intended to catch hard failures may also be useful in detecting
transients. Features like reasonableness and consistency testing may do

much to protect the system from transients, especially in critical areas.

Animportant and difficult question is whether BITE offers good enough
coverage for transients as well as hard failures. The effective prevention
of transients (i.e., reducing their probability of occurrence to a negligible

level) may be the answer to the problem. It is felt in some quarters that

36

electromagnetic interference (EMI) is the major cause of transients (e.g.,
the Apollo 12 lightning experience). If so, effective shielding, grounding,
and electrical isolation, as described in Part II, should eliminate this class
of transients. However, others feel that intermittent hardware failures
may beamajor cause of transients, perhaps of equal importance with hard
failures. That is, a hardware component may fail intermittently before it
fails hard. Elimination of intermittent failures is not possible and the
BIT methods must be used to detect these errors. On the other hand, the
coverage provided by BITs may be unacceptable.

The -remainder of this section will be devoted to presenting methods

of Built-In Tests and their effectiveness.
2.2,5 Types of Built-In Tests

Built-In Tests can be generally classified as software or hardware
implemented, although cooperation between the two is often required for a
specific test. Tests also have the characteristic of either immediate
detection or delayed detection of errors. Following is a description of the
basic impoftant types of Built-In Tests. Hardware tests are in effect at
‘all times, or concurrent, and can cover many situations, while softWare
tests are program specific and periodic. Tests with immediate detection
assure that the error will be detected within any critical time, instead of
Cepending on the error to propagate in a way that eventually will be caught
by a test with delayed detection. These characteristics will be noted in

the descriptions below,
2.2.5.1 Parity

Parityis themost commonlyused type of Built-In Test. By appending
one or more bits to memory locations and I/O messages, and including
the appropriate parity checking hardware, errors in individual words may

be detected. Parity may also be included in the microprogram memory.

S ——

g e senga

B B VA e

37

One parity bit will detect any single bit error within a word, including an
incorrect parity bit. Thus parity generation hardware is 2lso covered for

failure.

Memory is probably the part of a computer most susceptible to failures.
The fact that parityalone can completely cover single point memory errors
shows its importance with respect to the coverage of Built-In Tests. In
addition, parity is generated and checked completely in hardware and is
effective at all times. Finally, since the parity checker is an instantaneous
detection test, it detectsall odd bit transient errors, aswell as hard errors,
in the areas it covers. This is also important, since active memory and
transmission lines, if not properly designed, are especially susceptible to
transients. There are also higher order codes, such as Hamming codes,
which cover more failures, but involve more complex coding and decoding
hardware. Parity checking does not cover address selection, which can
be critical, especially in interference situations (see Part II),

IH eAM) rueiud€ PR R +DATH)
2.2.5.2 Watchdog Timers and Activity Alarms

Activity timers are useful for detecting errors in normal program
procedures. By use of counters or timers, the activity of specific events
may be constrained to occur within specific bounds. For instance, correct
program activity may require that a counter be reloaded before it counts
down to zero. If it ever reaches zero, it will activate the program activity
alarm. Cooperation by the softwareis required so that in normal operation
the counter will always be reloaded. Thus, if any failure occurs that causes
errorsin theinstruction sequences or causes an infinite loop, the program
activity test should detect the error within the 0.1 second criterion. The
same kind of activity alarms may be devised for other areas, such as
interrupt activity or program transfers, so that they can detect an event

occurring too often or not often enough.

Observe that in 0.1 second, a machine whose throughput is 500

K op/sec(i.e., 2microseconds per average instruction) will perform 50,000

L]

38

instructions. It is felt that in 50,000 instruction executions, most hard
CPU failures will eveniually cause an error which can be detected by
strategically designed timers and activity alarms, since nearly all CPU
components are widely shared among many instruction types. For example,
if an adder failed, the first error caused by that failure may be a wrong
sum which may never be detected. However, if the same adder is used
for address modification, it will shortly upset the instruction sequence so

grossly that some activity alarm will detect an error.

This class of Built-In Tests will be a significant method of detecting
errorsinthe CPU. The testsare hardware implemented, but, as previously
mentioned, may depend on software cooperation. The activity checks are
always in effect, but typically provide delayed detection, since the abnormal
activity or inactivity is usually a kind of infinite loop which must persist
for a considerable time to be recognized as illegitimate. The time of
occurrence of the error that caused the loop is necessarily prior to the
looping, possibly by a sizable interval. Consequently, it is impossible to
say that activity or timing tests detect errors within any specified time
after their occurrence, especially in the case of transients. The power of

thesetestsderives fromthe fact that the looping phenomenon they do detect

is the result of a great variety of error modes, foreseen and unforeseen. -

2.2.5.3 Output Feedback

Output feedback is a Built-In Test by the sender of an output to see
if in fact a message was sent, and if it was sent correctly. This is actually

%8 The output is read back in by

a limited form of message verification.
the sender and tested by checking parity or direct comparison, Direct
comparison can be most easily and efficiently implemented in the micropro-

gram, and may be used in conjunction with or in lieu of message parity.

Output feedback is either software or hardware implemented (prefer-

ably hardware) and offers immediate detection, thereby detecting transient

39

errors as well as hard failures. When hardware (or microprogram)
implemented, output feedback provides automatic coverage for all output
data paths, and it provides effective coverage at the computer and subsystem

interfaces.
2.2.5.4 Other BITE

There are many more hardware tests for specific but important error
modes. Some examples are: power supply monitor, oscillator monitor,
frequency divider alarm, and event failure timing. Many of these features

are commonly available in aerospace computers.
2.2.5.5 Self Check

Self check is a set of software routines designed to periodically
exercise and test areas of the computer, such as memory, control pulses,
or aritnmretic logic units. Self check can be divided into two classes of

tests: those which exercise the computer in such a way that any failure

. would cause an error that will be detected by one of the hardware Built-In

e e ——————————

Tesis, such as memory parity, and those which actually perform operations
and check their resultsagainst prestored values in the self check program,

such as software testing of the arithmetic logic unit.

By their nature, the more extensive the self check routines are, the
more memory they use, and the more time they take to run. In order for
self check to add to the coverage of Built-In Tests, it is suggested that it
be run at least once every 0.1 of a second to fulfill the coverage time’
criterion. However, since the coverage discussed was defined based on
time-critical mission phases, a dilemma appears: when self check is most

needed it can be afforded the least.

There are two different ways to respond to this dilemma. First,

although in the past, time-critical periods have usually been associated

o e s

e e e o

40

with a fully loaded computer, thisisnot necessarily so any more. Present
computers should be fast enough, and large enough, to allow self check to
run periodically, even in time-critical phases. Now, time-critical refers
to the necessity of the computer to respond quickly to any error to avoid
disaster, and self check may be an integral part of this response. Present
estimates of the impact of self check when executed every 0.1 second with
microprogram assist (see Section 2.2.7) is lessthan 2% of computing time.
The argument that the critical-time programs will always expand to fill
any void in computing time must be countered by the argument that such
situations are now unnecessarily dangerous and should be avoided by careful

program control,

The second response to the dilemma is to observe that not all of
self check is useful during critical periods. Specifically, the exercise
portions, which depend on BITE, add very littleto critical-phase protection.
The same BITE would protect the mission programs nearly as welli with
no help from self check, while the exercise routine might excite an error
mode that would not have come up in normal operation; this would cause a
string switchover during the critical phase that is an unnecessary and
dangerous nuisance from the mission point of view. The testing portions
of self check, however, are just as essential during critical phases because
they augment the BITE,

Self check is in effect only periodically, and is probably of little use
in detecting transients, since it would only detect a transient that occurs

within the appropriate self check test.

In summary, self check is a software BIT which can be made quite
efficient bythe aid of special microprograms, as explained in Section 2.2.7.
It consists of exercise routines, which undertake to excite error modes
that will be caught by BITE, and testing routines, which excite other; types
6f error modes and catch them by comparing results with predicted answers.
Self check should be consideréd a form of delayed detection since it does

not directly detect errors made innormal operation. Instead it immediately

Xu/chy

7N

41

detects errors occurring in its own operation and signals a failure on the
assumption that similar errors are occurring undetected, or will occur,
in normal operation. Thus, the exercise routines are most valuable when
most easily afforded, that is, to check out a string before entering a
time-critical phaseand get anynecessary switching done before the critical
phase. The testing routines add to the total coverage and are therefore

equally valuable at all times.
2.2.5.6 Software Error Tests

Software error tests include such tests as addressing out-of-bounds,
improper underflow or overflow, writing into protected memory, dividing
by zero, illegitimately executing privileged?mode instructions, using in-
structions as data or vice versa, and branching to improper locations (see
Ref. 3, pp. 196-8). The stated purpose of such tests is to detect software
errors, but incaseof transients that look like software errors, these tests
are also effective. Microprogramming facilitates implementation of these

tests.
2.2,5.7 Reasonableness Tests

Reasonableness testsare software tests of computer internal results
and outputs which test to see if a parameter is consistent with a predicted
range. The philosophy behind reasonablenesstestsisthata failure-induced
error in any parameter is more likely to be gross than small, Usually, a
parameter is known to have to be within certain bounds, either by nature
of the parameter alone, or as a result of the mission phase or program
being used. For example, the angle of a gimbal must fall between 0 and
360 degrees, and any other value is obviously an error. Including within
the software a direct test for this range will detect any error which is not
within bounds. The more that the reasonable range of any parameter can
be reduced, the more likely that the test will catch any error. However,
if a co'rrectly computed value falls outside its redlines because a redline

is too restrictive, it will take down all similar strings; that is, a wrong

[]

42

redline isa type of common mode specification error. In fact, this occurred
in the first Lunar Module flight.

Reasonableness tests suffer from some of the same problems that
self check does. They involve additional software, implying generation
and verification costs as well as memory use, and additional computation
time. As they are more extensively used, they take up larger portions of
time. Since reasonableness tests are specific to mission programs, they
must be run in time-critical phases to be useful. It is possible that
reasonableness tests may represent a few percent of the mission program

time, if extensively used.

Reasonableness tests are specifically designed for individual param-
eters, and therefore the important parameters must be chosen and the
ranges predicted. One advantage of this specificity is that the tests are
only run when useful. Reasonableness tests are completely software
implemented, and can often be placed to achieve immediate detection. This
last fact implies that reasonableness tests are very useful for detecting

transient errors.
2.2.6 Consistency Testing

Consistency tests, which will be described in detail in Section 2.3,
compare different versions of some quantity computed on different (though
similar) equipment, rather than comparing computed data with pre-specified
values in the same equipment that produces the quantity (reasonableness
tests). Consistency tests require hardware-software cooperation, and
depend ontwo or more active strings. Detectionis often delayed and coverage
is selective, but can cover any or all outputs. Consistency tests may be
particularly useful for transients (except massive interference affecting
all strings). Of course, they also serve as a backstop for hard failures

not caught by Built-In Tests. .

e~ 4, A o i e e

43

2.2.7 Microprogramming Aids to Built-In Tests

Microprogramming aids Built-In Tests in the sense that it offers a
faster way to execute some tests as well as compacting the storage these
tests require, but does not seem to offer much in the way of new methods
of Built-In Tests without additional hardware. It has already been mentioned
- that microprogramming may be used to implement some of self check,
and that software error tests and output feedback may be automatically
carried out by the microcode. These capabilities are useful, and may be

imperative for an effective self check.

A computer with microprogram capability should be beneficial to the
efficiency of self check programs in two ways. It should provide faster
execution of the self check and reduce its storage requirements in main
program store. If portions of the self check are coded in microprogram,
the overhead for decoding machine level instructions is reduced. Also, it
is often necessary in program level self checksto spend several instructions
to set up the proper conditions to test a specific case. Microprogram
should be able to set up the desired conditions much more directly and
save these instructions completely. This latter point should also *educe

storage requirements in the main program for self check,

One possible use of microprogramming for Built-In Tests may be to
testarithmetic and logic operations. Withinthe microcode of each arithmetic
instruction may be included an inverse operation and test. Yor example,
an addition instruction could subtract one operand from the result and
compare that result to the other operand. Carrying out this micropro-
grammed procedure for each instruction will certainly reduce throughput,
though by much lessthana factor of two. The main overhead in aninstruction
is the fetch and setup cycle. The additional test operation will not require
any additional fetch cycles, so the complete instruction time is increased
only by the time needed to run the additional microcode, However, the

test operation might require additional temporary registers that are not

available.

D 1
P4

NSIDT————

44

The incorporation of arithmetic checking in the microcode should
reduce the need for self check program testing of those arithmetic units.
With regard to the earlier discussion of self check during time critical
phases, arithmetic checking in microcode should be faster and more
effective, and may partially replace self check programs needed during

time-critical phases.
2.2.8 Built-In Test Characteristics of Sample Computers

Table 2.2 presents a summary of the Built-In Test characteristics
of the foliowing computers: AGC, DCA, IBM AP-101, SKC 2000, and HDC
601. The latter three systems are candidates for use in the Shuttle avionics;
the AGC and DCA are included as a basis of comparison of Built-In Test
effectiveness. In the table, Type I coverage is the probability that any
failure is detected immediately, so that all errors caused by that failure
can be localized or quarantined, usually to the one data word or register
affected. Type Il coverage is the probability that any error is detected
within 0.1 second. | | |

2.2.8.1 Coverage Study of the IBM Ar-101

From Table 2.2 it is apparent that the AP-101 has been designed to
provide good coverage by means of BITE and flexibility through micropro-
gr#mming. For this reason, as well as the fact that we have detailed
information on the AP-101, we have undertaken to examine in more depth

the coverage obtainable with this machine.

Table 2.2 suggests that the coverage of the AP-101 falls between the
estimated coverage of the AGC and the DCA, or between 80 and 99%. The

Material on this page is proprietary to IBM Corp. and is subject to the
restriction printed on page i of this volume.

45

(, TABLE 2.2
" BUILT-IN TEST CHARACTERISTICS OF FIVE COMPUTERS
IBM SKC HDC
AGC DCA AP-101 2000 601

MEMORY PARITY X X X
MICROPROGRAMMABLE X X
MICROPROGRAM PARITY X X
COMPREHENSIVE CPU CHECKS X
SOFTWARE ERROR CHECKS X X X
PROGRAM ACTIVITY ALARM X X X X
INTERRUPT ACTIVITY ALARM X X
LOOP ACTIVITY ALARM X X
OUTPUT PARITY X X
OUTPUT FEEDBACK TESTING . X

() INPUT PARITY X X

o INPUT TESTS X X

VOLTAGE X X X X
OSCILLATOR & FREQUENCY
DIVIDER ALARMS X
HARDWARE DEVOTED TO BITE 5-10%(E]) 30% (M)
'TYPE I COVERAGE : (B) = Estimated
(Ssee Section 2.2.8 for 30-40% | 70-80% | (M) = Measured-
explanation) (E) (M)
TYPE II COVERAGE
(see Section 2.2.8 for 80-90% 95-99%
explanation) (E) (E)

Material on this page is proprietary to IBM Corp. and"
Singer-General Precision, Inc. and is subject to the
restrictions printed on page i of this volume.

46

AP-101 hasat least the Built-In Tests that the AGC has, with the exception
of two activity alarms. This may be more than compensated by the great
increase in speed, which effectively allows an error more instruction steps
in which to be detected, or may allow an extensive self check to be run.
In addition, memory protect bits and privileged mode instructions are
included in the AP-101 software error checks, and these additional features

may be quite useful.

At this point it would be appropriate to give some numerical estimate
of the coverage furnished by the schemes described above. However, the
uncertainty that would have to be associated with any such estimates
precludes their incorporation, lest they be misinterpreted as having more
validity than is warranted. Detailed examination of the computer design
and a rigorous program of testing would be necessary before coverage
estimates can be meaningfully made. Even when that is done, it will be no
easy matter to demonstrate convincingly that a quoted coverage has been
attained,

Some preliminary reliability analysis has indicated that very high
detection cbverages are likely to be required for the computer, perhaps in
therangeof 0.99 to 0.999. It isour feeling that such coverages are unlikely
to be obtained with the BITE of the AP-101 itself. However, if the basic
BITE isaugmented with self check programs (hopefully the microprogram-
ming capability should help here), liberal use of reasonableness tests in
the software, and software implemented consistency tests involving the
redundant copies of the computer, our feeling is that the error detection
capabilities of the system can possibly be made acceptable. The inclusion
of consistency tests in this list of BITE augmentation techniques is
considered essential to provide the required error detection quality, since

these tests provide the same protection as synchronization and voting for

Material on this page is proprietary to IBM Corp. and is subject to the
restriction printed on page i of this volume.

- 47

the parameters tested. Asmoreand more parameters are filtered through
fhese tests, the system approaches a hardware-voted system. Nevertheless,
employment of these BITE augmentation techniques will require a great
deal of ingenuity, specification, and enforcement to keep the goals of coverage

foremost in the minds of the designers of both hardware and software.
2.2.9 Conclusions

Although we have discussed very stringent requirements for error

~ detection techniques, 'using realistic estimates of detection time

requirements, available computer MTBFs, and mission success probability
requirements, it isuseful at this point to review how these elements interact
as variables. Coverage, first of all, is a function of required detection
time, which in turnis a function of the switchover time required by vehicle
dynamics = generally speaking, longer switchover times allow simpler
switching procedures, perhaps even by manual means, and therefore make
for surer error detection. Coverage requirements can be relieved to some
extent by improvements in component reliability (MTBFs) for a given
success probability, which istypically set by policy. MTBFsarenot subject
to much control by system designcrs, though vendors can be prevailed upon
to increase reliability (for a price) by various means such as long burn-in
periods, buying high-reliability parts, or running a comprehensive high—rel

program =~ each of these stepsis rumored to double MTBF, A more tenuous

‘way to increase MTBF figures is to predict an improvement in reliability

over the program development period, extrapolating from the histories of

past programs.

The conclusion to be drawn from these observations is that, although
we have concentrated on Built-In Tests and detection coverage in this section,
we must keepinmind their complex interrelationship with the other elements

that contribute to the total probability of success.

48

2.3 CONSISTENCY TESTS
2.3.1 General Description

In Section 2.2, it was observed that built-in hardware and software
tests maynot provide adequate coverage to meet the reliability requirement
on the Guidance, Navigation, and Control System (GNCS). To improve the
coveragein a loosely-coupled system, the error detection and fault isolation
provided by built-in tests can be augmented by opinion-of-performance

testing.

There are two basic types of opinion-of—performva.nce tests: reason-
ableness tests and consistency tests. A reasonableness test compares a
computed data word to a predetermined range of values. This test does
not require intercomputer communications and is therefore applicable to
a single computer system. A consistency test compares equivalent data
words from two or more redundant computers. The reasonableness test
and the consistency test will succeed if the data compares to within a
specified tolerance. If the tolerance is specified as zero, the test is a
bit-by-bit comparison. Consistency testing has an advantage over reason-
ableness testing, with respect to preflight preparation, in that there is no
need to predetermine nominal values for each critical variable for each’
step of a mission. It may also be true that the non-zero tolerance value

for a-given data word, necessary for consistency testing, can be determined
' with greater precision than the equivalent value for the reasonableness
test. The remainder of this discussion deals with consistency tests for

the assumed GNCS for this volume.

One goal of consistency testing is fast (approximately 0.1 second)
error detection and faultisolation. Thisisnecessaryif automatic reconfigu-
ration is required for time-critical periods of a shuttle mission. Another

goal of consistency testing is the certification of the output commands which

the GNCS computers send to the subsystems. The test on the output

49

commands must be a bit-by-bit comparison, for commands are not always
whole number data words, but are quite frequently a collection of discretes
for which a non-zero tolerance has no meaning. A bit-by-bit comparison
cannot be done on the output of several computers unless the designinsures

that the outputs are equal in the absence of an error. Inequality in the

absence of an error can occur because a maneuver may be executed by
any of several sequences of commands, where the sequence chosen by a

computer may be affected by software slivering. This can result in two

computers doing the same job, each with a different sequence of output
commands but both with the same end product. One example is a one-axis
maneuver from a heads-up to a heads-down attitude. One computer
determines that the vehicle attitude is +0.01 degrees from the vertical and
commands:

"Roll +179.99 degrees"
while the second computer determines that the attitude is -0.01 degrees
from the vertical and commands: ‘

"Roll -179.99 degrees'.

Another example is a two-axis maneuver from a heads-up, face-forward

" to a heads-right, face-down attitude. With small discrepancies as above,

one computer may command:

"Pitch -89.99 degrees, Roll +90.01 degrees"
while the second commands:

"Yaw -89.99 degrees, Pitch -90.00 degrees"
both of which result in the same end attitude. In both examples, neither
computeris wrong; the resulting final attitude will be correct for whichever
computer is in control. A comparison of algorithms could verify the
equivalence, but thisis more complicated and does not guarantee bit-by-bit

agreement of the commands on the data bus.

A consistency test on a given data word is executed by each of the

redundant computers at essentially the same time. In general, if the data
passes a test, the test procedure may compute a consensus of the data

elements for possible use in further computation by all the computers. If

50

the test does not pass, an alarm or error condition is signalled to the
Reconfiguration Control Units (RCUs) of the system and the crew, and the
consensus value of the data may or may not be computed.. Appropriate
use of the consensus procedure will guarantee the bit-by-bit agreement of
outputs of an algorithm, simply by forcing all computers to use the same
inputs (including real time) to the algorithm. Referring to the example
above (heads-up to a heads-down maneuver), if the consistency testis applied
to the determined vehicle attitude, it would accept +0.01 degrees as being
consistent with -0.01 degrees, and might pick 0.00 degrees as a consensus
value for that attitude. Then both computers, using the same inputs and
the same algorithm, would command a roll of +180.00 degrees. If a third
computer had computed an initial attitude of (say) +5.37 degrees, it would
be accused of a failure, but it too could be given the consensus value with

which to continue, pending a decision to shut it down permanently.

The way in which consistency tests aid fault detection may be seen
from the following discussion. Where two or more computers are performing
identical computations on equivalent input data of known precision, the
results of the computations will be within a predetermined tolerance. A
significant fault in one of the computers will cause a result to dicagree
with the corresponding result of the other computers. The degree of
detection obtainable by such tolerance checks approaches that of asynchron-'
ized system, with bit-by-bit voting. In fact, a consistency test is equivalent
to bit-by-bit voting when the toleranceis specified as zero. This provides

ameans tovote on commands which the computers send to the subsystems.

2.3.2 Application to GNCS System

Execution of GNCS computer software for a generalized control loop
follows this outline:
1) Subsystem sensors provide inputs to

2) the vehicle state determination/update routines that generate

3) the state variables that input to

v’

.'/ -\'}

51

4) the guidance/targeting routines that output
5) the delta variables (to change the state of the system) that are

inputs to
6) the command generation routines that output
7) the control commands to the actuators.

Subsystems can be protected from erroneous control commands by

comparing the subsystem commands of two or more computers that are

- all doing the same job. If all computers use identical inputs to identical

command generation routines, where time is an input if needed, a consistency
test with a zero tolerance may be applied to the output of the routines. If
the computers are fault free, the outputs agree bit-by-bit and the test will
pass successfully. If a computer has a fault that affects the output, the
test will detect the bit discrepancy and signal an alarm so that corrective
action may be initiated via the RCU and the good computers, while the

correct output (if there are three or more computers) goes to the actuators.

This discussion generally assumes that there are three active rails

(one prime and two backups). The inputs tothe command generation routines
are the appropriate outputs (redundantly produced) of the guidance routine,
after they have been processed by the consistency test and a consensus
generator. The test involves each computer comparing a data word from
its guidance routine with equivalent data words from the other two computers.
Differences are computed and compared to a predetermined tolerance for
the given data word. An output of the consensus generator, if at least two
data words are good, could be, for example, the arithmetic mean of the
good data words. This mean value is used as the input to the copies of the

command generation routine.

There are two possible responses of the consistency test to'a detected
failure in computers of the GNCS. One response occurs when agreement
is found between only two of three active rails (one prime, two backups).

This response alarms and identifies the disagreeing computer to the crew

52

and the RCUs. If the problem is with the prime computer, that computer
is inhibited from putting out commands. Primacy is passed on to one of

the other computers by simply allowing it to output commands.

The other response of a consistency test to a detected failure occurs
when none of the rails agree (for either two or three active rails.) This
response alarms, but does not isolate the failure to a rail since there is
insufficient information to make this judgement.' One situation in which
this response can occur is when the system had been degraded to two rails.
The consistency test continues to work after a failure had caused the system
to degrade from three to two rails (one prime, one backup). With only two
rails, if the test inputs do not agree within the specified tolerance, the
consistency test response is to trigger an alarm to the crew and to the
RCUs. In the absence of an error signal from BITs both computers could
be inhibited from outputting commands on the busuntil the crew can indicate
a corrective procedure. An optional procedure could permit the prime to
continue while the crew may override and change primacy if the results
prove to be unsatisfactory. With this procedure, there is at least a 50
percent chance of being right. This procedﬁre is preferable whenever it
may be more dangerous to do nothing than to send the wrong command.
With an alarm from the BITs, the faulty computer can beisolated automati-

cally.

The worst case is when no agreement is found between three active

rails by the consistency tests of all three rails. The response for this

case is identical to that for the degraded mode case of two active rails,

 that is, signal the crew and inhibit the computers from transmitting

commands on the bus. This case, which is not generally being considered
in the system design, amounts to simultaneous failure of at least two rails.
A specific subset of this worst case that is being considered is an event
that can cause a massive noise pulse that has a general destructive effect
on data in all rails (e.g., a lightning strike). In this case, response of the

consistency test can serve to minimize the number of bad commands received

L]

i e v s e ————

53

by the subsystem effectors by providing the signal that causes the RCUs
to inhibit all the computers from transmitting commands on the guidance

data bus.
2.3.3 Test Method

The first step of a consistency test is the collection of the data to be
tested. For example, some routine produces a result that is tagged for
consistency testing. Before passing it on to the next routine, it must pause,
transmit the result to the other computers, and wait for the other computers
to transmit the corresponding data back to this computer. The transfer of
this data assumes the existence of a fast intercommunication channel among
the computers (see Section 1.1). The data collection process may involve
aninterrupt or may operate by polling an intercomputer data buffer. Once
the data is collected, the appropriate value of tolerance is loaded, along

with the data, into the input registers of the consistency test routine.

Figure 2.3.1 is aflow chart thatillustrates an example of a consistency
test. The three input variables to be compared are A, B and C and the
value of tolerance is D. The difference between A and B is BA; B and C
is CB; C and A is AC. The variable A is the result of the computation in
the host computer, that is, the computer executing the test illustrated.
The variables B and C are the equivalent results from the other two
computers. These two computers will run the same test with the same
variables appropriately permuted. The routine provides entry points for
two or three rails in the active mode. The test compares the magnitude
of each difference to the tolerance. The rules of the test algorithm for
three input variables are:

(1) If twoof three differences are within tolerance, use the average

of the three variables as the consensus output of the test for

. use in further computation, do not alarm.

(2) If only one difference is within tolerance, use the average of

the two producing that difference as the consensus output and

ENTER
A,B,C

FLAG< 0

54

c-|
—> CB

IA-C|

ENTER
AB

ENTER
A,C

- BA
v /BANN
D
ALARM | | ALARM
A B
AtB+C B+C C+A A+B
3 3z >)
~% A — A — A - A
|
}
EXIT

T e e e

Figure 2.3.1 Consistency Tedt Performed by Computer A

TEST
FAILED
EXIT

55

alarm, indicating the computer that provided the third variable
as the one being in error.

(3) If there are no differences that are within tolerance, alarm
indicating that computer A has gotten an unreasonable result,
and terminate the test by way of the "Test Failed Exit". A

consensus output is not provided.

The consistency test routine stores the consensus output, if provided, into
the register A. If a consensus output is not provided, the original input

variable in register A is left unchanged.

The two-input caseis also represented on the flow chart. The inputs
are A and B or A and C. Onlyrules (2) and (3) apply, with the modification
that reference to the third computer is meaningless. For single string

operation, the computer bypasses the consistency test.

2.3.4 Test Implementétion

Except for the mechanism for the intercommunication channel and a

time-out trap, there are no special requirements for implementation of
the consistency test. The time-out trap is required because the redundant

computers are not running in tight synchronization. As aresult, even though

" the computers start together and execute identical routines, the first

computer to reach a consistency test will have to wait for the data from
the other computers before it can proceed. If after a specified time, a
computer fails to deliver the appropriaté data, the time-out trap alarms
and identifies the computer that has failed to report. The consistency test
can be implemented by software, by firmware, or most likely by a
combination of both, if microprogram is available., The microprogram
capability is desirable to minimize the execution time of the consistency
test. The test could be implemented by external hardware, but this is not

cost effective since such atestis complex enough tobe considered a hardware

development risk.

épOé

56

The test illustrated in Figure 2.3.1, if implemented entirely by
software, will have a nominal execution time of 40 microseconds if all
three variables are good (assume two microsecond add time). For any
other case that passes the test (stores a consensus in register A) the
maximum execution time will be approximately 50 microseconds. These
times assume that the data has been collected and stored in the consistency
test input registers. The time delay due to the data collection is the phase
difference in the execution of instructions between the fastest and slowest
computers and the time required to transfer data between computers. With
all the computers starting together, and their individual oscillators having

drift rates of less than one part per million, the difference in time will be

less than one microsecond for one second of running time (i.e., one half of
an add time). The data transfer time is about ten microseconds so that
the total datacollection time isnomore than 15 microseconds. The collection
of data for the execution of the consistency test tends to phase lock the
computers. Assuming that the period of consistency tests is on the order
of one-tenth of a second (or less), the software phase difference at the
time of any consistency test should be, on the average, no more than a few
micr:oseconds (about ten percent of the time required to execute the test).
The sum of the test execution time and the test data collection time results
in a time of about 65 microseconds. If the consistency test is performéd
once every ten milliseconds, the resultant increase in software overhead
will be less than one percent. This overhead can be reduced by partially

or fully encoding the consistency test in microcode. Full microcoding of

the test would result in a reduction of about 15 to 20 microseconds from
the total test time of 65 microseconds. This savings is cost effective if

time is critical and there is room in the microprogram memory.
2.3.5 Summary and Conclusions
The purpose of the consistency test, with the consensus generator,

is to reinforce BITs in the detection and isolation of faults within computers

of a multicomputer complex. The procedure is usable as a programmer's

e AR ST =

57 .

option. It may be used selectively and does not have to be used for evefy
computational result or every command transmitted on {he data bus. The
consistency test gives maximum coverage where it can be applied to
commands from the computers to the subsystem actuators. A two level

consistency test provides this feature.

The first level is executed withnon-zero tolerances at some interme-
diate point in the software between inputs to the computer and the outputs

from the control routine. Outputs from these first level tests provide equal

"input datafor the balance of the computation that produce the control outputs.

This provision insures that the command generation routines will produce
equal outputs. The command generation routines, without equal inputs,

will not necessarily produce equal outputs even when there is no error.

The second level test is applied to the control outputs with a zero
tolerance requirement. The choice of the point for the first level of
consistency test is flexible, it may vary from one software package to the

next as circumstances require. It may even be desirable to locate the

" first level test at several points, for example, at the input to the computers

and at the guidance-output/control-input software interface.

The consistency test is fast enough to provide error detection in
time-critical periods. The impact of the test on software overhead is on
the order of one percent for a representative computer (two microsecond
add). The most significant design risk is not with the test itself, but with
a fast intercommunication channel that is necessary for timely and rapid
execution of the consistehcy test. Where microprogram is available, the
test time and overhead can be reduced, though optimization of the test may
not require full microcoding of the test. It appears more likely that the
test will be a mix of software and several special purpose microcoded

instructions.

2.4 RECONFIGURATION CONTROL

2.4.1 General Description

This section describes reconfiguration control in the Guidance,
Navigation and Control System (GNCS) portion of the assumed digital
computation and distribution system. The general objective of reconfigura-
tion control is redundancy management of the GNCS. The primary goal of
reconfiguration control is fast automatic reconfiguration of the GNCS in
the presence of an error in the prime rail, especially during time critical
periods of a shuttle mission. (Switching time, having detected an error,
is negligible compared to the allowed detection time of 0.1 second.) A
time critical period is one in which the crew might not be able to respond
to a detected error fast enough to prevent a hazardous response of the
system to a bad command from the prime rail. Another goal is to provide
the crew with indication of failed backup rails, to help them decide whether
to abort, and to prevent primacy from being assigned to a bad rail. A
third goal is to provide the crew with a manual override capability for the
GNCS configuration. This allows for single string operation to conserve

power during non-time-critical periods.

Figure 1.1.1 shows the GNCS computer complex, consisting of three
loocsely coupled rails with interfaces to a Reconfiguration Control Panel,
an inter-regional data bus and an intercommunication channel among the
computers. Each rail (Figure 2.4.1) consists of a computer capable of
performing all GNCS processing, a Reconfiguration Control Unit (RCU) to
perform redundancy management of the three rails, a GNCS I/O controller
and adata bus tothe subsystems. Inmany places in this section, ""computer"
is written informally instead of ''rail", because although reconfiguration
involves switching the whole rail, the emphasis in this report is on the

computers.

A fault tolerant computer complex consists of two or more computers,

arranged to be functionally equivalent to one ultra-reliable computer of

o ry

1/0

A7

Data Bus
>

Computer <

RCU

o A Figure 2.4.1 One Rail of the GNCS
Q

the same performance characteristics. The GNCS computer complex
achieves this equivalence, under the ground rule of loose coupling, by making
one computer Prime until it fails, at which time another computer is made
Prime. The Prime computer is the only one that can issue commands to
control the GNCS; the others may have the status Backup Not-Ready
(unpowered), Backup Not-Ready (powered), or Backup Ready (whichimplies
having a complete and up-to-date conception of the state of the GNCS for
minimum transition time at takeover). In fact, the computers are ignorant
of which computer is prime and which are backup ready. This knowledge
is contained in the RCU and I/O controller. The backup ready computers
execute the same routines as the prime and even try to transmit control
commands to the subsystems. The I/O controllers prevent this from
happening, but the computers do not know this. Loose coupling implies
that no bit-by-bit hardware voting can be used for error detection or fault
isolation, and therefore that the Prime computer must detect its own errors
and consequently give up control to another computer. This rule places a
heavy responsibility on the Built-In Tests (BITs) provided with each
c'omputer. However, a three-rail configuration can perform active surveil-
lance with "software voting" if the two non-Prime computers are in Backup
Ready status, thus augmenting the coverage of BITs. This idea of software
voting is discussed in further detail in the section on consistency tests

(sée Section 2.3).

Reconfiguration control may be accomplished either by a centralized

RCU that is responsible for the three rails, or by an RCU dedicated to
each rail. The design of the centralized RCU can be visualized as either
one RCU having overlapping responsibilities or subdivided into three parts
or modules, each module dedicated to one rail. Fault tolerance of the
centralized RCU would be achieved by replication of the whole RCU for

" the first case, or of each module in the second case. The main concern
here is that a single point failure must not cause the RCU to shut down
more than one rail, or allow two to be prime. For the case of the modular
centralized RCU, the design, including replication, is virtually identical to

ARSI T ST e

61

that of three RCUs, one per rail. The only difference is topological; that
is, there is no functional difference whether the replicated modules reside
in acentral location, or are distributed throughout the system. For purposes
of this study, the one-RCU-per-rail concept achieves greater visibility into
how the failures in the reconfiguration control area are related to failures

of other units.

The Reconfiguration Control Units (RCUs) located in the GNCS
computer complex of this system are dedicated to their respective compu-
ters and associated I/O controllers as represented in Figure 2.4.1.
Inter-RCU signal paths are over dedicated wires routed by the Reconfigura-
tion Control Panel (RCP). The RCP provides the flight crew with a manual
reconfiguration override capability and consists of a display and control
switch panel. If two computers are in a Backup Ready status, a priority
rule, set manually at the RCP, is used to pass control automatically in the
event that the prime computer fails. The rule is set by controls that are

functionally equivalent to routing the reconfiguration signal by way of a

. patchboard.

A general concept applicable to the problem of a backup checking
the health of the prime is that an automatic response to an error message
indicating that the backup thinks the prime is erroneous must be inhibited
unless the message is independently confirmed by a third computer. The
corrective action is initiated by the RCU of the offending computer. If the
error message is not confirmed (suggesting that the plaintiff is erroneous),
the RCP display will indicate this discrepancy. The crew incorporates
this information with any other information that is available and takes
whatever action is appropriate. In the absence of other information, that
action might be to do nothing except to change the priority rule used to

pass primacy between rails, but this depends on who is prime.

2.4.2 Function of the RCU

The RCUs perform essentially the same functions as their counterparts

in the Task 28-S Unsynchronized Federated system (UF).2 The primary

S —

62

function here is to pass Prime status from a faulty computer (actually a
rail) to another computer, which may or maynot be ready to effect a smooth
takeover. Secondary functions are the indication of a failed computer and
the reconfiguration to single-string operation to conserve power. The most
significant difference between the two systems is that each RCU of the UF
system had to service four computers, each doing a different job, while
the RCU of this system services only one computer, doing thé GNCS job.
Another difference is that the RCU of this system has a lesser role in the

reinstatement of a computer that has had a transient failure.

The RCU is envisioned as a simple collector of error signals that

issues a please-take-over signal (PTO) when an error is detected in the
prime rail. The inter-RCU traffic consists of PTO signals and rail status
signals over the Reconfiguration Control Cable, a dedicated-wire signal
path. The PTO signal is preferred to an I'm-taking-over signal from a
backup rail. If the prime rail issues a PTO signal erroneously, primacy
is passed to a good backup (the same response as for any other failure in
the prime rail); but if I'm-taking-over signals were used, the potential
would exist for a bad backup toissue 2takeover signal erronecusly, thereby

assuming system primacy.
2.4.3 Operation of the RCU

Figure 2.4.2 is a simplified logic diagram of an RCU. The diagram

illustrates functional relationships between various signals but does not

show detail timing or replication for fault tolerance. An RCU can receive

three different types of error signals. The first type indicates a failure
of its computer and originates from the computer's hardware built-in-tests
(BITE) or software checks (i.e., self-check, reasonableness tests, and
consistency test routines). The second type indicates a failure of its
computer but is generated by the consistency tests of the other computers.
The third error signal type originatesin the BITE in the I/O unit, indicating
that the I/O unit, the RCU, or the data bus has failed.

L

ey

63

| | | |

| |
| COMPUTER A | I/0 UNIT A .
! o |
| : | | BITE :

|

! BITE | , Err A STATUS,
! I B
e L b sl cm e s s s it o i 15 T

O

DISPLAY <

N .
C~’ PTOA I 0

PTOX <
________ J
INPUT SIGNALS OUTPUT SIGNALS
BITE: A 1is in error PTOX: A has failed, B or C,
. please take over
Err A: A is in error DISPLAY: A has failed

Err A/B: A is in error

(from rail B) STATUS: A 1s Prime

Err A/C: A is in error
(from rail C)

PTOA: A, please take over

(:) Figure 2.4.2. Logic Diagram of the RCU for Rail A.

|
|
-

' In the event that one computer decides that another ..omputer is in
error, the error signal (type 2) is transmitted by way of the rail status
signal paths. The PTO signal is sent by the prime computer's RCU to the
appropriate backup when the prime has had a hard or transient failure.
The RCU/RCP interfaceincludes signals toand from the crew. Information
displayed to the crew includes the results of consistency tests so that in
the event that one backup isinactive and the other disAagrees with the prime
computer, the crew can cast the deciding vote as to which rail is good.
Control signals from the crew to the RCUs alsc provide the means for

effecting single string operation.

An error detected by BITs, either in the computer or I/O unit, is
sensed by the RCU, which sends a signal to the crew and, if the computer
is prime, issues a please-take-over signal to one of the backup computers.
In addition, the PTO signal causes the current prime computer to change
status to Backup Ready. This is accomplished by simply not allowing this
computer to output control commands on the data bus. In addition, the
crew can disconnect this computer from the priority chain for system control,
thereby making it Backup Not-Ready, so that control cannot be returned

before reinstatement of this rail has been accomplished.

An RCU reacts to errors detected by consistency tests in two ways.
If a computer determines thal it, rather than one of the other computers,
is faulty, the response of the RCU is identical to that for an error detected
by BITs: signal the crew andif prime, switch primacy to a backup computer.
If a faulty computer does not discover that it is faulty, but this conclusion
isreached by consistency tests in two backup computers, the RCU responds
as if the faulty one had discovered an error. The latter only occurs if the
opinions of the backup computers are in agreement; no change in primacy

takes placeif only one of the backups thinks the prime computer has failed.
2.4.4 Reinstatement

Once a computer has failed, its RCU switches it to the Backup Ready
" state. At this point the crew may use the facilities of the RCP to set the

Nt

65

state to Not-Ready and might even power ‘down the failed unit. If the powe.r
is left on, an attempt can be made to reinstate this computer. The various
possibilites to start and execute a reinstatement procedure run a full
spectrum from manual through semiautomatic to fully automatic. This
volume does not consider the means to start and execute the procedure

but the feeling is that manual initiation is adequate and cost effective.

A reinstatement procedure would start with the execution of the
computer self-check program. If this passes, some type of initialization
program (e.g. Fresh Start) would then be run. This computer proceeds by
requesting, on the intercommunications channel, the GNCS system state
information from the other computers. After reconstructing its record of
the state of the system, the computer continues by performing its own system
state update computations with data fetched from the subsystems. After
some number of iterations of the system update computations, this computer
compares (via the consistency test) the state information received from
the other computers to its own computed data. After at least one complete
cycle of data from the system without an error indication, the status of
the complexis manually changed from Backup Not-Ready to Backup Ready,
providiné that no further error signals have been received from the RCU.
While the reinstatement process is being executed, the other rails do not

use data from this rail for consistency tests.
2.4.5 Fault Tolerance within an RCU

The design of an RCU must consider the fault tolerance requirement
for that RCU. The faulttolerance requirement for an RCU of the Unsynchron-
ized Federated systemis thatit must endure one single point failure without
degrading functional capability, and be able to switch rails after detecting
a second single point failure withinitself. The requirement for a distributed
RCUof this systemis that it must be able to switch rails after experiencing

a single point failure within itself.

There are some unanswered questions in this area. For instance, it

is possible to minimize the ways"in which RCU failures are indistinguishable

sy

66

from computer failures, by cross-strapping a redundant RTZU complex to
the computers, thus making it satisfy a fault tolerance criterion independent
of the one applied to the computers. Furthermore, one might argue that
the RCU complex should be required to survive more failures than the
rest of the computer system because of its central importance and authority
over the other elements; in fact, the preceding paragraph defines the
minimum increased requirement, which is equivalent to perfect error
detection coverage. The degree of ""redundancy overkill" that is appropriate
will be determined by a number of factors: the small size and simplicity
of function of an RCU, the reliability pro'gram followed in its development,
the interface problems encountered in mating a specially developed RCU
with off-the-shelf computers, etc. Perhaps these questions are best left
open for the time being, but must be addressed before beginning the detailed
design of the RCU.

AN

67

APPENDIX A
A DATA BUS INTER-COMPUTER COMMUNICATICN SCHEME
A.1. Introduction

Aninter-computer communication scheme is described for a loosely
coupled multi-region system in which all the computers of all the regions
are connected to a single data bus. The configuration discussed here is
not intended to represent any avionics baseline being considered for the
shuttle, except insofar as the partitioning into regionsis similar to previous
studies. Thisintercommunication scheme was developed before the current
configuration, and is included here for background. The intent is to
demonstrate the feasibility of intercommunication among a large number
of computers, thereby establishing the feasibility of intercommunication
ona smaller scale. In particular, it is expected that a subset of the scheme
described here could be used for the IRB of the DCDS assumed in this
volume. The difference between this configuration and the assumed DCDS
is that in this appendix, the members of a region communicate with each
other over the bus used for intei‘-regionél intercommunications. In the
assumed DCDS (Section1.1.1),the IRB isnot used for communications among

computers of the same region.

The system, shownin Figure A.1, consistsof up to four computational
regions, all of which may be triplex. Busaccessisallocated by an external
Bus Controller. Since computers receiving a data transfer will generally
not be ready to receive when the sending computer is ready to transmit
the data, the Bus Controller also performs a ''store and forward" function,
buffering the databeing transferred until the receiving computers are ready.
The Bus Controller and data bus are triplicated for fault tolerance.
Computers are partially cross-strapped to the bus system; each computer

is connected to two of the buses, rather than to just one or all three.

68

Figure A.l.

Region 00 R 00 R 00
Computer Cc 10
o1 Cc 11
5 1)|
Bus
Controller &
Buffer p R 01 R 01 R 01
Cc 01 CcC 10 Cc 11
Bl 1
B
R 10 R 10 R 10
C 01 Cc 10 Cc 11
¢ ! '
R 11 R 11 R 11
Cc 01 Cc 10 Cc 11
)| |

A Generalized Loosely-Coupled Multi-Region System

69

A.2, System Operation

An information transfer involves some number of conversations
between the Bus Controller and the computers sending and receiving the
information. There are four types of conversation, as tabulated in Figure
A.2; an information transfer requires at least one conversation of each
type. Every conversation begins with a message from the Bus Controller
to a computer, and the format of the first byte of this message indicates
the type of conversation (see Figure A.3). Most conversations‘also require

a reply message from the computer back to the Bus Controller.

All messages contain an integral number of bytes, a byte consisting
of 8 information bits plus parity. It is assumed here that the bus system

is serial, so two parity bits, one even and one odd, are used with each

byte. A data message is a variable-length block whose size is specified

by the computer originating the transfer. One byte is used to specify the
block size, so the limit for a particular transfer is 256 bytes.

Manchester coding9 is used to represent data. Messages from the
Bus Controller to a computer are prefaced by a SYNC character. For the
conversations which require a reply message, the reply is not prefaced
with a SYNC., However, the first bit of the reply is always a zero so the
receiver in the Bus Controller can lock itself to the data.

Data being transferred is sent to all the computers of the destination
region, so the same mechanism is used for transfers among computers of
a particular region as for inter-regional transfers. 1In all cases the
information is first sent to the Bus Controller, which stores it in a 256
byte memory. The Bus Controller then asks each of the destination
computers if it is ready to receive the data (an interrupt may be needed
here to get the computer's attention), and forwards the information when

they are all known to be ready.

®

POLL
READY
DATA
ACK

- TYPE

POLL
READY
DATA
ACK

70

BUS SEQUENCER TO COMPUTER

-SYNC, Do you have anything to send?

SYNC, Are you ready to receive?
SYNC, Here comes the data, Data
SYNC, Did you receive it OK?

COMPUTER TO BUS SEQUENCER

NO/YES, data
NO/YES

NO/YES

Figure A.2. Conversation Types.

FIRST BYTE (BUS SEQUENCER TO COMPUTER)

Xxyy 1000
XXXX XXYY
xxxx_ 1100

xxyy_ 0000

xX: 0 or 1.

y: 0 or 1, but yy # 00.

SYNC and parity not shown.

Underscore (_) is used for clarity only.

Figure A.3. How Conversation Types are Identified.

J

e —

71

1. POLL

Query Srrqq_lOOOPf
Reply NO 0011 _rrggPP
YES 0100_dd00PP_hhhh_ff4{PP, followed by the in-
formation, (hhhhfff{+1) bytes of the form

iiii iiiiPP,

2. READY

Query Shhhh_ddccPpP
Reply NO 00 11 _ddccPP
YES 0100_ddccPP

3. DATA
sff44 1100PP, followed by the information,
(hhhh {f{¢+1) bytes of the form iiii iiiiPP,
4. ACK
Query Sddcc_0000PP

Reply NO 0011_ddccPP
YES 0100_ddccPP

cc Computer in destination region being addressed (cc # 00).
dd Destination region.
hhhh High four bits of the byte count. (hhhh+l1) is the number

of 64-byte blocks which must be reserved for tbe data.
hhhh f{f{ (Count of information bytes)-1.
iiii_iiii Information byte.

f24 % Low four bits of the byte count.
PP Parity bit and its complement.

aq Computer in region being polled.
rr Region being polled. '
S . Sync character.

Underscore (_) does not represent a bus character. It is
used for clarity only.

Figure A.4 Bus Formats.

ot e e e e

72

Since the computersare partially cross-strapped to the buses, a Bus
Controller to computer message must be sent on at least two buses;
otherwise, one computer in each region would be guaranteed not to receive
the message. It is not necessary to synchronize the buses, but the Bus
Controllers must be coordinated in some manner so that one doesn't get
so far out of phase that it is doing an operation completely different from
the others. It would seem desirable to transmit on all three busesto minimize
the need to retransmit a message if there is a failure. Similarly, it would
be sufficient to transmit a computer to Bus Controller message on only
one of the buses connected to the computer but it seems better to send the
message on both., On the other hand, the best approach may be to fully
cross-strap the computers to the buses. Then the Bus Controller/data

bus units could be used sequentially; that is, one Bus Controller and bus

- would be used until there is a failure, then another unit would be switched

in. Parity and time-out traps should provide good enough error detection
capability to allow this strategy.

A.2.1. Details of Operation

The exact message formats are listed in Figure A.4. The Bus
Controller polls the computers sequentially. Polling is not expected fo
require aninterrupt; a computer with something to transmit should be able
to set a bit in its I/O unit causing it to reply ""YES" the next time it is
polled. The response to a poll, "YES" or '""NO," indicates whether or not
the computer has data to send to another region, or to the other computers
in its own region. If the response is ""NO'" (one byte), the computer being
polled does not wish to transmit data, so the Bus Controller polls the next

computer. If the response is unintelligible, "NO" is assumed; it should be

noted that when "YES" is intended an unintelligible response could be up

to 258 bytes long.

A "YES" response (one byte which includes the ID of the destination

region) is immediately followed by a byte which indicates the number of

73

bytes of data, followed by the data. The datais stored in the Bus Controller
Memory until it can be forwarded to the destination region. If the Bus
Controller detects a parity or count error in this message, it asks for a
retransmission by immediately repolling the computer. Once the informa-
tion being transferred is stored in the Bus Controller Memory, the Bus
Controller suspends polling and completes the tfansfer. Each computer
in the destination region is asked individually if it is ready to receive the
transmission (except that if the transmission is to the other computers of
the same region, the computer which originated the transmission is not
asked). This operation might involve interrupting the computers. A
computer which replies "NO" (or replies unintelligibly) is asked again after
aninterval, and thisis repeated until it replies "YES" or the Bus Controller
gives up. (The number of tries before giving up has not been determined).
When all the computers in the destination region have replied "YES," or
at least have been givena decent opportunity, the Bus Sequencer completes

the information transfer by placing the contents of its memory on the bus

- while the destination computers "listen." Theactual mechanism for getting

the data into the computers is probably a DMA facility, although it is

- conceivable that each computer would be required to continually read its

I1/O channel while the data is being transmitted. In any event, interrupts

W—
would not be used for this operation.

After the message has been transmitted to the destination cbmputers,
the Bus Sequencer asks each recipient for an acknowledgement. The reply
is again either "YES" or ""NO." 1If any computer replies "NO," indicating
that it has detected an error, the whole message will be retransmitted,
Once all recipient computers have acknowledged receipt of the message,
or the message has been retransmitted, normal sequential polling is
resumed. Itisexpected thatitisnot necessary toask for acknowledgements
after a retransmission. If a computer replies unintelligibly to an
acknowledgement queryit isasked again; if the reply is still unintelligible,
it is assumed that there has been a failure, and the message is not

retransmitted unless one of the other computers replies '"NO."

72

A.2.2. Events in a Normal Data Transfer

A normal data transfer requires at least one of each of the four types
of conversation shown in Figure A.2. The first message of a conversation
originates with the Bus Controller. A SYNC character is used to indicate
that a Bus Controller to computer message follows; the format of the first
byte of this message identifies the conver sationtype, asillustrated in Figure
A3. '

The operation of the Bus Controller and the computers involved in a
normal data transfer is summarized below. Operations are divided by
conversation types, which occur in the order given. The formats of Figure
A .4 are referred to.

1. POLL. A polling query asks the question, "'Do you wish to send
data to another computer?' It is a one-byte message of which
four bits (rrqq) identify the computer béing polled, and the other
four (1000) indicate the conversation type. A polling query is
sent on enough buses that all computers hear it, but only the

_addressed computer replies. The reply may be ""NO," in which
case the next computer is polled, or "YES," which leads to the
sequence of events described in the remainder of this section.
A "YES" reply may be three to 258 bytes long. Two bits (dd) of
the first byte indicate the region to which the data bytes are to
be forwarded, and four bits distinguish "YES" (0100) from '"NO"
(0011). The second byte indicates the number (one to 256) of
data bytes which follow, and the remainder are data.

2. READY. A ready queryasks, '"Are you prepared to receive data
being sent to you?" It is sent individually to the computers in
the destination region, which reply "YES" or "NO." Four bits
(ddcc) of a ready query identify the computer being ‘asked as

well as the type of conversation (since cc # 00). the other four
bits (hhhh) are the high-order portion of the byte count, which

N

75

is used by the computer to allocate space for the data; these
bits indicate the number of 16-byte blocks to be allocated. If a
computer responds '"NO" it will be asked again after an interval.
A "NO" response might always occur initially if the computer
must be interrupted; in this case the "YES'" reply would not be
sent until the interrupt has been processed, and the requested
number of blocks allocated.)
DATA. Once all the destination computers have replied ""YES"
to a ready query, the Bus Controller uses a data message to
forward the data. The first byte consists of the low four bits
(1111) of the byte count as well as the designation (1100) of the
conversation type. The first byteis followed by one to 256 bytes
of data, as specified by the count. There is no reply to a data
message.

ACK. Acknowledgement queries are used to verify that the data
message was received coherently by the destination computers.
The Bus Controller sends each destination computer a cne-byte
message, asking whether the data passed the parity and byte count

.checks, to which the computer responds "YES" or ""NO.” Four

bits (ddcc) of the acknowledgement query specify the computer

being addressed, and the other four (0000) indicate the conversa-

tion type.

76

REFERENCES FOR PART I .:>

1. Blair-Smith, H., et al., AGC/Shuttle Study Status Report,
MIT/CSDL, December 1970. '

2. Blair-Smith, H., et al., Data Management System Configuration

Studies for Off-the-Shelf Computers ("Task 28-S") Vol. I,

MIT/CSDL, December 1971.

3. Blair-Smith, H., et al., Shuttle Avionics Computer System

Studies, ("Task 28-S") Vol. III, MIT/CSDL, June 1972. o

4. Green, A.I., et al., STS Data Management System Design
(Task 2), MIT/CSDL Report E-2529, June 1970.

Se Griggs, K.M., and Schwartz, G., The DCA Computer, MIT/CSDL h]
. Report E-2590, December 1970.
6. Knox, R., et al., Ad Hoc Review Team Technical Observations

(Knox Committee Report), NR, October 1972.

NS N Levy, C.D., A Description of the Data Bus System for

Integrated Breadboards (Revision A), MSC/ISD Internal Note,

January 1971.

8. Multi-Region Shuttle DMS-Interim Report, Digital Development

Memo #603, MIT/CSDL, April 1971.

9. Schwartz, G., The Mechanics of Bi-Phase Coding on a Data Bus,

Digital Development Memo #696, MIT/CSDL, September 1972.

. 10. Tindall,' H.W., "Some Really Outstanding Thoughts about the B
)

Performance Monitor System (PMS)", Memo, 9 December 1971.

SIS

11.

12.

77
REFERENCES FOR PART I (con.)

Weinstein, W.W., An Efficient Intercommunications Scheme

for the Elements of a Real-Tim= Data Management System, -

MIT/CSDL Report E-2588, June 1971.

Johnston, M., Contrasts between Several Shuttle DMS

Architectural Concepts, ("Task 28-S") Vol. II Addendum,

MIT/CSDL, December 1971.

(also available as Digital Development Memo #715)

78

The Charles Stark Draper Laboratory

. 68 Albany Street, Cambridge, Massachusetts 02139 Telephone (617) 258-

A Division of
Massachusetts
Institute

of Technology

PART II

LIGHTNING PROTECTION STUDY

Eldon C. Hall
James G. Allen

William W. Weinstein

—

2.0

79

TABLE OF CONTENTS

INTRODUCTION AND CONCLUSIONS

1.1 Introduction

1.2 Conclusions

LIGHTNING PROPERTIES AND EFFECTS ON AEROSPACE
VEHICLE AVIONICS

2.1 Review of Recent Air Force Lightning Strike Data
2.2 Some Properties of Lighting

2.3 Some Experimental Results

2.4 Design Practice Versus Lightning Effects

2.5 Failure Modes Associated with Lightning Strikes

DESIGN PRACTICES FOR SURVIVAL IN A LIGHTNING
ENVIRONMENT

3.1 Lightning Characteristics
3.2 Shielding

3.3 Bonding

3.4 EMP

3.5 Testing

ARCHITECTURAL CONSIDERATIONS FOR SURVIVAL IN A
LIGHTNING ENVIRONMENT

4.1 Introduction

4.2 Bus Commands

. 4.3 Computer Information Loss

W, .~ BIBLIOGRAPHY FOR PART II

Page

80

el
81

87

88
91
99
103
106

110

111
111
114
115
116

118

119
120
121

137

" 80

1.0 INTRODUCTION AND CONCLUSIONS

81

1.1 Introduction

This report addresses the problem of lightning disturbances
in the Space Shuttle avionics system, with particular emphasis on
the computer system. This type of disturbance is of interest
since it can cause massive transient.failures which are common to
all the redundant copies ‘(whether similar or dissimilar) of the
Shuttle avionics, thus defeating the design intent of the redun-
dancy. The EMP component which results from a line of sight burst
is also discussed as its effects are similar to those associated

with lightning strikes'.

The material is divided into three main sections. First,
documented lightning strikes are reviewed to categorize the nature
of the lightning and its effects on electronics in avionics systems.
Second, techniques such as shielding and grounding for preventing
the lightning from disturbing the electronics are discussed. Third,

methods are déveloped for computer system recovery after lightning

induced errors.

-

1.2 Conclusions

This section summarizes the major conclusions of the body
of this report. The conclusions section itself is divided into

the following topics:

Lightning Properties and Effects
Shielding and Grounding

Testing

Design

Architectural Considerations.

1.2.1

. 82

Lightning Properties and Effects -

Worldwide Air Force lightning strike data gathered from
1965 through 1971 reported over 400 lightning incidents.
This information shows lightning to be a very real atmos-
pheric flight hazard. However, it does not provide
detailed information on lightning characteristics and its
effects on aircraft electronics. Of the material reviewed,

the Apollo 12 lightning strike incident proved to be the

.most thoroughly documented.

Lightning can be expected to induce both hard and trans-

ient errors in unprotected electronic equipment.

Lightning can be expected to induce transient power loss,

as in the Apollo 12 incident.

Peak currents of 100,000 -amperes with rise times of 50,000
amps/microsecond are possible under the right conditions.
The .discharge may occur in as little as a few microseconds

or last as long as hundreds of milliseconds.

EMP is characterized by a pulse whose width is measured in
tens of nanoseconds with significant field strengths. The

effects are similar to lightning although the incident

" radiation would be spatially distributed over the entire

shuttle and the incident energy bandwidth is three orders

of magnitude wider.

-

83

Apollo accepts lightning strikes as a real risk and simply
avoids launching into atmospheric conditions conducive to
lightning strikes. However, thunderstorm activity data
indicates the restrictiveness of such a policy. The Eastern
Test Range experiences an average of 70 days with thunder-
storms per year. 1In comparison, Vandenberg and Edwards Air
Force Bases, respectively, experience avérages of 2 and 4.3

days with thunderstorms per year.

Shielding and Grounding

Prevention of lightning-caused permanent damage to the
computer hardware, through the use of proper shielding and
grounding practices, is feasible and must be incorporated

in the design.

Normal design practice based upon MIL-STD-461A is not

sufficient for a lightning or EMP operational environment.

The “shielding necessary for absolute information protection
for all orbiter electronic systems is probably not feasible

due to Shuttle weight constraints.

Accepting transmission errors between modules, but shielding

and gfounding the modules and incorporating the appropriate

- software recovery capability, seems feasible and cost

effective.

No evidence can be cited that the vehicle structure must not
be used for power return. However, use of dedicated twisted
pair power cabling is recomménded, even in recognition of a
weight penalty, to reduce the risk associated with lightning

related failure modes.

The design for protection from lightning is not sufficient
for EMP, unless the range reduces .the magnitude of EMP

significantly. Absolute numbers specifying this range must

84
be worked out. The Air Force survivability specification ;:’
does not provide sufficient information to say that .

lightning is equivalent to EMP at or beyond the specification

range.

Testing

Testing defined in MIL-STD-461A is not sufficient for eval-
uating a system designed to operate in a lightning or EMP
environment. Techniques developed and applied to hardened
missile systems pro&ide a basis for developing a proper

set of tests for evaluating the shuttle design.

Where special software has been incorporated to permit the
computer to operate properly in the lightning environment,
appropriate software verification tests must also be

developed.

Design

A lightning detector is required to alert the computer to
enter the appropriate operational mode for this environment.
In particular, the computer must be alerted to the possi-
bility that interface and subsystem data may be contaminated.
This implies that the lightning detector mechanism has

sensors distributed throughout the structure of the vehicle.

All memory in critical subsystems must be re-establishable

or must be protected from loss.

The computer must possess sufficient power reserves to
operate through a period of transient external poﬁer loss.
For longer periods, this would require the capability to
snut down in an orderly fashion so as not to lose data or

machine state information. j

85

If shielding of the computer is not sufficient to protect
the contents of logic, then the lightning detector must
shut.down the memory in order to prevent more than a single
memory word loss. Software techniques for jontrolled roll-

back recovery must be implemented.

Several computer manufacturers claim that lightning is not
a problem if they design to MIL-STD-461A criteria. This
claim should not be assumed valid until further supporting
evidence is developed. Present visibility into design
details is not sufficient to accept the claim. Subsystems
external to the computer will, of course, also impact the
survivability of the shuttle system. The Apollo 12

incident is an example.

Architectural Considerations

Computer hardware/software must operate error-free during

power transients.

For the implementation of controlled rollback recovery
techniques, we recommend a lightning detector which is
sufficiently fast to alert the computer,’to close the door
to the memory, and to 1limit memory errors to the wo:d

currently being operated upon.

The controlled rollback recovery techniques for DRO memory
are decidely more complex and inefficient of time and
storage than those techniques required for NDRO memory.
This is primarily due to the fact that, in a DRO memory, data
can be destroyed during a read operation as well as during

a write operation.

Given (2), NDRO memory can guarantee controlled recovery in
the face of a second strike which may occur during the recovery

attempt from an earlier strike. DRO memory cannot guarantee

recovery under this condition.

86

Given that a high probability of protection can be obtained
for the computer by proper shielding and grounding tech-
niques, serious consideration should be éiven to contrast-
ing the additional protection gained by implementing a
controlled rollback recovery scheme (to cover the remaining
possibility of data loss), with the potential error modes
and inefficiency introduced by the implementation of such a

complex and costly scheme.

There are other software approaches to recovery from
lightning induced errors which are simpler to implement than
controlled rollback. Specifically, a study might reveal
that in flight regimes subject to lightning, the vehicle
state can be recovered sufficiently well from onboard
sensors or the ground without dependence on the contents of
computer memory. This procedure may be cheaper and easier
to verify than controlled rollback. These other approaches

need more detailed analysis.

87 -

2.0 LIGHTNING PROPERTIES AND EFFECTS ON
AEROSPACE VEHICLE AVIONICS

. 88

2.0 LIGHTNING PR‘:fRTIES AND EFFECTS ON AEROSPACE
VEHICLE AVIONICS

JFrequently, electrostatié discharges are considered along
with lightning. Here;uthc discussion is constrained simply to the
consideration of lightning. In an electrostatic discharge, the
aircraft itself serves as a charge center. This charge may be
picked up while flying through dusts, clouds or precipitation.

In rocketry, the plume will serve as a low current generator.

In either case, the charge is generally dissipated via static
discharge wicks and corona discharge at shafply curved and pointed
parts of the airframe before charge buildups comparable to that
involved in lightning strike currents are experienced. Lightﬁing
strikes require electric fields of several thousand volts per
centimeter to breakdown the air and the resulting current is cor-

respondingly high, involving much more energy than that associated

" with electrostatic discharges. Passing reference should be given,

however, to the loss of two early Minuteman flights attributed to
static discharge problems due to improper grounding between the

(19)

boost and upper stages.

2.1 Review of Recent Air Force Lightning Strike Data

Worldwide Air Force lightning strike data from 1965 to
December 1971 has been stripped out from the files maintained at
the Headquarters Air Force Inspectlon and Safety Center, Norton
Air Force Base. Thls information 1s organlzed principally on the
basis of the degree of alrcgaft damage. The categories are
delineated as major accidents, minor accidents and incidents. One
lone event is reported involving pilot injury, but no aircraft

damage.

ry

89

Five cases, where lightning was a_facfor, are described
under the category of major accidents. 1In four of the five cases
the aircraft was destroyed. The remaining case involved extensive
struétural damage. Two of the four cases whexe the aircraft was
destroyed resulted in fatalities. Generally lightﬁing was the
initiating cause, but not necessarily the single cause of the
accident. The pilot also sometimes played a part in the events
which led eventually to the accident. 1In one case the aircraft
commander, confused by lightning, failed to switch the fuel selector
from empty inboard tanks to full outboard tanks. 1In another case
the pilot was temporarily blinded during a critical flight phase
and ejected when the airspeed moved rapidly from 230 knots toward
700 knots. On the other hand blade failure, induced by a lightning
strike, in the main rotor system of a helicopter rendered it
uncontrollable by the pilot and resulted in a crash and the death

of all eight persons onboard.

Four minor accidents, where lightning was a factor, are
detailed for this 1965-1971 time period. Generally, these accidents
all involwved structgral damage, although in all cases the aircraft
were able to land safely. The structural damage included:wing
damage, loss and explosion of external fuel tanks, radome damage,
pitot boom 1éss and radar antenna loss. Effects pertinent to air-

craft electrical and avionics system included:

1. Fuel ignition in the wing subsequent to a lightning strike
"in one aircraft was attributed to the arcing of a shorted

navigation light power line.
2. Lightning strike initiation of jettison squibs.
3. Both power generators were knocked off the line by a

lightning strike and subsequently successfully reset.

Some four hundred inflight incidents are itemized in which
lightning was a factor. The aircraft damage associated with these

incidents is characterized as either slight or none. Frequently

90 -

the description merely indicates that lightning struck and will-
give the location of the strike; e.g. a wing tip, a radome, an
antenna or the vertical stablizer. Where more ihformation is given,
it is likely to be terse. Generally, the documented reports are
incisive and likely not to describe electrical malfunctions to the
detailed level desirable for the purposes of this study. In fact,
it is likely that many electrical malfunctions occurred which were
not even mentioned. However, in roughly 5% of these incidents, the

description indicated electrical malfunctions which resulted from

"a lightning strike.

These malfunctions were manifested in a number of different

fashions as is indicated by the following summary observations.

*Five incidents involved the accidental deployment of crash

position indicators.

*Twenty-five percent of the strikes struck radomes. From
these 100 strikes only four reports indicated difficulty
with radar operation, one of which indicated only a

temporary failure of one minute duration.

*Five strikes resulted in generator failure. 1In these cases,
three reports indicated that the generators were recycled

- " and put back on the air.

*Erroneous malfunction indications - door open and fire
warning - were experienced, each in a separate aircraft

lightning strike incident.

*Power supply damage was indicated for subsystem electronics

in one strike report.

*Tacan and ILS malfunctions were indicated in one strike

repbrt.

One case was reported where a lightning strike injured the

[
pilot, but no aircraft damage was incurred. The pilot felt his

B s |

91 -
scalp tingle and suffered second degree hand burns.

~_Assessment of this data, with an eye toward lightning
effects on the shuttle digital equipment, especially the computer
hardware, indicates that lightning is a very real hazard. Light-
ning strikes do occur and they have induced not only transient
signals in aircraft electrical system, but have also inflicted
permanent damage on electrical equipment. For a more detailed
understanding of the likelihood of lightning strikes and its
effects on aircraft electronics; however, the review of other

information sources was found desirable.

2.2 Some Properties of Lightning
2.2.1 Physical Properties

A number of sources exist in the literature which describe

. . . 1,8,12,14 . . .
the properties of llghtnlng.(') The following, which is
derived from Reference 12, summarizes lightning characteristics

as generally described throughout the literature.

"1l.. Intracloud Lightning. Lightning which does nct connect

to ground, although dissipating amounts of electric
charge and energy similar to those that do, does not
generally involve currents greater than 1,000 to 2,000
amperes with maximum rates of rise probably not exceed-
ing 100-500 amperes per microsecond. The average total
duration of these currents does not exceed 3 milli-

seconds.

2. Discrete Lightning Strokes to Ground. Lightning which

reaches ground involves a low current leader followed
by a return stroke with an average peak current value
of 20,000 amperes, and with a rate of rise of about
10,000 amps/microsecond. The current falls to half

value in about 40 microseconds and is essentially at
L]

i

92

zero value after several hundred microseconds. On the
average there are about 3 or 4 strokes to each discharge,
with a time between strokes of about 40 milliseconds.

The first stroke in a discharge usually carries the

largest current.

3. Long Continuing-Current Lightning Strokes to Ground.

About one out of 5 or 6 strokes to ground is initiated
by a leader followed by a discrete return stroke in
which the current does not fall toizero value after a
few hundred microseconds, but which continues at an
average current value of about 185 amperes for an
average duration of about 175 milliseconds. Continuing
currents of 250 amperes lasting for about 0.25 seconds

are not uncommon.

Summarizing, high currents and high rates of rise of current
are not expected from intracloud strokes; rates of rise of the
order of 10,000 amps/microsecond areltd be expected from discrete
return strokes, each involving from 1 to 5 coulombs of charge;
long continuing-current strokes involve high rates of rise as well
as persistent currents of about 185 amperes for periods of about
0.2 seconds bringing from 12 to 40 coulombs of chafge to earth.

In terms of energy, the continuing currents involve at least an
order of magnitude greater energy release than do ordinary discrete

2
return strokes."(l)

Reference 12 goes on to imply that lightning triggered by a
shuttle-like vehicle is likely to be of the long continuing-type
described previously. Figures 1 and 2 depict the likelihood of
lightning current amplitudes and current rise rates for lightning
strokes to ground. NASA guidelines for space thicle development
are largely consistent with the characteristics discussed thus far.

Table 1 summarizes these NASA guidelines.

93

100 NN] —_
AN I
AN
a >\ |
o
g-; 80 ,__._.3 il .'./ /4 ; ~
.8 \ p
2 id‘/z_,,——-l\mplitudc of Simuloted
::, Lightning Currents
5 , /
Y
2 oA
el
(]
Q
o1
: ¢ .
g \
A
£ 40
5 Scatler Bandg
Gy
o
o
&
£ 20
&
0'0 é“o" Zan -u-‘r.m.'wh&a}:émunrr.m-:rr.mwgmp(:zoz-.vv.-. LB I LT 86 SR 8 100 12

. Kiloosmpores
Reference 14

FIGURE 1. - PROBABILITY DISTRIBUTICH OF LICHTHING STROXE PIAK VALUES

94

Current Rates of Rise

e Range of Simulated Idightning
=

Band

Percent of Strokes Exceeding the Abscissa

o~
-/_..>\\/7"/v-

¢ O L e e i

0 10 20 - 30
Kiloamperes per ld.crosecond

Reference 14

arverir Lo

40

50

FIGURE 2. - PROPADILITY DISTRIBUTION OF LIGHTHING STROKE RATES OF. RISE

Average ' Average
Peak | Maximum Averagé Amount | Tetol Average |Average
Current! Rztie of of Charge Durction | Number Time
_ per | Risecf Trensferred of of Between : _
Type of Lightning Stroke | Current |Pcrx Eirclic| Totol| Sircke | Strokes Strokes Remarks
{A) (A/psecc) | (C) (C) (moee) |(unitless) | (mzec)
|
Intercloud lightning! 100 - 100-500 1-5 1-5 300 1 ‘
: 2006 |
|
*Discretz lighining !
strckes te groupd ‘
Leacer 100 1-5 5 20 i
o |
Retura stroke 20 0D 10 000 5 4-20 0.3 3to 4 40 Peak current _ “
' ' exceeding 100,000
A bhave bee
measured about
2 percent of the
time.
Long continuing
current lighining
strckes to ground N
Leader 100 | ' 1-5 5 20 1
Return stroke 20 000 10 000 12-40 12-40f 200 - 1 Average current
value of 185 A for
longz periods
(175 msec).

Reference 1

96

Assessment‘of the radiation which results from lightning :’
currents is not a simple matter. The geometry of the vehicle, .
location of the strike, bonding'practices, skin thickness and
continuity, and relative location of the electronics to the light-
ning current all contribute to a highly complex situation. The
following simple model provides an indication of the magnetic
field intensity by calculating the field associated with current
flow on a wire. This model yields a circuital magnetic field

whose magnitude is given by equation 1. At a

H = amp-turns/meter - (1)

i
2nR
distance of l/2n meters, a current of 200 KA and a current riée rate
of 100 KA/us, this model yields an H field of 2 x lO6 amp-turns/meter
and a é field of 10ll amp-turns/meter-second. These field
strengths represent a worse case figure of merit from the point of
view of the values shown for i, di/dt and R as well as from the
geometry associated with the model. Thé values chosen for i and
di/dt are consistent with those used in military specificationsf4)

The value of R is considered to be representative as roughly a

worse case value for equipment location in the shuttle.

2.2.2 Likelihood of Lightning Strikes

The likelihood of aircraft strikes has been assessed from
a number of points of view. Studies have analyzed the frequency
of lightning strikes as a function-of alfitude, temperature,
geographic location, and time of year. Data is available which
‘correlates real lightning strikes with the aircraft altitude and
atmospheric temperature. An early study(ls), 1935-1944, of
lightning strikes based on 170 reports showed 75% of the strikes
to occur between 3000 and 9000 feet and that over 80% of the

strikes occurred with outside temperatures in the + 5°C tempera-

ture interval. This early data was biased in the sense that the j’

: :
majority of the aircraft in this time period were nonpressurized

r/'\

97
and constrained to fly at altitudes less than 15,000 feet. Sub-
sequent strikes however have tended to confirm these observations.

(7) incurred lightning strikes in the 1961-1964

A study of Air Force
time period showed the majority of the strikes to occur below
15,000 feet even though such altitudes are far below the normal jet
cruising altitudes. Data accummulated by the British on commercial
flights during the 1960's provides a third source of information.
This information shows 80% of the documented lightning strikes to
have occurred from 2 to 12 thousand feet and 55% occurred where (10)
the outside air temperature was between + 5°C (75% between + 10°C).
With respect to the higher altitudes, the Air Force data
showed 2 strikes above 30,000 and none above 35,000. The British
commercial experience showed only 2% above 20,000 feet. This data,
as was the 1946 data, however, is also biased by the operational
practices. Frequently, IFR flights encounter low alt;tude holding
patterns in bad terminal weather. Conversely, high altitude
flights are less likely to incur thunderclouds and adverse weather
donditionsﬁcondusive to lightning, and are freer to modify their
flight pians so as to avoid such weather conditions. Nevertheless
the existing data does suggest that lightning precautions for the
shuttle need only consider the lower altitudes of atmospheric
flight. Exaétly where this line might be drawn is considered

beyond the scope of this study although the limited data reviewed

here suggests somewhere in the 20,000 to 35,000 foot region.

The number of thunderstorm days per year (isoceraunic level)
provides another indication of the likelihood of lightning striking
the shuttle. Table 2 lists this information for locations of
particular interest. This table clearly indicates the relatively
high incidence of thunderstorms at Cape Kennedy, particularly in
the summer months. A simplistic interpretation of this information
infers that the likelihood of lightning strikes in WTR Shuttle

operations is more than an ‘order of magnitude less than at ETR.

TABLE 2

FREQUENCY OF OCCURRENCE OF THUNDERSTORM

DAYS (ISOCERAUNIC LEVEL)(l)

Mean Number of Days Per

Location : Year of Thunderstorms
Eastern Test Range ' 70.09
Vandenberg AFB, California ' 2

Edwards AFB, California A 4.3

TN,
()

99

Obviously, such an observation is subject to the objection that
it does not take into consideration operational constraints such
as the Apollo practice of not launching into adverse weather

conditions.

Another indication of the likelihood of lightning strikes
is given by the observation that "world-wide USAF operations
encounter such electrical incidents at the rate of about 50 per
year. Domestic air carriers experience aboﬁt'750 incidents per

year, or about 1 per 2,000 hours of flight".(ll)

Probably the most dramatic lightning strike incident is
the Apollo 12 strike513) The subsequent investigation to this
incident found that the Apollo design had an inherent degree of
protection from the effects of lightning, but that launch restrict-
ions must be introduced to avoid potentially hazardous electric

fields.

2.3 Some Experimental Results
2.3.1 Flight Test Data

In 1964-1966, a multi-aircraft lightning research program
was conducted usin§ instrumented C-130, C-100F and U-2 aifcraft.(g)
A ship equipped with line-throwing rockets was used to trigger
lightning strikes while the test aircraft flew overhead. Transient
currents, RF waveforms, electrostatic fields, precipitation,
turbulence, photographs and radar measurements were obtained.
some of the data derived from this test data is listed in Table 3.
This data is less severe by an order of magnitude or more from
that described previously for cloud to ground strikes. Reference
11 observes that "these striﬁes are believed representative of
incloud or intracloud discharges and not the more extreme values

in a cloud ground channel."

100

TABLE 3

LIGHTNING PARAMETERS

Maximum Number of -
Parameter 90%* 50%* 10%* Observed Observations
Crest 150 to 1.6 to 6 to 22 Ka 73
Current 200a 2 Ka 7 Ka
Current 70 to 700 a/usec |2 to 5 Ka/usec | 36
Rate of 100 a/usec 3 Ka/usec
Rise
Current 30 to 100 a/psec | 550 to 7 Ka/usec | 37
Rate of 40 a/usec 600 a/used
Decay
Percent of strokes which will have parametrlc
values exceeding those indicated. A
|

2.3.2 Lightning-Induced Voltages In Aircraft Electrical Circaits

Noise induced by lightning may enter computer electronics in

a number of ways. The properties discussed earlier are obviously

not directly applicable as design criteria. No reasonable design
would permit the thousands of amps associated with a lightning

strike to flow directly through the case or on the cabling associated
with computer electronics. The real problems which must be dealt

with are associated with induced voltages.

An indication of the voltage magnitudes which might be

expected from lightning induced voltages are provided by experi-

(14) The experiment referred to applied simulated 40 Ka

mental data.
lightning strokes (Fig. 3) with 2 Ka/us and 8 Ka/us rise rates to
an F89J wing; and measured the resultant induced voltages and ’

currents in the wing electrical circuits. Test measurements were

N

101

Crest
@ 40t
)
Q ras Slow
5
'é)
-
d / \\
~ d "
uf-(n i N 1 1 1 ! f
0 10 <20 230 40 50 60 70 80

Timz (microscconds)

Simulated JTightning Currents

Reference 14.

Figure 3.

102

performed upon eight existing wing circuits, each having its own
unique characteristics. Some had dedicated returns, others used
the airframe; some were shielded, others were not, and all had

unique wire paths.

A report on this experiment observes that "induced voltages
ranged between several millivolts in well-shielded high-impedance
circuits, and one hundred volts in poorly-shielded low-impedance
circuits, which utilized the airframe as the circuit return path."(l4)
The data shows that all circuits with airframé returns exhibited
induéed voltages greater than 1 volt. Such circuits with longer
wire runs and less inherent structural shielding exhibited induced
voltages greater than 10 volts, in fact nearly 100 volts. Con-
versely the circuitry with dedicated returns exhibited induced
voltages less than 10 volts in magnitude, frequently less than 1
volt and in a circuit with individual shielded conductors no more
than .2 volts. 1In the worst case, the wing tip position lights,

_the induced voltages reflected both significant resistive drop as

well as inauctively coupled voltage.

A speciél series of tests were run to study the effect of
lead length, and the effectiveness of parallel conductors, twisted
conductors and coaxial shielding. Special purpose conductors were
strung through the wing structure for this series of tests. Table
4 depicts the results of this experiment. As was to be expected
the longer conductors exhiﬁited higher voltages. The twisted pair
exhibited induced voltages roughly a factor of 5 less than the
parallel set relative to the airframe and a factor of 10 less
conductor to conductor. No substantial improvement is associated
with the shielded vs unshielded measurements. This last effect
was noted to be related to the inherent shielding afforded by the
paths selected within the wing.

103

2.4 Design Practice Versus Lightning Effects

2.4.1 Conventional Design Practice

It is to be expected that a lightning environment is more
severe than that associated with conventional design practice.
In fact, some concern is appropriate as to whether off-the-shelf
equipment incorporated into the Shuttle with conventional design
practice will either survive or operate properly in a lightning
environment. The following is intended to illustrate one such

conflict where conventional electronics might be expected to fail.

Electronics designed to meet conventional military standards
(MIL-STD-4612A) regarding electromagnetic suséeptibility are required
to function with various types of noise imposed through the power
leads. This noise consists of relatively low level sinusoidal
noise from .03 to 400 MHz and a 10 microsecond pulse with a
magnitude of 100 volts or twice the line voltage, whichever is less.

It is common aerospace design practice to use the airframe for the

'power return in the design of conventional electronics. With such

a design a lightning strike couid result in 100 KA in this power
return which could certainly yield a power transient in excess of

that stiEulated above. The tests(l4)

this possibility. It is not unlikely that such a lightning current

discussed early substantiate

would result in a failure in a computer which was designed to

comply with such conventional design practices.

2.4.2 EMP Design Practice

Equipment designed to function in an EMP environment is
subject to conditions not entirely unlike those associated with
lightning. In both cases the equipment is being asked to function
in an environment associated with a high energy electrical phenomena.

(22)

One textbook on nuclear hardening describes EMP as a
pulse whose width is measured in tens of nanoseconds, with field

strengths and rates on the order given in Table 5. It should be

-

TABLE 4 - MAXINUM INDUCED VOLTAGES AND CURRENTS IN NEW WING CIRCUITS

 (Series 2 - All Circuits and Shiclds Coon
Pat-sen Aileron end Flap on Trailing Edge.

Circuits Terminating et Leading and Trailing Edges)

ccted to Airfraxms at Location
Identical Measurements on

Open Circuit Voltage (Volts) Short Circuit Current (Amos)
Ceorductor-to- Cenductor-to- Conductor-to- Conductor-to=-
Airframe Conductor Airfreme Conductor
: Leading|Trailing| Lezdirg|Trailingjleading |Trailing Leading|Trailing
Concuctor Edgas: Edg?% Edge Edge _Fdge Idge Edge Fdge
Unshielded #16 _
Insulated Cenductor . 2.0 0.4 - - 1.6 1.3 — —_
RG 581/U
Coczial Cable' 2.1 0.4 - - 2.2 0.4 - s
| Twisted Pair of #16 , .
Insulated Coxnductors 1.0 0.5 0.22 0.04 1.4 0.9 0.1 0.1
Parallel Pair of #16 L '
Insulated Cornductors 6.0 1.0 243 0.1 6.0 2.0 1.3 0.l

*NOTE:

Circuits terminating at leading edge are 38 feet long.
Circuits ‘erminating at trailing edge are 12 feet long.

vo1

105

s noted that the magnitudes quoted in Table 5 can only be used as a
rough indication of actual EMP requirements imposed on various

. applications. These requirements are, in general, classified.

A comparison of EMP with lightning shows EMP to be a higher
frequency phenomena by roughly three orders of magnitude. EMP
also possesses different spatial characteristics in that it is
radiation which would impinge essentially uniformly on the Shuttle,
whereas lightning is most likely to strike the extremities of the
shuttle and the current will seek a pathof its own choosing,

which is not likely to be uniform.

The relative severity of these two phenomena relative to
the Shuttle application is beyond the scope of this present study.)
It is possible to observe, however, that the design practice
required by these two phenomena is similar. In both cases special
and similar shielding, grounding, circuit hardening and architectural
(V design practices are required as discussed in Section 3.0 and 4.0.

. The differences are largely ones of degree.

The similarity of lightning and EMP permits the use of
existing hardened computers as examplés of existing designs which
should survive and operate through a lightning strike. The test-
ing practices associated with such computers provide a data base
which serves to assure the feasibility of designing a computer

for a lightning environment in the Shuttle application.

It is not possible, however, to extrapolate directly from
the existence of hardened computers to an obvious solution for
the Shuttle lightning environment for,many reasons. For example,
hardened computers generally assume that the semiconductor portion.
of the computer (or a large majority thereof) cannot bé adequately

shielded from gamma radiation to prevent erratic operation.

Circumvention techniques are incorporated which reinitiate the

106

computer subsequent tc the radiation incidence based upon good

information retained in a hardened memory. The transient operation

"associated with EMP is sufficiently similar to that associated with

gamma radiation such that the circumvention required for gammé
radiation will also circumvent EMP effects, thereby negating to

a large extent the need for shielding the machine from EMP
transient effects. Thus, it is not clear that a hardened computer
does or does not operate, error free, through an EMP environment
or that it would operate, error free, through a lightning strike.
If there were a lightning detector, the circumvention capability '
in such a computer would provide protection from the errors which

might be induced by lightning.

TABLE 5
TEXTBOOK ESTIMATE OF NOMINAL EMP RADIATION LEVELS(17)

5

E - . 107 volts/meter

° : 18

E 10 volts/meter-second

H o 102 amp turns/méter

y 15

H 10 amp turns/meter-second

2.5 Failure Modes Associated with Lightning Strikes

A number of failure modes are associated with avionics
electronics due to a lightning strike. In general, such failure

modes may be avoided through appropriate design practice.

2.5.1 cCable Failure

Cables which run to the extremities of a flight vehicle
are susceptible to becoming a direct current path for lighting

currents. In such cases, the cable is likely to melt and neighbor-

‘ ing cables within a bundle aresalso likely to be damaged. Cabling

2

107
to navigation lights is typical of wiring susceptible to such

failures.

2.5.,2 Semiconductor Failure

Lightning current and induced voltages have more than suf-
ficient magnitudes to break down and burn out semiconductor elect-
S —)
ronics. Semiconductors which are located directly in a lightning
current path, such as thermocouple sensors on the skin of a

(13)

vehicle, will inevitably be burnt out by such high currents.
Induced voltages in signal paths which use the vehicle airframe
as.a ground return are also highly susceptible to voltage EEEEE
down as well as burn out conditions. Induced voltage break down

W S———_— i
9s also a likely failure mechanism where dedicated returns are used

if appropriate grounding, shielding and twisted pair design
techniques are not incorporated in the design. Appropriate shield-
ing and grounding techniques are also regquired for subsystem
electronics to avoid induced voltage breakdown of semiconductor

components.

2.5.3 Other Component Failures

Other components, such as coils, transformers, resistors
and capacitors are also susceptible to lightning current and in-
duced voltages. Components incorporated in receiving and trans-

mitting circuits are particularly susceptible to lightning currents

which find their way directly onto the associated transmission lines.

Coupling transformers are also susceptible to high voltages in
typical ground isolation applications. Generally, the induced
voltages internal to a shielded case are unlikely to exceed the
break down voltages of these components although this féilure

mechanism cannot be dismissed entirely.

TR T e v

108

2.5.4 Transmission Noise . = ,

. Signals transmitted from sensors, to effectors and between
subsystems are highly susceptible to lightning induced noise.
Long cable runs are inherently susceptible to noise pickup through
both inductive and capacitive effects. Shielding, dedicated
returns and twisted pair signal transmission serve to attentuate
such noise susceptibility, but in an application which must live
with such severe weight constraints as the Shuttle, these techniques
may prove to be impractical for all signals. 'Grounding problems
are also a severe problem in such a distributed electronic system.
Good practice associated with lightning design requirements may

well enhance signal noise sensitivity for transmitted signals.

2.5.5 Electronic Noise

The electronics are susceptible to lightning induced voltages
if not properly shielded and grounded. Here the susceptibility is)
. less of a problem than in the case of transmission noise. Shield-)
ing can be localized to the space allocated to the electronics
with less wéight penalty than that associated with a multiplicity
of long cable runs. The localized grounding problems also a?e less

severe.

Care must be taken to insure that noise is not introduced
into an electronics package via its power and signal cabling. 1In
the Apollo 12 lightning strike, the umbilical cabling was suspected
to have provided a path for the noise which initiated the fuel cell

disconnect.

2.5.6‘ Power LoOss

Systems which use the airframe as a power return are highly
susceptible to lightning induced power transients. They are also
[]

switched off line by surge current protective devices triggered by'

‘ likely to incur transient power loss when the power systems are D

109
lightning induced power transients. Aircraft lightning strike
reports document such generator shutdowns. The Apollo 12 incident
serves as another data point where the lightning strike induced a

transient power loss.

110 -

DESIGN PRACTICES FOR SURVIVAL IN A
LIGHTNING ENVIRONMENT

)
‘(

111

3.0 DESIGN PRACTICES FOR SURVIVAL IN A LIGHTNING ENVIRONMENT

The methods used to prevent lightning or EMP from inducing
transient errors into avionics systems are mainly methods of
packaging to provide shielding from the environment and proper
grounding. In computer design there ‘are also architectural con-
straints that are desirable or perhaps necessary, as discussed in
Section 4.0. The effects of EMP and lightning are similar. General-
ly EMP is significantly worse such that a design which provides
sufficient shielding for the lightning environment does not neces-
sarily provide adequate protection from EMP. A design sufficient
for the EMP type environment should be sufficient for the lightning.
This study will define desirable désign feétures for protection

from lightning and indicate additional features necessary for EMP.

3.1 Lightning Characteristics

A brief summary of the characteristics that are significant
to this study is that peak currents of 100,000 amperes with rise
times of aﬁout 50,000 amp/microsecond are possible under the right
conditions. Each lightning discharge can be from a few micro-
seconds‘up to hundreds of milliseconds in duration. The references
(I,12,14) provide more information on the characteristics but this
data is sufficient to provide a guide to the design of protective

shielding and grounding.

3.2 Shielding

With no limit on weight, it is possible to provide complete
protection by shielding. However iﬁ an application like the
Shuttle the problem is a complicated trade between the weight
penalty of complete protection and providing adequate protection

within a reasonable weight budget.

The outside skin of the vehicle should provide a high degree

of shielding but holes in the skin for lights, antennas, windows,

112

etc. and a fairly high skin impedance make it necessary to provide
additional protection internally. The first criterion, which is
more or less normal design practice, is to provide as low an
impedance as possible in the skin and supporting structure of the

vehicle.

Internal to the vehicle, the ultimate of a Faraday cage

for all electronics is not practical since there must be holes for
controls and cables. 1In addition, the size of the vehicle with

the electronics distributed at remote locations would prevent the

' design of an all inclusive shield. With careful application of

good shielding technique and the application of filtering at
critical breaks in the shields it seems feasible to provide complete
protection from lightning with more or less normal shielding and
grounding practices. Following is a list of the major constraints

on the shielding and grounding.

a. Any conductor path which may originate at a hole in
the skin of the vehicle like wing lights or antenna

(22)

wiring must have special attention. Lightning
érfestors and filters are needed to attenuate the.

disturbance at the point of entry. All wiring and

conductor paths are critical even though they are not
directly related to the digital avionics since the
high currents can enter the vehicle at these points
then reradiate into the electronics or set up large
voltage drops in the shields and grounds. For example,
many aircraft will wire the wing lights with one wire
using the skin as return without any provision for
filtering the transients in the wire. This method of
wiring provides a very easy point of entry for large
voltage transients which can reradiate to more critical

signal paths.(l4)

b. Power wiring must be two wire and should be twisted

113

pair. It would even be desirable to shield the power
wiring and to provide separate power wiring for each
critical subsystem. In contrast, many systems use the
vehicle structure for power return in order to save
weight. 1In this case lightning strikes will couple
directly into the pcwer ground as a result of the
large voltage drop in the skin resulting from light-
ning induced currents flowing. Two wire, not twisted
and shielded, systems can still couple magnetically

and electrically.

c. Each critical subsystem must have internal power
filﬁering and must have the case isolated from the
power ground. The filter must protect the subsystem
from noise induced between any combination of the two
power leads and case. Many digital equipments do not
have sufficient filtering and are sensitive to noise

between power leads and case.’

d. All signal transmission between systems must be
balanced line transmissionsA(sending and receiving ends
both balanced) using shielded twisted pairs. The
twisted pairs could be bundled and shielded if the
coupling between signals is small enough to be
tolerable. The shields must be multiple point grounded
using a techniqﬁe which will insure a very low impedance
ground at all frequencies. 1In contrast, normal practice
permits unbalanced drivers and receivers, single wire
transmissions with a common signal ground, and shields
with single point ground (usually with a ground wire
many inches long). Such practice permits noise to
electrically couple. through ground current induced
voltage drops which might be generated by lightning
and magneticaIIY.couple due to high currents in the

vehic1e~skin.

g o114

e. With the long wires in the Shuttle vehicle, special.
attention must be given to the wavelength of these
wires and shields. Multiple point grounding of shields

is required due to antenna effects when wire lengths

exceed .15 of the impinging radiation wavelength.

f. Wire routing between interface connectors and interface
circuits internal to the case of an electronics sub-

system must be arranged to minimize coupling with other

internal signal paths.

g. Electronic subsystems which contain digital electronics
should be provided with good solid ground planes for
internal signals and the case of the subsystems should
be designed to provide shielding from electric fields.

At this level, the Faraday cage approach seems practical.

h. Ground zones, should be established at the subsystem
level. 1Isolated signal grounds should be incorporated
on a module by module basis where each module is

encased in its own Faraday shield.

3.3 Bonding

Any two points on a metallic structure whether electrically

connected or not will develop a potential difference at some

frequency. For example, when the structure dimensions are on the
order of magnitude of a wavelength, the potential difference will

- exist in the presence of electric and magnetic fields. At’lower
frequencies, the potential difference between two points in the
structure will be proportional to the impedance between the points.
Reducing the impedance will reduce the potential difference. Good
bonding between structural elements provides low impedance paths
thus limiting the electric poténtial between various points at

the cost of higher currents. ,Normally this is considered to be the

. optimum approach since the resulting magnetic field is preferable

‘to the high potential difference between points of high impedance,

115

The important impedance when considering shielding and grounding
for lightning is the impedance at radio frequencies and there is
little correlation between the direct current resistance of a bond
and its radio frequency impedance. To make the shielding and
grounding effective for RF, special precaution must be taken with

the grounding straps and bonding_(4.20)

3.4 EMP

There are two characteristics of the EMP environment which
are significantly different from those associated with lightning.

First, the EMP rise times are two or three orders of magnitude

faster than lightning. Second, the environment is distributed
more or less uniformly around the vehicle thus causing induced

current densities at localized points within the vehicle. The

magnetic fields will induce currents in loop areas and the electric

fields will induce currents in shields.

The most significant additional requirement for protection
aéainst EMP is on the physical layout of the electronic equipment
both within an enclosure and in the cabling between enclosures.
Cabling should be arranged to eliminate all loop areas by placing
it in the form of a tree with control trunk and branches fanning

(26) This would mean separate

out to appropriate system elements.
wiring for the power of each subsystem as suggested in 8.2b. Any
loops that still remain shduld be made as small as possible.
‘Within a subsystem the same principle of eliminating loop areas
is important but, in addition, the physical dimensions should be

minimized. If there are long signal paths they should be balanced

transmissions using twisted pairs.

For the Shuttle application the EMP near field environment
may be sufficiently reduced at the ranges specified for Shuttle
survivability that the additional requirements indicated above may

(26)

not be necessary. These additional reguirements result from

the characteristics of the near field environment.

116

3.5 Testing i 3

Apollo experience offers some background for testing.(ls)

In addition to conducted and raaiated RF susceptibility tests,
testing for susceptibility to radiated transients was introduced
in respbnse to the developmtnt of major hardware problems asso-
ciated with AGC sensitivity to static discharges and power line

transients developed between the power lines and case. Steps were

taken to remedy the problem and a spark gap transient radiation
test was introduced to test the susceptibility of the Block II

design to such static discharges. Here, the point is that the

testing should reflect real hardware and environmental problems.

Similarly special testing procedures will be required for

the Shuttle avionics to verify that they will operate as specified

(5)

in a lightning environment. Conventional EMI testing will not

properly qualify equipment for such an environment. Some guidance

for these tests is offered by testing performéd on missile ; (.Y
computers although it is likely that such tests will exceed Shuttle

(24,25) includes tests

requirements. For example, Poseidon testing
where, current is pulsed directly into the cable sheathing and the
computer case. Facilities used for testing also avail themselves.
Such facilities as those at Sandia Corp., Martin-Marietta's long.
wire test facility, and Air Force Weapons Laboratory, Albuquerque
provide examples of what can be done. The lightning experiments,(14)
discussed previously, perfdrmed at G.E. High Voltage Laboratory
are another sourcé of background information on aitype of test
which might be run and the type of information which is to be

gleaned from such testing.

.'Again Apollo experience offers some guidelines. There it
was shown that such critical and cost driving specifications as
those associated with lightning should be carefﬁlly drawn to
properly describe realistic hardware requirements and testing ’

procedures. Such testing procedures must realistically reflect

117

whether the Shuttle computer electronics must merely survive or

whether some portion or the entirety is expected to function with

no error throughout one or more lightning strikes. A "

118

4.0 ARCHITECTURAL CONSIDERATIONS FOR SURVIVAL
IN A LIGHTNING ENVIRONMENT

119 : ' : 0

. 4.0 Architectural Considerations for Survival ina Lightning Environment
4.1 Introduction

In order to determine ways to recover from a lightning strike, it is
first necessary to see what the possible effects of lightning are.
| 1, All equipment is shielded and grounded so that there are no

power transients, equipment damage or information loss.

2., Some information is lost, but there is no permanent hardware
damage.
3. Some hardware is damaged, but not all usable strings—since

a switch to good equipment must be made, (by methods which
will not be discussed here), there will be some information
loss. Subsequent recovery is effected as in (2).

4, All strings of hardware are irreparably damaged.

Case 1, the most desirable one, requires“ nc special recovery
. procedures. The disposition of Case 4 must be left to the ship's chaplain.

Case 3 reduces to Case 2 for information recovery purposes, so the focus
of the subsequent discussion will be on Case 2. Effort must be made to
recover vital information and to restore the state of the computer (this is
requisite to recovering knowledge of and control over the state of the
system). It can be assumed that lightning transients affect all redundant
copies of the computers and buses, so switching to a backup alone is not
sufficient to get the system operating again. To hope for anything better
thana bootstrap freshstart, redundant information must be available within

a single string system.

While the main objective of redundancy is to increase overall system
reliability—to protect against physical hardware losses——the purpose of

recovery in the face of power or EMI transients is to maintain vehicle

stability and to avoid generating dangerously erroneous commands. For

120

purposes of information recovery considerations, an avionics system has

three parts: subsystems (including SIUs and digital portions of subsystem

electronics), buses (including dedicated digital interfaces), and computers.

1.

The question of subsystem pr.otec'tion will not be addressed
except to note that if a subsysté}n has memory that is volatile
in the face of EMI transients, then the data in this memory
must be reconstructable, by the same methods used for computer
data. Or, it must be periodically stored in a protected area
such as the computer, in which case the subsystem must enter
a safe dormant state between the time of the disturbance and
the time that the computer re-initializes it.

Buses carry commands which affect the state of the vehicle.
Erroneous commands have potential immediate danger, so
preventative techniques which avoid dangerous situations are
most desirable, ‘ .

Computers containdata pértaining to the perceived vehicle state,

the commanded vehicle state, the mission mode, and the

computer's own internal state. Recovery of this information

is less time-critical than preventing erroneous commands on
a bus, but still must be accomplished on a timely basis. Much
emphasis has been giventothe problems of computer recovery,

for overall system recovery is very difficult to accomplish

- without direction from a properly functioning computer.

4.2 Bus Commands

If an EMI transient above a pre-specified level occurs, it is safe to

- assume that bus errors occur also. Lightning and other EMI transients

are burst phenomena and cannot be reliably detected by parity codes or

corrected by simple Hamming codes. More complicated codes such as

BCH and Fire codes are effective for correcting data after short noise

bursts, but these codes are expensive to implement.

121

The basic problem with bus traffic is to avoid erroneous commands
which could endanger the vehicle. The problem of preventing vehicledanger

can be solved by employing temporal redundancy over a time period which

'is longer than any expected noise bursts. An example of this technique is

to employ ''arm-and-fire'' commands to an engine. Both commands must
be received and properly interpreted by the engine subsystem. If one of
the commands is erroneously generated then nothing will happen. (This

technique presupposes a hard memory at the subsystem level.)

Some commands must be sent out at such a high rate that the
"arm-and-fire' techniqueis not feasible. Commands of thistype are usually
incremental in nature (such as engine gimbal delta angles) and the loss of
just one increment is not a serious matter. This is in contrast to whole
angle transfers where an erroneous transfer that is not detected can have
devastating results, ,

The mostimportant part of recovering from erroneous bus commands
is torealize that one might haveoccurred. The computer's reaction should

be to safe all subsystems that may have been activated.
4.3 Computer Information Loss

If lightning or other EMI transients get intoa computer, vital system

state information may be destroyed. Such information losses have been

. divided into four categories:

1, Central registersand anindeterminate number of main memory
locations are erroneous (due to a transient that passes through
the memory stack)

© 2. Central registersand onemain memory location are erroneous
(due to a transient that affects a memory access)
3. Central registers are erroneous but main memory is intact

4. Power transients

This section explains the recovery techniques for these different categories

of computer information loss.

122

4.3.1 Category 1—All Memory and Register Information is Lost.

- Loss of information contained in the CPU registers and in fhe main
memory of the computer is a rather serious problem, Data loss in an
indeterminate set of memory locations implies that neither vehicle state
information nor computer state information nor any recovery routines stored
in electrically alterable portions of main memory can be trusted. Recovery
from such an information loss requires a reinitialization of the computer
and the vehicle states, in the manner of an AGC FRESHSTART.

In general, a backup store for volatile information (i.e., inputs to
the computer or the results of computations based on these inputs) must
be, in some sense, volatile itself. Spatial proximity of a backup store to
the primary information store will subject both stores to roughly the same
external electrical and magnetic phenomena, Given the nature of a lightning

strike, it must be assumed that spatial redundancy of volatile information

isineffectual because of common mode failures., That is, redundant copies
of main memory are all suspect, :

A volatile backup store which exists at a great distance from the
primary information store can function as a valid source of the vehicle
state. TFor example, after a massive loss of data in memory, the vehicle

state could be w@w—if there is an adequate com-

munication path. During blackout such a path does not exist.

Recovery from a massive data loss has two objectives: the first is
to maintain vehicle stability and to inhibit any action or activity which might
bedetrimental to crew safety; the second istodetermine the present vehicle
state and the mission state at the time of the data loss. Only when these
steps have been taken is it possible to make a rational decision about how

to proceed. o O&YECT SN CRISTING Hn AR DA VEHICLE STRTE !

A ground based backup can perform these tasks fairly easily—if a
communication path exists, Without such a backup, all information must
be recovered from the environment or reconstructed with the help of crew

inputs,

123

1. Program which was in a'volatile store must be reloaded from
a non-volatile store.

2, ‘The rotational state of the vehicle must be sensed and any
excessive rotation counteracted (the appropriate action depends
upon whether the vehicleisin a liftoff, an orbital, or a re-entry
situation—this can be determined by observation of the vehicle
configuration, altitude, etc. or by a crew input.)

3. Engines must be put in a state which does not cause detriment
to the vehicle. This may be either on or off and depends upon
the particular point in the mission where the memory loss
occurs. Therewill undoubtedly be a heavyreliance on the crew
for the mission state information.

4. The vehicle state vectors must be restored—this requires a ~

navigation operation.

Bootstrap programs to perform these operations must reside in nc_Sn-

electrically-allierable program or microprogram memory.

Recovery in the face of massive information loss is an attempt to
avoid a catastrophic situation by making use of whatever real world
information can be rapidly accumulated. The recovery proc=zdures often
must ‘be designed in an ad hoc manner, so a logical recovery cannot be
guaranteed 100 percent. However, on the positive side, such recovery

procedures may not be complicated or expensive to implement.

4.3.2 Category 2—Loss of a Single Memory Location (during a memory
access)

This situation comes about if the computer has a noise detection

mechanism which prevents the initiation of a new memory cycle when a
m dangerous noise event is detected. The rise time of the noise
is so fast that the current memory cycle may not be completed properly,
causing one word of memory to be lost, It is, however, possible to design
a lightning detector which is fast enough to short the memory drivers before
aword other than the one being addressed can be affected. After the noise

burst is over the computer comes out of "hibernation' and attempts to
recover, .

124
When a single memory location is ''lost'’ the object of recovery is to
reconstruct the information which was in that location or to nullify the
possible detrimental effects of the erroneous information. gggsituations
arise from the loss of a single memory location. The first case is where

the effects of the erroneous information cannot be nullified, because the

affected location is ''unknown''. That is, the affected location cannot be
determined by system diagnostics and the data cannot be regenerated by
controlled rollback techniques. Since none of memory can be trusted, this
caseis equivalent toa Category 1 information lossand requiresa bootstrap
or AGC FRESHSTART type of recovery. The second case is where the
affected location can be "patched up" by the system, and the effects of the
erroneous information can be nullified. Recovery can be accomplished in
a controlled (though complex and costly) manner with minimal system
disturbance. Most single memory location losses can be made to fit into

the second case by taking the appropriate precautions.

The following rollback schemes consider single noise bursts {e.g., a
single lightning strike) which affect only the word being addressed. A second
burst that occursafter the computer has come on the air and is attempting
recovery is relegated tc the realm of diabolical failures. The effects of
incorrect addressing and multiple bursts are discussed in Sec. 4.3.2.4 and
4.3.2.5 respectively.

4,3.2.1 Program Losses

Loss of a word of program is a very insidious error, as program
cannot be regenerated by rollback operations. Large noise transients can
mutilate a program word in a DRO memory during the read or restore
cycleof a program word fetch, (e.g., by zapping the memory buffer register
(MBR), or the data path from the CPU to the memory). Parity on the
affected word may or may not be destroyed. Protection against such a

program loss can be accomplished by:

125

: I Employing a non-electrically-alterable memory for program,
such as a rope, a braid, or a semiconductor ROM,

2. Employing an NDRO main memory for program.

3. Providing a program backup in a hard source. This backup is
used to reload the program in the event of any indications of
excessive noise, WHAT 1S A hned sooRCE]

4. Designing program blocks to contain a vertical parity word.

If parity on memory words can detect anerror, then the affected

word can be reconstructed by a microprogrammed recovery
routine. '
5. Employing voting techniques to reconstruct the program using
information from redundant copies of the corhputer. If the
computers are not bit-level synchronized then it is possible i
that the same word will not be zapped in each of them.,
if a DRO memoryis used as the main computer store it is cleér that some
form of program redundancy is needed. Methods (3), (4) and (5) represent

the general approaches to providing the necessary redundancy.

The backup memory for method 3 can be either onboard or on the
ground. Interfacing such a backup store toa computer is not very complicated
==it can be apcomplished via a DMA channel. However, use of this kind
of a backup storemeans either an additional onboard memory requirement
or a clear communication path to the ground during critical periods. (A
hard onboard store may already exist in the form of a "mass memory",
although some of the tape memories being proposed may not meet the

hardness criterion.)

Method 4 employs coded redundancy within a single computer. If
the expected multiple-bit failure modes are all zeros or all ones, parity
on the memory can be designed to catch them (as well as any single bit
errors). A microprogram recovery procedure can perforrh the vertical

parity check and reconstruct a bad program word.

In method 5 the computers swap each program word and vote to get

the correct value. Operat‘ion is predicated on the existence of at least

Loek SYEP SIHCHOON I ERTION

126

three computers, (any fewer doesnot allow the determination of the correct
program word), and a de-synchronization (forced or stochastic) of the
computers, so that the same effects donot occur in each one. Communication
among the computers can be done via the intercommunication channels which
are expected to exist. The entire operation can be conducted by

microprogram.

© 4.3.2.2 Data Losses

Data redundancy cannot be implemented in a static backup. A
periodically-updated dynamicbackupisnecessary. The period of theupdate
may be relatively long (seconds) for vehicle state information, or relatively
short (tens of microseconds) for computer state information., There are
three feasible approaches to providing the necessary backup:

1, Keep the vehicle state and the mission mode state in a ground-

based baékup. .
2. Rely upon the redundancy afforded by multiple identical
computers which operate in a decoxipled manner, .

3. Multiply store critical variables and rely upon computer phase

information to implement an Apollo style controfled rollback.

Method 1 has the same inherent problem as the corresponding méthod
for recovering program information: there must be a valid communication
path from the ground. The recovery is not very smooth (relative to other
techhiques) because only the vehicle and mission states can be restored
from the ground. Computer state cannot be salvaged because it changes
too rapidly to keep the ground updated. Computations cannot be reasonably
rolled back—they have to be reinitiated. '

‘Method 2 works only if there are at least three computers, so that
the proper value of data can be determined by a vote. There are serious
problems with this approach: loose coupling implies that data may not be
updated to the same point in each computer, so a vote becomes difficult if
not impossible. The same decoupling problem exists with mission mode

variables—one computer may have progressed into a new computation while

the others have not. Deyp &A{/J Hp or Jyue /90/&/{! dlé.fé?(

127

Method 2 implies that sufficient redundant information is stored within
a single computer so that a controlled rollback can be effected in the event
of the loss of one memory word and the contents of the CPU registers.
The mechanization of redundant information storage and the techniques for

executing a controlled rollback are described in the following discussion.
4.3.2.3 Controlled Rollback

After a computer error occurs it is desirable to be able to return to
a recent point in the program, where data is known to be good, and to
resume execution, This approach to error recovery, called controlled
rollback, provides a minimum interruption in subsystem servicing, and a

minimum impact on subsystem operation.

The first premise of a controlled rollback recovery is that the
computer operations can be divided into relatively short segments called

phases. The nature of this segmentation must be such that information
used as the input to a phase of computation is not destroyed during that
phase, The second premiseisthat phaseidentifihcativon informationisalways
valid. This is necessary if a proper rollback point is to be obtained, i.e.,
the phase during which the error occurred must be known and the entry
ooint to that phase must be available. This premise implies that an error
can be detected during the phaseinwhich it occurs. Such detection appears
feasible in the face of large EMI transients, since detection of the transient

signals the onset of a possible error,

The first premise will be true if Rule 1 is enforced.
Rule 1: If a value can be destroyed by a memory access, then the
value must be stored reduhdantly in memory. Access to the
value during a phase must be limited so that at least one valid

and identifiable copy always exists.

SsufflaiesuT condivior |
di$)o0T READ/wRITE SPACE.

128

The second premise will be true if Rule 2 is enforced.
Rule 2: Phase identification information must be triply stored in
memory to account for the situation where an error occurs

during the update of the phase pointer.
4.3.2.3.1 Phase Identification

Rule 2 is used by a class of computers (called circumv;enting
computers) to maintain proper phase information. Briefly, the computers
update the phase pointer bya special instruction that writes the new pointer
value into three consecutive memory locations., The special instruction is
a convenience, not a necessity. Theupdate could be performed as effectively
by:thre'e consecutive write operations. The fact that Rule 2 is a minimum
requirement is shown as follows: _ |
| 1 Consider that the minimum information to identify a phase is

a pointer to the beginning of that phése.

2. Consider that the first operation a phase performs is to set

the phase pointers in memory to its own‘entry point, ‘

3. If there are only two copies of the phase pointer and if one of

them is destroyed during an update then it is impossible to

tell which copy has a proper value (which may be "old" or "'new"').

4, If there are three copies of the phase pointer and if one of

*them is destroyed during an updatevthen the proper phase value
can be recovered by the following algorithm: ’

i If a detected glitch occurs during the update of copy 3
then copy 1 = copy 2 = the new value of the pointer.

* If a detected glitch occurs during the update of copy 1
then copy 2 = copy 3 = the old value of the pointer (the
phase must be repeated).

* If a detected glitch occurs during the update of copy 2
then none of the copies are equal, but the new value has
been properly written into copy 1.

The three copies must be made consistent before program re-execution

can begin,

P i

129

4.3.2.3.2 Data Consistency

Rule 1 implies that a valid and consistent set of data must exist if a

“controlled program rollback is to work. A glitch mu-t not cause the loss

of "too much'' data. Thatis, a consistent set of data must be reconstructable
and relatable to a particular phase point. The only types of data which
cannot be salvaged are soft subsystem values and incremental inputs to
the computer. If hard whole-number subsystem values are not available,
incremental transmissions must be limited to ""small" increments so that
loss of an increment is not critical and results, at worst, in a slight

degradation in system accuracy.

Rule 1 can be realized by a multi-phase updating techniques which -
use shadow, or temporary, variables, Any real time computer with a
controlled rollback implementation must rely on this technique in one form
or another. Examples of machines which have controlled rollfnack are the
AGC and the DCA.%"

Recall that Rule 1 says an input to a phase inust not be destroyed
during that phase. This implies that an input to a phase cannot be
over-written during that phase, so updating a variable is necessarily a
two-phase procedure. During the first phase the new value of the variable
is computed and stored in a temporary, or shadow, variable. During the
second phase, the shadow variable is written into the real variable, (at

- which point the shadow variable can be released for other use). This much

is sufficient with an NDRO memory, since a variable cannot be altered by
a read operation.

A DRO memory is more difficult to deal with since a variable can

be destroyed during a read access. Clearly, since an input to a phase can

be destroyed by reading it, merely repeating the phase, as in the NDRO
case, will do no good. The most straightforward solution is to triple store
all permanent variables and use triply stored shadow variables. The proper

value of the variable can always be determined if one of its copies was

destroyed during the course of a deliberate access. As in the NDRO case,

the shadow variables can be released after the update procedure is over.

One method of recovery from a detected error requires a repair
routine (which has knowledge of the locations of all triple variables) to
make these variables self-consistent before the affected phase can be
reexecuted. The variable location tables required by the repair routine
consume memory space and tend to reduce programming flexibility. An
alternative approach dispenses with the repair routine but requires that a
variable must be triply read and the copies checked for consistency each
time that the variable is used. On the positive side, the triple read and

check could be implemented in a microprogram. On the negative side, the

throughput penalties incurred are severe.

Analternative scheme for DRO memories is a 4-phase update; This
approach eliminates the need to triple store all variables, but the shadow
variables cannot be released after an update, so in effect all variables are
doubly stored. The principle of operation of a'4-phas_e update is the same
as that of a 2-phase update and is derived from Rule 1. Since in a DRO
memory a word can be destroyed during a read or a write 6peration, both
coples of a variable cannot be accessed during a smgle phase. That is,
the real variable cannot be read and the shadow written during the same
phase; these two operations must occur on different sides of a phase point,
(The computed data resides in a central register while the phase change
isbeing made.) Inthe 4-phase approach, rollback does not gotothe beginning
of the phase in which the error occurred; it goes to the beginning of the
nearest "read" phase prior to the one in which the error occurred. This
is shown in Fig. 1.

- The pros and cons of the 2-phase with triple store versus 4- -phase
techmques for DRO memories are numerous and will not be expounded
upon further. Suffice it to say that both methods are fairly cumbersome

to implement, and may be the cause of more problems than they cure,

Ty

y Xl

A . 131

o"§\

7 (Phase point)

Read REAL variable to registér
perform update operations

- g (Phase change)

Write answer from register
to SHADOW variable '

A4'' (Phase point)
Read SHADOW variable to register
=~@''' (Phase change)

Write register to REAL variable

(u) (Phase point)
®

Read REAL variable to register
perform vpdate operations

(Phase change)

Write answer from register
to SHADOW variable

(Phase point)

\ 4-phase update procedure

Fig. 1

full
update
operation

132

Finally, consider the data triple store for a variable which is updated
by incremental external inputs. The current value of the variable resides
triply in main memory. The update can be accompliéhed by:

1. Reading the variable.

2. Checking for consistency.

8, Adding the increment to the "'old" value of the variable. .

4, Triply storing the new value,.

If the computer is zapped during this operatiion, the maximum data loss is
the increment to the variable; either the old or the incremented value can
be properly recovered. If the increment exists in a hard form at the
subsystem, then it can be recovered. Recovery cannot be guaranteed for

subsystem quantities which are not hardened, such as PIPA counts.
4.3.2.3.3 Controlled Rollback Summary

Ina situation where one word of memory has been lost during a read

or write of that word, the ability to execute a controlled rollback recovery

implies:

1) Triple store of phase information,

2) If the memory is NDRO (errors can occur only during a write
‘access), a 2-phase update is needed. The shadow variable is
needed only during the update and can then be released.

3) If the memory is DRO (errors can occur during a read or a

| write access), a triple store of variables is needed in addition
to the 2-phase update. The triple stored shadow variable is
needed only during the update.

4) Analternate scheme for DRO memories uses a 4-phase update

without triple store of variables. The shadow variable is
permanent, however, so this amounts to a double store of all

variables.

o

133

4,3.2.4 Interference with Memory Addressing

If the transient detector isnot fast enough, a situation arises in which

the memory logic may reference the wrong word of memory (i.e., a word

- other thanthe one beingaddressed by the current instruction), This behavior

impacts the ability of the aforementioned recovery schemes to guarantee
a controlled recovery. DRO memories exhibit a more severe reaction to

the possibility of incorrect addressing than do NDRO memories.

If memory is NDRO, then program recovery schemes are not impacted.
Data recovery can be accomplished with a 2-phase update, but requires
the triple store of permanent variables, since an incorrectly addressed
write can destroy any. singly stored variable in the computer. (The effects
of anincorrectly addressed writearenot restricted to variables associated

with the current phase of computation.)

If the memory is DRO, a transient during the memory restore cycle
can result in the loss of two words of memory. The originally selected
word will fail to be rewritten and will become all zeros; and the contents

of the memory buffer register will be ORed into some other unknown word.

Since two words may be bad, vertical parity techniques will not work

for program reconstruction.

The 4-phaseupdateisnotadequate for data protection since the second
affected location (the first being the one that was originally addressed)
may beoutside the current phase of computation, Although such a variable
has two copies (the real and the shadow) there is no way to determine

which one is really the correct value, .

The 2-phase update with triple store fares better than the 4-phase

" method, but still has a weakness in that the second affected location may

be in the same triple as the word originally addressed. This "unusual"
case causes the triple to become invalid. The logical remedy is to store
all permanent variables as 5-tuples (perhaps 4-tuples are adequate if it
can be shown that the two erroneous words will never be equal), but such

a remedy is terribly inefficient of time and memory.

134

4.3.2,5 Multiple Noise Bursts

-Noise transients which are appropriately related in time can defeat -
certain of the controlled rollback schemes. Such a diabolical relationship
exists whenthe second (or subsequent) transient occurs during the recovery

from the previous transient.

If the transient can cause the writing of an incorrect location in

memory, then no controlled rollback schemeis foolproof. A multiply stored
variable which is not related to the current update procedure could be
destroyed, one locationat a time, by successive transients, When the time
comes to use that variable, it would be impossible to recover the proper
value, For example, the procedure to make a triply stored variable
. self-consistent involves a write of the bad copy. If addreséing is affected
during this write, bad data can be written into one of the good copies, thus
invalidating the triple. '

Eveniferronecus addressing could beruled out, DRO memories have
another problem which stems from the fact that a word can be destroyed
during a read access: If the first transient destroys a copy of the phase
pointer, and the second transient destroys another copy of the phase pointer
during the recovery attempt, all phase information will be lost. Adding
two more copies of the phase pointer protects against a second transient.
In general, 2n+1 copies will protectagainst n transients (1 transient during
Aan update and 1 transient during each of n-1 recovery attempts). It can be
shown by induction, however, that in the face of multiple transients, the
validity of phase information can never be guaranteed, so the probability
of controlled recovery with a DRO memory is strictly less than one.

4.3.3 Category 3—Central Registers are Lost but Main Memory is All
Good.

This situation comes about if the computer has a noise detection
mechanism, as described in Category 2, which prevents the initiation of a

135

new memory cycle when a potentially dangerous noise event is detected.

(—) In this case, however, the rise time of the noise is slow enough so that the
. current memory cycle is not affected. It is assumed that the noise level
is sufficiently high to zap the registers but not the memory. Since the

. memory is never cycling during a critical noise event, DRO vs. NDRO is
not a question.

Recoveryisaccomplished via a controlled rollback. The phase pointer
can be singly stored, but in order to satisfy the first premise of controlled
rollback (i.e. a phase does not destroy its own inputs) it is necessary to
use the 2-phase updating technique described earlier. To see why this is
80, consider the situation where some, but not all, of the inputs to a phase
are updated and a glitch occurs, If the updates have been written directly
into the variables instead of into shadow variables, then the input data to
the phase is only partially updated and is therefore inconsistent, A
self-consistent set of variables cannot be regenerated so a controlled

rollback becomes impossible.

\
P 4.3.4 Category 4—Registers and Memory are not Affected 'by Noise, but
-\ there is a Power Loss to the Computer.

‘ . -In the absence of a hardware scheme to circumvent the effects of a
power loss, Category 2 or Category 3 information losses could result.
Such problems are avoided by implementing a power fail detector which
activatesa hardware or software "hibernation' algorithm. This algorithm
causes all volatile semiconductor storage to be written into dedicated
memory locations before power is completely lost. It is assumed that the
CPU is sufficiently shielded so that EMI transients that cause power loss
do not affect the central registers as they are being stored away. It is
also.assumed that the power supply has sufficient storage to operate long

enough _to allow the registers to be stored away after the detection of a

power fail, When power comes up again operation resumes at the point
where it left off. Essentially all recent computers have a feature of this
sort,

7 5P, ¢F.
5pe-302° W‘ . j”ﬁ’ g *

136

The major problemis loss of knowledge of the state of the real world
due to the time spent in hibernation, Mission time must be available
somewhere that is not susceptible to power failure, Other real-world
variables can probably be extrapolated inan orderly manner if the hibernation

period has not been too long.

BIBLIOGRAPHY 'FOR PART II

NASA TM-X-64589, "Terrestrial Environment (Climatic)
Criteria Guidelines for Use in Space Vehicle Development”,

1971.

Paul, Fred. W., and Burrowbridge, Donald, "The Prevention
of Electrical Breakdown in Spacecraft", NASA SP-208, NASA,
Washington, D.C., 1969.

ARINC No. 413, Guidance for Aircraft Electrical Power

Utilization and Transient Protection, 1 May 1967.

Military Specification, "Bonding, Electrical, and Lightning
Protection for Aerospace Systems", MIL-B-5087B(ASG), 1964
and Amendment 2, 31 August 1970.

Military Specification, "Electromagnetic Interference

Characteristics Requirements for Equipment", MIL-STD-461A,

-1 August 1968.

"Accidents/Incidents 1965 to Date Involving Lightining
Strikes - Sorted by Aircraft Type and Accident Class",

USAF Directorate of Aerospace Safety, Norton AFB, Automated
Data Stripout requested by Mr. R.B. Shanks, IGDSSE.

Appleman, H.S., "Lightning Hazard to Aircraft", Hqg. Air
Weather Service (MAC), USAF, Tech. Report 179, April 1971.

Gordon, W.F., "Lightning Environments", SCL-DR-69-40,

Sandia Laboratories, Livermore, April 1969.

10.

11.

12-

13.

14.

15.

-16.

17.

] 138
BIBLIOGRAPHY FOR PART II (con.)

Peterson, B.J., and Wood, W.R., "Measurements of Lightning

Strikes to Aircraft", SC-M-67-549, January 1968. >

"Lightning", AFWL Vulnerability News and Views", Vol. 31,

- 1965.

Fitzgerald, D.R., "USAF Flight Lightning Research", Light-
ning and Static Electricity Conference, Tech. Report

AFAL-TR-68-290, Part II, Dec. 1968.

Brook, Holmes and Moore, "Lightning and Rockets: Some
Implications of the Apollo 12 Lightning Event", Naval

Research Reviews, April 1970. ' : -

NASA MSC-01540, "Analysis of Apollo 12 Lightning Incident",
February 1970. '

Lloyd, K.J., Plumer, J.A., Walko, L.C., "Measurements and
Analysis of Lightning Induced Voltages in Aircraft Elec-
trical Circuits", NASA CR-1744, February 1971.

Harrison, L.P., "Lightning Discharges to Aircraft and
Associated Meteorlogical Conditions, "NACA Technical Note
1001, May 1946.

Perry, B.L., and Eng, C., "Lightning and Static Hazards

Relative to Airworthiness", Lighting and Static Electricity

- conference, Sponsored by AFAL and SAE, December 1970.

Ricketts, L.W., "Fundamentals of Nuclear Hardening of

Electronic Equipment", John Wiley & Sons, 1972.

18.

19.

20.

21.

22.

23.

24.

25.

26.

BIBLIOGRAPHY FOR PART II. (con.)

Hall, E.C., "MIT's Role in Project Apollo", Vol. III,
"Computer Subsystem,' MIT C.S. Draper Laboratory, R-700,

"August 1972.

Axtell, J.C., and Ockberg, T.C., "An Electrostatic Chafge
Phenomenon Associated with Minuteman Missile Flights",
Lightning and Static Electricity Conference, Tech. Report
AFAL-TR-68-290, Part II, December 1968.

"DNA EMP (Electromagnetic Pulse) Handbook" (C), Vol. 1,

Design Principles, Defense Nuclear Agency, Nov. 1971.

"DNA EMP (Electromagnetic Pulse) Handbook" (C), Vol. 2,

Analysis and Testing, Defense Nuclear Agency, Nov. 1971.

Perry, B.L., "British Researches and Protective Recommen-
dations of the British Air Registration Board", Lightning
and Static Electricity Conference, Tech. Report AFAL-TR-68-
290, Part II, December 1968. |

“"Poseidon Guidance Computer Special Tests Performed at

G.E. High Voltage Laboratory" (S), R. Roussin, Feb. 1970.

"Current Insertion Tests, Product Assurance and Surveillance
of the Poseidon Guidance Electronics Assembly, MK 3 Mod 0",
Code Ident. 10001 NAVORD OD 45212, 1971.

"OD 45212 (Addendum) Current Insertion Tests Product
Assurance and Surveillance of the Poseidon Guidance
Electronics Assembly MK 3 Mod o, (S), Strategic Sys. Proj.,
June 1971. '

"STS Survivability Characteristics", 1 March 1972, (S).

, ~ 140 : |
BIBLIOGRAPHY FOR PART II (con.) '

27. Griggs, K.M._:,; and Schwartz, G., "The DCA Computer", MIT

C.S. Draper i.;boratory, E-2590, December 1970.)

-

141

=9 The Charles Stark Draper Laboratory

68 Albany Street, Cambridge, Massachusetts 02139 Telephone (617) 258-

A Division of
Massachusetts
Institute

of Technology

PART III

COMPUTER SYSTEM RELIABILITY

Robert J. Filene

142

‘1. INTRODUCTION AND CONCLUSIONS -_, |

1.1 INTRODUCTION

This memorandum investigates the effect that.thé Shuttle
requirements for probability of mission success and crew safety
have upon the GN&C computer system. These requirements have
'been recently stated as 0.9 probability of mission success and
0.999 probability of crew safety, where these requirements are
for the entire orbiter.* The crew safety requirement is inter-
preted to cover the whole mission, that is, at the time of 1aﬁnch
the probability of the safe return of the crew is .999 or better.
To meet these goals, each of the systems effectively in series
for calculating reliability must exceed these probabil}ties of
success. For purposes of this memo, wes have arbitrariiy chos=n

0.99 as the computer sYstem contribution to mission success and

/
N

0.9999 as the computer system contribution to crew safety.

The model used in this memo for the computer system is
N computers where one of these is initially designated as prime

" and the other (N-1) are spares.

Failure of a computer is detected with probability C,
the computer's error coverage, whether the failed unit is
‘currently prime or a spare. (Coverage usually includes the
“probability of detection and recovery. To highlight the
detection problem, however, the recovery mechanism is assumed

to be perfect for this memo.) We also assume that the failure of

*Current Shuttle contractor efforts are addressing higher -
reliability requirem=nts of about 0.98 for mission success and
0.9998 for crew safety. The impact of these requirements upon
the computer system will be addressed in a later memorandum.

143

a spare is detected as rapidly as a failure of the prime. If in
fact some spares are off to conserve power, this assumption would

not be valid.

If the prime computer fails, the new prime computer is
selected from those spares which have not reported themselves
as failed. It is possible, therefore, that a spare, which has
already failed without detection, may be designated prime. It
is assumed that the computer system fails if all computers fail,
if the prime fails without detection, or if a spare wnich failed

without detection is then designated prime.

The Shuttle mission is assumed to be 168 hours (1 week)
in duration. Two mission models are considered here: (1) The
no abort model. Completion of the mission is attempted regardless

of the number 6f computer failures. (2) The early return model.

The mission is to be aborted after a predetermined number of
detected computer failures. A return to earth is then initiated.

This return is assumed to take 3.36 hours. For both models, we

‘assume that failure of the computer system results in failure of

the mission and loss of the crew. Additionally, for Model 2
only (possible early return), the mission fails if the pre-
determined number of acceptable computer failures is reached,
since the mission is then aborted. Section 2 presents detailed
reliability equations for these mission models. Section 3
simplifies some of these eguations by identifying the major
terms. These simpler forms help one to see the effect that
varying paramsters such as computer MTBF and coverage have upon
the fesults. Section 4 outlines some operational aspects of

the mission not currently included in the computer system

reliability model.

144

TABLE A .

‘ Summary of computer MTBF/COVERAGE combinations which make
the computer system's contribution to crew safety at least
0.9999 and to mission success at least 0.99.

NUMBER OF ABORT MISSION REQUIRED COVERAGE
COMPUTERS ggggiTEﬁ MTBF MTBF MTBF
PR TTHRES OF EACH OF EACH OF EACH
COMPUTER = COMPUTER = COMPUTER =
2,500 HR. 5,000 HR. 10,000 HR.
NEVER* NOTE 1 .9982 .9950
3 K = 2 NOTE 2 .9972 .9942
K=1 NOTE 2 NOTE 2 NOTE 2
NEVER* .9989 .9972 .9942
K =3 .9986 .9971 .9941
£ _
‘ K =2 NOTE 2 .9971 .9941
%=1 : NOTE 2 NOTE 2 NOTE 2

*MISSION RULE IS TO NEVER ABORT.

NOTE 1: COMPUTER MTBF IS TOO LOW TO MEET CREW SAFETY REQUIREMENT,
REGARDLESS OF COVERAGE. s

NOTE 2: COMPUTER MTBF IS TOO LOW TO MEET MISSION SUCCESS REQUIREMENT,
REGARDLESS OF COVERAGE. :

MISSION TIME = 168 HOURS (1 WEEK)

RETURN TIME 3.36 HOURS

PN

145

1.2 CONCLUSIONS

_ Table A summarizes the major conclﬁsions of the study
based upon the exact equations of Section 2, nct the simplifiQ
cations of Section 3. The following points can be éeen from this
table:

Conclusions related to Model 1.

With mission model 1 (no aborts) the reliability requirements
can be met with three computers =ach having MTBF of 5000
hours and coverage of 0.9982, or with four computers each
having MTBF of 2500 hours and coverage of 0.9939.

With mission model 1 (no aborts) and three computers
each having MTBF less than 2500 hours, the reliability
requirements can not be -met, regardless of coverage.

Conclusions reléted to Model 2.

Imposing a mission rule to abort after a predetermined
number of detected computer failures provides little
relief for the high coverage required for Model 1 to
meet the reliability demands. Section 2 discusses the
reason for this.

With three computers, and a mission rule to abort after
the 2nd detected computer failure, the reguirements can
be met with MTBF of 5000 hours and coverage of 0.9972
for each computer.

Table B illustrates the following conclusions. With a
given coverage and computer MTBF in the range 2500 hours
to 10,000 hours, imposing a mission rule to abort after a
predetermined number of failures reduces the probability
of mission success significantly. The probability of crew
safety shows only small improvemant unless coverage is
very near to 1.

. 146

C = .996 | c=1
NO ABORT - ABORT NO ABORT ABORT
AFTER 2 AFTER 2
MISSION :
e .994 .988 .9997 .988
. |
CSAREFE”TY .9994 .9997 .9997 .99998 -

TABLE B. 3 Computers. Each has MTBF of 2500 hours.
Never abort vs. abort after 2nd detected failure.

.. ZTATLED RELIABILITY ANALYSIS OF COMPUTER SYSTEM et

The major conclusions of this section are listed in Table A.

The text describes the equations used to reach these conclusions.

2.1 MODEL 1 - MISSION IS NEVER ABORTED

For this case, completion of the mission is attempted
regardless of how many computer failures have been detected.
Therefore, the probability of mission failure and the probability
of crew loss are both eqgual to the probability that the computer

system fails before the mission is completed. This can be expressed as:

Fsystem

where N

F,

C

1

-1

Fsystem

147

If all F's are equal and all C's are equal then:

Fl(l-cl) +F1C1F2(1—C2) + 5 & @ (1)
+ (FF,...Fo ,)(C.C,...C JIF , (1-C 1)

+ (F)F,...F) (C,CounuCe IFL

the number of computérs

the probability that computer i fails

the coverage of computef i.

F(1-C) + F2C(1-C) + F c2(1-C) (2)
+o e o+ PN 2 (1-0) 4 PNV

e Nae pKHLCK

K=0

148

Figure 1 plots Erobabi1ity of failure vs. coverage for both
the th;ee and four coggﬁter cases. Table C presents the same data : | ':>
‘or tl;e one, two, three, .and four computer cases. Equation (2)
was used in all cases. Throughout this memo, the probability that

a computef fails before time t, is assumed to be:

-t
MTBF

F=1-c¢ ' (3)
For the three MTBF's considered, Table A shows the coverage required
for the three and four computer cases to meet tﬁe reliability demands.
‘These conclusions are shown in the rows marked "never" in Table A.
Note that, with three computers each having 2500 hour MTBF, the
probability of crew survival is less than the reqguired .9999, even

with perfect coverage.

2.2 MODEL 2 - MISSION MAY BE ABORTED

For this case, the mission may be aborted and an early return
.co earth initiated after a certain number of computer failures have
been detected. It would seem that this early return possibility
would relieve the severe coverage reguirements needed for Model 1

to make the probability of crew success, R .9999 or greater. In

Cl
fact, the relief is small. Also, the early abort system must m=set
the probakility of mission success, RM' of .99 assumed for this memo.
Imposing a mission rule to abort after a predetermined number of

detected failures, reduces the probability of mission success, RM.

Figure 2 plots probability of mission failure and.crew loss
vsﬁ coverage for two cases: three computers with an abort after the
2nd detected failure and; four computers with an abort after the
2nd failure. Tables D and E correspond to Figure 2. Table A
summarizes the coverage required to meet the reliability demands

for the three MTBF's considered. Note that,

()

PROBABILITY OF FAILURE

10

149

\O

21\6

A S
/
N

[0,

10

Q
£

'f

f9

COVERAGE

0.99 -994 .976 | 998

0.999

Probability of computer system failure (=FM=FC).

N computers.

Mission time is one week.

No early aborts.

Figure 1

E-ij

MTBF= 2500.

C= 0.000
C= 0.800
C= 0.900
C= 0.950

.C= 0,990

C= 0.994
C=0.996
C= 0.998
C= 0.999
c= 1.000

NTBF=
C= 0.000

’ c= 0. 800

C= 0.900
C= 0.950
C= 0.990
C= 0.99L
C= 0.996
€= 0,998
C= 0.999
C= 1.000

HMTBF= 10000,

ol ,c8 00 000

Cr 0.800

C= 0.900

C= 0.950
C= 0,990
C= 0.994

€= 0.996

C= 0.938
C= 0.999
C= 1.000

Probability of computer system failure (=

5000.

means x 10

HOURS
N=1

6.50E-02.

6.50E-02
6.50E-02
6.50E-02
6.50E=-02
6.50E-02
6.50E-02
6.50E-02
6.50E-02
6.50E-02

HOURS
N=1
3.30E=02
3.30E-02
3.30E-02
3.30E-02
3+ 30E~02

3+ 30E-02

3.30E-02
3.30E-02
3.30E=-02
3.30E=02

HOURS
N=1
1.67E-02
1,67E-02
1:.625~02
1,67E-02
1.67E-02
1.67E-02
1.67E-02
1.67E~02
1,67E-02
1.67E=02

ij

N computers.
Mission time=one week.
No early aborts.

150

N=2
6.50E-02
1.64E-02
1.03E-02
7.26E-03
L,83E-03
4L,59E-03
L.47E-03
L,35E=-03
4L,28E-03
4L,22E-03

N=2
3.30E-02
7.48E-03
i, 29E=03
2.69E=03

1.41E-03

1,28E-03
1,22E-03
1.16C-03
1,12E=03
1.09E-03

N=2
1.67E-02
3.55E«03
1,92E-03
1,10E-03
L.L1E-ON
3.76C-04
3.43E-04
3.10%-04
2,.9LE-04L
2,78C-04

Table C

" N=3
6.50E-02
1,38E-02
7i20E=03
3.70CE-03

9.61E-0L
6. 86E-0b

S.49E-0L
L,12E-04
3.43E-0L
2,75E-04

N=3
3.30E-02
6.81E-03
3.43E-03
1,7L4E-03
3.77E-0L
2,40E-0L
1,72E-04
1.04F-04

N=U4
6.50E-02
1.37E-02
6.91E-03
3,48E-03
7.12E~04
4L,3LE-OL
2,96E-0b
1,57E=04

« 156=05
1,78E~Db%

N=3

<ot

N=y

1.67E-02 1.67E=02
3.32E-03 3.38E-03
1.69E-03 1.69E-03
8.50E-04 & hef oY
1.74£-04 1.69E-04
1.06F=-n4 1,02E-0L
7.23E-05 G.73E-05
3.85E-05 3,40E-05 -4
2.166-05 1.70E-05 [~ <0
4.62E-06 7.7NE-08

F=F o).

MTBF=2,500 K

e O mFBF = (2,500 HRS

10
MTRF= S, 000

MTBF=(0,000

5. %’
D a2
'.:-“lo L:*;
& ¥ 2
x
5 S AN
>
i P B
E12400 H \
: :
010 2 *
‘% 3 COMPUT]?.RS. 8 4 COMPUTERS. \
9: ABORT AFTER 2nd & ABORT AFTER 2nd
(=] DETECTED FAILURE. P - DETECTIED FAILURE.
‘_5 MTBF IS FOR SINGLE COMPUTER o MTBF IS [FOR SINGLE COMPUTER
(o] :
| .S » : 4% 996 998 I A9 T
| -l 4 A Al 8 999 0 . saq A AT qeg
, COVERAGE COVERAGE
F._=Probability of Mission Failure Mission Time=1 Week
,FC=Probabi1ity of Crew Loss Return Time=3.36 Hours

Figure 2. Probability of Failure with Early Return Model.

MTBF= 2500. HOURS

152

_ B .
C= 0.0000 6.499182E-02 6.499182E-02)
s C= 0.5000 2. 64G907E-02 3.355589E-02 4
. g C= 0.8000 2.114217E-02 1,368442E-02
C= 0.9000 1.633099E-02 6,892277E-03
C= 0.9900 1.212824E-02 7.07393LE-04
C= 0.9940 1.194425E-02 4,309275E-04
C= 0,9960 1.185234E-02 2.9264LOE=-0h
C= 0.9980 1.176050E-02 1.543269E-0b
C= 0.9990 1.171460E-02 (8.51557LE-05 -y
C= 0.9999 1.167330E-02 |2.289448E-05 <0
C= 1.0000 . 1.166871E-02 {1.59761LE=-05
MTBF= 5000, HOURS
. Fu Fe
C= 0,0000 3.304179E-02 3.304179E-02
C= 0.5000 1.756377E-02 1.679436E-02
C= 0.8000 8.754079E-03)\ G.784390E-03 _
C= 0.9000 5.897035E-03| 3.404147E-03 v e
C= 0.9900 3,359689E-03] 3.432945E=-0L :
C= 0,9940 3.24L,7666E-03] 2.068469E-0L
C= 0.9960 3.191678E-03| 1.386101F5-04
C= 0.9920 3.135706E-03|[7.036450E-05 .
C= 0.9990 3,107726E-03\] 3.623844E=-05 Y ¢
c= 0.9999 3.082547E-03 5.523124E-06 <o
C= 1.0000 3.079750E-03;| 2.110202E-06 |
@ | \<lo~*
MTBF= 10000. HOURS
Fpy By
= 0.0000 1.665967E=02 1.665967E=02
= 0.5000 [8.50702GF-03% 8.399287E-03
C= 0.8000 3,882725E-03) 3.376514E-03
= 0.9000 2.331839E-03/ 1.691165E-03
= 0.9900 9,448254E-04) 1,696102E-04
= 0.9940 £.833735E-04, 1.018812E-04
= 0.9960 8.526537E-04) (6. 80134 3E=-05
€= 0.9980 8.210380E=-0L. {3, 414342E-05 -y
C= 0.9990 8.065817E-04: ; 1.720758E=05 < |0
C= 0.9999 7.927619E-04;; 1.964855E-06
C= 1.0000 { 7.9122€5E-04/{2.711913E-07

ij

\<lo™=

E-ij means x 10

3 computers. Abort after 2nd detected failure.

Probability of mission failure (F,) and ‘
probability of crew loss (F_.) are shown.

Mission time = one week. & -

Return time = 3.36 hours.

’ , b ‘T.able D °*

MTBF= 2500, HOURS
Fu - Fa
C= 0.0000 6.499182E-02 6,499182E-02
C= 0,5000 3.922860E-02 3.352158E-02
C= 0,8000 2.806982E-02 1.364317E-02
= 0.9000 2.504112E-02 6.859718E-03
= 0,9900 2.260468E-02 6,801397LE-04
= 0.9940 2.250270E=-02 4,1374LEE-0L
>= 0.9960 2.245192E-02 2,7587 *2E-04
C= 0.9980 2.240126E-02 1,379720E-0L
= 0.9990 2.237599E-02 (6.901015E-05
C= 0.9999 2.235326E-02 |6.938097E=06
= 1,0000 2.235074E-02 |L4.N82817E-08
MTGF= 5000. HOURS
Fu Fo
C= 0.0000 3,3041795-02 3,304179E-02
C= 0.5000 1.831261E-02 1.678985E-02
C= 0.8000 _1,065255E-02 6.778964E-03
C= 0.9000 8.291954E-03) 3.399859E~03
C= 0.9900 6.249015E=-03 | 3.4001G8E-04
C= 0.9940 6.160005E-03 | 2,045759E=-04
C= 0.9960 6.115557E=-03 | 1,363931E-04
C= 0.9980 6.071147E-03 [(G.820202E-05
C= 0.9990 6.0489565-03 | 3,4103L2E-05 -4
€= 0.9999 6.028992E-03 || 3.41291LE=06 < [o
c= 1.0000 |\ 6.026775E-03){2.755530E-09
N o~
'"MTCF= 10000. HOURS
Ry F,
C= 0.0000 1,665967E=02 1.6659G7F=02
= 0,5000 8. 702103FE-03\ 8.318707E=03
= 0.8000 4,379705E-03| 3,37581PF-03
= 0,9000 2.959809E-03| 1.600615E=-03
= 0,9900 1.703559F=03 | 1.693045E-04
= 0.9940 1.648201E-03 | 1.015893E=-04
= 0,9960 1.6205375-03 |(6.772830E-05
C= 0.9980 1.592883E-03 |}3.386536E-05
= 0,9990 1.579060E-03 }(1.69330LE-05
C= 0.9999 1.5666216-03 ||1.693480E-06
C= 1.0000 L;:scszsgn-os 1.790189E-10

E-ij means x 10

153

iy -\ < Jo-2

4 computers. Abort after 2nd detected failure.

Probability of mission failure (F,) and probability
of crew loss (F_.) are shown. '

Mission time = oneé week.

Return time = 3.36 hours.

. Table E

154

‘ with 2500 hour MTBF, three or four computers, and an abort after
the second detected failure, the mission success requirement (0.99)

is unot met even with perfect coverage.

Comparing Figure 1 with Figure 2, we see that the probability

of mission failure is significantly increased by imposing a '
~mission rule to aboft after a predetermined number of detected
failures. This is because failures of spare computers do not

fail the mission in the no abort case if the primary succeeds,

but the failure of a predetermined number of spares causes an

abort and therefore mission failure in the early abort case.
Similarly, comparing the tw§ cases in Figure 2, we see that

keeping the abort rule fixed (e.g. after- 2 failures) and increasing
the total number of computers (e.g. from 3 to 4) increases the
probability of mission failure. This is because the added computers
increase the probability that the abort will be initiated, thus

. failing the mission.

Again comparing Figures 1 and 2, we see that the probability
of crew loss is not significantly reduced by aborting early. This
is because, for coverage less than about .997, the probabilify of
crew loss is dominated by the probability that the initially prime
computér fails, this is not detected, and the remaining computers
have not failed. 'This sitﬁation is assumed to result in the loss
of the crew and is unaffected by aborting early. With perfect
coverage, however, more'than an order of magnitude reduaction iﬁ
the probability of crew loss can be achieved by aborting early.
This can be seen by comparing Table D and E with Table C for

coverage equal to 1.

€

155

The remainder of this section describes the reliability -

_equations used for the early abort case. The author is grateful

to Professor Albert Hopkins of M.I.T. and the Digital Development
Group for his help in formulating an approach to the problem,
and to William Daly of the Digital Developement Group for his

help in deriving the generalized form of these equations.
The following notation will be used:

TM = the normal mission time, from launch to landing.

TR = the time required to return to earth at the end
_ of a normal mission or after an abort is initiated.

Tx = TMf TR‘ The time at which a normal return begins.

After TX there are no aborts since the ' return is

already in progress.

The mission time line then has the form:

i >
{ | i |
0 TIME —> TI ,L
: X M
c = Coverage, the probability that a computer failure

is detected. (To hiéhlight the detection problem,
recovery following detection is assum=2d to be

perfect.)

C =

l -C

w4

=,

156

the probability'that the normal mission is completed.

1 - RM

the probability that the crew returns éﬂfely.

l - RC

the probability that the mission is aborted before

Tx and the return phase is successful.

1l - RA

the probability that a single computer succeeds
MTBF

e

till TX =

e RX

the probability that a single computer succeeds

_TR

MTBF
e

for the interval TR =

1l - RR

the probability that a system of i computers

succeeds for the interval T_.

R

o

157

The numerical results in this memo assume T

M is one week (168

hours) and TR is 3.36 hours.

Figure 3 shows the possible computer system events which

can occur before TX’ and their implications on mission success

and crew safety. The mission has a possibility of succeeding only
if the computer system succeeds until Tx and an abort is not
intiated before'Tx7 this is Case 1. Case 2 covers the situations

where the prime computer fails without detection before T or

.
the prime fails with dstection but the spare which is the§
designated to take over as prime had failed earlier without
detectioﬁ. In either situation, the computer system fails.
Case 3 covers the situations where an abort is initiated before

T and when the abort is initiated, either the prime computer is

x'
healthy or a healthy spare is designated to take over as primra.
If Case 3 or 1 occurs, the crew may return safely. Case 4

covers the situations where an abort is initiated before TX and,

when the abort is initiated, a failed spare (which has not

detected its failure) is selected to take over as prima. This

results in loss of the computer system, by definition..

RM is then the probability that Case 1 occurs and the
computer system succeeds from TX £ill TM. Rc is the sum of RM
and the probability that Case 3 occurs followed by a successful

return:

R, =R_+R_ (4)

The above discussion is intended to explain the general form of

the equations that follow, but not to justify them in detail.

158

POSSIBLE COMPUTER SYSTEM EVENTS OCCURRING BEFORE T

NO ABORT ABORT BEFORE T,
COMPUTER SYSTEM Q@ A HEALTHY ©)
SUCCEEDS TILL COMPUTER
T, IS PRIME OR -

IS SELECTED AS
PRIME WHEN
ABORT INITIATED
UNDETECTED @ A FAILED ©)
FAILURE OF COMPUTER
PRIME BEFORE SELECTED AS
T, OR FAILED PRIME WHEN
'SPARE SELECTED ABORT INIDIEIED
AS PRIME BEFORE
Tx

xo

l: MISSION SUCCEEDS TILL Tx.
CREW SAFE TILL TX.

2 and 4: MISSION FAILS.
LOSS OF CREW.

3: MISSION FAILS.
CREW SAFE TILL ABORT INITIATED.

FIGURE 3

£7N

159

“ For a mission model wheré an abort is initiated after the
th

i detected computer failure, RM' RC' and RA will be denoted as
RMi' RCi' and RAi' The equations for the three computer case are:
3 2 - 2 =2
Ry = Ry S3 FRyFy C (Sl+$2) T RFx C 5y
- R. +3R2F. cs. +3R_F>cads
Rz ~ M1 X X 2 X X 1
2 2 : .
RM3 = RMZ + 3Rx FX C Sl _
(RM3 means an early abort is never initiated and therefore
R.. can also be found i - i A
M3 ound by solving (1 FSYSTEM) in eq.‘z)
with N = 3.)
R = (1 - R3) cs., + 1/2 (3}5‘2 + F3) Ec's
Al x! ©52 x Rx * Fx 1
i 2 3 2
Ry, = (3F, R +F))C S,
Bor = By TRy
Roa = Ryy * Ry,
Res = Ry

means an early abort is never initiated)

(Ros

160

For a mission model where an abort is initiated after the

ith detécted computer failure, RM' RC' and RA will be denoted by)

RMi' RCi' and RAi' The equations for the four computer case are:

R - s +R32F C(s, +S., +8S,)

Ml X 4 X X 1 2 3

2 2 =2 3 =3
+ R, F C (2sl+sz)+Rxecsl
3 2 2 = | 3 -2
= 4

RM2 RMl + Rx Fx C S3 + 4RX FX c C (S1 + SZ) + 4RX_FX C C Sl
: - R._ +6R2F2c%s, +6R,FoC>C S
Bz T Rw2 X "X 2 Rx Fx 1.

3 3) ,
Ryg =Ry t 4Ry Fy C 5y | - i

(RM4 means an abort is never initiated and tﬁerefore RM4
can also be found by sqlving -(1 - FSYSTEM). in ec.;..' (2) with
N = 4.) :

R}u = (1_R;) C sy + %C- (6R}2(F; + 4RXF}3{ + F;). (s1 + Sz)
+ ar, D e Eh

R,, = c? ‘(GR)Z(F; + 4R, F; + F;) S, + c’e (4R, F; + F;) S;.

R,, = C° (4R, Fy +Fy) S

Rer = Bw *Ra1

Rcz - .RMZ T Raz

c3 ~ Rmz *Ras

Rea = Rma

Ry

means an abort is never

initiated)

161

3, SIMPLIFICATION OF THE RELIABILITY EQUATIONS

This section identifies the dominant terms for the no
abort case discussed in Section 2.1 and for one of the abort cases
discussed in Section 2.2, namely, four computers with an abort after

the second detected failure.

3,1 MODEL 1 - MISSION IS NEVER ABORTED.

For this case, completion of the mission is attempted

'regaggless of how many computer failures have been detected.

Therefore, the probability of mission failure and the probability
of erew loss are both equal to the probability that the computer
system fails before the mission completes. This is given in
equation (l). For coverage less than one, each of the summed terms

in eq. (1) is non-negative, so by dropping all but the first term

we have a lower bound on the probability of failure:

FSYStem - FC = FM i Fl(l_cl) (5)

where Fc probability of crew loss

M

probability of mission failure.

Setting FC and F , to reguired value (1 x 10-4), obtaining

M

Fl from eguation (3) with t = 168 hours, and solving eqguation (5)

for 6;, identifies the minimum coverage rizuired to make the
lower bound on FC and FM less than 1 x 10 :

Cl > 0.9934 for MITBF = 2500 hrs.

C1 > 0.9969 for MIBF = 5000 hrs.

C1 > 0.9939 fof MTBF = 10,000 hrs.

162

Note that providing coveragé higher than the values shown ' :’
‘ does not insure that F, and F are lower than 10 %, However with '
coverage lewer than these values, FM andFC are higher than 10-4,

Singg'equation (5) is only a function of Fl and Cl, these

pggv;égd, The results are therefore also unchanged if one assumes
thét the spares are powered down until needed and that the dormant

failure rate is lower than the active failure rate.

| If all the F's in equation (1) are small, say less than 0.1
(whigh is the case for a 168 hour mission and computer MTBF greater
than 1680 hours) and all the coverages are equal and less than one,
ghen each term in equation (1) except the last is at least an order
ef magnitude smaller than its predecessor so that the first term,
?l (1 = el) is a good approximation to the sum of the first N - 1

terms, The first term simply represents the probablllty that'

the eomputer initially designated as prime fails. and this is |)
. pat datected. As coverage approaches one, the last term in '

eguation {1) becomes dominant and all the preceeding terms

'apgggggh gzero so that the probability of system success becomes

limited only by the MTBF of the individual computers..

€embining the two cases discussed, we see that for any

epverage and with F less than 0.1, a good approximation to FM

-

and F s3

F, =Fo&/F; (L-cC))+ i oalts

' 3.2.1 Crew Safety

* hhave the same MTBF:

Where W is positive and represents the terms not shown. F_ is

- 163

3.2 MNDEL 2 - MISSION MAY BE ABORTED

For this case, the mission may be aborted and an early
return to earth initiated after a certain number of computer

failures have been detected. This section will conéider only

the case of a four computer system where an abort is initiated

after the second dztected failure. If the second detected

failure occurs when the vehicle is already returning, then no

change in mission plan occurs.

The complete equation for the probability of crew safety
with four computers and a mission rule to abort after the second

detected computer failure was given in Section 2.2 (see RCZ for

the four computer case). To bound or approximate this result,
it is more convenient to work with the probability of crew loss,

denoted here as F_. Fc is equal to (1-R_.). If all computers

C c2

F = F. (1-c)) R + W . f e (6)

1
the probability that the computer initially designated as prime

fails before TM’ the normal mission time; R equals (1—F1).

Dropping the positive W, we have a lower bound on F

c:

3 - |
F, >F, (1-C)) R : | (7)

Since this expression becomes zero when coverage is one, the bound
is useful only for coverage less than onée. Setting Fc to the

-4 "
required value (1 x 10 '), obtaining F. from eguation (3) with

1

t = 168 hours, and solving equation (7) for C identifies the

ll
minimum coverage required to make the lower bound on FC less than

1 x 1072,

164

' Cy > 0.9981 for MTBF = 2500 hrs. : _ ') 3
Cl' > 0.9966 for MTBF - = 5000 hrs.
C1 > 0.9936 for MI'BF = 10,000 hrs.

Comparing these bounds with those in model 1, we see that aborting
~early provides little relief for the coverage requirements. Note
that providing coverage higher than the values shown above does
" mot insure that F, is lower than 1072, Howevez, with coverage

lower than these values, FC is higher than 10 . ~

_ Equation (7) and the above conclusions also hold if the
mission rule is to abort after the first or third detected computer

failure.

If each computer's probability of failing during a complete
.mission is small, say less than 0.1 (which is the case for a 168
thour mission and computer MTBF greater than 1680 hours) and

coverage is not very close to one, then equation (7) is a good

approximation to FC. When coverage approaches one, Fc becomes
approximately:
' 2 2 2 2
(6F, C” R,) (Fp C).

where Fx, RX'

the probability that exactly two computers fail with detection

and FR are defined in Section 2.2. This represents

before TX (so that the mission is aborted) and the two remaining
computers fail during the return phase with detection of the first
of these two. The sum of these two approximations is a good
approximation to Fc for all values of coverage (still requiring a

computer's probability of failure to be less than 0.1 for 168 hours):

165

3 2 3 2 2
s .]
FcNF"(IC)R +6FxC Fng(

This can be further simplified by approximating R and R, as unity.

X

3.2.2 Mission Success

The complete equation for the probability of mission
success with four computers and a mission rule to abort after
the second detected failure was given in Section 2.2 (see RM2 for
the four computer case). To bound or approximate thisAresult, it
is more convenien: to work with the probability 6f mission
failure, denoted here as FM. FM is 2qual to (l—RM). With Tx
defined as in Section 2.2 to be the time at which a normal mission
#with no failures begins the return to earth, mission failure can

be expressed as:

-

?M = (the probability that the computer system fails before Tx) (8)

+ (the probability that an abort is initiated before Tx)

+ (the probability that the computer system fails after Tx)

Thé first term, the probability of sysﬁem failure before Tx can

be expressed as:

166

. Fprc(l'c)*'F

_[(1-c,) +’ c, (1-c,) 1] (9)

WNN

Py Ry (@ +Fy (V)

where Q and V represent the sum of positive terms not shown,
and FX and RX are as defined in Section 2.2. The second term
in equation (8), the probability that an abort is. initiated
before ?x, can be expressed as: ‘

2 _2

F Rx (CICZ +Cc,Cc,6,+CcCc, +CcC, +C.C, +C.C

X 1G3 * CC4 + CxC3 +CCy +C5C)) (10)

3 4
+ Fy Rx(W) + Fy (Y)

where W and Y represent the sum of positive terms not shown.

Letting Z represent the third term in egquation (8) (where
. Z is positive), and setting Ci = C, we obtain Fﬁ by the sum of
eguations (9), (10), and Z:
3 2

2
F F R (1-C) + Fx <

M XX (1+5C)+FXR(Q+W)+F(V+Y)+Z (11)

Dropping the F3, F4 terms and 2, we have a lower bound on the
probability of mission failure:
2

F, >FR (lC)+FxRX(1+5C) | (12)

Setting FM to the desired value (1l x 10-2), obtaining Py, from

equation (3) with t = (168 - 3.36 hours), and solving equation (12)

for C, identifies the minimum coverage required to make the lower

bound on FM.Iess than 1 x 10-2:

" for MTBF of 2500 hrs. and that the F

167

c >1.0 for MTBF 2500 hrs.

C > 0.8 for MTBF = 5000 hrs.

C > 0.38 for MTBF

10,000 hrs.

What this means is that with computer MTBF of 2500 hours, FM is

=2 "

sure to exceed 1 x 10 °. With coverage higher than the values
shown for the other two cases, FM may be lower than 1 x 10-2.
With coverage lower than the values shown for 5000 and 10,000

hours, FM is higher than 1 x 10—2-,

Equation (12) is a good approximation to FM if each

computer's probability of failing before T_ is small, say less

X

4than 0.1 (whiéh is the case for a 168 hour mission with a 3.36

hour return time and computer MTBF greater than 1648 hours), all
coverages are equal, and the feturn timé (TR) is a small fraction
of the mission time (TM), say less than 0.1 (which is the case
for TR of 3.36 hours and TM of }68 hours).

3.2.3. Summary of Bounds for Early Return Modei

To summarize Section 3.2, we have found that fér the three
specific MTBF's considered, the FM requirement is the driver
c requirement is the driver
for MTBF of 5000 or 10,000 hrs. To possibly meet both reguire-
ments, an MTBF of 5000 hours and coverage greater than .9966
is required, 6r an MTBF of 10,000 hrs. and coverage greater than
0.9936 is reguired. With MTBF of 2500 hrs., the mission success

requirement cannot be met. All of these conclusions are sub-

stantiated by the results of Section 2 shown in Table A.

168

=

B

.4. POSSIBLE REFINEMENTS TO RELIABILITY MODEL.

The computer system reliability model used in this memo
makes certéin simplifying assumptions about the operational
aspects of the Shuttle mission. The assumptioﬁs made in the
model were generally intended to represent the worst case
situation as far as identifying the impact of the reliability
requirements upon the computer system. A more refined model

should coasider the following points:

1) Not all computer failure modes result in the loss of the
mission or crew. Certain computer functions are not life
critical or mission critical. '

2) The maximum allowable time for error detection and recovery
varies with mission mode. In non time critical periods,
a slower response may be acceptable. 1In these more relaxed
periods, the effective coverage may be increased Dby '
assistance from the crew and possibly the ground which
. may not be possible during time critical periods.

3) The probability of recovery 1after error detection is
assumed to be perfect in this memo, but, in a2 standby replace-
ment system as is discussed in this memo, errors are not
masked. The assump:ion of perfect recovery is optimistic,
and realistic recovery probabilities should e accounted ’
for.

4) Some of the spare computers may be powered off for certain
phases of the mission. The failure rate of a dormant
computer may be lower than when it is active.

5) Computer failure rate is a function of the mission
environment. Factors such as vibration, thermal cycling,
and turn-on transients influence the effective computer
MTBF.

169

REFERENCES FOR PART III

W.G. Bouricius, W.C. Carter, and P.R. Schneider, "Reliability
Modeling Techniques for Self-Repairing Couputer Systems,”
Proc. ACM 1969 Annual Conf., pp. 295-309.

(This paper is a very good treatment of the effect of
coverage upon reliability. It concludes that coverage

is the single most important parameter in high reliability
system design). '

G.P. Edmonds, "Proposed Mission Reliability Analysis
Technique for the Shuttle", Draper Lab Group 23S Memo # 72-56,
25 September, 1972.

(This memo discusses a reliability model for the entire
GN&C system using Apollo reliability statistics. Since
the publication of this memo, considerable reflnement of
the model and statistics has taken place) ‘

