
. - 4 . 1

.

‘

m

.
.

.

.
O

.

O

p
.

.
.

.
’

y
.

.

T
i

.

.

.
m

.
.

L

T
.

,

r

p
.

. .

m

.
v

.

.
g .

v
.

“

.
.

.
.

v

. .
.

.
.

.
)

.

‘
M

x

w
.

I
"

.

w
k

v
.

..

«
G

i
l

3

?
.

¥

.
.

.
.

.
.

r

.
o

.
.

r
‘

|
.

v
.

.
.

|
.

.
l

k

.
J

‘
.

.

,
u

.
 a

I
L

n

u

. . ‘
_

.
,

.

.

,
.

~
9

-

.
I

n

.
¢

:
.

.

.
.

t
.

.

.
.

f

”

.
.

<
.

.
,

.
.

.
.

,
L

N

. :
3

.
.

.
»

.

m

.
.

.
“

,

.
r

a
.

J

- .
.

:

1

L y “

“__1._.—..__rv——_rr 1w —v‘l..r . . —, v'fi V y. a?! L -. .. 7. w.“ —v—v ---.r— y—v—ww—H 7 —, — ‘v — — . - ‘ — , . -.. . —. - m n w ‘ . -
' U '.' 1' " ' " 'P". W : ." .‘I'F‘ I. _ ‘71P: v_ . v . , u. 17m. . . t."— . , .w—— *1: W ,_ "v”, 'l V“ 3",, I Y

. . _ :1 \ ‘

I
- _ . ‘

' ' I

1
E - 1

F ,, 1

r 0
'Final Report

E '- ' , . . 'Vblume II.

Contract NAS 9-11778

} . . ADVANCED SOFTWARE TECHNIQUES
E ' FOR DATA MANAGEMENT SYSTEMS
[February 1972
;

Lg ‘
l_"- 'I _ - 3

&f SPACE SHUTTLE FLIGHT EXECUTIVE
if, SYSTEM: FUNCTIONAL UESIGN
i f ? I .

F *1

i{ ~
E14 .

(Ly‘ ‘Prepared by:

}[M James T. Pepe
rL. . .
k" ‘

in L

H
2 1., L , {
fif

4 47VAV 4V__ ":5?

i...

J; INTEBMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIbGE, MASSACHUSETTS 02133 - (617) 661-1840

.3
“?

L INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840
'- ‘ - ‘ l - \ v I - - no u.

-Intermetrics, Inc., Cambridge, Massachusetts, under the technical

FOREWORD

This document is the final report on the functional design of
a flight executive system for the Space Shuttle mission. The
study was sponsored by the Manned Spacecraft Center, Houston,
Texas, under Contract NAS- 9- 11778. It was performed by

direction of Mr. Joseph A. Saponaro, to whom.the author is
indebted for his many helpful contributions to the design of
this executive system and to the format of this report.

The study program covered thé period from June 16, 1971 through
February 16, 1972. The Technical Monitor for the Manned
Spacecraft Center was Mr. Donald Barron. . ' '"

The publicafion of this report does not constitute approval
by the NASA of the findings or recommendations contained therein.

|

" F ” J

d
,

w

‘
W

. ‘ , . TABLE '01? CONTENTS

1. INTRODUCTION ' ' , 1
1.1‘ Scoge . 1

1.2 Executive System Overview ‘ . . 1

2. EXECUTIVE DESIGN FUNCTIONAL REQUIREMENTS _ ' ‘ ' p 7 -

‘2.1 Introduction . ' . ' 7
2.2 Space Shuttle Aviénics System ‘ ' 7
2Q3 Features of the IBM 4 Pi EP Computer System ‘ 13‘

2.4 Executive Design Issues ‘ 18

2,5 Synchronous versus Aé§nchronous Task Control 20

2.6 Interrupt Handling and Task Disggtchingf 30

‘r" . 2.7 Resource Allocation ' 32 ..
.{g ' 2.8 Allocation of Specific Resources I 34

‘[1 ' 3. EXECUTiVE SYSTEM ARCHITECTURE ' -_ 43
kw. 3.1 Introduction . ' . _43

{L ‘ 3 . 2 Executive and Task Structures . ' 44

3.3 Definitions . . a 48

. 5 3.4 Subroutine Linkage ’ a . 54

I 3.5 Task Priority Levels ' ‘ > - 59
a 3.6 Assignment of Core Memory - 60*

i 3.7 Events ‘ 61

. . _ 3.8 1/0 Scheduling _ . ‘ . 67
3 3,9 I/O Cbnsiderations 67

4. TASK MANAGEMENT FUNCTIONS : ' ' _ 69
4.1 Introduction ' ' . i 69

4.2 Time Interrupt . ' 89

“ INTERMETWCS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHU$ETIS 02138 ' (61, 7) 661-1840

"rr—v—< .

.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840 l- 1

4.3 Deadlock Detection

I/O MANAGEMENT FUNCTIONS

5.1 Introduction {

5 . 2 _ Definition of I/O Management Functions

5.3 I/O Queues and Control Blocks

5 . 4 . The I/O Supervisor

5.5 I/O Service Routines

5.6 Cyclic and Non—Cyclic I/O _

5.7 Configuration Dependent Features

5.8 I/O Error Correction

CONFIGURATION MANAGEMENT

6.1 Introduction

6.2 Initialization

6.3 Failure Detection ahd Error Recovery

6.4 Failures inla Quad-Redundant System‘

6.5 Mode Switching I

6.6 Synchronization

SECONDARY STORAGE MANAGEMENT
7.1 Introduction

" 7 . 2 ’Data Set Structure

7.3 The Secondary Storage Supervisor

EXECUTIVE DESIGN PARAMETERS

. 8 . 1 Introduction

8-2 Synchronous Versus Asynchronous Control

8.3 Executive Control Element Sizes

8.4 Task Management Parameters

8.5 Supervisor Call Parameters

90'

103

103

104

104

.106
107

10.3 -
'108
109

113
113
113
115 .
126
121
122

.127
127

127

127

131

1 3 1 ‘
131

132

133

133

i
i

fl

F c w

:1
A

‘I g;
‘

g ‘l. 9. APPLICATION TASK INTERFACES ' 3 -, ‘ 135

‘ , 9.1 Introduction - ‘ I 135

:{"’ ' ' 9.2 SVC Parameters ' 135

ff; APPENDIX A-~ OPERATION AND CONTROL OF THE DAiA BUS f 137
ii APPENDIX B - DATA BUS ERROR CONTROL '- 163
3 L. APPENDIX 0 -.LITERATURE REVIEW OF AVIONICS EXECU- . j
1 TIVE SYSTEMS ' - -175 5

. , 4

; l.

[~ ‘ I ' .

I
I

‘

'
'

‘
l

«
"

1

r
m

;

3

!

r
.

.
.

’
“

.
4

5
.

" INTERM’ETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

I 7 “ “ "Um’ A 2 *4 7L.— 1 L 4 . ‘ 4 % , _ , _ ,1. 7 ‘.

~
‘

v

a
"

.

r
a

y
-

fl

'
M

r
-

.

1

S

Av
a-

s.
 Q

'
f

.
-

.
_

Chapter 1

Introductidn

1.1 _ScoEe

This document presents a tOp level functional design of
I a software executive system for the Space Shuttle avionics
computer. The design task was accomplished as part of a study
entitled Advanced Software-Techniques for Data Management
Systems. Three primary functions of the executive are

emphasized in the design: task management, I/O management
and configuration management.

The executive system organization is based on the applications

software and configuration requirements established during the
Phase B definition of the Space Shuttle program. Although the
primary features of the executive system architecture were
derived from Phase B requirements, it has been’specified for

implementation with the IBM 4 Pi hP aerospace computer and
ultimately is expected to be incorporated into a breadboard

data management computer system at NASA Manned Spacecraft

Center's Information Systems Division. Accordingly, the

executive syStem has been sfiructured for internal operation on
the IBM 4 Pi EP system with its external configuration and
applications software assumed to be characteristic of the
centralized quad-reduqdant avionics systems defined in Phase B.

. 1.2 Executive System Overview

The major areas of the executive system designed during

the course of this study are briefly summarized below with
the major characteristics defined.

1

L INTERMETRICS iNCORPORATED - 701 CONCORD AVENUE ' CAMBRIDGE. MASSACHUSETTS 02138 ' (617) 661—1840
I:

1.2.1 Control Stgucture
\

The executive system is based on a combined synchronous/
asynchronous control structure with priority dispatching for
processor allocation and task execution. Cyclic computations are
operated at high priority in a synchronous mode under the super-
vision of a cyclic control executive function. It is
initiated by a timer interrupt at a fixed frequency, currently
20 msec, with the scheduling and sequencing of each Computation in
a minor cycle predetermined and specified via control sequencing
tables. The total running time of the synchronous mode or
"foreground" is constrained to be at maximum less than a percentage
of the minor cycle frequency, the percentage to be established
during implementation. After completing the execution of the
cyclic computations each minor cycle, the executive dispatches
the processor to one of the "ready" tasks in the executive
ready queue on the basis of priority. A total of three priority
levels have been established for application programs;

1.2.2 Interrupt and Task Dispatching

. . All-external interrupts within the configuration are
fielded and serviced by the executive as in any real time
system, allowing a multiprogrammed task environment in the
background. The concept termed "segmentéd dispatching" is
however employed for background tasks. That is, althuugh fl
interrupts are immediately serviced by the executive and entries
are made in appropriate queues, the interrupted task is resumed
and continued until it either ends or until it reaches a seg-
ment dispatch point. Only then is a higher priority back- 3
ground task activated by the executive dispatcher. In this
way long duration tasks can be organized into reasonable
execution segments with task swapping or interruption points a
more predictable. The dispatching of the cyclic task con-
troller each minor cycle is however an exception and is
executed immediately at the occurrence of the minor cycle a
clock interrupt. This exception is made as a reasonable
tradeoff to provide the timing and :eSponse characteristics

' needed for cyclic computations ultimately assigned in the - B
synchronous mode. This subject is discussed more fully in
Chapter 2. . .

2
r.

I iNTERME‘TB‘iCSS HCORPORATED ' 701. CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 ° (617) 661-1840
,".'cr—.'— - r , , -, , - , , ' 4 ‘ . . 7 . m : ‘ .

-
—

-
—

-
_

-wv‘

v—y w-

'
a ..

.
4

,

"
<

5
.

_
.

.

..

'
4

, I:
{ i s - x - - .

1.2. 3- Task and Event Scheduling

Any eXecuting task may request the executiVe to schedule
another task on the occurrence of an event or a specified time.
Events are system defined in scope and may be posted or deposted
by application tasks via the executive.

1.2.4 Memory Organization and Allocation:

All application software program modules are known to
the-executive via a program module directbry. Programs are
defined as either total mission resident or mission Ehase resideng.
Phase resident programs are 10a ed from the secondary storage'
device into their assigned portion of the operating memory by
the ' 'tiation function of the executive. Dynamic memory
is allocated to each task by the executive, when a task is made
ready for execution, out of a subpool of working memory esta-

blished for each ri rit le e . Dynamic memory requirements
are preestablished and defined for each program in the directory.

Memory is allocated in continuous blocks within the priority
pool and addressing is accomplished via base registers on the
EP computer. -

(
I

l
l

/
I

d
"

!

M
I
N
A
!

.
5

?
c

F

7
0

0

r
m

”

M
1

1
2

“

(
5

”

v

A portion of tb e memory is dedicated to shared
data. The common memory pool, the compool, is organized into

mission dependent re§ident daga and an overlaid area for
2 . a s e dependent daga. The phase dependent shared memory

13 lLL 1a lze with the program load at phase initiatio on
and statically asaLgnad during the phase. All access to the

common data is controlled through and by the executive. The
executive prevents conflicts in memory utilization
by placing the conflicting task in a wait state until the
memory is properly released by the task to which it is presently
assigned.

1:2.5 I/O Control

Control and execution of all input and output operations
are performed by the executive system. Input/output services

'are performed in two modes: on demand via request by an

executing task, or table driven as in the case of cyclic
computations in the synchronous mode. Secondary memory
management is under the control of the executive. Limited
use of the secondary storage device is assumed during an
m M W M t a i n i n g
of tables of current status and commanication paths to all

redundant equipment within the system configuration.

3

INTERMETRICS UNCORPORATED ' 7’01 CONCORD AVENUE r CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

1 x 2 ; 6 Cohfiguration Management Error Recovery

The executive responds to all system hardware and software

detected error conditions and supervises reconfiguration of

the system. A standard system error recovery action is_defined

for each error class. Application tasks may invcke during

execution local recovery for a class via specification of a
task re-entry point.

1.2.7 Executive Fpnctions as a Summary

_ The specific functions that the executive performs within

the scepe of its design to insure the overall integrity and

proper execution of application tasks are the following:

a). control allocation of the processor by scheduling and

.dispatching both periodic and nonperiodic tasks;

b) provide timing and event handling services to insure

proper scheduling of tasks; .

c) supervise and control all I/O Operations;

6) allocate all resources to tasks and avoid conflicts; reSources

include dynamic memory, secondary storage and shared memory;

e) provide methods for controlling conflicts over shared memory;

f) maintain and update all system queues and tables;

9) provide the means of hardware error recovery and system
reconfiguration;

h) provide linkage and common subroutines and executive services
in application tasks via controlled simple interfaces.

1.3 Task Objgctives and Approach

The exechtive syStem design task was accomplished in

conjunction with other major tasks of the study. Its primary

objectives were threefold:

a) review the Phase B avionics configuration and software

requirements and identify major functions of the executive

system;

4

_
_

.

a
t

“
.

a
E
B
3
f]
D
[1
I]

INTERMEfRICS ENCORPORATED 701 CONCORD AVENUE CAMBRIDGE. MASSHLJHUSETTS 02138 (617) 661-18403 L

~
.

.
.

.
.

_
.

7
A

 —r*-

e)

b)’ analyze and determine key aspects of the executive structure
such as: methods of task scheduling and control, external

interrupt control techniques, task dispatching algorithms,
allocation and sharing schemes, and application program

interfaces; - -

develop functional logic and algorithm design for the
task management, I/O management and configuration manage-
ment modules of the executive system. The design is to
incorporate definition of application program interfaces
to the executive.

The approach taken in this task was based upon several con- ‘
straints and necessary assumptions about the nature of the £?;§.

Space Shuttle mission. , - _ - 3
I

i . .1)
.‘_

2)

fl
u

—

-
~

1
\

.

m
‘

m
,

i
.

\
I

O

.

m
1

 .4)

.
I

‘

“
”

1

a

p
.

-
-

.
4

-
-

'
“

“

r
.

.

3) "

The application software is not completely defined. &
Hence, Specific parameters, such as the amount of dynamic:?
memory needed, can not now be decided. This tqpic is w *
again discussed in Chapter 8. . . - i? §

' 0
The software syStem we are developing is a kernel S?
executive system for use in the Space Shu tle Data 'Q ‘3\
Management computer. It is not an operating szstem {sw

for a ground based szstem.

The breadboard data management computer system at NASA
Manned Spacecraft Center's Information Systems Division
is not at present completely specified. Thus, several
assumptions concerning the design are made and pointed
out in later chapters.

The executive features incorporated in this design are
those deemed necessary to execute the application software
as far as it is defined in the Phase B Study Reports {1,2}.

5

L INTERME {RIOS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 021.38 - (617) 661-1840
A

Chapter 2

‘ Executive Design Functional Requirements

2.1 Introduction

?_ The fundamental features of an executive system must be

" ' based on the requirements of its environment and the application

‘Jr software it controls. Ideally, it should be efficiently tailored

to meet the design objectives and operating environment of the

total system. Prior to discussing the design chosen, the purpose

. of this chapter is to review major system requirements impacti
ng

, i on executive system architecture. These tepics include: aspects

of the avionics system configuration and applications software
,

_ and the organization of the host computer system. Finally,

‘ E . several key issues relative to the selection of. a particular

'[' executive system structure (as it influeas task control,
resource

allocation and interrupt handling) are discussed with respect

f ' to the appropriate design considerations.

L“

2.2 Space Shuttle Avionics System

9
“
.
.
.
“

.
_

_
J

‘ 2.2.1 Configuration a

The Phase B Space Shuttle avionics systems have been

reviewed and are discussed in Volume 1 of this study. Although

more than one Phase B design was reviewed, a hypothetical system

configuration is briefly described incorporating the important

features of the designs to the software executive.

‘
§

- 4. _F V
.

!
"

'
-

“
‘

V

I

M

'
’

‘
"

‘
-

.
.

a

The avionics configuration assumed consists of a centralized

data management computer system interfaced to all avionics sub—

systems via a high speed time multiplexed serial data.bus system

1 as illustrated in Figure 2.1. The data management computer

{. system consists of quad redundant computers which operate in a '

' simplex redundant mode.

A
“
a
.
.
.
“

During critical phases of the mission more than one computer*

a is operating Eith one of them designated as the prlme
 computer.

. The prime computer transmits and receives aII commands
 and

W
'

A

7

i lNTEBMETRICS INCORPORATED - 701 Eoncomo AVENUE - CAMBmDGE, MASSACHUSETTS-02138 - (617) 651-1840 L
.. _..,_._ # . _ . . ” ‘ _ , _ _ . . . -—-n

‘_L
, _ . _ . .._L_‘-__._.-_.

INTERMETRICS INCORPORATED ° 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 ' (617) 66138405

I ' v I-,- x 4.... -... _. , . _

" 9 - 1 " e L.‘ ‘ 7 l - ‘ I n v u .r ‘w’v

and data over the data bus to the avionics subsystems. The
standby computers are synchronized with the prime computer via
external control and execute the identical software.‘ Outputs
from the prime computer are monitored by the standby computers
and compared via hardware by its bus control unit in lieu of
transmission. The results of the comparison are sent to

' external control unit and crew operator perSonnel for voting
and switching.

The data bus system consists of a bus control unit (ECU),
4 bus lines and remote interface units (IU) for equipment
connection. The ECU functions as a peripheral under command
from the computer and controls the transmission of information
over the bus. It communicates with the IU which in turn acquires,
converts and sends data to and from the subsystems. The bus
system Operates in a "command response" mode in which data is
sent only when requested by the central computer. The
operation and control of the bus is described more fully in
Appendix A. There is no provision for interrupts from the
subsystems. Each bus line carries serial digital data at l
MBPS. The bus system is quad redundant_with each BCU capable
of transmitting on each of the four buses; however, each
computer interfaces with only one BCU. Redundant subsystems are

interfaced to physically separate bus-lines via the interface
units. The computer system is also interfaced to redundant
secondary storage units. These units contain additional programs
and data tables for various mission phases. For the purpose
of executive design it will be assumed to have limited use
during a phase with restricted write access. Also for purposes
of executive design, it will be assumed that other external
units may be interfaced to the computer directly and not via
the data bus such as disp;ay and control subsystems.

2.2.2 Application Software

The total onboard software has been estimated (during
Phase B) at requiring approximately 5 0 , 0 0 0 32 bit words of
Operating memory and a peak rate speed of approximately 2 0 0 , 0 0 0

'equivalent adds operations per second. For purposes of this
discussion the total flight software for the Space Shuttle
central computer system may be broadly classified.into two areas:

' ”and mission agglicgtigns softwagg. The application
software is under the control of the executlve and supports
all phases of the mission: boost, insertion, orbital Operations,

coast and powered flight, rendezvous, docking, undocking, entry
and landing. The applications software to support these
phases comprises the following functional areas:

, a) ’ flight control and stabilization

b) guidance

0) 'navigation

8

. - ‘ 3 " - ~ M‘vh“ w —

I
3

3
!

5

:
3

I

§
E

l

i

a ‘ m fi . ‘

:0

— - - l h - p - — - fi

"' r5373}?- "' ' _ mm
10 CU IOUC

CENTRAL P CENTRAL
COMPUTER COMPUTER

v

r

I
I
I
I
2
I
I
[MASS .3
' MEMORY AREA

OIU (2) H
I . u
l I

l ‘ '
| I

AREA I
I cuutzr _q .
l I

I LEFT '
| CABIN I

AREA #3 '
I om (2) M!

. i
‘ INERTIAL *3 I
. NAV SET,
. 0:0 (2) i

L — - — — - fl - - Q - — — — — — J

* * : I
| AREA AREA l
| OIU (2) cm (2) r-1_ i

l 1

{ r—j: ' '
I AREA fl
‘ mu (2) '1

I r I I I l I I l I l l I l I
L

.
-

-

LEFT AFT BA?

H “ r“- 4‘} Pv- --—--~ ‘3 f-w"-"' a‘

- n — —- h— — - — — - -

' u—--- In

E SYSTEM, 5
‘q CDNTROL
C UNIT 3
C "1

CR 1‘ .V STATIC N

ANEL CEMER PANEL
ATION CHE-N STATlON
(4) ' m u m)

I j I

I I

"
\-

RIGHT PANEL
CREW STATION

OIU (4)

’ I

; , «h _
L_' _ _ _ _ _ _ _ _ _ _ Mm _ _ _ _ _ _ _ _ _ _ _ J £1; ‘

g... q h — ‘ - q p u.— 0—. 1 " — .r— — . a t

‘ I— ? UHF"!

Figure 2.1 Avionics Camputer Cohfiguration

.

u
—

u
p

—
u

u
—

b

A
-

c
-

n
n

c
w

d
r

_ _ _ , _ _ _ _ _ _ _ 1
I T

I.
d

.
—

u

o
—

h
‘

I

—
p

—
*

-
-

—
n

-

INERHAL '
NAV SET
(nutm

m u . — ‘

”'1
1 some nocu

l CENTRAL 53"“ “‘4: CENTRAL
| COMPUTER COMPUTER

I
' ‘ ,

l
I AREA ' Mtgrfiggv

cuuczr "
I
f
I

I

I AREA
; H OIU(2)

l I mcH'r
CABIN

I BAY
| H AREA
I ? own»)

1
K

I
I

I l

L _ _ _ _ _ . O _ - _ - _ " — -

r ‘ o

“l AREA _ AREA

1

J 0mm r4: mom
I—

AREA
r mum.

RIGHTAFTBAY

I
L .

.
.

-
_

.
-

_
_

.
.

.
_

.
.

.

_
.

.

4
.

‘
4

-
.

.
.

.
_

‘

_
A

4
A

.
.

A
.

.

v7

:

d). trajectory targeting

a) crew diSplays.and control.

f). dnboard checkdut.and systems monitoring-

9) avionics subsystem management and support.

Estimates of size, data requirements and frequency of operation I
of this software have been estimated during Phase B. The flight

control and stabilization function place the highest respond 1

time demands on the system and have been estimated at basic
frequency of approximately 20 msec. Subsystem and status moniioring

rates are significantly less at l sample/sec being the average 1

although the number of such samples and processing loads are

greater. Targeting, navigation and guidance schemes are

characteristic of more lengthy, iterative mathematical

calculations, requiring large CPU utilization. 3

The full impact of crew interaction via display and control

is not completely determined. ;§_is evident however, they
will reqpire the capability to interact through.the display .
to: load programs and data, select major program mOde§4f61
§§ecution1 terminate execution, requeSt aislYST‘SETect-control

tions, configure and reconfig_;e eqUipment., and monitor the status

H
E

B

‘ of avionics subsystems. The crew will also interact with the computer

through other controls such as the rotational hand controller
when flying under pilot control. .

These requirements indicate the Shuttle software environment

to include three types of tasks:

D a) cyclic tasks: Tasks.which are performed on a periodic
basis at varying frequencies.

b) response/request tasks. These are tasks which are performed

in response to a pre-selected mode such as.the rendezvous

mission mode. Generally these tasks are major sequences

or functions initiated throughout the mission by the
crew.

II

c) demand tasks: These are tasks which must be performed g!

'at the occurrence of a system event or.certain time.

10

INTERMETRICS INCORPORATED - 70‘! CONCORD AVENUE ° CAMBRIDGE. MASSACHUSETTS 02138 0 (617) 661-18403

' : ‘ ‘ F - r r ' fi fl :

‘

.
<

c

"
H

'
l

o
-

g
'

A
r

:
—

“

1
‘

l

4
-

r
—

‘
4

L
M

_

I

l
-

 :
'

.

M
.

»

I

3
"

P
M

'
A

\

u
q

L INTERMETRICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE MASbAC iUSETTS 02138 ° (617) 661-1840

2;2.3 Data Rates

In the Phase B avionics deSign concept, the data bus system"
provides eicommunication path between the avionics e%pipment and the
prime computer complex. No general requirement for ermlnal

to terminal communication which cannot, or should not be routed
through the computer complex was identified. The exact
number and type of subsystems has been continually changing.

A representative list provided below is presented to indicate

the scepe of the system.

1) Primary propulsion subsystem: this system consists of
two orbital insertion engines and one orbital maneuvering
engine. ‘

2) Reaction control subsystem: at least 20 RCS jets located

in the nose, wings and tail for effecting rotation and

'translation in space.

3) Hydraulic system: hydraulic power generation, distribution,

control, and conversion of mechanical energy. It consists

. of supply lines, gimbals, pumps, aerodynamic surfaces, flaps,

. . wheel controls, etc. .

4) ”Electrical power generation and distribution system: fuel

CELLS ana battery, and the auxiliary povzer units located
'throughout the Shuttle.

5) Navigation aids/air data: a collection of equipment

providing navigation and landing capabilities (ALS, radar

altimeter, TACAN, DME, etc.).

6) Environmental control system: the environmental control

\ system provides temperature, pressure, and humidity control

of equipment, equipment bays, and personnel compartments.

7) Cryogenic system: contains the hydrogen ahd oxygen for

the primary propulsion, the reaction control system, the

fuel cells and the auxiliary power units.

8) Displays and controls: this system is assumed to have

local processing capability and accepts dynamic-data
through the bus for updating of diSplay parameters.

9) Telecommunication: this system consists of various trans-

mitters and receivers including S-band, C- band, VHF,
telemetry encoder, EVA communications, air traffic control

communications, etc.

10) Guidance, navigation and control: this subsystem is
composed of elements necessary to control, stabilize and

. navigate the Shuttle vehicle during all phases of the

‘ID mission. It interfaces to the reaction contrdl system,
jet engines, aerodynamic control surfaces, and landing

gear, etc. It has access to sensors which include the
cl

11

“Lat-.9. ,,,

1 ‘ . inertial subsystem, horizon and star trackers, approach.

* . landing aids, rendezvous radar, radar altimeter, etc.

Although this list of subsystems may.not be_complete for the'

final organization of the avionics system it.is meant to be . .
5 - representative. It is estimated that approximately 150 to 250

f - . 'LRU's are associated with the subsystems listed above.

‘ 2 . 2 . 4 Data Requirements

The following is a summary of the data requirements'

abstracted from the various studies of Phase B contractors.

1) .SEeed. Peak load estimates of data rate for both the -
Shuttle and orbiter have ranged between 100,000 and 250 ,000
hits per seCond, including overhead. Considering an average

overhead of approximately 50% for each bus transaction and

allowing for a minimum of 100% expansion to the maximum

speed, a capability of 106 bits per second has been assumed

to be an adequate requirement. This speed should allow

the computer to acquire data at a rate of approximately

10,000 average transactions per second.

2) Measurements. Estimates have ranged between 400.0 and 6500
. unique data points to be sampled from the total complement

'“of avionics equipment by the central computer. Data

types include:

digital parallel
digital serial

~analog
discrete

The majority of these data points are measurements input

to the computer, and are estimated at approximately 60%

to 70% of the traffic on the data bus.

3) Response time/sampling frequency. The maximum sampling

frequency of-measurements is estimated at fifty samples :1

per second. The average sampling frequency for status

information is between two and five samples per second. '
Very little information was made available on response 1
requirements and load distribution of subsystems.

.
12

INTERMETHICS INCORPORATED ° 701 CONCORD AVENUE ° CAMBRIDGE. MASSACHUSETTS 02138 ' (617) 661-1840
r”y

"
—

4
9

—

‘
V

 W
.

 ‘

“is. .I,A.ITHDLLE‘_1EHII‘AQM¢L1'.-‘!' a A

c
 l

I
fi
n

\

W
.

0

k
m

"
u

.
q

'

u

1

L

2J3. Features of the IBM 4 Pi EP Computer System

The hardware features of the computer can directly influence

“the executive system software design. 'In this section the

most pertihent features of the IBM 4 Pi EP computer assUmed
in the executive deSign are presented for review. 4 Pi EP

hardware is documented in detail in the IBM Programming Manual

.for System 4 Pi Model EP [3].

2.3.1 Computer Organization

The EP is a byte addressable computer with two bytes

constituting a half word, four bytes a full word, and eight

bytes a double word. The EP memory size for the computer in

the ISD breadboard is assumed at 24K 32 bit words. An additional

16K multiport buffer memory may be incorporated; yet its

status is unknown at this time.

There are 16 general registers (GR) of full word size

used for high speed fixed point and logical operations and four

floating point registers of (FPR) of double word size used for

floating point operations.

The.instructions are Organized into four classes: register

to register (RR), register to indexed storage (RX), register

I t o storage (RS), and storage and immediate operand (SI). A

complete list of all instructions may be found in reference [3].

All addressing of core storage within instructions is done

relative to a base address stored-in one of the general registers,

designated the base register. Many instructions' address fields .

can reference up to 4K bytes beyond a base address by adding a

12 bit displacement to the contents of a base register. RX

instructions further extend this addressing capability by also

allowing indexed addressing.

2.3.2 Interrupts

There are five classes of interrupts in the EP.

3) I/O interruptions allow the CPU to respond to conditions

in the channels and I/O units.

b) Program interruptions signal unusual COnditions encountered

in a program, e.g., incorrect operands and operand specifica-

tions.' This class of interrupt may be subdivided into nine

subclasses identified by the interruption code generated

by the EP. The subclasses are:

- '- T73 0213.8 . (617) 661-1840 J.

L

‘1) Operatioh-Ekceptioh: ofieration code unaséigned

-2) Privileged-operation Exception: a privileged operation

" is encountered in the problem state .

3). Specification Exception: ‘incorrect operand specifiéation

4) Fixed Point Overflow Exception . ‘ '

5) Fixed Point Divide Exception

6) Exponent Overflow Exception

7) Exponent Underflow Exception

8) Significance Exception: the result of a floating.

' point add or subtract has an all zero fraction

9) Floating Point Divide EXception-

0) Supervisor call interruptions result from the execution of

a SVC 0pcode. This interrupt is used to switch from the
problem state to the supervisor state in which privileged

instructions can be executed.

6) External interruptions allow the CPU_to respond to signals

from the interruption key on the.system control panel and

the timer. 'The timer is a full word in main storage location

80. An external interrupt is generated when the value of

the timer goes from positive to negative. A timer is essential

to the executive system. The exact details of the timer in

the breadboard are not known as of this time.

e) The machine check interruption occurs when a hardware error‘

is encountered. A diagnostic procedure is automatically

initiated. - . .

Should several interrupts occur simultaneously they are

honored in the following order: . .

1) machine check; _

2) program or supervisor call (mutually exclusive interrupts);

3) external;

4) I/O.

Each of the five interrupts described above has two related

program status words (PSW) associated with them in unique main

storage locations (see Figure 2.2). An interrupt causes

the current PSW to be stored in the "old" position and the

PSW in the "new" position to become the current PSW. The old

PSW contains all the information necessary to resume the problem

program again at the point of interruption, and the new PSW'

allows executing a routine associated with the interruPt.

‘

' lLl'TCDLlI-‘i'rfilfig IN.(‘.O.QPOBAIEDJ_ZQ ., ‘ .. , FUDGE. MASSACHUSEH$0217381 (61 7) 661-1840 A ‘ :

_
.

_
.

V

_
‘

-
7

_

vl, .
_

4

v .
c

"
"

4
 '

T
“

 '
T

"
"

'
_

'4

I

M

f
“

,

”
H

a
“

?
-

.
1

'
‘

'
.

-
I

1
I

u
.

‘of the CPU, selects the I/O device the instruction specifies.

As mentioned above the supervisor'state (as distinct from

I the problem state) allows a class of privileged inStructions
to be executed. The executive uses these instructions to
maintain the integrity of the system. Examples of‘privileged
instructions include direct I/O operations, setting sy-stem

masks, and setting PSWs. To prevent their use by _
application tasks a program interruption is generated when

a privileged instruction is encountered in the problem state.

The supervisor state can also be used to protect the

executive from invalid access by application tasks. Hence,

SVC operations provide the means for application tasks to
correctly use the executive, and they help insure that an
application task does not alter the executive.

2 . 3 . 3 4 Pi Input/Output Via Standard Chafinél

Another important EP hardware feature is the structure
of the I/O control system. Since the structure of I/O operations

depends heavily upon the channel control structure and its

Operation, I/O management will be one of the most configuration
sensitive areas of the executive software. Hence, a clear

understanding of the E P ' s I/O system is necessary.

All I/O operations are initiated by a START I/O instruction.
If the channel is free, this instruction is executed, and the CPU

continues processing its program. Then the channel, independent

START I/O causes the channel to fetch a channel address

word (CAW) from main storage location 72; This word points to
the main storage location where the channel program begins. The

channel program is a series of chained channel command words

(CCW), each of which contains a command code to the channel as

well as main memory data addresses and byte counts. See

Figures 2.3 and 2.4 for the CAW and CCW fbrmats.

Should an I/O command be rejected during execution of

a START 1/0 (by a program check, busy condition, etc.), the

command rejection is indicated in the PSW. The details of
the conditions that prevented I/O initiation are given in the

channel status word (CSW) which is stored in main storage

location 64 when the command is rejected (see Figure 2.5).
The CSW is formed or reformed by START I/O, TEST I/O,.or an

I/O interruption. This word contains information about the

termination of an I/O instruction. An error recovery program

that is initiated because of an I/O error will depend heavily
upon the CSW to determine the cause of the error and whether
a system reconfiguration is necessary.

15'

LINTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE MASSACHUSEWS 02138 (617) 661- 1840 i
A 1 _ J — A ' -

System ‘ - Interruption
Mask Key AMWP Code

Program Instruction
ILC CC Mask Address

Figure 2.2 Program Status Word Format

Key 0000 Command Address

Figure 2.3 Channel Address Wbrd Format

16

.
w

_

‘

I
—

.

I
'

—

A .—
,

-

—
v

-
"

;
v

|
>

v
v

r
'

.
—

:
n

-
w

"

M

5
-

-
1

.'_

3‘

I
i

‘
’

..
u

I
A

w

;

.

v

'
5

§

,
.

,

:

Command

- Flags oooo yfl/Z/W Count

Code Data Address

Figure 2.4 Channel Command Word
Format

n.‘

r__

Key 0000 Command Address

Status ' Count

Figure 2.5 Channel Status Word
Format _

17

.
—

-
—

—

.
1

2—— I'—

.
W

,
P

‘
W

'
.

w

.

INTERMETRICS INCORPORATED 70‘! CONCORD AVENUE CAMBRIDGE. MASSAU'%USE'1'FS 02138 (617) 661-1840 '

2.3.4 4 Pi EP Data Bus_Input/Ou£put

The 4 Pi computer in the DMS breadboard (Fxgure'2.6)
will he interfaced to a bus system via a stored prpgram
data processor (S P D P) . The details of this interface and
method of Operation are currently not known. Accordingly,
by direction, the executive design has been based upon inter-
facing to a Phase B type of bus system described previ.ously.
It is anticipated that the functional organization of
executive I/O management will remain the same.

2.4 Executive Design Issues

In conjunction with the review of the avionics syStem
requirements, several factors of the basic executive system
structure were evaluated. The purpose of this and succeeding
sections is to discuss these issues.

Prior to performing the analysis several design goals
were established to be used as guidance in selecting an
ultimate design approach. Primary considerations of the
executive structure analyzed are:

a) synchronous versus asynchronous task control;

b) interrupt handling and task dispatching;

c) resource allocation; -

d) shared data;

e) secondary stoiage management.’

The primary objective or goal usually adapted by most
'executive system designezs is the achievement .of an "efficient"
executive where gfficiency is some measure of throughput.
Efficiency may be defined by either the ffaction of executive
overhead time spent doing nonproductive work or in terms of
response time. In performing analyses of these issues, '
efficiency was considered a neceSsary but not primary factor
since it often tends to lead towards complex design Eesultlng
in complex testing and verification of software. Ideally,
.flight software should not only be tailored to meet operational
mission requirements but should be structured to enhance
software verification and flexibility to adjust to changing
needs. Therefore, the following design criteria were used as
evaluation of the executive strgcture.

18

If

3
fl
3
3
{I
[I
E
3

INFLIGHT MONITORING CHECKOUT ,’ . . I ONBOARD/BRDUND CHECKOUT

’ . . _ SYSTEM
. . MANAGEMENT - _

COP-1801 E (REuum EMENTS)

I KEYBOARD

=-: To PILOT CRT

» . COMPUTER (SOFTWARE)
MASS , .

°
}

.
9

3
“

.

.
'

‘

l
u

.
'

.
I

-
'

MEMORY ‘ ’*" ”0 21”...” ' . "i
. i . I ' . ' g f (SOFTWARE) . (HDW/SFTW)

; ‘_ ' STORED .n ' 4 , . MAINTENANCE A mos-HM comma!) _.;
= ' RECORDER PROCESSOR DECODER ’

1'. I: ' fl ' -

§ F - I Am. A L . 'LOOP , HARDWARE
- - RECORDER ‘ I SOFTWARE [. . . DCM mans

F I TIME I \l L . , r‘ _ _ _ _ _ a‘
. , . . r_ V 360-44

‘ f ~ RAU ' RAU RA'u —= ° I
-4 h It

f ' ' - suasvsmszs ' L, . l
‘- ' c-SOOTLE (REQUIREMENTS) I

Q
l
l_

N" - Figure 2 . 6 ISD Breadboard Data Management System

‘_ ' 19

ham. 4. . m m ‘7 Math n m n n m a n w

-

.
I r

u“ I .

a) To provide an executive System which will control and
allocate resources of the system to satify operational
mission requirements (i. e., one that does the j o b) . r

b) To establish an executive organization which facilitates
verification of application software and reliability of
code.

c) To structure an.éxecutive enabling flexibility and modularity
in incorporation of application software changes over long.
‘term-maintenance_periods.

d) To define simple and well defined application program
interfaces to the executive system. It should be structured
as a virtual machine to the applications programmer.

e) To develop an executive structure which is both simple
and efficient but consistent with other objectives.

2.5 §ynchronous versus Asynchronous Task Control

A-primary function of the task management portion of the
executive is the schefiuling, dispatching and control of-the
allocation of processor to task in the job stream. It is a
fundamental feature of the executive system. Most large
ground based computer systems incorporate very flexible and

general task scheduling and dispatching algorithms to accommodate
a varied number and type of users. The Shuttle software on the

other hand, is more tailored to its environment. Although Phase

B contractors have specified synchronous étruEEured executives,
shuttle software requirements do not allow task scheduling to be

completely planned in advance. Furthermore, it is our contention

‘that a pure synchronous structure would ultimately be modified

to accommodate priority based event*handling since it is necesSary

as a Shuttle software feature. We have chosen a design which

accommodates the best features from each control structure. The

following presents the advantages and disadvantages of synchro-.

nous versus asynchronous control.

2;5 .1 Synchrbnous Structure

A synchronous structured executive is based on a timer-
interrupt, fixed scheduIé, time slice mode of operation. For
example, Shuttle baseline designs use a 20 msec interval as
a basic reference frame for the system, providing a minor
cycle sampling rate of SO cps. Under this concept jobs are
organized by the designer into short routines, and when the
executive detects a timer interrupt (i.e., every 20 msec) it

20

t: uncenrmmmc (1.912;: L131 7\ am. 1840

W
'

m

‘
.

I.

.

k

.
5

2
3

E
Q
B

5
L

3

E
2

3
‘

5
:
3

5
:
3

i

’
E

fl
fi

'

E
5

5
!

1

E
5

!

:
é

fi
i

'

'

IN

‘

examines the "task schedule tables" to-determine which set
of routines is to be operated during the next program interval.
Each 20 msec interval contains all 50/sec tasks and a selection
of other lower frequency tasks. The minor cycle is Operated
every 20 msec, and a percentage of that time is-distributed
among the tasks that are assigned to each minor cycle. A back—
ground job may be run in the slack time before the next minor
cycle. Each task is statically structured as a subroutine
sgch that it can be dynamically called and returnéa‘to the
executive. .

Using a command response data bus control concépt, scheduling
I/O in a synchronous structure is similar to the scheduling of
tasks. .The I/O requirements for each mission phase or major
cycle are predetermined and synchronized with the structure
of tasks Operated in the major cycle. The I/O request list
is assumed to be fixed. Since the I/O requirements will have a
different frequencies, they are incorporated in each minor cycle
in correspondence to load balancing of the processing tasks.

For example, assume all I/O requirements for a particular
mission phase are organized into three categories of frequencies:
50 times/sec, 5/sec, and l/sec. Assume that X, Y, and Z are
the number of commands in each category. Assume further that
a minor cycle occurs every 20 ms and that a BCU is commanded
with a list of I/O requests each minor cycle. The averaged
number of I/O operations required_to be scheduled each minor
cycle are: all of the SO/sec requests, 1/10 of the 5/sec
requests, and 1/50 of the l/sec signals, In a synchronous
structure tables of predetermined I/O requests are organized
according to sampling frequencies. The apprOpriate number of

. I / O entries to command each minor cycle are selected from these
tables. The synchronized concept attempts to avoid non-deter-
ministic behavior of I/O, I/O queues, and I/O backlog.

Several types of I/O activity cannot be détermined in
advance; for example, the command of jets on and off. The
I/O scheduler may accomplish this by providing a place for
the command in the appropriate list and.then causing the
ECU to skip the command or incorporate it, depending on the
results of the stabilization and control tasks.

2 . 5 . 2 Example of a Synchronous Executive.

For purposes of illustration the baSic functions performed
by a synchronously controlled executive include:

a) managing aata bus I/O by issuing all I/O requests for
the minor cycle;

21.

TERMETRICS--_IN~1;CORPORATE_D » 70%" ICONCORD AVENUE -CAMBRlDGE. MASSACHUSETTSOZ138 - (617) 661—1840

b) managing task execution by executing all high‘fréquency

tasks; deciding what tasks executed at a less frequent

rate must now be done and executing these; and‘doing
background and/or housekeeping functions in any slack time..;

To enable the executive to perform these tasks with the least
amount of overhead, judiciously organized system tables must

be used. A description of the contents of the types of tables

is presented below.

, A cyclic command table (CCT) lists all tasks and the
frequency they are to be done in a given mission phase. In
other mission phases a different table is used, which can be
stored on a mass storage device until it is needed. For
example, a typical entry would be

re ram module I core
frequency p .g in address

. It must also contain pointers to the I/O requests for every

minor cycle. That is, in a particular minor cycle all I/O

requests are known in advance since a synchronous structure

is deterministic. Thus, the executive can issue all I/O

requests at once. For example, consider the following CCT

entries:

Frequency Module Address

every' , A 1000
minor . B . 2000
cycle ' C 3000

every '
other minor 3 ‘ $333

cycle r

every F . 6 0 0 0
'four minor G - 7000

cycles H 10000

The order of execution of these program modules every four

minor cycles would be the following

22

% _ . — — _ . _‘.—,_—r.fi.___..V_—w—_77w_._ —_- .._,.~ w‘ww .. 7 . 7 , , Fw— _ w fi m v n v r r r n ..- , , .- --- .,,,,,_ i'r
> , . . . : 9 7 "

v I ' ‘

. . .

jADOAI‘Lfl non-1‘70 nn-coo - (217% mu 1mm

ha
s

I u
u

w u

u
m

a
m

a
-

a

I

5
3
fl
3
3
l
fl
{1
fl

_
.

.
.
.
'
_
—
‘
_
_

r
—

j

H
n

a
n

—
T

V
V

W

4
‘

‘
.

-
.

A
A

~
v

—
-

2
‘
.

A

r
.

‘
-

s
m

f
l

a
t

-
”

fl

é‘

a
l i

t
.

.

,
_

.
.

.

n
.

.
.

‘

- 2
4

r
u

n
.

_
.

.
.

,
.

o
-

c
'

.
a .r

.-

Minor Cycles- .Modules

N - A B C . ‘
N+l - " ' ' A B C D E

N+2 A B C

N+3 A B C D E r G H

Should D take an abnormal exit during the (N+l)st minor cydle,
and deschedule E, the order then becomes:

Minor Cycles _ Modules

N A B C '
N+1 . A3015 A “*

N+2 A B C

N+3 - - A.B C D E F G.H

A flowchart of a synchronous executive structure is presented

in Chapter 4. '

“(PM ‘flfiz-N “at-.1: .. Qt”. . 7.7“” , . .".3.--‘ -, _ ~ ‘ 1‘ . ..

2.5.5 AdvanLages of Synchronous Structure.'

a) There is minimal overhead for scheduling and dispatching

because all tasks are known to the system in advance,

and hence, are prescheduled. The executive knows which
fixed set of code to execute in each time slice.

b) The executive design is simple and thus easy to program.

c) The system is not multiprogrammed so no queues of

ready and waiting tasks have to be maintained. In
other words, more than one task is never in contention

at any time for the processor. One fixed set of
code is executed in each time slice. Memory conflict
problems are also eliminated since core and word areas
for all programmers are pre-allocated.

.d) The system is deterministic which makes the task of
software verification easier. A programmer must divide a
long program into segments to evenly distribute over
several time slices. The break'points can occur at
places at which he knows no interrupting program can
interfere with his program or data. '

e) The computational and I/O load will be balanced over
a major loop. Thus, no degraded response can occur

23

‘K \ INTERMETRICS INCORPORATED ° 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 ' (617) 661-1840-

fl

‘.

. because of computational or 1/0 overload. Response
o-is predictable.

The predictability of the system eliminates sharing
problems. Programs can be put together in time slices
-50 that no data sharing problems result. This fact
eliminates the need for a central update routine for
data. Also, the need for reentrant coding, and hence,
dynamic storage allocation, is eliminated.

2.5.4 Disadvantages of Synchronous Structure

a)

b)

e)

Application programming is more difficult especially
for long programs. The programmer must break such a
program into segments so that between segments any
running program cannot interfere with his program
or data. Also, fitting his program segments into time
slices with other program segments is difficult. Timing
requirements of each segment must be known before
these can be fitted together in a time slice. Thus,
the programmer has a second constraint, namely, time
bounding his segments.

Changing application programs or mission programming
requirements can be a major redesign. Such a change
can require rebalancing of the entire computational
load. New requirements can mean having to spread the
existing application programs more thinly over the
time slices of a major loop, so that the new programs
can also be fit. That is, each existing program segment
might be restricted to a smaller time bound, and hence,
reprogramming will result. .

Each time slice must accommodate the worsfi case computational
requirement. For example, if the crew is provided the
option to display a parameter during a particular mission
phase, then the calculation of that parameter will have
to be incorporated into the sequence whether or not the
crew ever requests it.

This situation is particularly bad if more tasks are
added to the system. If in the worst case 80% of the
computer's time is being used, a task having a worst case
requirement of 25% cannot be accommodated. If it were
accommodated, some time slice would have a worst case
requirement of over 100%. This situation is unacceptable'
in a synchronous structure.

<
_

A

‘
.

4

f =

-

|
 -

< __
‘

A
‘

.

. d) A synchronous structure does not allow tasks £0 be run
, ' on a time Or event basis. In particular, this type of fixed-
. - sequence executive organization does not provide a. structure

which allows for external interaction by the crew, or which
copes with a random job stream. Jobs must be predetermined
and assigned to slota in a sequence and must Operate within
the basic reference framework. It is not clear at this
point-whether all Shuttle requirements can be so predetermined.

Both Phase B executive designs allow tasks to be
sCheduled on an event basis. That is, when an event
.occurs a task can then be scheduled. A scheduler is .
used to fit the newly scheduled task into the time slices
and to deschedule lower priority tasks when necessary.
Such an executive cannot be fully synchronous, as defined
and described above.

2.5.5 Asynéhronous Structure

In an asynchronous control structure scheduling and
alldcation of the processor are accomplished in real time .
according to the needs of the operating environment. Under
this concept processing tasks are assigned a priority which
establishes their relative importance to each other. A task

a with a given priority runs until a wait is encountered, or
. .the existence of a higher 'priority task is established.

fi
fl

w
u

fi
s

4 4 ___.'_...__._.‘__.
.,

fi—w—T

Vfifi __

M

P
‘
s
-
r
m

l
'

,
‘

i
k

.

-
1

.
.

.

-

1

A

.
'

-

A
_

.
<

The distinction between synchronous and asynchronous
control structure can be illustrated by the."states" in which
a task will exist while operating under each structure. In
a synchronous structure, tasks are in one of two states:
actively running or not running. At any instant of time only
one task is in the running state and all others are not
running. The transition to the running state occurs when a
task's scheduled time slot arrives.

F
f

fi

In an asynchronous structure, a task, while present in the
system, will exist in one of four states: running,
waiting, ready, or inactive. The executive insures

{HE-fiioper transitiofi'af'gtates depending upon either internal
or external stimuli. The running state definition is obvious.

7 Note that the runnihg state can only be entered from the

I ' réady to run state; This unifies the dispatcher functions.
The waiting state is either a voluntary or involuntary state,
depending upon its cause. A voluntary wait would be a wait
for completion of 1/0, or perhaps some external time stimulus.
An involuntary wait would be awaiting resources (e. 9., memory)

* ' to become available. The inactive state occurs when the task
is neither running, waiting, or ready.

L 25

r
-

“
M

‘

fi
w

"
.

M

1 INTERMETRICS INCORPORATED 701 CONCOFI D AVENUE CAMBRIDGE. MASSACI—‘USETTS 02138 (617) 661 1840
_ L _ A

'a-P—v
w

-——
wt

_
.

.

The ready state can be entered from all other states

afid indicates that a job has all the facilities available to
it to run. The function of the dispatcher is to pick Ehe most_
appropriate task from the ready queue and start it running.

‘

State changes from wait to ready would occur wheh the
awaited stimulus has occurred. The change from limbo to

ready state occurs when a schedule request is issued by some
task. The switch from running to-ready occurs when a task
is preempted by a higher priority task or interrupt.

In summary, an asynchronous structure is one in which one
or more tasks may_be in the ready state awaiting allocation
‘of the processor. In a simplex computer system this is termed
mpltprogramming, i.e., the concurrent operation of more than.

one task.

An overview of the operation of a general asynchronous

executive is illustrated in Figure 2 . 7 . The scheduler and

dispatcher, once in control, should be able to pick a
task and run with it. The scheduler aSSigns or reassigns
task §riorities, verifies that all the task resources are
available} and maintains the overall.view of real time events.

All task starting is fione through the dispatcher.

The scheduling function in a broad sense consists of

making appropriate entries in task blocks and priority queues

so that the dispatcher need only select jobs from the top of

the ready list. If there is a number of tasks to be scheduled,

the scheduler treats some as more important than others and

executes them first. If the dispatch function occurs at some

time other than at the end of a program, then a multiprogrammed

environment is a direct result.

The interrupt handler "posts" the event complete, makes
the task ready if possible, and then passes control to the

‘scheduler to act on the information it has provided.

The resource allocator is invoked as an executive function

by the scheduler to test readiness to run, and if not ready,
=will inform the scheduler of the requirements for readiness.
It may also be invoked to test availability of contention

items.

1/0 in an asynchronous structure is generally scheduled

o n ' a demand basis. An active task requiring I/O schedules
its request via an I/O queue. The task is placed into the

wait state until completion of the I/O request. The 1/0

26

I

H
11
{I
[I
B
B
B

INTERMETRICS INCORPORATED ° 701 CONCORD AVENUE ' CAMBRIDGE. MASSACHUSETTS 0213-8 0 (617) 661-18403 ;

i

- control routines Operate on the I/O queue and interface the

. I/O peripheral .(i.e. , the bus system) to perform the request.

“ 1/0 is performed asynchronously with other processing fasks_

in the system. After acknowledging receipt, initiation or

completion of the I/O request, the Scheduler is informed via

a simulated or actual interrupt. The task awaiting the I/O

request is then placed into the ready state and awaits processor-

assignment. However, dem.and scheduling may not be easily

implemented in the Shuttle software due to the high speed

of the ECU as a peripheral and the intended block scheduling.

:2.5w6 ;Advantages ovsynchronous Structure

a) It is able to adapt to a random job stream; i.e., it does

not require rebalancing of a computational load,~and it .
can tolerate periodic overload and backlog since it is
designed to cape with this problem. Time and event

scheduling can easily be accommodated.

b) It is more adaptive to a real time environment. If a task

of high priority must be scheduled, it is not necessary

. to deschedule a lower priority task. The task dispatcher

*~L. selects this high priority task for execution while lower
priority tasks remain in the ready state. Lower overhead-

. results.

c) Application programming is easier. An asynchronous

. V structure does not require long program sequences such

' L ; as targeting, etc. to be arbitrarily organized into

' fixed segments to fit in some fixed cycle or sequence.

; { { d) Since it is able to adapt to a random job stream, inter—

; Lgr face with the crew is easier. If the crew schedules a

' \‘ program of high priority, they can be sure this program

f: will not be spread out over small portions of many time

' slices but will be executed quickly.

1 , e) It has a greater flexibility for incorporating changes

iwi- _ than the fixed sequence approach. A change in mission

requirements is not a major programming change for

existing programs.

2 .5 .7 Disadvantages of Asynchronous Structure

a) The multiprograming environment resulting from this type

of scheduling is more complex and.difficult to test and

verify. Programmers no longer know where their programs

L; ’
L INTERMETRICS INCORPORATED - 701 CONCORD AV'EF‘JUE - CAMBRIDGE. MASSACHUSETTS 02138 " (617) 661-1840 J

27

_
“

K
m

1

w-

-—
'~

T

w
w

*—

't .

. .

memgmcs INQQEPOBATED - 701 CONCORD AVENUE . CAMBRIDGE. MASSACHUSETTS 02133 -

will be interrupted. Thus, the exeCutive must guarantee'
data integrity, handle sharing of-data, and allow-for
reentrant coding. It can be made more predictable, however,’
particularly on the Shuttle where no external interrupts
exist.

b) Since all tasks are run through the scheduler and
dispatcher, there is an increased overhead for running
these programs, queueing ready and waiting tasks, and
handling the queues.. However, this overhead can be
,minimized by combining the features of synchronous and
‘as will be explained later.

2 . 5 . 8 Need for Asynchronous Features

Since the nature of the Space Shuttle mission requires
the computer to respond to unpredictable events, such as the

crew altering the job stream, handling emergency situations,
reconfiguring because of failed equipment, etc., a fully

.synchronous executive is insufficient.’ As mentioned

above, both contractors see the need for scheduling
tasks on an event basis. Since this fact is a step toward
asynchronous structure, the question arises to what degree
the executive organization.should be asynchronous. Because
-of the simplicity of a-synchronous structure, as many of its
advantages as possible must be kept. It is the disadvantages-
that must be eliminated by allowing some asynchronous features.

The'followihg structure obtains the best features

of both. Tasks will be organized into foreground and
background categories. The foreground tasks are

those tasks run at a fixed frequency by the scheduler in a
synchronous manner, as described above. The time needed to
execute each of these tasks must be small, i.e.; less than

a minor cycle. By definition all foreground tasks (synchronously)
scheduled in a minor cycle must be totally executed in that
cycle. The remainder of the time of the minor cycle can be
devoted to executing background tasks. Background tasks have
several features. They can be operated on a priority basis;

they can be long (i.e., require more than one minor cycle to
execute); and they can be scheduled on a time or event basis.

'The nature of background tasks makes‘a queue structure necessary.
Hence, in a minor cycle there are now two types of scheduling:
synchronous and asynchronous. By making as many tasks fore-

ground as possible we eliminate much overhead in scheduling/

dispatching background tasks.

The advantages of this structure are:

a) it eases the incorporation of event and time dependent
rescheduling of tasks;

28

(617) 661-1840:

a
a
3

'
0

“

3
3
{I .

II
E
3

I
, . ' ' '

l ‘ .

. ‘ ‘ .
> a

. . . |

. ; y , .

. . ‘. ‘ .fl ‘ ,. . - .A

o
o

. , ‘ c

' —

. I

l
! Priori§y_ - -
I ' ‘ €> TaSk

- l . —- -- --- -—.— g). Queue
| | Use TasR.Info. A
| I for Tie§Breaking 9

.‘ s . ,

i I U '*-*——~P Schedule w
I } Resource D Sdheduler -<} 119 Task

1 l Allocation ‘J‘“’*‘*

I I RiqUGSt Dispatcher

ll verify '\D
I I Start
| I Acknowledge Task

v v Starte

N <\
m ' Work for

Interrupt - . Processor dandler “g -

- ' ' Immediate
A (5 Completion

/ 'fi
. / /

1/0 Interrupt Signal

Timer - ,
Interrupt

Unscheduled ' ”-_

Signal _’

_ — _ _ - fl . — ’ - — — a — - — “ ” _ W fl g — u _ - u

Event complete, remove from.queue

Ready waiting
Task, Assign

Contxolle:

?
é .
I/O
Queue

1 % “ ' .

Input Request

_ _ -—5> -
Output Signals

Figure 2.7 System Flow o£_General Asynchronous Structured Executive

~
.

v
-

ikMLNIEBMETRIQs INCORPORATED -701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02133 . (517). 65.1-1340

.

. b). asynchronous structure data inte
grity 'prob‘lem avoided, i.e.,

- ‘ programmer control of where interrupts will be serviced;
§

0) _taské for which precise timing an
aylysis is unnecessary -

or impossible, or which require_e
xtreme timing safety'

factors can be executed on a pri
ority basis rather than

on a time slice basis.

, Thus, in general, the proposed st
ructure can handle the

Shuttle software in a way advan
tageous to either completely

synchronous or completely asynchronous structuxe.

2.6 Interrupt Handling and Ta
sk Digpatching

' 2

The interruption of a running program in respo
nse to

-an external signal was introdu
ced into the computer technology

to serve two purposes:

a) provide rapid response-time to asynchronous events;'.

b) eliminate the necessity of polling (and its overhead
) to

discover whether an awaited
event has yet occurred. .

. . In single-proceSsor sys"tems, “particularly! dedicated
 systems

where most or all of the co
mputation is devoted to a s

ingle

application, the introduction of interrupt-mode computati
on

raises the hazards associat
ed with multiprocessing: at

arbitrary times, an interruption can i
ntroduce what appears

to be a parallel task which
is at least conceivably cap

able

of disrupting the progress o
f the interrupted task by altering

its variables. Thus, methods for masking o
r inhibiting ' ‘-

interruptions were added
, and the nature of the

functions

allowed in interrupt-mode w
as restricted. Properly and-

thoroughly applied, these fixes allowed
 programs to perform

properly, although no truly
thorough method has been fo

und

of proving that the system
was actually properly programmed.

, There.exist therefore, two relefiant nega
tive aSpects of

interrgptiong: timing resEonse uncertainties, and pot
ential

@ata dlsruntlon an qgg__£gt. Both can be minimized by causing

1nterrupts to schedule tasks whenever
possible, as opposed to

performing thgmf 'lhis pppvisioq redupes the multiplicity

of poSsible tlmlng Sltuatlon
s, Slnce job swapplng occurs only

at specified intervals.
 -

30

3

o

a
s

“

r

Accordingly, it is considered desirable to utilize hardware

interrupts such that tasks are scheduled and the ihterrupted
task is rapidly resumed. The primary consideration becomes

3 when to dispatch a higher priority task resulting from an
interrupt, such that respond time requirements can be satisfied..

When an active task is dispatched into the wait state,

another higher priority task is dispatched (madé active) from
the ready queue. When else does the executive dispatch? The

fbllowing summarizes various approaches considered.

—
4

7
-

—

V
A

—
—

—
_

_
7

~
 w

,
‘

 _
_

_
_

_
.

.
—

_
_

.
.

,
,

i ,

; 7 a) If the executive dispatches at no other time, system

Q ' response time to high priority tasks cannot be guaranteed

E s _ since long duration tasks would execute to their end .
“ This appears unacceptable in the Space Shuttle mission unless

‘ all lengthy tasks were broken down into separate, suffi-

} ciently short, independent tasks.

{ b) The executive can dispatch whenever a task of higher

g~ priority than the active task is scheduled. In this case, .
L ‘ interruption of the active task will occur at a random

' point'in the coding and a higher priority task given the

CPU. This uncertainty can lead to a program verification

5 l . ‘ problem due to its; random nature and non-repeatability.

1 0) Alternatively, a programmer can inhibit dispatching at

E . dangerous points in his program. Tasks of higher priority
g[; ‘ would be dispatched when permitted. However, this method

does not completely solve the verification problem or

prevent a higher priority task being delayed from execution

[I for an unacceptable amount of time. By introducing an

- ‘ onboard "watchdog" timer, it is possible to guarantee
a maximum time in which dispatching is inhibited. If a

”a . programmer exceeds this maximum time in inhibiting
‘ dispatching, the CPU is taken from his program. However,

the dispatch will now occur at a random point.

.{ » d) Another approach.is to require the application task to be
‘ organized into short segments in which the dispatcher

is requested at the end of each segment; If these segments

were fixed at short intervals it would enable system
response time to be maintained.

- 2 ' 31

" INTERM-ETBJCS INCORPORATED - 7.01 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

H
fi

"
 7
.
.
-
-
7
,
‘

‘
i

fi
‘

F

“" .m

r — —

0

Furthermore, the Segment organization of a lengthy program 3

provides visible and controllable evidence to the programmer
of the possible points that alternate control 'path‘s can 1
occur. Conversely, he is assured that once the segment'
hegins it is non-interruptable until it ends other than by

. the executive servicing of an interrupt or the task placing ' 3
itself into a wait state. Similar arguments could be used ”3

for the previous approach. '

The chosen method involves a modification to approach ’
(d). First, high priority cyclic tasks, operating in a syn-
chronous mode in the foreground, will always be dispatched at
*the occurrence of the clock interrupt. All other tasks will
only be dispatched at the segment points. This will guarantee
response time where it is needed and loosen the requirement '
for segment operating limits.

Secondly, the establishment of segments for lengthy programs

can be aided by an assembler or compiler. Given that a proce-
dure oriented higher order language is used for application
programming, it can often suggest segmenfi points and make them

visible to the programmer. Tentative examples of compiler based

segment points are:

. ' a) on all forward GO TO statements;

b) entry or exit from a block;‘

c) maximum time allowed in a segment exceeded.r

The programmer must have a compiler override capability;

2.7 Resource Allocation

A resource may be defined as a facility of a computing
system that can be temporarily assigned to tasks to enable them

to perform their computations. Examples of resources pertinent

to the Shuttle software are core storage, shared data, and data

sets on mass memory units. Resource allocation is that function

of a computer's operating system that assigns resources, when

possible, to the tasks requesting them. In a multiprogrammed

system, several tasks can request the exclusive use of a

single resource. Since only one task at a given time can be
granted_its request, the others must wait until these-resources

are freed. Care must be exercised in resource allocation to
minimize the number of transitions of a task from the active
to the wait state and to avoid allocation conflicts.

g
a

m
m

a

3

INTERMETRICS :NCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840} L

. a, ' ' To be specific, several conflicts can result from
‘I’ inefficient resource allocation. These are:

a) deadlock,

‘ b) memory fragmentation,

6) priority conflict..

We will define each of these conditions in the following para-
.graphs.

2.7.1 Deadlock

'1 Deadlock is a condition in which two (or more) tasks
are each waiting for a resource held by the other before either
can proceed. Neither task can release the resource it holds,

so neither can be taken out of the wait state [16]. For

example, suppose task A holds resource R1 and needs R2, but
task B holds R2 and needs R1. Since neither task can release
its resource, neither can proceed and deadlock results.

fl
fl

m
-

~

Deadlock detection algorithms can be included in an
‘ 1 operating system to enable the task performing resource

. ullp;¢.L_Lc,-u Lg vuvudm- potcatially hazardous situations,-

and hence, to avoid them. This tOpic has been discussed
extensively by several authors [9-10,13-16]. HoweVer, such ah

algorithm can cost a high overhead in ekecution time. The Space
Shuttle executive should have an alternate way of avoiding deadlock.

F
a

r
”

,

I
3

-
.

J

.
3

'Deadlock is the result of incremental resource allocation.
That is, it is the result Of tasks requesting resources

sequentially during execution. By avoiding incremental
allocation we can avoid deadlock without costly detection
algorithms. More will be said about this topic later as
it relates to the Space Shuttle computer.

.
1"" ‘

‘
V

.
 I

‘
-

-
t

-
»

..
‘

-

p
a
i
n
—
‘
-

2.7.2 Memory Fragmentation

Memory fragmentation is a condition in which a task
cannot be granted its request for a large block of contiguous
core because all available core for dynamic allocation is in

small noncontiguous blocks.

When this situation arises in a large ground based computing

; system having a large secondary memory, part of the contents

‘ ‘of core are rolled out temporarily to create a large enough

33

INTERMETRICS INCORPORATED 701 CONCORD AVENUE' 'CAMBRIDGE MASSACHUSETTS 02138 (617) 661— 1840

. _ , , ., . . 7 . r. , . . M ' F " ' T _ malaria": “Br ""- -' '-

contiguous area of main memory to satisfy dynamic allocation
réquests. However, on the Space Shuttle computer we seek to
minimize the use of any MMU because of its inherent . '
complexity. Thus, most data will be maintained in main memory so -
that programs can operate at maximum speed. Programs and

data are only reloaded into the operating memory at low
frequency during the mission, such as at the start of a new mission
phase.

2.7.3 Priority Conflict

Finally, an allocation conflict can arise when a low
priority task holds a resource that a high priority task
requests. Often the resource cannot be released by the former
task as in the case of temporary work areas of core storage.
.Unfortunately, the high priority task must now be placed i n '
the wait state until the low priority task can safely release
the resource. The result of this situation is a degradation
in the system's response time for high priority computations.
For a sufficiently large degradation the effects Upon the
overall mission can be very serious. - .

Each of these hazardous situations must be avoided in
designing a resource allocation algorithm for the Space
Shuttle computer‘ The following section will present methods
of avoiding these problems.

2.8 Allocation of Specific Resources

In the Space Shuttle computer there will be three
categories of resource allocation for which provisions must
be made. These are:

a) dynamic memory allocation,

b) common data sharing,

c) data set management.

2.8.1 Dynamic Memory Allécation

Dynamic memory allocation occurs when the executive
temporarily assigns blocks of core storage to'a task requesting
this resource. This core is returned to the dynamic core
pool either by the task during its execution or by the executive
at the end of the task. To avoid deadlock we require that
all core requests of a task be satisfied when the task 13'
placed in the ready state. That is, to avoid incremental
allocation a task makes all core requests known to the

34

802138. (617) 661 1340

3
2

.
)

;

‘
‘

-

a
a
I]
3
1'3 ,

U
i]
[I
J

I!- -.‘ "Ia—14? :5—

. executive via its TCB at schedule time. ' If the request can be

satisfied, the task can be placed in the ready state provided

it is not awaiting the allocation of any other resource. If

not, the task is placed in the wait state, awaiting the release

of a sufficient amount of dynamic core to satisfy its needs.

When this core becomes available, the task can be placed in

the ready state. Eventually when the task becomes active, it

has all the core it will ever need and will not_have to be

placed back in the wait state during execution for lack o f .

this resource. Hence, deadlock cannot occur because of a

conflict in dynamic core allocation;

Although we have avoided deadlock fairly easily, the

problem of memory fragmentation is not.as readily solved.

The reason for this increased difficulty is that several

alternative methods of avoiding this problem are available to

us, and the specific method chosen depends upon the computational

requirements of the mission application programs. So far these

5r~- requirements are not known in any detail. Hence, we will

I . examine four methods of memory allocation and determine which

” .15 Optimal with respect to our present knowledge of the

program requirements.

.. ._ _‘ 2. 8.1.1 Fully Static; _ This method would avoid dynamic storage
“ *E. -a110cation by permanently assigning to each taSk all the core

““ "+AV~~A it nchds for the duration of the miSsion. Memory

conflicts are obviously avoided.

L} ' If the total amount of core so assigned is small, e.g.,

' 1K bytes, then avoiding the problems of dynamic storage allocation

is advantageous since the executive design will be simpler;

However, the amount of core needed is likely to be higher

than our 1K example above, so the extra cost in the amount

-of memory needed for static allocation becomes uneconomical.

1

.
.

J

\

q

j

This is not to say that no task should have its work

areas permanently assigned. For example, a computation executed

every minor cycle will utilizes its work area for a large

percentage of every major cycle. In this case it could be

economical to statically assign this task's work area to it.

_ However, for the large amount of tasks run on a less frequent

‘ basis the percentage of a major cyclé that they utilize their

l work areas is small. Hence, static storage allocation cannot

be the only method of storage allocation in the Space Shuttle

5- computer.

w

Note that ahy task having a static work area allocation
is by its very nature non-reentrant. _

-s

.0
-

-
.

—
—

.
.

a
.

.

a

L;

[d 35

INTERMETFHCS INCORPORATED - 7Q1 CONC§RD AVENUE ' CAMBRIDGE. MASSACHUSETTS 02138 0 (-617) 661-1840

-
.
.

—
—
~

—
~—

—
r—

fi_
—

“
‘
W
‘

.
V

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138 (617) 661- 1840

‘ *- T v » — V ; , w — m v — . e — — c r ‘ wr- . v . - _ .‘w . W . - . " « 1 1 “ , V 4 7 1

‘

2;8.1.2 Fully Dxnamic; A fréquentlyuéed.method of dynamic

- storage allocation in large scale computing systems is to allow

all tasks to compete with each other for all available core.

A task can request a block of any size provided it does not

exceed the amount of core available. If this block is. available,

- it will be allocated to the task I 4]. ‘ '

The disadvantage of fully dynamic allocation is that it

does not solve the problem of memory fragmentation._

2.8.1.3 Semifigynamic. Let dynamic core be divided into blocks

of several specific sizes, e.g., 50 bytes, 100 bytes, .5K bytes

and 1K bytes. Tasks which request core must be structured so

that their request conforms to one of these sizes.» Although

this method imposes a restriction upon the tasks, the problem

of memory fragmentation is now solved. -

There still remains the problem of low priority tasks

holding core and preventing high priority tasks from executing.

'The problem can be partially solved by allowing several

blocks of each size in dynamic core. This will reduce the

probability of all blocks of a given size being simultaneously

allocated. However, the number of blocks of each size cannot

' b e ' t o o large since this would be as uneconomical as static memory
allocation. Program requirements will of course determine

how many blocks and what sizes to allow.. . ‘

2.8.1.4 Priority Subpool Allocation. Dynamic core will be

divided into sections called subpools, one corresponding to

each possible task pridrity level. A task requesting core.

will then receive its allocation only from the subpool

corresponding to its priority level. Within a subpool core

can be allocated on a fully dynamic or semi- dynamic basis.

If the fully dynamic method were used, fragmentation

would occur within each subpool. To avoid this problem we

will use semi-dynamic memory allocation (as explained above)

within subpools, Each subpool will have several blocks of

core of several different sizes. A task is then allocated

,a block of its requested size when it is placed on the ready

queue.

Should a task request a block of core that is unavailable

within its subpool because of existing allocations, a block

from a lower priority level can be used for allocation.

' This will prevent a high priority task from.having to wait

36

a
m
—
-

h
u

u
i

i

-
u

i

n
u

n
:

II

I.

I
I
I
!

I I
I .

I

I
I

!

.
-

.
~

A

,

'
4

4* —
v

—
—

—
-

.
~

«
7

—

_
_

V
_

_
_

A

_
_

_
,

F
M
f

i

!

“

"
3

for the release of core while low priority tasks can be scheduled.

In addition, tasks of the highest priority will not have to "

_share their subpool with
any other tasks. These tasks will

have the least interferenc
e from other tasks in comp

eting for

core.

The sizes of the blocks an
d the number of each size

 are

determined by the numbe
r of tasks and their req

uirements at

the given priority level. Once this algorit. m has bee
n implemented

size and quantity parame
ters can be varied for op

timization.

This is the method selected in
the design structure.

2.8.2 Common Data Sharing

In any multiprogramming
 system a resource allo

cation

problem arises when data i
n core memory can be simul

taneously

used by two (or more) tasks. If two tasks only want to
read

the data, no conflict e
xists. However, if one of the

tasks

wants to update before
the other has finished r

eading, a con-

flict arises.

To irlflbtrate this, consider the e
xamples shown in

F‘gure 2.8. In both examples TASK B interrup
ts TASK A during

the execution of a statement. In Example 1 presume that '

the interruption occurred wh
ile the matrix § was being read.

When TASK A resumes, the comput
agion of Q will continue using

some "old" fi data and the "new"
N data assigned in TASK B.

In order to prevent this con
flict, initiation of TASK B would

have to be stalled until the re
ading of N in TASK A is complet

ed,

In Example 2, presume that the
interruption occurs just

after the current value of Y is
loaded into the accumulator.

When TASK A resumes, the "old
" value of Y (i.e., not reflecting

the update of Y in TASK B) is re
stored into the accumulator,

x is subtracted and the result
 assigned to Y. In order to

prevent this conflict, the initiation of TASK B would have to

be stalled until the value of Y
 is updated in TASK A.

These examples illustrate th
e fact that accesses to shar

ed

data must be controlled to preve
nt conflicts. One possible

way of doing this is by preventin
g task dispatching at critical

times. This method is too restrictive
 however, especially for

high priority tasks needing fast System resp
onse. We will

investigate alternative approach
es to this problem.

37

-.._ AMHAH‘A'TP“ "1m" n-nmnnnn A
VFMILCAMPRIDGF MAQQADH-

a ten-re Arman - mus-n em. 4nAn

O

. a)' 05/360 uses the ENQ and DEQ macros to grant tasks access

rights to shared‘data. ENQ will grant a task access rights
as long as no other task is using the data. In the latter

case, the task requesting access rights is put in the wait
state, awaiting the release of this data (DEQ). Upon this
release, the next task enqueued for access rights is taken
out of the wait state and allowed to proceed. For two

tasks that only'want to read shared data, this method
imposes a needless wait for one while the other has the
data enqueued.

-b) ' A second approach to avoid common data sharing conflicts
is to use UPDATE blocks as is done in the HAL compiler [6,7]-
An UPDATE block is a group of statements within a program
providing a controlled environment for the reading and

writing of shared data variables. Upon entry into the
UPDATE block, read or write locks are established around

parts of the compool containing the variables to be
referenced. There need not be an individual lock for
each variable nor should there be only one lock around the
the entire compool. How the compool is organized can be .
decided at a later time depending upon the programs to
be executed and their requirements.

' ‘ . Shoulci .af’*flpart of the compool needed by -a task .be unavailable
for locking, the task is placed in the wait state. Any

other parts of the compool it has locked are now unlocked
so that they can be used by nonwaiting tasks. The requesting

task can be placed in the ready state when the scheduler
determines that all parts of the compool requested now

can be allocated to this task. At this time read or write
locks are established around these parts of the compool.

Three types of locks can be established: read, write,
and writing. We say that unlocked data is in state 0 and
locked data can be in states 1- 3 corresponding to the
three types of locks respectively.

A read lock will enable another task that also wishes
to read lock this data to do so. If a write lock is
established around a piece of data, a copy of the data is
made for the updating task. Upon closing the UPDATE block,

the compool is updated as long as no other locks exist

around the data to be undated. No writing locks can be
put on a given part of the compool, until any read locks

already there are removed by all tasks reading this data.
If the locks exist, the updating task must wait until the
locks are removed.

38

‘

a .

.

It

1]
l}
{i
[I
[I
ll
[3 b, % MTFRMFTRICS INCORPORATED - 7'01 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 9;; 38 - (617) 661-1840, ‘ L

I.

Consider the first example above and suppose that the
statements in question (in TASKS A and B) werg enclosed
within UPDATE blocks. In TASK A a read-lock is established
for fi, because it will be read only. After the.interruption,

a write-lock is established for*fi and TASK B proceeds toward
completion using copy-data for N rather than active data.
At the end of the update block in TASK B, the process stalls
because of the read-lock imposed-in TASK A. As a result,
TASK A is allowed to continue with consistent "old" N data.
After compl tion of TASK A, a copy-cycle is effected in
TASK B and is updated. All conflicts are eliminated.
A table of compool state transitions follows.

éresent
State ' -

Desired Read Write Writing '
State ‘ Free Locked Locked Locked

Free ’ O.K. O.K. not O.K.
’ - appli— .

cable

_ Read Locked . O.K. OQK. . O.K. Wait

-Write Lbcked “O.K. 'o.K. Wait V Wait

Writing Locked not Wait O.K. not

appli- . . . appli-
cable ' ' cable

To prevent any task from locking a part of the compoool
any longer than necessary, no I/O statemefits and no pro-'

grammed WAIT statements will be allowed in an UPDATE block.
This requirement will prevent a high priority-task from
having to wait for long time intervals while a lower
priority task has data locked.

To economize on the amount of core needed for the compool,
part of the compool can be overlaid on transitions to
different mission phases. If two tasks that are only
executed during a particular mission phase use part of
the compool, it is needless to keep this part of the compool
in core as long as no other task in another phase will
ever again use the data. Ih this case as new program
modules are read into core during a mission phase transi-
tion, this part of the compool can be overlaid.

39

. : MEDAVENUE 7- CAMBRIDGE. MASSACHUSETTS 02138. 0 {617) 661-1840 L

, , fi . . , . W A V _ ,_ V _ , , -7 _ . - , . , ‘ ,, r m w v ” - i v .V

. . . O V

'
I

.

.- . '

. O

'

0

Figure 2 .8 Control of Shared Data

EXAMPLE 1: READ AND WRITE CONFLICTS .

. ' UPDATE; ‘ . UPDATE; A: TASK; k / » B: TASK;//
M = K1 + £3; CONTROL \ fig xy',

.& ' '

0?

EXAMPLE 2: UPDATE CONFLICTS

' ' .. UPDATE. ‘ UPDATE. '
‘A: TA 3% ' : ; ' - S K / .. . B TASK z /

Y=Y-X; CONTROL ‘.Y=Y-Z;

CLOSE A;“\CLOSE; - CLOSE B “\CLosE;

NOTES: 1. B "INTERRUPTS" A W BOTH CASES
2. #1 TASK A RESUMES USING OLD AND NEW VALUES FOR N
3. #2 TASK RESUMES ”CLOBBERING" THE VALUE FORY SET BY TASK B

m m m a u w u m a m u w w w u u

- ~ « .. ,-
,

q'. ,
M

1

3
1-

-
»

:

.
3

-

fi fl __,,,,_.‘ V_H ,
u ‘ . _ - g I ' '—‘

2.8.3 Data Set Management

Data set management is heavily dependent upOn the type
of mass storage unit used on the Space Shuttle. If a tape
drive is used, as in the MDC/TRW study, very little data

management capability will be necessary. However, if a randdm
access unit is used, as in the NR/IBM study, more extensive

data management facilities will be necessary.

In this report we will assume a random access unit,

especially since the ASIL configuration includes an IBM 2311
.disk.drive. However, the data management system.we will ' j

present is not as general purpose as in the System/360, for . 1
example. It is designed to meet the needs of the Space Shuttle, '
mission. One of the criteria used in designing this part of
the executive is the desirability of minimizing use of the
random access unit during the Space Shuttle nissiona The major
anticipated uses of the storage unit are to record flight data,
to update the programs in core memory o n , a per mission phase
basis, and to retrieve display skeletons fbr the viSual
display application programs. More frequent use of the mass
storage unit is unnecessary, based upon the two Phase B
study reports [1,2].

3“, There will be two classes of data sets on the random
access storage unit, read only and read/write. The former
category may be read at any time by any number of tasks withoUt
conflict. The latter category, however, can cause access

conflicts, and hence, some protection mechanism is necessary.

A directory of each data set on the Storage unit and its
characteristics will be maintained in core mémory (see Figure
3.4). The data set directory entry for a read/write data
set will identify only one program module*with writing access rights,
Whenever a task requests to write upon a data get, the I/O
supervisor will check to see if the data set is indeed read/
write, and if the requesting task has access rights. Since
only one task can update a given read/write data set, no write

conflicts are possible.

A task may also request to read a read/write data set.
For example, data recorded in a former mission phase may be
important to an executing task. In this case, the 1/0 super-
visor will honor the read request. However, the software must
be structured so that the requesting task is not reading part
of the data that is presently being updated. The I/O super-
visor will not check for this fact. Each task that wishes to
read a read/write data set is re3ponsible for knowing the
integrity of the data it reCeives. -

* This program module must not be reentrant.

41

Li L INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE. MASSALhUSEI i'S 02133 (617) 661- 1840
, ‘ _ _ , __ .__A ._ . . _ - _ _ . _ _ _ _ ‘ _ M . — 4L-

Chapter 3

ExecutiVe SYstem Architecture

3.1 Introduction

Describing the architecture of the executive system con-
sists of more than an explanation of how the various parts of
the executive software work. It also consists of an explana-
‘tion of how these parts dynamically interact with each other
to extend the power of the host machine.’ Furthermore, the

[- hardware structure of this machine plays an additional role in

’ executive system design since particular hardware features,

r--. such as 1/0 channel structure, influence the software design.
‘ 11 in a sense we may consider the machine together with its ex-

; ecutive software to be the full executive system that enables
application programs to be executed.

f" .

L; The executive system is responsible for the control of
all computing tasks in the Space Shuttle real time software

I» environment. It must manage the allocation and utilization‘
of all resources of the system including processor, memory,

data bus system, secondary memory, timers, and all other de-

w . vices connected to the computer. The executive system must be

3. _ organized such that it simply and efficiently allocates system
i resources to the computing tasks and provides sufficient gen—

eral services to application programs to enable them to achieve
mission requirements.

In order to make the system flexible, it must be structured

such that the executive modules are either self-contained or

utilize a §tandardized set of subroutine§: It must be possible
to make alterations to these modules without jeopardizing the
rest of the executive functions.

_
_

.
.

-
_

_
_

.
.

.
_

.
.

In order to make the system simple, it is necessary to /
prevent application programs, regardlzss of their complexity,
from directly performing system control functions. ‘This limits

the gumpgr of checks and balancgs necessary in order to assure

full system re 1 1 1ty, is does not mean that application

f
u
n

a
»

m
e

.

L 43

INTERMETRICS INCORPORATFD 701 CONLORD AVENUE CAMBR!DGE. MASSACHUSETTS 02138 (617) 661-1840
W - _ . _ . h- ,— —k *. 4-:— 4 L _==~ . ._‘

A
3
"
“

_
—

—
-

I

.
_

.
.

_
_

.
w

_
_

l
.

_

V

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

.

programs are denied use of hardware facilities, but rather

that the control of such facilities is restricted to one

re5ponsib1e module. ~

Since the system must support applications which will
haVe real-time inputs and outputs, it Will have to be or-
‘gented toward being able to guarantee response within some
_predictable time constraints and yet not be perfcrming sfiber-

Visory tasks so frequently as to constrict throughput rates,

a problem encountered in many highly interactive systems.

This chapter presents a description of the architecture

of the executive system selected as a basis for the rest of

the design. The structure was derived from the analysis of

executive functions and system requirements described in
Chapter 2. The major executive queues, directories, control

linkage and operating environment are defined.

3.2 Executive and Task Structure

The flight software for the Space Shuttle computer aviOnics

system can be organized into two categories: system software»

and application software. The executive system is the kernel

of systems software which interfaces directly between the com-

puter configuration and the applications Software. It should

be constructed to appear as part of a virtual machine to the

application software programmer. System software can include

other functions such as display software, interpreterr, or

other functions necessary as utilities to application software.

In this report, the executive system structure identified is

a kernel set of functions necessary to contrnue and execute

application software.

Certain assumptions have been made-about the

application software, which are necessitated by the charac-

teristics of the executive system. The major structural pro-

perties that application tasks must possess are the following:

1) All application tasks communicate with each other

and with the executive following a rigid set of conventions

which will be described in the following chapters.

2) Application software is block oriented with all the
program modules for a given mission phase in main

memory during that phase. Application tasks are

structured as subroutines dispatched by the executive
(analogous to 08/360).

3) There are no direct I/O operations from application

tasks. The executive's I/O routines handle all I/O

requests.

44

(617) 661—1840

8
:
:
 I
2
2
3

‘
3
3
 I
2
2
!

1
:
2
3

5
2
3

I
3
3
1

4::

=5 2
i
C

Q ., i
. \»

W k

A: PROCEDURE A: PROCEDURE

__ SCHEDULE. A IN T

.. SECONDS;

E ; . ' " ' . ' ' ' :

- SCHEDULE A IN T ' -

f" - SECONDS;

L . . END ‘. END

E CORRECT INCORRECT

.
.—

..

Figure 3L1 Correct and incorrect methods of time

: v - - scheduling of background tasks.

r
-

-
~

’ I

M

M
y

.
.

O

‘
.

.

_

45

LINTERMETRICS‘; INCORPORATED ° 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 6'6i-1840

INTERMETRICS INCORE’ORATED' 7Q1 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 -

‘

4)‘ A task cab request the scheduling of another task.

5)- All access to shared data.is through the executive:'

6) The executive maintains a list of allaprogram modules
that can ever be executed by the system during flight.

7) A task can include a local recovery procedure in case
of a software error. ‘

8). All tasks' dynamic memory requirements are known to the
system preflight,

9) Background tasks, which are repetitively operated, are
rescheduled at the end of their execution and not at
the beginning as shown in Figure 3.1. This is specified'
because there might otherwise be insufficient background
time to complete the task prior to its next dispatching.

3.2.1 General Descfiption

The executive system is driven by a minor cycle real
. time interrupt, which causes execution of the cyclic sequencer.‘

he cyclic sequencer.is an executive task which performs all
unctions that-are characterizéa by precise timing sepcifica-
tions. It commands all I/O operations done on a periodic‘
basis, supervises execution of all computations to be run on
a periodic basis, updates cor; memory with input received
in the last minor cycle, and monitors the status of avionics
subsystems. Upon termination of the cyclic sequencer, the.
dispatcher is called to select a background task for execution.

'*The dispatcher is at the heart of the executive system.
It is this executive function that selects tasks for execution
on a priority basis. When a task terminates, it returns to the

dispatcher, which calls a terminator routine to insure the
release of all system resources held by the task.

While an application task is executing, it may request
another task to be scheduled for execution by calling the
scheduler. Scheduling can be done unconditionally, on a time
basis, or on the occurrence of an event. A function of the]

scheduler is to put this new task in a state ready for execu-‘
tion. It does so by calling the resource allocator to give the
task any resources it may n e e d . . Should a resource be unavailable

46 i
i

(617) 661-1840 at L

----u
f
“

"
7
7

‘
F

”
f

]

p.—

-.
.

A
 .

_
_

.
.

.

”
a

“
.

.
.

q

I

L
L

~ u .

the task must wait for scheduling until this resource is
freed. At this time, the resource can then be assigned to the
task, and the task is then ready for execution. It competes
for CPU time on a priority basis with all other tasks in a
similar ready state. The dispatcher will choose the highest
priority task that is ready for execution and assign the CPU
to this task. A task will continue executing u til it ends,
or 333;} it voluntarily releases the CPU, or fifizzz a system
event occurs necessitating the CPU being assigned to another
task.

At any time during its execution, a task may request
I/O operations to be done and may request its own execution be

halted until thesé I/O operations are completed. It is one of

the functions of the executive to supervise and schedule all'
I/O Operations. In addition, the executive must supervise ' -
error recovery functions. Should a hardware or software _ 1

error occur, the executive must provide the capability of
running a specific recovery routine depending upon the type of
error. A system reconfiguration routine might then have to be
executed if a piece of hardware is judged faulty. The faulty .

equipment will then be switched out, and the system will

continue execution.

The execution software.to perform all the above functions
will be organized in modular fashion. We will now identifiy
the necessary modules. -

3 . 2 . 2 Identification of Executive Program Modulés

a) Cyclic sequencer: performs all services done on a minor
cycle basis.

b) Scheduler: puts previously inactive task or waiting task

in a status ready for execution.

c) Dispatcher: assigns CPU to a task ready for execution.

d) Resource allocator: assigns.system resources to tasks.

e) I/O supervisor: diseatches all I/O requests $0 channels.

f) Machine check supervisor: diagnostic routines executed

when hardware error is detected. ,

g) Reconfiguration routines: brings up standby equipment
when active unit is judged faulty.

h) Timer routine: sets hardware timer and signals events
based upon elapsed times.

47

INTERMETRICS INCORPORATED - ”01 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 (617) 661-1840 L

. i) ‘ Program check supervisor: provides recovery from detectable
' software errors, such as division by zero.

i

1 j) Supervisor service routines: provide supervisor services

; - for application programs, e.g;,_enable a task to.await
‘ ' an event or to free an assigned resource.

A
"

:
‘

p
a

a
'

3 . 2 . 3 Executive Operating Environment

' . The executive is not resented with a random stream of-
tggks,’gueuea upon secon§ar§ storafie; as 15 § S Z § § § . Insteaa °
there is a flxed set of tasks organized on a mission phase -
basis. Within a particular phase, task throughput is maximized.

Then if core memory must be overlaid with new program modules,
.they are loaded from secondary storage at the beginning of a

new mission phase in order to minimize the use of the mass
memory unit. Moreover, since the modules loaded will be known

preflight, their loading addresses and relocation constants
will be determined at compile time. In gther wordsI fullx
dxgamic loading and binding of program modules is not suEEorted

Qx,:he_execntine_~ This minimal use of the MMU presents a fixed
program environment for the executive system.

. 3 . 3 Definitions

3.3.1 Task

' A task is an executive unit of work which competes for
'system-resources. A.task is created dynamically upon e x - ‘
ecution of the executive's scheduling function. 'A task
is identified and defined by a unique task control block.
A task control block (TCB) is a table containing all pertinent

control information for a task used by the executive for task

, . management. The TCB is created by the scheduler when it

? attempts to bring a currently unscheduled program.module into

F , the system. Each TCB contains a pointer to a program module
which the task executes.

‘ ' A program module is code executable. '
‘ . -by the executive. Program modules are started by the

executive and return control to the executive END function upon

completion. .A program module may be associated with more than
one taSk. . '

E
R
E
I

H
I
E

l
i

i
i

.

The following information is contained in the TCB:

task identification; or a’
b) program module ehtry point;

.48

E
2
3

INTERMETRICS INCORPORATEQfAYQI CONCORD AVENUE .’ CAMBRIDGE, MASSACHUSETTS 02138 (617) 661- 1840 L

O c).
d)

e).

f)

g)

h)

i)

h)

k)

m)

L4 n)

‘ 1)
fi‘.l° '.

0

program module characteristics, such as reentrant;

‘an area to save the PSW, 16 GRs and 4 FPRs should the
task go on the ready or wait queues;

task priority;

a flag to denote the task being partially complete;

a pointer to the DCD entry for the task's dynamic core;

a pointer tb the chain of ECBs should the task go into
the wait state; 4

the number of events the task awaits to be made ready,
supplied when the task goes into the Wait state;

a pointer to a list of the compool parts the task has locked
while it is in an update block;

a timer entry indicating the time at which the task can
be made ready should it be on the time wait queue;

a pointer to any task's TCB that schedules this task by
LINK;

an entry point for a task specified recovery procedure
in case of a program check error;

threaded list pointers for the queue and subqueue the

TCB is on.

[' A task control block designed for the EP is illustrated in

Figure 3.2. It contains a task ID assigned by EXEC dynam—
r“ - ically at schedule time‘

i t . a)

E ' I - b)

. c)

A task may be in one of four Egsk states at any time.

Active: The task has been allocated the CPU and is ex-

ecuting.

Ready: The task has been assigned all its resources and 4
if ready for execution. It only awaits the CPU. 2

.Wait: The task is awaiting the occurrence of some event -\
or events in the system. Such an event may be the release
of a resource, an elapsed time, or an I/O interruption.

49

INTERMETRICS INCORPORATfigglm CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 0213§ - (617) 661-1840 L

Program module ID ' ~

character- ' .
istics entry p01nt

prlor- comple- DCD pointer
ity tion state

?SW (2 full words)

GR (16 full words)

. FPR (8 full words)

event

infor- ECB pointer
mation

Compool lock list poinéer

Timer entry

Recovery program address

Pointer to parent task's TCB

TCB queue pointer

Subqueue pointer

I
N

\
/

l Full Word

Figure 3.2 Format of a Task
Control Block‘

50

. d) ‘ Inactive: The task 'is not presently known to the
' scheduler. However, its program.module is present in

core storage or on a mass memory unit. (Strictly
speaking, an inactive task is merely a program module
and not a task. A program module is made a task at
schedule time, when its TCB is created.)

Our concept of the states of a task is analogous to the
MULTICS concept of the states of a process [11,17]. A state
transition diagram is shown in Figure 3,3.

3.3.2 Executive Queues

The executive queues are lists used by the executive
to assoCiate and control tasks of a similar condition. Task
control blocks are linked into lists corresponding to a par-
ticular executive queue. A task can only exist in one queue
at any instant of time. There are four major executive queues:
ready queue, wait queue, time queue and I/O queue.

. a) Ready queue: The ready queue is a threaded list whose
' . elements are the TCBs of the tasks ready for execution.

‘ . - These TCBs are organized on a priority basis with the
L‘ TCBS correspondinq to the highest priority tasks oc-

“ curring at the beginning of the list. An entry is es—
tablished by the scheduler in the ready queue when a task

F
A

[; ' is brought to the ready state.

’ b) Wait queue: The wait queue is a threaded list whose _
*} elements are the TCBs of the tasks waiting for the oc-
L; currence of some event or events. Each TCB on the wait

queue points to a list of ECBs, and each ECB on this
list corresponds to an event. When all these events
or some allowable combination of them have been com-
pleted, the task can be put on the ready queue.

L
.

.
.

.

.
J

c) Time queue: The time queue is a subqueue of the wait
queue. The tasks on the time queue are awaiting the oc-
currence of a timed event. At some multiple Of a minor
cycle time interval, the executive examines the tasks on
this queue, to determine if they can be made ready at
the present time. If so,'those that can are placed on

g the ready queue.

F
M

.

8
.

1
.

:

{
H

'

i
n

.
.

.

" d) 1/0 queue: The 1/0 queue is a subqueue of the wait queue.
The tasks on the I/O queue are awaiting the completion of

1 some I/O Operation. When the I/O operation completes, a

= . task awaiting it in this queue can now be placed on the
. ready queue . '

_ 51

L lNTEfiMETRICS moonponmrao - 70.1 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

end'ofta'sk ' . . T programmed WAIT ° abort ACTIVE I _

D
i

s
p

a
t

c
h

e
r

.

D
i

s
p

a
t

c
h

e
r

\

cheduler , S ‘* WAIT
(on occurrence

of an event) I .
INA‘CTIVE ’- '

l

7
0

.

a
?

D

.<

. schedule command"

Figure 3 . 3 Task State Transition Diagram

52

.3
g
3
J
3

g]
3
I

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ° CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

.
1

-
.

.
.

'1:

i

3. 3. 3 Common Data Pool

The COMPOOL is an area of operating memory permanently

assigned to data variables shared by tasks.
All communication betweex tasks is done through the compool.
Data assigned in the compool remains in the system subsequent

to a task cempletion. It is statically assigned as opposed
to the dynamic memory assigned to a task for working storage.

The compool is organized into two parts: a mission compool
and a phase related compool. The data assigned in the mission

portion of the compool is permanently resident. Data assigned

- t o the phase dependent portion of the compool exists only

during that phase of the mission. It is overlaid with other
phase data during subsequent mission phases. When a mission
phase is initiated, the phase is loaded from the secondary

memory and the phase dependent compool is initialized.

Data which is to be retained subsequent to a task completion

must be included in the compool. All accesses to data in

the compool must be coordinated by the application ta
sk through

the executive system. The executive prevents conflicts in

the use of the data by system tasks. The SECURE, RELEASE

and COPY executive functions are provided for compool
 inter-

action and are discussed in a succeeding chapter.

\ K a ‘ v \
C .-

3.3.4 'i/O Request Block

The I/O request block (IORB) is a table of all pertinent

control information for the I/O channel to execute an I/O

operation. The format, content ,and use of this cantrol block

are discussed in Chapter 5.

3.3.5 Directories

There will be three directories present in core storage
for use by the executive task management functions. These

directories and their use will now be defined.

.3.3.5.1 The Program Module Directory. The program module

directory (PMD) is a list of all program modules known to the

system; i.e., all program modules both in operating memory

and secondary storage. Each entry consists of three full words_

and has the format shown in Figure 3.4a. ~It contains the

following information: '

a) program module identification,

b) where the module is resident,

c) address of_module,

53

‘ '“ INTERMETRICS INCORPORATE-D - 701 CONCGRD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

w,

1 i d

.i
aa

. . d) - module characteristics, such as reentrant,

e)' dynamic core needs.

g . . This directory is updated when the contents of core change'
‘ ‘ or new program modules are added to the system preflight.

Its major purpose is to enable the scheduler to locate a
program module and to provide enough information to con-

x , . struct a TCB.

3 . 3 . 5 . 2 The Data Set Directory. The data set directory
(DSD) is a list of all data sets residing on the MMU. A data
set may be an executable program module or a collection of
flight data. An entry in this directory is three full words
containing a data set identification word, MMU starting
address, logical record length, and data set characteristics
(i.e., read only or read/write). In addition, if this data

set can be updated, the program module with update rights will
be identified in the DSD entry. This information is illus-
trated in Figure 3.4b-

u
“

M

'
5

"

5
-

4

“
.

8
3

w

i
i

Q The DSD enables the I/O supervisor to locate data sets
. on the MU for I/O operations. -

3.3.5.3 The Dynamic Core Directory. The dynamic core dir-
ectory (DCD) is a list of all blocks of core that can be
dynamically assigned to a task. Each entry is two full words
containing the address of the block, its byte length, its

subpool number, and an assignment bit. The format is given
in Figure 3.4c. The DCD enables the executive to dynamically
assign core to tasks at schedule time.

3.4 Subroutine Linkage

In order to standardize the way program.modules are
structured and to avoid conflicts in parameter passing, regis—

ter usage, and register saving, a method of program module
initializatibn and linkage must be developed. The EP hardware

-structure, as seen by the programmer, is similar enough to

System/360 to make a linkage convention similar to the 360
feasible. -

l ' Upon entering a program module the contents of the gen-

{ eral registers must be saved so that they can be restored
upon task termination. These registers are stored in an area
‘of\core called the save area. Each task must provide a save

‘l’ area, pointed to by GR13, which is used by any subtask it calls.
The format of the save area is shown in Figure 3.5.

54

m
i

m

-
m

m

:
2

:

mm mm

L IMTIIDAAFTQILL. ;. . m n z ; r-I 4 . ! 0 : 3 : x . “ 1 : 1 0 ” A ‘ . . 0 1 » . - . ” - 1 3 4

Program Module Directory (PMD) _ ,

program module ID ~

device // address

character- dynamic core
istics / / / reqUest

Data Set Directory (DS D) .

data set ID

access record type length address

program module ID for update access '

(b)

Dynamic Core Directory (DCD)

. . 7' /'/;:-9 ‘
aSSIgned / /; / / address

length // subpool
/ number

(C)

Figure 3 . 4 ~System Directory Elements

55

/////////
address of previous save area

address of next save area

GR

_c-;R

GR

GR

GR

14

.15

11

12

Figure 3 . 5 Format of a Save Area

56

INTERMETRICS INCOBPORATED - 701 CONCORD AVENUE - CAMBRIESGE. MA§SACHUSETTS 02138 - (617) 661-1840

B
{I
9
R
I]
I}
[I 31

. After saving the general registers, one or more of these

‘ registers can be initialized as base registers. All addressing

of core storage in a program module is done with base reg-
isters. Finally, a new save area address is put in GR13. An

example of this linkage follows. ‘

STM 14, 12, 12(13) save registers in save area.

BALR 12, 0 I initialize GR12 as a base
register.

USING *, 12 declare to assembler that
- ' GR12 is base register.

LA 2, SAVEAREA get address of next save _
area.

ST 13, SAVEAREA +4 store addreés of previous
save area in next save area.

ST 2, 8(13) store address of next

7‘ save area in previous save

3; area.

a. LR 13,. 2 .. - load GR13 with address of

Ii next save area to complete
“ linkage.

1; When the linkage and initialization are done, a task may now

freely use the general registers.

I 2
L ‘ be made:

r 71 . G R O :

GRl:

GR2-GR12:

GR13:

GR14:

GRIS:

L .

; _ . - F r r , .

~The following asSignment of the general registers will

contains address of dynamic core upon entry
to program.module,

used to pass parameters between program
modules,

may be freely used by tasks,

points to save area provided by task,

contains the return address of task that

called currently executing task,

contains entry'point address whén contfol is

passed to a task and can also contain a re-
turn code when a task terminates.

57

L INTERMETRKZS INCORPORATED - 701 CONCORD WACHUSET‘I’S 02138 - (617) 661-1840 L

- . A i :I

. Upon completion of its computation, a task terminates by.
restoring the content of the general registers it had-saved
upon entry, setting its return code in GRlS, and branching
to the return address in GR14.

Example : T

L 13, 4 (1 3) get address of previous save area,

‘ LM . l4,12,12(13) restore registers,

LA 15,4 load return code of 4,

BR _ 14 . return.

As previously mentioned, all communication between tasks 3
is via the compool. Since one task cannot pass another a _ ‘
parameter list, the compool serves as the communication medium. 3
Data variable assignments in the compool are generated at
system compile time and do not change during the mission. In
other words, no dynamic assignments can be made in the compool.
All tasks reference compool data at fixed locations for the :2
duration of the mission. .

3 . 4 . 1 Common Subroutines

. In addition to a,_ task being able to schedule another
task, a task may execute a common subroutine. A subroutine is

a piece of coding which may be used by several tasks without
itself becoming a task. A common subroutine must be reentrant
or serially reusable. In the former case the calling task a
supplies working memory for the subroutine. In the latter case,
the subroutine must supply control for preventing multiple simultaneou
executions. A software generated event can be used by the subroutine ‘3

as a semaphore to insure only one user at a time [12]. This
topic is further discussed in Section 3. 7. Examples of common
subroutines are square root, trigonometric functions, and
vector/matrix functions.

The calling task may pass parameters to a common sub—
routine by providing a pointer. ‘This pointer will COntain the
address of a list of pointers, each pointing to one of the para-
meters, as illustrated below.

addreSs of ' \ address of
parameter list parameter 1 I I]

address of
parameter 2

address of
arameter n 58 p

INTERMETRICS INCORPORATED 701 CONCORD AVENUE- HCAMBRIDGE MASSACHUSETiS 02138 (617) 661-1840

I
;

‘-
_

C
f
"
?

.
’

”
-
3

'.

l

The subroutine may now read each of the passed parameters and
return a computed value in one of them. The registers.in
which the parameter pointer and dynamic core pointer are.
passed to the common subroutine have been described in the
last section. -

3.5 Task Priority Levels

In the Space Shuttle computer there will be six priority
levels, 0-5, with 0 being the highest priority. Priorities
3, 4, and 5 are used by application tasks.

Priority 2 is reserved for any application task while it
is executing an UPDATE block. That is, if a task of priority
3, 4, or 5 is executing an UPDATE block, the taSk's priority“
is raised to 2 until the updating of common memory is com-
pleted. It then returns to its previous value. Thus in ef-
fect, we are limiting dispatching of priority 3-5 tasks while
another task executes an UPDATE block. By the nature of the

system there will be at most one task at priority 2 at any
given time. This places restrictions on the use of an update
block in.that a task cannot enter the wait state voluntarily

under any conditions. It must enter the block, complete the

updating of common memory, and exit the block. The high

priority cyclic sequencer is allowed to intérrupt an update
biocx. ‘

Priority 1 is only used by the cyclic sequencer. It is
given priority over any application task because of the time
dependent nature of its execution. Should the cyclic se-
quencer be unable to lock part of the compool, the task at
priority 2 is executed until it closes its UPDATE block. Now
the cyclic sequencer can lock its required data without inter-
ference. The use of priority 2 is specifically designed to
enable the cyclic sequencer to execute with the least pos-
sible wait due to shared data unavailability.

If a response time equal to a minor cycle is insufficient
to handle critical mission functions, a special priority level

could be included in the executive system. .Priority 0 can be
reserved for acyclic tasks that must immediately be executed
for the safety of the mission. These tasks are time constrained

and must execute in less than 0.5 msec. This rule is enforced
by a timer in the hardware; (Although the EP has only one
timer, the computer chosen for the Shuttle mission would need
at least two, one for the minor cycle interrupt and one for
timing critical task events.) Moreover, priority 0 tasks may
not use dynamic core or use the compool since by their very
nature no wait in their execution can be tolerated.

59

I

l-I

___ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138

. ‘

Examples of priority 0 tasks are computations that must
be done during a critical maneuver, engine burn or cutoff,
etc. Should one of these tasks require more than~0. 5 msec

to execute, it may change its priority to 3 or lower during
its execution. Should there be no higher priority task
scheduled, it will continue execution at this lower priority.
Otherwise, it must wait for the CPU. In this way critical

functions can immediately be given 0.5 msec of CPU time
 without

seriously interfering with the executive's cyclic functions
 that

must be performed every minor cycle.

Including pfiority 0 in this executive system would re-
quire more hardware interfaces to the computer than we have
'assumed. There would have to be a method of generating an
immediate external interrupt in the CPU from the subsystem
or device sending the interrupt condition. 'However, sub-
system requirements have not been sufficiently defined yet to

determine whether or not a priority 0 is necessary in this
system.

3.6 Assignment of Core Memory

Operating memory will be organized as follows: the lower
core addresses will be assigned to the executive, as shown
in Figure 3.6. The first locations contain system registers,

such as the timer, the PSWs, and the CSW. This assignment is

descrlbed in the 4 Pi EP Manual [3]. The next block of core

contains the executive's program.modules, followed by the

executive work area; Within this latter area the executive's

queues, directories and tables are resident.

There are three types of queues present in this area:
TCB queues, ECB queues, and IORB queues. Since each type
of control block is a fixed size, the executive can maintain

three threaded lists of unused blocks of core'storage, each

element of which contains enough core for allocation as one

of the three types of control blocks, respectively. Thus,

when a task requires a control block, the executive can remove
an element from the appropriate queue of unused blocks and

assign this block to the task to be formatted into'a control
-block. Similarly, when the executive determines a task is

finished with a control block, that core that the control

block occupied is then returned to the appropriate queue of.

unused blocks for later allocation.

Sufficient space must be allowed this part of core to

hold the maximum number of control blocks that will ever be
needed by application tasks at any given time. Should space be

unavailable, this is an error condition since.more tasks are
in the system than its resources can accommodate. »

60

(617) 661 1840

S
i
d
!

I
§
i

C
h
i

-w

—
,

v
.

_
.

_
_

_
4

4

&
L

. L INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSEWS 02138 - (617) 661*‘34‘fii ,

‘ - . (.

.,

.0

The compool will immediately follow the executive work

area and be divided into a mission portion, which is resident

in main memory throughout the flight, and a phase~portion,

which is overlaid when a mission phase transition occurs. A

similar feature exists with the application software which

follows next in memory. The mission resident part cames first,

followed by the phase dependent part.

The protection key feature of the EP assumes each block

of 2K bytes of core is assigned a single protection key. No

subdivisions of these blocks can be assigned different pro-

tection keys. For this reason and the fact that most aero-

space computers do not have a protection key feature an al-

ternate method of protecting parts of main memory from illegal

access is necessary. To avoid executive overhead in performing

this protection function, simulation of the entire software
system on a ground based computer must check for illegal accesses
from the application tasks. The methods of valid executive

access are discussed in later chapters. '

3.7 Eventg

An event is an occurrence of significance to the sysiem.‘

There are a fixed number of events established for the system

h‘identifiea in an eVent directory. There are five categories

of events reCOgnized by the executive, the first four of

which are controlled by the executive. These are: time

eventg, I/O completion events, release of shared data, and

release of dynamic memory. If other external interrupts are

used in the EP system they may also be categorized as an

event. The final category of events include those which are

controlled via application software and used for task synch-

ronization. 3

There are two types of events withln this last category:

latched and unlatched. A latched event has associated with

it a binary state either on or off. Latched events may be
signalled on (posted) or signalled off (deposted) under

application software control via the eXecutive. A latched

event maintains its current state until changed via signal

.command. An important use of latched events is to record

the occurrence of an event within the system so that if a

task later wishes to use the occurrence of the event as a

criterion for performing a funCtion, it can do so without

having lost all record of the events occurrence. An un-

latched event is only signalled on. It is signalled off im-

mediately after processing by the executive. In a sense an

unlatched event is a pulsed event analogous to a hardware

interrupt.

61

IL

1 J i l 1
A

'
.

‘

K
l

.
"

,

A

System Registors

Executive Coding

Executive Work Area

Mission Compool

Phase Compool

Dynamic Memory Pool

Mission Resident Application
Software ' .

Phase Application Software

a
a
I
3 Figure 3.6 Structure of Operating

Memory ‘

6 2 -

"L IN’TERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138. - (617) 661—1840
Inn-u »

r
m

n .

3
f
n
.

A
g

‘

,fl
‘"

Io' .

_
,

.
-

-
.

.

4
9

:

r ‘._

‘

An event control block (ECB) contains the current status

of an event. It is dynamically created by the executive when.
a task is placed in the wait state. All events have system

scope. When the anticipated event occurs, bit 0 of the ECB
is set to l to record the event for the executive. See
Figure 3.7 for the format of an ECB. The ECB contains a bit

to denote if the task is awaiting the event, a bit to denote
if the event is completed, and two threaded list pointers.

3.7.1 Event Handling

In the Space Shuttle software system.there is a cloSe
relationship between task.management and event handling.

Tasks that are placed in the wait state remain there until the

anticipated events that they are awaiting occur. Then the

event handling facilities of the executive call upon the

scheduler to place these tasks in the ready state.

Tasks can be placed in the wait state in two ways.

First, a task can voluntarily request the executive to place

its TCB on the wait queue until some anticipated event or

events occur. Second, when the scheduler attempts to place a

task in the ready state, the unavailability of a resource

on the nonoccurrence'of some event(s) causes the task to wait

until the resource is freed or the event(s) occurs.

A TCB in the wait queue is associated with a threaded

list of ECBs, each corresponding to an event whose occurrence

the task awaits. In addition, each event has an associated

event list which contaLns pointers to all ECBs of tasks
awaiting the occurrence of the event.' Thus, when an event

occurs, each ECB pointed to by the event list can be posted,

i.e., record the fact that the event occurred. An illustration

of this control structure is given in Figure § . 8 .

After the event occurs, the scheduler is called. Its

function is to determine if any task awaiting this event can

be placed on the ready queue. The criterion for this decision

is whether or not all (or some acceptable combination) of the

events a task is awaiting have occurred. If so, the task is

placed in the ready state by having its TCB moved to the

ready queue and having its ECBs deleted. In addition, the

scheduler can now delete the event list associated with the

event. Tasks can perform a function based upon the occurrence

of a single event or upon the occurrence of some combination.

of several events.. In the latter case the allowable com-

binations are

l) The occurrence of all of the events, or

63

L JNTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 ' (617) 661—1840 L

awaiting event
event complete queue pelnter

queue pointer

Figure 3.7 Format of Event Contrbl Block.

.' latched on exclusive fi§§§§S§SE§§S§S§§E .

bits: 0 1 2 ' . 3 7

E _ Figuré 3.9 Format of Event Descriptor Byte

64 _
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ° CAMBRIDGE. MASSACl-«EUSETTS 02138 ° (617) 661-1840

51

E
a.
a

El
8
B
3
EL h';

I.

. 2) the occurrence of 111 out bf n events, where m < n.

Each task awaiting an event in one of the first fcur cat-
egories can only await this one event and not some combination
of events. However, software controlled events contain a

predefined number of distinct events which may be used in-
dividually Or.in combinations by tasks. Events are not dy-
namically created by the system. Hence, software generated
signals must correspond to events defined at system generation
time. Each software generated event contains an event de-

scriptor byte, containing the characteristics and state of the
event. Figure 3. 9 shows the format of the byte. Bit 0 de-
scribes the event as latched or unlatched; bit 1 records

whether the event is on or off; and bit 2 describes the event
as exclusive or non-exclusive, a distinction we will presently
explain. -

Within the class of unlatched events we will choose a
' i . subset to be exclusive events. An important use of exclusive

' events is to exclude tasks from use of some serially reusable

reséurce. When an exclusive event is signalled on, only the ,
{f highest priority task awaiting the event is placed in the

t ready state. All other tasks awaiting the event remain on
“” _ the wait queue. When the highest priority task is made ready,

. . the eventis then signalled off by the scheduler to be sure
’W - * no other application task can interfere with the exclusion

{ process. This use of exclusive events is analogous to '
' Dijkstra's concept of semaphores [12].

5 Note: it is the duty of the programmer to know if the
« events he is using in his tasks are being used by any other

- tasks.’ Without being sure of this fact, tasks can unintendedly

3 j interfere with each other' 5 execution and destroy the in-
" tegrity of their computations.

;; Also-note: in the actual implementatibn of this
executive system, some categories 6f events Will be immediately

serviced by the executive upon occurrence of the event; and

hence, a record of the event's occurrence will be unnecessary.
These events will therefore not.need ECBs in their functional
implementation. These events include release of dynamic memory
and unlocking parts of the compool.

<_
K.

i a.
65

1" lERMETRICS INCORPORATED ° 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 651-1840

_ wait

queue ' Event list'
1

. 4/ . ____x
' w ECB ECB TCB . A -< A

A 1 ‘ 2

C . . ' . Event list

a TCB , ECB z . . W

t ~ - Event list
\ . - _ ‘ ' +—-———— 10 ' -

' EEB -‘ ECB" _ _‘ _ é
TE. < N ‘——“. N < * , 10

Figure 3 . 8 Event Handling

“—0! ti E3 :3 :2: m c3 53 m. In: :a m u N u u M m N

.
_

,

——v—’-—t

3.8 I/O Scheduling ' ' - . . .

We assume that the data bus system'hardware will be

mechanized in a way which allows bus operations to continue

independently of the CPU once an I/O command is issued to the

bus control unit. This means that the processor is only
allocated to the I/O function during an I/O channel command

and should be reallocated to the computation job stream updn

completion of the command. The design question for the software

I/O control will.be how to schedule the_I/O operation: should

- it be decoupled from the executive program control and main-
tain its own separate I/O queue, or should it be inserted as

an integral part of a fixed sequence? For example, if I/O

were operated each minor cycle it would output data from the

previous cycle, and input data which is to be processed during

the following cycle. With this concept, however, the I/O

must be predetermined and fixed, with constraints similar to

those for fixed scheduling of computational jobs- Input and

.output then occurs each cycle, whether it is needed or not.

This approach will cause excess data to be put on the bus,

reducing its effective bandwidth, and its capability for

expanded performance. On the other hand, scheduling 1/0 as

a priority queue based on demand, has many features in common

with scheduling jobs (e.g., priority, timing, conflicts, etc.).

An effect of the I/O queue on the system is that several jobs

may be in a suspended state awaiting I/O completions. Methods

are available to avoid such dclays, for example, buffering

for data in and out,-and issuing commands only via a queue.

The 1/0 algorithms presented in Chapter 5 will combine the

best features of synchronous and asynchronous control.

3;9 I/O Considérations

At present there are uncertainties conceining the

operation of I/O whose resolution overlaps the designs of the

shuttle avionics subsystems. Some.bf these uncertainties are:

a) Does the central computer have to perfdrm echo checking

of all common data issued on the bus to ensure that co
mmands

are réceived by the right subsystem; or is this function

performed by the bus control hardware, or by the standard

interface units?

b) Is data validation in transmission a responsibility

of software?

67

.-SMQQBPQBATED 701 CONCORD AVENUF CAMBRIDGE MASSACHUSETTS 02138 (617) 661- 1840

.c)

d)

e)

f)

INTERMETRICS INCORPORATED 0 701 CONCORD AVENUE ° CAMBRIDGE. MASSACHUSETTS 0213.8 ° (617) 661-1840

Can demand/response really be achieved via the central

computer software? This question becomes important if-'

the use of existing hardware is contemplated, because I/O

demands may force the computer into an "I/O~;ound" condi-
tion, or seriously load its processing capability.

How are devices such as the hand controlle: to be
incorporated into 1/0 without interrupts?

Where and when should conversion and limit testing be
done: in the central software, or at the subsystem?

How is telemetry downlink and uplink handled and how
does it effect I/O control software?

68

I,

5
fl
‘3

a
B
a
{I

"
m

'

'

2

"
1

I
.

M

J

‘0
1,:
4-4

L INTERMEIBLQSJNCORPOHATED ' 701 CONCORD AVENUE, - CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840

n fi T fi — L — r — r — e ..‘, , . V H -——_ W t w - g r w - .. v --—,—— ——.-r~ y—..—1—-. -r- W
‘ W 1‘. ‘ ‘ M W “ » .__ _ . w v ‘ "- v.7” . q - —- ‘n‘u'nr m.

Chaptef 4

Task Management Functions

4.1 Introduction

In this chapter we will present a functional design of

the executive software task management functions. Each task

management function is defined, and flowcharts are pr
esented.

The intention of this chapter is to present a functio
nal design

description of each of the task management areas of t
he execu-

tive and not to present a coding level design. For this reason

several software error checking features have bee
n incorporated

in the algorithms, but yet others have not been s
ince they are

.more appropriately included on a coding level of design.

4.1.1 Definition of Task Management Functions

The Task Management area of the executive system ha
s

the primary function of controlling the sequencing of ta
sk

execution. It supervises the scheduling and dispatching of the

CPU, the allocation of memory resources to application
software

in accordance with a defined- controlling algorithm; and it

responds to requests from executing tasks for tas
k and event

control. As part of this function an executive routine, c
alled

the Cyclic Sequencer, is defined and operates at priorit
y 1.

This routine controls the synchronous execution of cycli
c

application subroutines.

a) The Scheduler is that part of task management which

takes a program module from the inactive state, makes it a

task, and places it on the ready or wait queue.
Moreover,

the Scheduler takes tasks from the wait state, and w
hen

possible, places them in the ready state.

b) The Dispatcher selects a ready task for execution. It

observes a priority algorithm with tasks organized in a

FIFO manner within a priority level.

6) The Resource Allocator is called by the Scheduler and

tries to give tasks the main memory resources they need for

\

69

efiecution.

d) ‘The Cyclic Sequencer manages all tasks and I/O performed
at Priority 1. .

e) Task Management Service Routines are those executive

routines which an application task can call upon to perform

some task management function. These routines include:

1.

2.

‘I’ 6.

7.

8.

9.

10.

11.

Freemain

Secure

Release

COPY

Link

End

Schedule

wait

Signal

Test
Event

Change
CCT

release dynamic core held by the active task

lock part of the compool for reading or

updating

unlock the part of the compool held by
the active task

copy part of the compool into the active

task' 5 work area

schedule a task and wait upon the task's
completion

terminate the currently active task

schedule a task

place the active task in the wait state

turn a system event on or off

test a software event to see if it is on

or off

V
change an entry in the Cyclic Control Table

Each of these routines is called by a 4 Pi EP Supervisor

Call (SVC)7 explained in Chapter 2.

4.1.2 The Scheduler

The scheduler is functionally organized into two

parts; a SCHEDULE processor which responds to supervisor

calls to schedule a program modgle as a task, and an event

services processor which is called at the occurrence of system

software events, i.e. a-software signal.

70

‘ INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE. MASSACHUSEWS 002138 (517) 661- 1840

a
3

'
m

3
3
B
{I
3
3
3

.
_

-
_

.

A
U

._
.,

_

4
A
u
g
;

<
_

L

‘

g . 4.1.2.1 The SCHEDULE SVC Processor. This routine performs
the following functions: °

'0

1) Search the TCB queues to see if a task is already scheduled
using the requested program module. If so, the module's
characteristics must be checked to be sure no scheduling
conflict exists, Such a conflict can arise if the program
module is not reentrant and is scheduled a s , a task more
than once concurrently. ‘ ~

2) Create a TCB for the task from information found in the
PMD.

F ‘ - 3) If the task is to be scheduled upon some condition, place

V(*~ _ the task in the wait state and set up the appropriate ECB.
} ’ linkage.

4) For tasks to be scheduled unconditionally, tfy to allocate
any necessary core'storage. If it is unavailable, place
the task in the wait state. ‘

5) If the task can be made ready, place the task on the ready
queue by priority. The TCB becomes the laSt one at its

; priority level. ‘

6) Vfiéturn cdnfrol tb the active task;

When a TCB is inserted into a queue (all of which have a
threadgd list structure), this process is accomplished merely
by pointer manipulation. For example, suppose that task A
at priority 3 and task C at priority 5 are on the ready queue,
as shown in Figure 4.1a. To place task B on the ready queue ,
at priority 4 new pointers must be established. These priorities
are illustrated in Figure 4.1b. '

4 . 1 . 2. 2 Event Services ProceSsor. When the schéduler is
called by the software associated with an event, it performs
the following functions: .

1) For exclusive software signalled events at most, one task

can be made ready. Hence, the scheduler finds the highest
priority waiting task and tries to put it into the ready_
state. When a task is put into the ready state, the painter
to its ECB in the event list can now be deleted. ' . +

2) For non-exclusive events, the scheduler checks to see J
if all tasks awaiting the event can be made ready. Those

71_

’ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ' CAMBRiDGE. MASSACHUSETTS 02138 ' (617) 661-1840

Ready Queue

- / \

3 . .

5

3 TCB A

; Priority 3

*
*
f r"
r

. . ' w______;, TCB . c

Priority 5 ’

4/

Figure 4.1a Example o f TCB queue
Before Entry of TCB B

72

INTEBMETRLZSJNCORPORATED - 701 CONCORD AVENUE ° CAMBRIDGE. MASSACHUSETTS 02138 ' (617) 661-1840

:
2

”
)

m

°
m

m
m

a
m

m
m

0 Ready Queue

’ TCB A
in

J . , Priority

(

\
F

.Priority

t,

" A "““"> TCB B

E L. 1.45 TCB c
i

i ‘ .' .
’{1 . ! Prlorlty

F“
: E
I

r {l 1

r
:

“"

'
“

a
.

.
.

.

i o
L; Figure 4.1b

fl '7'.“ . . '5'” r" — ‘- _' — ‘ — ” “ z fl f ’ k f ’ i

'0

O

Q

. fi\

. . r

0

Example of TCB queue
After Entry of TCB B

gL-IEIJQKTTQ n91 ’39 a- {R1 7\ R31 - 1 R A fl

' u. 233

IS WILL
REQUESTED ' MODULE

_ . _ FROGRAM YES CHARACTERISTICS N0 . v
MODULE ALLOW IT TO BE PROGRAM ERROR

ALREADY SCI-AEDULED
A TA AIN

SK NOW
.

\

NO YES

I CREATE TCB J

IS AN
IS ,

EXCLUSIVE
cgggfggh‘h YES EVENT BEING YES PROGRAM

UPON AN USED IN " ERROR
COMBINATION ‘

EVENT(S)

”0 NO

ARE
NUMBER

OF EVENTS , .
YES REQUIRED T0 ”0 SET UP 508 '

‘F MAKE TASK . ' CHAIN
Y READY,

, LATCHED ‘

' CALL RESOURCE 0“
,ALLOCATOR . ‘
. ‘ J PUT TCB or: '

WAIT OUEUE

HAS '7 >
.. N0 MAKE EVENT

CORE BcEN ALLOCATED LIST ENTRIES l

PUT TCB ON READY — RESTORE
OUEUE AS LAST -‘ REGISTERS
TASK AT ITS
PRIORITY LEVEL ' $

l . -'ENABLE
' INTERRUPTS

AND EXIT
VIA PSW

Figure 4 . 2 Flowphart of SCHEDULE SVC

74

I
1':

“
'

1
—

7

‘
4

—

r
~

—
r

wW—r—v~4 * '1-

F'mo NEXT
one

‘
 u I

.
o

‘
u

h
a

.
.

-

.
1

. , Figure 4 . 3 Flowchart of Scheduler Cal‘ledlas'Subroutine

STANDARD
LINKAGE

AVx'A IT IN 6
TH E

F. VE N T

NO

GET ECB
ADDRESSES
FROM
EVENT LIST

‘ 9
POST.
EACH ecs

\‘
COUNT - 0

LOCATE LAST
ECB OF FIRST

‘ CHAIN

IS IT YES COUNT a
POSTED V COUNT 4’ 1

NO

no us'r
ECB 'OF
CHAON

.YES

IS
COUNT >

NUMBER OF NO
EVENTS REOLHRED

TO MAKE 1 ASK
READY

YES

RETURN ECB
CHAIN TO
EXECUTIVE
WORK Ail EA

IS

“Jai‘fiu. CALL RESOURCE
COMPLET ED LLOCATOR

PUT TCB OT. READY YES HAS
OUEUE AS LAST ,_ CORE BEEN
1ASK AT ITS - ALLOCATED
PRIORITY LEVEL

I‘UT TCB 0N
'JAIT GUEUE

V V I . i

‘ reams EVENT
3 " ” " " usr [v

7 5

YES

' v

by SIGNAL svc

rmo HIGHEST . .
' PRIORITY TASK

é
Pur TASK m .
READY STATE .

§
REMOVE EVENT
LIST ENTRY AND
RETURN ECB TO
EXECUTIVE
WORK AREA

t
TURN OFF
EVENT ' ' . .

§
RESTORE
REGISTERS

{r
EXIT

POINT.TO
NEXT ENTRY

CLEAR 0
gvsm LIST

FURN
EVENT OFF

RESTORE J.
REGISTERS W

{I
EXIT

'
K

F
h

‘
u

.
_

A

4
T

,7 lflTERMETR‘ICSJNCORPORATED - 701 CONCORD AVENUE- ° CAMBRIDGE, MASSACHUSEIIS 02138

Ithat can have their TCBs put on the ready queug, and the

core occupied by the ECBs is returned to the executive's

work area queues. Those tasks that cannot be made ready,

‘ remain on the wait queue. The scheduler can now delete

the event's entire list of pointers to the ECBs of tasks
awaiting the event.

3) Return control to the event software.

4.1.3 The Dispatcher

Dispatching is the central function of the executive.

system. The dispatcher initiates all application tasks, and

all tasks under normal conditions return to the dispatcher upon

termination. At that time, a terminate rqutine is executed

to enable the task to release any system resources it may be

balding. This process is illustrated in Figure 4.4{

When there are no ready tasks in the system, the diSpatcher

places the CPU in the wait state. This feature aids digital

simulation requirements. The simulator can be implemented

_to advance through the wait until the next environmental inter-

rupt is predicted.

; g; fiTimer interrupt I

No work CPU in
Dispatcher ,

walt state

I task gpes
Task ' ‘ to wait

‘ state

% to Dispatcher

Terminate

Figure 4. 4 Overview of Dispatching and Terminating
a Task

I

76

(617) 661-1840

-
\

_

fi
a
{I
I! 4

{1
3
B
{I
3

.
,

_
.

_
_

r
,

_

-
-

»
—

“

fl
u

—
.

7

,
w

1
5
,
"

.9
L
C

L_.___

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE ‘ CAMBRIDGE. MASSACHUSETTS 02138 °I (617) 661-1840

'. "r ‘— " '- firs—p"m'-r_p~-"- “m -r,w - : . 1 — x _.7__.., T‘. war—fl ,

.The major function of the dispatcher is to select the
highest priority task ready for execution and make it active,
Within a priority level the oldest ready task is always selected'

first yielding a FIFO disvatching algorithm. When a task is
being initiated by the dispatcher, i.e., when it is not being

dispatched in a partially completed state, the dispatcher
assigns a save area to the task so that the task can perform its

standard linkage Operations as described in Chapter 3. The CPU

is then assigned to the task making it the.system's active task.

As explained in Chapter 2 application software operating
in the background is segmented if it has lengthy execution time.
Each active task voluntarily requests the dispatcher to check

the ready queue to determine if a higher priOrity task is wait‘
ing for the-CPU. If so, the higher priority task is made active.

These segment points are established at convenient breakpoints . :
to minimize the effect of potential job swaps. These dispatching i
checks are done with SVCS, inserted in the program with the
assistance of an assembler or compiler that generates the object

coding. The flowchart of the dispatch cheCk algorithm is -
presented in Figure 4. 6. .

The dispatcher is entered at:

l) the end‘of a task Via return linkage;‘

2) a segment point in a "long" background task via a
supervisor call;

3) the active task's going into the wait state;

4) the beginning of a minor cycle via the timer intérrupt'
software.

4 . 1 . 4 . The Reéource Allocator

The resource allocator is a subroutine called by

the executive's task management functions to allocate dynamic
memory to tasks in the system.

The dynamic memory requirements of each application

software module is pre—established at system generation and

specified in the PMD. The function of the allocator is to main-

tain the current status of all of dynamic memory and to service

requests made to it by other parts of the executive.

As explained in Chapter 3, a portion of the operating

memory is used as dynamic memory. 'It is organized into blocks

77

}
INHIBIT l/O -

‘ AND EXTERNAL . . _ .
INTERRUPTS _

IS
THERE - ,

A READY N0 PUT CPU IN
TASK IN THE WAIT STATE

SYSTEM . f

SELECT HIGHEST
PRIORITY
READY TASK
BY FIFO ORDER

IS n"
IN AN YES PUT ITS TCB

INCOMPLETE - a» IN ACTIVE
STATE STATE

$
. RESTORE GR's

AND FPR's
PUT TCB IN
ACTIVE STATE I

1 - ENABLE INTERRUPTS
AND EXIT T0 TASK
BY RESTORING PSW

SET INCOMPLETE _
BIT IN TCB J

I;
ESTABLISH
SAVE AREA

J,
ENAB LE . -
INTERR UPTS

BRANCH T0
TASK ENTRY
POiNT

RETURN
- FROM TASK

EXECUTE
END SVC

Figure 4 . 5 Flowchart of Dispatcher‘

W, , . 73

I

‘4
‘

_
~

4

-
‘

L
'

A

”
m

u
t

a
n

t
-

a
m

v " I , . , _ _ - , . ‘ _ , , . 1, z - 2 , ‘ , , , , , v . . . —”‘r . . 7—7 , . m . -- - - ' r — ‘ , W rn.‘.v-.-.——-—.__=,—,k j ‘ _..._ . - . . .7 V : .—.7-o74:« 7 v w v 7 ~ 7 "F V . “ _ . .n . ‘ . 1 . _ :- ‘Jm 1 471 3 F “ - ‘ '——-—,1-ym 2 - “yr—{‘%:_vff..—'rfl12rw.—gt?fil—-1—r—-~fi7 r~.—-:rv—‘ —.~.— »— A n s . ‘

ANY NEW
TASK BEEN

MADE READY
SINCE LAST

CHECK

RESTORE
REGISTERS

é
ENABLE
INTERRUPTS -
AND EXIT
VIA PSW IS

THERE
A READY

TASK OF HIGHER
PRIORITY THAN

ACTIVE
TASK

I
l A

‘ - » I STORE PSW, GR‘s
AND FPR's OF
ACTIVE TASK
IN ITS TCB

PUT TCB ON
READY QUEUE

r - . '

[EXIT T0

P
L

“
.

.
.

.

l
u

n
g

-
“

5

.
«

4
-

1

DISPATCH ER

Figure 4.6 Flowchart of DiSpatch Check SVC

79

..
rv

-*
—

—
-

w
v

i

.

STANDARD
LINKAGE

% h . . ~

READ TASK
PRIORITY AND
CORE REQUESTED
FROM TCB

SEARCH DCD TO
SEE IF CORE :1
IS AVAILABLE

IS
THIS

IS IT THE LOWEST EXAMINE
AVAILABLE PRIORITY NEXT LOWEST

SUBPOOL SUBPOO L

POST _ RECORD FACT
ASSIGNMENT THAT CORE

‘ BIT IN 000 . WAS UNAVAILABLE

PUT con 7
POINTER " ‘ ,
m TCB J RESTORE
% _ REGISTERS

RECORDFACT - t '
THAT CORE WAS I Ex”. J
AVAILABLE

Figure 4 . 7 Flowchart of Resource Allocator

. l

_ .3
. 3-

3
' 3 3,7

I“

‘

i

I. .
.

' I i
L

L INATEBMEIBLQS INCORPORATED - 701 CONCQRD AVENUE ‘- CAMBRIDGE. M.ASSACHU§ETI§_‘Q_2;_13_§ - (617) 661-1849 ,5:

,wcomputations, and in turn, they may schedule other tasks to be

'dedicated to eaéh priority level. When the allocator is entered

with a request for x words of dynamic memory for task A at

priority k, it determines if x continuous words are currently
unused in the pool aSsociated with priority k or any lower
priority. If the memory is unavailable, the task is put in the

wait state pending memory release.

A task may not request additional memory during its execu-

tion. All memory allocation is granted to a task only upon

initiation. However, this task may release all of its dynamic

memory at any time during execution to economize in the use of

this resource.

4.1.5 The Cyclic Sequencer

The cyclic sequencer is operated as a task scheduled via

the timed wait queue. It is put on the ready minor cycle with

priority 1. It contains cyclic control tables (CCT) identifying

a list of all cyclic computations and the frequency

at which each must be executed. These computations are executed

as subroutines of the cyclic sequencer, and hence, their execu-

tion time must be fitted to the minor cycle time interval. The

cyclic subroutines are Considered the system' s foreground

eaecutcd in thc background at priority 3, 4, or 5.

An entry of the CCT is shown in Figure 4.8. It

contains the address of the subroutine to be executed; the

frequency setting indicating the frequency in an integral

number of minor cycles at which the subroutine is to be executed;

and a frequency count. The count contains the number of minor

cycles since the subroutine was last executed. It is incre-

mented in each minor cycle and zeroed when the subroutine

executes. In addition, there are pointers to the I/O commands

for each subroutine. Frequency settings may be dynamically

changed by the subroutine during flight via a supervisor call.

Upon entry into the cyclic sequencer, each CCT entry

is examined. The frequency count is incremented by l and

compared to the frequency setting. Should these entries be

equal, the subroutine must be executed in this minor cycle. '
In this case, the frequency count is set to 0, and the subroutine's

input commands are executed. To make the most efficient use

of the channel this process is performed for each CCT entry

before any subroutines are executed. Now each subroutine can be

81

program module address

frequency setting

frequency count

address of input commands

address of output commands

v <+————-i full word

Figure 4.8 Format of CCT Entry

82

_}E.IviASSACHUSETT302138 - {817) 661-1545.

, , .1, W W W V I V T ' W W ' :. ,_ ‘ W — V ' W - ‘ 7 » ? Tn. . . ” ww— w h vwwvvwv d ., ‘I . ,., V ‘_,_ ,viV'!‘

. executed, and at its completion its output commands are executed.
This algorithm is presented in Figure 4. 9.

During execution a subroutine must.wait for its input

requests to be completed before continuing its execution. The
°cyclic sequencer algorithm chosen minimizes the time that the
subroutine may have to wait.

*The subroutines to be executed in a given minor cycle are
run in the order in which they appear in the CCT. Two sub-
routines executed at the same frequency may be run out of phase
by initially biasing their frequency counts. For example, if
subroutines A, B, and C are executed every 8 minor cycles, and
'if A and C are not to be run in the same minor cycle, the CCT

entries may be initially set as shown.

'frequency frequency
setting ,' count

i _ A 8 0

i, . B 8 o
i ‘ c 8 4

“* Tfie regult-is that.A'and'B are run in that ordér every 8 minor
cycles‘ C is also run at that same frequency although it is
4 minor cycles out of phase with A and B. ' r

; Li ' If a subroutine's execution time is too long, it must be
_ ‘ broken into several smaller subroutines so as not to overload
[; the system during any one minor cycle interval. Each of the

smaller subroutines runs at the same frequency and must run in

a successive minor cycles. As in the above example, this can
be accomplished by initial biasing of the frequency counts.

; _ For example, presume that A must be executed every 4 minor

} " cycles and is organized into 3 parts Al’ A2, and A3 with an

entry made in the CCT for each piece. '

r-
—-
-

frequency - frequency
settipg count

4 ’ 4

A2 4 . 3 '

.A 4 2

* 3 By phasing the frequency count in the initial conditions,
' . computation A is run in 3 successiVe minor cycles: Al in the

.
W

‘

”

W
"

-

'
"

[83 w 1
~ INTERMETRICS INCORPORATED - 70: CONCORD AVENUE 40AMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840 l

L'-

lNTFRMEIBJQSJNQQBEQBATED 701 CONCORD AVENUE HCAMBRIDGE MASSACHUSETTS 02138 (617) 661- 1840

first, A2 in the second, and A3 in the third. EacQ has

a frequency of execution of 4 minor cycles.

To prevent a system overload during a minor cycle some

percentage of the CPU and I/O channel's time should be reserved

for foreground computations. The remaining time will be devoted

to executive overhead and background computations.
Should the

cyclic sequencer be placed on the ready queue before
its pre-

vious execution has terminated, a software error condition
results

because of the overload.

Since foreground subroutines can schedule background tasks,

it is necessary to have a method of preventing a program
module

from being scheduled as a task before its previous execution

is finished. This prevention can be accomplished by several '

methods, one of which is to use event handling. For example;

let A be a foreground routine and B a module which is scheduled

for execution by A under one condition. Since A is cyclic,

caution must be used in the method selected for invoking the

,execution of B.
,

B may be scheduled as a task through the use of a SCHEDULE

SVC. If B has not completed execution prior to A scheduling

B again, it*is possible for two tasks to be in the system

associated with module B. This condition will occur, for

example, if B enters the wait state for a sufficiently long

time interval.

As a solution to this problem define Q to be a latched

event associated with the condition that B should be executed.

Let A,be structured to signal event Q on when it detects that
B

should be scheduled.
.

At phase initiation the start up routine will schedule B

on event Q. This will establish B as a task in the wait state

until Q is signalled on. Eventually when A signals Q on, B

can be executed. . .

Task B can then be re-established in two ways:

1) B can avoid termination until mission phase transition
' by having a structure looping upon itself as shown in

Figure 4.10a. Whenever Q is signalled on by A, B-is again

executed. At phase transition time A and B can be terminated.

2) B can reschedule itself as a task prior to its termination

as shown in Figure 4 . 1 0 b . B remains in the wait state until
A signals Q on.

In either case, two concurrent executions of program modu
le B

are avoided.

84

A
.

A

A
;

_
.

_

~
4

4

4
¥

fl
3
1)
3
J
3
J
1

4
STANDARD
LINKAGE '

I ' . - POINT TO
FIRST CCT . ~ .
ENTRY

., * J ,
INCREMENT

‘b‘ FREQUENCY
COUNT

DOES
COUNT ‘ YES ‘ EXECUTE INPUT

SETTING

FREQUENCY
COUNT = O

POINT T0 N0
NEXT ENTRY "‘5

g l

’ ‘ A POINT TO

. I
-BEG|NNING

L
OF TABLE

DOES
r": FR EOUENCY YES 9- EXECUTE

!" COUNT SUBROUTINE
\ .

g 0
g

1 W

. '

ISSUE OUTPUT
COMMANDS

POINT T0 N0 _ J
NEXT CCT a
ENTRY

RESTORE
REGISTERS

{ EXIT J

L ' > Figure 4 . 9 Flowchart of Cyclic Sequencer

L " 85 i

0:29: J . .Q L 1:! g. ;. L . r ._:.,.u:g,lh

B: PROCEDURE
Begin: Wait for QON;

Signal Q Off; ' ' 1

° , 1
Go to Begin; } 1

END

i

1

l

1
‘

‘I

Figure 4.10a Re-estéblishing Background Task ’

*1 J: , ,—

B: PROCEDURE
Begin: Signal Q 0ff;t

Schedule B on Event Q;

END

Figure 4.10b Re-establishing'Background Task

86

fl 3

fl
3
31 J
3
3
3 l ' ‘ CHUSETTSMO21383 (617) 661-1840

. The cyclic sequencer is the only priority 1 task in the

system. Thus, the dynamic core in the priority 1 subpdol is
not shared with any other tasks and can be considered statically

assigned to the cyclic sequencer. To reduce overhead this

} ' core ShOUld not be allocated through the resource allocatbr.
There need only be subpools for priorities 3, 4, and 5.

4.1.6 Supervisor Service Routines

lUpon the execution of a supervisor call, a PWS-associated
with the supervisor interrupt becomes the new PSW. This PSW

’ will enter a general SVC routine to determine which executive

Pr service routine to execute and then to branch to this routine
,

' The flowchart for this process is shown in Figure 4.11. In addition,

the flowcharts for the task management supervisor service routines

listed in Section 4.1.1 will also be presented in Figs. 4.12—4.21.

Certain SVC's require parameters to be supplied to the

executive. For example, SCHEDULE requires the name of the

'? program module that is to be scheduled as a task. A list of the
necessary parameters is supplied in Chapter 9.

r
u

t
-

H
u

s
”

!

n

. -a-)-.- FREEMAIN (SVC 1)_ -5 The purpose of this SVC is to enable
a far? to rnieapm all of its dynamic memory during execution.

b) SECURE (SVC 2) - This SVC enables a task to lock parts of
the compool for reading or updating. If‘a copy of parts

l *3 of the compool are to be created, the task must supply the

' copy area from its core allocation. It does so by providing

a pointer to the copy area as a parameter with the SVC.

Should the task have to wait for compool access, it does

so in a partially completed state. The PSW and registers

stored in the TCB must correspond to a point in the coding
at which execution is to continue when the task becomes

active again.

I

c) RELEASE (SVC 3) - To close an update block the locks

established by the active task must be released. This
SVC does so by referencing the parameter list supplied by
the SECURE SVC. The pointer to this list is in the active

task's TCB. This list contains the addresses of each lock

and-the type of lock established by SECURE. Any necessary

updating of the compool is done and then all locks released.‘

d) COPY (SVC 4) - The SVC copies parts of the compool into a
part of the active task's wdrk area. It enables the active

task to read parts of the compool without having to keep

. 5 . '
‘

. .,

I
O

” , 87

L INTERME'IRICS INCORPORATED . 701 CONCORD AVENUE ° CAMBRIDGE, MASSACHUSETTS 02138 ° (617) 661~1840
k w .

locks established for long time intervals. This SVC
would be used instead of an Update block if the active task
wanted to use compool data for long periods of time, but yet

did not want to prevent other tasks from updating the data.

’e) LINK (SVC 5) - The LINK SVC allows a task to create a
dependent task and await this task's completion before

allowing its own execution to continue.

the task that scheduled it also aborts,

Should the depen-
dent task abort because of an error, the calling task\also
aborts; and if this latter task was scheduled via a LINK,

etc.

f) END (SVC 6) - Upon termination a task returns to the
dispatcher via the return address in GR l4.
puts the CPU in the supervisor state by executing the END SVC.
The END SVC performs several bookkeeping functions for the

executive. It closes any update block that is still open,
task, and puts the

task in the wait state until any pending I/O requests are
completed. Upon termination it returns to the dispatcher.

frees dynamic memory still held by the

9) SCHEDULE (SVC 7) - This SVC allows the
schedule another task without establishing a task dependence,

as in the case of.LINK. The schedule can be unconditional

or conditional upon some set of criteria.
include:

1) scheduling on some software event or events occurring;

active task to

2) scheduling at some specific time; and

3y scheduling aftér Some time interval has elapsed.

These criteria are analagous to the types of scheduling
available within HAL [7,8].

h) WAIT (SVC 8) - The WAIT SVC allows the
place itself in the wait state pending
of some event or group of events. The

are:

1) waiting for some software event or
signalled on (posted);

active task to
the occurrence
allowable events

events being

2) waiting until a specific time occuxé; and

3) waiting for a time interval to elapse [7,8].

0

.
I .

u

I
O

88

INTERMETRICSIA ‘CORPORATED 701 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 (617) 661- 1840

The dispatcher

These criteria

fi
fi
a

8
B
H
B
H
B
I}
5

".

LINTERMETRICS INCORPORATED- 701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138- (617) 661-1840 J

i) SIGNAL (SVC 9) - Signal turns an event on or off, depending
upon the parameters supplied by the SVC. When an event

is turned on,the schefluler is called to place any tasks

,awaiting the event in the ready state, if possible.

j) TEST EVENT (SVC lO) - The status of the event tested is
returned to the active task via a flag which is set by the
executive. The active task supplies a pointer to the
flag as an SVC parameter._

k) CHANGE CCT (SVC ll) - This SVC enables a task to change
the entries in the CCT as mission phase requirements
change. Direct updating of the CCT by tasks is illegal and should
be checked for during system simulation.

1) DISPATCH CHECK (SVC 12).- This SVC occurs at program segment

points. It returns control to the executive to check if

.a higher priority is waiting for the CPU. If so, the pre-

viously active task is put in the ready state, and the new
higher priority task is made active (via the dispatcher).

'4.2 Timer Interrupt

When the value of the EP timer goes from positive to
negative, an external interrupt is generated. This interrupt
is used to signal the start of a new minor cycle. The execu-

tive coding associated with the timer interrupt will first
reset the timer to interrupt at the start of the next minor

cycle and then service the mission clock.' A check is then made

to be sure the cyclic sequencer terminated the last minor
cycle. If not, a software overload condition exists, and a

_ program error condition results. The cyclic sequencer's TCB
is now formatted and put at the top of the ready queue, and

the previously active task is put in the wait State.

All other tasks awaiting a timed event are checked every

N minor cycles to see if they can now be made ready. The timer

entry in the TCB.contains the time at which the task can be
put in the ready state. When the system clock equals or exceeds

this time,-the task can be made ready for execution. The value

of N is a system parameter. Its value must be an integer greater

than or equal to 1 depending upon the system response time %

desired. . . ‘

To expedite checking the time wait queue, TCB entries on
the queue will be arranged in terms of increasing time at which
they can be made ready. That is, suppose task A can be put

'

89

fi—
fii

‘

> n
—

—
-

 -
—
-
'
,
-
-
v
-
v
.
—

v

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138- (617) 661-18403L

on the ready queue at time x, and task B at time y. »I£ x<y,
the TCB for task A must preceed the TCB for B on the time wait
queue. As a result, it is not necessary to examine the entire
queue whenever it is serviced every N minor cycles. Checking
of entries can stop when the timer entries in the TCBs exceed
the value of the system clock used for comparison. At its
completion the timer interrupt routine exits to the dispatcher.
The flowchart for the above algorithm is given in Figure 4.22.

4.3 Deadlock Detection

As explained in Chapter 2, the algorithms for resource
allocation avoid incremental allocations, and hence avoid

deadlock. However, the SIGNAL and WAIT supervisor calls

introduce the possibility of deadlocked tasks. For example,
if task A contains the SVCs, WAIT M and,SIGNAL N, in that

order, it goes into the wait state until M occurs. Now suppose
task B contains the SVCs, WAIT N and SIGNAL M. It too goes into
-the wait state, and if a third task does not signal M or N,
tasks A and B are deadlocked.

Judicious program design can, of course, avoid this problem.
However, an~alternative approach is to periodically check for
deadlocked tasks. If the time at which each task goes into the
wait state is stored in its TCB, a low priority task could
periodically check these times. If a certain time criterion
was exceeded, the waiting task would be considered deadlocked,
and error recovery would commence. -

90

.
—

H
I]
I]
3
3
[I
B
3 n

A
l

u
m

-
a

”
.

.
.

'
.

‘

J

h
,

-

V
fl

k
.

—

b
y

.
.

.
)

-
i

”
A

.
“

0
.

0

'
r

.
.

.

*
M

'

f
l

o

u

FM
";

“
A

{

INHIBIT l /O AND
EXTERNAL
INTERRUPTS '
VIA PSW é - .

STANDARD
LINKAGE

Mr ’

‘ IS
THIS SVC

A CLOSE OR A
RECOVER

PROGRAM ERROR

BRANCH TO SVC
ROUTINE TASK
REQUESTED

Figure 4 . 1 1 Flowchart of SVC Interrupt Routine

91

GET TCB
POINTER
T0 DCD

J
FLAG DCD ENTRY
TO DENOTE THIS
BLOCK OF CORE IS
NOW UNUSED

%
CLEAR TCB
POINTER
TO DCD

ARE
ANY TASKS
AWAITING A RESTORE

CORE REGISTERS
ALLOCATION ’

ENABLE INTERRUPTS
AND EXIT VIA PSW

. SELECT HIGHEST
' PRIORITY TASK ¢

. CALL RESCOURCE HQ
ALLOCATOR

CAN
CORE BE

ASSIGNED
PUT TASK IN
READY STATE

%
DELETE EVENT
LIST ENTRY

IS
THIS

THE LAST
WAITING

TASK

No SELECT NEXT
-- HIGHEST

PB IORITY TASK

9 2

CAN
ALL COMPOOL

LOCKS BE STORE PSW, GR'S,~

PPR 5 'N "33 ESTABLISHED

é
PUT TASK ON '
WAIT QUEUE ; ' TASK h SAVE PRIORITY PRIORITY VALUE
MAKE EVENT _ g 3
1.1e ENTRY "é

SET PRIORITY
EQUAL TO 2 EXIT TO

DISPATCHER
‘ I COPY DATA IF

NECESSARY IN TASK ‘
PROVIDED AREA OF
MAIN MEMORY

ESTABLISH - '
OOMPQOL LOCKS .

é
ENAB LE INTERRUPTS
AND EXIT VIA PSW

Figure 4.13 Flbwchart of SECURE SVC

9 3

DO WE
UPDATE N0 REMOVE »

COMPOOL READ LOCKS

DOES
TASK

PRIORITY
3 2

CAN
WRITING

LOCKS BE
ESTABLISHED

STORE PSW, GR's,
AND FPR's IN TCB

é
PUT TCB 'N RESTORE OLD '
WAIT QUEUE PRIORITY

_ ESTABLISH
é LOCKS

MAKE EVENT ‘
LIST ENTRY _ PRIORITY

' 1 TASK WAITING
& l COPY DATA 1 FOR A

- . , COMPOOL
5q T0 ‘ ACCESS
DISPATCHER ,

V J YES

[jSTABLISH ITS
l REMOVE LOCKS

COMPOOL LOCKS

$
PUT lT IN
READY STATE

_ &
DELETE EVENT
LIST ENTRY

.‘

RESTORE I
REGISTERS

%
ENABLE INTERRUPTS
AND EXIT VIA PSW

Figure 4 . 1 4 Flowchart of REPEASE'SVC

94

i
m

m
u

n
e

:

|___

locate data
to be copied

from SVC supplied
addresses

V

cdpy data
into user supplied

core area

1
enable interrupts

and exit
via PSW

Figure 4.15 Flowchart of
COPY SVC

95

i L INTE' 3METRICS INCORPORATED ° 701 CONCORD AVENUE ° CAMBRIEJGE. MASSACHUSETTS 02138 - (617) 661-1840

$
SAVE PSW, GR's, AND
FPR'S IN 1'08

4 '
I PLACE'TCB IN

WAIT OUEUE [
CALL SCHEDULER .
TO MAKE NEW .
TASK READY

4
ESTABLISH TCB .
LINKAGES - , I

BETWEEN TWO
TASKS

5q TO .- -
DISPATCHER » fl

Figure 4.16 Flowchart o f . LINK SVC

‘ ‘
u

r
f

?
“

 v” ~4————_——v—..r._~_.,
_

‘

'
1

"

i
.

.

1
 j

DOES
TASK HAVE

ANY ”0
REQUESTS
PENDING

YES EXECUTE CHECK
SVCTO PUT TASK
IN WAIT STATE

é
EXIT TO
DISPATCHER

HAS
EXECUTE NO UPDATE
CLOSESVC “ ’ BLOCKBEEN

CLOSED

l3
DYNAMIC

CORE
FREE

EXECUTE ‘
FREEMAHVSVC

CLEAR ACTIVE
TASK POINTER

RETURN TCB TO
EXECUTIVE WORK
AREA OUEUE

DOES
TASK HA VE

PARENT
TASK

YE 5 PLACE PARENT
~‘" TCB 0N READY

QUEUE

EXIT TO
DISPATCH ER

Figure 4.17 Flowchart of END SVC

97

w
PUT PSW, GR '5,
FLP's l-N TCB

IS AN
EXCLUSIVE

EVENT BEING
USED IN

COMBIa'-’tATlON

YES PROGRAM
" ERROR

CHECK ALL EVENTS
TO SEE IF ANY ARE
LATCHED ON

ARE
REQUIRED

NUMBER TO
SCHEDULE
LATCHED

YES _, PUT TASK IN
READY STATE

0N , $

5' EXIT T0
- PUT TASK IN . DISPATCHER
WAIT STATE _ _ A

6
FIND EVENT LIST
SUPPLIED BY SVC

\‘r’
a. EXAMINE EVENT

- AND ESTABLISH ECB

POST [ca

MAKE EVENT
LIST ENTRY

Jr
CHAIN

IS
. THIS PUT REQUIRED

SELECT NEXT N0 THE LAST YES NUMBER OF EVENTS
EVENT ‘ 5 ‘ EVENT OF TO SCHEDULE m

THE
LIST

TCB

figure; 4.18 Flowchart of WAIT SVC

98.

r *1
 F

r“
?

n
. E

.
f

"

y
.
.
,

-
.

.
.

.
.

.

.
M

”
:

x
‘

I
i

a

O

SET BIT 1 OF
DH EDB TO 1

%
CALL SCH EDULER
TO PLACE WHATEVER

.1 SET BIT 1 OF TASKS POSSELE ON
EDB TO 0 READY OUEUE

RESTOR E R EGISTERS

é
ENABLE INTERRUPTS
AND EXIT VIA PSW .

Figure 4.19 Flowchart of SIGNAL SVC

99

.
_

_
—

—
—

—
_

0

SET RETURN
arr TO 0 ‘

SET RETURN
BWTO1

RESTORE REGISTERS

ENABLE INTERRUPTS
AND EXIT VIA PSW

Figure 4.20 Flowchart of TEST EVENT SVC

100

get pointers
to CCT entry

and its replacement
supplied by

SVC

update
CCT

entry

rl'. ' * '
‘ n A " 4 ‘ 1 I

enable interrupts
f? - - and exit
L; via P S W -

I‘

Figure 4.21 I Flowchart of
CHANGE CCT SVC

u
—

m
w

.
.

_
_

0 . ‘

l

101
. Q

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02133 - (617) 561-12340

%
INHIBIT l /O
INTERRUPTS

SAVE
. REGISTERS

é
IADD MIRROR CYCLE
TIME VALUE TO
TIMER TO RESET IT

- iv
[INCREMENT

SYSTEM CLOCKS

HAS
EXECUTION
OF CYCLIC

SEOUENCER IN
LAST MINOR

CYCLE
TERMINATED

YET

PROGRAM
ERROR

CREATE TCB FOR CYCLIC
SEOUENCER AND PUT AT
TOPOF READY OUEUE

é
STOR E PSW, GRJ AND FPR's OF ANY ACTIVE TASK IN ITS TCB

é
PUT ACTIVE
TASK IN
READY STATE

DO
WE CHECK
TIME WAIT
QUEUE IN

THIS MINOR
CYCLE

EXIT TO
DISPATCHER

FIRST ENTRY
l EXAMINE

Figur

DOES
SYSTEM

TCB TIMER
ENTRY

IS
TASK IN

STATE

PUT IN READY
STATE

0

7
R ETURN ECB

CLOCK EQUAL
OR EXCEED

INCOMPLETE

EXIT TO
DISPATCH ER

j

. CA LL R ESOURCE
ALLOCATOR '

CAN
CORE BE

ASSIGNED

KEEP TCB 0N
WAIT QUEUE

%
MAKE EVENT TO EXECUTIVE q—-——d LIST ENTRY

WORK AREA

EXIT TO
DISPATCH ER

102

FIND NEXT
ENTRY

e 4.22 Flowchart of Timer Interrupt Software‘

a
t

u
m

u
m

m
m

.
m

m

"
'
1

r
h

o
-

1
.

.
.

,

I
.

z
-

b
i

” L “

.
7

r
-
-
—
-
s

-

Chapter 5

I/O Management Functions

5.1 Introduction

The input/output control function of the executive provides

SUpervision of all I/O operations in the system. The design of

thiQ‘nart of the software reflects the specific requirements of

the Space Shuttle avionics system.

Current Phase B concepts are based on interfacing the

computer to onboard subsystems via a common data bus of up to

106 bits per second data rate capability, The computer's I/O
section will be connected to a bus control unit whose function

is to command the bus system. All subsystems are connected to

the main bus through a standard interface unit which supplies

standard digital format of data and commands. The bus system

,will contain redundant paths to achieve the FO/FO/FS require-

ment. The final design of the data bus system is a crucial'

aspect of the avionics system design and directly effects the

computer software.

Indeed, this part of the executive software design is the

most hardware sensitive. We are, of course, directing our

design toward the 4 Pi EP computer, and this fact influences

our algorithms. In particular, we will make use of the I/O
interrupt, channel command, and channel test conventions of

the EP in the design. '

103

L lNTERL-iEs'RICS if:CORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840 {

: ‘l’ _5u2 Definition of I/O Management FunCtions

There are three basic I/O management functions. These

l ' are: READ, WRITE, and CHECK. These functions are essentially

interfaces between application tasks and executive I/O serv
ices.

As with task management services they are executed by mean
s of

SVCs with parameter lists. Further details about the parameters

[' ' are in Chapter 9.

’ a) READ (SVC 13) ~ The purpose of this SVC is to input data
’ into main memory from the MMU or one of the avionics

subsystems.- It queues an I/O request to the I/O channel

and then returns control to the active task.

b) WRITE (SVC l4) - This SVC outputs data from main memory

to the MMU or one of the avionics subsystems. As with

READ, it queues an I/O request to the I/O channel and

then returns control to thé aCtiYe task.

In the case of READ or WRITE, the active task may continue °
prqcessing and may at same point wait for an I/O Operation

to be completed by executing CHECK.

‘
3
3
.

i
5

“
'

'

E
h

i

h
a

d

h
a

d
!

‘

?
A

'

5
5

*
:

5

‘
3

. 0) CHECK (SVC 15) - An active task may place itself in the

. . wait state until a particular I/O Operation is completed

by executing CHECK. Should the Operation have been

completed when this SVC is executed, the active task

continues processing. l

5 . 3 ' I/O Queues and Control Blocks

Since the I/O channel may have several requests pending

while it is performing some Operation, a queue of I/O requ
ests

is necessary. The elements of this queue are I/O Request

Blocks linked with a threaded list structure. The format of

an IORB is shown in Figure 5.1. An IORB contains all'the

information necessary for the channel to perform the desired

I/O operation. This information includes:

- a) ' channel, subchannel and device addreSses;

b) task priority; .

c) number of bYtes of data to be transmitted; ° ‘

d) device command; .

e) if device is MMU, a data'address;

. . .

'- 104

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840
A

L
a
:

‘ . ' Y I‘ ‘71.
H : - 7 _

d—-==-* Fw—..._*__ 1 m m . _-J'—W.. . .--_--«._+‘+. mxfi—Au—wfivvizwj—r—fi. . . . - 7 . .. “fin—"T “7:7 W W 7 -—=*-‘.i* W , . , . . . A

channel, subchannel
device address

task number of
priority bytes of data

device command

data set address on MMU

core address of data

CAW

timer _
option TCB pointer
bit

Iwggmer storage pointer
- -t|-"-~1- "n... ——-—--- "In-uk- :- «mu.

ECB pointer

:13 Fifi—a _

threaded list pointer

threaded list pointer

1 full word

IN

Figure 5.1 Format of an IORB

' 105

-
\

V

iwrw - - «iw , w - q h a v ' F — w — h i T w — T W . _
. . - I _. " ' ' H _ ' ' "

k ‘ f) main memory data address;

g) cm:

h) pointer to the TCB;

i) a flag to be set if the value of the timer is to be

returned in a read operaticn; -

j) a pointer to where this timer is to be stored;

k) a pointer to the ECB for the I/O operation;

1) threaded list pointers.

IORBs are dynamically'created by the executive when a task

performs an I/O operation. The necessary core storage for the

IORB is taken from the executive's wofk area as described in

, Chapter 3. This control block is then placed on the channel's

queue on a priority basis with its priority equal to the priority

of the active task. Thus, a high priority task's I/O commands

are executed before those of a low priority task.

. Associated with .each READ or WRITE is an ECB located in the

program module's coding or established in the task's dynamic

core.(in the case of a reentrant module). This ECB is posted

upon completion of the I/O operation by the I/O interrupt super-

visor. This posting enables CHECK to perform its desired
function of determining whether a particular I/O command is

completed. In addition, by binding the ECB to the given I/O

command, a particular READ or WRITE must be completed before

this same command can be executed again. However, should this

latter condition occur, the READ or WRITE will place the task

in the wait state until its ECB is posted. Then the command

can be executed again.

5.4 The 1/0 Supervisor

The 1/0 supervisor is an executive routine called when an

' I/O interrupt occurs. Upon occurrence of the interrupt the

current PSW is saved and a PSW associated with the interrupt
becomes the new PSW, as explained in Chapter 2. The new PSW
gives CPU control to the I/O supervisor. .

The 1/0 supervisor first checks for successful completion

of the last I/O Operation. If an error occurred, an error

recovery routine will be called. The error recovery performed
will be a function of the type of errqr encountered. System

m
a

m
m

'
m

m
m

‘
n

‘

. r 106

INTERMETRICS INCORPORATED - 701 CONCORED AVENUE ' CAMBRIDGE. MASSACHUSETTS 02138 -' (617) 661-1840 .4

3
&
4

FA

. reconfiguration might then be necessary. If the operation was

successfully completed, any task awaiting the I/O Operation is

put in the ready state. The next pending I/O request is then

selected, the channel program is formatted; and the channel is

activated.

A task issuing a read command has the Option of having the

data time tagged when it is read into core. That is, the value

of the timer at input time can also be stored by the I/O super-

visor in core in a location the task specified with the read
command. This time value is of importance to certain numerical
integration aigorithms. The I/O supervisor is responsible for

returning the timer value to the task (see Figure 5.2).

.5.5 I/O Service Routines

The algorithms and flowcharts for the three I/O SVCs

mentioned in section 5.1 will be presented here and in Figs. 5.3-5.5.

, The read and write routines each format the IORB to be

queued to the channel's list of I/O requests. Queueing is done
. on a priority basis with the priority of the task becoming the

priority of the IORB. When the MMU is the device to be read

. or written" upon, a secondary storage routine iS‘ called to locate

_ ; ' t h : 6“?“ "7t 5nd rnév¢rt“the”physical record requested into an
“‘ actual MMU address, which is put into the IORB. This routine is

explained in Chapter 7.

3
.
1

h
e

“

M
o

b
-

.

-
.

.
-

4-

'
_

.
,

i
i

‘

.
1

J

F
-

D
‘

v

A
r

1

When the channel is not busy, the READ or WRITE SVC takes

the IORB, formats the channel program, and activates the channel.

Otherwise, channel activation is only done by the I/O supervisor.

9-
:
u
—
c
c
a
—
o
t
q

If data is to be read into core, the core address specified

must be checked to be sure it is not a protected area. For

example, an address in the compool is not allowed. This checking

of protected addresses requires buffering of aata whose involve-

ment with I/O operations can cause conflicts between tasks.
When data in the compool is to be imputed or outputed, the
requesting task must access the data via the executive and use

part of its working core as a buffer. No direct I/O operations
-are allowed in the compool. In addition, the physical address

of the device to be read or written upon is found in a device

table maintained by the configuration management routines. This

table is called the Redundant Equipment Table and will be .
described in Chapter 6. Should a device fail and a spare be

used to replace it, the new device address is entered in this
table for use by the I/O routines. Thus, any system reconfiguran

tion will cause an update of this table. a

. .
‘

a

u . v

I

L. ...

i ‘ 3 , 107

:JNTERMETRICS {NCORPORATED - 701 CONCORD s-awua - CAMBRIDGE. MASSACHUSETTS 02133 .' (617) 661-1840 i

5.6 gyclic and Non-Cyclic 1/0

A bus I/O transaction once initiated by the computer is 1
'independent of the computer software organization. The

command/response addressed bus may be directed by a computer ' :1

with either an asynchronous or synchronous software structure. ' -"H

The main difference will be in the scheduling and dispatching

of I/O requests, and in the coordination of 1/0 with processing. 1

In the synchronous structure, I/O requests must be pre-

planned and interleaved with the task processing. I/O requests

are dispatched in a list every minor cycle and carried out con-

currently with task processing. A synchronous software structure

requires a command response bus access method. A polling or

contention access method would be difficult to run with a

synchronous structure [8]. However, in an asynchronous structure,

1/0 is scheduled on a demand basis by,the processing tasks.
‘ ‘These I/O requests may also be carried out concurrént with task
" processing, but their scheduling and dispatching are non-

deterministic.

. The major distinction between cyclic and non-cyclic 1/0 in

' - this executive system is that 1/0 done by the cyclic sequencer

. is table driven via the CCT. That is, the cyclic sequencer has

tables of how frequently each I/O Operation it performs must

be done. Because of the high priority of the cyclic sequencer,

the read/write routines will insert these requests at the
beginning of the IORB queue to insure their completion before

the next minor cycle interrupt. In addition, the percent of
I/O channel usage by the cyclic sequencer must be limited.

Sufficient time must be allowed for the channel to complete

all I/O operations generated by cyclic computations before

their next execution.

5.7 Configuration Dependent Features

The data bus system.we_are assuming is a high speed data

transmission device which is primarily used for sampling

measurements from avionics subsystems and sending computed

information back to the subsystems. We are not designing

the executive I/O system for devices such as printers or tape

drives to be on the data bus.
I

The EP architecture features we have used in structuring
the I/O management functions of the executive system are the
following: the I/O interrupt, channel programs consisting of

CCWs, the characteristics of the START I/O and TEST I/O

. instructions, and the CSW.

108

:‘
z

lNTFRMETRICS INCORPORATED - 701 CONCORD AVENUE ° CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840 M
g

Computer control of the.data bus is accomplished via the
I/O channel. Since the EP allows no direCt BCU control, the
I/O channel sends commands to the ECU and receives returning

. information. Thus, the channel—ECU interface hardware must

} transform channel commands into a BCU command format. Other

computers, such as the Hughes 2 3 0 , allow more direct BCU
control than the EP. Appendix A of this volume presents a study

‘of operation and control of the data bus with such a computer.

5.8 I/O Error Correction‘ - -

Upon the detection of an I/O error, via the CSW, the
executive must perform.several functions. First, the occur-
rence of the error must be reported in the record of the flight

kept On the MMU. Next an indicator is flashed to the pilot,

and finally a reconfiguration routine,is called. The faulty

equipment must be isolated and an inactive spare switched into

the configuration to allow the ndssion to continue.

The ECU hardware can be structured to try an I/O trans-

; mission several times when an error is detected before reporting

“’ _ ‘ the error to the computer. ‘In other words, the error can be made

. invisible to the computer and the executive until the ECU

determines it cannot correct the error by retransmission of the

I/O command. At this point, the ECU reports the error to the I/O

channel, and the channel in turn formats the appr0priate CSW.

{j A discussion of data bus error Control is presented in
Appendix B. ' ‘

109

l“'1NIERMETRICS JNCORPORATED ’- 701 CONCORD AVENUE ° CAMERIDGE, MASSACHUSETTS 02138- (617) 661-1840 L

eu—
‘—

4 A V _'r____
- ' ——--———~—v w——,-.-— - - — _ — W

4
INHIBIT ”0 AND
EXTERNAL
INTERRUPTS
VIA PSW

Jr
SAVE
REGISTERS

&
STORE
PRESENT TIME

boss 7
csw SHOW YES PROGRAM

AN ”0 ERROR
ERROR

NO

IS A
Awm'srlc-s YES :ggg‘f/EOTCB,

COMPLET'ON WAIT OUEUE
OFIK)

{
PUT TCB 0N
READY QUEUE

POST ECB
ASSOCIATED
WITH ”0
OPERATION

DOES
IORB SHOW STORE AT

TASK WANTS GIVEN
TIMER ADDR ESS
VALUE ,

REMOVE IORB FROM
OUEUEAND RETURN
TO EXECUTIVE
WORK AREA

CHANNEL
REQUESTS
PENDING

RESTORE
r REGISTERS ‘97

ENAB LE
INTERRUPTS
EXIT VIA PSW

110

YES

"'651‘ NEXT IORB
IN QUEUE

{I
l

PUT ADDRESS AND
BYTE COUNT
INFORMATKON IN
CHANNEL PROGRAM

§
PUT CAW IN
LOCATION 72 AND
FORMAT START

[

I

i
ACTIVATE
CHANNEL B Y
EXECUTING
START I/O

DO ES
CSW SHOW

INSTRUCTION
PROPER LY'
STARTED

PROGRAM
ERROR

Figure 5 . 2 Flowchart of I/O Interrupt Software

l /O INSTRUCTION

6
STANDARD
LINKAGE

0053
see SHOW

LAST READ
POSTED

N0 EXECUTIVE
CHECK SVC

%
EXIT TO
DISPATCH ER

[FORMAT IORB

us ' CALL SECONDARY
DEVICE YES STORAGE MANAGER

MMU TO GET DATA
ADDRESS

} ! ' ' I No‘ ;
PUT ADDRESS

}
m IORB

1' 4" I CAN
MAIN

MEMORY ”0 PROGRAM ADDRESS ERROR
SPECIFIED BE

WRITTEN
INTO

_ YES ,

‘ CONVERT DEVICE fl
ADDRESS INTO A
PHYSICAL ADDRESS
AND PUT IN IORB

INSERT IORB ON
OUEUE BY TASK
PRIORITY

YES RESTORE
REGISTERS

ENABLE
INTERRUPTS
AND EXIT
VIA PSW

Figure 5 . 3

111

,. ”— V

SET UP
CHANNEL
PROGRAM

*5
PUT CAW IN
LOCATION YZ
AND FOR MAT
START l /O

EXECUTE
START l /O

DOES
CSW SHOW

INSTRUCTION
STARTED '

PROPERLY

YES

PROGRAM
ERROR

‘G——-J ‘

Flowchart of READ SVC

Av—P_7
—

—
~

v
—

v
_

w

r
w

fl

u
—

w

—
w

w
-

w
—

._ wt?—

&
STANDARD
LINKAGE

DOES
ECB SHOW

LAST WRITE
POSTED

NO

FORMAT IORB

CONVERT DEVICE
ADDRESS INTO A m______‘
PHYSICAL ADDRESS
AND PUT IN IORB

}
INSERT IORB ON
QUEUE BY TASK
PRIORITY

IS
CHANNEL

BUSY
YES

SET UP CHANNEL
PROGRAM

é
PUT CAW IN
LOCATION YZ
AND FOR MAT
START HO

4:
EXECUTE
START l /O

DOES
CSW SHOW

INSTRUCTION
STARTED

PROPERLY

PROGRAM
ERROR

YES

EXECUTE
CHECK SVC

é
EXIT T0
DISPATCHER

CALL SECONDARY
STORAGE MANAGER
TO GET DATA ADDRESS
AND CHECK ACCESS
RIGHTS

INSERT
ADDR ESS
IN IORB "

RESTORE
REGISTERS

%
ENABLE
INTERRUPTS
AND EXIT
VIA PSW

Figure 5 . 4 Flowchart of WRITE SVC

112 .-

W

I
m

y

K
i

l
n

—
3

L
8

"

-

_

j

5
.

.
.

:
-

w
‘ v

-.._< w

w
—

~
_

_
_

_

.rVw v -—

"
‘

\

.
'

-

A
i

J

l
STANDARD
LINKAGE

DOES
ECB SHOW

I/O OPERATION
PENDING

PLACE TCB OF
ACTIVE TASK
IN NO WAIT
OUEUE

l
' EXIT TO

DISPATCHER

NO RESTORE
REGISTERS

l
ENABLE
INT ERRUPTS
AND EXIT
VIA PSW

Figure 5 . 5 Flowchart of. CHECK SVC

112a

q.

‘
.

.

.
.

(

4
.

“
.

.
-

.
-
‘

9'

L

Chapter 6

Configuration Management

6.1 Introduction

The tepic of configuration management is very extensive,

covering many aspects of computer and system design. An

\adequate discussion of this tepic in relation to the Space

Shuttle mibo¢on must treat the areas of power on initializa-

tion, mission phase initialization, error recovery, switching

between simplex and redundant modes of operation, and system

synchronization. The first three of these tepics ale

pertinent to the 4 Pi EP configuration in the Avionics

Systems Integration Laboratory, which will operate in a

simplex mode, and hence, these tOpics will be included in

the design of this executive system. The latter two topics

are pertinent to the avionics configurations preposed in

both Phase B Study Reports and will be treated in this

report in a tutorial manner. As we will later see, the

configuration management functions are very dependent upon

the computer and system architecture assumed.

6.2 Initialization
a

When the EP computer is powered on, initial program

loading (IPL) must be performed. IPL is initiated-by the

Operator pressing a load key. The load is done from an MMU -

with the unit address taken from switch settings on the

console. The first 24 bytes read are placed in main memory

locations 0—23. The double words read into locations 8 ‘

and 16 are then used as CCWs for subsequent I/O operations.

113

INTEQME‘THICS INCUEIPORJ’W ED . 7J1 C(‘}?‘.‘"JO?~?Z) .3 ‘.’F.HUE * (3»’=.3‘-.I?-‘=E’-{i".7{3?. M KEESACHUSET T‘3 02138 - (617) 651-1840

INTERMETRICS INCORPORATED ° 701 CONCORD AVENUE ° CAMBRIDGE. MASSACE'EUSETTS 02138 - (617) 661-18403

,, ” W V - fi r _ ,W7,W~‘,_,__‘i, . . y w “ w » r ~ — W V ¥ _ ‘
w— A ~v-———-—-—~ w v - r - r v — ~ — » v ,,. , — m fi ~ — v — . 7 - v - r v _ . ‘ l 1 , ‘ . — _ . H. .n — r v . r — V . _ ‘ - . . r _ r

When the channel ceases its activity, the CPU fetches the

double word in location 0 as the PSW and proceeds under its
control. The first program module loaded and executed

should be a hardware diagnostic routine to insure the
computer and subsystems are functioning properly.

Upon successful completion of the diagnostic cheéks,

the mission program for the first phase of flight is

loaded. All program module loads are absolute since the

mission programs for each flight phase will be preassemble
d

with absolute addresses. At load time the program modules

and data need merely be put into main memory at their pre-

defined locations. Furthermore, part of the mission program

will be phase independent in the sense that it will be

resident in main memory tor the entire flight. Examples of-

this part of the program are the executive, part of the

Compool, and some common subroutines, such as sine
and

cosine. The remainder is phase dependent, changing with

the beginning of each flight phase.

The signal to begin a new mission phase can be

initiated by the pilot pressing a button. This signal

would initiate a priority 0 task which would begin the
:phase transition. On the other hand, this determination

could also be more automated by allowing the compute
r to

determine a phase transition time based upon some set of

predetermined criteria. In either case, phase transition

involves reloading the phase dependent parts of the

computer's main memory. .

Phase transition begins by inhibiting the cyclic

sequencer subroutines from executing every minor cycle:

except for the phase transition subroutine. The background

tasks can then execute to completion, or the pilot can

examine the TCB queues via the graphic display systems.
He

can then terminate any background tasks he wishes in
order

to shorten phase transition time. When all background tasks

have terminated, the phase transition subroutine will issue

input commands to the MMU to load the phase dependent

program modules and data for the next phase. An important

part of this load is overlaying the phase dependent entrie
s

of the CCT with entries corresponding to the.new phase

'dependent subroutines. The PMD must also be updated to

record which program modules are in main memory and

which are not. Now at load completion normal processing

for the new mission phase can begin. It starts by the

timer interrupt occurring, and the cyclic sequencer

beginning execution of the subroutines associated with

the mission phase.

114

E

t'

L

.
.

-
-

.-

'
4

\

:0
i

i n : L 1Ln1 ”: a a“ name |.-.’-VI."‘f‘~.""‘C3{1€3A Inn . '. :71 ar‘n'n‘) Mr ‘-‘.- =

6.3 Failure Detection and Error Recovery

The area of failure detection in this executive system

has two main focal points: internal computer failures and

subsystem failures. The former category consists of hardware

malfunctions and software errors. The latter consists of

the computer’s detecting a malfunctioning subsystem by

periodically monitoring the status of each. Whenever a

‘failure is detected, a recovery procedure must be invoked.

6.3.1 Hardware Failures

A machine check interrupt is generated in the EP

when a hardware malfunction is detected. The PSW associated

with the interrupt is given control, and the CPU can then

execute a diagnostic routine to determine the cause of the

error. An advantage to this procedure is that the CPU can

try to restart computation at the point of failure. However,

if the diagnostic procedure indicates a persistent machine

failure, the EP must be powered down so that the faulty

hardware can be replaced. Since the EP is Operating in

‘simplex mode, there is no backup computer to take over the

computational load. It is almost inconceivable to formulate

u +--UV-&1 régvvl;;c £0; Lhe case "here a periodically

executed diagnostic test reveals a consistent machine

failure, such as an adder error, for which no machine check

interrupt is generated. Upon detection, the CPU can be

powered down, but tasks which have been running in thi
s

environment have probably produced invalid results if this

failure condition has existed for some time. Furthermore,

the invalid results may have been prOpagated through the

system to an arbitrary degree. Thus, it appears almost

mandatory to rely only on instantaneous discovery of error

by the hardware.

6.3.2 Software Errors

A software error can be detected two ways: either

by the EP hardware generating a program interrupt or by a

task determining that an error exists.. The program

interrupt enables a new PSW to be given control which wi
ll .

invoke a recovery procedure. The standard system recovery

.procedure will be to terminate the task.

- .. ' = - L;A3.<:.A(‘.;-;HS;FTTQ (39152;; . {mn 6281—1840

O

.. Termination includes releasing dynamic memory and shared data,

and removing all of the task's I/O requests from the IORB .

queue. On the other hand, a task may specify its own recovery

procedure to be used instead of the system procedure. The

new procedure is specified by an SVC executive in the task.

The SVC supplies the address of the recovery procedure, and

the executive places this address in the task's TCB. The SVC

may be executed several times within a task with a different

procedure address specified each time. The flowcharts for these

algorithms are given in Figures 6.1 and 6.2. Should a task

determine a software error exists by checks within the coding,

e.g., by checking an argument for negativity before taking a'

square root, the task can specify what corrective action to take

at that point. It can transfer control to a recovery procedure,

or it can immediately terminate. In either case, the executive

does not intervene in the recovery process.

g
.

6.3.2.1 RECOVER SVC. RECOVER (SVC 16) _, The purpose of this

supervisor call is to allow a task to specify what corrective

action should be taken if a program check interrupt occurs

during its execution. (See Figure 6.1)

.
A

g

. 6 . 3. 3 Subsystem Monitoring

The subsystem monitoring function consists of periodic

monitoring of the health of the subsystems which are inter-

faced to the bus. The objectives are to provide an updated

’status of the system and to detect errors and failures. Di-

agnostic routines must be initiateddupon detection of an error.

to provide fault isolation to the functional path or redundant

unit level.' In conjunction with fault isolation data must be

collected periodically to enable trend analysis to be performed.

as a means of failure prediction. -

The cyclic sequencer will periodically request status

information from each subsystem. This information is examined

by a cyclic subroutine to determine if the subsystems are op-

erating properly. When an error is detected, a fault isolation

and reconfiguration procedure must be executed. The procedur
e

will switch out the faulty equipment and replace it with a

spare. The spare is chosen from a redundant equipment table

(RET) maintained in main memory. A typical entry of this table

is illustrated in Figure 6.3. Each entry contains the logical

unit number, its physical address and its status. Upon switch-

ing active units the formerly active unit is flagged as faulty

in the RET, and the new unit is flagged as active.. The RET.

t
'
i
-

_
‘
I
A
"

is also used by the I/O routines to determine the physical ad-
J

. dresses of logical units for structuring IORBS.

116
”1

n

i

k

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 ° (617) 661-1840

STANDARD
LINKAGE

INSERT RECOVERY
ROUHNE
ADDRESS IN TCB

‘
RESTORE
REGISTERS ; ' .

ENABLE .
INTERRUPTS

. AND EXIT
VIA PSW

Figure 6 . 1 Flowchart of RECOVER SVC

117

&
INHuuTuo
AND EXTERNAL
INTERRUPTS _ .
VIA PSW .

6
STANDARD
LINKAGE

3
F

SPECIAL
RECOVERY YES RESTORE

PROCEDURE k 1" REGISTERS
SPECIFIED

AENABLE
INTERRUPTS AND

CLOSE ANY ‘ EXIT TO RECOVERY
OPEN UPDATE ‘ _ PROCEDURE VIA
BLOCKS IN PSW
THIS TASK '

%
RELEASE
DYNAMIC
MEMORY .

REMOQE
TASKS IORB'S
FROM OUEUE

DOES
THIS TASK

HAVE A
PARENT

TASK

=Vves

RETURN ALL TCB's
OF TERMINATED
TASKS T0 EXECUTIVE
WORK AREA e .-

ENABLE
INTERRUPTS
AND EXIT TO
DISPATCH ER

Figure 6 . 2 Flowchart of Program Check
Interrupt Software

118

W e r T F V W H T fi — W ‘ w ‘ — . w . _ r _ . __‘,_...___...‘.# .7 f ,_ . . __ 7 7
¢ .

I

logical Unit 1
’ . z

I ., physical address.
1 7
, status

\ fix .
f ‘; . ' _

' . f Ffi-M. A ; “I m...- ;‘ '~ ,._. ..‘.“' “:4

t . . 1 n - 1 .
- .1. .L. .L

I
)

“i ' Figure 6.3 Format of Redundant
{ . - ‘ _ Equipmgnt Table Element

119

g 7 INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 (61.7) 661- 1840

. 6.4 Failures in a Quad-Reduhdant stelfi

Phase B efforts to date have indicated that a form of

voting and/or comparison will be used for detecting failures in

a quad-redundant computer. The following are significant ques-

tions in the design of error detection techniques and the soft-

ware required to support them.

ware, and how often? This could be a very difficult

task for the software alone.

b) What data is voted or compared to detect the error?

If the bus outputs are compared for example, identical

simultaneous input data must be presented to all come

puters to eliminate effects of small timing differences.

0). If a comparison mode is recommended, it may be impossible
to maintain the software in the "active" computer identical

to that in the redundant computers.

It must be pointed out that the techniques of voting and

comparing will detect only hardware failures. Software is

inherently non—redundant, and errors or inadequacies in its

. ' specifications cannot be detected in this way. _

a) How are the computers synchronized: via software or hard- 3

6.4.1' Error Recovery of Shuttle Computer_Hardware

The problems or recovery, via software, after the de-

tection of a computer failure can be severe. Error detection

by voting on and/or comparing the outputs of two or more re-

dundant operating computers is favored in the current Phase
 B

avionics system approaches. Such techniques can be made less

“ difficult to implement if the elements being compared are complete

units, i.e., including a complete memory, CPU'and I/O con
troller. A

detected failure would result in the disability of a complete

computer and its replacement by a standby., However, if re-

dundancy, error detection and recovery are taken to the lev
el

of the memory unit, which is then considered as an element of

. the system independent of the processors, the complexity of the

.reconfiguration problem increases. The recovery from a mem-

ory module failure requires either the replacement of the

failed module by an identically loaded copy, or the regener-

ation of its state prior to the hardware failure. This in- .

valves the continuous updating of spares, or an initial load

with a consequent delay in system operation.

c
a

n

Failure detection by pure comparison imposes the problem

of determining, in the event of a comparison failure, which

120

w

. of the processors is defective. An approach might be to ter-
. minate OperatiOns in both computers, run diagnostic routines

in each, and then_reconfigure once the failed computer is
identified. However, reconfiguration does pose the following
questions: '

1) What happens to the time-critical processes that may have
been active at the time? .

2) If the active computer is the one that failed} how does
it hand of: control to its backup?

3) What is the next step if both computers indicate failure?

: These discussions are not to imply that the problems
i _ are insoluble, but more to underline the impact of placing the

' recovery and error detection responsibilities, of redundant
computer hardware, into the software. During the course of
this work, careful hardware/software trades must be made to
identify clearly the impact on software of these functions.

’1
.

£3 _ 6.5 Mode Switching

. ' During critical mission phases the MDC Phase B. Study
' [2] calls for all four computers_to be processing in a re-

. ' dundant mode of op eration. In the event of a failure one of
them can be powered down while the remaining three continue

{f - processing» In noncritical mission phases, however, only one
1 active computer is necessary. Hence, in a transition from a '

noncritical to a critical mission phase, it is necessary to

switch from a.simplex to a redundani mode of operation.

In performing this transition the active computer must
,, . supervise the loading of main memory for the other three com-

{‘ puters and synchronize their start up. The data to be loaded
falls into three categories: phase independent, phase de-

f pendent and time critical, such as the mission clock. The
f'. first two categories can be loaded from thebflfll. The third

' category of data must be loaded from the active computer, but
this transfer can use the MMU as an intermediate device.

{ The transition.ftcmtsimplex to redundant mode should be
“ done in the noncritical phase before the full redundant come

puting power is necessary, 1.8., before the critical phase begins.
This allows time for transfer of data and synchronization,
while the computers are not in a critical mode of Operation.

)
.

—
o

.

’
1

‘
-

l‘

. <

a!

$
n

s
.

¢
*

<

h
-

.

L 121

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ~CAMBRIESGE, MASSACHUSETTS 02138 - (617) 661-1840
. _ .4 . . 7 —'—~—— # - —, 7- . , . . V A 7 _ ,

. 6'. 6 Synchrohization

Several approaches have been taken to solve the problem
of synchronizing the Operations of several redundant computers

executing the same software in parallel. MDC/TP N [2] rely
on extra hardware (an external clock) sending minor cycle
synchronization pulses to the four executing computers. On
the other hand, IBM [5] relies on software communication
between computers to synchronize the start of tasks. The

particular method chosen depends heavily upon the architec-
ture of the computing systems. However, some general principles
do apply.

Although the computer operates in a highly involved and
complex fashion, it is deterministic and exact: a given op-
eration will always yield the same result if repeated with the
same input data. The major problem for computer comparison in
a real time environment such as the Shuttle is the synchron-
izétion of computations which involve time dependent functions
and input data; Any detection of the computers not being
synchronized must be treated as an error. .

a
m

Synchronization can be achieved by: ji
g

. a) central control-of the computer clocks;

b) careful gating and distribution of input data;

c) strict ideritity of hardware and software Operation. a

' A comparator/voter mechanism adds to the hardware and
software complexity. -It also incurs Operational delays, be-

_ cause time is required: . g

E a) to wait for synchronization of clock and data;

b) to perform the comparison; a

c) to decide on the results of comparison; ' [I

d) to take corrective action.

To minimize overhead, the comparison should, therefore, g]

take place at a fairly high level of operation, rather than

instruction by instruction. Comparing the Operation of the -
computers at the point where they influence their environment, 2y

i.e., at the computer/bus interface, is a légical choice,

provided that outputs occur fréquently enough.

122

INTERMETRICS INCORPORATFD 701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138 (617) 661-1840 L I

l .

I . I

Q
l
i...

I.

k
" INTERML-tjgcs INCORPORATED . 701 CONCORD AVENUE - CAMBRlE, MASSACHUSETTS 02138 - (617) 661-1840

‘

Comparison and voting can be done in varying degrees,
with varying hardware and software complexity:

a) Majority voting on the output data of three or more
computers, reducing to comparison with diagnostics when
less than three good computers remain. The bus receives
only the data derived from the majority vote. Failure
isolation and correction is automatic as part of the
voting process. The complex voter that this requires must
be sufficiently redundant and possess adequate error
protection to meet the failure tolerance criterion,
bacause it is an in-line element in the data bus.

b) Majority voting on the indications of health, but not on-
the output data. One computer is selected to be "active"
and its outputs control the bus directly. The other
computers are used as standards to provide independent
checks on the operation of the active computer, A votihg
mechanism decides on the basis of a majority-of‘comparatOr

~results whether the active computer.is Operating correctly.

It may also determine which of the inactive computers has
developed a failure (see Figure 6.4). In the event of

a failure of the active computer one of the others is made
active. The voter mechanism may be considerably simpler
7than the data voter-of the previous paragraph, since it
onlv onerafec on binarv vaes; 'its re5ponse_time need
only match the reconfiguration dynamics, not the tranq-
mission frequency of the bus. ‘Furthermore, since it is
not an in-line element of the system, it may not have to ¢
meet the same stringent failure tolerance requirements.
Each comparator can be considened a part of a computer's

I/O section and is thus naturally redundant. In fact,
the comparison could be performed, by software, internal
to each computer.

As a consequence of voting binary, rather than many~

valued byte or word data, the simplicity of the second method
pays a penalty in the lower inherent certainty of correctly

interpreting failure conditions. There is a greater possibility

for split vote situations to arise with binary variables, and

a greater likelihood of identical multiple failure. However,

'these conditions will only arise when failures in the compar-
ison and voting’logic itself produce erroneous indication of

computer health; the lower complexity of this voter will aid
the achievement of the necessary reliability. .

For either voting approach once less than three gooa
computers remain, reliance must be placed on self—diagnostic

123

|_
.._

INTERMETRICS INCORPORATED ° 701 CONCORD AVENUE ' CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

.4

to determine the faulty computer. No self-diagnostic technique
can be infallible; a disagreement between two computers coul
yield the following conditions: -

a) One computer determines itself to be faulty, the other
finds itself healthy. This is the expected result.

b) Neither computer detects a malfunction. This may be
because the fault was transient, or because it was a
border-line case beyond the capability of the disgnostic
method.

c) Both computers detect malfunctions. This event is highly
unlikely in the case of uncorrelated random errors, but
may easily occur for common mode problems such as physical
environmental transients (e.g., power supply and thermal
variations).

One insidious possibility for a processing failure that
may not be trapped by any of the techniques discussed so far
is that of the software error. The software in each of the
redundantly operating computers must, for the purpose of comr
parison and voting, be virtually identical. It is, therefore,
inherently non—redundant. A software fault will produce data
which, being identically erroneou3,_will‘appear_to compare
correctly. r ' ' .

124

5
%
:

a
s

h,

i T

L ‘ ' VOTER 1 ' I

. is n A ' a

COMPUTER COMPUTER COMPUTER COMPUTER
NO. I ' N0. 2 ' NO. 3 ' NO. 4

COMPARATOR
wife-Ili- a “ ' . 2 r

“ ’ i no.2 L1. _ no.3 m No.4 Q

V V , V " V :

BCU NDJ BCU no.2 , BCU No.3 BCU no.4

L—J’ \‘i
. [QUAD ausl

Figure 6 . 4 Computer configuration with
external comparator and voter

125

_V
,

P
a

w
-

O
.

q

»
9

~

if ‘ Chapter 7

{5- Secondary Storage Management

7.1 Introduction

i . The primary purpose of the executive's secondary storage

"' management functions is to supervise data transfer between the

: _ computer's main memory and the MMU. These routines must insure

[cdrrect MMU accesses by tasks, so that the integrity of data

' transfers is preserved. This chapter will explore the algprithms

for performing these functions.

W
-

.
.

h

)

‘

7.2 Data Set Structure

A data set is a collection of records} Data sets may be,

“” for example, pnram modules, flight data, or display skeletons

fir for the shuttle's graphic display units. All data sets on the

ff MMU are listed by name and address in the BSD. The length of
*4 a record is constant throughout a data set and is stored

' in the.DSD. _ ' , —

I a When a task reads or writes upon a data set, it must.gfl .

: 'operatp on complete records. Each read or write dperatioh If '.

‘ } is done for One entire record. Thus, all blocking and'unblock- '
“ ing operations on data within a record are performed by the

task and not by the executive. .

7.3 The Secohdary Storage Supervisor

{ , The secondary storage supervisor is called as a subroutine

" of the I/O management routines. One of the functions of the

f . secondary storage supervisor is to calculate the MMU data .
g addresses referred to in 1/0 commands. This calculation is

‘v based upon the data set start address, the logical record within

1 the data set referred to, and the device geometry. Different

fl types of MMUS, such as disks and drums, will each have a different
I

L‘

d INTERMETRICS INCORPORATED - 701‘ CONCORD AVENUE ° CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840
7 ' ; >- 4; k.

-_. ..__

r———

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ° CAMBRIDGE. MASSACHUSETTS 02138 ° (617) 661-1840 a,

geometry. Hence, a detailed description of calculating a

physical data address is very dependent upon the MMU used,

The number of bytes to be read or written in an I/O

“command will correspond to the physical record length of the

data set. .This parameter will be dynamically supplied to

channel programs by the secondary storage supervisor from DSD

information.

If each data set is systematically organized so that its

physical records are contiguous on the MMU and the addresses

of these records are monotonically increasing as we proceed

from the beginning to the end of the data set, an important

error checking feature can easily be achieved. By similarly

organizing the DSD entries, i.e., in terms of increasing MMU

addresses, each physical record address calculated by the

secondary storage supervisor can be checked to be sure it is

indeed within the specified data set. This check is done by

comparing the record address with the beginning address of

the next data set in the DSD. If the former is greater, an

error exists in the logical record number specified in the I/O

command. A software error condition then results.

If, in addi ion, the data set specified is to be written

upon, the secondary storage manager will check to see if the

data set is indeed read/write, and if the requesting program

module has access rights. If these two conditions are not

true, a software error condition again will result. The

flowchart for this algorithm is presented in Figure 7 . 1 .

128

a ‘

1

-,
'

4
1

*

G
G
J
1
I

3
1

9'

o
n

»

h
‘

a
-

 v
-

‘fi
‘

(
I
I

V
STANDARD
LINKAGE

.1

Q
FIND DATA SET
START ADDRESS
AND RECORD
LENGTH IN 080

é
CALCULATE
MMU ADDRESS
OF R ECORD

‘ IS _

figfifififis ”0 m PROGRAM
DATASET ERROR

VTS

l S l / O
OPERATI N0 - RESTORE . .

A ON REGISTERS *4" Ex”

wane é

. YES

IS
DATA SET

READ/
WRITE

NO

YES

DOES
PROGRAM YES

MODULE HAVE '
ACCESS
RIGHTS

NO
L‘ 'l

PROGRAM
' ""‘"‘" ERROR

Figure 7 . 1 Flowchart of Secondary
Storage Supervisor

129

fiw -
—

-
—

~
v

'
—

-
~

1
—

—
—

—
-

4
 _ F

A
 4 ‘

4
 -

”
a

l
l

”

‘ Chapter 8

Executive Design Parameters

8,1 Introduction

In the course of develOping this executive system several

design parameters must be left unspecified, e.g., the maximum

number of elements that the system queues should accommodate,

or the amount of main memory reserved for dynamic allocation

to tasks. The nature of these parameters makes assigning

‘numerical values to them at this time very difficult because they
are highly fiepehdent upon the characteristics of the application

software, the computer and system architecture, and the avionics

subsystems eventually chosen for the Space_Shuttle. In this

chapter we will attempt to isolate these parameters and by

doing so identify those parts of the executive implementation
that should be parameterized. Parameterization allows for the

easy regeneration of new versions of.this executive as needed,

each tailored to a specific shuttle mission.

8.2 Synchronous Versus Asynchronous Control

The executive software design can support a fully
synchronous mode of operation in which all application software

is run in the foreground, or fully asynchronous in which all

application software is run in the background. Tasks that

require careful synchronization with real time, that are

highly repetitive, that are short, that are self—contained,

are obvious candidates for the cyclic foreground.

Tasks that do not require first order timing specifica- -
tions, that have wide variations in timing, that require large

timing factors for safety, and that are interactive with outside

events are candidates for the background. The percent of fore-

ground versus background use of the system depends upon the

nature of the application tasks to be executed.

131

.. INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

fl

. Another parameter dependent upon foreground v
ersus back-

‘ grOund use of the system is the length of the minor cyé
le time

w finterval. NR/IBM [1] recommends 40 msec, while MDC/TRW
 [2]

. recommends 20 msec._ The actual value, of course, depends
 upon

the rate at which subsystems must be sampled in
the command

response data bus system recommended. ‘

Within a minor cycle care must be exercised
so that the

foreground computations and I/O requests can be accomplished

in this time interval. Any overlap into the next minor cycle

is a system overload condition, which requires cor
rective .‘

action.

8,3 Executive Control Element Sizes

The table presented below is a list of each of th
e exe-

cutive's directory and queue elements and their storage require-

ments.

& . Element ' Main Memory Needed

. Task control bloqk - r 38.. full words

I/O request block ‘ 11 full words

Event control block 2 full words

Event descriptor byte ‘ 1 byte _ . _ :2

. Program module directory , '

{ element . . 3 full words .

E bata set directory element ' 3 full words L]

3 Dynamic core directory - '

‘ element 2 full words 3:

Cyclic control table
"'

element 5 full words -

Redundant equipment table . 1

element ' 3 full words

The maximum number of theSe elements that each
table hast ‘ .

accommodate should be parameterized.
I

132 ‘ 1
.J

INTERMEIBLCS INCORPORATED; 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840 [

'
“

-
q

—
—

-
1

INTERMETRlCS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSAC‘i-‘iUSETTS 02138 - (617) 661—1840

8.4. Task Management Parameters

1)

2)‘

3)

4)

5)

6)

Task Priority Levels: 6 priority levels were chosen.
Levels 0—2 serve very specific purposes as previously

explained. However, levels 3-5 are merely reserved for

executing background tasks. The number of these
priority levels can be varied dependent upon background

task requirements. .

Size of Main Memory: while not an executive system

parameter, the amount of main memory available influences

the software design. For example, it determines the maxi-

mum number of tasks that can be concurrently scheduled, the

amount of dynamic memory available, and the number of soft-
ware events the system can support.

Software Events: these events are predefined; i.e., they

are not dynamically created during flight. Within this
category of events, some are exclusive, some latched and

some unlatched. These characteristics should be para—
meterized.

Executive Resources: the size of the compool and the
organization of dy namic core should also be parameterized.
The characteristics of these areas of memory are very

dependent upon the number of tasks that can be scheduled

concurrently and the amount of main memory available.

Maximum Number of Tasks: a limit must be imposed upon the
maximum number of tasks that can concurre:1tly be scheduled.
Exceeding this limit implies a system overload condition

exists because more tasks exist than the system has

resources to allocate. Among these resources are main

memory to create TCBc, dynamic core, and CPU time. The
limit imposed on the number of tasks, in turn, determines

the maximum sizes of the system TCB queues.

Frequency of Servicing the Time wait Queue: servicing
this queue every minor cycle can impose a high executive

overhead. However, if the tasks on this queue are serviced

every N minor cycles, there would be a reduction in over-

head depending upon the value of N chosen. N can be

parameterized.

8.5 Supervisor Call Parameters

The particular parameters associated with each SVC
are listed in the next chapter. However, it must be pointed

133

L

o

.I out -here that the number of SVC and the services provided by

each are system parameters. Since the mechanism for using SVCS
is included in the system design, which ones are implemented
can be left to the disgression of the system designer based.

ppon application software needs.

134

INTERMETBICS INCORPORATED ' 701 CONCORD AVENUE - CAMBRiDGE. MASSACHUSETTS 02138 - (617) 661-1840k

U
H
1
H
a ,

H
H

5.

.

.

I}

g
1 .u'

\ .

.Chapter 9

'Application Task Interfaces

9.1 Introduction

As we have already seen the interfaces between application

tasks and the executive are the SVCs. These represent the

only means application tasks have of using the services provided

by the executive.

This chapter will list the parameters needed by each of

'the SVCs described in previous chapters. So far 16 SVCs have

been defined; which meet all the needs of the application tasks
" to run within this S'stem. However, should'further executive

services be necessary, more SVCs can later be defined and easily

included in the framework of this executive system.

.9.2 SVC Parameters _ '

SVC Number SVC Name , {Parameters to be Supplied

FREEMAIN None

2 SECURE Cdfifiool data addresses;
address of copy area if a
copy is necessary; lock
address of compool areas
to be locked; type of locks
to be established.

3 RELEASE If update of compool is to -
' be done, addresses of data

to update compool.

4 COPY Compool data addresses;
address of copy area.

135

E 1" INTERMET RICS INCORPORATED 701 CONCORD AVENUE- -CAMBR|DGE MASSACHUSETTS 02138 (617) 661-1840
L, * ”WW7 i

. ' 10
11

12

13

14

15

16

I .

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ' CAMBRIDGE. MASSACHUSETTS 02138 ° (617) 661-1840

LINK

END

SCHEDULE

WAIT

SIGNAL

TEST EVENT

CHANGE CCT

DISPCHECK

READ

WRITE

CHECK

RECOVER

136

Program module ID

Priority

None

Program module ID; priority;
scheduling conditions:

a) none, i.e. unconditional,

b) at a specific time,

c) after a time interval,

d) for some software event
or events;

Conditions of wait:

a) until some time,

b) for some time interval,

c) for some event or events.

Event name;

On, off.

Event name; pdinter to flag

Pointer to old CCT entry;
point-to replacement.-

None

.ECB'pointer;

Core address;

Logical device;

Data set name;

Logical record;

Timer option; pointer to
location in which timer
_value is to be.stored.

Same as READ except no timer opti

ECB pointer.

Address of recovery procedure.-

m

5
-

3

5
-

4

M
H

b

e
:

m m

m

‘1
3..

i
fi

fi
l

A

E3
3

\

£
3
3

—r—.—

L.

”LINTERMETRICS INCORPQBATED . 701 CONCORD AVENUE - CAMBRIDGE". MASSACHUSETTS 02138 . (617)-661-1840

Appendix A

Operation and Control of the Data Bus*

A.l Data Bus Access and Control Philoggphy

Since the Shuttle data bus constitutes a central communica-

tions resource shared among multiple terminals and a central

controller, a fundamental feature of its design is the method

by which it is allocated to a particular communication path.

The data bus system is essentially a “party line" shared by

_all terminals: when access is granted, the bus is dedicated

to a single communication path between a transmitting and
receiving station. .

Selection of the bus accéss method is a basic decision

because it Constrains the design of both the remote terminal
:

and the bus control unit. , 4

A.1.1 Command Response Addressing

In a command response addressing Scheme access to the

bus is centrally managed by the controller. Under this concept,

the controller transmits an appropriate command to the terminal

including: synchronization header, terminal address, function

to be performed (transmit, receive), data, and parity coding.

Upon recognition of its address, the terminal interprets the

command and begins transmitting 0r receiving the apprOpriate

data.

. Using command response access, a terminal does not initiate

any communication unless it is commanded to by the controller.

Terminals Only "speak" when "spoken to".

*The discussion in Appendix A and Appendix B is taken from an

Intermetrics, Inc. study on a standard interface definition

for avionics data bus systems [8].

137

COMPUTER

SOFTWARE

H

CHANNEL COMMAND

ll

IIO LIST

SE
T

INPUT/OUTPUT
DATA]

ecu . . . sw

' OUTPUT
mm“; no °ACCEPTS COMMAND LIST TRBErySMIT ' “5°" 3'” ADDRESS mrehmcss

'FORMATSAND success -—-au ' CHECK DATA --——-——-cw
DATA . - VERIFY comma -

' ' FUNCTION oecoos
AID AND BM

. TRANSMIT AND CONTROL
860 ACCESS BUS TRANSACTION

~22 "‘ "" ‘9‘ . vsmpv PARITY
ovemrv ECHO cascx

sw .' INPUT
BCU ' TRANSMIT INTERFACES

4 - 3 4:- - ozcoos CHECK DATA w——-——- AID encone TRANSMIT «Be—+—

- Figure A.l Basic functions during a bus
transaction

- V H V — fi _ 7 ‘

LRU

FUKCTION
0F L80

0' H

I
'-
‘ V

n‘
I

In contrast to the polling scheme a terminal is not "polled"
as to whether it wants the bus or not but rather is "commanded"

to send or receive a message. Command/response addressing is

similar to a polled system in that a terminal responds only

when addressed.

A fundamental characteristic of command response control

is that the "intelligence" of when, what, and how often to

communicate is in the controller (i.e., computer software).

There are consequently no access conflicts to resolve or

local decisions required.

A.2 Control and Operation of the Data Bus by the ECU

Once a particular access method is selected, the communica-

tions procedure established to perform a single I/O transaction

impacts the design of the bus system elements. The following

steps, illustrated in Figure A.l, must be taken in order for

a single computer to send and receive data from a set of

avionics equipment.

a) In a command response access concept, the computer directs

all I/O requests in the system. It indicates along which

bus line and to which remote terminal the message is routed,

and if data is requested, where to put it when it has been

obtained.

b) The ECU must encode the mes sage and transmit it to the

proper remote station over the selected bus line.

c) The remote terminal responds to the command, selects the

appropriate channel to the LRU and executes the appropriate-

functions to obtain the data.

d) Signal conditioning and conversion take place at the

terminal, which then encodes and transmits the data back
to the control unit.

6) The established error-control scheme is maintained

throughout the transaction.

f) The ECU transfers the data to the.compufer and informs it

' of the completed request or list.

The details of this transaction influence the bus message

format, the functions of bus elements, and communication security.

The message format and structure must satisfy the data acquisition

and distribution requirements, without unduly complicating the

bus hardware design. A level of transmission "security" must

be established to minimize the probability of an undetected

error, without significantly increasing the equipment complexity

or message overhead. The following sections provide a general

diécussion of bu; operation and the bus format and structure.

139

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

-1

F
"

V

A T
—

u
‘

i
l

fi
v

.
~

+

4
—

-
-

w
_

_
—

—
~

:
—

<
-

—
-

v
.

—
7

—
_

_
_

‘

.

l
1

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661- 1840

AJZLl Bus Message Format

In general there are fOur basic parts to the structure-
of any communication message: the message header and terminator,

the address and routing information, function code, and message

content.

Message Address Function Message 3 EOM
Header Routing Code Content Sync
Sync . i 2

The first three parts of the message are associated with the
communication system.

A.2.l.l Message Header and Terminator. Message synéhronization

is required to enable terminals to recognize the start of a

message and is usually a unique control signal recognized by

the terminal. It is essential that the synchronization signal

be different and clearly distinguishable‘from data to avoid mis-

interpretation. The characteristics of the sync signal will
depend on the modulation technique selected. It is usually

assigned a pulse width or phase change different from the
standard data bit.

There are four possible sync signals: at the beginning

and end of the ECU to SIU message and at the beginning and end

of the SIU to BCU message. However, from a communication point
of View they are not all necessary. The end of the ECU to
SIU message can be distinguished by the "idle bus" when the
ECU stops transmitting; similarly for the end of the SIU to

BCU message. However, detection of an "idle bus" may cause
circuit diffiCulties in either the ECU or SIU. The use of
different sync signals for ECU to SIU messages and SIU to BCU

message rules out inadvertent SIU to SIU communications, since

the SIU need only respond to a BCU sync.

In any case, the only positive requirement for any address

system is that there by a sync signal, clearly distinguishable

from data, so that each terminal can begin to look for its

own address in synchronization with the message. The need for

other sync signals for end of message, accept, knowledge, etc.,

is a function of the communication procedures and the details

of the implementation. .

A.2.1.2 Address and Routing. The address portion of the

message identifies the sender and receiver by "to X" "from Y".
In a centrally controlled system, where there is no terminal-
to-terminal communication, there is no requirement for the
"from” part of the address. All communications are initiated

140

'
I

J
4 A

m
m

[C I tradeorf here is between the added complexity of the SIU and
L

. sequentia time s+ottihg of the .SIU responses, by ignoring

by the ECU with transmitting/receiving occurring ohly between
. ECU and one SIU,

The “to" part of the message identifies the path to the
LRU via an SIU address and an EIU address. A separate EIU
address is necessary when the bus terminal communicates with
more than one EIU: If the SIU and EIU were combined into a
single unit, then the address could be combined.

.A.2.1.3 Group Addressing, A group addressing capability would
be required to send a single message to more than one SIU or
EIU, as might be required to enable a passive flight recorder
on the line to receive data intended for other terminals.
Group SIU addressing could be an advantage in transmitting the
same data to every element of a distributed subsystem, such .
as the individual quads in the RC3 system. Group addressing ‘f
would be useful in the central management of a redundantly ;
configured subsystem, particularly if identical commands are
issued by the computer to every redundant unit.

Group addressing on the bus requires the SIU to recognize
more than one address. However, there is the problem of
coordinating the return transmissions of echo or data messages.
Coordination could be implemented in several ways: by

the echo in the passive device, or by a Contention access_

method. The SIU, EIU address and function codes would need

to be coded in a way which would have group meaning.- The

ECU hardware, and the additional software and memOry to store
multiple commands instead of one. Admodification to the .
computer/ECU message to provide a routing indicator and a list
of SIU addresses, which would enable the ECU to send multiple
messages, could alleviate the computer software burden.

In summary, however, it is felt that group'addressing
is probably not worth the additional complexity in bus system
design if, as has been estimated, there is adequate capacity
in speed to accommodate the inefficiences encountered.

A,2.l.4 Function Code. The function code field of the bus
command Specifies the action to be taken by the interface unit
in acquiring or distributing data or signals to the LRU. The
structure and format of this field is directly impacted by the .
requirements of the electronic interface portion of the remote
terminal. In order to provide the capability of interfacing

u

u .

A I . .

i

g
L
f .

J

141

d lNTERMETRICS INCORPORATED ' 701 CONCORD AVENUE ' CAMBRI‘DGE. MASSACHUSETTS 02138 - (617) 661-1840 1

:
l

r

' I

INTERME‘E’RICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACI‘MSETTS 02138 - (617) 651-1840

‘

the majority of electronic equipment, the following types of

interfaces would be required:

a) digita; parallelf

b) digital serial,

c) analog data,

d) discrete.

The function code does not have to be in a standardized
format for all terminals. More parallel digital signals
may be required for a particular LRU, but less analog. The

electronic interface itself need not be standardized. The

function can be decoded and interpreted by specially tailored

function controllers at the terminal. Alternatively the

function code could represent the address of a location in a

control memory which stores special control sequences within
the interface unit. There are several ways of organizing

the function code field, which are discussed in the following
paragraphs.

a) Channel Addressing

Under this concept, each.interface is assigned a channel ‘
address, and the function code becomes part of the address

structure. Group addressing is possible only if channel
addresses are in sequence (e.g., 2 through 6, not 1, 3, 5,

etc.). Input or outputs may be implicit in the channel
address number, or specified via a format. The interface

unit is required to distinguish between input and output
channel addresses, to determine if data is to be sent back.'

Channel addressing is the simplest function code to implement
and allows the greatest flexibility. However, it can be

very inefficient if channel addresses are not assigned
in a way which can be effectively utilized.

b) Functional Classification of Interfaces

In this method interfaces are functionally classified and

a code for each class or subclass is defined. For example,
all communications can be functionally organized into the
following categories: commands, moding, functional input,

functional output, and others. The functional categories .
are assigned a coded number and all interfaces are assigned

to a category. A function code would then involve input
or output of all data in the corresponding category. Obviously
each major category can be further subdivided into subclasses

by extension of the function code field. A significant

142

J A _ . , A AA __ . A .

'
E

fl
i

£
3
5
3

0

'
r
 i

J
r- 1L

.. advantage of this method is that the efficiency of information

. transfer can be much higher if information is generally

' transferred in a block. It can also be useful from the
computer' 5 point of View, since all data in the "functional
group" may be desired at the same time (9. 9., all status
information).

c) Memorz

The final approach involves a small memory, of a few hundred
words. The function code specifies a location in the
memory which.contains instructions for data input and output.
The memory could store channel addresses or sequences

corresponding to an interface function. A memory with a

read/write capability could be altered inflight to accommodate

changes to a subsystem's operation demanded by different
mission phases.

A small high speed memory of the read/write or read only

type described above is well within the state of technology.
This concept provides the most general and flexible

capability, although it obviously increases the complexity

‘ of the EIU. Memory size could be expanded to accommodate

a. increases in equipment requirements, or to extend the

. . terminal capability to provide functions such as limit
. ’ Achecking of data, or‘the monitoring of LRU status. Ultimately

the +orm1n31- boccmes a mall computer capable of providing
a local service to the equipment and thereby reducing bus

traffic. \
r
"
 ~.

-.

.A.3 Operation and Control of the Data Bus by the Computer.

Viewed from the computer the data bus is a single, -
relatively high speed, asynchronously operable, peripheral 1/0

(“a - device, capable of performing data gathering and data distri-
* bution. Under the Command response access concept, the computer

initiates and directs I/O Operations on the data bus. It directs
:7” 1/0 by commanding the bus control unit with a set.of I/O requests.

‘ The ECU then controls and synchronizes the data bus system to

' carry out these requests. Most likely, the bus system.will be

mechanized in a way which allows the bus to operate independently

of the CPU once an I/O command is isSued by the computer. This
L, means that the data bus system and computer operate asynchro—

nously.

*
-

*
‘

 9
A

.

1
“

h
,

“

m
o

n
“

L

'0 .

i . . . ’

L 143

INTERMEIWCS INCORPORATED 701 CONCORD AVENUE’ °,CAt\4Bf?|DGE MASSACHUSETTS 02138' (617) 661-1840
F.— ..AV . . ‘ 7. L _;=L . . 7

. .

A.3.l Overview of Computer 170 Operations

There are two basic approaches to the design of the

computer software for confirolling the activities of the bus.

The first is the synchronous, fixed I/O method, in which I/O

control is based on a predetermined execution sequence and a

fixed time cycle. The second schedules I/O operations on a

demand basis. The characteristics of the two are summarized

in the following sections. To a large extent the computer

executive and I/O control structure can be considered i
nde-

pendently of the control structure chosen for the bus
. '

A.3.l.l Computer I/O Operation in a §ynchronous Structure.

Fixed sequence structured software requires_I/O opera
tions

to be interleaved with processing tasks in the minor cycle.

The inputs required by processing tasks in a minor cycle must

be available prior to execution of the minor cycle.

The concept requires commanding the ECU (or dispatching

I /O) , each minor cycle to input data required for the "next

minor cycle", and output data from the "last cycle". I/O

software for controlling the data bus is operated in each

manor cycle. For example:

Bus Inputs for pro- Inputs for prc- Inputs for pro—

Activity cessing during N cessing during N+l cessing during N+2

' ' Outputs from N-2 Outputs from N-l Outputs from N '

Computer Process inputs Process inputs Process inputs Ey'

Activity b from N-2 for. from N71 for from N for '

output during N output during N+l output during N+2 5]
L

Minor N-l N N+1

Cycle ., J

The dispatching of an I/O command list to the ECU can occur
at

the beginning of each minor cycle. However, it is necessary

that the list of-I/O be completed by the bus system prior to

the start of processing the next minor cycle. Thus; the bus

will be Operating for only a portion of the minor cycle at

a percentage of its speed. For example, the ECU may be commanded

for 16 ms of I/O every 20 ms. In this case there would be 4 ms

idle bus time unless the ECU were commanded again to perform

some additional 1/0 on checkout functions.

At the beginning of each cycle l/O commands are checked

for errors. If no errors have occurred, the next I/O list is

sent to the ECU and computer commences its processing seq
uence.

144

INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138
,, _._.g‘_.__‘1__)_ - E

J
J

'

I

3
B
I! «in, {‘r" 112!

7
5

"
.

"
?

If I/O errors occurred, an error recovery and fault isolation

routine must be Operated and the sequence of processing tasks
re-scheduled accordingly. Prior to the end of the minor cycle
I/O scheduling is operated to set up the I/O command list for
the next dispatch to the ECU. '

Since much of the Shuttle data bus design conducted to date'
has postulated this philOSOphy of software operation, it will be
assumed for the description of BCU activities in the following
sections. -

A.3.l.2 Computer I/O Operations in a Demand Structure. T h e .
alternative approach to fixed sequenée I/O is scheduling I/O
Operations on a demand basis. Typically, this is accomplished
in asynchronously controlled software structures as follows:

a) when an I/O request is made by the computer software, control
is transferred to an I/O scheduler, and a command is inserted

into an I/O queue.

'b) The task requesting the transfer is placed into a "wait
state".

0) Upon availability of the I/O device, the queued I/O requests

are processed via-the diSpatcher,which uses an algorithm,.
6.9., first in/first out (FIFO), to determine which I/O
request to service next.

d) The I/O.requests are sent to the ECU fine at a time, or in

‘a list for bus execution. -

e)- When the I/O request has been se§Viced, the issuing taSk

is informed and allowed to continue.

This approach is used on large ground—based systems,

particularly where I/O requirements are not known or impossible
to predetermine. The demand I/O concept does not appear con-

sistent with command response or fixed sequence scheduled pro-

cessing tasks. However, if a distinction were made between
computer input and output requests, output requests because

of their independence of processing tasks may lend themselves
,to demand scheduling.

A.3.2 Computer to Bus Operations . , .

An evaluation of the requirements of the interface between

the.computer software and BCU is directly dependent on the design
of the ECU. There are obviously tradeoffs between complexity

in the ECU hardware design and the computer software. The ECU

145

L INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ° CAMBRIéGE. MASSACHUSETTS 02138 - (617) 661-1840
L

INTERMETRICS INCORPORATED 701 CONCORD AVENUE- CAMBRIDGE MASSACHUSETIS 02138 (617) 661- 1840

in an extreme case could become a computer itself} dedicated to
.communications functions, supplying all communication of data
in and out of the bus system. At the other extreme, it could
simply perform time synchronization, transmitting and -
receiving control, and error coding. Somewhere in the middle,
the basic BCU capabilities can be extended by providing the
ECU with a limited set of registers and logic, and a direct
memory access (DMA) interface to the compUter's memory. By
cycle stealing from the computer, the DMA can supply commands
and data to the ECU directly from the memory. 'Commands and

data are sent;to the ECU either by incorporating a starting

address and the number of commands into the channel command a
word, or by chaining commands and instructing the ECU via the

Operation code in each bus command. A limited capability will
be assumed for purposes of this discussion, although comments

are made on areas where an expanded BCU capability may lessen

. the software problems. The basic computer-to-BCU operations'
are the following:

a) I/O dispatching - involves commanding and controlling the
ECU with I/O to be performed.

b) I/O scheduling - involves scheduling bus commands to be
issued the next minor cycle. .

c) I/O error processing - checking previous I/O commands
issued for errors and taking appropriate action.

A.3.2.l Dispatching I/O: Computgr/Bus Interface. The ECU
is provided with a list of I/O commands by loading an I/O '
channel with a command word from the computer (see Figure A. 2).
The channel command word. must contain sufficient information

to enable the ECU to execute all the appropriate I/O commands
in the list. Once this channel is loaded, the computer and

BCU may operate independently. The channel command word contains

an address of the first BCU command, and the number of BCU commands

to be processed. (BCU commands may also be linked by address
chaining.) The ECU commands can be stored in sequential memory
locations, and the list operated on in sequential order by the
ECU. Upon completion the ECU can be instructed to interrupt
the processor with an I/O complete signal. .(Alternatives,-
more in line with a "no interrupt" policy, can be devised,
such as a "BCU busy" signal accessible to the computer enabling
it to determine status of the ECU.) In either case, it is necessary

to coordinate the asynchronous Operation of the computer and BCU;
so that the computer is aware of the status of the ECU.

146

5
L

4
;

€

3
3

“40".
\ . . , f ’ TABLE 9:: ecu communs -. _‘ DATA
'. I; . I“ can '

. EXECUTEl/O
lNSTfiUCTIUf-u' _..

LOAD CHANNEL I! ECU CDWJANDS

1 .
I

agTEnpfiosnAm L ‘ ;@FJT, h. - h ‘ TRAumMS$DN ~-Wwww-mflwl {w»wm~««mw-w~~3 I COMMANDS

CONTROL EVIAl/D CHAMP-EH : '.
'INPUT/OUTPUT

- DATA

Figure A.2‘ Computer to BCU I/O command operation

147

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ° CAMBRIDGE. MASSACHUSETTSOZ138 - (617) 661-1840.

A.3.2.2 BCU Command Format.° The ECU command format must contain
instructions for the ECU to execute the computer's I/O request.

A single command will contain four parts: control information.

for the message, status information, skeleton bus message
 format,"fl

data linkage addressing information.

' BCU 1/0 I Bus command . Linkage to
control , .

0p code status SiU Fugggéon data

a) Control

The control part of the ECU command contains information

pertaining to the type of operation requested of the ECU.
Examples of individual BCU operation codes are Read,

Write, Skip, Linkage. With fixed I/O tables in the computer's
memory, a "no-operation" code may be desirable to skip

commands at certain times such as unrequired jet on commands

in a fixed I/O schedule. If the ECU contained memory, and

was more of a communication processor, this part of the

ECU command may contain a pre-programmed BCU memory

address for execution.

b) sgatus Bits

Status bit(s) are required to enable the computer to
determine if the bus command was completed successfully.

The computer must be informed of bus errors so thau it

can reconfigure and reschedule accordingiy. An incomplete

I/O transaction will result in rescheduling the processing ,
tasks. An "incomplete I/O" status indication may also

be desirable.

c) Skeleton Data Bus Message

The skeleton bus message contains the actual bus command

associated with the I/O transaction. The contents of the
bus message format were discussed in Sectidn A.2.l.. It contain

contains information which is both fixed and variable
during the course of the mission. Specifically, the
terminal addressing will vary with the status of the avionics
configuration; a specific communication path must be chosen

prior to execution of the command. For example, a request
for data from a redundant subsystem (e.g., radar) requires '
information as to which LRU is active, and which data path

to use. ‘ I t is reasonable to assume that configuration

management is a computer software function, and therefore

this information must be supplied to the ECU in some form.

148

-.—.~.... o .o..- , »’, _ .

i I

l
fi

d
i

5

A
3

G

Q
J

I

{
E

d
i

E

m
a

!

(
3

:
3

E
3
3

.
-

.
"

'

mg
;

K
a

i

r
-

-
‘

-
'

*
$

_

‘
.

!
.

V

The degree to which the computer will need to modify the
bus message format at run time will depend on the extent
and capability of the ECU. ' -

In order to establish fixed I/O command tables required
by the synchronous I/O method it may be useful to define
a symbolic and "physical" relationship_similar to that
used with tapes, disks, etc., in a conventional facility.

In this case a symbolic assignment, such as ISS or ISS
for inertial subsystem active and standby respectively,

will be associated with the subsystem. The symbolic
identification is then associated via configuration tables

.tn a physical unit such as ISS#1, ISS#2, etc. Predetermined

I/O bus commands would be generated using symbolic
identification and their physical identification determined
at run time by the computer or by the ECU via the transfer
tables of the computer. Path identification for a specific
physical unit (i. e., which SIU/EIU address) must also be
determined dynamically.

If each physical unit had a single path, i.e., a unique
address (BUS#, SIU#, EIU#) the problem is solved. However,

there is more than 1 path to each unit; the address must
be determined from the status of buses and SIU's. The
complexity of this problem will, of course, depend on the

redundancy interfacing and cross-connections established

in the system. For example, consider a system configuration

of a quad—redundant bus, 4 SIU's, and up to 4 EIU's per
SIU. There could be up to 64 possible paths depending
on the Cross-strapping.

Physical Unit ‘ Bus . SIU EIU

LRU #1 1 A x
2 B Y
3 c z
4 D w

If the SIU is an extension of the bus such that SIU cannot

be addressed via bus #2, then there are 16 possible paths
to a specific LRU. If the SIU were cross-strapped to the
bus and interfaced to a single LRU, then there are only

4 paths to it. '

The function of inserting addresses could be allocated to .
the ECU, assuming it had memory, by sending it a table
_of physical equipment codes, and the current path. The
current path would be updated by the configuration management

task as configuration switching occurred.

149

INTERMETRICS INCORPORATED ° 701 CONCORD AVENUE ‘ CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERMETRICS INCORPORATED ° 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 (617) 661- 1840

6) Data Linkage Addressing

This part of the bus command identifies the computer
memory location of the data to be output, or the destination

of the data input from the bus. If the bus format allows

block transmission, then the number of words is variable,

and must be obtained from the bus mesSage itself.

A.3.2.3 Comggter I/O Error Processing. An unsuccessful

I/O transaction detected by the ECU during bus operations is

eventually communicated to the computer, using the error

control bits in the bus command table. If the ECU is commanded

with a list of I/O requests, an I/O error will not be detected

until the start of the next minor cycle. At the beginning

of each minor cycle, the error status of all messages is

checked. If errors occur, the minor cycle task schedule is

modified accordingly, and the I/O error recovery procedures

are initiated. Some of the alternatives are:

a) the I/O request could be rescheduled via an alternate

path. A reconfiguration of equipment may be required.

b) Fault isolation tasks could be initiated to determine.
what to reconfigure (the ECU, SIU, or subsystem may
have failed).

c) The sequence of tasks contained in the following minor

cycle must be altered, delayed entirely, or allowed to
continue with "old" data.

'- A.3.3 I/O - Processing Memory Conflicts (Buffering and
Interlocking)

Independent operation of the bus and computer can result

in a conflict over the access to common data. This problem

occurs when a processing task is using data while the bus

control unit is at the same time attempting to input or output

"the same data for the same memory locations. The problem is

more likely to occur for data that is sampled at a high
frequency, when use of the data cannot be easily synchronized.

It is also more likely to occur in a block of data rather

than a single word because of the inherent interlock of a single
word access. FOr example, attitude angle information from the

inertial unit may be in use by.the digital autopilot task when

the ECU inputs new values via the DMA. In this case the auto-

pilot is Operating on partly new and partly old values. This

problem can be avoided by several approaches:

150

m
y

:
 :

2
3
 mg
;

m
.

:

3

I
N

‘

5
'

?
“

_

"NJ

a) 'the I/O input and output in this category can be buffered

. into different memory locations. It may be transferred

'to other locations, or a pointer can be switched between

two sets of registers for the data item, one set for I/O,

one for processing. Input data may in any event require

to be smoothed or compensated prior to use. This is the

general concept of "double buffering" of input or output.

b) The data could be interlocked via a control indicator or

busy bit, during the time either the ECU or the computer is

using it. However, this would require the ECU to access,

test, set and release the indicator with a consequent

increase in its complexity.

0) I/O can be planned by predetermining and adjusting the

sequence of I/O commands to avoid the conflict. I/O

commands can be designed to occur at the opposite end

of the cycle from the conflicting processing task. This

approach, although consistent with synchronous bus control

and I/O philOSOphies, appears risky due to the inaccurate

f in estimates of timing. It is, in fact, similar to the
approach used to solve the memory conflict problem in.

‘ C“ Apollo. This was only partially suCcessful, and it

could only be verified by extensive testing.

A.4~>pescrip§ipp andmgnalysis of I/O Transactidns

{ A.4.1 'Definition of an "I/O Transaction"

L
An "I/O transaction" is defined as the complete sequence

7; of operations performed by the ECU in carrying out a sing
le

[' I/O request from the computer. Once the ECU has received and

interpreted a command from the computer, it synchronizes the

-\ terminals on the line, transmits a message to the specified

i terminal and receives the app; repriate responsé. A transaction

‘" occurs between the ECU and a single terminal. It is the basic

bus communication activity. It is independent of any other

Ex transaction over the data bus system. .There are two types of

I/O transactions that are performed by the data bus: read and

write transactions.

a) A read transaction is the sequence of steps performed by

the bus system in acquiring data from the avionics equipment.

It can be termed a "get" command, to sample a specified

LRU equipment interface.

b) A write transaction is a sequence of steps to send data

{a to an LRU interface. It can be described as either a

L "receive" command, or a "do" command. The SIU receives

. the data or command and delivers it to the specified

L equipment interface.

151

‘ ’ INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138 (617) 661-1840

'A third type of transaction may be required,‘termed an
"SIU Event Status Command", in which the ECU transmits a
command message to an SIU, requesting it to return its event

status register. .

This transaction enables the computer to determine.if
random events (interrupts) have occurred at LRU's connected

to a particular SIU station. A rescheduling of processor
task; and read/write transactions may be necessary as a
consequence of the event.

A.4.2 Functional Description of Bus Transactions

A discussion of how the bus system performs a transaction‘

provides another step towards a specification of the bus/SIU/EIU

hardware design. In order to describe the operation of the
bus during a transaction an assumption must be made with regard

to a specific bus to SIU to EIU configuration, and an error

control approach. It is important to emphasize that this

section is intended to describe the functions required at

each bus element, and not to select a final design. Several

configurations of a standard bus terminal were.considered, but

a detailed bus command format was only designed for one.

The example configuration assumes a physical separation
of SIU and EIU. Each SIU is connected to only 1 bus line and
may service up to 8 EIU's. Each EIU provides analog and digital
interfaces to equipments. The other terminal configurations

assume no logical separation of the SIU and EIU, and are

cross— strapped to all four buses. .

The error control method selected for analyzing the trans-

action is transmission error detection through vertical and
horizontal parity, and path verification by address echo;

A variable number of 8-bit data bytes was sclected as
the basic transmission format. A 3-byte command format is
selected since 16 bits are considered inadequate to provide
the range of addressing and function.codes. A minimum of 18
bits are required for the command word in this configuration
(7 for SIU address, 3 for EIU address, and an 8 bit function
code).

Figure A.3 illustrates a representative format designed
around the 3 byte command message with a variable data message.
The asterisked fields are mandatory. Representative use for
the other bits in the 3 byte command are discussed below:

152

2 x l g ' . . . : . 0 0 I L . 3 3 . ; k' ° A u = = . V ”1:. ‘ 0 3 ' . - . , _ 64- HMO

1
"

I

I
I

.

'
i

-
I

I

i
I

l
l

 I
ii
! l
fi
fl
i

I
fl

fi
fl

I

=
=

l

I
l
l

r“:

r
m

INTERMETRICS INCORPORATED 7Q1 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138 ”(617) 661-1840

*a)

b)

*c)

d)

e)

i)

*g)

h)

.SIU address (up to 128 since only one terminal address per
'station is required. See Section 3.) .

SIU transaction bit. This bit may be used to command an
SIU station to send an event status message. This is a
two byte response from an SIU containing the status of 16
events or conditions that are assigned among EIU' s at a

terminal. Each is set in an EIU by the occurrence of a
local random event such as a hand controller movement,

disPlay input, or fault occurrence.

EIU address (up to 8 EIU's per SIU)

Error control bits. These are sent in an echo message from
SIU to BCU when an error occurs associated with the LRU.
Typical of the possible error response conditions are:

1) parity failure at EIU

2) EIU/LRU busy

3) ho response by EIU

4) improper channel

This information could be provided by a Special request
to the SIU. Making it part of the command format simplifies
SIU/EIU logic. If the information were not provided to
the ECU, a "no echo" response for all the above conditions

will be treated in the same way. ' '

I/O control. This control bit determines whether the
specified channel address is an input or output operation.

Block. This field of the command message identifies a
single or multiple channel address group. It is used in
conjunction with "block'size" to specify the size of the
message block.

Channel Address. This specifies the EIU interface by one
of the methods listed in Section A.2.l.4.

Block Size. The block size identifies the number of
channels to be sampled.

153

L

.9 BIT BYTE ORGAN/M TION

. ' ' 273m" ,

F 1 I - 2 1
. _ *EIU ERR I/O “CHANNEL .*Bu< _

r ‘ *smmnness JP ADDR com com f P ADDRESS SIZE P

‘ f ' T A A i f ' ’ - BLOCK REQUEST . BLOCK ZE'
7 BIT S!” ADDRESS EIU ADDRESS 0 S iNGLF CHANNEL S1NGLE SI I

- “28 S‘U'S) UP TO 8 EIU'S ' I BLOCK. CHANNELS 2;

- . a
ham COMMAND £2

SIU TRANSACTION BIT

VE
T

V

1 -- sxu TRANSACTION __
SEND mum” - ERROR CONTROL
mennu STA 01“ PM!” PT 703 WORD m = ElU/LRU ausv

01 = INPUT CHANNELS
10 = OUTPUT CHANNELS

DATA TRANSMISSION FORMAT 9 ‘BIT BYTE VERTICAL AND HORIZONTAL PAfiITY

I DATABYTEI ' P DATABYTEZ. 1P] . . -

'. ' ‘ REQUIRED IN COMMAND MESSAGE

Figure A.3 ' Representative bus command message organization

N ' ' l ' n+1 I

DATA BYTEN lPI VERTICAL PARITY J

t A:
i

_ J - r r /

‘ ‘ 1 ‘ . “ . :- _ , F " . ' . - . I " _ V..— as, e — j { ' u n p r j A : “ A “ ; f. # J ’ C) v'l "v—J-FH! ? 7 . ' . run—moan ~’-’ ' . ' . ’ . L - k ; . .
I . (' f I L . “ L . - 1‘ J .L ‘7 , _"___J . 3 ! ” .7 . 1 ., 1 I .

_ J i. . l ”a . ‘ . ~
. >

I . . \

O

35.40 mama mom 1
51 4- Kg! 4 .

pus-1 i 36»: i 'f 12 ps—j ,, ' 9(N+1) us i
BCU suu au ADD rumor VERTICAL SIU szu [mil DATA DATA . . . Data VERTICAL [sync sync ADD & com coma PARITY SYN-C ADD 3m: 1 BYTE 2 BYTE 3 ByteN FARITY ;

F— BCU T0 snu MESSAGE —-J é L—S'C‘fiégé‘o—J L sxu To ecu DATA MESSAGE ! _ ‘
POSSIBLE sm DELAY ' ecu DELAY FOR START IN RESPONSE OF NEXT MESSAGE

KzZ-Mls . ' . ' ("Z-551:).

f 9
’ i a U1

9" 1
‘ .i , yin/TE rams/3. may ,

so . _ 1, ' 9 N + . . . , _ . . . ‘
r—_ ”s- 1|= . . (n ” - , I r—f‘W—fl 4; , . BCU sm ‘ EIU FUNCT DATA DATA DATA ' DATA VERTICAL sm ' sw ADD ' ‘ . BCU ' 1 SYNC AODR Add‘z cone BYTE! BYTE 2 BYTE 3 ' “ ' BYTE N PARITY SYNC. ¢ , SYNC

! BCU - sw MESSAGE COMMAND AND DATA ! f L— ecuo CHECK—4
, " POSSIBLE sm DELAY ‘ .Assummons. _ < (2.4 vs) .

- 9 an BYTE ; - - - 3 BYTE scu COMMAND ; . . . - - ' ECHO CHECK .
‘ VERTICAL AND HORIZONTAL PABITY

Figure A.4 Sample read/write transactions

this format are illustrated in Figure A.4. A brief description‘

A.4.3 Describtion of the Transaction Sequence.

The steps involved in read and write transactions using

of the transaction is as follows.

a)

b).

C)

d)

e)

if)

A read transaction begins when the ECU-initiates a sync
signal on the bus, followed by transmission of the bus
command word. The ECU then waits the response.

All "up" receivers on the line receive the sync signal.
Each compares the SIU address in the message with its own
prewired address. If no match occurs the rest of
message is ignored, and then each SIU monitors the line
for the next BCU sync.

If the address check shows agreement, the SIU decodes the
EIU address and then routes the message to the specified
EIU over a serial channel*, while checking for horizontal
parity in each byte. -

The SIU awaits the parity check signal from the EIU to
insure that the message was received prOperly, and upon

its receipt, transmits an echo message to the ECU. If the
EIU does not accept the message, the SIU transmits its
address echo with the appropriate error Control bits set.
in the second byte of the command word.

During the time the SIU is transmitting_the return echo,'
the EIU decodes the function code (channel address or
memory), multiplexes the requested input channels, ’
performs A/D conversion if required, and sends the requested
data to the SIU. A time lag is incurred by this process,
termed the LRU latency. It is discussed below.

The SIU verifies parity and continues transmitting the
data message to the ECU.

The ECU, after transmitting the initial command, monitors
the line for the return echo. If no echo is received within
a fixed time interval, a transmission error is deemed to have
occurred,

When the ECU receives the echo check, it accepts the
requested number of data bytes, verifies parity, and transfers
the data to the requested locations in computer memory, after
which the read transaction.is completed.

0 * Serial transfer is considered advantageous in minimizing
the number of interconnections.

156

and the computer is informed via the I/O error control.

1
w

m
m

a:
 m

_
m

'
m

'
n

;

' a
INTERMETRICS INCORPORATED 701 CONCORD AVENUE HCAMBRIDGE MASSACHUSETTS 02138 (617) 661- 1840:]

mo

wnm: TRANSACTION

75 __ READ TRANSACTION

; r" '

1.3 50 --

. U0 TRANSACTION:
- 8 BIT DATA BYTE

:
T

R
A

N
S

A
C

T
I

O
N

 EF
FI
CI
EN
CY

-

{'7 . 3 BYTE COMMAND WORD
L: . VERTICAL & HORIZONTAL PAHITY

r ‘ . ECHO CHECK . '

i i
L“;

I L I

1“: o 8 ' 16 . 24

' NUMBER OF BYTES OF INFORMATION

L
Figure A . 5 Bus I/O transaction-efficiency

157

32

‘—

I
/

U

T
R

A
N

S
A

C
T

IO
N

S

P
E

R

I
N

T
E

R
V

A
L

K

200

250 -

150

100

TRANSACTION TYPE:

’ 8 BIT DATA BY TE
VERTICAL AND HORIZONTAL. PARITY
3 BYTE COMMAND
ECHO CHECK ADDRESS

.1 . l 1
8 16 ‘..24 32

DATA BYTES PER TRANSACTION

Figure A . 6 Frequency o f I/O transactions
versus number of data bytes“

158

a
;

m

a
m

'
fi

a
,

m

m
a

"

_
.

I
.

_

A

‘L
_ L lNTEBMETRICS INCORPORATE? ° 701 CONCORD AVENUE ' CAMBRI

' Write transactions are performed using similar procedures
as illustrated in Figure A.4. _A total time to camplete an I/O
transaction using this command structure and error control
procedures has been estimated for a block of size N bytes to

, be approximately:

WRITE transaction = (59 + 9N) us

READ transaction (69 +18N) us

A.4.4 Bus Efficiency and Latency

A;4.4.l Efficiency. The bus utilization efficiency can be
computed by the ratio of information bits in a transaction
to the total number of bits in the transaction. If we consider
the total number of bits in a transaction to be the total

transaction time (including delays, etc.) times the bus speed
‘(assumed to be 1 MBPS) we obtain a worst case estimate of bus

efficiency. Information transfer efficiency estimates for a
3-byte command format are illustrated’in Figure A.5.

The bus system will operate at about 50% efficiency for
transfers of 10 or more bytes. This illustrates the obvious

fact that to malntain efficiency the software should be
structured to obtain information from LRU's in blocks. For
example, status data should be obtained in functionally related

groups, such as all temperature readings.

A significant factor is the numBer of I/O transactions
that the bus can complete in a minor bus control cycle. Figure
A.6 contains a plot of the I/O transactions, consisting of a
given number of data bytes, which can be completed during a
fixed interval-of time. Based on an average blocx of length
8 data bytes, approximately 70 transactions can be completed
during a 10 ms interval. It is apparent that even though the
efficiency of information transfer may be less than 50% in most
cases, the actual number of transactions completed during an

interval of time should be adequate to service the expected
Shuttle I/O requirements. Figure A.6 illustrates that careful
scheduling of the bus during any minor cycle will be required,
particularly if the size of blocks vary.

A.4.4.2 Subsystem Latency. When a read transaction command

is received by the EIU, an interval of time is required, called

the latency time, for the EIU to interpret it, to carry out the
- command, and return the data. A delay can be causes by analog-

to-digital conversion, serial/parallel conversions, inherent

159

, ,A-w H m a m : ,

DGE, MASSACHUSETTS 02138 ' (617) 661-1840 L

INTER'METRICS INCORPORATEQ y701_ CONCORD AVENUE - CAMBRIDGE. MASEfCHUSETTS 02138
L__,_ » - W A

equipment dynamics, etc. If an I/O request from the computer has
. a latency time exceeding a certain fixed interval, it must be
organized into two or more transactions. An example is the
computer request for DME transponder range. The inherent
characteristic of the DME is that to obtain range to a specific
point, the DME measures the time a signal takes to traverse
the distance to that point and back again. The latency time
required for this operation is intolerable in the I/O transaction
structure described above. This type of transaction must be
divided into two transactions: one to command the range to be
read, and the other for reading the range. Coordinating these
interdependent transactions so that they occur at the right
time, presents problems to the I/O scheduling software design.

A form of latency occurs for certain types of block data .
transfer from computer to subsystem. Error control that

depends on horizontal and vertical parity cannot provide verifi-
cation of the correct receipt of a data block until the last
byte has been received (the last byte is, in fact, the vertical
parity byte). To prevent erroneous data from being transmitted
to a.subsystem, the complete block must he buffered at the

terminal until it is verified. It is subsequently transmitted

to the subsystem for which it is intended.. However, this
second transmission may take a considerable time, by bus
standards: a 32 byte block will take over 0.25 milliseconds
at 106 bits per second. This is enough time for several other
transactions to take place. - -

For both kinds of latency, it is essential to allow no
inadvertent interference with the terminal from other
transactions. For this reason it is desirable to provide for
the indication of an EIU/LRU "busy" condition via the status
bit(s) associated with the SIU echo ieturh. This bit can be
interrogated by the ECU to provide an I/O error indication to
the computer whenever another command is addressed to the busy

terminal.

A.5 I/O Timing Difficulties

A class pf system problems exists in the operation of a
time shared bus which is associated with the correlation of
data and commands with "time". For example:

a) Correlation of data and absolute time. Several system
computations demand the acquisition of data from separate .
subsystems at the same time. For example, a navigation
measurement combines sensor data with attitude information,
correlates both to the same absolute time, and updates the

160

(617) 661 1840

A

C
:

3

A

1

L- [_
"‘ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHuSEffTs 02138 - (617) 661-1840

~—v—,——: —-.-—-r--

b)

W fi ‘ r

navigation data. With a synchronously controlled data bus,
in which samplin is performed only at fixed minor.cycle
intervals, time may only be established with a granularity
of the sampling period. That is, all samples taken during
one minor cycle are associated with the same time tag. If
a finer time reference is required it must be provided by
a local clock. In an asynchronously driven bus system

a finer reference time quantization may be obtained because
a specific I/O command may bé'serviced within approximately
100 ps (depending on the I/O queue backlog).

A related processing problem arises in the derivation of a
rate of change by differencing two measurements. In this
case a difference in time must be either assumed or computed
for two measurement samples. For high frequency samples.
obtained with a synchronously driven bus, the order of the

I/O command in the list may be important, particularly if
a fixed delta time is assumed in the calculation.

Local-precision timing. Another problem that may arise
concerns the precision timing of events at geographically
separate and remote subsystems, for example, the timing
and coordination of firing commands to the RC8 jet thrusters.
From a system point of View, it is desirable to design such
subsystems to receive a message which contains not only
the command but also the firing interval. The impact on
1/0 complexity, bus traffic and response, of separate trans-

missions to command the thruster on and then off could be
considerable if this tvpe of bus activity predominates.
The capability for local precision timing may be incorporated
into the subsystem or terminal. .

161

’
fl

’

:

Appendix B

Data Bus Error Control

3.1 IntroQuction”

Since the Shuttle data bus provides the sole c
ommunications

for onboard avionics equipment, an important desig
n requirement '

is that it provide a reliable transfer of informa
tibn in the

presence of both permanent and transient failures
. Permanent

failures are caused by equipment failures an
d are a direct func—

tion of the simplicity and reliability of the da
ta bus system

elements (i. e. BCU, bus, SIU, EIU, and LRU). Transient failures

are caused by such effects as electromagnetic interfer
ence, which

must be anticipated in the Shuttle environment. The characteristics

of the interference are anticipated to be predominantly
 impulsive,

‘and primarily caused by coupling to the line of transients and

noise from switches, motors, relays or other sources. "Burst

nrrorn" involving multiple errors close together are to be expected

in this environment. A major task of the data bus design will be“

to incorpora e an error control approach which provides "security"

of communication in the presence of noise of l
argely unknown

characteristics.

Several error control techniques‘have béen applied in

communication systems to reduce the probabi
lity of undetected

errors. The techniques generally attempt to satisfy
 a proba-

bility goal within the system design constrai
nts of cost, weight,

power, or bandwidth.

There are two basic objectives of the shuttle
 data bus

error control scheme to be satisfied in the
 presence of potential

permanent and transient errors:

a) To maximize the probability that a transmitted message is

correctly received by the correct terminal;

b) To minimize the probability that an incorr
ect message is .

recéived.

Most commonly a particular error detection s
cheme has been

coupled with retransmission or forward error correction. Various

163

IN! Lh‘u..TPICC lNCQRPQRATr :-D 380 GREE: I SIPEET Cr‘u‘f BRIDGE MAS SACi‘iUSETTS 02139 - (617) 8084840
____.-_— M E ,

M
.

fl

‘ . forms of information coding to obtain an' error detection and/or

correction capability have been used. Numerous codes have been

devised to satisfy a particular communication
channel error«

probability-. Prior to discussing the specific error control

approach apprOpriate to tb e shuttle data bus, a review of inform
a-

tion coding schemes is presented with a discus
sion of their advan-

tages and disadvantages.

B.2 Information Coding Review Discussion'
. - ' » a

5 B . 2 J L Coding Theory

Coding modifies the message to be transmitted by
 adding

redundant bits to the transmitted message. These extra bits are a

examined at the receiving terminal to determin
e whether an error

has been introduced and in some cases to locate the error bit

within the message so that it can be corrected. ‘ . l

The methods of detecting and correcting errors c
an moSt

easily be explained with the aid of the concept of Hamming

distance. Briefly, the Hamming distance between two str
ingé of

. . binary symbols (of equal length) is th
e number of positions in

' which the symbols in the string are differen
t. Thus, the symbol

strings 1100 and 1000 are separated by a Hamming distance of l,

while-1100 and 0011 are separated by a distan
ce of 4.-

In the study of codes, one of the parameters of in
terest is

the minimum Hamming distance between any tw
o valid code words in

the set (for codes in which all the code Wor
ds contain the same

number of bits). Thus, if a code has a minimum Hamming distance

of two between any code words, at least tw
o symbols must be

changed in order to change one valid code w
ord into another valid

cede word. With such a code it would be possible to de
tect any

single symbol error, and also many but not
 all, possible errors

affecting more than one symbol.

.B.2.2 Single Parity

check, in which the code word is generated
 from the binary message

string to be transmitted by adding a sing
le bit such that the

total number of " 1 ' s " in the code word is even (or o d d) . The .

choice of even or odd parity_has no effe
ct on the random error

correcting properties of the code, and is usually ma
de to faci~

litate the detection of certain equipment
failures which can

produce all " 1 ' s " or all " 0 ' s " in the received message.

164

INTERNEFRICS INCORPORATED 3530 GET. EN STR‘: .LET CAMBRIDGE MASSACHUSETTS 02139 (617) 868-184(2

; - “ # # fi — L‘ J 7 L 7 - _ ‘

A cbmmon example of such a code is the single pari
ty I

[
i

f
]

C

7
3

3

w
.
 J

r
"'

“
*
1
 J

. In particular, errors affecting an odd humbe; of bits will be
detected but errors affectlng an even number

of blts WLll not.

The single parity bit is extensively used for error co
ntrol,‘

principally because of its simplicity in terms of hardware. It

is effective against random independent no
ise.

8.2.3 Error Correcting des

For some applications, the mere detection of
 an error is

not sufficient. It is necessary to determine from the recei
ved

symbol string the nature of the error,
or, to be more precise,‘

to determine the message that should have
been received in the

absence of noise. This can be achieved by error correction codes.

3.2.3.1 Hamming Single Error Correcting Code. The well-known ”

Hamming single error correcting code
is an example. This is

a code having words of length Zm-l wh
ere m is any integer.-

There are m parity bits and 2m~l-m info
rmation bits. The

construction of the code word from the message bit
s will‘

be illustrated for m=3.

h.
"“34. ”A"; -.;

--

““ "'Wt'én B ' B2 B3 B4 B5 35 . B7

Parity-Message P1 P2 Ml P3 - M2 M3 M4‘

The périty bits are determined from the equatio
ns:

Pl + Ml + “2 + M4 = ’ 0 (or 1) (modulo 2 additions)

P + M + M + M4 0 (or 1) "
2 l 3

. =_.. ' a
P3 + M2-+ M3 + M4 0 (or 1) _

At the receiver, the three parity equations
 are checked .

to give three error states E3, E2, an
d El. (A "1" denotes that

the equation did not check, and a "0" indicate
s that it did.)

These three error bits are ordered as a binary nu
mber E3E2El,

called the syndrom, which equals number of
 the message bit that

should be changed.

.-165

“" ""‘"””"""mn- mm ”SEEM CTDCCT - r‘AMF‘mnnF . MRRARH: ImtT‘rr: name; . 1mm nr:.r>.-1 RAH

lNTEf'ii-JE'I'RCS I?‘ECO!~‘.PORATED ° 330 (SHEEN STI'KEET - CAMBRIDGE. MASSACHUSETTS 0213.9 ° (617) 868-1840

.and incorrectly "corrects" the received message.

.

A .

i two or more errors occur in the transmission, then either

the received word passes the parity tests and is incorrectly- '
accepted by the decoder, or the decoder recognizes that an error

has occurred but incorrectly identifies the nature of the error

The Hamming codes that are discussed here have the interest-

ing preperty that every possible received word is within the-

error correcting distance (in this case a "Sphere" with a "radius
"

of a Hamming distance 1) of some valid code word. A code having

this property is called a perfect code or a close packed code [1].

In general, most codes do not have this prOperty., In fact, for

codes capable of correcting more than one error, qnly a few such

codes are known.

B.2.3.2 Augmented Hamming Codes. In the case of non-perfect

codes, several strategies can be used wh
en the received message

is not within the specified correcting ra
fige of any valid code

word. On one hand, the distance to each va
lid code word can

be determined and the nearest valid code
word selected for the

decoder output. If two valid code words are equidist
ant, '

'outside knowledge of the message proba
bilities could be used

to resolve tfie tie. At the other extreme, any received mess
age

not within the assured érror correcting r
ange of the code could

be labelled as a detected but uncorrectable error.

I

An example of a code for the latter strategy is the

augmented Hamming code.generated from'the Hamming code de
scribed

earlier by adding one additional overall parity bit. This code

has a minimum distance of four, and, while it is not a per
fect

code, every possible received sequence is within a Hamming
 distance

ofdtwo of one or more valid words. This code can be used as a

single error correcting, double error detecting code.

‘ It is worth noting that a particular code can be used in

a number of different ways, depending on how the decoder is

. mechanized. The extended Hamming code will detect some but not

all higher order errors (and will "correct" some other
 high

order errors to produce a wrong message). The same code could

also be used as a triple error detecting code. In this case, the

code will also detect many more of the higher order errors. In

fact, it'will detect any error pattern that does not c
onvert

the transmitted code word to another ~valid code word.

It has also been shown that this same code can cor
rect all

single errors and also all-double errors in adjacent bit
s, provided

166

+

E
3
3

'
I

l

E
2

3

i
i
i
 ‘

2
2

E
2
3

'
5

2
;

5
:
3

2:
3

thé parity bit is not in error [19]. Using this decoding procedure
5very-few if any higher order errors will be detected.

B.2.4 Hiqhér Order Error Correcting Codes

Codes are known which have sufficient Hamming distance
between valid words so that they can correct two or more errors

in a block. In general, these codes are either trivial (repeti-

tion of each message bit an odd number of times with majority

voting, called a binary repetition code), or are too complicated

to describe in detail here.

Among the better known of the constructive (non-random) codes

are the Reed-Muller codes [20], and the Bose, Chandhu
ri and

Hocqueughem (BCH Codes). BCH codes are a generalization of

Hamming codes for multiple error correction. The correction

procedures are, however, fairly complicated. The technique for

BCH error correction consists of solving the.roots of a N degree

polynomial and a set of N equations, wherg N is the number of

correctable errors. The complexity of thé correction process

forces BCH coaes to be considered only fOr error detection.

Correction becomes feasible if a processing capability is avail-

able, and a delay in the receipt of the message is acceptabl
e.’

BCH codes are cyclic codes and have the disadvantage of being

sensitive to loss of synchronism since shifted cyclic code words

are also valid code words.

B.2}5 lBurst Errors and Burst Codes

In many instances where coding has been employed to -

detect or correct random errors in a data transmission system,

the improvement in system performance has not been as gre
at as

expected. The reason is often that the assumption of additive

white gaussian noise, or other mechanisms which generat
e

inaependent bit errors, is not valid. Generally, in a real

environment the errors occur in groups or bursts. Electro~

magnetic interference of duration longer than one bit trans-

mission time would be an error source with this characteristic.

A simple example is provided below to illustraté such a

problem._ Consider the case of a system operating at
one milllon DltS per second, and u51ng conerently detected ampli

tude

modulation at 15 db signal to noise ratio. We will aSsume that

the system is perturbed by gaussian noise so that erro
rs are

random and independent. The probability of a bit error for this

condition can be calculated to be one in 1.26 x 108 bits. The

code is a three error correcting code having 23 bits,
 with 12 of

them information. The example is a special case known as the

167

TERFJE'I'RKCQS iNCORPORA'IED - 380 GREEN STREET - CAMBRIDGE. MASSACHUSETTS 02139 - (617) see-1840'

INTERMETBIUS’ INCORPORATED“ 380 GREEI'J STREET - CAMBRIDGE. MASSACHUSETTS 02139 ' (617) 868-1840

rare made:

a) a single bit error in a word is expected with probability

" w n ; , . ‘ m A . . ., . A _ , . . , v -— —— w-v-w—v—v—wv — w y - v * — Ww—vv-w'v ww—m— I—wv'lr-W-v fi - r — —— w—rr-vv— w — w _ ‘ H ‘ .. 1 w , » ~ ,7 ,
1' ‘ ‘ . . f r _ - - .7 , . , -m .7 m

Golay code. This code is Close packed, find we can, therefo
re,“

neglect all of the possibilities of detecting higher ord
er errors

as they always result in a word error. The following observations

23 x 7.9 x 10—9 = l.8_x 10”7 per word, or once every 126 sec.

b) a double bit error will occur with probability 1.6 x 10":17
or once eyery 47.5 years. »

c) the prgbgbility of three or more errors and consequently the
probablllty of an undetected error in a word is vanishingly
small.

If, however, the mechanism of the disturbance
is such that

for 10 consecutive hits the probability of error is
 0.5, there

will be an average of 5 errors in the burst of ten bits, so error

bursts will occur every 630 seconds. Since .17 of these bursts

Will have three or less errors, and neglecting the fa
ct that

in some cases a burst laps over the division betwee
n two blocks,

a decoding error will occur approximately every 25 mi
nutes.

The description of the burst error channel given ab
ove is

obviously a very simple case. Yet it illustrates the signifi~

cant difference in conclusions which can be drawn a
bout the expected

performance of a control approach.

Some general observations can be made on the p
erformance

of error control codes in the preSence of burst noi
se. If a

code with a minimum Hamming distance of h iSeUSed as an error

detecting code, any burst causing up to (h—l) errors will be

detected. For bursts causing more than (h—l) errors, most, bu
t

not all, will be detected. The exact percentage of errors of

3 various lengths that will be passed depends on the code used.

At the other extreme, if the burst is sufficiently lo
ng

and severe, so that the received bits have no cor
relation with

the transmitted message but are instead received wi
th a proba-

bility of error of 1/2 for each bit, then an estimate of the

probability of passing an error is again possible.
If the coded

word has n bits, k of which are information, the remaining (n-k)

bits are redundant. The k information positions in the word can

be filled by the random process with any bits, and there w
ill

.then be bne and only one set of values for the redun
dant bits that

will result in a coded word. The probability of this particular

set of values being chosen is (1/2)n“'.

The assumption that a noise burst will result in bits
 being ’

received as "l" or "0" with probability 1/2 is, however, not always

168

I
i

i
!

’

I
I

a
a
3
:1 3
a
UL

0
'

.

4

. valid. Sometimes a noise burst (or hardware f
ailure) is more

likely to cause errors in one direction, suc
h as turning "1's

to " 0 ' s " , than the other direction. Such situations arise from

”the details of the modulation scheme used and
 the design of the

hardware, and are very difficult to evaluate in a general way.

When possible, it is usually good de
sign practice to design the

code so that the most likely types of equipmen
t failures will not

result in a valid code word. Examples of this would be elimin
a-

tion of all " 1 ' s " and/or all " 0 ' s " as valid code words.

B.2.6 Fire Codes and Other Burst Codes

.Some special error correcting codes have been dev
eloped,.

which are especially applicable to e
rror correction in channels _

which are subject to burst errors.
For a given level of redundancy,

these codes are able to correct mor
e errors in a burst than would

- be possible if the errors were assum
ed to be random. These codes

..1' require long blocks and complicated d
ecoding procedures. Two

‘ e x a m p l e s of these codes are cited:

{a a) Fire Codes
{J
. . Fire codes are oriented towards a si

ngle burst of errors pér

.F? message. They are inefficient for short
blocks, however,

:4 nnfi'are not particularly good for mul
tiple bursts on a single

block.

[3 b) Reed-Solomon Codes

The Reed—Solomon codes are a specia
l case of the generalized

'BCH codes, oriented toward multiple bdrst error
correction.

They are moderately efficient, and for the sa
me block length

are similar to BCH codes in decoding com
plexity.

E
T

D

L

_
.

J

B.2.7 Horizontal and Vertical Paritv Coding

.
H

J

A coding technique which has been p
roposed for the Shuttle

baselifie data bus systems is vertical and
horizontal parity

coding. This coding scileme asSigns a single
 parity bit to each

byte or word of the message (horizontal
 parity), and an extra ‘

byte or word for vertical parity on
the preceding bytes. This 3

" approach detects all odd numbers of errors. An undetected error ‘

E‘ can only occur when each byte and e
very bit position contains

4 an even number of errors. The scheme fails to detect errors only

~ when an even number of errors, e
qual to or greater than four, oc

curs

i“ with the errors paired in rows and
columns. The efficiency of

1-. thus approach is moderately high for mesva gas of several bytes,

r
.

w
a
n
-
A
,

l
‘

7
!

’

‘
n
.
 J

Ff
'*

E 169

“ "m" ' - W M 0 LWLMTI :1 - “an nurzpm m'nf'! T CAMB"LD(‘ E MASSACHUSETTS 0913.0 - (mn EBB-18.10

‘I’ but is poor if the number of bytes of data in a message is sma
ll.

For example, the effective information rate of an 8 bit byte

of data would be computed by

i . . SN 7 o ' r

EIR — 9(N+l) where N 15 the number of bytes

It can be seen Ehat for a small number of data bytes the

efficiency is low (i.e. 44% for 1 byte, 59% for 2 bytes). When

the block size increases, however, the coding sc
heme becomes more

efficient (i.e. 79% for 8 bytes, 91% for 32 bytes). Although

there are more efficient coding techniques, this sch
eme has a

major advantage in that itg implementation in terms o
f the

encoding, decoding and detection logic required in th
e SIU, EIU,

and BCU data bus equipment is probably the simplest.
.

3.2.8 Repeated Transmission

The repeated transmission of a dafia message over a single

path is a-well-known method for error detection. Detection is.

accomplished by requiring all messages received to be ident
ical.

. The time diversity, or spacing of transmissions provides
 inde-

pendence.

Implementation of this approach as the prime error control

approach in the Shuttle data bus would require the ECU to tran
smit

the (uncoded) data to the remote station, and vice
 versa, two I.

or more times. The remote terminal would require a comparator

or voter to determine an "acceptable‘I transmission. Retransmission 'r-

for error correction is still required for ambiguous voting results. . J

The method is relatively simple to implement, but is very
a

inefficient, particularly for block transmission. In order to

get a Hamming distance four code for three error detect
ion, the

message must be repeated four times. The same error detecting 3

capability can be obtained with many fewer bits using ot
her coding 3

schemes.

B.2.9 Transmission Over Multiple Paths

paths between a single ECU and single LRU is similar to the redun-

dant transmission over a single path. It is true that the

message is received and verified at the output with less delay

than is associated with the sequential transmiSsion sche
me, but

The transmission of the message over multiple separate ‘ z]

170

INTERN‘iETRICS INCORPORATED ' 380 GREEN STREET ‘ CAMBRIDGE. MASSACHUSETTS 02139 ' (8.17) 8538-1840:]
k k _ _ , ‘ A A .

. .. . 7 - ; L7 ‘ _ , , , L42.”
[

f
o
—
q
 -
-.
..
—.
.

.
h

u
h

:

i.

J

Pe
i

Imgamemcs l,NCOR.E’OBA1§Q;_380 GREEN STREET - cgrggfildea MASSACHUSETTS 02139 -

on an overall basis, there is no improvement in the utiliz
ation

rate of the available channel capacity. The necessity of providing

. arallel chalnels to allow continued oneration in
 the event of

L

a permanent hardware failure would directly affect the
Shuttle

data bus if it we re the prime error control method used. It

would require independent paths to be maintained for t
he FS mode

of operation, increasing the number of buses required
for FO/FO/FS.

The approach would increase the complexity of the E
CU ahd

SIU units, since gt requires transmissions over
multiple paths

to be synchronized, so that comparison or voting cou
ld be ‘

. performed at the receiver, or storage for delayed receipt.

3.2.10 Data Feedback/Echo Check

In this method, uncoded data is saved in buffer storage

at the transmitting element and sent to the recei
ver. The

receiving element transmits back the entire messa
ge. The trans-

mitting element then performs a bit—by-bit verifica
tion of the

entire message. Upon verification by the transmitter, the receiv—

ing element is instructed to use the information on receipt
of a

"verify" message from the transmitter.

If an error is detected the transmitting unit can retrans
mit

the entire mess age. If the error was caused by an external noise

transient, the second transmission should be valid. This method

is referred to as an echo. One of the problems with this approach

is the probability of transmitter's verification being in er
ror.

An endless Chain of echoes may result.in requiring the re
ceiver

to echo the echo, etc. COmplete feedback of'all data requires

twice the time to transmit a message. Its main advantage is the

high degree of error detection it provides.

B.3 Detection and Retransmission Vs, Forward Error
 Correction

In the analysis of data transmission systems,
 two distinct

cases have been studied. The first case is Forward Error Correc-

tion, in which the decoder at the receiver stu
dies the received

message and, if an error is discovered, attempts to ded
uce the

correct message from what was actually received. The second case

is retransmission, in which the decoder checks the rece
ived message

fdr signs of error, and if an error is detected the decode
r informs

the transmitter. The transmitter can then retransmit the message

* o r take whatever other action is i.ndicated.

A forward error correction scheme is considered undesirable

for the Shuttle data bus since it would‘require too much complexity

171

(617) 868-1840 L

INTERMETRICS INCORPORATED ' 380 GREEN STREET ° CAM’BBIESGE. MASSACHUSETTS 02139 '

¢

at the terminal and BCU, particularly for correCting more than

1 error in a message. The method preferred is to combine an error

detection scheme with retransmission for recovery.

' The advantages of the retransmission approach to error
recovery are reduced complexity of the decoder and the reduction'

in the probability of an undetected error for a given level of

coding.

The classic studies of retransmission systems were reported

in two papers by Benice & Frey in 1964 [21] In these papers

three cases were considered:
'

1. Idle RQ - in which the transmitter sends a message and

then sits idle until the decoder indicates whether a

retransmission is requested. Presumably, this includes

a "no response" frdm the terminal. ,

2. Simple RQ — in which messages are sent continuously.
When an error is detected and a retransmission requested,

the source repeats the requested-message.

3. Dual RQ — in which messages are transmitted as in Simple

RQ, except that the requested message and all subsequent

messages are repeated.

The Idle-RQ system appears to be most appropriate to t
he

Shuttle data bus, since the bus traffic is expected to con
sist

ofzalarge nflmber of relatively short communications betw
een the

bus controller and the many terminals along the bus.
The advan~

tages of the other schemes are achieved when full duplex
trans-

uussion systems (simultaneous continuous transmiss
ion in both

directions) is used. The Shuttle data bus is not exPected to

be used in this manner.

The conditions for which the Idle-RQ scheme becomes a po
or

candidate are not applicable to the Shuttle data bu
s. In many

data transmission systems, the transit time of the channe
l is

long compared to the length of a message. Thus, the transmitter

wastes a lot of time sitting in the idle state waiting
for the

message OK_or retransmit signal. In the Shuttle data bus, the

round-trip time to the farthest subsYstem will only be a few

microseconds, or bits.

In the data presented by Benice & Frey, the computed

probability of an undetected error for the Idle RQ system drops

rapidly until a certain minimum probability is reached, and then

no further improvement is possible. This behavior is traced to

the failure of the retransmission request to be recog
nized at the

172

(617) 868-1846

. r ‘ fi

' ‘1 1

. 1-

1
1

‘3
3
a

E
:3

3
J
3
3
a

3'

fl

. transmitter. The minimum error probability is the probability

that some kind Of error will be detected in the forward‘message,

and then the retransmission request is changed to a confirmation

that'the message was OK.’ '

In the other two retransmission schemes, the retransmission

request was encoded as a part of a message moving in the opposite

a . direction and was, therefore, protected by the same level of

r 1 - ‘ coding as the original message. The occurrence of any error in

‘ ' a rettrned message was construed to be a retransmission request

; . for the forward message. This attitude results in a small decrease

: in throughput rate, and a large decrease in probability of an

undetected error. - '

In the Idle RQ scheme, Benice and Frey postulated a one bit

confirmation message for most of the work, and this results in ‘

a minimum probability of undetected word error of about 5 x 10‘8
‘ T‘ for a bit error probability of 10“5 and a 511 word message. By

" changing the returned accept retransmit request message to a

7 bit format, the minimum probability of an undetected error was
reduced to 5 x 10’38. The point to be made here is that the
retransmit request must be suitably protected if it is not to

turn out to be the limiting factrr in the probability of error'

. in the transmission system. The penalty for this is a slight

reduction in the throughput rate of the system, which does not

appear L0 be a prime consideration in the Shuttle data bus system.

4
-.

..

.—
~
4
1

'
m

-

..
"
-
1

O

._
n

—
-.

f—-

-

u

‘ I

F
”
"
.

173

F
”
?

INTERMETRICS !§~ZCO"~.P’ R-Ki'iii} - 5.3%.) (2973??! STREET - c.-a%-.:3mL;G-:, MASSACFIUESET ‘8 02139 ° (617) 8653-13-10 '
L A ..., 7 _. . , ,7 __ , , , . @ ' _ » 7 , ' ‘-

References for Appendix B

l} Berlekamp, E. R., Algebraic Coding Theory, McGraw
 Hill

Book Co., New York, 1 9 6 8 . .

Abramson, N.M., "A Class of Systematic Codes
for Ndn-O

Independent Errors", IRE Transactions on Info
rmation

Theory. PGITS, No. 4. December 1969, pp. 150-157.

Peterson, W. W., Error Correcting Codes, Th
e M. I. T. Press,

Cambridge, Mass., 1961.

Benice, R.J. and Frey, A.H., Jr., "An AnalySis o
f Retrans~

mission Systems“, IEEE Transactions on Commun
ication

Technology. PGCOM~12, No. 6. December 1964, pp. 135-145;

and "Comparisons of Error Control Te chniques
" ,Ibid, '

pp. 146- 154.

174

‘h‘g- " M — .nnn nnccxl CTQEKT .pAMmmnnr: £4100 ‘kf‘lJl IF‘
I‘TTC‘ norm . ((217\ “RR- 1R4“

m

u
s
e

:2

c:
 a

:
m

m
'

u
"

! ‘.
‘ .

. r
4

’
l I

Appendix C

Literature Review of Avionics Executive Systems

The purpose of this appendix is to review several articles

whose content relates to the Space Shuttle executive design.

The executive features presented in the articles are outlined,

and those having direct bearing on the Space Shuttle executive ' ’

design are e m p h a s i z e d . ’ i

1?. "Improved Centaur Computer Operating System", by S. W.

Matthews, AIAA Aerospace Computer Systems Conference, 1 9 6 9 [2 2]

-The Centaur executive control allows'for a system driven

entirely by hardware interrupts, or entirely by a programmed

task scheduler, or a combination of both. Matthews feels

it apparent that a software system having hardware interrupts

for asynchronous nonperiodic demands of peripheral hardware

and a programmed task scheduler for.semiperiodic tasks,.

would resuLt in the most flexible hardware/software system.

Such a structure is a desirable feature for an aerospace

executive system as eXplained in Chapter 2.

The task scheduler is entered wheh a task ends or when

the real-time interrupt occurs., It operates off a task

table which is an ordered list containing the status of

the functional tasks to be executed. The order of the list

determines task priority since the table entries are '
processed in sequential order. Each entry contains a task

start time, frequency for cyclic tasks, location of task,

task interrupt bit, and a special action indicator.

The interrupt bit indicates whether a task has been

interrupted by the executive task scheduler; that is,

whether a higher priority task received the processor before

the former task finished execution. The special action

indicator is used as a flag to indicate the requirement

of executing a communication or control subroutine. These

routines can vary with the particular application and .

may be added to or deleted from the system as requirements

demand. Thus, the system can adapt to its environment

through special action routines.

175

‘ INTERfv‘ETRlCS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE. MASSACHUSETTS 02138 (617) 661- 1840
Q “ , - . _ . , 4__ . t I . , 3—»: mad .xA; ,7 . .

fl

INTERMETRICS INCORPORATED- '70! CONCORD AV ENUE CAMBRiDGE, MASSACHUSETTS 02138

II.

Tasks are executed as a function of list position, interrupt
status; and start time. Any task can interrupt any task '
following it on the list. Thus, the most frequently
cycled task must occur first on the list. The control
algorithm is.shown in Figure C.l. This method of inter-
rupting a task is undesirable on the Space Shuttle bedause
it raises data integrity problems. Whenever a task is
interrupted, a c0py of all the data which this task shares
with other tasks and which can be modified by other tasks,

must be saved. The Compool approach is an effective solution
to this problem. ‘

"A Simple Real- Time Executive for an Aerospace Data
Management System", by Peter Adler, MIT Draper Laboratory,
E-2579, May 1971 [23].

The basic functions that this executive performs (as indeed)
most executives do) are job dispatching, resource allocation,

.and I/O control.

The dispatcher works off a priority queue of jobs. It is
entered when an application program ends and selects the

highest priority job for execution. Three priorities
are recommended, each having a queue organized on a FIFO

basis. Both time and event scheduling-are possible in
the system. A wait queue for jobs awaiting 1/0 is
suggested but no dynamics are presented.

Adler recommends dynamic storage allocation for job
temporary work areas. Thus, reentrant programming and
data sharing are possible. To avoid fragmentation of ‘
memory, all available storage is organized into equal
size blocks with a threaded list structure. Although
dynamic storage allocation is a desirable shuttle executive
feature, it is unclear whether all allocated blocks should

be of equal size. For example, if a task requires several
contiguous blocks of storage, and if memory is already
fragmented, contiguity will not be possible. However,

by having a.large sized single block of core ready for
‘allocation, the task's request can be granted.

In Adler' 5 system, jobs are segmented into 10 msec blocks.
Every 10 msec a breakpoint allows the job to be suspended

if a higher priority job is pending. A programmer must

be sure all vital data are entered in temporary storage
before a breakpoint occurs. This mechanism also aids in
program verification and is a desirable executive feature.

176

I
E

3

fi
n

a
l

h

u
J

I

h
u

i

b
u

d

fi
n

a
l

fl

u
fl

i

I
fl

i
i

h

u
fl

I:

E
a

(617) 661 1840

W

J
3
J
J !

3
CI

ENTRY
FRO}.
INTER-
RUPT

CLEAR
INTERRUPT

I
V

. ‘ EhnBLE
INTERRUPT
SYSTEM

.1.
DISARPJ
REALv-T'ME
INTE R RUPT

l
V

SAVE ALL

1
6

3

1

/2

u
s

50

C

P
S

4' i

UPDATE
CLOCK

[
W

I

O I . f - s b . c . : ‘

‘L
SET TASK
T‘OIHTER
3 = 1

INTERM ETFHCS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE MASSACHUSETTS 02138
k . . . _ ; . L , A _ A - u ; . _ . . _ _ _ _ . _ _ _

VULNERABLES

I' - E

" . ..-- 7 SET iMTERRUPT

l
a

g
s

1

DISARM
REAL-TIME
INTERRUPT

3;
UPDA‘IE TASK
POINTER
l = (0 + 1

QM

{- YES
SPECIAL ACTION
AS REQUIRED

12:15

SPECIAL ACTION N ”no
FOR TASK w v i

1
2

6

u
s

J x

'l

[

O

12 us

IS TASK (t)
f.’ STATE OF

INTERRUPT?

$vss
RESET
INTERRUPT
momma: (I?

‘5
RESTORE ALL
VUL.‘.:.RABLES (I)

D ' S A S L E
ARM REAL-TIME
ENABLE&

_ l _ . Fifi..—

m: TD f .

’0 START
A TASKID?

I ARM

18us

)
PERIOD (1) = -
START Tl!.':E (I)

{was
[CLOCK +

SET Ll." .‘KAGE
TO NORMAL
ENTRY (D

4:
REAL-TIME
INTERRUPT

Figure C . l Control Module Executive Algorithm [2 2]

.___ 5

177

(617) 661-1840
r o e

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 °

III.

To avoid two jobs updating common data, an interlock bit

mechanism is proposed. This mechanism could be avoided by

judicious program segmentation such that the use of shared

data is completed within one program segment.

As an alternative to I/O interrupts, Adler suggests I/O

device polling which eliminates the need for hardware

buffer queues. All I/O is done by one job to avoid

conflicts. There is then one interrupt to allow initiation

of the I/O monitor at a fixed frequency. This method of

I/O handling is advantageous for data acquisition. However,

when data is.outputted, there is no way to know when

the transmission is done since there is only one fixed

frequency interrupt.

Adler avoids mention of synchronous vs. asynchronous

structure. The executive he preposed allows time and event

scheduling, so it is not fully synchronous. However, jobs

can also be scheduled cyclically so it is not fully
asynchronous either. This blend of the two structures

is a desirable Shuttle feature.

"STS Software DeveIOpment (Study Task 5)", MIT Draper
Laboratdry, E-2519, July 1970 [24].

MIT lists four criteria for the Space Shuttle executive

system:'

1. Efficient resource allocation

2. Sufficient features incorporated to permit efficient

programming and running of mission oriented programs;

These include: n

a. priority execution queue

b. time execution queue

c.. event execution queue

d. temporary storage allocation

.e. I/O scheduling

f. I/O execution

178

-._..:,_n .

o

A I

. .o

(617) 561—1840 .

m

1
fl
3,-
a

a

I]
3

‘ ‘

. .. g. interlocking of shared data

h. modification of protected data.

3. Fast and simple executive execution} e.g.; by avoiding
looPing, indexing, and indirect addressing.

: 4. Uncomplicated interfaces between executive and
g . application programs.

a - |
1

i H In addition, application programs must conform to certain
’ ' criteria. 1

1

1. Modularity: there must be rigid and well—defined
rules for programs interfacing with each other.

2. Use of executive routines to minimize program overhead.

I. 3. Program segmentation to allow long tasks to be
“ safely interrupted.
I
i T 4. Temporary storage requests must be done through the

executive.

. Dynamic storage allocation is also recommended to minimize 4
' conflicts over dedicated locations and to allow for i

reentrant subroutines. As mentioned above, this is a

desirable executive feature on the Shuttle.

Li These criteria for both the executive and application
x;.* programs support Intermetrics' views on Shuttle programming
i '1 as evidenced in the features of-our executive system design.

179

“ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAM’BRlDGE. MASSACHUSETTS 02138 - (617) 661-1840
F . ‘ A . ___.. f . _ . _ _ _ A l

' - __,, _ a ,_

L

‘
-

)
 ‘

.
—-
--
~c

(
-

J
L

.

_
M

L
.4

-
.
.
_
.
.
.

'
5

T7

i.
.m-

L II‘VI‘I'EF’.3U!ETRICQ INCORPORATED ' 701 CO?\!CORD AVENUE ° CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840
J. A Jam ¥

10.

11.

12.

~.....

BIBLIOGRAPHY

IBM Corporation, "Space Shuttle Phase B Software
Specification (Preliminary)", IBM No. 70-D33-0020,
December 21, 1970.

McDonnell Douglas Corporation, "Space Shuttle Data:
Avionics", MDC E0395, June 30, 1971

IBM Corporation, "Programming Manual for System 4 Pi
Model EP", in AerOSpace Digital Computer Data for
Miss ion Module Con cractor, IBM No. 66-M22«020A.

IBM Corporation, "OS/360 Supervisor and Data Management
Services", IBM No. GC28- 6646.

IBM Corporation, "Space Shuttle Executive Control
Program (preliminary)", Huntsville, Aug. 16, 1971.

Intermetrics, Inc., DeveIOpment of an MSC Language
and Compiler, Cambridge, Mass., June 1971, prepared

under Contract NAS 9—10542.

intexmeLrics, Inc., The Programming Language HAL -
A Specification, Cambridge, Mass., June, 1971, pre—
pared under Contract NAS 9- 10542, MSC Document #
MSC- 01846.

.Intermetrics, Inc., Standard-Interface Definition for.

Avionics Data Bus Systems, Cambridge, Mass., May, 1971,

prepared under Contract NAS 9-11477.

Coffman, E., et a1, "Deadlock Problems in Computer

Systems", Proc. Conf. sponsored by Software World,
U. Sheffield, April 1970, pp.4l-48.

Coffman, E., et a1, "System.Deadlocks", Comp. Surveys,
3(2), June 1971, pp. 67-78;

Denning, P., "Resources Allocation in Multiprocess
Computer Systems", PH.D. Thesis, MIT, May 1968.

Dijkstra, E., "Structure of The Multiprogramming System", .
CACM, May 1968, pp. 341—346.

Habermann, A.N., "Prevention of System Deadlocks",CACM,

12(7), July 1969 , pp. 3 7 3 - 3 7 7 . '

181

A A . “

“

lNTERMETRlCS lNCORPORATED - 701 CONCORD AVENUE ° CAMBRIDGE. MASSACHUSETTS 02138

14.

15.

16.

17.

_18.

19.

2 0 .

2 1 .

22.

23.

24.

--‘ “ O " . ' —‘ . . ‘ V - . . .

Holt, R.C., "Comments on Prevention of System Deéd-
locks", CACM, 14(1), January 1971, pp. 36-38.

Murphy, J.E., “Resource Allocation with Interlock
Detection in a Multi-task System", Free. FJCC, 1968,

'pp. 1169-1176.

Pepe, J., "Protection Stratégies in a Multiprocessor
Computer", Intermetrics, Inc., Multiprocessor Memo
#03-71, July 1971.

Vyssotsky, VL, et a1, "Structure of the MULTICS Sup-
ervisor", Proc. FJCC, 1965, pp. 203-212.

Berlekamp, E. R., Algebraic Coding Theory, McGraw Hill
Book Co., New York, 1968.

Abramson, N.M., "A Class of Systematic Codes for Non—
Independent Errors", IRE Transactions on Information
Theorz. PGITS, No. 4. December 1969, pp. 159—157.

Peterson, W.W., Error Correcting Codes, The M.I.T.
Press, Cambridge, Mass., 1961.

Benice, R.J. and Frey, A.H., Fr., "An Analysis of Ré-
transmission Systems", IEEE Transactions on Communication
Technology. PGCOM—lz, No. 6. December 1964, pp. 135-145;
and "Comparisons of Error Control Techniques", Ibid,

* pp. 146-154.

.Matthews, S.W., "Improved Centéhr Computer Operating
System", AIAA Aerospace Computer Systems Conference,
1969.

Adler, P., "A Simple Real—Time Executive for an
Aerospace Data Management System", MIT Draper Laboratory,
Report E-2579, May 1971.

MIT Draper Laboratory, "STS Software Deve10pment (Study
Task 5)”, Report E—2519, July 1970.

182

(617) 661 1840

ii
[i
i
t
I}
B
E
a
,w-

. .
-

4

'
.

»

,u
. ,

.
_

-
1

;

_

'
-

.
‘

-
.

‘
5

‘
—

M
—
m

—~

.
,

~

=
:

x
~

-

_
.

(
.

-

4
A

4
..

.
A

5
_

.

5
/

3
4

/
L

(

K
w

/
5

1
,

3
,

7
.

.
h

as

5
5

/

N 377%74/fl 7,0 079
Vayp/WZ/ 0 6 7,70 07/)

/
L.

/
/ L

”WE/4

.9“?w ””7337 ”740”? ”I 114/1310 :11: mam: ” '

Ara/{£2 24(01p 9 74m x;
Jaw-I eva/mV// my ”I”;

'1q a/ my my 742%"
y! Jvrryzfiy wafvlhafl 3 :4! a”

[yo/10.1210 172,! ”due; ’17)!"
=.

—__—"

____ -__.______‘._.-,_ .._..

(,paxaI/uvww and) ST) 6/ «are? 0.3.919 I’m!
* way/”a: bra-(”diva awn! a??? my ac: ”I? _—.. _ -_____ __,_,______, ___ fl

{av/4 ”Hfiffé/ .._V __ .._. __.___~._-.a_ __._—_____.._ ___._.

fi__ .. .- —__... ~__.. a“ A~——fi—‘

(”y/#47 geld 79/2,!)W
”9/44! 7977/ para ”263/

7 all Iva) xiii/J
”VI-(#l/A’V/av kéyrlf warn/I4 a: .1 s- a if

__— “..___v_._.-_._..!,____~ _____._.

.T -T-_____.____.__.—____‘.

Java/mg: er rrrou ”2! 74M? . l
”curacy/f mu Ava/r1: salmon-I

”bf-'0' inn: n23)! {troy ’y/l’ If”!!! (.9)!

glamyry/ 7732/»! a: .015 , 7 , fl

Ira/n‘r ha «,9 awfl
:- av xii-iia/aw‘ryv Val/welt} a}

JVIW or ;! v {1'41 ”1:7! Mariya? hi
Jan/fly; or ,I r 22 I4 my air} __._.___ _... ”.._. - ”.._.. ___. _______ ..i .._. :14

£1 twain: rm:

7 73'! ”’3 pm! {Fr/yahllr/a If!!!

_ . . . _ . . _ ’

Mental-'7 grain/5 Jim/:2” NJ

7"”: __’Z£””“ff?’€"_{r_ . n 4 9 JW____%
1% ”MJefi/Vex/f
6M 741/,4’2744/ ”meav/f'

(owned 4 512a: Mae!
J VIV6MOA/adl
iawelaouo a: _
f4! 94;)7“ 431.3194‘124 a);

Fodi’éfiodfl A __ ~___

a 74114 ae 'ca /e
_ _ _ _ . _ _ _ . _ . _ _ . _ _ _ . _ _ _ _ _ . A A 7 _ , W _ ‘ _ _

#1 leg/all: :9 414/ e I”!!! ,

nag-2: "V. Xe/ex-u/u‘ zflzflfl/e/
_ / x e / Mae-Alf; ,i__ # _

Izior/a'AH/x/Ie’ Jew? newt/42¢-
1W4“!!! gay rival. “ravage:

~ . _ _ _ , . , . « _ .

___.d»¢x4woa,vg f _ __-_.
_ leg/0A1 #9 _ d’lJ/Iflfll’flf;_fi

”@427 3‘ 6/44 (97"??4’357
'Jtéh val)1?n OAK/114143!

___m w ‘_ ”I“ ‘wfii‘PMf 4 . }mgo-/twmmlfi
_ ____-_ _ M _ _ , zulrldflap/Mu All”?! U“ _____. _

rut/04'- «t fits/9411:! glam 454A“

4...... . .. ___-.. .nfi-_—_. -—.~ ___—___.»

3-47 ware: 1N2”
sail/5725' WJHIJ '

....__——..-— —_._.—... —..—. .—_ ___.- — ___—___...—

r- _ _____ H * _H.

WW b ' WW whfluflé/Jm/zfflfl-IP’ Java/{J5 "
—~ _h H ‘ (Ia/9919' 7’70”" * A. ‘H

_ var/a mm ya” 79¢ _
_ _ M77”!!! lye/m ambit: M90": pm; my: _ W ‘W

F # WWI: _eawnwéér F “ _m
1"”: : afl/ par/o awry

_fi WW i it n W ___w Ian/mm: your:

___hfi T fl _ g H _ flay/3’6379'a/J _.____m
_— ____ _——_ _ _ qty/j fflIIHaa are" — —fl "fl
‘” * +*—‘— *— — “ ““ — . . “ *5/32,“ ‘

T: 119797 9/711)? 7r] 2m «(my I #7721 a 3”,“; _ #— m P H
fay/47y ’77WUWI/ .1 ”99’”? Ira/rt; IH - I N

799dH0: '
paw/#13713}? 7;/ 9/ _M' ”fiflffiéfi‘a xflu

75%.:7 QIa’a/rfi’ Z47 law/aw 7 “(game
kayaks: W I’M/J m+.— —--—-—— — _.._.._ ——._—— _ — ___..._ _—"—. -. — ____. ._.____._...d.._.—_ ___ ___- _ __— _.—_—. .— — _._. _ ___ _. -—-——— ————--—-——

1/50/5299! lVO/S'S'IH 76/l
" "Murravv'r Irv/Jililh’flbda lwi:7#

"H——'_—_".——‘_‘—""—‘—"—'—_‘——‘—-— _.______. __..._._ ____.,.____.__._‘__..__.,_ _ ____ __._ __ _ __ __ __ __ __._ _ ___—

1:! {2/2 Jrad-‘F’O' 5M .2 5' 9/ Ira/9 LYfi/J
' vii-7A7 syn/.4773- ”w {xi-9.:

W “ ‘w 5”“ 5’79”" 0" 'exu/J «HM/.96 _ m w M
(#Véffif’37fffa’a’) and xmmw/araaumfi f

fl * kfa’; 9;") {(7n 7’7959 "”‘” Hm — ‘—

W a W m _____ r We saw/War 7297*" ____
___ 4?)?[7 Mar/II 37100: are; Jflli7¢j m: A

“V i; 3"? I? 17¢ Hat-I night—— 0“.

‘ 5-5:};x/ .4! ram! cup/aura? i w fl
_ M m cm 0.4.: ”’17 “—M H "m

[
r

t
-

5
T

;

.
—

-
4

.

<
A

.

A

-
.

.
\

.

-
A

4

1
:

.
-

.
—

-
.

.

.
-

.

.awyu: 57.914 .1 (w? am?» as?
g/flafladw 5'7”” W ,1 have ”a W

