¥ ... 3 . ¢ ”
”. . . ﬁ."j 11 S o 411}3
: : . ‘ ; , r “
¥ L 1 f _.
: . .. !

ﬁ

= ' LR Y B C W S\ Wt [l e I s 8 o (N PTG
& = . Dot i auia® o o = - pi ol e L o B 24 LN NN s R S g T PR L T 'S i e “n -

L

e S

gr——

-

i
i

INTERMETRICS INCORPCRATED « 701 CONCORD AVENUE - CAMBRI"DGE. MASSACHUSETTS 02138 - (

Final Report
Volume ITI.
Contract NAS 9-11778

ADVANCED SOFTWARE TECHNIQUES
FOR DATA MANAGEMENT SYSTEMS

February 1972

SPACE SHUTTLE FLIGHT EXECUTIVE
SYSTEM: FUNCTIONAL DESIGN

Prepared by:

James T. Pepe

6

1

-
!

)

~
o]

6

1-1840

i

L

' - INTERMETRICS INCORPORATED

FOREWORD

This document is the final report on the functional design of
a flight executive system for the Space Shuttle mission. The
study was sponsored by the Manned Spacecraft Center, Houston,
Texas, under Contract NAS-9-11778. It was performed by

Intermetrics, Inc., Cambridge, Massachusetts, under the technical

direction of Mr. Joseph A. Saponaro, to whom the author is
indebted for his many helpful contributions to the design of
this executive system and to the format of this report.

The study program covered the period from June 16, 1971 through
February 16, 1972. The Technical Monitor for the Manned
Spacecraft Center was Mr. Donald Barron.:

The publication of this report does not constitute approval
by the NASA of the findings or recommendations contained therein.

- 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

’ TABLE OF CONTENTS

1. INTRODUCTION
l.1 Scope

1.2 Executive System Overview

2. EXECUTIVE DESIGN FUNCTIONAL REQUIREMENTS
2.1 Introduction ;

2.2 Space Shuttle Avionics System
2.3 Features of the IBM 4 Pi EP Computer System

2.4 Executive Design Issues

2.5 Synchronous versus As&nchronous Task Control

i

’ 2.6 Interrupt Handling and Task Dispatching
}] ‘ 2.7 Resource Allocation
\ 1]
E
?
}

i 2.8 Allocation of Specific Resources

fic=n- 3. EXECUTIVE SYSTEM ARCHITECTURE
3.1 "Introduction

ii 3.2 Executive and Task Structures

3.3 Definitions

3.4 Subroutine Linkage

3.5 Task Priority Levels

3.6 Assignment of Core Memory
3.7 Events

3.8 I/0 Scheduling

3.9 1I/0 Considerations

4. TASK MANAGEMENT FUNCTIONS
4.1 Introduction

4.2 Time Interrupt

L‘ " INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUCET1S 02138 » (617) 661-1840

4.3

Deadlock Detection

5. I/0 MANAGEMENT FUNCTIONS

5.1
5'2
5.3

5.4 .

5.5
5.6
5.7
5.8

Introduction
Definition of I/O Management Functions

I/0 Queues and Control Blocks

The I/O Supervisor
I/0 Service Routines

Cyclic and Non-Cyclic I/O
Cenfiguration Dependent Features

I/0 Error Correction

- 6. CONFIGURATION MANAGEMENT

641
6.2
...‘ 6.3
6.4
6:5
6.6

Introduction

Initialization

Failure Detection and Error Recovery

Failures in a Quad-Redundant System

Mode Switching

Synchronization

7. SECONDARY STORAGE MANAGEMENT

7.1
7.2
1.3

Introduction

Data Set Structure

The Secondary Storage Supervisor

8. EXECUTIVE DESIGN PARAMETERS

8.1

Introduction

Synchronous Versus Asynchronous Control

Executive Control Element Sizes

Task Management Parameters

Supervisor Call Parameters

90

103
103
104
104

106

107

‘108

108
103

113
113
113
115
120
121
122

127
127
127
127

131
131
131
132
133
133

INTERMETRICS ilNCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

e B

b B el b

Bord Bed b

N B Bad Bl Bd S

o,

s oy

L INTERMETRICS INCORPORATED - 701 CONZ2RD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

9. APPLICATION TASK INTERFACES
9.1 Introduction
9.2 S8VC Parameters

APPENDIX A - OPERATION AND CONTROL OF THE DA'I;A BUS
APPENDIX B - DATA BUS ERROR CONTROL

APPENDIX C -. LITERATURE REVIEW OF AVIONICS EXECU-
TIVE SYSTEMS

135
135
135

137
163

178

o

Chapter 1

Introduction

1.1 Scope

This document presents a top level functional design of
a software executive system for the Space Shuttle avionics
computer. The design task was accomplished as part of a study
entitled Advanced Software Techniques for Data Management
Systens. Three primary functions of the executive are
emphasized in the design: task management, I/O management
and configuration management.

The executive system organization is based on the applications
software and configuration requirements established during the
Phase B definition of the Space Shuttle program. Although the
primary features of the executive system architecture were
derived from Phase B requirements, it has been spzcified for
implementation with the IBM 4 Pi EP aerospace computer and
ultimately is expected to be incorporated into a breadboard

"data management computer system at NASA Manned Spacecraft

Center's Information Systems Division. Accordingly, the
executive system has been structured for internal operation on
the IBM 4 Pi EP system with its external configuration and
applications software assumed to be characteristic ol the
centralized guad-redundant avionics systems defined in Phase B.

1.2 Executive System Overview

The major areas of the executive system designed during
the course of this study are briefly summarized below with
the n.ajor characteristics defined. .

3

" INTERMETRICS iilCORPORATED - 701 CONCOND AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1340

1.2.1 Control Structure

A]

The executive system is based on a combined synchronous/
asynchronous control structure with priority dispatching for w0 ’
processor allocation and task execution. Cyclic computations are 3
operated at high priority in a synchronous mode under the super-
vision of a cyclic control executive function. It is ,
initiated by a timer interrupt at a fixed frequency, currently .}
20 msec, with the scheduling and sequencing of each ¢cmputation in
a minor cycle predetermined and specified via control sequencing
tables. The total running time of the synchronous mode or }
"foreground" is constrained to be at maximum less than a percentage
of the minor cycle frequency, the percentage to be established
during implementation. After completing the execution of the
cyclic computations each minor cycle, the executive dispatches }
the processor to one of the "ready" tasks in the executive
ready queue on the basis of priority. A total of three priority .
levels have been established for application programs. ‘l

1.2.2 Interrupt and Task Dispatching , {3

‘ All external interrupts within the configuration are
fielded and serviced by the executive as in any real time
system, allowing a multiprogrammed task environment in the
background. The concept termed "segmented dispatching" is
however employed for backgrouud tasks. That is, althuugh
interrupts are immediately serviced by the executive and entries
are made in appropriate gueues, the interrupted task is resumed
and continued until it either ends or until it reaches a seg-
ment dispatch point. Only then is a higher priority back-
ground task activated by the executive dispatcher. 1In this
way long duration tasks can be organized ifnto reasonable
execution segments with task swapping or interruption points
more predictable. The dispatching of the cyclic task con-
troller each minor cycle is however an exception and is
executed immediately at the occurrence of the minor cycle
clock interrupt. This exception is made as a reascnable
tradeoff to provide the timing and response characteristics
"needed for cyclic computations ultimately assigned in the
synchronous mode. This subject is discussed more fully in

Chapter 2.

2

v

2

£

Suachy

INTERMZTRICS !H'CORPORATED - 701 CONCORM AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Pevesisnte

P
‘

1.2.3 Task and Event Scheduling

Any executing task may request the executive to schedule
another task on the occurrence of an event or a specified time.
Events are system defincd in scope and may be posted or deposted
by application tasks via the executive.

1.2.4 Memory Organization and Allocation

All application software program modules are known to
the executive via a program module directory. Programs are

defined as either total mission resident or mission phase resident.

Phase resident programs are loaded from ‘the secondary storage
device into their assigned portion of the operating memory by
the phase jinitiation function of the executive. Dynamic memory
is allocated to each task by the executive, when a task is made
ready for execution, out of a subpool of working memory esta-
blished for each priority level. Dynamic memory requirements

are preestablished and defined for each program in the directory.
Memory is allocated in continuous blocks within the priority
pool and addressing is accomplished via base registers on the

EP computer. :

A portion of the memory is dedicated to shared
data. The common memory pool, the compool, is organized into
mission dependent iesident data and an overlaid area for
phase dependent data. The phase dependent shared memory
1s 1rnitialized with the progrum load at phase initiatlion
and staticall i during the phase. All access to the
common data is controlled through and by -the executive. The
executive prevents conflicts in memory utilization
by placing the conflicting task in a wait state until the
memory is properly released by the task-to which it is presently
assigyned. -

1:2.5 1/0 Control

Control and execution of all input and output operations
are performed by the executive system. Input/output services

are performed in two modes: on demand via request by an
executing task, or table driven as in the case of cyclic
computations in the synchronous mode. Secondary memory

management is under the control of the executive. Limited

use of the secondary storage device is assumed during any,
mission phase. ~MThe exccutive 1s responsible ror the malntaining
of tables of current status and commuanication paths to all
redundant equipment within the system configuration.

3

VKPRt BATION SPECIFicpTion

Bl dE iy

“ INTERMETRICS INCORPORATED + 701 CONLCID AVINUE « CAMBRIDGE, MASSACHUSETTS 02138 - (817) 651-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASEACHUSETTS 02138 * (617) 661-1840 =

k26 Cohfiguration Management Erroxr Recovery

) The executive responds to all system hardware and software
detected error conditions and supervises reconfiguration of -
the system. A standard system error recovery action is defined
for each error class. Application tasks may invoke during
execution local recovery for a class via specification of a

task re-entry point.

1.2.7 Executive Functions as a Summary

The specific functions that the executive performs within
the scope of its design to insure the overall integrity and
proper execution of application tasks are the following:

a) control allocation of the processor by scheduling and
dispatching both periodic and nonperiodic tasks;

b) provide timing and event handling services to insure
proper scheduling of tasks;

c) supervise and control all I/0 operétions;

d) allocate all resources to tasks and avoid conflicts; resources
include dynamic memory, secondary storage and shared memory:;

e) provide methods for controlling conflicts over shared memory;
f) m~intain and update all system queues and tables;

g) provide the means of hardware error recovery and system
reconfiguration; :

h) provide linkage and common subroutines and executive services
in application tasks via controlled simple interfaces.

1.3 Task Objectives and Approach

The executive system design task was accomplished in
conjunction with other major tasks of the study. Its primary
objectives were threefold:

a) review the Phase B avionics configuration and software
requirements and identify major functions of the executive

system;

« !

B o

o R W R |

3

 con

i

hicagas

b) analyze and determine key aspects of the executive structure
. such as: methods of task scheduling and control, external
" interrupt. control techniques, task dispatching algorithms,
allocation and sharing schemes, and applicatfon program
interfaces; : . .

c) develop functional logic and algorithm design for the
task management, I/0 management and configuration manage-
ment modules of the executive system. The design is to
incorporate definition of application program interfaces
to the executive. '

The approach taken in this task was based upon several con- "
straints and necessary assumptions about the nature of the 2? ~
Space Shuttle mission. , - 8\P‘b
1) The application software is not completely defined. KF
Hence, specific parameters, such as the amount of dynamiciy [\
memory needed, can not now be decided. This topic is 3 \:
again discussed in Chapter 8. QP 3
Q

2) The software system we are developing is a kernel):,b
executive system for use in the Space Shuttle Data * d\
Management computer. It is not an operating system } Q’
for a ground based system.

3) The breadboard data management computer system at NASA
Manned Spacecraft Center's Information Systems Division
is not at present completely specified. Thus, several

] assumptions concerning the design are made and pcinted

= out in later chapters.

A4) The executive features incorporated in this design are
those deemed necessary to execute the application software
as far as it is defined in the Phase B Study Reports [1,2].

5

L“INTERMEﬂMCSINCORPORATED-701COMCCHE)AVENUE - CAMBRIDGE, MASS/ACHUSCTTS 02138 « (617) 661-1840

Chapter 2

Executive Design Functional Requirements

2.1 Introduction

The fundamental features of an executive system must be
based on the requirements of its environment and the application
software it controls. Ideally, it should be efficiently tailored

- to meet the design objectives and operating environment of the
total system. Prior to discussing the design chosen, the purpose
of this chapter is to review major system requirements impacting
on executive system architecture. These topics include: aspects
of the avionics system configuration and applications software,
and the organization of the host computer system. Finally,

‘ . several key issues relative to the celection of a particular

7 executive system structure (as it influences task control, resource

allocation and interrupt handling) are discussed with respect

(to the appropriate design considerations.

2.2 Space Shuttle Avionics System

PO

2.2.1 Configuration N
The Phase B Space Shuttle avionics systems have been
reviewed and are discussed in Volume 1 of this study. Although
(more than one Phase B design was reviewed, a hypothetical system
3 configuration is briefly described incorporating the important
features of the decigns to the software executive.

The avionics configuration assumed consists of a centralized
data management computor system interfaced to all avionics sub-
systems via a high speed time multiplexed serial data. bus system
as illustrated in Figure 2.1. The data management computer
system consists of quad redundant computers which operate in a
simplex redundant mode.

During critical phases of the rnission more than one computer
‘ is operating with one of them designated as the prime computer.
The prime computer transmits and receives all commands and

{ 7

LINTERMETRICSINCORPORATED-701CONL,Q;'"}DA\/CNUE -CAN%%“DGE,MASSACHUSETTSOQ1%§-Kﬂ7)6614840

and data over the data bus to the avionics subsystems. The
standby computers are synchronized with the prime computer via
external control and execute the identical software. Outputs
from the prime computer are monitored by the standbv computers
and compared via hardware by its bus control unit in lieu of
transmission. The results of the comparison are s;ent to
external control unit and crew operator personnel for voting
and switching.

The data bus system consists of a bus control unit (BCU) ,
4 bus lines and remote interface units (IU) for equipment
connection. The BCU functions as a peripheral under command

from the computer and controls the transmission of information
over the bus. It communicates with the IU which in turn acquires,

converts and sends data to and from the subsystems. The bus
system operates in a "command response” mode in which data is
sent only when requested by the central computer. The

operation and control of the bus is described more fully in
Appendix A. There is no provision for interrupts from the
subsystems. Each bus line carries serial digital data at 1
MBPS. The bus system is quad redundant with each BCU capable

of transmitting on each of the four buses; however, each
computer interfaces with only one BCU. Redundant subsystems are
interfaced to physically separate bus lines via the interface
vunits. The computer system is also interfaced to redundant
secondary storage units. These units contain additional programs
and data tables for various mission phases. For the purpose

of executive design it will be assumed to have limited use
during a phase with restricted write access. Also for purposes
of executive design, it will be assumed that other external
units may be interfaced to the computer directly and not via

the data bus such as display and control subsystems.

2.2.2 Application Software

The total onboard software has been estimated (during
Phase B) at requiring approximately 50,000 32 bit words of
operating memory and a peak rate speed of approximately 200,000
equivalent adds operations per second. For purposes of thlS
discussion the total flight software for the Space Shuttle
central computer system may be broadly classified .into two areas:
the executive and mission applications softwg;g The application
software is under the control of the executive and supports
all phases of the mission: boost, insertion, orbital operations,
coast and powered flight, renaezvous, docking, undocking, entry
and landing. The applications software to support these
phases comprises the following functional areas:

_a) flight control and stabilization

b) guidance

c) "~ navigation

8

&3 =3 B

s

T

e R e R -

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661—18403

' 1
= svstem, ;
‘9 CONTROL |2 y
{] UNIT n
- =) ‘
|
CRU .V STATION |
ANEL CENMN ‘EF PANEL RIGHT PANEL |
ATION CRE.V STATION CREW STATION
(4) wiu (1) 01U (4) |
[| T] |
; i S |
+~3
L |
| L
r »——l-w—‘ = - o
H T B (S
1 1 I‘ h
___________ 5 A G PR IO T Iy]
—bhab R
| rf v”“q— i lll mimimin |
| 10CU ! icuc 10CU |
| cenTRAL CENTRAL ' l CENTRAL [Lt cenrrat
CENTRAL
| COMPUTER COMPUTER | | COMPUTER COMPUTER 1‘
! |
| | == | |
| | “I
| WASS Ij ! g ! MASS |
MERIORY AREA | AREA MENORY
: o F| p 1; e ol (2 |
| g |
L | | A |
I : ! . | |
e AREA | 1 AREA
=i 01U (2) . T o (YT !
» - i L=
| - I 1 | |
| | j |
<V LEFT | RIGHT
| casIn | A CABIN |
l BAY __C:_'D i | BAY |
AREA -] X ’ ‘ |] AREA
| o1y (2) ! & l <] owi2 |
|
| | s 1
l L § l !
| l < | INERTIAL |
‘ B & ‘L MNAV SET l
l "
‘ | l |
Ll e O s e e e e T S T T,) B s s s < i w5 i ot il
e s g — Smem R S R S] e e et e s i LY W vk g |
| 1 |
| '_—b L . |
E L
! AREA || | L_ AREA [
| olU (2) j g ; q ow@ — i
: ik = *
1 . |
| 3 |
| i AREA
| \ ow (2 . |
1 | |
e el R =t s e I = J

LEFT AFT BAY

Figure 2.1 Avionics Computer Configuration

RIGHT AFT BA

b

’ d)- trajectory targeting
e) crew displays and control
f) onboard checkdut,and systems monitoring

g) avionics subsystem management and support.

bad il

el

Estimates of size, data requirements and frequency of operation

of this software have been estimated during Phase B. The flight
control and stabilization function place the highest respond

time demands on the system and have been estimated at basic
frequency of approximately 20 msec. Subsystem and status monitoring
rates are significantly less at 1 sample/sec being the average
although the number of such samples and processing loads are
greater. Targeting, navigation and guidance schemes are
characteristic of more lengthy, iterative mathematical

calculations, requiring large CPU utilization.

F—_—

b

Sr.cona]

The full impact of crew interaction via display and control
is not completely determined. It is evident however, they
will require the capability to interact through the cisplay .
to: load programs and data, select major program modes IOX
execution, terminate executlon, request diSplays, select—control
options, configure and reconfigure equipment, and monitor the status

Bl Ld

of avionics subsystems. The crew will also interact with the computer
. through other controls such as the rotational hand controllerxr '

when flying under pilot control.

These requirements indicate the Shuttle software environment
to include three types of tasks:

a) cyclic tasks: Tasks which are performed on a periodic
basis at varying frequencies.
b) response/reguest tasks. These are tasks which are performed f

in response to a pre-selected mode such as. the rendezvous
mission mode. Generally these tasks are majcr seguences

or functions initiated throughout the mission by the \
crew.

c) demand tasks: These are tasks which must be performed
at the occurrence of a system event or certain time.

ld B&E B

-

o | ' |
| g
10 ' b

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661—‘184Ou.l

2.2.3 Data Rates

In the Phase B avionics design concept, the data bus system -
prqvides a comnunication path between the avionics -equipment and the
prime computer complex. No general requirement for terminal
to terminal communication which cannot, or should not be routed
through the computer complex was identified. The exact '
number and type of subsystems has been continually chancging.

A representative list provided below is presented to indicate
the scope of the system.

1) Primary propulsion subsystem: this system consists of
two orbital insertion engines and one orbital maneuvering

engine.

2) Reaction control subsystem: at least 20 RCS jets located
in the nose, wings and tail for effecting rotation and

" translation in space.
3) Hydraulic system: hydraulic power generation, distribution,

control, and conversion of mechanical energy. It consists
_ of supply lines, gimbals, pumps, aerodynamic surfaces, flaps,
' A wheel controls, etc.

4) Electrical power generation and distribution system: fuel
cells ana battery, and tne auxiliary power units located
throughout the Shuttle.

] 5) Navigation aids/air data: a collection of equipment
L providing navigation and landing capabilities (ALS, rada
altimeter, TACAN, DME, etc.). i

y 6) Environmental control system: the environmental control
' system provides temperature, pressure, and humidity control
of equipment, equipment bays, and personnel compartments.

7) Cryogenic system: contains the hydrogen and oxygen for
the primary propulsion, the reaction control system, the
fuel cells and the auxiliary power units.

8) Displays and controls: this system is assumed to have
local processing capability and accepts dynamic data
through the bus for updating of display parameters.

9) Telecommunication: this system consists of various trans-
mitters and receivers including S-band, C-band, VHF,
telemetry encoder, EVA communications, air traffic control
communications, etc.

10) Guidance, navigation and control: this subsystem is
composed of elements necessary to control, stabilize and
navigate the Shuttle vehicle during all phases of the

) ‘ mission. It interfaces to the reaction control systemn,
y jet engines, aerodynamic control surfaces, and landing
i gear, etc. It has access to sensors which include the

L1
{ .
L- INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS €2138 - (617) 681-1340

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 -

inertial subsystem, horizon and star trackers, approach
landing aids, rendezvous radar, radar altimeter, etc.

Although this list of subsystems may not be complete for the
final organization of the avionics system it is meant to be
representative. It is estimated that approximately 150 to 250
LRU's are associated with the subsystems listed above.

2.2.4 Data Requirements

The following is a summary of the data requirements
abstracted from the various studies of Phase B contractors.

1) Speed. Peak load estimates of data rate for both the
Shuttle and orbiter have ranged between 100,000 and 25C,000
bits per second, including overhead. Considering an average
overhead of approximately 50% for each bus transaction and
allowing for a minimum of 100% expansion to the maximum
speed, a capability of 106 bits per second has been assumed
to be an adequate requirement. This speed should allow
the computer to acquire data at a rate of approximately
10,000 average transactions per second.

2) Measurements. Estimates have ranged between 4000 and 6500
unique data points to be sampled from the total complement
of avionics equipment by the central computer. Data’
types include: ' ~

digital parallel
digital serial

- analog

discrete

The majority of these data points are measurements input
to the computer, and are estimated at approximately 60%
to 70% of the traffic on the data bus.

3) Response time/sampling frequency. The maximum sampling
frequency of measurements is estimated at fifty samples
per second. The average sampling frequency for status
information is between two and five samples per second.
Very little information was made available on response
requirements and load distribution of subsystems.

12

bd et Bod bl] Bl Bead Bl

R

| -

i Biend Beat Bd N

ke

;

Pl

r—

P A LTINS AT O INCAADLDNOADATE

2.3 TFeatures of the IBM 4 Pi EP Computer System

The hardware features of the computer can directly influence
the executive system software design. In this section the
most pertinent features of the IBM 4 Pi EP computecr assumed
in the executive design are presented for review. 4 Pi EP
hardware is documented in detail in the IBM Programming Manual

~ for System 4 Pi Model EP [3].

2.3.1 Computer Organization

The EP is a byte addressable computer with two bytes
constituting a half word, four bytes a full word, and eight
bytes a double word. The EP memory size for the computer in
the ISD breadboard is assumed at 24K 32 bit words. An additional
16K multiport buffer memory may be incorporated; yet its
status is unknown at this time.

There are 16 general registers (GR) of full word size
used for high speed fixed point and logical operations and four
floating point registers of (FPR) of double word size used for

floating point operations.

The instructions are organized into four classes: register
to register (RR), register to indexed storage (RX) , register
to storage (RS), and storage and immediate cperand (SI). A
complete list of all instructions may be found in reference [3].

All addressing of core storage within instructions is done
relative to a base address stored in one of the general registers,
designated the base register. Many instructions' address fields
can reference up to 4K bytes beyond a base address by adding a
12 bit displacement to the contents of a base register. RX
instructions further extend this addressing capability by also
allowing indexed addressing. .

2.3.2 Interrupts

There are five classes of interrupts in the EP.

a) I/O interruptions allow the CPU to respond to conditions
in the channels and I/O units.

b) Program interruptions signal unusual conditions encountered
in a program, e.g., incorrect operands and operand specifica-
tions. This class of interrupt may be subdivided into nine
subclasses identified by the interruption code generated
by the EP. The subclasses are:

AASSACHUSETTS 02138 - (617) 661-1840

‘1) Operation Exception: operation code unassigned

.2) Privileged-Operation Exception: a privileged operation
is encountered in the problem state ’ :

3) Specification EXCeptionE incorrect operand specification
4) Fixed Point Overflow Exception

5) Fixed Point Divide Exception

6) Exponent Overflow Exception

7) Exponent Underflow Exception

8) Significance Exception: the result of a floating .
point add or subtract has an all zero fraction

9) Floating Point Divide Exception

c) Supervisor call interruptions result from the execution of
a SVC opcode. This interrupt is used to switch from the
problem state to the supervisor state in which privileged
instructions can be executed. ’

d) External interruptions allow the CPU to respond to signals
from the interruption key on the system control panel and
the timer. The timer is a full word in main storage location
80. An external interrupt is generated when the value of
the timer goes from positive to negative. A timer is essential
tc the executive system. The exact details of the timer in
the breadboard are not knovn as of this time.

e) The machine check interruption occurs when a hardware error
is encountered. A diagnostic procedure is automatically

initiated.

Should several interrupts occur simultaneously they are
honored in the following order:

1) machine check;
2) program or supervisor call (mutually exclusive interrupts);

3) external;
4) 1I/0.

Each of the five interrupts described above has two related
program status words (PSW) associated with them in unique main
storage locations (see Figure 2.2). An interrupt causes

the current PSW to be stored in the "old" position and the

PSW in the "new" position to become the current PSW. The old
PSW contains all the information necessary to resume the problem
program again at the point of interruption, and the new PSW
allows executing a routine associated with the interrupt.

14

o4

-

A bl bl Bl b

Smgy Bem ey GO

remse wewsn oW SOW o

INNITEDAMETOIAS INCORPORATED » 7 P RD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

{

L. INTERMETRICS INCORPORATED - 701 CONCORD AVENUE

As mentioned above the supervisor state (as distinct from
the problem state) allows a class of privileged instructions
to be executed. The executive uses these instructions to
maintain the integrity of the system. Examples of' privileged
instructions include dire~t I/0 operations, setting system
masks, and setting PSWs. To prevent their use by .
application tasks a program interruption is generated when
a privileged instruction is encountered in the problem state.

The supervisor state can also be used to protect the
executive from invalid access by application tasks. Hence,
SVC operations provide the means for application tasks to
correctly use the executive, and they help insure that an
application task does not alter the executive.

2.3.3 4 Pi Input/Output Via Standard Channel

Another important EP hardware feature is the structure
of the I/O control system. Since the structure of I/O operations
depends heavily upon the channel control structure and its
operation, I/0 management will be one of the most configuration
sensitive areas of the executive software. Hence, a clear
understanding of the EP's I/O system is necessary.

All I/0 operations are initiated by a START I/O instruction.
If the channel is free, this instruction is executed, and the CPU
continues processing its program. Then the channel, independent
of the CPU, selects the I/0 device the instruction specifies.

START I/0 causes the channel to fetch a channel address
word (CAW) from main storage location 72. This word points to
the main storage location where the channel program begins. The
channel program is a series of chained channel command words
(CCW) , each of which contains a command code to the channel as
well as main memory data addresses and byte counts. See
Figures 2.3 and 2.4 for the CAW and CCW formats.

Should an I/0 command be rejected during execution of
a START I/O (by a program check, busy condition, etc.), the
command rejection is indicated in the PSW. The details of
the conditions that prevented I/0 initiation are given in the
channel status word (CSW) which is stored in main storage

location 64 when the command is rejected (see Figure 2.5% .
The CSW is formed or reformed by START I/0, TEST I/O, or an
1/0 interruption. This word contains information about the

termination of an I/0 instruction. An error recovery program
that is initiated because of an I/0 error will depend heavily
upon the CSW to determine the cause of the error and whether
a system reconfiguration is necessary.

15

- CAMBRIDGE, MASSACHUSETTS 02138 - (617) 651-1840

System Interruption
Mask Rey REwE Code
Program Instruction
e e Mask Address

Figure 2.2 Program Status Word Format

i

Key 0000 Command Address

s B3

Figure 2.3 Channel Address Word Format

16

ooy e oy 5] | s] g g

r—
' i

frr—y

i s
{

ey

r

Command
Code

Data Address

Flags 0000

2%%222%%%2%% Count

Figure 2.4 C

hannel Command Word
Format

Key

0000

Command Address

Status

Count

Figure 2.

5 Channel Status Word

Format

17

INTERMETR!CS INCORPORATED 701 CONCORD AVENUE CAMBF‘IDGE MASSACI{JSETTS 02138 -

2.3.4 4 Pi EP Data Bus Input/Output

The 4 Pi computer in the DMS breadboard (Figure 2.6)
will be interfaced to a bus system via a stored program
data processor (SPDP). The details of this interface and
method of operation are currently not known. Accordingly,
by direction, the executive design has been based upon inter-
facing to a Phase B type of bus system described previously.
It is anticipated that the functional organization of '
executive I/0 management will remain the same.

2.4 Executive Design Issues

In conjunction with the review of the avionics system
requirements, several factors of the basic executive system
structure were evaluated. The purpose of this and succeeding
sections is to discuss these issues.

Prior to performing the analysis several design goals
were established to be used as guidance in selecting an
ultimate design approach. Primary considerations of the
executive structure analyzed are:

a) synchronous versus asynchronous tésk control;
b) interrupt handling and task dispatching;

c) resource allocation;

d) shared data; |

e) secéndary storage management.

The primary objective or goal usually adapted by most
executive system designeis is the achievement of an "efficient"
executive where efficiency is some measure of throughput.
Efficiency may be defined by elther the fraction of executive
overhead time spent doing nonproductive work or in terms of
response time. In performing analyses of these issues,
efficiency was considered a necessary but not primary factor
since it often tends to lead towards complex design resulting
in complex testing and verification of software. Ideally,
flight software should not only be tailored to meet operational
mission requirements but should be structured to enhance
software verification and flexibility to adjust to changing
needs. Therefore, the following design criteria were used as
evaluation of the executive structure.

18

(617) 661-1840

el

“oy

1
ud

-

B—

d
J
1

INFLIGHT MONITORING CHECKCUT

ONBOARD/GROUND CHECKOUT

SYSTCM
MANAGERERT
COMNSOLE

&

(REQUIREMENTS)

| KeYeoARD |

—==~ T0 PILOT CRT

\’
COMPUTER (SOFTWARE)
MASS Sl v L e e
MEMORY [T 1/0 st " "’l
L
(SOFTWARE) (HDW/SFTW)
i H
, STORED
MAINTERAMCE . COMMAND |
& P ceosermmncs PROGRA!‘.I DFCOUEP 3
BELIRDER PROCESSOR . .
E i
—{ae ACM
LooP
RECORDER [
OCM
3
TirE l
TR coB
¥ V. ¥ 360-44
RAU | RAU RAU |ro—] *

SUBSYSTEMS

3

PILOT
CONSOLE

Figure 2.6 ISD Breadboard Data Management System

(REQUIREMENTS)

19

-

HARDV/ARE
SOFTWARE
REQ'S

1‘_

Ba aamaiii e o 28

a) To provide an executive system which will control and
allocate resources of the system to satify operational
mission requirements (i.e., one that does the job).

b) To establish an executive organization which facilitates
verification of application software and reliability of
code.

c) To structure an executive enabling flexibility and modularity
in incorporation of application software changes over long.
term maintenance periods.

d) To define simple and well defined application program
interfaces to the executive system. It should be structured
as a virtual machine to the applications programmer.

e) To develop an executive structure which is both simple
and efficient but consistent with other objectives.

2.5 Synchronous versus Asynchronous Task Control

A primary function of the task management portion of the
executive is the scheduling, dispatching and control of the
allocation of processor to task in the job stream. It is a
fundamental feature of the executive system. Most large
oround based computer systems incorporate very flexible and
general task scheduling and dispatching algorithms to accommodate
a varied number and type of users. The Shuttle software on the
other hand, is more tailored to its environment. Although Phase
B contractors have specified synchronous structured executives,
shuttle software requirements do not allow-task scheduling to be
completely planned in advance. Furthermore, it is our contention
that a pure synchronous structure would ultimately be modified
to accommcdate priority based event handling since it is necessary
as a Shuttle software feature. We have chosen a design which
accommodates the best features from each control structure. The
following presents the advantages and disadvantages of synchro- .
nous versus asynchronous control.

2.5.1 Synchrbnous Structure

A synchronous structured executive is based on a timer-
interrupt, fixed scheduleé, time slice mode of operation. For
example, Shuttle baseline designs use a 20 msec interval as
a basic reference frame for the system, providing a minor
cycle sampling rate of 50 cps. Under this concept jobs are
organized by the designer into short routines, and when the
executive detects a timer interrupt (i.e., every 20 msec) it

20

L e o e s sl A et AR A eI e A A A SO AIILICETIC 00128 +. (617) . 6861-1840

(-

bond el bad feedd Gl B

it

o

nd Gl Ged Bad Bd B Bed Red B3

SERED m Enasl¥

fScaor]

s B

auie |

e SR s

-

‘1 o
=

I

examines the "task schedule tables" to determine which set

of routines is to be operated during the next program interval.
Each 20 msec interval contains all 50/sec tasks and a selection
of other lower frequency tasks. The minor cycle is operated
every 20 msec, and a percentage of that time is distributed
among the tasks that are assigned to each minor cycle. A back-
ground job may be run in the slack time before the next minor
cycle. Each task is statically structured as a subroutine

such that it can be dynamically called and returned to the
executive.

Using a command response data bus control concept, scheduling
I/0 in a synchronous structure is similar to the scheduling of
tasks. The I/0 requirements for each mission phase or major
cycle are predetermined and synchronized with the structure
of tasks operc¢ted in the major cycle. The I/0 request list
is assumed to be fixed. Since the I/0 reguirements will have
different frequencies, they are incorporated in each minor cycle
in correspondence to load balancing of the processing tasks.

For example, assume all I/0 requirements for a particular
mission phase are organized into three categories of frequencies:
50 times/sec, 5/sec, and l/sec. Assume that X, Y, and Z are
the number of commands in each category. Assume further that
a minor cycle occurs every 20 ms and that a BCU is commanded
with a list of I/0 recuests each minor cvcle. The averaged
number of I/O operations required to be scheduled each minor
cycle are: all of the 50/sec requests, 1/10 of the 5/sec
requests, and 1/50 of the 1/sec signals. In a synchronous
structure tables of predetermined I/0 reguests are organized
according to sampling frequencies. The appropriate number of
I/0 entries to command each minor cycle are selected from these
tables. The synchronized concept attempts to avoid non-deter-
ministic behavior of I/0, I/O queues, and I/O backlog.

Several types of I/0 activity cannot be determined in
advance; for example, the command of jets on and off. The
I/0 scheduler may accomplish this by providing a place for
the command in the appropriate list and. then causing the
BCU to skip the command or incorporate it, depending on the
results of the stakhilization and ccntrol tasks.

2.5.2 Example of a Synchronous Executive

For purposes of illustration the basic functions performed
by a synchronously controlled executive include:

a) managing data bus I/0 by issuing all I/O requests for
the minoxr cycle;

24

INTERMETRICS INCORPCRATED + 701 C DNCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 ¢« (617) 661-1840

b) managing task execution by executing all high frequency
tasks; deciding what tasks executed at a less frequent
rate must now be done and executing these; and, doing
background and/or hensekeeping functions in any slack time.

To enable the executive to perform these tasks with the least
amount of overhead, judiciously organized system tables must
be used. A description of the contents of the types of tables
is presented below.

A cyclic command table (CCT) lists all tasks and the
frequency they are to be done in a given mission phase. 1In
other mission phases a different table is used, which can be
stored on a mass storage device until it is needed. For
example, a typical entry would be

program module ' core
frequency » IDB address

A It must also contain pointers to the I/0 reguests for every
minor cycle. That is, in a particular minor cycle all I/0
requests are known in advance since a synchronous structure

is deterministic. Thus, the executive can issue all I/0
requests at once. For example, consider the following CCT
entries:

Frequency Module Address
every. A 1000
minor B .2000
cycle & 3000

o*ﬁZirﬁinor 2 A

- E 5000
cycle .
every F 6000

four minor G 7000
cycles H 10000

The order bf execution of these progfam modules every four
minor cycles would be the following '

i Gl o : -

"

Minor Cycles Modules
N ABC d
N+1 A BCDE
N+2 A BC

N+3 ABCDETFGH

Should D take an abnormal exit during the (N+1)st minor cycle,
and deschedule E, the order then becomes:

Minor Cycles Mcodules
N A BC
N+1 ABCD
N+2 A BZC
N+3 ABCDETFGH

A flowchart of a synchronous executive structure is presented
in Chapter 4. '

. Z.5.3 AQvalnitayes oi Syudlironous sStructuie

a)

V, b)

&)

d)

e)

\
1

' INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

There is minimal overhead for scheduling and dispatching
because all tasks are known to the system in advance,
and hence, are prescheduled. The executive knows wnich
fixed set of code to execute in each time slice.

The executive design is simple and thus easy to program.

The system is not multiprogrammed sO no queues of
ready and waiting tasks have to be maintained. In
other words, more than one task is never in contention
at any time for the processor. One fixed set of

code is executed in each time slice. Memory conflict
problems are also eliminated since core and word areas
for all programmers are pre-allocated.

The system is deterministic which makes the task of
software verification easier. A programmer must divide a
long program into segments to evenly distribute over
several time slices. The break points can occur at
places at which he knows no interrupting program can
interfere with his program or data.

The computational and I/0 load will be balanced over

a major loop. Thus, no degraded response can occur

23

\

. because of computational or I/O overload. Response
is predictable.

f) The predictability of the system eliminates sharing
problems. Programs can be put together in time slices
so that no data sharing problems result. This fact
eliminates the need for a central update routine for
data. Also, the need for reentrant coding, and hence,
dynamic storage allocation, is eliminated.

2.5.4 Disadvantages of Synchronous Structure

a) Application programming is more difficult especially
for long programs. The programmer must break such a
program into segments so that between segments any
running program cannot interfere with his program
or data. Also, fitting his program segments into time
slices with other program segments is difficult. Timing
requirements of each segment must be known before
these can be fitted together in a time slice. Thus,
the programmer has a second constraint, namely, time
bounding his segments.

b) Changing application programs or mission programming
requirements can be a major redesign. Such a change
can require rebalancing of the entire computational
load. New requirements can mean having to spread the
existing application programs more thinly over the
time slices of a major loop, so that the new programs
can also be fit. That is, each existing program segment
might be restricted to a smaller time bound, and hence,
reprogramming will result.

c) Each time slice must accommodate the worst case computational
requirement. For example, if the crew is provided the
option to display a parameter during a particular mission
phase, then the calculation of that parameter will have
to be incorporated into the sequence whether or not the
crew ever requests it.

This situation is particularly bad if more tasks are
added to the system. If in the worst case 80% of the
computer's time is being used, a task having a worst case
requirement of 25% cannot be accommodated. If it were
accommodated, some time slice would have a worst case
requirement of over 100%. This situation is unacceptable
in a synchronous structure.

24

L —

o v

3
-

e

e,

pan—

d) A synchronous structure does not allow tasks to be run
" on a time or event basis. In particular, this type of fixed-
sequence executive organization does not provide a structure
which allows for external interaction by the grew, or which
copes with a random job stream. Jobs must be predetermined
and assigned to slo%: in a seguence and must operate within

the basic reference framework. It is not clear at this
point whether all Shuttle requirements can be so predetermined.

Both Phase B executive designs allow tasks to be
scheduled on an event basis. That is, when an event
occurs a task can then be scheduled. A scheduler is

used to fit the newly scheduled task into the time slices
and to deschedule lower priority tasks when necessary.
Such an executive cannat be fully synchronous, as defined
and described above.

°

2.5.5 Asynchronous Structure

In an asynchronous control structure scheduling and
allocation of the processor are accomplished in real time ;
according to the needs of the operating environment. Under
this concept processing tasks are assigned a priority which
establishes their relative importance to each other. A task
with a given priority runs until a wait is encountered, or
the existence of a higher priority task is established.

The distinction between synchronous and asynchronous
control structure can be illustrated by the "states" in which
a task will exist while operating under each structure. In
a synchronous structure, tasks are in one of two states:
actively running or not running. At any instant of time only
one task is in the running state and all others are not
running. The transition to the running state occurs when a
task's scheduled time slot arrives.

In an asynchronous structure, a task, while present in the
system, will exist in one of four states: running,
waiting, reaéy, or inactive. The executive insures
the proper transitiofi Of states depending upon either internal
or external stimuli. The running state definition is obvious.
Note that the runnihg state can only be entered from the

réady to run state. This unifies the dispatcher functions.

The waiting state is either a voluntary or involuntary state,
depending upon its cause. A voluntary wait would be a wait
for completion of I/0, or perhaps some external time stimulus.
An involuntary wait would be awaiting resources (e.g., memory)
to become available. The inactive state occurs when the task
is neither running, waiting, or ready.

25

1

* INTERMETRICS INCORPORATED + 701 CONCOMD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The ready state can be entered from all other states
and indicates that a job has all the facilities available to
. it to run. The function of the dispatcher is to pick the most
appropriate task from the ready queue and start it running.

A

.*E <I!, % a

State changes from wait to ready would occur when the
awaited stimulus has occurred. The change from limbo to
ready state occurs when a schedule request is issued by some
task. The switch from running to ready occurs when a task
is preempted by a higher priority task or interrupt.

In summary, an asynchronous structure is one in which one
or more tasks may be in the ready state awaiting allocation
of the processor. In a simplex computer system this is - termed
multprogramming, i.e., the concurrent operation of more than

one task.

-

An overview of the operation of a general asynchronous
executive is illustrated in Figure 2.7 . The scheduler and
dispatcher, once in control, should be able to pick a
task and run with it. The scheduler assigns or reassigns .
task priorities, verifies that all the task resources are
available, and maintains the overall view of real time events.
All task starting is done through the dispatcher.

[] P « -

The scheduling function in a broad sense consists of

’ making appropriate entries in task blocks and priority queues
so that the dispatcher need only select jobs from the top of
the ready list. If there is a number of tasks to be scheduled,
the scheduler treats some as more important than others and
executes them first. If the dispatch function occurs at some
time other than at the end of a program, then a multiprogrammed
environment is a direct result.

The interrupt handler "posts" the event complete, makes
the task ready if possible, and then passes control to the
scheduler to act on the information it has provided.

The resource allocator is invoked as an executive function
by the scheduler to test readiness to run, and if not ready,
will inform the scheduler of the requirements for readiness.

It may also be invoked to test availability of contention

items.

-

=
[EENe |

I/0 in an asynchronous structure is generally scheduled
on a demand basis. An active task requiring I/0 schedules
its request via an I/0 queue. The task is placed into the
wait state until completion of the I/O request. The 1/0

® d

26

J

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-18403

e

f
I

L« INTERMETRICS INCORPORATED - 701 CONCORD AVLNUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

control routines operate on the I/O queue and interface the

I/0 peripheral (i.e., the bus system) to perform the request.
I/0 is performed asynchronously with other processing tasks

in the system. After acknowledging receipt, initifation or
completion of the I/0 racuest, the scheduler is informed via

a simulated or actual interrupt. The task awaiting the I/O
request is then placed into the ready state and awaits processor
assignment. However, demand scheduling may not be easily
implemented in the Shuttle software due to the high speed

of the BCU as a peripheral and the intended block scheduling.

2.5.6 Advantages of Asynchronous Structure

a) It is able to adapt to a random job stream; i.e., it does
not require rebalancing of a computational load, and it
can tolerate periodic overload and backlog since it is
designed to cope with this problem. Time and event
scheduling can easily be accommodated.

b) It is more adaptive to a real time environment. If a task
of high priority must be scheduled, it is not necessary
to deschedule a lower priority task. The task dispatcher
selects this high priority task for execution while lower
priority tasks remain in the ready state. Lower overhead
results.

c) Application programming is easier. An asynchronous
structure does not require long program sequences such
as targeting, etc. to be arbitrarily organized into
fixed segments to fit in some fixed cycle or sequence.

d) Since it is able to adapt to a random job stream, inter-
face with the crew is easier. If the crew schedules a
program of high priority, they can be sure this program
will not be spread out over small portions of many time
slices but will be executed quickly.

e) It has a greater flexibility for incorporating changes
than the fixed sequence approach. A change in mission
requirements is not a major programming change for
existing programs. ' .

2.5.7 Disadvantages of Asynchronous Structure
a) The multiprograming environment resulting from this type

of scheduling is more complex and difficult to test and
verify. Programmers no longer know where their programs

27

R e e e R e Ry L R R R S e T o T O e e e T =

k.
4
wd®

will be interrupted. Thus, the executive must guarantee

‘ data integrity, handle sharing of data, and allow for
reentrant coding. It can be made more predictable, however, °
particularly on the Shuttle where no external interrupts
exist.

b) Since all tasks are run through the scheduler and
dispatcher, there is an increased overhead for running
these programs, queueing ready and waiting tasks, and
handling the queues. However, this overhead can be
minimized by combining the features of synchronous and
.as will be explained later.

4| : v_i

2.5.8 Need for Asynchronous Features

Since the nature of the Space Shuttle mission requires
the computer to respond to unpredictable events, such as the
crew altering the job stream, handling emergency situations,
reconfiguring because of failed equipment, etc., a fully
_synchronous executive is insufficient.’ As mentioned
above, both contractors see the need for scheduling
tasks on an event basis. Since this fact is a step toward
asynchronous structure, the question arises to what degree

A the executive organization should be asynchronous. Because
. of the simplicity of a synchronous structure, as many of its
advantages as possible must be kept. It is the disadvantages
that must be eliminated by allowing some asynchronous features.

[S—

BES b

The following structure obtains the best features
of both. Tasks will be organized into foreground and

~a

background categories. - .The foreground tasks are
those tasks run at a fixed frequency by the scheduler in a §
synchronous manner, as described above. The time needed to g}

execute each of these tasks must be small, i.e., less than

1 minor cycle. By definition all foreground tasks (synchronously)
scheduled in a minor cycle must be totally executed in that
cycle. The remainder of the time of the minor cycle can be
devoted to executing background tasks. Background tasks have
several features. They can be operated on a priority basis;
they can be long (i.e., regquire more than one minor cycle to
execute); and they can be scheduled on a time or event basis.
‘The nature of background tasks makes a queue structure necessary.
Hence, in a minor cycle there are now two types of scheduling:
synchronous and asynchronous. By making as many tasks fore-
ground as possible we eliminate much overhead in scheduling/
dispatching background tasks.

e &2

il

o

-...,_,.‘

The advantages of this structure are:

a) it eases the incorporation of event and time dependent
‘ rescheduling of tasks;

fed Gl

28

. 1
S

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 021238 - (617) 661-1840L%

| Event complete, remove from queue

Verify N

Ready Waiting = ‘ V
Task, Assign
Prlorltj Y L
l b Task I/o
| Use Task Info. ; ‘ .
| for Tle‘Breaklng 4 : &
, i , I

I V ! Schedule | |

. k 1
| 1 Scheduler <}-—IAQ~T%§&.._ —_
| Resource .

Allocation [7

l e Dispatcher

or v
|
|
|

l
\
l
l
!
!
1
|
!
|
|
1
1
[’] v

Acknowledge Task
Starte
b , Q
- Interrupt - Mok Gow T '
dandleg . Processor , 1/0 Input Request
<< ‘ Controller =
' Immediate ' e
4 \ T Completion Qutput Sagnals
' / L
r/
I/0 Interrupt Signal
Timer _ _— . ug
Interrupt '
Unscheduled -
Signal '

Figure 2.7

System Flow of General Asynchronous Structur&d Executive

|

|
=

[-

e data integrity procblem avoided, i.e.,
s will be serviced;

Al

. b). asynchronous S tructur
© programmer contrcl of where interrupt

S

c) tasks for which precise timing anaylysis is unnecessary
or impossible, or which require extreme timing safety
factors can be executed on a priority basis rather than

on a time 'slice basis.

~ Thus, in general, the proposed structure can handle the
Shuttle software in a way advantageous to either completely
synchronous OX completely asynchronous structure.

2.6 Interrupt Handiing and Task Dispatching

running program in response to

The interruption of a
duced into the computer technology

an external signal was intro
to serve two purposes:

S R - S

time to asynchronous events;

of polling (and its overhead) to
ted event has yet occurred.

a) provide rapid response-

b) eliminate the necessity
discover whether an awai

=3

. : In single-processor systems, particularly dedicated systems
where most or all of the computation is devoted to a single

application, the introduction of interrupt-mode computation

raices the hazards associated with multiprocessing: at

arbitrary times, an interruption can introduce what appears

to be a parallel task which is at least conceivably capable

of disrupting the progress of the interrupted task by altering

methods for masking or inhibiting 1

m

its variables. Thus,

interruptions were added, and the nature of the functions 3

allowed in interrupt-mode was restricted. Properly and -

thoroughly applied, thase fixes allowed programs to perform -3
d has been found ;%

although no truly thorough metho

properly,
hat the system was actually properly programmed.

of proving t

There. exist therefore, two relevant negative aspects of &
interrgption;: timing response uncertainties, and potential i
data disruption and contlict. Both can be minimized by causing ry
interrupts to schedule tasks whenever possible, as opposed to
performing them. This provision reduces the multiplicity '
of possible timing situations, since job swapplng occurs only

at specified intervals.

:)

30
S

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBERIDGE, MASSACHUSETTS 02138 + (617) 1'361-1840‘:‘43

Accordingly, it is considered desirable to utilize hardware
interrupts such that tasks are scheduled and the interrupted
1ask is rapidly resumed. The primary consideration becomes

. when to dispatch a higher priority task resulting from an
interrupt, such that respond time requirements can be satisfiead.

When an active task is dispatched into the wait state,
another higher priority task is dispatched (made active) from
the ready queue. When else does the executive dispatch? The
following summarizes various approaches considered.

a) 1If the executive dispatches at no other time, system
response time to high priority tasks cannot be guaranteed
since long duration tasks would execute to their end. ,
This appears unacceptable in the Space Shuttle mission unless
all lengthy tasks were broken down into separate, suffi-
ciently short, independent tasks. '

b) The executive can dispatch whenever a task of higher
priority than the active task is scheduled. 1In this case, o
interruption of the active task will occur at a random
point in the coding and a higher priority task given the
CPU. This uncertainty can lead to a program verification
‘ problem due to its random nature and ncr -repeatability.

c) Alternatively, a programmer can inhibit dispatching at
dangerous points in his program. Tasks of higher priority
would be dispatched when permitted. However, this method

by does not completely solve the verification problem or

prevent a higher priority task being delayed from execution
| for an unacceptable amount of time. By introducing an
onboard "watchdog" timer, it is possible to guarantee

a maximum time in which dispatching is inhibited. If a

i programmer exceeds this maximum time in inhibiting

dispatching, the CPU is taken from his program. However,

the dispatch will now occur at a random point.

d) Another approach is to require the application task to be
organized into short segments in which the dispatcher
is requested at the end of each segment: If these segments
were fixed at short intervals it would enable system
response time to be maintained.

P e

31

oo

“ INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Furthermore, the segment organization of a lengthy program
provides visible and controllable evidence to the programmer
of the possible points that alternate control paths can :
occur. Conversely, he is assured that once the segment
hegins it is non-interruptable until it ends other than by
the executive servicing of an interrupt or the task placing
itself into a wait state. Similar arguments could be used
for the previous approach.

The chosen method involves a modification to approach
(d). First, high priority cyclic tasks, operating in a syn-
chronous mode in the foreground, will always be dispatched at
the occurrence of the clock interrupt. All other tasks will
only be dispatched at the segment points. This will guarantee
response time where it is needed and loosen the requirement ,Jj

for segment operating limits.

Secondly, the establishment of segments for lengthy programs
can be aided by an assembler or compiler. Given that a proce-
dure oriented higher order language is used for application
programming, it can often suggest segment points and make them
visible to the programmer. Tentative examples of compiler based

segment points are:

a) on all forward GO TO statements;

b) entry or exit from a block;

c) maximum time allowed in a segment exceeded.

The programmer must have a compiler override capability.

2.7 Resource Allocation

A resource may be defined as a facility of & computing
system that can be temporarily assigned to tasks to enable them
to perform their computations. Examples of resources pertinent
to the Shuttle software are core storage, shared data, and data
sets on mass memory units. Resource allocation is that function
of a computer's operating system that assigns resources, when
possible, to the tasks requesting them. 1In a multiprogrammed
system, several tasks can request the exclusive use of a
single resource. Since only one task at a given time can be
granted its request, the others must wait until these resources
are freed. Care must be exercised in resource allocation to
minimize the number of transitions of a task from the active
to the wait state and to avoid allocation conflicts.

32

s

Goaed G ad

N (S

brocd @

fed 2R

™

eacad

[i £
| SRS] bomesd

; gﬂ-‘t}

k

—

e]

INTER!ETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-18405

To be specific, several conflicts can result from
inefficient resource allocation. These are:

a) deadlock,

" b) memory fragmentation,

c) priority conflict..

We will define each of these conditions in the following para-

graphs.

2.7.1 Deadlock

Deadlock is a condition in which two (or more) tasks
are each waiting for a resource held by the other before either
can proceed. Neither task can release the resource it holds,
so neither can be taken out of the wait state [1l6]. For
example, suppose task A holds resource Rl and needs R2, but
task B holds R2 and needs R1l. Since neither task can release
its resource, neither can proceed and deadlock results.

Deadlock detection algorithms can be included in an
operatlng syStem to enable the task performing resource
R e B o Ty O Loeluyniial t)u\.\.,u\._lu_z_.‘._{ hazardous olLuaL'O“D,
and hence, to-avoid them. This topic has been discussed
extensively by several authors [9-10,13-16]. However, such an
algorithm can cost a high overhead in execution time. The Space
Shuttle executive should have an alternate way of avoiding deadlock.

‘Deadlock is the result of incremental resource allocation.
That is, it is the result of tasks requesting resources
sequentially during execution. By avoiding incremental
allocation we can avoid deadlock without costly detection
algorithms. More will be said about this topic later as
it relates to the Space Shuttle computer.

2.7.2 Memory Fragmentation

Memory fragmentation is a condition in which a task
cannot be granted its request for a large block of contlguous
core because all available core for dynamic allocatlon is in
small noncontiguous blocks.

When this situation arises in a large ground based computing

system having a large secondary memory, part of the contents
of core are rolled out temporarily to create a large enough

33

" INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETR!CS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSET S 02138 « (617) 661-1840"

contiguous area of main memory to satisfy dynamic allocation
requests. However, on the Space Shuttle computer we seek to
minimize the use of any MMU because of its inherent

complexity. Thus, most data will be maintained in main memory so
that programs can operate at maximum speed. Proarams and

data are only reloaded into the operating memory at low

frequency during the mission, such as at the start of a new mission

phase.

2:1+3 Prioxity Conflict

Finally, an allocation conflict can arise when a low
priority task holds a resource that a high priority task
requests. Often the resource cannot be released by the former
task as in the case of temporary work areas of core storage.
Unfortunately, the high priority task must now be placed in
the wait state until the low priority task can safely release
the resource. The result of this situation is a degradation
in the system's response time for high priority computations.

For a sufficiently large degradation the effects upon the
overall mission can be very serious. - .

Each of these hazardous situations must be avoided in
designing a resource allocation algorithm for the Space
Shuttle computer. The following section will present methods

of avoiding these problems.

2.8 Allocation of Specific Resources

In the Space Shuttle computer there will be three
categories of resource allocation for which provisions must
be made. These are:

a) dynamic memory allccation,
b) common data sharing,

c) data set management.

2.8.1 Dynamic Memory Allocation

Dynamic memory allocation occurs when the executive
temporarily assigns blocks of core storage to a task requesting
this resource. This core is returned to the dynamic core
pool either by the task during its execution or by the executive
at the end of the task. To avoid deadlock we require that
all core requests of a task be satisfied when the task is
placed in the ready state. That is, to avoid incremental
allocation a task makes all core requests known to the

34

g - ii; E‘ » ;

B bead b e bad bed Gaad

=

S

a3 =2

b -

b S 3. B3

r—
L A

P

p—

SINTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAM

executive via its TCB at schedule time. If the request can be
satisfied, the task can be placed in the ready state provided
it is not awaiting the allocation of any other resource. If
not, the task is placed in the wait state, awaiting the release
of a sufficient amount of dynamic core to satisfy its needs.
When this core becomes available, the task can be placed in
the ready state. Eventually when the task becomes active, it
has all the core it will ever need and will not have to be
placed back in the wait state during execution for lack of
this resource. Hence, deadlock cannot occur because of a
conflict in dynamic core allocation.

Although we have avoided deadlock fairly easily, the
problem of memory fragmentation is not as readily solved.
The reason for this increased difficulty is that several
alternative methods of avoiding this problem are available to
us, and the specific method chosen depends upon the computational
requirements of the mission application programs. So far these
requirements are not known in any detail. Hence, we will
examine four methods of memory allocation and determine which
is optimal with respect to our present knowledge of the
program requirements.

2.8.1.1 Fully Static. This method would avoid dynamic storage
allocation by permanently assigning to each task all the core

"\ mtAvamac it nonds For the duration of the mission. Memory

confliété are obviously avoided.

If the total amount of core so assigned is small, e.d.,
1K bytes, then avoiding the problems of dynamic storage allocation
is advantageous since the executive design will be simpler.
However, the amount of core needed is likely to be higher
than our 1lK example above, so the extra cost in the amount
of memory needed for static allocation becomes uneconomical.

This is not to say that no task should have its work
areas permanently assigned. For example, a computation executed
every minor cycle will utilizes its work area for a large
percentage of every major cycle. In this case it could be
economical to statically assign this task's work area to it.
However, for the large amount of tasks run on a less frequent
basis the percentage of a major cycle that they utilize their
work areas is small. Hence, static storage allocation cannot
be the only method of storage allocation in the Space Shuttle

computer.

Note that any task having a static work area allocation
is by its very nature non-reentrant.

35

BRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Kiinad

‘ 2.8.1.2 Fully Dynamic. A frequently used method of dynamic
storage allocation in large scale computing systems is to allow
all tasks to compete with each other for all available core.

A task can request a block of any size provided it does not
.xceed the amount of core available. If this block is available,

. it will be allocated to the task [4].

4 ! :!

The disadvantage of fully dynamic allocation is that » £ o
does not solve the problem of memory fragmentation.

—

2.8.1.3 Semi-dynamic. Let dynamic core be divided into blocks
of several specific sizes, e.g., 50 bytes, 100 bytes, .5K bytes
and 1K bytes. Tasks which request core must be structured so
that their request conforms to one of these sizes. Although
this method imposes a restriction upon the tasks, the problem
of memory fragmentation is now solved.

Rl

-

There still remains the problem of low priority tasks
holding core and preventing high priority tasks from executing.
‘The problem can be partially solved by allowing several
blocks of each size in dynamic core. This will reduce the
probability of all blocks of a given size being simultaneously
allocated. However, the number of blocks of each size cannot

.' be too large since this would be as uneconomical as static memory

allocation. Program requirements will of course determine
how many blocks and what sizes to allow.

fR e

2.8.1.4 Priority Subpool Allocation. Dynamic core will be
divided into sections called subpools, one corresponding to
each possible task priority level. A task requesting core
will then receive its allocation only from the subpool
corresponding to its priority level. Within a subpool core
can be allocated on a fully dynamic or semi-dynamic basis.

would occur within each subpool. To avoid this problem we
will use semi-dynamic memory allocation (as explained above)
within subpools. Each subpool will have several blocks of
core of several different sizes. A task is then allocated
a block of its requested size when it is placed on the ready

queue.

If the fully dynamic method were used, fragmentation g

Should a task request a block of core that is unavailable
within -its subpool because of existing allocations, a block
from a lower priority level can be used for allocation.

This will prevent a high priority task from having to wait

36

ﬁ
!
|
l
o !

INTERME TRICS iINCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184

for the release of core while low priority tasks can be scheduled.

11 addition, tasks of the highest priority will not have to -
_share their subpool with any other tasks. These tasks will

have the least interference from other tasks in competing for

core.

The sizes of the blocks and the number of each size are
determined by the number of tasks and their requirements at
the given priority level. Once this algorithm has been implemented
size and quantity parameters can be varied for optimization.
This is the method selected in the design gtructure .

2.8.2 Common Data Sharing

In any multiprogramming system a resource allocation
problem arises when data in core memory can be simultaneously
used by two (or more) tasks. If two tasks only want to read
the data, no conflict exists. However, if one of the tasks
wants to update before the other has finished reading, a con-
flict arises.

v To illustrate thiis, consider the examples shown in

f Tiqure 2.8. 1In both examples TASK B interrupts TASK A during
: the execution of a statement. In Example 1 presume that

the interruption occurred while the matrix was being read.

When TASK A resumes, the computation of M will continve using

some "old" NI data and the "new" N data assigned in TASK B.

In order to prevent this conflict, initiation of TASK B would

have to be stalled until the reading of N in TASK A is completed.

In Example 2, presume that the interruption occurs just
after the current value of Y is loaded into the accunulator.
When TASK A resumes, the "61d" value of Y (i.e., not reflecting
the update of Y in TASK B) is restored into the accumulator,

X is subtracted and the result assigned to Y. In order to
prevent this conflict, the initiation of TASK B would have to
be stalled until the value of Y is updated in TASK A.

These examples illustrate the fact that accesses to shared
data must be controlled to prevent conflicts. One possible
way of doing this is by preventing task dispatching at critical
times. This method 1s too restrictive however, especially for
high priority tasks needing fast system Iresponse. We will
investigate alternative approaches to this problem.

SSACHUSETTS 02138 - (617) 661-1840

a)

b)

0S/360 uses the ENQ and DEQ macros to grant tasks access
rights to shared data. ENQ will grant a task access rights
as long as no other task is using the data. In the latter
case, the task requesting access rights is put in the wait
state, awaiting the release of this data (DEQ). Upon this
release, the next task enqueued for access rights is taken
cut of the wait state and allowed to proceed. For two
tasks that only want to read shared data, this method
imposes a needless wait for one while the other has the

data engqueued.

A second approach to avoid common data sharing conflicts

is to use UPDATE blocks as is done in the HAL compiler [6,7].
An UPDATE block is a group of statements within a program
providing a controlled environment for the reading and
writing of shared data variables. Upon entry intc the
UPDATE block, read or write locks are established around
parts of the compool containing the variables to be
referenced. There need not be an individual lock for

each variable nor should there be only one lock around the
the entire compool. How the compool is organized can be
decided at a later time depending upon the programs to

be executed and their requirements.

Should .a part of the compool needed by -a task be unavailable
for locking, the task is placed in the wait state. Any
other parts of the compool it has locked are now unlocked

so that they can be used by nonwaiting tasks. The requesting
task can be placed in the ready state when the scheduler
determines that all parts of the compool requested now

can be allocated to this task. At this time read or write
locks are established around these parts of the compool.

Three types of locks can be established: read, write,
and writing. We say that unlocked data is in state 0 and
locked data can be in states 1-3 corresponding to the
three types of locks respectively.

A read lock will enable another task that also wishes

to read lock this data to do so. If a write lock is
established around a piece of data, a copy of the data is
made for the updating task. Upon closing the UPDATE block,
the compool is updated as long as no other locks exist
around the data to be undated. No writing locks can be
put on a given part of the compool, until any read locks
already there are removed by all tasks reading this data.
If the locks exist, the updating task must wait until the
locks are removed.

38

i o bl G Bd

oo =

E

—

J
J
i
J

!
{
¢
i
{
}

4|

INTEFRMFTRICS PORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840.2

Consider the first example above and suppose that the

statements in question (in TASKS A and B) were enclosed

within UPDATE blocks.
because it will be read only.

for ﬁ,

a write-lock is established for,

In TASK A a read-lock is established
After the interruption,
and TASK B proceeds toward

completion using copy-data for N rather than active data.
the process stalls

At the end of the update block in TASK B,
because of the read-lock imposed in TASK A.

As a result,

TASK A is allowed to continue with consistent "old" § data.
After complotlo” of TASK A, a copy-cycle is effected in

TASK B and N is

updated.

A table of compool state transitions follows.

All conflicts are eliminated.

Present
State
Desired Read Write Writing
State Free Locked Locked Locked
Free 0.K. 0.K. not O0.K.
‘ : appli-
cable
‘ Read Locked 0.K. 0.K. 0.XK. Wait
Write Locked 0.K. 0.K. Wait Wait
Writing Locked not Wait (0 [% not
appli- appli-
cable cable

To prevent any task

priority task has data locked.

“rom locking a part of the compoool
any longer than necessary, no I/O statements and no pro-
grammed WAIT statements will be allowed in an UPDATE block.
This requlrement will prevent a high priority task from
having to wait for long time intervals while a lower

To economize on the amount of core needed for the compool,
part of the compool can be overlaid on transitions to
different mission phases.
executed during a particular mission phase use part of
the compool, it is needless to keep this part of the compool
in core as long as no other task in another phase will
ever again use the data.
modules are read into core during a mission phase transi-
. : tion, this part of the compool can be overlaid.

INTEDMETOIAC INAARDODATED « 701 CONCORD AVENLUIE « CAMRRIDGE MASSACHUSETTS 02138 -

X 5

If two tasks that are only

In this case as new program

(617) 661-1840

Figure 2.8 Control of Shared Data

EXAMPLE 1: READ AND WRITE CONFLICTS

' UPDATE; | UPDATE;
A: TASK; /(/ B: TASK;L//
=N+ P CONTROL S N= XV
R
CLOSE A; T~ 0sE: CLOSE BX™~_CLOSE:

0%

EXAMPLE 2: UPDATE CONFLICTS

n as | _UPDATE o s | UPOATE
e . -
Yoy =X CONTROL S Y=Y-Z; |
CLOSE A; TCLOSE: | CLOSEB ™N_cLosE;

NOTES: 1. B "INTERRUPTS" A IN BOTH CASES
2. #1 TASK A RESUMES USING OLD AND NEW VALUES FOR N
3. #2 TASK RESUMES "CLOBBERING" THE VALUE FOR Y SET BY TASK B

e

Bd Baed Rod Bd Red e bd el B2 Eld hd bed e d ed feed fnd

1

iy

i

“ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSE 115 02138 + (617) 661-1840

2.8.3 Data Set Management

Data set management is heavily dependent updén the type
of mass storage unit used on the Space Shuttle. If a tape
drive is used, as in the MDC/TRW study, very little data
management capability will be necessary. However, if a random
access unit is used, as in the NR/IBM study, more extensive
data management facilities will be necessary.

In this report we will assume a random access unit,
especially since the ASIL configuration includes an IBM 2311
disk drive. However, the data management system we will
present is not as general purpose as in the System/360, for
example. It is designed to meet the needs of the Space Shuttle
mission. One of the criteria used in designing this part of
the executive is the desirability of minimizing use of the
random access unit during the Space Shuttle mission. The major
anticipated uses of the storage unit are to record flight data,
to update the programs in core memory on a per mission phase
basis, and to retrieve display skeletons for the visual
display application programs. More frequent use of the mass
storage unit is unnecessary, based upon the two Phase B
study reports [1,2].

There will be twe classes of data sets on the random
ancess storadge unit, read only and read/write. The former
category may be read at any time by any number of tasks without
conflict. The latter category, however, can cause access
conflicts, and hence, some proiection mechanism is necessary.

A directory of each data set on the storage unit and its
characteristics will be maintained in core memory (see Figure
3.4). The data set directory entry for a read/write data
set will identify only one program module*with writing access rights,
Whenever a task requests to write upon a data set, the 1/0
supervisor will check to see if the data set is indeed read/
write, and if the requesting task has access rights. Since
only one task can update a given read/write data set, no write
conflicts are possible.

A task may also request to read a read/write data set.
For example, data recorded in a former mission phase may be
important to an executing task. In this case, the I1/0 super-
visor will honor the read request. However, the software must
be structured so that the requesting task is not 'reading part
of the data that is presently being updated. The I/O super-
visor will not check for this fact. Each task that wishes to
read a read/write data set is responsible for knowing the
integrity of the data it receives.

* This program module must not be reentrant.

41

——

(e ———
i

“ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMER!DGE, MASSACHUSETTS 02138 -

Chapter 3

Executive System Architecture

3.1 Introduction

Describing the architecture of the executive system con-
sists of more than an explanation of how the various parts of
the executive software work. It also consists of an explana-
tion of how these parts dynamically interact with each other
to‘extend the power of the host machine. Furthermore, the
hardware structure of this machine plays an additional role in
executive system design since particular hardware features,
such as I/0 channel structure, influence the software design.
In a sensc we may consider the machine togethexr with its ex-
ecutive sortware to be the full executive system that enables
application programs to be executed.

The executive system is responsible for the control of
all computing tasks in the Space Shuttle real time software
environment. It must manage the allocation and utilization
of all resources of the system including processoxr, memory,
data bus system, secondary memory, timers, and all other de-
vices connected to the computer. The executive system must be
organized such that it simply and efficiently allocates system
resources to the computing tasks and provides sufficient gen-
eral services to application programs to enable them to achieve
mission requirements.

In order to make the system flexible, it must be structured
such that the executive modules are either self-contained or
utilize a stanﬂardLVLd set of subroutines. It must be possible
to make alterations to these modules without jeopardizing the
rest of the executive functions.

In order to make the system simple, it is necessary to 4
prevent application programs, regardl:ss of their complexity,
from directly performing system control functions. This limits
the number cf checks and balances necessary in order to assure
Full system reliability. This does not mean that application

43

(617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCOKD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

programs are denied use of hardware facilities, but rather
that the control of such facilities is restricted to one
responsible module. .

Since the system must support applications which will
have real-time inputs and outputs, it .will have to be or-
iented toward being able tc guarantee response within some
‘predictable time constraints and yet not be perfcrming super-
visory tasks so frequently as to constrict throughput rates,
a problem encountered in many highly interactive systems.

This chapter presents a description of the architecture
of the executive system selected as a basis for the rest of
the design. The structure was detrived from the analysis of
executive functions and system requirements described in
Chapter 2. The major executive gqueues, directories, control
linkage and operating environment are defined.

3.2 Executive and Task Structure

The flight software for the Space Shuttle computer avionics
system can be organized into two categories: system software
and application software. The executive system is the kernel
of systems software which interfaces directly between the com-
puter configuration and the applications software. It should
be constructed to appear as part of a virtual machine to the
application software programmer. System software can include
other functions such as display software, interpreters, oOr
other functions necessary as utilities to application software.
In this report, the executive system structure identified is
a kernel set of functions necessary to continue and execute

application software.

Certain assumptions have been made .about the
application software, which are necessitated by the charac-
teristics of the executive system. The major structural pro-
perties that application tasks must possess are the following:

1) All application tasks communicate with each other
and with the executive following a rigid set of conventions

which will be described in the following chapters.

2) Application software is block oriented with all the
program modules for a given mission phase in main
memory during that phase. Application tasks are
structured as subroutines dispatched by the executive

(analogous to 0S/360).

3) There are no direct I/O operations from application
tasks. The executive's I/O routihes handle all 1/0
requests.

44

1
i

BE bd bed b bad boead Gaod Gad

d
J
d

1
]
]
)

L
R
Wy
Q.
o
Q
N 8
Ry
S IR
A: PROCEDURE A: PROCEDURE
_ SCHEDULE A IN T
- SECONDS ;
o SCHEDULE A IN T ~
{ SECONDS;
L END END
r
L CORRECT INCORRECT

Figure 3.1 Correct and incorrect methods of time
- scheduling of Lackground tasks.

i,.

t
l" INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 68'1-1840

4) A task can request the scheduling of another task.
5) All access to shared data is through the executive.

6) The executive maintains a list of all. program modules
that can ever be executed by the system during flight.

7) A task can include a local recovery procedure in case
of a software error.

8)' All tasks' dynamic memory requirements are known to the
system preflight.

9) Background tasks, which are repetitively operated, are
rescheduled at the end of their execution and not at
the beginning as shown in Figure 3.1. This is specified
because there might otherwise be insufficient background
time to complete the task prior to its next dispatching.

3.2.1 General Description

The executive system is driven by a minor cycle real
time interrupt, which causes execution of the cyclic sequencer.

The cyclic cequencer. is an executive task which performs all
functions that are characterized by preclse timing sepcifica-
tions. It commands all I/O operations done on a periodic’

basis, supervises execution of all computations to be run on

a periodic basis, updates corc memory with input received

in the last minor cycle, and monitors the status of avionics
subsystems. Upon termination of the cyclic sequencer, the
dispatcher is called to select a background task for execution.

-The dispatcher is at the heart of the executive system.
It is this executive function that selects tasks for execution
on a priority basis. When a task terminates, it returns to the
dlspatcher, which calls a terminator routine to insure the
release of all system resources held by the task.

While an application task is executing, it may request
another task to be scheduled for execution by calling the
scheduler. Scheduling can be done unconditionally, on a time=y
basis, or on the occurrence of an event. A function of the
scheduler is to put this new task in a state ready for execu-

tion. It does so by calling the resource allocator to give the
task any resources it may need. Should a resource be unavailable
46

boad Bosd Gewd

bnd boced bed Bl B

ad

S —

d
J

]

d
]
n

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661- 1840 14

= oy

L INTERMETRICS INCORPORATED -

the task must wait for scheduling until this resource is
freed. At this time, the resource can then be assigned to the
task, and the task is then ready for execution. It competes
for CPU time on a priority basis with all other tasks in a
similar ready state. The dispatcher will choose the highest
priority task that is ready for execution and assign the CPU
to this task. A task will continue executing until it ends,

or yptil it voluntarily releases the CPU, or a system
event occurs necessitating the CPU being assigned to another
task.

At any time during its execution, a task may request
I/0 operations to be done and may request its own execution be
halted until these I/O operations are completed. It is one of
the functions of the executive to supervise and schedule all
I/0 operations. In addition, the executive must supervise
error recovery functions. Should a hardware or software
error occur, the executive must provide the capability of
running a specific recovery routine depending upon the type of
error. A system reconfiguration routine might then have to be
executed if a piece of hardware is judged faulty. The faulty
equipment will then be switched out, and the system will

continue execution.

The execution software to perform all the above functions
will be organized in modular fashion. We will now identify
the necessary modules.)

3.2.2 Identification of Executive Program Modules

a) Cyclic sequencer: performs all services done on a minor
cycle basis.

b) Scheduler: puts previously inactive task or waiting task
in a status ready for execution.)

c) Dispatcher: assigns CPU to a task ready for execution.
d) Resource allocator: assigns system resources to tasks.
e) I/0 supervisor: dispatches all I/0 requests to channels.

f) Machine check supervisor: diagnostic routines executed
when hardware error is detected.

g) Reconfiguration routines: brings up standby equipment
when active unit is judged faulty.

h) Timer routine: sets hardware timer and signals events
based upon elapsed times.

47

701 CONCORD AVENUE - CAMBF’.!bGE, MASSACHUSETTS 02138 « (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

i) Program check supervisor: provides recovery from detectable
- software errors, such as division by zero.

j) Supervisor service routines: provide supervisor services
for application programs, e.g., enable a task to. await
an event or to free an assigned resource.

3.2.3 Executive Operating Environment

The executive is not presented with a random stream of
tasks, queued upon secondary storage, as 1S 0S/360. Instead
there is a fixed set of tasks organized on a mission phase
basis. Within a particular phase, task throughput is maximized.
Then if core memory must be overlaid with new program modules,

they are loaded from secondary storage at the beginning of a

new mission phase in order to minimize the use of the mass
memory unit. Moreover, since the modules loaded will be known
preflight, their loading addresses and relocation constants
will be determined at compile time. In other words, fully
dynamic loading and binding of program modules is not supported
by the executive.. This minimal use of the MMU presents a fixed
program environment for the executive system.

3.3 Definitions

3.3.2 Task

A task is an executive unit of work which competes for
system resources. A task is created dynamically upon ex-
ecution of the executive's scheduling function. "A task
is identified and defined by a unique task control block.

A task control block (TCB) is a table containing all pertinent
control information for a task used by the executive for task
management. The TCB is created by the scheduler when 1t
attempts to bring a currently unscheduled program module into
the system. Each TCB contains a pointer to a program module
which the task executes.

A program module is code executable
by the executive. Program modules are started by the
executive and return control to the executive END function upon

completion. A program module may be associated with more than
one task. .

The following information is contained in the TCB:
a) task identification;

b) program module entry pocint;

48

raesd

AR,

B bed b

d K2 3 E=

Sl

¥ c)

d)

e)
£)

g)
h)

1]
h)
k)
o
m)

L n)

program module characteristics, such as reentrant;

an area to save the PSW, 16 GRs and 4 FPRs should the
task go on the ready or wait queues;

task priority:
a flag to denote the task being partially complete;
a pointer to the DCD entry for the task's dynamic core;

a pointer to the chain of ECBs should the task go into
the wait state;

the number of events the task awaits to be made ready,
supplied when the task goes into the wait state;

a pointer to a list of the compool parts the task has locked
while it is in an update block;

a timer entry indicating the time at which the task can
be made ready should it be on the time wait queue;

a pointer to any task's TCB that schedules this task by
LINK;

an entry point for a task specified recovery procedure
in case of a program check error;

threaded list pointers for the gueue and subgueue the
TCB is on.

A task control block designed for the EP is illustrated in

Figure 3.2. It contains a task ID assigned by EXEC dynam-
ically at schedule time.

a)

b)

c)

-

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

A task may be in one of four task states at any time.

Active: The task has been allocated the CPU and is ex-
ecuting.

Ready: The task has been assigned all its resources and
if ready for execution. It only awaits the CPU.

Wait: The task is awaiting the occurrence of some event

or events in tle system. Such an event may be the release
of a resource, an elapsed time, or an I/0 interruption.

49

Bemet]l hwed bnwd

Program module ID ,

character- o
PP entry point f]
prior- comple- ;
ity tion state DeD peaater }
‘bJ
PSW (2 full words)
*3
GR (16 full woxrds) J
FPR (8 full words) '
event
infor- ECB pointer
mation

Compool lock list pointer

Bl badd hewad

Timer entry

Recovery program address

Pointer to parent task's TCB

TCB gueue peinter

Subgueue pointer

o ERm

-

N

Figure

1l Full Word

W
Bl Bedd

3.2 Format of a Task
Control Block

e e

v\ .

3

(INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

d) Inactive: The task 1s not presently known to the
" Scheduler. However, its program module is present in
core storage or on a mass memory unit. (Strictly
speaking, an inactive task is merely a program module
and not a task. A program module is made a task at
schedule time, when its TCB is created.)

Our concept of the states of a task is analogous to the
MULTICS concept of the states of a process [11,17]. A state
transition diagram is shown in Figure 3.3.

3.3.2 Executive Queues

The executive queues are lists used by the executive
to associate and control tasks of a similar condition. Task
control blocks are linked into lists corresponding to a par-
ticular executive gueue. A task can only exist in one queue
at any instant of time There are four major executive queues:
ready queue, wait queue, time gueue and I/O queue.

a) Ready cqueue: The ready queue is a threaded list whose
elements are the TCBs of the tasks ready for execution.
These TCRBs are organized on a priority basis with the
TCBs correspondinag to the highest priority tasks oc-
curring at the beginning of the list. An entry is es-
tablished by the scheduler in the ready queue when a task
is brought to the ready ctate.

b) Wait gueue: The wait queue is a threaded list whose
elements are the TCBs of the tasks waiting for the oc-
currence of some event or events. Each TCB on the wait

gueue points to a list of ECBs, and each ECB on this
list corresponds to an event. When all these events
or some allowable combination of them have been com-
pleted, the task can be put on the ready queue.

c) Time gucue: The time queue is a subqueue of the wait
queue. The tasks on the time queue are awaiting the oc-
currence of a timed event. At some multiple of a minor
cycle time interval, the executive examines the tasks on
this queue, to determine if they can be made ready at
the present time. If so, those that can are placed on
the ready queue.

d) I/0 queue: The I/0 queue is a subqueue of the wait gqueue.
‘he tasks on the I/0 gueue are awaiting the completion of
some I/0O operatJon. When the I/0O operation completes, a
task awaiting it in this queue can now be placed on the
ready gqueue.

51

end of task

INACTIVE

abo'rt

ACTIVE

programmed WAIT

Dispatcher'
Dispatcher

=
m
>
[
-~

_ scheduler

(on occurrence

7

of an event)

WAIT

Figure 3.3

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

-schedule command

52

Task State Transition Diagram

i Bad

3.3.3 Common Data Pool

The COMPOOL is an area of operating memory permanently
assigned tc data variables shared by tasks. '
All communication betwez tasks is done through the compool.
Data assigned in the compool remains in the system subseguent
to a task completion. It is statically assigned as opposed
to the dynamic memory ascigned to a task for working storage.
The compool is organized into two parts: a mission compool
and a phase related compool. The data assigned in the mission
portion of the compool is permanently resident. Data assigned
to the phase dependent portion of the compool exists only
during that phase of the mission. It is overlaid with other
phase data during subseguent mission phases. When a mission
phase is initiated, the phase is loaded from the secondary

memory and the phase dependent compool is initialized. _
Data which is to be retained subsequent to a task completion

must be included in the compool. All accesses to data in

the compool must be coordinated by the application task through
the executive system. The executive prevents conflicts in

the use of the data by system tasks. The SECURE, RELEASE

and COPY executive functions are provided for compool inter-
action and are discussed in a succeeding chapter.

3.3.4 1/0 kequest Block

The I/0 request block (IORB) is a table of all pertinent
control information for the I/O channel to execute an I/0
operation. The format, content ,and use of this control block
are discussed in Chapter 5.

3.3.5 Directories

There will be three directories present in core storage
for use by the executive task management functions. These
directories and their use will now be defined.

3.3.5.1 The Program Module Directory. The program module
directory (PMD) 1s a list of all program modules known to the
system; i.e., all program modules both in opecrating memory

and secondary storage. Each entry consists of three full words
and has the format shown in Figure 3.4a. It contains the '
following information:

a) program module identification,
b) where the module is resident,
c) address of module,

53

INTERMETRICS INCORPORATED - 701 CONCUMD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

d) - module characteristics, such as reentrant,
e) dynamic core needs.

This directory is updated when the contents of core change
or new program modules are added to the system preflight.
Its major purpose 1is to enable the scheduler to locate a
program module and to provide enough information to con-
struct a TCB.

3.3.5.2 The Data Set Directory. The data set directory
(DSD) is a 1list of all data sets residing on the MMU. A data
set may be an executable program module or a collection of
flight data. An entry in this directory is three full words
containing a data set identification word, MMU starting
address, logical record length, and data set characteristics

(i.e., read only or read/write). In addition, if this data
set can be updated, the program module with update rights will
be identified in the DSD entry. This information is illus-

trated in Figure 3.4b.

The DSD enables the I/0 supervisor to locate data sets
on the MMU for I/0 operations.

3.3.5.3 The Dynamic Core Directory. The dynamic core dir-
ectory (DCD) is a 1list of all blocks of core that can be
dvnamically assigned to a task. Each entry is two full words
containing the address of the block, its byte length, its
subpool number, and an assignment bit. The format is given
in Figure 3.4c. The DCD enables the executive to dynamically
assign core to tasks at schedule time.

3.4 Subroutine Linkage

In order to standardize the way program modules are
structured and to avoid conflicts in parameter passing, regis-
ter usage, and register saving, a methcd of program module
initialization and linkage must be developed. The EP hardware
structure, as seen by the programmer, is similar enough to
System/360 to make a linkage convention similar tec the 360

feasible.

Upon entering a program module the contents of the gen-
eral registers must be saved so that they can be restored
upon task termination. These regiscers are stored in an area
of core called the save area. Each task must provide a save
area, pointed to by GR13, which is used by any subtask it calls.
The format of the save area is shown in Figure 3.5.

INNTEDRMETRICS INCORPORATED ONCOR N . MBRID MASSACH 0 8 6

8 - (617) 661-1840 J

bl

T

B o b

Le GE BE K3

ol e e e B

1. Program Module Directory (PMD)

program module ID

device T7//’(: address
|/,

character- ///// dynamic core
istics ///////: request
(a)

2. Data Set Directory (DSD) .

‘ | data set 1D
@

access record

type length address

program module ID for update access

(b)

3. Dynamic Core Directory (DCD)

N
assigned g/‘/{;’/j " address
length %subpool
- [P number

| . (c)

Figure 3.4 - System Directory Elements

55

LSS

address of previous save area

address of next save area

e R I T S R R R

GR 14

.
GR 15 3
. d
GR 0 3

L]

GR 11

=R

GR 12

o

Figure 3.5 Format of a Save Area

[~

56

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBR!éGE. MASSACHUSETTS 02138 - (617) 661-1840 :}

. After saving the general registers, one or more of these
registers can be initialized as base registers. All addressing
of core storage in a program module is done with base reg-
isters. Finally, a new save area address is put in GR13. An
example of this linkage follows.

STM

BALR

USING

LA

ST

ST

14, 12, 12(13) save registers in save area.

12, 0 . initialize GR12 as a base
register.

*, 12 declare to assembler that

GR12 is base register.

2, SAVEAREA get address of next save
area.

13, SAVEAREA +4 store address of previous
save area in next save area.

2, 8(13) store address of next
save area in previous save
area.

13, 2 load GR13 with address of
next save area to complete
linkage.

; When the linkage and initialization are done, a task may now
— freely use the general registers.

I ‘The following assignment of the general registers will

{ be made:

GRO:
GR1:

GR2-GR12:
GR13:

GR14:

GR15:

-
-

“ INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

contains address of dynamic core upon entry
to program module,

used to pass parameters between program
modules,

may be freely used by tasks,
points to save area provided by task,

contains the return address of task that
called currently executing task,

contains entry point address when control is

passed to a task and can also contain a re-
turn code when a task terminates.

¥

Upon completion of its computation, a task terminates by
restoring the content of the general registers it had -saved :
upon entry, setting its return code in GR1l5, and branching : :3
to the return address in GR1l4.

T

Example: 1
L 13, 4(13) get address of previous save area%
LM 14,12,12(13) restore reglsters,
LA 15,4 load return code of 4, 3
BR 14 return. 4}

As previously mentioned, all communication between tasks
is via the compool. Since one task cannot pass another a)
parameter list, the compool serves as the communication medium.
Data variable assignments in the compool are generated at
system compile time and do not change during the mission. In
other words, no dynamic assignments can be made in the compool.
All tasks reference compool data at flxed locations for the
duration of the mission. .

B 7 2 3

o |

3.4.1 Common Subroutines

In addition to a task being able to schedule another
task, a task may execute a common subroutine. A subroutine is
a piece of coding which may be used by several tasks without
itself becoming a task. A common subroutine must be reentrant
or serially reusable. In the former case the calling task ﬂ‘
supplies working memory for the subroutine. In the latter case,
the subroutine must supply control for preventing multiple 51multaneou1
executions. A software generated event can be used by the subroutine 4

as a semaphore to insure only one user at a time [12]. This
topic is further discussed in Section 3.7. Examples of common
subroutines are sguare root, trigonometric functions, and E}

vector/matrix functions.

The calling task may pass parameters to a common sub-
routine by providing a pointer. This pointer will contain the
address of a list of pointers, each pointing to one of the para-
meters, as illustrated below.

address of address of
parameter list parameter 1

4

B “;

address of
parameter 2

K‘“”‘l

parameter n

58

address of g}

=

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUJSET S 02138 - (G17) €61- 1840

The subroutine may now read each of the passed parameters and
return a computed value in one of them. The registers. in
which the parameter pointer and dynamic core pointer are
passed to the common subroutine have been descri''ed in the
last section.

3.5 Task Priority Levels

In the Space Shuttle computer there will be six priority
levels, 0-5, with 0 being the highest priority. Priorities
3, 4, and 5 are used by application tasks.

Priority 2 is reserved for any application task while it
is executing an UPDATE block. That is, if a task of priority
3, 4, or 5 is executing an UPDATE block, the task's priority
is raised to 2 until the updating of common memory is com-
pleted. It then returns to its previous value. Thus in ef-
fect, we are limiting dispatching of priority 3-5 tasks while
another task executes an UPDATE block. By the nature of the
system there will be at most one task at priority 2 at any
given time. This places restrictions on the use of an update
block in that a task cannot enter the wait state voluntarily
under any conditions. It must enter the block, complete the
updating of common memory, and exit the blcck. The high
priority cyclic sequencer is allowed to interrupt an update
block.

Priority 1 is only used by the cyclic sequencer. It is
given priority over any application task because of the time
dependent nature of its execution. Should the cyclic se-
quencer be unable to lock part of the compool, the task at
priority 2 is executed until it closes its UPDATE block. Now
the cyclic sequencer can lock its required data without inter-
ference. The use of priority 2 is specifically designed to
enable the cyclic sequencer to execute with the least pos-
sible wait due to shared data unavailability.

If a response time equal to a minor cycle is insufficient
to handle critical mission functions, a special priority level
could be included in the executive system. Priority 0 can be
reserved for acyclic tasks that must immediately be executed

for the safety of the mission. These tasks are time constrained

and must execute in less than 0.5 msec. This rule is enforced
by a timer in the hardware. (Although the EP has only one
timer, the computer chosen for the Shuttle mission would need
at least two, one for the minor.cycle interrupt and one for
timing critical task events.) Moreover, priority 0 tasks may
not use dynamic core or use the compool since by their very
nature no wait in their execution can be tolerated.

59

- o AN AT) = 40

o4

‘ Examples of priority O tasks are computations that must
be done during a critical maneuver, engine burn or cutoff;
etc. Should one of these tasks require more than 0.5 msec
+0 execute, it may change its priority to 3 or lower during
its execution. Should there be no higher priority task
scheduled, it will continue execution at this lower priority.
Otherwise, it must wait for the CPU. 1In this way critical
functions can immediately be given 0.5 msec of CPU time without
seriously interfering with the executive's cyclic functions that
must be performed every minor cycle.

Including priority 0 in this executive system would re-
quire more hardware interfaces to the computer than we have
assumed. There would have to be a method of generating an
immediate external interrupt in the CPU from the subsystem
or device sending the interrupt condition. However, sub-
system requirements have not been sufficiently defined yet to
determine whether or not a priority 0 is necessary in this
system.

Thuewdd !

| S A

3.6 Assignment of Core Memory

. Operating memory will be organized as follows: the lower

‘ core addresses will be assigned to the executive, as shown

in Figure 3.6. The first locations contain system registers,

such as the timer, the PSWs, and the CSW. This assignment is

described in the 4 Pi EP Manual [3]. The next block of core

conta.ns the executive's program modules, followed by the

executive work area: Within this latter area the executive's

queues, directories and tables are resident.

There are three types of gueues present in this area:
TCB queues, ECB queues, and IORB queues. Since each type
of control block is a fixed size, the executive can maintain
three threaded lists of unused blocks of core storage, each
element of which contains enough core for allocation as one
of the three types of control blocks, respectively. Thus,
when a task requires a control block, the executive can remove
an element from the appropriate queue of unused blocks and
assign this block to the task to be formatted into ‘a control
block. Similarly, when the executive determines a task is
finished with a control block, that core that the control
block occupied is then returned to the appropriate gqueue of
unused blocks for later allocation.

=

5
¥

sufficient space must be allowed this part of core to
hold the maximum number of control blocks that will ever be
needed by application tasks at any given time. Should space be
unavailable, this is an error condition since more tasks are
. in the system than its resources can accommodate.

60

1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840 =

:

L'lNTERn‘-.’:ETRlCSINCORPOHATED'701CONCORD/\VENUE - CAMBRIDGE, MA

The compool will immediately follow the executive work
area and be divided into a mission portion, which is resident
in main memory throughout the flight, and a phase.portion,
which is overlaid when a mission phase transiticn occurs. A
similar feature exists with the application softiv.are which
follows next in memory. The mission resident part comes first,
followed by the phase dependent part.

The protection key feature of the EP assumes each block
of 2K bytes of core is assigned a single protection key. NO
subdivisions of these blocks can be assigned different pro-
tection keys. For this recason and the fact that most aero-
space computers do not have a protection key feature an al-
ternate method of protecting parts of main memory from illegal
access is necessary. To avoid executive overhead in performing
this protection function, simulation of the entire software
system on a ground based computer must check for illegal accesses
from the application tasks. The methods of valid executive
access are discussed in later chapters.

3.7 Events

An event is an occurrence of significance to the system.
There are a fixed number of events established for the system
identifieda in an event directory. There are five categories
of eveits recoynized by the executive, the first four of
which are controlled by the executive. These are: time
event., I/0 ccmpletion events, release of shared data, and
release of dvnamic memory. If other external interrupts are
used in the EP system they may also be categorized as an
event. The final category of events include those which are
controlled via application software and used for task synch-
ronization.

There are two types of events within this last category:
latched and unlatched. A latched event has associated with
it a binary state either on or off. Latched events may be
signalled on (posted) ox signalled off (deposted) under
application software control via the executive. A latched
event maintains its current state until changed via signal
command. An important use of latched events is to record
the occurrence of an event within the system so that if a
task later wishes to use the occurrence of the event as a
criterion for performing a function, it can do so without
having lost all recnrd of the events occurrence. An un-
latched event is only signalled on. It is signalled off im-
mediately after processing by the executive. In a sense an
unlatched event is a pulsed event analogous to a hardware
interrupt.

61

SSACHUJSE 1S 02138 » (617) 661-184

r
!

e

System Registors

Executive Coding

e ol

Executive Work Area

el

Mission Compool

o

Phase Compool

bl

[
Dynamic Memory Pool ﬁ

Mission Resident Application
Software ’

Phase Application Software

Figure 3.6 Structure of Operating

Memory {
g
L}
L
62 :}

GM

INTERMETRICS INCORPORATED + 701 CONCCRD AVENUE - CAMERIDGE, MASSACHUSETTS 02138 - (617) 661-1840 -

. ' An event control block (ECB) contains the current status
of an event. It is dynamically created by the executive when
a task is placed in the wait state. All events have systemn
scope. When the anticip=ated event occurs, bit 0 of the ECB
is set to 1 to record the event for the executive. See
Figure 3.7 for the format of an ECB. The ECB contains a bit
to denote if the task is awaiting the event, a bit to denote
if the event is completed, and two threaded list pointers.

3.7.1 Event Handling

In the Space Shuttle software system there is a close
relationship between task management and event handling.
Tasks that are placed in the wait state remain there until the
anticipated events that they are awaiting occur. Then the
event handling facilities of the executive call upon the
scheduler to place these tasks in the ready state.

Tasks can be placed in the wait state in two ways.
First, a task can voluntarily request the executive to place
its TCB on the wait queue until some anticipated event or
events occur. Second, when the scheduler attempts to place a
task in the ready state, the unavailability of a resource
‘ on the nonoccurrence ‘of some event(s) causes the task to wait
until the resource is freed or the event(s) occurs.

A TCB in the wait queue is associated with a threaded
{ list of ECBs, each corresponding to an event whose occurrence
{ the task awaits. In addition, each event has an associated
event list which contains pointers to all ECBs of tasks
f awaiting the occurrence of the event. Thus, when an event
i occurs, each ECB pointed to by the event list can be posted,
;- i.e., record the fact that the event occurred. An illustration
of this control structure is given in Figure 3.8.

After the event occurs, the scheduler is called. Its
function is to determine if any task awaiting this event can
be placed on the ready queue. The criterion for this decision
is whether or not all (or some acceptable combination) of the
events a task is awaiting have occurred. If so, the task is
placed in the ready state by having its TCB moved to the
ready queue and having its ECBs deleted. In addition, the
scheduler can now delete the event list associated with the
event. Tasks can perform a function based upon the occurrence
of a single event or upon the occurrence of some combination
of several events. In the latter case the allowable com-

binations are

‘ 1) The occurrence of all of the events, or

63

* INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

f
{

awaiting
event

event
complete

queue pointer

queue pointer

Figure 3.7 Format of Event Control Block
S ~ N \
latched on exclusive \§§SS§§§:<£§§§§i
NAARNRNRNN
bits: 0 1l 2 3 7

Figure 3.9

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACIHIUSETTS 02138 - (617) 661-1840

Format of Event Descriptor Byte

64

= =

sl el d feed bead

S

Tl el foad

g Bedl K W

Begd Bl

-~

¥

&

Kz

’ 2) the occurrence of m out of n events, where m < n.

Each task awaiting an event in one of the first four cat-
egories can only await this one event and not some combination
of events. However, scf:ware controlled events contain a
predefined number of distinct events which may be used in-
dividually or in combinations by tasks. Events are not dy-
namically created by the system. Hence, software generated
signals must correspond to events defined at system generation
time. Each software generated event contains an event de-
scriptor byte, containing the characteristics and state of the
event. Figure 3.9 shows the format of the byte Bit 0 de-
scribes the event as latched or unlatched; bit l records
whether the event is on or off; and bit 2 describes the event
as exclusive or non-exclusive, a distinction we will presently
explain. '

Wwithin the class of unlatched events we will choose a
subset to be exclusive events. An important use of exclusive
events is to exclude tasks from use of some serially reusable
resource. When an exclusive event is s1gnalled on, only the
highest priority task awaiting the event is placed in the
ready state. All other tasks awaiting the event remain on
the wait queue. When the highest priority task is made ready,

. the event is then signalled off by the scheduler to be sure
no other application task can interfere with the exclusion
process. ‘his use of exclusive events is analogous to ‘
Dijkstra's concept of semaphores [12].

Note: it is the duty of the programmer to know if the
events he is using in his tasks are being used by any other
tasks. Without being sure of this fact, tasks can unintendedly
interfere with each other's execution and destroy the in-
tegrity of their computations.

Also note: in the actual implementation of this
executive system, some categories 6f events will be immediately
serviced by the executive upon occurrence of the event, and
hence, a record of the event's occurrence will be unnecessary.
These events will therefore not need ECBs in their functional
implementation. These events include release of dynamic memory
and unlocking parts of the compool.

{ 65

i

L« INTERMETRICS INCORPORATED » 701 CONCOURD AVERUE + CAMBRIDGE, MASSACH ISETTS 02138 - (617) 651-1840

wait
queue

TCB

TCB &

99

TCB

A

ECB

Rad Bd fd Gl B B

ECB

A\

Figure 3.8

L R

10

2

N\

Event Handling

Event list

1

Event list
2

Event list
10

[R N T W [y S R B TN R

3.8 I/0 Scheduling v

We assume that the data bus system hardware will be
mechanized in a way which allows bus operations to continue
independently of the CPU once an I/O command is issued to the
bus control unit. This means that the processor is only
allocated to the I/O function during an I/O channel command
and should be reallocated to the computation job stream upon |
completion of the command. The design question for the software |
I/0 contrecl will. be how to schedule the I/0 operation: should
it be decoupled from the executive program control and main- w
tain its own separate I/0 gueue, or should it be inserted as ‘
an integral part of a fixed sequence? For example, if I/0 ‘
were operated each minor cycle it would output data from the :
previous cycle, and input data which is to be processed during (
the following cycle. With 'this concept, however, the 1/0
must be predetermined and fixed, with constraints similar to
those for fixed scheduling of computational jobs. Input and
_output then occurs each cycle, whether it is needed or not.
This approach will cause excess data to be put on the bus,
reducing its effective bandwidth, and its capability for
expanded performance. On the other hand, scheduling I/O as

‘ a priority gueue based on demand, has many features in common

with scheduling jobs (e.g., priority, timing, conflicts, etc.).
An effoct of the T/0 queue on the system is that several jobs
may be in a suspended state awaiting I/0 completions. Methods
are available to avoid such dclays, for example, buffering

g for data in and out; and issuing commands only via a queue.

. The I/0 algorithms presented in Chapter 5 will combine the
best featurcs of synchronous and asynchronoys control.

3.9 1/0 Considérations

At present there are uncertainties concerning the
operation of I/O whose resolution overlaps the designs of the
shuttle avionics subsystems. Some of these uncertainties are:

a) Does the central computer have to perform echo checking
of all common data issued on the bus to ensure that commands
are received by the right subsystem; or 1is this function
performed by the bus control hardware, or by the standard
interface units?

b) 1Is data validation in transmission a responsibility
of software?

67

I- INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

d)
e)

f)

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) €61-1840

Can demand/response really be achieved via the central
computer software? This question becomes impertant if
the use of existing hardware is contemplateZ, because I/0
demands may force the computer into an "I/O-.ound" condi-
tion, or seriously load its processing capability.

How are devices such as the hand controller to be
incorporated into I/O without interrupts?

Where and when should conversion and limit testing be
done: in the central software, or at the subsystem?

How is telemetry downlink and uplink handled and how
does it effect I/O control software?

68

e B

]
1
]
]
]
]
1
]
i

o

—

d
d
J
3
]
]

P S

]

- INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

Chapter 4

Task Management Functions

4.1 Introduction

In this chapter we will present a functional design of
the executive software task management functions. Each task
management function is defined, and flowcharts are presented.

The intention of this chapter is to present a functional design
description of each of the task management areas of the execu-

L

tive and not to present a coding level design. For this reason
several software error checking features have been incorporated
in the algorithms, but yet others have not been since they are

more appropriately included on a coding level of design.

4.1.1 Definition of Task Management Functions

The Task Management area of the executive system has
the primary function of controlling the sequencing of task

exccution. It supervises the scheduling and dispatching of the
CPU, the allocation of memory resources to application software

in accordance with a defined controlling algorithm; and it
responds to requests from executing tasks for task and event

control. As part of this function an executive routine, called

the Cyclic Sequencer, is defined and operates at priority 1.
This routine controls the synchronous execution of cyclic
application subroutines.

a) The Scheduler is that part of task management which
takes a program module from the inactive state, makes it

a

task, and places it on the ready or wait queue. Moreover,

the Scheduler takes tasks from the wait state, and when
possible, places them in the ready state.

b) The Dispatcher selects a ready task for execution. It
observes a priority algorithm with tasks organized in a
FIFO manner within a priority level.

c¢) The Resource Allocator is called by the Scheduler and

69

tries to give tasks the main memory resources they need for

(617) 661-1840

d)

e)

execution.

The Cyclic Sequencer manages all tasks and I/O‘performed
at Priority 1.

Task Management Service Routines are those executive

routines which an application task can call upcn to perform

some task management function. These routines include:

1.
2

11.

Freemain

Secure

Release

Copy
Link

End
Schedule
Wait
Signal
Test

Event

Change
CcCT

ielease dynamic core held by the active task

lock part of the compool for reading or
updating '

unlock the part of the compool held by
the active task

copy part of the compool into the active
task's work area

schedule a task and wait upon the task's
completion

terminate the currently active task

schedule a task

place the active task in the wait state

turn a system event on or off

test a software event to see if it is on
or off :

change an entry in the Cyclic Control Table

Each of these routines is called by a 4 Pi EP Supervisor
Call (svC)., explained in Chapter 2.

4.1.2

The Scheduler

The scheduler is functionally organized into two

parts; a SCHEDULE processor which responds to supervisor
calls to schedule a program module as a task, and an event

services processor which is called at the occurrence of system
software events,

i.e. a seftware signal.

70

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSE S 02138 *

ol God feud

i
]

-

¢

1
i

-

]
J
J
1

I

ki |

(617) 661-1840

OO SN

-

4.1.2.1 The SCHEDULE SVC Processor. This routine performs
the following functions: :

“

1) Search the TCB quecues to see if a task is already scheduled
using the requested program module. If so, the module's
characteristics must be checked to be sure no scheduling
conflict exists. Such a conflict can arise if the program
module is not reentrant and is scheduled as a task more
than once concurrently. ;

2) Crecate a TCB for the task from information found in the
PMD.

3) If the task is to be scheduled upon some condition, place
the task in the wait state and set up the appropriate ECB
linkage.

4) For tasks to be scheduled unconditionally, try to allocate
any necessary core storage. If it is unavailable, place
the task in the wait state.

5) If the task can be made ready, place the task on the ready
gqueue by priority. The TCB becomes the last one at its
priority level.

£ "Return control to the active task.

When a TCB is inserted into a queue (all of which have a
thread>d list structure), this process is accomplished merely
by pointer manipulation. For example, suppose that task A
at priority 3 and task C at priority 5 are on the ready queue,
as shown in Figure 4.la. To place task B on the ready queue ,
at priority 4 new pointers must be established. These priorities
are illustrated in Figure 4.1b.

4.1.2.2 Event Services Processor. When the scheduler 1is
called by the software associated with an event, it performs
the following functions:

1) For exclusive software signalled events at most, one task
can be made ready. Hence, the scheduler finds the highest
priority waiting task and tries to put it into the ready
state. When a task is put into the ready state, the pointer
to its ECB in the event list can now be deleted.

2) For non-exclusive events, the scheduler checks to see
if all tasks awaiting the event can be made ready. Those

7

L. INTERMETRICS INCORPORATED - 701 CONCCRD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Ready Queue

TCB A

Vo

Priority 3

S TCB C

Priority 5

Figure 4.la Example of TCB queue
Before Entry of TCB B

72

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 -

-

(617) 661-1840

boved e

b
B

ad Bd Gd &3

.

Ready Queue

. TCB A
.—-w_—..-._e
Priority 3
— TCBE B
o

Priority 4

HIICN TCB Cc

; Priority 5

Figure 4.1lb Example of TCB qucue
: After Entry of TCB B

73

IS
REQUESTED
PROGRAM
MODULE
ALREADY
A TASK,

WILL

MODULE

CHARACTERISTICS
ALLOW IT TOBE

SCHEDULED

NO

PROGRAM ERROR

AGAIN
NOW

CREATE TCB

IS
SCHEDULE
CONDITIONAL
UPON AN
EVENT (S)

CALL RESOURCE
ALLOCATOR

HAS

CORE BEEN NO

ISAN

EXCLUSIVE

READY,

EVENT BEING PROGRAM
USED IN ERROR
COMBINATION
ARE
NUMBER
OF EVENTS
REQUIRED TO SET UP ECB
MAKE TASK CHAIN

LATCHED
ON

1

PUT TCC ON
WAIT QUEUE

!

ALLOCATED

PUT TCB ON READY |

QUEUE AS LAST
TASK AT ITS
PRIORITY LEVEL

MAKE EVENT
LIST ENTRIES

RESTORE
REGISTERS

;

Figure 4.2

ENABLE
INTERRUPTS
AND EXIT
VIA PSW

Flow;hart of SCHEDULE

74

SvC

1 el

o

-5

&

(R R O R -

\‘IA - 'a

Gt ol Bend ead

R |
4

y——

{
STANDARD

LINKAGE
|

IS
EVENT
EXCLUSIVE

GET €C
ALLY
FROM

EVENT LIST

POST.
EACH ECB
o
Y
COUNT =0

¥

LOCATE LAST
ECB OF FIRST
CHAIN

1S 1T
POSTED

FIND NEXT NO
<Y

ONE

LAST
ECE OF
CHAIN

1S
COUNT 2=
NUIBER OF

NO

EVENT

Flowchart of Scheduler Called as Subroutine
E by SIGNAL SVC ,

ves [rino pigHesT
FIRIORITY TASK

¥

PUT TASK IN
READY STATE

¥

REMOVE EVENT
LIST ENTRY AND
RETURN ECEB TO
2 XCCUTIVE
WORK ARCA

¢

TURN OFF
EVENT

¥

RESTORE

v

COUNT =
COUNT + 1

—

REGISTERS

¥

EXIT

POINT.TO

E

VENTS REQUIRED
TO MAKE TASK /
READY

RETURN ECB
CHAIN T0
EXLECUTIVE
WORK AREA

YES
X

PUT TCB O . READY
QUEUE AS LAST
TASK AT ITS
PRIORITY LEVEL

YES

HAS
CORE BEEN
- ALLOCATED

PUT TC8 ON
VIANT QUEUE

NEXT ENTRY

CLEAR
EVENT LIST

IS
EVENT) TUBN
LATCHED = EVENT OFF
N

RESTORE
REGISTERS

i

EXIT

{:

INTERMET

“that can have their TCBs put on the ready queue, and the
core cccupied by the ECBs is returned to the executive's
work area queues. Those tasks that cannot b= made ready,
remain on the wait queue. The scheduler can now delete

the event's entire list of pointers to the ECBs of tasks

awaiting the event.

3) Return control to the event software.

4.1.3 The Dispatcher

Dispatching is the central function of the executive
system. The dispatcher initiates all application tasks, and
all tasks under normal conditions return to the dispatcher upon
termination. At that time, a terminate routine is executed
to enable the task to release any system resources it may be
holding. This process is illustrated in Figure 4.4,

When there are no ready tasks in the system, the dispatcher
places the CPU in the wait state. This feature aids digital
simulation requirements. The simulator can be implemented
to advance through the wait until the next environmental inter-

rupt is preaicted.

$ % ¥wTimer 'nterrupt]

) No work CPU in
Dispatcher o= .
walt state

task goes

Task ¥ to wait
state

h

y to Dispatcher

Terminate

Figure 4.4 Overview of Dispatching and Terminating
a Task

|

76

INCORPORATED + 701 CONCORD AVENUE « CAMBR

i |
sl

IDGE, MASSACHUSETTS 02138 « (617) 661-1840°

. %

D badd bwed beodd beed bend besd Ged

ad bl bd B3 bd B2 22 BB

1]

L

§

i
4

. The major function of the dispatcher is to select the
highest priority task ready for execution and make it active.
Within a priority level the oldest ready task is always selected
first yielding a FIFO disnatching algorithm. When a task is
being initiated by the dispatcher, i.e., when it is not being
dispatched in a partially completed state, the dispatcher
assigns a save area to the task so that the task can perform its
standard linkage operations as described in Chapter 3. The CPU
is then assigned to the task making it the system's active task.

A5 explained in Chapter 2 application software operating
in the background is segmented if it has lengthy execution time.
Each active task voluntarily requests the dispatcher to check
the ready quecue to determine if a higher priority task is wait-
ing for the CPU. If so, the higher priority task is made active.
These segment points are established at convenient breakpoints
to minimize the effect of potential job swaps. These dispatching
checks are done with SVCs, inserted in the program with the
assistance of an assembler or compiler that generates the object
coding. The flowchart of the dispatch chieck algorithm is
presented in Figure 4.6. :

The dispatcher 1s entered at:
1) the end of a task via return linkage;

2) a segment point in a "long" background task via a
supervisor call;

3) the active task's going into the wait state;

4) the beginning of a minor cycle via the timer interrupt
software.

4.1.4. The Resource Allocator

The resource allocator is a subroutine called by
the executive's task management functions to allocate dynamic
memory to tasks in the system.

The dynamic memory requirements of each application
software module is pre-established at system generation and
specified in the PMD. The function of the allocator is to main-
tain the current status of all of dynamic memory and to service
requests made to it by other parts of the executive.

As explained in Chapter 3, a portion of the operating
memory is used as dynamic memory. It is organized into blocks

77

. INTERMETRICS INCORPORATED - 701 CONCORD AYENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

A

INHIBIT 1/0 :
AND EXTERNAL . .
INTERRUPTS

T
PUT CPU IN
TASK IN THE WAIT STATE
SYSTEM
SELECT HIGHEST
PRIORITY
READY TASK
BY FIFO ORDER
ISIT
IN AN PUT ITS TCB
INCOMPLETE IN ACTIVE
STATE STATE

}

RESTORE GR's

B ot e

' AND FPR’s
PUT TCB IN
ACTIVE STATE é
- ENABLE INTERRUPTS
AND EXIT TO TASK
BY RESTORING PSW
SET INCOMPLETE
BIT IN TCB
ESTABLISH
SAVE AREA
L.
ENABLE .
INTERRUPTS g
BRANCH TO ,
TASK ENTRY
POINT

-

RETURN
FROM TASK

EXECUTE
END SVC

Figure 4.5 Flowchart of Dispatcher

o

Jroy

ANY NEW

THERE
A READY

TASK BEEN) RESTORE
MADE READY > REGISTERS
SINCE LAST 3
CHECK %
ENABLE
INTERRUPTS
AND EXIT
1S VIA PSW

TASK OF HIGHER
PRIORITY THAN
ACTIVE
TASK

YES

STORE PSW, GR's !
AND FPR's OF l
ACTIVE TASK
INITSTCB

!

PUT TCB ON
READY QUEUE

!

EXIT TO
DISPATCHER

Figure 4.6 Flowchart of Dispatch Check SVC

STANDARD
LINKAGE

é

READ TASK
PRIORITY AND
CORE REQUESTED
FROM TCB

SEARCH DCD TO
SEE IF CORE
IS AVAILABLE

IS IT
AVAILABLE

POST »
ASSIGNMENT
BIT IN DCD

!

PUT DCD
POINTER
IN TCB

)
|

\

RECORD FACT
THAT CORE WAS
AVAILABLE

IS
THIS
THE LOWEST
PRIORITY
SUBPOOL

EXAMINE
NEXT LOWEST
SUBPOOL

RECORD FACT
THAT CORE

WAS UNAVAILABLE

80

\

N, S

RESTORE
REGISTERS

&

EXIT

e

Figure 4.7 Flowchart of Resource Allocator

s

S O T S R O R e

Gl &3 &= &= BD G fend -

a d &3

S~

i@:

PR

Z

~ INTERMETRICS INCORPORATED +« 701 CONCO

" dedicated to each priority level. When the allocator is entered

with a request for x words of dynamic memory for task A at
priority k, it determines if x continuous words are currently
unused in the pool associated with priority k or any lower
priority. If the memory is unavailable, the task is put in the
wait state pending memory release.

A task may not request additional memory during its execu-
tion. All memory allocation is granted to a task only upon
initiation. However, this task may release all of its dynamic
memory at any time during execution to economize in the use of
this resource.

4.1.5 The Cyclic Sequencer

The cyclic seqguencer is operated as a task scheduled via
the timed wait queue. It is put on the ready minor cycle with
priority 1. It contains cyclic control tables (CCT) identifying
a list of all cyclic computations and the frequency :
at which each must be executed. These computations are executed
as subroutines of the cyclic segquencer, and hence, their execu-
tion time must be fitted to the minor cycle time interval. The
cyclic subrcutines are considered the system's foreground

LIS § § ==

. computations, and in turn, they may schedule other tasks to be

esecuied im Llic background at priority 3, 4, or 5.

An entry of the CCT is shown in Figure 4.8. It
contains the address of the subroutine to be executed; the
frequency setting indicating the frequency in an integral
number of minor cycles at which the subroutine is to be executed;
and a frequency count. The count contains the number of minor
cycles since the subroutine was last executed. It is incre-
mented in each minor cycle and zeroed when the. subroutine
executes. In addition, there are pointers to the I/O commands
for each subroutine. Frequency settings may be dynamically
changed by the subroutine during flight via a supervisor call.

Upon entry into the cyclic sequencer, each CCT entry
is examined. The frequency count is incremented by 1 and
compared to the frequency setting. Should these entries be
equal, the subroutine must be executed in this minor cycle.

In this case, the frequency count is set to 0, and the subroutine's

input commands are executed. To make the most efficient use

of the channel this process is performed for each CCT entry

before any subroutines are executed. Now each subroutine can be
81

RD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617)

661-1840

program module address

frequency setting

frequency count

address of input commands

address of output commands

&———1 full word —>

Figure 4.8 Format of CCT Entry

® B
& 1
o

ASSAGCHUSETTS 02138 « (617) 661-15: K

IMTCOAMETOINS INCARRORL

. executed, and at its completion its output commands &e executed.
This algorithm is presented in Figure 4.9.
z »
During execution a subroutine must wait for its input
requests to be completed before continuing its execution. The
"cyclic seguencer algorithm chosen minimizes the time that the
subroutine may have to wait.

The subroutines to be executed in a given minor cycle are
run in the order in which they appear in the CCT. Two sub-
routines executed.at the same frequency may be run out of phase
by initially biasing their frequency counts. For example, 1f
subroutines A, B, and C are executed every 8 minor cycles, and
if A and C are not to be run in the same minor cycle, the CCT
entries may be initially set as shown.

- frequency frequency
setting count
A
B
C 4

The reeul+ is that A and B are run in that order every 8 minor

cycles. C is also run at that same freguency although it is
4 minor cycles out of phase with A and B.

If a subroutine's execution time is too long, it must be
broken into several smaller subroutines so as not to overload
the system during any one minor cycle interval. Each of the
smaller subroutines runs at the same frequency and must run in
successive minor cycles. As in the above example, this can
be accomplished by initial biasing of the frequency counts.
For example, presume that A must be executed every 4 minor
cycles and is organized into 3 parts Al 2, and A3 with an
entry made in the CCT for each piece.

frequency frequency
setting count
Aq 4 4
A, 4 3
A3

By phasing the freguency count in the initial conditions,
‘ computation A is run in 3 successive minor cycles: Ay in the

83
(617) 661-1840

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

INTERMETRICS IN ED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) |

first, A, in the second, and A, in the third. Each has
a frequency of execution of 4 minor cycles. ;

To prevent a system overload during a minor cycle some
percentage of the CPU and I/0 channel's time should be reserved
for foreground computations. The remaining time will be devoted
to executive overhead and background computations. Should the
cyclic sequencer be placed on the ready queue before its pre-

vious execution has terminated, a software error condition results

because of the overload.

Since foreground subroutines can schedule background tasks,
it is necessary to have a method of preventing a program module
from being scheduled as a task before its previous execution
is finished. This prevention can be accomplished by several
methods, one of which is to use event handling. For example;
let A be a foreground routine and B a module which is scheduled
for execution by A under one condition. Since A is cyclic,
caution must be used in the method selected for invoking the

‘execution of B.

B may be scheduled as a task through the use of a SCHEDULE
SvVC. If B has not completed execution prior to A scheduling
B again, it 'is possible for two tasks to be in the system
associated with module B. This condition will occur, for
example, if B enters the wait state for a sufficiently long

time interval.

As a solution to this problem define Q to be a latched
event associated with the condition that B should be executed.
Let A be structured to signal event Q on when it detects that B

should be scheduled.

At phase initiation the start up routine will schedule B
on event 0. This will establish B as a task inh the wait state
until Q is signalled on. Eventually when A signals Q on, B
can be executed.

Task B can then be re-established in two ways:

1) B can avoid termination until mission phase transition
© by having a structure looping upon itself as shown in
Figure 4.10a. Whenever Q is signalled on by A, B.is again

executed. At phase transition time A and B can be terminated.

2) B can reschedule itself as a task prior to its termination
as shown in Figure 4.10b.B remains in the wait state until

A signals Q on.

In either case, two concurrent executions of program module B
are avoided. '

84

661-1840

:

Gd bl b b Gl

i
d
)
]
]
]
]
]

J
|
J
|
|
5

i FREQUENCY

é

STANDARD
LINKAGE

!

POINT TO
FIRST CCT
ENTRY

!

INCREMENT

COUNT

DOES
COUNT =
FREQUENCY
SETTING

YES

EXECUTE INPUT
COMMANDS

!

FREQUENCY
COUNT =0

POINT TO -
NEXT ENTRY [™
POINT TO
BEGINNING
i OF TABLE
DOES
FREQUENCY
COUNT
=0
POINT TO
NEXT CCT |2 3
ENTRY

EXECUTE
SUBROUTINE

!

ISSUE OUTPUT
COMMANDS

RESTORE
REGISTERS

!

EXIT

Flowchart of Cyclic Sequencer

4

LANMIYEDA AL T

B: PROCEDURE
Begin: Wait for QON;

Signal Q Off;

Go to Begin;
END

Figure 4.10a

Re—estéblishing Background Task

B: PROCEDURE
Begin: Signal Q Off;

Schedule B on Event Q;
END

Figure 4.10b

Re-establishing Background Task

86

Bl dd bad bd beed bead e

fod Bl fd

1

{”INTERMEWMCS|NCORPORATED*7OTCONCORDAVENUE « CAMBRIDGE, MASSACIHIUSET

The cyclic sequencer is the only priority 1 task in the
system. Thus, the dynamic core in the priority 1 subpool is
not shared with any other tasks and can be considered statically
assigned to the cyclic sequencer. To reduce over'.ead this
core should not be allocated through the resource allocator.
There need only be subpools for priorities 3, 4, and 5.

4.1.6 Supervisor Service Routines

Upon the execution of a supervisor call, a PWS associated
with the supervisor interrupt becomes the new PSW. This PSW
will enter a general SVC routine to determine which executive
service routine to execute and then to branch to this routine.

The flowchart for this process is shown in Figure 4.11. 1In addition,
the flowcharts for the task management supervisor service routines
listed in Section 4.1.1 will also be presented in Figs. 4.12-4.21.

Certain SVC's require parameters to be supplied to the
executive. For example, SCHEDULE requires the name of the
program module that is to be scheduled as a task. A list of the
necessary parameters is supplied in Chapter 9.

a) FREEMAIN (SVC 1) - The purpose of this SVC is to cnable

A +a2cb +A raloenes 211 of ite dynamic memory during execution.

b) SECURE (SVC 2) - This SVC enables a task to lock parts of
the compool for reading or updating. If a copy of parts
of the compool are to be created, the task must supply the
copy area from its core allocation. It does so by providing
a pointer to the copy area as a parameter with the SVC.
Should the task have to wait for compool access, it does
so in a partially completed state. The PSW and registers
stored in the TCB muc: correspond to a point in the coding
at which execution is to continue when the task becomes
active again.

c) RELEASE (SVC 3) - To close an update block the lacks
established by the active task must be released. This
SVC does so by referencing the parameter list supplied by
the SECURE SVC. The pointer to this list is in the active
task's TCB. This list contains the addresses of each lock
and the type of lock established by SECURE. Any necessary

updating of the compool is done and then all locks released. °

d) COPY (SVC 4) - The SVC copies parts of the compool into a
part of the active task's work area. It enables the active
task to read parts of the compool without having to keep

87

73 02138 ¢+ (617) 661-1840

INTERIMETRICS 1+'CORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 -

&)

f)

g)

h)

locks established for long time intervals. This SVC

would be used instead of an Update block if the active task

wanted to use compool data for long periods of time, but yet
did not want to prevent other tasks from updating the data.

LINK (SVC 5) - The LINK SVC allows a task to create a
dependent task and await this task's completion before
allowing its own execution to continue. Should the depen-
dent task abort because of an error, the calling task 'also
aborts; and if this latter task was scheduled via a LINK,
the task that scheduled it also aborts, etc.

END (SVC 6) - Upon termination a task returns to the
dispatcher via the return address in GR 14. The dispatcher
puts the CPU in the supervisor state by executing the END SVC.
The END SVC performs several bookkeeping functions for the
executive. It closes any update block that is still open,
frees dynamic memory still held by the task, and puts the
task in the wait state until any pending I/O requests are
completed. Upon termination it returns to the dispatcher.

SCHEDULE (SVC 7) - This SVC allows the active task to
schedule another task without establishing a task dependence,
as in the case of LINK. The schedule can be unconditional
or conditional upon some set of criteria. These criteria

include:

1) scheduling on some software event or events cccurring;
2) scheduling at some specific time; and

3) scheduling after some time interval has elapsed.

These criteria are analagous to the types of scheduling
available within HAL [7,8]. .

WAIT (SVC 8) - The WAIT SVC allows the active task to
place itself in the wait state pending the occurrence
of some event or group of events. The allowable events
are:

1) waiting for some software event or events being
signalled on (posted);

2) waiting until a specific time occuré; and A .

3) waiting for a time interval to elapse [7,8].

88

(617) 661-1840

bovad Gucd God Gl besad G

e B3 2 ® Ed bd bed

Ed bud GLd

‘~—— -

(-

-INTERMETRICS INCCRPORATED - 701 CONCORD AVENUE

i) SIGNAL (SVC 9) - Signal turns an event on or off, depending
upon the parameters supplied by the SVC. When an event
is turned on,the scheluler is called to place any tasks
awaiting the event in the ready state, if possible.

j) TEST EVENT (SVC 10) - The status of the event tested is
returned to the active task via a flag which is set by the
executive. The active task supplies a pointer to the
flag as an SVC parameter.

k) CHANGE CCT {(SVC 11) - This SVC enables a task to change
the entries in the CCT as mission phase requirements

change. Direct updating of the CCT by tasks is illegal and shculd

be checked for during system simulation.

1) DISPATCH CHECK (SVC 12) - This SVC occurs at program segment
points. It returns control to the executive to check if
a higher priority is waiting for the CPU. If so, the pre-
‘viously active task is put in the ready state, and the new
higher priority task is made active (via the dispatcher).

4.2 Timer Interrupt

When the value of the EP timer goes from positive to
negative, an external interrupt is generated. This interrupt
is used to signal the start of a new minor cycle. The execu-
tive coding associated with the timer interrupt will first
reset the timer to interrupt at the start of the next minor
cycle and then service the mission clock. A check is then made
to be sure the cyclic seguencer terminated the last minor
cycle. If not, a software overload condition exists, and a
program error condition results. The cyclic sequencer's TCB
is now formatted and put at the top of the ready queue, and

the previously active task is put in the wait State.

All other tasks awaiting a timed event are checked every
N minor cycles to see if they can now be made ready. The timer
entry in the TCB contains the time at which the task can be
put in the ready state. When the system clock equals or exceeds
this time, the task can be made ready. for execution. The value
of N is a system parameter. Its value must be an integer greater
than or equal to 1 depending upon the system response -time
desired.

‘

To expedite checking the time wait queue, TCB entries on
the queue will be arranged in terms of increasing time at which
they can be made ready. That is, suppose task A can be put

-

89

+ CAMBRIDGE

, MASSACHUSETTS 02138 - (617) 661-1840

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

on the ready queue at time x, and task B at time y. If x<y,
the TCB for task A must preceed the TCB for B on the time wait
queue. As a result, it is not necessary to examine the entire
queue whenever it is serviced every N minor cycles. Checking
of entries can stop when the timer entries in the TCBs exceed
the value of the system clock used for comparison. At its
completion the timer interrupt routine exits to the dispatcher.
The flowchart for the above algorithm is given in Figure 4.22.

4.3 Deadlock Detection

As explained in Chapter 2, the algorithms for resource
allocation avoid incremental allocations, and hence avoid
deadlock. However, the SIGNAL and WAIT supervisor calls
introduce the possibility of deadlocked tasks. For example,
if task A contains the SVCs, WAIT M and, SIGNAL N, in that
order, it goes into the wait state until M occurs. Now suppose
task B contains the SVCs, WAIT N and SIGNAL M. It too goes into
the wait state, and if a third task does not signal M or N,
tasks A and B are deadlocked.

Judicious program design can, of course, avoid this problem.

deadlocked tasks. If the time at which each task goes into the
wait state is stored in its TCB, a low priority task could
periodically check these times. If a certain time criterion
was exceeded, the waiting task would be considered deadlocked,
and error recovery would commence.

90

bd =2 &2 Em

(617) 661-1840

 —_—-;

e R

Rd

%

INHIBIT 1/O AND
EXTERNAL
INTERRUPTS -
VIA PSW

]\3

STANDARD
LINKAGE

Ty

("") IS
S ReTive N /S\
P

A THIS SVC
TASK IN
PO ATE A CLOSE OR A

BLOCK RECOVER

=4 PROGRAM ERROR

{ ;
}
{ BRANCH TO SVC

ROUTINE TASK
REQUESTED

Figure 4.11 Flowchart of SVC Interrupt Routine

91

P

r*‘-s

GET TCB
POINTER
TO DCD

}

FLAG DCD ENTRY
TO DENOTE THIS
BLOCK OF CORE IS
NOW UNUSED

'

CLEAR TCB
POINTER
TO DCD

ARE
ANY TASKS
AWAITING A RESTORE
CORE REGISTERS
ALLOCATION -

y

ENABLE iNTERRUPTS
AND EXIT VIA PSW

SELECT HIGHEST
IPRIORITY TASK

!

CALL RESCOURCE
ALLOCATOR

CAN
CCRE BE
ASSIGNED

PUT TASK IN YES

READY STATE

i

DELETE EVENT
LIST ENTRY

IS

THIS
THE LAST
WAITING
TASK

NO SELECT NEXT
| HIGHEST
PRIORITY TASK

S—

Figure 4.12 Flowchart of FREEMAIN SVC

Cicnd

92

CAN

ALL COMPOOL
LOCKS BE
ESTABLISHED

STORE PSW, GR's, -
FPR’s IN TCB

[

;

PUT TASK ON
WAIT QUEUE

L IS

. pgﬁﬁfﬁy } SAVE PRIORITY
MAKE EVENT <3 VALUE
LiST ENTRY '

4, _

SET PRIORITY

EXIT 7O EQUAL TO 2
DISPATCHER Y

COPY DATA IF
NECESSARY IN TASK
PROVIDED AREA OF
MAIN MEMORY

!

ESTABLISH
COMPOOL LOCKS

!

ENABLE INTERRUPTS
AND EXIT VIA PSW

Figure 4.13 Flowchart of SECURE SVC

o

e &

93

STORE PSW, GR's,

AND FPR’s IN TCB |~

\

PUT TCB IN
WAIT QUEUE

i

MAKE EVENT
LIST ENTRY

\

EXIT TO
DISPATCHER

Figure 4.14

DO WE
UPDATE
COMPOOL

CAN
WRITING
LOCKS BE
ESTABLISHED

REMOVE
READ LOCKS

DOES
TASK
PRIORITY
=2

RESTORE OLD
PRIORITY

ESTABLISH
LOCKS A
IS
THE
PRIORITY
COPY DATA 1 TAS;(O\%/AATING
COMPOOL

!

ACCESS

REMOVE LOCKS v

ESTABLISH ITS

COMPOOL LOCKS

i

PUT IT IN
READY STATE

!

DELETE EVENT

LIST ENTRY
e
RESTORE
REGISTERS

!

ENABLE INTERRUPTS
AND EXIT VIA PSW

Flowchart

94

of RELEASE SVC

B d bod el bd bl bod faad e

= 0 Gl & & B

 —

~ INTER

.

v

locate data

to be copied
from SVC supplied

addresses

)

v

copy data
into user supplied
core area

|

enable interrupts
and exit

via PSW

Figure 4.15 Flowchart of
COPY SVC
25

AETRICS INCORPORATED « 701 CONCORD AVENUE -CAhWﬂNbGE,MASSAChUSETTSO?138'(617)6614840

R N S S

Bowud Bacad

f

SAVE PSW, GR's, AND
FPR's IN TCB

PLACE TCB IN
WAIT QUEUE

r
¥

CALL SCHEDULER
TO MAKE NEW
TASK READY

o

ESTABLISH TCB
LINKAGES
BETWEEN TWO
TASKS

!

EXIT TO
DISPATCHER

B bad bed

Figure 4.16 Flowchart of LINK SVC

96

ow———

DOES
TASK HAVE
ANY 1/0
REQUESTS
PENDING

HAS

EXECUTE _NO UPDATE
CLOSE SVvC = PLOCK BEEN
CLOSED
13
EXECUTE DYNAMIC

FREEMAIN SVC |

CORE
FREE

CLEAR ACTIVE
TASK POINTER

!

RETURNTCB TO
EXECUTIVE WORK
AREA QUELL

DOES
TASK HAVE
PARENT
TASK

EXECUTE CHECK

w4 SVCTO PUT TASK

IN WAIT STATE

!

X

EXIT TO
DISPATCHER

PLACE PARENT
TCB ON READY

QUEUE

EXITTO
DISPATCHER

Figure 4.17 Flowchart of END SVC

L

PUT PSW, GR's,
FLP's INTCB

hevad el

IS AN
EXCLUSIVE
EVENT BEING
USZN IN
COMBE! “ATION

P

YES . PROGRAM
i ERROR

QNO

CHECK ALL EVENTS
TO SEE IF ANY ARE
LATCHED ON

b s

S |

ARE
REQUIRED
NUMBER TO
SCHEDULE
LATCHED

YES PUT TASK IN
! READY STATE

gl

y EXIT TO
PUT TASK IN DISPATCHER

WAIT STATE A

v

FIND EVENT LIST
SUPPLIED BY SVC

EJ EXAMINE EVENT
AND ESTABLISH ECB

Bl bd e

IS

EVENT
LATCHED
ON

a3 e

YES
POST LCB 1

MAKE EVENT
LIST ENTRY

!

| PuTECBON
CHAIN

 o—"

ot

IS

THIS
THE LAST
EVENT OF
THE

YES PUT REQUIRED
e NUMBER OF EVENTS
TO SCHEDULE IN

SELECT NEXT
EVENT

TCB
LIST .

Ed

Figure 4.18 Flowchart of WAIT SVC

o3

98

SET BIT 1 OF
EDB TO 1

!

Y CALL SCHEDULER
; TO PLACE WHATEVER
‘ . SET BIT 1 OF TASKS POSSI2LE ON
EDB TO 0 READY QUEUE
—

RESTORE REGISTERS

%

ENABLE INTERRUPTS
AND EXIT VIA PSW .

Figure 4.19 Flowchart of SIGNAL SVC

|
L

SET RETURN
BIT TO 1

SET RETURN
BIT TOO

l,k

RESTORE REGISTERS

!

ENABLE INTERRUPTS
AND EXIT VIA PSW

Figure 4.20

100

Flowchart of TEST EVENT SVC

-

b b bd b bl b b

1
d

S

get pointers
to CCT entry
and its replacement
supplied by
SvC

J

update
CCE
entry

\
v

enable interrupts
and exit
via PSW -

Figure 4.21 - Flowchart of
CHANGE CCT SVC

f

101
[

LJNTERMEWMCSINCORPORATED-7O1CORKXNHJAVENUE + CAMBRIDGE, MASSACHUSETITS 02138 « (617) 661-1840

:

INHIBIT 1/O
INTERRUPTS

¥

SAVE
REGISTERS

i

ADD MIRROR CYCLE
TIME VALUE TO
TIMER TO RESET IT

?

INCREMENT
SYSTEM CLOCKS

HAS
EXECUTION
OF CYCLIC
SEQUENCER IN
LAST MINOR
CYCLE
TERMINATED
YET

CREATETCB FOR CYCLIC
SEQUENCER AND PUT AT
TOPOF READY QUEUE

PROGRAM
ERROR

i

STORE PSW, GR‘q
AND FPR's OF ANY
ACTIVE TASK
INITSTCB

)

PUT ACTIVE
TASK IN
READY STATE

DO
WE CHECK
TIME WAIT
QUEUE IN
THIS MINOR
CYCLE

EXAMINE
FIRST ENTRY

Figure 4.22

EXIT TO
DISPATCHER

DOES
SYSTEM
CLOCK EQUAL
OR EXCEED
TC8 TIMER
ENTRY

IS
TASK IN
INCOMPLETE
STATE

PUT IN READY
STATE

RETURN ECB
TO EXECUTIVE

EXIT TO
DISPATCHER

1
CALL RESOURCE
ALLOCATOR

CAN
CORE BE
ASSIGNED

KEEP TCB ON
WAIT QUEUE

v

WORK AREA

EXIT TO
DISPATCHER

MAKE EVENT
LIST ENTRY

FIND NEXT
ENTRY

Flowchart of Timer Interrupt Software

2 s

Bl

Bl bd boad b b Gl b fead

e d B

Cd Bod

L.

|
L

" INTERM

Chapter 5

I/0 Management Functions

5.1 Introduction

The input/output control function of the executive provides
supervision of all I/O operations in the system. The design of
fhia nart of the snftware reflects the specific reguirements of

the Space Shuttle avionics system.

Current Phase B concepts are based on interfacirg the
computcr to onboard subsystems via a common data bus of up to
106 bits per sccond data rate capability. The computer's I/0
section will be connected to a bus control unit whose function
is to command the bus system. All subsystems are connected to
the main bus through a standard interface unit which supplies
standard digital format of data and commands. The bus system
will contain redundant paths to achieve the FO/r0/TFS require-
ment. The final design of the data bus system is a crucial
aspect of the avionics system design and directly effects the

computer software.

Indeed, this part of the executive software design 1is the
most hardware sensitive. We are, of course, directing our
design toward the 4 Pi EP computer, and this fact influences
our algorithms. In particular, we will make use of the I/O
interrupt, channel command, and channel test conventions of)

the EP in the design.

103
ETRICS iINCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 651-1840

5.2 Definition of I/0O Management Functions

There are three basic I/0 management functions. These
are: READ, WRITE, and CHECK. These functions are essentially
interfaces between application tasks and executive I/0 services.
As with task management services they are executed by means of
SVCs with parameter lists. Further details about the parameters

are in Chapter 9.

a) READ (SVC 13) - The purpose of this SVC is to input data
into main memory from the MMU or one of the avionics
subsystems. It queues an I/0 request to the I/O channel
and then returns control to the active task.

b) WRITE (SVC 14) - This SVC outputs data from main memory
to the MMU or one of the avionics subsystems. AS with
READ, it queues an I/O request to the I/0 channel and
then returns control to the active task.

In the case of READ or WRITE, the active task may continue
processing and may at some point wait for an I/O operation
to be completed by executing CHECK.

c) CHECK (SVC 15) - An active task may place itself in the
wait state until a particular I/O operation is completed
by executing CHECK. Should the operation have been
completed when this SVC is executed, the active task
continues processing.

5.3 I/O Queues and Control Blocks

Since the I/O channel may have several requests pending
while it is performing some operation, a queue of I/0 requests
is necessary. The elements of this queue are I/0 Request
Blocks linked with a threaded list structure. the format of
an IORB is shown in Figure 5.1. An IORB contains all the
information necessary for the channel to perform the desired
I1/0 operation. This information includes:

-a) channel, subchannel and device addresses;
b) task priority:; “

c) number of bytes of data to be transmitted;
d) device command;

e) if device is MMuU, a data address;

-

104

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 ..

i

bed il Gl

B

L=

1

wd

J
|
J
:
i

channel, subchannel
device address

task number of
priority bytes of data

device command

data set addressAon MMU

core address of data

-

CAW
timer
option TCB pointer
bit

timer storage pointer

ECB pointer

threaded list pointer

threaded list pointer

&————————1 full word

Figure 5.1 Format of an IORB

INTERMETFICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 &

£) main memory data address;
g) CAW;
h) pointer to the TCB;

i) a flag to be set if the value of the timer is to be
returned in a read operation;

j) a pointer to where this timer is to be stored;
k) a pointer to the ECB for the I/O operation;
1) threaded list pointers.
IORBs are dynamically created by the executive when a task
performs an I/O operation. The necessary core storage for the

IORB is taken from the executive's work area as described in
Chapter 3. This control block is then placed on the channel's

gueue on a priority basis with its priority equal to the priority

of ihe active task. Thus, a high priority task's I/O commands
are executed before those of a low priority task.

Associated with each READ or WRITE is an ECB located in the
program module's coding or established in the task's dynamnic
core (in the case of a reentrant module). This ECB is posted
upon completion of the I/O operation by the I/0 interrupt super-
visor. This posting enables CHECK to perform its desired
function of determining whether a particular I/0 command 1is
completed. In addition, by binding the ECB to the given I/0
command, a particular READ or WRITE must be completed before
this same command can be executed again. However, should this
latter condition occur, the READ or WRITE will place the task
in the wait state until its ECB is posted. Then the command

can be executed again.

5.4 The I/0 Supervisor

The I/O supervisor is an executive routine called when an
I/0 interrupt occurs. Upon occurrence of the interrupt the
current PSW is saved and a PSW associated with the interrupt
becomes the new PSW, as explained in Chapter 2. The new PSW
gives CPU control to the I/O supervisor.)

The I/O supervisor first checks for successful completion
of the last I/O operation. If an error occurred, an error

recovery routine will be called. The error recovery performed
will be a function of the type of error encountered. System

106

m

3

="

reconfiguration might then be necessary. 1If the operation was
successfully completed, any task awaiting the I/O operation is
put in the ready state. The next pending I/0 request is then
selected, the channel p-ogram is formatted; and the channel is
activated.

A task issuing a read command has the option of having the
data time tagged when it is read into core. That is, the value
of the timer at input time can also be stored by the I/O super-
visor in core in a location the task specified with the read
command. This time value is of importance to certain numericzal
integration algorithms. The I/0O supervisor is responsible for
returning the timer value to the task (see Figure 5.2).

A5.5 I/0 Service Routines

The algorithms and flowcharts fox the three I/0 SVCs
mentioned in section 5.1 will be presented here and in Figs. 5.3-5.5.

_ The read and write routines each format the IORB to be
queued to the channel's list of I/O requests. Queueing is done
on a priority basis with the priority of the task becoming the
priority of the IORB. When the MMU is the device to be read

or written upon, a secondary stcrage routine is called to locate

kA At a et AanA rANnTIaTrd +-ha Y\le,-r:j Cf—‘]. ynﬁorfq -y-gqllmc;f-ed -i_hto an
el TR a & s § WreXT TAe pPhysloea LS G Le 2o e L1

actual MMU address, which is put into the IORB. This routine is
explained in Chapter 7.

When the channel is not busy, the READ or WRITE SVC takes
the IORB, formats the channel program, and activates the channel.
Otherwise, channel activation is only done by the I/O supervisor.

If data is to be read into core, the core address specified
must be checked to be sure it is not a protected area. For
example, an address in the compool is not allowed. This checking
of protected addresses requires buffering of data whose involve-
ment with I/0 operations can cause conflicts between tasks.

When data in the compool is to be inputed or outputed, the
requesting task must access the data via the executive and use
part of its working core as a buffer. No direct I/0-operations

‘are allowed in the compool. In addition, the physical address

of the device to be read or written upon is found in a device
table maintained by the configuration management routines. This
table is called the Redundant Equipment Table and will be .
described in Chapter 6. Should a device fail and a spare be

used to replace it, the new device address is entered in this
table for use by the I/O routines. Thus, any system reconfigura-
tion will cause an update of this table.

-

107

“ INTERMETRICS INCORPORATED + 701 CONCORD AVizinUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

5.6 Cyclic and Non-Cyclic I/O

A bus I/O transaction once initiated by the computer is
independent of the computer software organization. The
command/response addressed bus may be directed by a computer
with either an asynchronous or synchronous software structure.
The main difference will be in the scheduling and dispatching
of I/0 requests, and in the coordination of I/O with processing.

(T Ry o S R

In the synchronous structure, I/0 reguests must be pre-
planned and interleaved with the task processing. I/O requests
are dispatched in a list every minor cycle and carried out con-
currently with task processing. A synchronous software structure
requires a command response bus access method. A polling or
contention access method would be difficult to run with a
synchronous structure [8]. However, in an asynchronous structure,
I/0 is scheduled on a demand basis by. the processing tasks.

These I/0 requests may also be carried out concurrent with task
processing, but their scheduling and dispatching are non-

deterministic.

|-

The major distinction between cyclic and non-cyclic I/0 in !

this executive system is that I/O done by the cyclic sequencer

‘ iz table driven via the CCT. That is, the cyclic sequencer has
tables of how frequently each I/O operation it performs must
be done. Because of the high priority of the cyclic sequencer,
the read/write routines will insert these requests at the
beginning of the IORB gueue Lo insure their completizn before
the next minor cycle interrupt. In addition, the percent of
I/0 channel usage by the cyclic sequencer must be limited.
Sufficient time must be allowed for the channel to complete
all I/0 operations generated by cyclic computations before

their next execution.

o R

5.7 Configuration Dependent Features

The data bus system we are assuming is a high speed data
transmission device which is primarily used for sampling
measurements from avionics subsystems and sending computed
information back to the subsystems. We are not designing
the executive I/O system for devices such as printers or tape
drives to be on the data bus. '

[S G S o—

The EP architecture features we have used in structuring
the I/O management functions of the executive system are the

e

following: the I/O interrupt, channel programs consisting of
CCWs, the characteristics of the START I/O and TEST 1/0
‘ instructions, and the CSW. D
]
108 '

—
[]

'

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Computer control of the data bus is accomplished via the
I/0 channel. Since the EP allows no direct BCU control, the
T/0 channel sends commands to the BCU and receives returning
information. Thus, the channel-BCU interface hardware must
transform channel commands into a BCU command format. Other
computers, such as the Hughes 230, allow more direet BCU
control than the EP. Appendix A of this volume presents a study
of operation and control of the data bus with such a computer.

5.8 I/0 Error Correction ; |

Upon the detection of an I/O error, via the CSW, the
executive must perform several functions. First, the occur-
rence of the error must be reported in the record of the flight
kept on the MMU. Next an -indicator is flashed to the pilot,
and finally a reconfiguration routine.is called. The faulty
equipment must be isolated and an inactive spare switched into
the configuration to allow the mission to continue.

The BCU hardware can be structured to try an I/0 trans-
mission several times when an error is detected before reporting
the error to the computer. 1In other words, the error can be made

‘ invisible to the computer and the executive until the BCU
determines it cannot correct the error by retransmission of the
I/0 command. At this point, the BCU reports the error to the I/0
channel, and the channel in turn formats the appropriate CSW.

» A discussion of data bus error control is presented in
Appendix B.

A’ ’

—

-
{

: 109

]

CINTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

@

INHIBIT I/O AND
EXTERNAL
INTERRUPTS
VIA PSW

y

SAVE
REGISTERS

!

STORE
PRESENT TIME

| PROGRAM
ERROR
IS A
TASK
. REMOVE TCB _
COMPLETION FROM 1/0
il WAIT QUEUE
%
PUT TCB ON
READY QUEUE
POST ECB
ASSOCIATED
WITH 1/0
OPERATION

DOES
IORB SHOW

TASK WANTS
TIMER
VALUE

STORE AT
GIVEN
ADDRESS

REMOVE IORB FROM
QUEUE AND RETURN
TO EXECUTIVE
WORK AREA

CHANNEL
REQUESTS
PENDING

RESTORE

REGISTERS

!

b

ENABLE
INTERRUPTS
EXIT VIA PSW

Figure >S.

110

YES

5.2 TFlowchart of I/O Interrupt Software

.

S et

GET NEXT IORB
IN QUEUE

v

PUT ADDRESS AND
BYTE COUNT
INFORMATION IN
CHANNEL PROGRAM

y

PUT CAW IN
LOCATION 72 AND
FORMAT START
1/0 INSTRUCTION

]

¥ ,

ACTIVATE
CHANNEL BY
EXECUTING
START 1/0

boaid beed bed

DOES
CSW SHOW
INSTRUCTION
PROPERLY
STARTED

EE head

PROGRAM
ERROR

{

STANDARD
LINKAGE

DOES
ECB SHOW
LAST READ
POSTED

FORMAT IORB

. EXECUTIVE
© CHECK SVC

L

EXIT TO
DISPATCHER

YES

CALL SECONDARY
STORAGE MANAGER
TO GET DATA
ADDRESS

» y
PUT ADDRESS
IN IORB
CAN '
MAIN
MEMORY NO
ADDRESS . Fég%gf;AM
SPECIFIED BE
WRITTEN

& YES
| CONVERT DEVICE
ADDRESS INTO A
PHYSICAL ADDRESS
AND PUT IN IORB |

¢

¥

v

INSERT IORB ON
QUEUE BY TASK
PRIORITY

IS
CHANNEL
BUSY

YES

Figure 5.3

YES

RESTORE
REGISTERS

Ca

:

ENAB LE
INTERRUPTS
AND EXIT
VIA PSW

SET UP
CHANNEL
PROGRAM

¥

PUT CAW IN
LOCATION YZ
AND FORMAT
START I/O0

¥

EXECUTE
START I/0

DOES
CSW SHOW
INSTRUCTION
STARTED
PROPERLY

PROGRAM
ERROR

Flowchart of READ SVC

i

STANDARD
LINKAGE

DOES
ECB SHOW
LAST WRITE
POSTED

FORMAT IORB

CONVERT DEVICE

PHYSICAL ADDRESS |~
AND PUT IN IORB

¥

INSERT IORB ON
QUEUE BY TASK
PRIORITY

CHANNEL
BUSY

SET UP CHANNEL
PROGRAM

¥

PUT CAW IN
LOCATION YZ
AND FORMAT
START 1/0

y

EXECUTE
START 1/0O

DOES
CSW SHOW
INSTRUCTION
STARTED
PROPERLY

PROGRAM
ERROR

Figure 5.4

ADDRESS INTO A i ADDRESS

YES

EXECUTE
CHECK SVC

v

EXITTO
DISPATCHER

CALL SECONDARY
STORAGE MANAGER
TO GET DATA ADDRESS
AND CHECK ACCESS

RIGHTS

INSERT

IN IORB

" RESTORE
REGISTERS

{

ENABLE
INTERRUPTS
AND EXIT
VIA PSW

Flowchart of WRITE SVC

112

—

B

l

STANDARD
LINKAGE

DOES
ECB SHOW RESTORE
1/0 OPERATION REGISTERS
PENDING
. : : ! ENABLE
‘ Y INTERRUPTS
¢ PLACE TCB OF ANG EXTT
L _ ACTIVE TASK bilidic
IN 1/O WAIT ,
QUEUE
.
EXIT TO
DISPATCHER

Figure 5.5 Flowchart of CHECK SVC

o

INTERMET

DS INITD ey
VIR W) Liwietlfe

Chapter 6

Configuration Management

6.1 Introduction

The topic of configuration management is very extensive,
covering many aspects of computer and system design. An
adequate discussion of this topic in relation to the Space
Shiuctie mission mustc treat the areas of power on initializa~
tion, mission phase initialization, error recovery, switching
between simplex and redundant modes of operation, and system
synchronization. The first three of these topics aire
pertinent to the 4 Pi EP configuration in the Avionics
Systems Integration Laboratory, which will operate 1in a
simplex mode, and hence, these topics will be included in
the design of this executive system. The latter two topics
are pertinent to the avionics configurations proposed in
both Phase B Study Reports and will be treated in this
report in a tutorial manner. As we will later see, the
configuration management functions are very dependent upon
the computer and system architecture assumed.

6.2 Initialization

When the EP computer is powered on, initial program
loading (IPL) must be performed. IPL is initiated by the
operator pressing a load key. The load is done from an MMU -
with the unit address taken from switch settings on the
console. The first 24 bytes read are placed in main menory
locations 0-23. The double words read into locations 8
and 16 are then used as CCWs for subsequent I/O operations.

A, ; T s A
ORATED » 711 CONOCORD) AVERIUE < TA

SHUSETTS 02188 « (617) 661-1840

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138

When the channel ceases its activity, the CPU fetches the
double word in location 0 as the PSW and proceeds under its
control. The first program module loaded and executed
should be a hardware diagnostic routine to insure the
computer and subsystems are functioning properly.

Upon successful completion of the diagnostic checks,
the mission program for the first phase of flight is
loaded. All program module loads are absolute since the
mission programs for each flight phase will be preassembled
with absolute addresses. At load time the program modules
and data need merely be put into main memory at their pre-
defined locations. Furthermore, part of the mission program
will be phase independent in the sense that it will be
resident in main memory for the entire flight. Examples of
this part of the program are the executive, part of the
Compool, and some common subroutines, such as sine and
cosine. The remainder is phase dependent, changing with
the beginning of cach flight phase.

The signal tc begin a new mission phase can be
initiated by the pilct pressing a button. This signal
would initiate a priority 0 task which would begin the
phase transition. On the other hand, this determination
could also be more automated by allowing the computer to
determine a phase transition time based upon some set of
predetermined criteria. In either case, phase transition
involves reloading the phase dependent parts of the
computer's main memory.

Phase transition begins by inhibiting the cyclic
sequencer subroutines from executing every minor cycles
except for the phase transition subroutine. The background
tasks can then execute to completion, or the pilot can
examine the TCB queues via the graphic display systems. He
can then terminate any background tasks he wishes in order
to shorten phase transition time. When all background tasks
have terminated, the phase transition subroutine will issue
input commands to the MMU to load the phase dependent
program modules and data for the next phase. An important
part of this load 1is overlaying the phase dependent entries
of the CCT with entries corresponding to the new phase
dependent subroutines. The PMD must also be updated to
record which program modules are in main memory and
which are not. Now at load completion normal processing
for the new mission phase can begin. It starts by the
timer interrupt occurring, and the cyclie seguencer
beginning execution of the subroutines associated with
the mission phase. .

114

]

B il b beid! G i b Sead

- (617) 661-18453

6.3 Failure Detection and Error Recovery

The area of failure detection in this exccutive system
has two main focal points: internal computer failures and
subsystem failures. The former category consists of hardware
malfunctions and software errors. The latter consists of
the computer's detecting a malfunctioning subsystem by
 periodically monitoring the status of each. Whenever a
failure is detected, a reccvery procedure must be invoked.

6.3.1 Hardware Failures

A machine check interrupt is generated in the EP
when a hardware malfunction is detected. The PSW associated
with the interrupt is given control, and the CPU can then
execute a diagnostic routine to determine the cause of the
error. An advantage to this procedure is that the CPU can
try to restart computation at the point of failure. However,
if the diagnostic procedure indicates a persistent machine
failure, the EP must be powered down so that the faulty
hardware can be replaced. Since the EP is operating in
simplex mode, there is no backup computer to take over the
computational load. It is almost inconceivaple to formulate
G sevuvesy paveediie for the casc whliere a pericdically
executed diagnostic test reveals a consistent machine
failure, such as an adder ecrror, for which no machiane check
interrupt is generated. Upon detection, the CPU can be
powered down, but tasks which have been running in this
environment have probably produced invalid results if this
failure condition has existed for some time. Furthermore,
the invalid results may have been propagated through the
system to an arbitrary degree. Thus, it appears almost
mandatory to rely only on instantaneous discovery of error
by the hardware.

6.3.2 Software Errors

A software error can be detected two ways: either
by the EP hardware generating a program interrupt or by a
task determining that an error exists. The program
interrupt enables a new PSW to be given control which will .
invoke a recover, procedure. The standard system recovery
procedure will be to terminate the task.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

Termination includes releasing dynamic memory and shared data,
and removing all of the task's I/0O requests from the IORB
queue. On the other hand, a task may specify its own recovery
procedure to be used instead of the system procedure. The

new procedure is specified by an SVC executive in the task.

The SVC supplies the address of the recovery procedure, and

the executive places this address in the task's TCB. The SVC
may be executed several times within a task with a different
procedure address specified each time. The flowcharts for these
algorithms are given in Figures 6.1 and 6.2. Should a task
determine a software error exists by checks within the coding,
e.g., by checking an argument for negativity before taking a’
square root, the task can specify what corrective action to take
at that point. It can transfer control to a recovery procedure,
or it can immediately terminate. In either case, the executive
does not intervene in the recovery process.

6.3.2.1 RECOVER SVC. RECOVER (SVC 16) - The purpose of this
supervisor call is to allow a task to specify what corrective
action should be taken if a program check interxupt occurs
during its execution. (See Figure 6.1)

6.3.3 Subsystem Monitoring

The subsystem monitoring function consists of periodic
monitoring of the health of the subsystems which are inter-
faced to the bus. The objectives are to provide an updated

"status of the system and to detect errors and failures. Di-

agnostic routines must be initiated apon detection of an error
to provide fault isolation to the functional path or redundant
unit level. In conjunction with fault isolation data must be
collected periodically to enable trend analysis to be performed
as a means of failure prediction.

The cyclic sequencer will periodically request status
information from each subsystem. This information is examined
by a cyclic subroutine to determine if the subsysteéms are op-
erating properly. When an error is detected, a fault isolation
and reconfiguration procedure must be executed. The procedure
will switch out the faulty equipment and replace it with a
spare. The spare is chosen from a redundant equipment table

(RET) maintained in main memory. A typical entry of this table

is illustrated in Figure 6.3. Each entry contains the logical

unit number, its physical address and its status. Upon switch-
ing active units the formerly active unit is flagged as faulty

in the RET, and the new unit is flagged as active. . The RET.

is also used by the I/O routines to determine the physical ad-

dresses of logical units for structuring IORBs.

116

(617) 661-1840

/)
(sl

Sl il

B loeed e

T Sl KR

g1

1
]

!

STANDARD
LINKAGE

\v}

¥

INSERT RECOVERY
ROUTINE
ADDRESS INTCB

& ' '

RESTORE
REGISTERS

ENABLE
INTERRUPTS

_ ; AND EXIT
VIA PSW

“e Figure 6.1 Flowchart of RECOVER SVC

: : 117

!
3
INHIBIT I/O . K
AND EXTERNAL
INTERRUPTS L
. VIA PSW . ‘z
STANDARD =
LINKAGE

T |

SPECIAL
RECOVERY
PROCEDURE
SPECIFIED

. YES RESTORE
REGISTERS

g

ENABLE
INTERRUPTS AND
CLOSE ANY EXIT TO RECOVERY
OPEN UPDATE PROCEDURE VIA
BLOCKS IN PSW

THIS TASK

v

RELEASE
DYNAMIC
MEMORY . . 3

v - .

REMOVE
TASKS IORB’s
LEROMQUEUE

N U S\ S|

a

2

gl

&

DOES
THIS TASK
HAVE A
PARENT
TASK

RETURN ALL TCB's f
OF TERMINATED
TASKS TO EXECUTIVE

‘.(e

WORK AREA
y - "
ENABLE i
INTERRUPTS 8
AND EXIT TO
DISPATCHER {"?

p—
Sl)

Flowchart of Program Check
Interrupt Software

Figure 6.2

logical unit

physical address

status
® < 171611 Word N
Figure 6.3 Format of Redundant

’ _ Equipment Table Element

119

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617

6.4 Failures in a Quad-Redundant System

Phase B efforts to date have indicated that a form of
voting and/or comparison will be used for detecting failures in
a quad-redundant computer. The following are significant ques-
tions in the design of error detection techniques and the soft-
ware required to support them.

a) How are the computers synchronized: via software or hard-
ware, and how often? This could be a very difficult
task for the software alone.

b) What data is voted or compared to detect the error?
If the bus outputs are compared for example, identical
simultaneous input data must be presented to all com-
puters to eliminate effects of small timing differences.

¢) If a comparison mode is recommended, it may be impossibie
to maintain the software in the "active" computer identical

to that in the redundant computers.

It must be pointed out that the techniques of voting and
comparing will detect only hardware failures. Software is
inherently non-redundant, and errors or inadequacies in its
specifications cannct be detected in this way.

6.4.1 Error Recovery of Shuttle Computer Hardware

The problems or recovery, via software, after the de-
tection of a computer failure can bg severe. Error detection
by voting on and/or comparing the outputs of two or more re-
dundant operating computers is favored in the current Phase B
avionics system approaches. Such techniques can be made less

difficult to inplement if the elements being compared are complete
units, di.e., including a complete memory, CPU and I/O controller. A

detccted failure would result in the disability of a complete
computer and its replacement by a standby. However, if re-
dundancy, error detection and recovery are taken to the level
of the memory unit, which is then considered as an element of
the system independent of the processors, the complexity of the
reconfiguration problem increases. The recovery from a mem-
ory module failure requires either the replacement of the
failed module by an identically loaded copy, Or the regener-
ation of its state prior to the hardware failure. This in-
volves ‘the continucus updating of spares, Or an initial load
with a consegquent delay in system operation.

Failure detection by pure comparison imposes the problem
of determining, in the event of a comparison failure, which

120

) 661-1840 |

R

4
-

X

(-

%
L

Fow T

ECT Y
M st

e
|

R s

z - ;“«

-

. of the processors is defective. An approach might be to ter-
minate operations in both computers, run diagnostic routines
in each, and then reconfigure once the failed computer is
identified. However, reconfiguration does pose the following
questions:

1) What happens to the time-critical processes that may have
been active at the time? :

2) If the active computer is the one that failed, how does
it hand off control to its backup?

3) What is the next step if both computers indicate failure?

These discussions are not to imply that the problems
are insoluble, but more to underline the impact of placing the
recovery and error detection responsibilities, of redundant
computer hardware, into the software. During the course of
this work, careful hardware/software trades must be made to
identify clearly the impact on software of these functions.

6.5 Mode Switching

) . ' During critical mission phases the MDC Phase B Study

{ [2] calls for all four computers to be processing in a re-—
dundant mode of operation. In the event of a failure one of
them can be powered down while the remaining three continue
proccssing. In noncritical mission phases, however, only one
active computer is nccessary. Hence, in a transition from a
noncritical to a critical mission phase, it is necessary to
switch from a simplex to a redundant mode of operation.

In performing this transition the active computer must
supervise the loading of main memory for the other three com-
puters and synchronize their start up. The data to be loaded
falls into three categories: phase independent, phase de-
pendent and time critical, such as the mission clock. The
first two categories can be loaded from the MMU. The third
category of data must be loaded from the active computer, but
this transfer can use the MMU as an intermediate device.

The transition from simplex to redundant mode should be
done in the noncritical phase before the full redundant com-
puting power is necessary, i.e., before the critical phase begins.
This allows time for transfer of data and synchronization,
while the computers are not in a critical mode of operation.

1 121
LtWNTERMEﬂmCSlNCORPORATED'701CXNQCOR[)AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

i

6.6 Synchronization

5:4#{14 ;

Several approaches have been taken to solve the problem
of synchronizing the operations of several redusdant computers
executing the same software in parallel. MDC/TkJ [2] rely g
on extra hardware (an external clock) sending minor cycle
synchronization pulses to the four executing comnuters. On
the other hand, IBM [5] relies on software communication
between computers to synchronize the start of tasks. The
particular method chosen depends heavily upon the architec-
ture of the computing systems. However, some general principles
do apply.

N éJ

Although the computer operates in a highly involved and
complex fashion, it is deterministic and exact: a given op-
eration will always yield the same result if repeated with the
same input data. The major problem for computer comparison in
a real time environment such as the Shuttle is the synchron-

B

ization of computations which involve time dependent functions L |

and input data. Any detection of the computers nct being Jj

synchronized must be treated as an error. 5
Synchronization can be achieved by: ﬁj

a) central contrel-of the computer clocks;

b) careful gating and distribution of input data;

c) strict identity of hardware and software operation.

A comparator/voter mechanism adds to the hardware and
software complexity. It also incurs operational delays, be-

cause time is required: ZE

a) to wait for synchronization of clock and data; '

b) to perform the comparison; [}

c) to decide on the results of comparison; {?'

d) to take corrective action. -
To minimize overhead, the comparison should, therefore, . ;}

take place at a fairly high level of operation, rather than
instruction by instruction. Comparing the operation of the
computers at the pcint where they influence their environment, 'i
i.e., at the computer/bus interface, is a logical choice, ut

provided that outputs occur fréquently enough. : .

"
i

122 A . =
|

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETIS 02138 - @17)66?4840&5

Comparison and voting can be done in varying degrees,
with varying hardware and software complexity:

a) Majority voting on the output data of three or more
computers, reducing to comparison with diagnostics when
less than three good computers remain. The bus receives
only the data derived from the majority vote. Failure
isolation and correction is automatic as part of the
voting process. The complex voter that this requires must
be sufficiently redundant and possess adequate error
protection to meet the failure tolerance criterion,

bacause it is an in-line element in the data bus.

b) Majority voting on the indications of health, but not on
the output data. One computer is selected to be "active"
and its outputs control the bus directly. The other
computers are used as standards to provide independent
checks on the operation of the active computer. A voting
mechanism decides on the basis of a majority of comparator
results whether the active computer.is operating correctly.
It may also determine which of the inactive computers has
developed a failure (see Figure 6.4). In the event of
a failure of the active computer one of the others is made
active. The voter mcchanism may be considerably simpler
than the data veter of the previous paragraph, since it
onlyv oneratres on hinarv values: its response time need
only match the reconfiguration dynamics, not the trans-
mission frequency of the bus. Furthermore, since it is
not an in-line element of the system, it may not .save to
meet the same stringent failure tolerance requirements.
Each comparator can be considered a part of a computer's
I/0 section and is thus naturally redundant. In fact,
the comparison could be performed, by software, internal
to each computer.

As a consequence of voting binary, rather than many-
valued byte or word data, the simplicity of the second method
pays a penalty in the lower inherent certainty of correctly
interpreting failure conditions. There 1s a greater possibility
for split vote situations to arise with binary variables, and
a greater likelihood of identical multiple failure. However,
these conditions will only arise when failures in the compar-
ison and voting’ logic itself produce exrroneous indication of
computer health; the lower complexity of this voter will aid
the achievement of the necessary reliability. .

For either voting approach once less than three good
computers remain, reliance must be piaced on self-diagnostic

f 123
Lo .
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

. to determine the faulty computer. No self-diagnostic technique
can be infallible; a disagreement between two computers could _
yield the following conditions: : 3

a) One computer determines itself to be faulty, the other
finds itself healthy. This is the expected result.

3
=

b) Neither computer detects a malfunction. This may be
because the fault was transient, or because it was a
border-line case beyond the capability of the disgnostic
method.

c) Both computers detect malfunctions. This event is highly
unlikely in the case of uncorrelated random errors, but
may easily occur for common mode problems such as physical
environmental transients (e.g., power supply and thermal }
variations).

]

One insidicus possibility for a processing failure that
may not be trapped by any of the techniques discussed so far
is that of the software error. The software in each of the
redundantly operating computers must, for the purpose of com-
parison and voting, be virtually identical. It is, therefore,
inherently non-redundant. A software fault will produce data

‘ which, being identically exrroneous, will appear to compare
correctly.

beid

-
— &

E

124

i
1
0.J

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184

VOTER

I [A ﬁ-
COMPUTER COMPUTER COMPUTER COMPUTER
1. 1 ' NO. 2 NO. 3 ~ NO. 4
CONPARATOR
L2 e ey —— b7
NOTY . NO2| NO.3Y NOta|
Y v i 4 .
BCU ND.1 BCU 0.2 BCU NG.3 BCU NO.4
1 - %
| ['"3 - | (& 6])
=\, L’“‘l \, l | \ l —1\

QUAD BUS

Figure 6.4 Conmputer configuration with
external comparator and voter

f
!

‘QlNTERMETMCSINCORPORATED-7O1CONCORDAVENUE « CAMBR

Chapter 7

Secondary Storage Management

7.1 Introduction

The primary purpose of the executive's secondary storage
management functions is to supervise data transfer between the
computer's main memory and the MMU. These routines must insure
correct MMU accesses by tasks, so that the integrity of data
transfers is preserved. This chapter will explore the algorithms
for performing these functions.

7.2 Data Set Structure

A data set is a collection of records. Data sets may be,
for example, program modules, flight data, or display skeletons
for the shuttle's graphic display units. All data sets on the
MMU are listed by name and adccess in the DSD. The length of
a record is constant throughout a data set and is stored
in the DSD. %

When a task reads or writes upon a data set, it must -
operate on complete records. Each read or write operation
is done for one entire record. Thus, all blocking and unblock-
ing operations on data within a record are performed by the
task and not by the executive.

7.3 The Secondary Storage Supervisor

The secondary storage supervisor is called as a subroutine
of the I/O management routines. One of the functions of the
sccondary storage supervisor is to calculate the MMU data .
addresses referred to in I/O commands. This calculation is
based upon the data set start address, the logical record within
the data set referred to, and the device geometry. Different
types of MMUs, such as disks and drums, will each have a different

127

IDGE, MASSACIHUSETTS 02138 - (617) 661-1840

geometry. Hence, a detailed description of calculating a
physical data address is very dependent upon the MMU used.

The number of bytes to be read or written in an I/0

" command will correspond to the physical record length of the

data set. .This parameter will be dynamically supplied to
channel programs by the secondary storage supervisor from DSD

information.

If each data set is systematically organized so that its
physical records are contiguous on the MMU and the addresses
of these records are monotonically increasing as we proceed
from the beginning to the end of the data set, an important
error checking feature can easily be achieved. By similarly
organizing the DSD entries, i.e., in terms of increasing MMU
addresses, each physical record address calculated by the
secondary storage supervisor can be checked to be sure it is
indeed within the specified data set. This check is done by
comparing the record address with the beginning address of
the next data set in the DSD. If the former is greater, an
error exists in the logical record number specified in the I/0
command. A software error condition then results.

If, in addition, the data set specified is to be written
upon, the secondary storage manager will check to see if the
data set is indeed read/write, and if the requesting program
module has access rights. If these two conditions are not
true, a software error conditiun again will result. The
flowchart for this algorithm is presented in Figure y 2 A

128

fd Ed 3 I3 BT baed lnd ol bl Gl el bl fd

§ g K i

“p

i
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184C 4

e

! A

¥
STANDARD . .
LINKAGE

FIND DATA SET
START ADDRESS
AND RECORD
LENGTH IN DSD

l
v

CALCULATE
MMU ADDRESS
OF RECORD

IS

AR = . PROGRAM
WITHIN sf PROCH
DATA SET

IS 1/0
OPERATION
A
WRITE

NO',('REQDRE X .
~”] REGISTERS |~ EXIT

A

&3

IS
DATA SET
READ/
WRITE

YES

DOES
PROGRAM YES
MODULE HAVE >~

ACCESS d
RIGHTS

_ PROGRAM
v ERROR

Figure 7.1 Flowchart of Secondary .
torage Supervisor

Chapter 8

Executive Design Parameters

8.1 Introduction

In the course of developing this executive system several
design parameters must be left unspecified, e.g., the maximum
number of elements that the system queues should accommodate,
or the amount of main memory reserved for dynamic allocation
to tasks. The nature of these parameters makes assigning
numerical values to them at this time very difficult because they

. Are hiagniv dependent voon the chavacteristics of the application
software, the computer and system architecture, and the avionics
subsyctems eventually chosen for the Space Shuttle. 1In this
chapter we will attempt to isolate these parameters and by
doing so identify those parts of the executive implemeatation
that should be parameterized. Parameterization allows for the
easy regeneration of new versions of.this executive as needed,
each tailored to a specific shuttle mission.

8.2 Synchronous Versus Asvnchronous Control

The executive software design can support a fully
synchronous mode of operation in which all application software
is run in the foreground, or fully asynchronous in which all
application software is run in the background. Tasks that
require careful synchronization with real time, that are
highly repetitive, that are short, that are self-contained,
are obvious candidates for the cyclic foreground.

Tasks that do not require first order timing specifica- .
tions, that have wide variations in timing, that require large
timing factors for safety, and that are interactive with ocutside
events are candidates for the background. The percent of fore-
ground versus background use of the system depcnds upon the
nature of the application tasks to be executed.

134

4. INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSA

Another parameter dependent upon foreground versus back-
ground use of the system is the length of the minor cycle time
“nterval. NR/IBM [1] recommends 40 msec, while MDC/TRW [2]
recommends 20 msec. The actual value, of course, depends upon
the rate at which subsystems must be sampled in the command
response data bus system recommended .

Within a minor cycle care must be exercised so that the
foreground computations and I/0 requests can be accomplished
in this time interval. Any overlap into the next minor cycle

is a system overload condition, which requires corrective >
action.

8.3 Executive Control Element Sizes

The table presented below is a list of each of the exe-
cutive's directory and queue elements and their storage require-

ments.

Element Main Memory Needed

Task control block 38 full words

I/0 request block 11 full words
Event control block 2 full words
Event descriptor byte 1 byte

Program module directory .

element , full words
Data set directory element 3 full words

Dynamic core directory
element 2 full words

Cyclic control table

element 5 full words

Redundant equipment table
element ' 3 full words

The maximum number of these elements that each table must
accommodate should be parameterized .

132

|

-

CHUSETTS 02138 °(617)661—184G.3

bood b

bt R Paugd

k
i

. 8.4 Task Mana

1) Task Priority Levels: 6 priority levels were chosen.
Levels 0-2 serve very specific purposes as previously
explained. However, levels 3-5 are merely reserved for
executing bac} ground tasks. The number of these
priority levels can be varied dependent upon background
task requirements

gement Parameters

| 2) Size of Main Memnry: while not an executive system

| parameter, the amount of main memory available influences

| the software design. TFor example, it determines the maxi-

| mum number of tasks that can be concurrently scheduled, the
amount of dynamic memory available, and the number of soft-
ware events the system can support.

3) Software Events: these events are predefined; i.e., they
are not dynamically created during flight. Within this
category of events, some are exclusive, some latched and
some unlatched. These characteristics should be para-
meterized.

4) Executive Resources: the size of the compool and the
. organization of dynamic core should also be parameterized.
) The characteristics of these areas of memory are very
dependent upon the number of tasks that can be scheduled
concurrently and the amount of main memory availablie.

5) Maximum Number of Tasks: a limit must be imposed upon the
maximum number of tasks that can, concurrently be scheduled.
Exceeding this limit implies a system overload condition
exists because more tasks exist than the system has
resources to allocate. Among these resources are main
memory to create TCBe, dynamic core, and CPU time. The
limit imposed on the number of tasks, in turn, determines
the maximum sizes of the system TCB queues.

6) Frequency of Sﬂrv301ng the Time Wait Queue: servicing
this queue every minor cycle can impose a high executive
overhead. However, if the tasks on this queue are serviced
every N minor cycles, there would be a reduction in over-
head depending upon the value of N choscn. N can be
parameterized.

8.5 Supervisor Call Parameters

The particular paramcters associated with each SVC
are listed in the next chapter. However, it must be pointed

133

Pty

JINFERMETWCSINCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACIHUSETTS 02138 « (617) 661-1840

i

. out -here that the number of SVC and the services provided by
each are system parameters. Since the mechanism for using SVCs
is included in the system design, which ones are implemented
can be left to the disgression of the system designer based
upon application software needs.

L

Bl Gwad Benyd feped

e 3

134

‘“""!
oo::

=

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBR[DGE, MASSACHUSETTS 02138 « (617) 661-184C°

P

Chapter 9

Application Task Interfaces

9.1 Introduction

As we have already seen the interfaces between application
tasks and the executive are the SVCs. These represent the
only mcans application tasks have of using the services provided
by the executive.

This chapter will list the parameters needed by each of
the SVCs described in previous chapters. So far 16 SVCs have
. been defined, which meet all the needs of the application tasks
to run within this system. Iowever, should further cexecutive
services be necessary, more SVCs can later be defined and easily
includ~d in the framework of this executive system.

.9.2 SVC Parameters

SVC Number SVC Name Parameters to be Supplied
FREEMAIN None
SECURE Coﬂpool data addresses;

address of copy area if a
copy is necessary; lock
address of compool areas

to be locked; type of locks
to be established.

3 RELEASE If update of compool is to -
be done, addrecsses of data
to update compool.

4 COPY Compool data addresses;
address of copy area,

135 _
- INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

o 10
11

12
13

14
15
16

LINK

END
SCHEDULE

WAIT

SIGNAL

TEST EVENT
CHANGE CCT

DISPCHECK
READ

WRITE
CHECK
RECOVER

136
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 =

Program module ID
Priority

None

bl Bl a ;

Program module ID; priority;
scheduling conditions:

a) none, i.e. unconditional,
b) at a specific time,
c) after a time interval,

d) for some software event
or events.

Conditions of wait:

a) until some time,

b) for some time interval,
c) for some event or events.
Event name;

On, off.

Event name; pdinter to flag

v S O |

Pointer to old CCT entry;
point to replacement.

None E?

.ECB'poipter; .

Core address; f}

Logical device;

Data set name; D

Logical record; '
d

Timer option; pointer to
location in which timer
value is to be.stored.

Same as READ except no timer opti

o Y
-

ECB pointer.

Address of recovery procedure. .}

-

2 INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Appendix A

Operation and Control of the Data Bus*

A.1 Data Bus Access and Control Philosophy

Since the Shuttle data bus constitutes a central communica-
tions resource shared among multiple terminals and a central
controller, a fundamental feature of its design is the method
by which it is allocated to a particular communication path.

The data bus system is essentially a "party line" shared by
all terminals: when access is granted, the bus is dedicated

to a single communication path between a transmitting and
receiving station. '

Selection of the bus access method is a basic decision
because it constrains the design of both the remote terminal
and the bus control unit.

A.l.1 Command Response Addressing

In a command response addressing scheme access to the
bus is centrally managed by the controller. Under this concept,
the controller transmits an appropriate command to the terminal
including: synchronization header, terminal address, function
to be performed (transmit, receive), data, and parsity coding.
Upon recognition of its address, the terminal interprets the
command and begins transmitting or receiving the appropriate
data.

A Using command response access, a terminal does not initiate
any communication unless it is commanded to by the controller.

Terminals only "speak" when "spoken to".

*The discussion in Appendix A and Appendix B is taken from an
Intermetrics, Inc. study on a standard interface definition
for avionics data bus systems [8].

137

COMPUTER : BCU Siu LRU
SOFTWARE ' BCU . QuUTPUT
—_— INITIATE 170 | © ACCEPTS COMMAND LIST | TRANSMIT CHECK SIU ADDRESS INTERFACES
o *FORMATSAND ENCODES ——>> * CHECK DATA SR————
CHANNEL COMMAND DATA | - VERIFY COMMAND
— ‘ FUNCTION DECODE
' A/D AND D/A
1/0 LIST « TRANSMIT AND CONTROL FULCTION
| BCU ACCESS | BUS TRANSACTION OF LRU

' Pl e VERIFY PARITY
' e * VERIFY ECHO CHECK

-
w
) stu , - INPUT
INPUT/OUTPUT BCU TRANSMIT INTERFACES
DATA -3 --:-[-/—6 <=4 * DECODE CHECK DATA <G—————+ A/D ENCODE TRANSMIT e
. Figure A.l Basic functions during a bus ,
transaction

In contrast to the polling scheme a terminal is not "polled"
as to whether it wants the bus or not but rather is "commanded"
. to send or receive a message. Command/response addressing is
similar to a polled system in that a terminal responds only
when addressed.

A fundamental characteristic of command response control
is that the "intelligence" of when, what, and how often to
communicate is in the controller (i.e., computer software).
There are conseqguently no access conflicts to resolve or
local decisions required.

A.2 Control and Operation of the Data Bus by the BCU

Once a particular access method is selected, the communica-
tions procedure estaklished to perform a single I/0 transaction .
impacts the design of the bus system elements. The following
steps, illustrated in Figure A.l, must be taken in order for
a single computer to send and receive data from a set of
avionics equipment.

a) In a command response access concept, the computer directs
all I/0 reguests in the system. It indicates along which
bus line and to which remcte terminal the message is routed,
and if data is reguested, where to put it when it has been

‘ obtained. '

b) The BCU must encode the message and transmit it to the
proper remote station over the selected bus line.

c) The remote terminal responds to the command, selects the
appropriate channel to the LRU and executes the appropriate-
functions to obtain the data.

d) Signal conditioning and conversion take place at the
{ terminal, which then encodes and transmits' the data back
‘ to the control unit.

e) The established error-control scheme is maintained
throughout the transaction.

f) The BCU transfers the data to the.computer and informs it
© of the completed request or list.

The details of this transaction influence the bus message

format, the functions of bus elements, and communication security.

The message format and structure must satisfy the data acquisition

and distribution reguirements, without unduly complicating the

bus hardware design. A level of transmission "security" must

be established to minimize the probability of an undetected

" error, without significantly increasing the equipment complexity

’ or message overhcad. The following secctions provide a general

discussion of bus operation and the bus format and structure.

{ 139
Lo INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

‘ A.2.1 Bus Message Format
In general there are four basic parts to the structure
of any communication message: the message header and terminator,
the address and routing information, function code, and message
content. }
Message Address Function Message 5(7 EOM
Header Routing Code Content é Sync ¥
sync : o 2} p |
The first three parts of the message are associated with the }
communication system.
A.2.1.]1 Message Header and Terminator. Message synchronization }

is required to enable terminals to recognize the start of a

message and is usually a unique control signal recognized by ;
the terminal. It is essential that the synchronization signal E
be different and clearly distinguishable ‘from data to avoid mis-
interpretation. The characteristics of the sync signal will -
depend on the modulation technique selected. It is usually E?
assigned a pulse width or phase change different from the

‘ standard data bit.

There are four possible sync signals: at the beginning
and end of the BCU to SIU message and at the beginning and end

of the SIU to BCU message. Howvever, from a communication point L
of view they are not all necessary. The end of the BCU to g?
SIU message can be distinguished by the "idle bus" when the

BCU stops transmitting; similarly for the -end of the SIU to -
BCU message. However, detection of an "idle bus" may cause ig

circuit difficulties in either the BCU or SIU. The use of
different sync signals for BCU to SIU messages and SIU to BCU
message rules out inadvertent SIU to SIU communications, since

the SIU need only respond to a BCU sync.

b Ty

In any case, the only positive requirement for any address
system is that there by a sync signal, clearly distinguishable
from data, so that each terminal can begin to look for its
own address in synchronization with the message. The need for
other sync signals for end of message, accept, knowledge, etc.,
is a function of the communication procedures and the details

of the implementation. .

- T -

M
i

A.2.1.2 Address and Routing., The address portion of the
message identifies the sender and receiver by "to X" "from YY", r
In a centrally controlled system, where there is no terminal- LZ

. to-terminal communication, there is no requirement for the

"from" part of the address. All communications are initiated _ f}
140 Ji

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

by the BCU with transmitting/receiving occurring ohly between
BCU and one SIU.

The "to" part of the message identifies the path to the
LRU via an SIU address and an EIU address. A separate EIU
address is necessary whern the bus terminal communicates with
more than one EIU. If the SIU and EIU were combined into a
single unit, then the address could be combined.

A.2.1.3 Grouvn Addressing. A group addressing capability would
be required to send a single message to more than one SIU or
EIU, as might be required to enable a passive flight recorder
on the line to receive data intended for other terminals.

Group SIU addressing could be an advantage in transmitting the
same data to every element of a distributed subsystem, such

as the individual quads in the RCS system. Group addressing
would be useful in the central management of a redundantly
configured subsystem, particularly if identical commands are
issued by the computer to every redundant unit.

Group addressing on the bus requires the SIU to recognize
more than one address. However, there is the problem of
coordinating the return transmiscions of echo or data messages.
Coordination could be implemented in several ways: by
sequential time slctting of the SIU responses, by ignoring
the echo in the passive device, or by a contention access
method. The SIU, EIU address and function codes would nced
to be coded in a way which would have group meaning.:- The
tradeorf here is between the added complexity of the SIU and
BCU hardware, and the additional software and memory to store
multiple commands instead of one. A modification to the
computer/BCU message to provide a routing indicator and a list
of SIU addresses, which would enable the BCU to send multiple
messages, could alleviate the computer software burden.

In summary, however, it is felt that group addressing
is probably not worth the additional complexity in bus system
design if, as has been estimated, there is adequate capacity
in speed to accommodate the inefficiences encountered.

A.2.1.4 Function Code. The function code field of the bus
command specifies the action to be taken by the interface unit
in acquiring or distributing data or signals to the LRU. The
structure and format of this field is directly impacted by the
requirements of the electronic interface portion of the remote
terminal. In order to provide the capability of interfacing

141

“ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBH![')GE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRICGE, MASSACHUSETTS 021238 « (617) 651-1840"

the-majority of electronic equipment, the following types of
interfaces would be required:

a) digital parallel,
b) digital serial,
c) analog data,

d) discrete.

The function code does not have to be in a standardized
format for all terminals. More parallel digital signals
may be required for a particular LRU, but less analog. The
electronic interface itself need not be standardized. The
function can be decoded and interpreted by specially tailored
function controllers at the terminal. Alternatively the
function code could represent the address of a location in a
control memory which stores special control seguences within
the interface unit. There are several ways of organizing
the function code field, which are discussed in the following

paragraphs.

a) Channel Addressing

Under this concept, each interface is assigned a channel
address, and the function code becomes part of the address
structure. Group addressing is possible only if channel
addresses are in sequence (e.g., 2 through 6, not 1, 3, 5,
eic.). Input or outputs ray be implicit in the chonnel
address number, or specified via a format. The interface
unit is required to distinguish between input and output
channel addresses, to determine if data is to be sent back.

Channel addressing is the simplest function code to implement
and allows the greatest flexibility. However, it can be

very inefficient if channel addresses are not assigned

in a way which can be effectively utilized.

b) Functional Classification of Interfaces

In this method interfaces are functionally classified and

a code for each class or subclass is defined. For example,
all communications can be functionally organized into the
following categories: commands, moding, functional input,

functional output, and others. The functional categories

are assigned a coded number and all interfaces are assigned

to a category. A function code would then involve input

or output of all data in the corresponding category. Obviously
each major category can be further subdivided into subclasses
by extension of the function code field. A significant

142

il

=

By

o

e,

advantage of this method is that the efficiency of information
trancsfer can be much hicher if information is generally
transferred in a block. It can also be useful from the
computer's point of view, since all data in the "functional
group" may be desired at the same time (e.g., all status
information) .

c) Memory

The final approach involves a small memory, of a few hundred
words. The function code specifies a location in the

memory which .contains instructions for data input and output.
The memory could store channel addresses or sequences
corresponding to an interface function. A memory with a
read/write capability could be altered inflight to accommodate
changes to a subsystem's operation demanded by different
mission phases.

A small high speed memory of the read/write or read only
type described above is well within the state of technology.
This concept provides the most general and flexible
capability, although it obviously increases the complexity
of the EIU. Memory size could be expanded to accommodate
increases in equipment reguirements, or to extend the
terminal capability to provide functions such as limit
checking of data, or the monitoring of LRU status. Ultimately
the +nyminal hocemes & small computer capable of providing
a local service to the equipment and thereby reducing bus
traffic.

A.3 Operation and Control of the Dafa Bus by the Computer

Viewed from the computer the data bus is a single,
relatively high speed, asynchronously operable, peripheral I/0
device, capable of performing data gathering and data distri-
bution. Under the command response access concept, the computer
initiates and directs I/O operations on the data bus. It directs
I/0 by commanding the bus control unit with a set of I/0 reguests.
The BCU then controls and synchronizes the data bus system to
carry out these reguests. Most likely, the bus system will be
mechanized in a way which allows the bus to operate independently
of the CPU once an I/O command is issued by the computer. This
means that the data bus system and computer operate asynchro-
nously. :

143

~ IMTERMETRICS INCORPORATED » 701 CCNCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

‘ A.3.1 Overview of Computer I'/O Operations

There are two basic approaches to the design of the
computer software for con.rolling the activities of the bus.
The first is the synchronous, fixed I/0 method, in which I/0
control is based on a predetermined execution sequence and a
fixed time cycle. The second schedules 1/0 operations on a
demand basis. The characteristics of the two are summarized
in the following sections. To a large extent the computer
executive and I/0 control structure can be considered inde-
pendently of the control structure chosen for the bus.

A.3.1.1 Computer I/O Operation in a Synchronous Structure.
Fixed sequence structured software requires 1/0 operations

to be interleaved with processing tasks in the minor cycle.
The inputs required by processing tasks in a minor cycle must
be available prior to execution of the minor cycle.

. ‘The concept requires ccmmanding the BCU (or dispatching
I/0), each minor cycle to input data required for the "next

B Ged il el bemd bl bl bad Bl

minor cycle", and output data from the "last cycle". I/0
software for controlling the data bus is operated in each
' ~ minor cycle. For example:
Bus Inputs for pro- Inputs for pro- Inputs for pro-
Activity cessing during N cessing during N+1 cessing during N+2
' Qutputs from N-2 Outputs from N-1 Outputs from N
v ",
Computer Process inputs Process inputs Process inputs Lé
Ackivity from N-2 for. from N+1 for from N for '
output during N output during K+l output during N+2 5§
Minor N-1 N N+1 ”
Cycle o ry

The dispatching of an I/0 command list to the BCU can occur at

the beginning of each minor cycle. However, it is necessary Z}
that the list of I/0 be completed by the bus system prior to

the start of processing the next minor cycle. Thus, the bus

will be operating for only a portion of the minor cycle at !
a percentage of its spesed. For example, the BCU may be commanded 3
for 16 ms of I/O0 every 20 ms. In this case there would be 4 ms
idle bus time unless the BCU were commanded again to perform
some additional I/O on checkout functions. i

At the beginning of each cycle 1/0 commands are checked

for errors. If no errors have occurred, the next I/0 list is t}
‘, sent to the BCU and computer commences its processing seguence.

144

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138

If I/0 errors occurred, an error recovery and fault isolation

. routine must be operated and the sequence of processing tasks
re-scheduled accordingly. Prior to the end of the minor cycle
I/0 scheduling is operated to set up the I/O command list for
the next dispatch to the BCU. '

Since much of the Shuttle data bus design conducted to date
has postulated this philosophy of software operation, it will be
assumed for the description of BCU activities in the following
sections. ,

A.3.1.2 Computer I/0 Operations in a Demand Structure. The
alternative approacn to fixed sequence L/0 is scheduling I/O
operations on a demand basis. Typically, this is accomplished
in asynchronously controlled software structures as follows:

a) when an I/0 reguest is made by the computer software, control
is transferred to an I/0 scheduler, and a command is inserted
into an I/0 queue.

b) The task requesting the transfer is placed into a "wait
state".

|

c) Upon availability of the I/O device, the queued I/0O requests
| ‘ ' are processed via the dispatcher which uses an algorithm, .

| , e.g., first in/first out (FIFO), to determine which /0

L request to service next.
|

|

|

|

)

7

|

éd) The I/O requests are sent co the BCU one at a time, or in
& a list for bus execution.

e) When the I/0 reguest has been serviced, the issuing task
is informed and allowed to continue.

This approach is used on large ground-based systems,
i . particularly where I/0 regquirements are not known or impossible
' to predetermine. The demand I/0 concept does not appear con-
sistent with command response or fixed sequence scheduled pro-
cessing tasks. However, if a distinction were made between
computer input and output requests, output requests because
of their independence of processing tasks may lend themselves
to demand scheduling.

A.3.2 Computer to Bus Operations ‘)

An evaluation of the requirements of the interface between
the . computer software and BCU is directly dependent on the design
of the BCU. There are obviously tradeoffs between complexity
in the BCU hardware design and the computer software. The BCU

o

145
~ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

P —

1

INTERMETRICS INCORPORATED - 701CO\COQDAVFNUE CAMBRIDGE, MASSACHUSET1S 02138 -

in an extreme case could become a computer itself, dedicated to
communications functions, supplying all communication of data
in and out of the bus system. At the other extreme, it could
51mply perform time synchronization, transmlttlng and
receiving control, and error coding. Somewhere in the middle,
the basic BCU CaDablllthS can be extended by prcoviding the
BCU with a limited set of registers and loglc, and a direct
memory access (DMA) interface to the computer's memory. By
cycle stealing from the computer, the DMA can supply commands
and data to the BCU directly from the memory. Commands and
data are sent to the BCU either by incorporating a starting
address and the number of commands into the channel command
word, or by cha'nwng commands and instructing the BCU via the
operation code in each bus command. A limited capability will
be assumed for purposes of this discussion, although comments
are made on areas where an expanded BCU capability may lessen
the software problems. The basic computer-to-BCU operations
are the following:

a) I/0 dispatching - involves commanding and controlling the
BCU with I/0O to be performed.

b) I/0 scheduling - involves scheduling bus commands to be
issued the next minor cycle.

c) 1I/0 error processing - checking previous I/O commands
issued for errors and taking appropriate action.

A.3.2.1 Dispatching I/0: Coaputer/Bus Interface. The BCU
is provided with a list of I/0 commands by loading an /0
channel with a command word from the computer (see Figure A.2).
The channel command word must contain sufficient information
to enable the BCU to execute all the appropriate I/0 commands
in the list. Once this channel is loaded, the computer and

BCU may operate independently. The channel command word contains
an address of the first BCU command, and the number of BCU commands

to be processed. (BCU commands may also be linked by address
chaining.) The BCU commands can be stored in sequential memory
locations, and the list operated on in sequential order by the
BCU. Upon completion the BCU can be instructed to interrupt
the processor with an I/O complete signal. . (Alternatives,

more in line with a "no interrupt" policy, can be devised,

such as a "BCU busy" signal accessible to the computer enabling

it to determine status of the BCU.) In either case, it is necessary
to coordinate the asynchronous operation of the computer and BCU,

so that the computer is aware of the status of the BCU.

(617) 661-1840"

PO S Vo S v B e |

)
o

£

-

(SRS v QR i R S S

: B
A - ASLE OF BCU COIMNMANDS - T ;
® g, T O ESHEIOESH ~ ey 1 TRaniiission |
S g I e — | COMMANDS &
EXECUTE /O 3 ' i
INSTRUCTION : - -

LDAD CH;\{‘::EL E DCU rG?'sr-‘ UDQ °
CONTROL | via 1/0 CIANNEL s &
N | ol [INPUT/OQUTPUT |

DATA

Figure A.2 Computer to BCU I/O command operation

A.3.2.2 BCU Command Format. The BCU command format must contain
instructions for the BCU to execute the computer's I/O request.

. A single command will contain four parts: control information
for the message, status information, skeleton bus message format,
data linkage addressing information.

BCU I1/0 Bus command Linkage to

control STU oy
op code c neLion
P status M aade data

a) Control

The control part of the BCU command contains information
pertaining to the type of operation requested of the BCU.
Examples of individual BCU operation codes are Read,

Write, Skip, Linkage. With fixed I/O tables in the computer's
menory, a "no-operation" code may be desirable to skip
commands at certain times such as unrequired jet on commands
in a fixed I/0 schedule. If the BCU contained memory, and

was more of a communication processor, this part of the

BCU command may contain a pre-programmed BCU memory

address for execution. »

& J

' b) Status Bits

Status bit(s) are required to enable the computer to
determine if the bus command was completed successfully.
The computer must be informed of bus errors so thac it

can reconfigure and reschedule accordingly. An inccmplete
I/0 transaction will result in rescheduling the processing
tasks. An "incomplete I/O" status indication may also

be desirable.

c) Skeleton Data Bus Message

The skeleton bus message contains the actual bus command
associated with the I/O transaction. The contents of the

bus message format were discussed in Section A.2.1.. It contain
contains information which is both fixed and variable

during the course of the mission. Specifically, the

terminal addressing will vary with the status of the avionics
configuration; a specific communication path must be chosen
prior to execution of the command. For example, a request
for data from a redundant subsystem (e.g., radar) requires -
information as to which LRU is active, and which data path

to use. It is reasonable to assume that configuration
management is a computer software function, and therefore
this information must be supplied to the BCU in some form.

—

(-

39

148
INTERMETRICS INCORPORATED » 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840~

f

Py

The degree to which the computer will nced to modify the
‘ bus message format at run time will depend on the extent
and capability of the BCU.

In order to establish fixed I/0 command tables reqguired

by the oynchronouo I/0 method it may be useful to define

a symbolic and "physical" relatlonshlp similar to that

used with tapes, dwsks, etc., in a conventicnal facility.
In this case a symbolic assignment, such as ISS, or ISS

for inertial subsystem active and standby respectively,
will be associated with the subsystem. The symbolic
identification is then associated via configuration tables
.to a physical unit such as ISS#l, ISS¥% etc. Predetermined
I/0 bus commands would be generated uSJng symbolic
identification and their physical identification determined
at run time by the computer or by the BCU via the transfer
tables of the computer. Path identification for a specific
physical unit (i.e., which SIU/EIU address) must also be
determined dynamically.

If each physical unit had a single path, i.e., a unigue
address (BUS#%, SIU#, EIU#) the problem is solved. However,
there is more than 1 path to each unit; the address must
be determined from the status of buses and SIU's. The
: complexity of this problem will, of course, depend on the

" redundancy interfacing and cross-connections established
in the system. For example, consider a system configuration
of a quad-redundant bus, 4 SIU's, and up to 4 EIU's per
SIU. There could be up to 64 possible paths depending
on the cross-strapping.

Physical Unit : Bus . SIU EIU

LRU #1 1 A X

2 B b4

() 3 C Z
4 D W

If the SIU is an extension of the bus such that SIU, cannot
be addressed via bus #2, then there are 16 possible paths
to a specific LRU. If the SIU were cross-strapped to the
bus and interfaced to a single LRU, then there are only

4 paths to it. :

The function of inserting addresses could be allocated to .
the BCU, assuminrg it had memory, by sending it a table

of physical equipment codes, and the current path. The
current path would be updated by the configuration management
task as configuration switching occurred.

149
“ INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHISETTS 02138 « (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

d) Data Linkage Addressing

This part of the bus command identifies the computer

memory location of the data to be output, or the destination
of the data input from the bus. If the bus lormat allows
block transmission, then the number of words is variable,
and must be obtained from the bus message itself.

K:3:e243 Computer I/O Error Processing. An unsuccessful

I/0 transaction detected by the BCU during bus operations 1is
eventually communicated to the computer, using the error
control bits in the bus command table. If the BCU is commanded
with a list of I/O requests, an I/O error will not be detected
until the start of the next minor cycle. At the beginning

of each minor cycle, the erxrror status of all messages is
checked. If errors occur, the minor cycle task schedule is
modified accordingly, and the I/O error recovery procedures

are initiated. Some of the alternatives are:

a) the I/O request could be rescheduled via an alternate
path. A reconfiguration of equipment may be reguired.

b) Fault isolation tasks could be initiated to determine'
what to reconfigure (the BCU, SIU, or subsystem may
have failed).

c) The sequence of tasks contained in the following minor
cycle must be altered, delayed gntirely, or allowed to
continue with "old" data.

A.3.3 I/O - Processing Memory Conflicts (Buffering and
Interlocking)

Independent operation of the bus and computer can result
in a conflict over the access to common data. This problem
occurs when a processing task is using data while the bus
control unit is at the same time attempting to input or output
the same data for the same memory locations. The problem is
more likely to occur for data that is sampled at a high
frequency, when use of the data cannot be easily synchronized.
Tt is also more likely to occur in a block of data rather .
than a single word hecause of the inherent interlock of a single
word access. For example, attitude angle information from the
inertial unit may be in use by -the digital autopilot task when
the BCU inputs new values via the DMA. 1In this case the auto-
pilot is operating on partly new and partly old values. This
problem can be avoided by several approaches:

150

e &2 =B

sl G

el 64 BI &3

e

s

a) the 1/0 input and output in this category can be buffered
. into different memory locations. It may be transferred
" to other locations, or a pointer can be switched between
two sets of registers for the data item, one set for I/O,
one for processing. Input data may in any event require
to be smoothed or compensated prior to use. This is the
general concept of "double buffering" of input or output.

b) The data could be interlocked via a control indicator or
busy bit, during the time either the BCU or the computer is
using it. However, this would require the BCU to access,
test, set and release the indicator with a consequent
increase in its complexity.

c) 1I/0 can be planned by predetermining and adjusting the
sequence of I/0 commands to avoid the conflict. I/O
commands can be designed to occur at the opposite end
of the cycle from the conflicting processing task. This
approach, although consistent with synchronous bus control
and I/0 philosophies, appears risky due to the inaccurate
estimates of timing. It is, in fact, similar to the
approach used to solve the memory conflict problem in
Apollo. This was only partially successful, and it
could only be verified by extensive testing.

A.4 Description and Analysis of I/0 Transactions

A.4.1 Definition of an "I1I/0 mransaction"

An "I/O transaction" is defined as the complete sequence
of operations performed by the BCU in carrying out a single
I1/0 request from the computer. Once the BCU has received and
interpreted a command from the computer, it synchronizes the
terminals on th= line, transmits a message to the specified
terminal and receives the appropriate response. A transaction
occurs between the BCU and a siagle terminal. It is the basic
bus communication activity. It is independent of any other
transaction over the data bus system. There are two types of
I/0 transactions that are performed by the data bus: read and
write transactions.

a) A read transaction is the .sequence of steps performed by
the bus system in acquiring data from the avionics equipment.
Tt can be termed a "get" command, to sample a specified .

LRU equipment interface.

b) A write transaction is a sequence of steps to send data

to an LRU interface. It can be described as elither a
"receive" command, or a "do" command. The SIU receives
. the data or command and delivers it to the specified

equipment interface.
151

“ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -+ CAMBRIDGE, MASSACIHUSETTS 02138 « (617) 661-1840

A third type of transaction may be required, "termed an
"STU Event Status Command", in which the BCU transmits a
‘ command message to an SIU, requesting it to return its event
status register.

This transaction enables the computer to determine if
random events (interrupts) have occurred at LRU's connected
to a particular SIU station. A rescheduling of processor
tasks and read/write transactions may be necessary as a
consequence of the event.

4

d

A.4.2 Functional'Description of Bus Transactions

A discussion of how the bus system performs a transaction i
provides another step towards a specification of the bus/SIU/EIU
haraware design. In order to describe the operation of the
bus during a transaction an assumption must be made with regard
to a specific bus to SIU to EIU configuration, and an error
control approach. It is important to emphasize that this
section is intended to describe the functions required at
each bus element, and not to select a final design. Several
configurations of a standard bus terminal were considered, but
a detailed bus command format was only designed for one.

80 fd b

The example configuration assumes a physical separation

. of SIU and BIU. Each SIU is connected to only 1 bus line and
may service up to 8 EIU's. Each EIU provides analog and digital
interfaces to equipments. The other terminal configurations

assume no logical separation of the SIU and EIU, and are
cross—strapped to all four buses.

The error control method selected for analyzing the trans-
action is transmission error detection through vertical and
horizontal parity, and path verification by address echo.

A variable number of 8-bit data bytes was sclected as
the basic transmission format. A 3-byte command format is
selected since 16 bits are considered inadequate to provide
the range of addressing and function codes. A minimum of 18
bits are required for the command word in this configuration
(7 for SIU address, 3 for EIU address, and an 8 bit function

code) .

Figure A.3 illustrates a representative format designed
around the 3 byte command message with a variable data message.
The asterisked fields are mandatory. Representative use for
the other bits in the 3 byte command are discussed below:

152

ey v Ry S e e e D BEER

INTERMETRIA 517) 651-1840

. *3) . SIU address (up to 128 since only one terminal address per
" station is required. See Section 3.) :

b) SIU transaction bit. This bit may be used to command an
SIU station to send an event status message. This is a
two byte response from an SIU containing the status of 16
events or conditions that are assigned among EIU's at a
terminal. Each is set in an EIU by the occurrence of a
local random event such as a hand controller movement,
display input, or fault occurrence.

*c) [L[IU address (up to 8 EIU's per SIU)

d) Error control bits. These are sent in an echo message from
SIU to BCU when an error occurs associated with the LRU.
Typical of the possible error response conditions are:

1) parity failure at EIU

2) EIU/LRU busy

3) no response by EIU
' 4) improper channel

Thic inforaation could Le provided by a special request

to the SIU. Making it part of the command format simplifies
STU/EIU logic. If the information were not provided to

the BCU, a "no echo” response for all the above conditions
will be treated in the same way.

e) I/0 control. This control bit determines whether the
specified channel address is an input or output operation.

i) Block. This field of the command message identifies a
single or multiple channel address group. It is used in
conjunction with "block size" to specify the size of the
message block.

*g) Channel Address. This specifies the EIU interface by one
of the methods listed in Section A.2.1.4.

h) Block Size. The block size identifies the number of
channels to be sampled. '

153
T INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

9 BIT BYTE ORGANIZATION
2 27 BITS - =
1 | 2 [3
A YEIU | AR 1I/0 SCHANNEL |"BLK
SIU.ADCRESS Pl aoor lconticant! {P| apomess [size | ©
: T) ; T
LBLOCK REQUEST BLOCK SIZE

7 BiT SIU ADDRESS
(123 SiU’S)

EIU ABDRESS
UP TO 8 EIU'S

SIU TRANSACTION BIT

G 1=SIU TRANSACTION

= ' SEND LRU/EIU

INTERRUPT STATUS WORD 01 = PARITY
SWORD 34 < Elu/LAU BUSY

0 SINGLE CHANNEL SINGLE
BLOCK CHANNELS 4 '
8

1

EIU COMMAND
01 = INPUT CHANNELS
10 = NUTPUT CHANNELS

— ERROR CONTROL

16
24

DATA TRANSMISSION FORMAT 9 BIT BYTE VERTICAL AND HORIZONTAL PARITY

| 1 .

2

l

DATA BYTE 1

P DATA BYTE 2. ‘P

¢ © @

* REQUIRED IN COMMAND MESSAGE

N

N+ 1 |

DATABYTEN |P

VERTICAL PARITY

Figure A.3 Representative bus command message organization

e 62 B b &2 £ B2 &= Bn

READ TRANSA JTION

51+ Kys -
3 us-i i 36 ps i i 12 ps i : 9(N+1H_1s i
scu] | siu [E0 ADD| FuncT | VERTICAL] [SU[siu [DATA | DATA | DATA | ... [Data |VERTICAL SYNC
sync! | ADD {& CONT| CODE | PARITY syncl| Aco BYTE1| BYTE2 |BYTE3 ByvteN| FARITY
|—— rcu To s1u nessace ———J},} LS,’.':',;.E&ZQ—J | S 70 Beu DATA MESSAGE] b
POSSIBLE SIU DELAY BCU DELAY FCR START
IN RESPONSE OF NEXT MESSAGE
Kx2-4ps (~2-5pus)
,4_3
w
w
dl V/RITE TRANSACTION
Jremaceas: 30 g i'l g{N+1)yps P 72 gy i
BCU SIU - [EIU LFUNCT DATA | DATA| DATA DATA VERTICAL s:u] SIU ADD BCY
SYNC ADDR |AddAR CODE BYTE1 |BYTE2| BYTE3 |**°| BYTEN PARITY sV SYNC
| BCU - SIU MESSAGE COMMAND AND DATA ECHO CHECK —

t
ASSUNMPTICNS:
e 9 BIT BYTE
° 3 BYTE 5CU COMMAND
* ECHO CHECK
* VERTICAL AND HORIZONTAL PARITY

!?1

POSSIBLE SIU DELAY
(2-4 us)

Figure A.4 Sample read/write transactions

i

. A.4.3 Descri.ption of the Transaction Sequence

nd el

The steps involved in read and write transactions using
this format are illustrated in Figure A.4. A brief description
of the transaction is as follows.

a) A read transaction begins when the BCU initiates a sync
signal on the bus, followed by transmission of the bus
command word. The BCU then waits the response.

b) All "up" receivers on the line receive the sync signal.
Each compares the SIU address in the message with its own
prewired address. If no match occurs the rest of
message is ignored, and then each SIU monitors the line
for the next BCU sync.

c) If the address check shows agreement, the SIU decodes the
EIU address and then routes the message to the specified
EIU over a serial channel*, while checking for horizontal

parity in each byte.

£ Z -" £ . ' B i) ? 2 i

d) The SIU awaits the parity check signal from the EIU to
insure that the message was received properly, and upon
its receipt, transmits an echo message to the BCU. If the

‘ EIU does not accept the message, the SIU transmits its
address echo with the appropriate error control bits set'
in the second byte of the command word.

oo

e) During the time the SIU is transmitting the return echo,
the EIU decodes the function code (channel address or
memory), multiplexes the requested input channels,
performs A/D conversion if requlred and sends the regquested
data to the SIU. A time lag is incurred by this process,
termed the LRU latency. It is discussed below.

-

e

f) The SIU verifies parity and continues transmitting the
data message to the BCU.

LG

The BCU, after transmitting the initial command, monitors
the line for the return echo. If no echo is received within
a fixed time interval, a transmission error is deemed to have
occurred, and the computer is informed via the I/O error control. !}

[

e

When the BCU receives the echo check, it accepts the
requested number of data bytes, verifies parity, and transfers
the data to the requested locations in computer memory, after L}
which the read transaction is completed.

-

. * Serial transfer is considered advantageous in minimizing
-the number of interconnections. E
156 ?
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASCACHUSCITTS 02138 - (617) 661-184C.

100
WRITE TRANSACTION
s READ TRANSACTION
e
[®)
Z
=
H
@]
—
<9
u
) I -
_ =
® 5
: —
3 1/0 TRANSACTION:
& e 8 BIT DATA BYTE
E e 3 BYTE COMMAND WORD
& e VERTICAL & HORIZONTAL PARITY
e ECHO CHECK
l | |

0 8 16 - 24 32
| NUMBER OF BYTES OF INFCRMATION

Figure A.5 Bus I/O transaction efficiency

157

1/0 TRANSACTIONS PER INTERVAL K

250

200

150

100

TRANSACTION TYPE:

e 8 BIT DATA BY TE
o VERTICAL AND HORIZONTAL PARITY

e 3 BYTE COMNIIAND
e ECHO CHECK ADDRESS

K =20 MS

K=1C MS

DATA BYTES PER TRANSACTION

Figure A.6 Freqguency of I/O transactions
versus number of data bytes

b

e e B

3 &3

=d

ey
i

~ Write transacticns are performed using similar procedures
as illustrated in Figure A.4. A total time to complete an I/O
transaction using this command structure and error control
procedures has been estimated for a block of size N bytes to
pe approximately:

WRITE transaction

Il

(59 + 9N) us

READ transaction (69 + 8N) us

A.4.4 Bus Efficiency and Latency

A.4.4.1 Efficiency. The bus utilization efficiency can be
computed by tne ratio of information bits in a transaction

to the total number of bits in the transaction. If we consider
the total number of bits in a transaction to be the total
transaction time (including delays, etc.) times the bus speed
(assumed to be 1 MBPS) we obtain a worst case estimate of bus
efficiency. Information transfer efficiency estimates for a
3-byte command format are illustrated in Figure A.S5.

The bus svstem will operate at about 50% efficiency for
transfers of 10 or mcre bytes. This illustrates the obvious
ract that to maintaln errficiency the software should be
structured to obtain information from LRU's in blocks. For
example, status data should be obtained in functionally related
groups, such as all temperature readings.

A significant factor is the number of I/O transactions
that the bus can complete in a minor bus control cycle. Figure
A.6 contains a plot of the I/O transactions, consisting of a
given number of data bytes, which can be completed during a
fixed interval of time. Based on an average block of length
8 data bytes, approximately 70 transactions can be completed
during a 10 ms interval. It is apparent that even though the
efficiency of information transfer may be less than 50% in most
cases, the actual number of transactions completed during an
interval of time should be adequate to service the expected
Shuttle I/O requirements. Figure A.6 illustrates that careful
scheduling of the bus during any minor cycle will be required,
particularly if the size of blocks vary.

A.4.4.2 Subsvstem Latency. When a read transaction command
is received by the EIU, an interval of time is required, called
the latency time, for the EIU to interpret it, to carry out the
command, and return the data. A delay can be causes by analog-
to-digital conversion, sexial/parallel conversions, inherent

159

" INTERMETRICS INCORPCRATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840"

equipment dynamics, etc. If an I/O request from the computer has
a latency time exceeding a certain fixed interval, it must be
organized into two or more transactions. An example is the
computer request for DME transponder range. The inherent
characteristic of the DME is that to obtain range to a specific
point, the DME measures tne time a signal takes to traverse

the distance to that point and back again. The latency time
required for this operation is intolerable in the I/0 transaction
structure described above. This type of transaction must be
divided into two transactions: one to command the range to be
read, and the other for reading the range. Coordinating these
interdependent transactions so that they occur at the right

time, presents problems to the I/O scheduling software design.

A form of latency occurs for certain types of block data
transfer from computer to subsystem. Error control that
depends on horizontal and vertical parity cannot provide verifi-
cation of the correct receipt of a data block until the last
byte has been received (the last byte is, in fact, the vertical
parity byte). To prevent erroneous data from being transmitted
to a.subsystem, the complete block must be buffered at the
terminal until it is verified. It is subsequently transmitted
to the subsystem for which it is intended. However, this
second transmission may take a considerable time, by bus
standards: a 32 byte block will take over 0.25 milliseconds
at 100 bits per second. This is enough time for several other
transactions to take place. :

For both kinds of latency, it is essential to allow no
inadvertent interference with the terminal from other
transactions. For this reason it is desirable to provide for
the indication of an EIU/LRU "busy" condition via the status
bit(s) associated with the SIU echo return. This bit can be
interrogated by the BCU to provide an I/O error indication to
the computer whenever another command is addressed to the busy
texrminal.

A.5 I/0 Timing Difficulties

A class of system problems exists in the operation of a
time shared bus which is associated with the correlation of
data and commands with "time". For example:

a) Correlation of data and absolute time. Several system
computations demand the acquisition of data from separate ‘
subsystems at the same time. For example, a navigation
measurement combines sensor data with attitude information,
correlates both to the same absolute time, and updates the

160

RO Y -

ST S SO

| POURE R W R

Bl

&2

=B D €I A =3 o

e

. navigation data. With a synchronously controlled data bus,
in which samplin is performed only at fixed minor cycle
intervals, time may only be established with a granularity
of the sampling period. That is, all samples taken during
one minor cycle are associated with the same time tag. If
a finer time reference is reguired it must be provided by
a local clock. In an asynchronously driven bus system
a finer reference time guantization may be obtained because
a specific I/0 command may be serviced within approximately
100 us {(depending on the I/0 gueue backlog) .

A related processing problem arises in the derivation of a

o

rate of change by differencing two measurements. In this
case a difference in time must be either assumed or computed
for two measurement samples. For high frequency samples
obtained with a synchronously driven bus, the order of the
I/0 command in the list may be important, particularly if

a fixed delta time is assumed in the calculation.

b) Local precision timing. Another problem that may arise 5
concerns the precision timing of events at geographically
separate and remote subsystems, for example, the timing
and coordination of firing commands to the RCS jet thrusters.
From a system point of view, it is desirable to design such

. subsystems to receive a message which contains not only
the couamand but also the firing interval. The impact on
I/0 complexity, bus traffic and response, of separate trans-
missions to command the thruster on and then off could be
considerable if this tvpe of bus activity predominates.
The capability for local precision timing may be incorporated
into the subsystem or terminal.

161

i
“ INTERMETRICS INCORPORATED « 701 CONCORU AVENUE « CAMBRIDGE, MASSACHUSETS 02138 « (€17) 661-1840

e

31 3

"

&

]

Appendix B

Data Bus Error Control

B.1 Introduction

Since the Shuttle data bus provides the sole communications
for onboard avionics equipment, an important design requirement
js that it provide a reliable transfer of information in the
presence of both permanent and transient failures. Permanent
failures are caused by equipment failures and are .a direct func-
tion of the simplicity and reliability of the data ‘bus system
elenents (i.e. BCU, bus, SIU, EIU, and LRU). Transient failures
are causcd by such effects as electromagnetic interference, which
must be anticipated in the Shuttle environment. The characteristics
of the interference are anticipated to be predominantly impulsive,
and primarily caused by coupling to the line of transients and
noice from switches, motors, relays or other sources. "Burst
Arrara fnvelving rmliiple errxors close together are to be expecte
in this environment. A major task of the data bus design will be "
to incorporate an error control approach which provides "security"
of comuunication in the presencz of noise of largely unknown
characteristics.

Several error control techniques' have béen applied in
communication systems to reduce the probability of undetected
errors. The technigues generally attempt to satisfy a proba-

ility goal within the system design constraints of cost, weight,
power, oxr bandwidth.

There are two basic objectives of +he shuttle data bus
error control schecme to be satisfied in the presence of potential
permanent and transient errors:

a) To maximize the probability that a transmitted message 1is
correctly received by the correct terminal;

b) To minimize the probability that an incorrect message 1is .
received.

Most commonly a particular error detection scheme has been

coupled with retransmission or forward error correction. Various

163

T

INTERIMETRICS INCORPORATED « 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 021239 - (617) £08-1840

R

‘ forms of information coding to obtain an error detection and/or
correction capability have becen used. Numerous codes have been
devised to satisfy a particular communication channel error
probability. Prior to dis~ussing the specific erroxr control
approach appropriate to the shuttle data bus, a review of informa-
tion coding schemes is presented with a discussion of their advan-

tages and disadvantages.

B.2 Information Coding Review Discussion

s

B.2.1 Coding Theory

Coding modifies the message to be transmitted by adding
redundant bits to the transmitted message. These extra bits are
examined at the receiving terminal to determine whether an exror
has been introduced and in some cases to locate the error bit
within the message so that it can be corrected.

The methods of detecting and correcting errors can most
easily be explained with the aid of the concept of Hamming
distance. Briefly, the Hamming distance between two strings of
. binary syrbols (of equal length) is the number of positions in

which the syrbols in the string are different. Thus, the synmbol

ey TR S

strings 1100 and 1000 are separated by a Hamming distance of 1,
while 1100 and 0011 are separated by a distance of 4.

In the study of codes, one of the parameters of interest is

the minimum Hamming distance between any two valid code words in I
the set (for codes in which all the cede words contain the same
nunmber of bits). Thus, if a code has a minimum Hamming distance
of two between any code words, at least two symbols must be
changed in order to change one valid code word into another valid
ccde word. With such a code it would be possible to detect any
single symbol erxor, and also many but not all, possible errors
affecting more than one symbol.

B.2.2 Single Parity

' A common example of such a code is the single parity ’
check, in which the code word is generated from the binary message
string to be transmitted by adding a single bit such that the
total number of "1l's" in the code word is even (or odd). The .
choice of even or odd parity has no effect on the random error
correcting properties of the code, and is usually made to faci-
litate the detection of certain equipnent failures which can
produce all "1tg" or all "0's" in the received message.

164

INTERME FRICS INCORPORATED « 380 GRLIN STRELT « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 858-184t

R D e A S S A TR L RN I PSR WRRNIS S R N O ST S NPT T (LIS Y3 [€N D e

4 :

8

—

.
—

-

——= —
i A %

o
¥
i
1}

In particular, errors affecting an odd number of bits will be

detected but errors affecting an even nurber of bits will not.
The single parity bit is extensively used for error control,-

principally because of its simplicity in terms of hardware. It

-

se
is effective against random independent noise.

B.2.3 Error Correcting Codes

For some applications, the mere detection of an error is
not sufficient. It is necessary to determine from the received
symbol string the nature of the error, or, to be more precise,
to determine the message that should have been received in the

<z

absence of noise. This can be achieved by error correction codes.

B.2.3.1 Hamming Single Error Correcting Code. The well-known
Hamming single exroxr correcting coae is an example. This is

a ccde having words of length oM-1 where m is any integer.
There are m parity bits and om~1-m informacion bits. The
construction of the code word from the message bits will

be illustrated for m=3.

> 592 9. hkh.;;_;ﬁ“ 3 'R '
2otk DPozataan Pl B, B3 B4 B5 B6 B7
Parity-Message Pl P2 Ml P3 M, M3 M4

The parity bits are determined from the eguations:

It

P. + M., + Lu, + M 0 (or 1) f(modulo 2 additions)

1 3 2 4
P, + My + My M, = 0 (or 1) "
Py o+ My £ My b M, = 0 (or 1) oo

At the receiver, the three parity equations are checked
to give three error states E3, Ep, and Ej. (A "1" denotes that
the eguation did not check, and a "0" indicates that it did.)
These threc error bits are ordered as a binary nunber E3EE]1,
called the svndrom, which equals nurber of the messadge bit that

should be changed.

e N ol [Tala =
INTEHWETRICS INCOK:

A .
"If two or more errors occur in the transmission, then either
the reccived word passes the parity tests and is incorrectly
accepted by the decoder, or the decoder recognizes that an error
h.s occurred but incorrectly identifies the nature of the error

.and incorrectly "corrects" the received message.

The Hamming codes -that .are discussed here have the interest-
ing property that every possible received word is within the:
error correcting distance (in this case a "sphere" with a "radius"
of a llamming distance 1) of some valid code wcrd. A code having
this property is called a perfect code or a close packed code [1].
In general, most codes do not have this property. In fact, for
codes capable of correcting more than one error, only a few such

codes are known.

B.2.3.2 Augmented Hamming Codes. 1In the case of non-perfect
codes, several strategles can be used when the received message

is not within the specified correcting range of any valid code

On one hand, the distance to each valid code word can

word.
be determined and the nearest valid code word selected for the

decoder outnut. If two valid code words are equidistant,
outside knowledge of the message probabilities could be used

to resolve the tie. At the other extreme, any received message
not within the assured error correc

ting range of the code could
Be labelled as a detected but uncorrectable error.

(

An example of a code for the latter strategy is the
augmented Hamming code generated from'the Hamming code described
earlier by adding one additional overall parity bit. This code
has a minimum distance of four, and, while it is not a perfect
code, every possible received scguence is within a Hamming distance
of. two of one or more valid words. This code can »e used as a
single error correcting, double error detecting code.

It is worth noting that a particular code can be used in
a number of different ways, depending on how the decoder is
mechanized. The extended Hamming code will detect some but not
all higher order errors (and will "correct" some other high
order errors to produce a wrong message). The same code could
also be used as a triple error detecting code. In this case, the
code will also detect many more of the higher order errors. In
fact, it will detect any error pattern that does not convert ’
the transmitted code word to another ‘valid code word.

It has also been shown that this same code can correct all
single errors and also all double errors in adjacent bits, provided

166

SEPORATED » 330 GREEN STREET » CAMBRIDGE, M ASSACHIISETTS 02139 » (617) 858-1840°

-

e

r

.,

e o

h

1
N

the parity bit is not in error [1%]. Using this decoding proccedure
very few if any higher order errors will be detected.

£.2.4 Higher Order Error Correcting Codes

Codes arce known which have sufficient Hamming distance
between valid words so that they can corrxect two Or more errors
in a block. 1In general, these codes are either trivial (repeti-
tion of each nmessage bit an odd number of times with majority
voting, called a binary repetition code), or are too ccmplicated
to describe in detail here.

among the better known of the constructive (non-random) codes
arc the Reed-Muller codes [20], and the Bose, Chandhuri and
Hocqueughen (ECIH Codes). BCH codes are a generalization of
Hamming codes for multiple error correction. The correction
procedures are, however, fairly complicated. The technique for
BCH error correction consists of solving the. roots of a N degree
polynomial and a set of N egquations, where N is the number of
corrcctable errors. The complexity of the correction process
forces BCH codes to be considered only for error detection.
Correction becomes feasible if a processing capability is avail-
able, and a delay in the receipt of the message is acceptable.
BCH codes are cyclic codes and have the disadvantage of being
sensitive to loss of synchronism since shifted cyclic code words
are ‘also vallid code words.

B.2.5 Burst Errors and Burst Codes

In many instances where coding has been employed to
detect or correct random errors in a data transmission system,
the improvement in system performance has not been as great as
expected. The reason is often that the assumption of additive
white gaussian noise, or other mechanisms which ganerate
indecpendent bit errors, is not valid. Generally, in a real
environment the errors occur in groups or bursts. Electro-
magnetic interference of duration longer than one bit trans-
mission time would be an error source with this characteristic.

. A simple example is provided below to illustrate such a
problem. Consider the case of a system operating at

one million kits per second, and using conerently detected amplitude
modulation at 15 db signal to noise ratio. We will assume that

the system is perturbed by gaussian noise so that erxors are

random and independent. The probability of a bit error for this
condition can be calculated to be one in 1.26 x 108 bits. The

code is a three error correcting coce having 23 bits, with 12 of
them information. The example is a special case known as the

167

~

3 INCORPORATED » 380 GRLEN STRELT « CAMBRIDGE, MASSACHUSETTS 02139 - (617) €GE-1340

FEREIETRGS

E INTERMETRICS INCORPORATED + 330 GRELN STREET « CAMERIDGE, MASSACHUSETTS 02139 « (617) 608-16¢

Golay code. This code is close packed, and we can, therefore,
neglect all of the possibilities of detecting higher order errors
as they always result in a word error. The following observations

arce made:

a) a single bit error in a word is expected with probability

23 x 7.9 x 10-9 = 1.8 x 10~7 per word, or once every 126 sec.
b) a double bit error will occur with probability 1.6 x lO":17
or once every 47.5 years.

¢} the prqbgbility of three or more errors and consequently the
probability of an undetected erxror in a word is vanishingly

small.

If, however, the mechanism of the disturbance is such that
for 10 consecutive bits the probability of error is 0.5, there
will be an average of 5 errors in the burst of ten bits, so error
bursts will occur every 630 seconds. Since .17 of these bursts
will have three or less errors, and neglecting the fact that
in some cases a burst laps over the division hetween two blocks,
a decoding error will occur approximately every 25 minutes.

The description of the purst error channel given above is
obviously a very simple case. Yet it illustrates the signifi-
cant difference in conclusions which can be drawn about the expected
perfornance of a control approach.

Some general observations can be made on the performance
of error control codes in the presence of burst noise. If a
code with a minimum Hamming distance of h is sused as an error
detecting code, any burst causing up to (h-1) errors will be
detected. For bursts causing more than (h-1) errors, most, but
not all, will be detected. The exact percentage of errors of
various lengths that will be passed depends on-thc code used.

At the other extreme, if the burst is sufficiently long
and severc, so that the received bits have no correlation with
the transmitted message but are instead received with a proba-
bility of error of 1/2 for each bit, then an estimate of the
probability of passing an error is again possible. If the coded
word has n bits, k of which are information, the remaining (n-k)
bits are redundant. The k information positions in the word can
be filled by the random process with any bits, and there will
then be -one and only one set of values for the redundant bits thdt
will result in a coded word. The probability of this particular

sot of values being chosen is (1/2)n7K,

The assumption that a noise burst will result in bits being

received as "1" or "0" with probability’ 1/2 is, however, not always

168

bnd Red Cd bd Gd

pr———
t

e~

valid. Sometimes a noise burst (or hardware failure) is more
likely to cause errors in one direction, such as turning "1's"

to "0's", than the other direction. Such situations arise from
the details of the modulation scheme used and the design of the
hardwvare, and are very Gifficult to evaluate in a general way.
When possible, it is usually good design practice to design the
code so that the most lilkely types of equipment failures will not
result in a valid code word. Exampies of this would be elimina-
tion of all "1's" and/or all "0's" as valid cocde words.

B.2.6 TFire Codes and Other Burst Codes

Some special error correcting codes have been developed
which are especially applicable to error correction in channels
which are subject to burst errors. For a given level of redundancy .,
these codes are able to correct more errors in a burst than would
be possible if the errors were assumed to be random. These codes
reguire long blocks and complicated decoding procedures. TwoO
examples of these codes are cited:

a) Fire Codes

Fire codes are oriented towards a single burst of errors per
message. They are inefficient for -short blocks, howevexr,

and ara not particularly geod for multiple bursts on a single
block.

b) Reed-Solomon Codes

The Reed-Solomon codes are a special case of the generalized
BCH codes, oriented toward multiple burst error correction.
They are moderately efficient, and for the same block length
are similar to BCH codes in decoding complexity.

B.2.7 Horizontal and Vertical Paritv Coding

A coding technigue which has been provosed for the Shuttle
paseline data bus systems is vertical and horizontal parity
coding. This coding scheme assigns a single parity bit to each
byte or word of the message (horizontal parity), and an extra
byte or word for vertical parity on the oreceding bytes. This
approach detects all odd nunbers of errors. An undetected error
can only occur when each byte and every bit position contains
an even number of errors. The scheme fails to detect errors only
when an ceven number of errors, ecqual to or greater than four, occurs
with the errors paired in rows and columns. The efficiency of
this approach is moderately high for messages of several bytes,

169

VERIDGE MASSACHUSETTS 02139 -

ey

(617) 863-1850

"

. but .is poor if the number of bytes of data in a message is small.
For example, the effective information rate of an 8 bit byte.

of data would be computed by

8N i . .
EIR = O D) where N is the number of bytes

It can be scen that for a small number of data bytes the
efficiency is low (i.e. 44% for 1 byte, 59% for 2 bytes). When
the block size increases, however, the coding scheme becomes more
efficient (i.e. 79% for 8 bytes, 91% for 32 bytes). Although
there are more efficient coding technigues, this scheme has a
major advantage in that its implementation in terms of the
encoding, decoding and detection logic required in the SIU, EIU,
and BCU data bus equipment is probably the simplest.

Bosd o bead bl Baned el Geid bl

B.2.8 Repecated Transmission
The repeated transmission of a data message over a single ’
path is a well-known method for error detection. Detection is_
accomplished by reguiring all messages received to be identical.
‘ The time diversity, or spacing of transmissions provides inde-

pendence.

[S

Implementation of this approach as the prime errox control
appronch in the Shuttle data bus would require the BCU to transmit
the (uncoded) data to the remote station, and vice versa, two &
or more times. The remote terminal would require a comparator
or voter to determine an "acceptable! transmission. Retransmission
for error correction is still required for ambiguous voting results.

- .

-

The method is relatively simple to implement, but is very
jnefficient, particularly for block transmission. In order to
get a Hamming distance four code for three error detection, the
message must be repeated four times. The same error detecting
capability can be obtained with many fewer bits using other coding

schemes.

bosd

B.2.9 Transmission Over Multiple Paths

The transmission of the message over multiple separate
paths between a single BCU and single LRU is similar to the redun-
dant transmission over a single.path. It is true that the
message is received and verified at the output with less delay
than is associated with the sequential transmission scheme, but

Y

[——

170

e

A

INTERMETRICS INCORPORATED » 330 GREEN STREET « CAMERIDGE, MASSACHUSETTS 02133 » (617) 8:8-1811

L

TERMETRICS INCORPORATED « 380

on an overall basis, there is no improvement in the utilization
rate of the available channel capacity. The necessity of providing
parallel channels to allow continued operation in the event of

a permanent hardware failure would directly affect the Shuttle

data bus if it were the prime error control method used. It

would require independent paths to be maintained for the FS mode

of operation, increasing the nutber of buscs required for FO/FO/FS.

The approach would increase the complexity of the BCU and
STIU units, since it requires transmissions over multiple paths
to be synchronized, so that comparison or voting could be
performed at the receiver, or storage for delayed receipt.

B.2.10 pata Feedback/Echo Check

In this method, uncoded data is saved in buffer storage
at the transmitting element and sent to the receiver. The
receiving element transmits back the entire message. The trans-
mitting element then performs a bit-by-bit verification of the
entire message. Upon verification by the transmitter, the receiv-
ing element is instructed to use the information on receipt of a
"verify" message from the transmitter.

Tf an error is detected the transmitting unit can retransmit
the entire message. If the error was caused by an external noise
transient, the second transmission should be valid. This method
is referred to as an echo. One of the problems with this approach
is the probability of transmitter's verification being in error.
An endless chain of echoes may result. in requiring the receiver
to echo tnhe ecno, etc. Complete feedback of "all data requires
twice the time to transmit a message. Lts main advantage is the
high degree of error detecticon it provides.

B.3 Detection and Retransmission Vs. Forward Error Correction

In the analysis of data transnission systems, two distinct
cases have been studied. The first case is Forward Lrror Correc-
tion, in which the decoder at the receiver studies the received
message and, if an error is discovered, attempts to deduce the
correct message from what was actually received. The second case
is retransmission, in which the decoder checks the received message
for signs of error, and if an error is detected the decoder informs
the transmitter. The transmitter can then retransmit the message
or take whatever other action is indicated. '

A forward error correction scheme is considered undesirable
for the Shuttle data bus since it would require too much complexity

SRIDGE, MASSACHUSETTS 02139 . (617) 868-1840

INTERMVMETRICS INCORPORATED - 380 GREEN STREET - CAB.WBRIEBGE, MASSACHUSETTS 02139 -+ (617) 868-1840"

at the terminal and BCU, particularly for correcting more than
1 error in a message. The method preferred is to combine an error

detection scheme with retransmission for recovery.

The advantages of the retransmission approach to error
recovery are reduced complexity of the decoder and the reduction
in the probability of an undetected error for a given level of

coding.

The classic studies of retransmission systems were reported

in two papers by Benice & Frey in 1964 [21]. 1In these papers
three cases were considered: !

1. Idle RQ - in which the transmitter sends a message and
then sits idle until the decoder indicates whether a
retransmission is requested. Presumably, this includes
a "no response" from the terminal.

2. Simple RQ - in which messages are sent continuously.

When an error is detecte
the source repeats the requested message.

3. Dual RQ - in which messages are transmitted as in Simple
RQ, except that the regquested message and all subsequent

messages are repeated. :

The Idle-RQ system appearc to be most appropriate to the
chuttle data bus, since the bus traffic is expected to consist
of a large number of relatively short communications between the
bus controller and the many terminals along the bus. The advan-
tages of the other schemes are achieved when full duplex trans-
mission systems (simultaneous continuous transmission in both
directions) is used. The Shuttle data bus is not expected to

be used in this manner.

The conditions for which the Idle-RQ scheme becomes a poor
candidate are not applicable to the Shuttle data bus. In many
data transmission systems, the transit time of the channel is
long compared to the length of a message. Thus, the transmitter
wastes a lot of time sitting in the idle state waiting for the
message OK or retransmit signal. In the Shuttle data bus, the
round-trip time to the farthest subsystem will only be a few

microscconds, or bits.

In.the data presented by Benice & Frey, the computed
probability of an undetected error for the Idle RQ system drops
rapidly until a certain minimum probehility is reached, and then
no further improvement is possible. This behavior is traced to
the failure of the retransmission request to be recognized at the

.

d and a retransmission requested,

Bl baed bead el bl bead

Bl badd hoisd

Coed . Bl fad foed bid Ged

[

PR

transmitter. The minimum error probability is the probability
that sone kind of error will be detected in the forwvard message,
and then the retransmission request is changed to a confirmation
that the message was OK.

In the other: two retransmission schemes, the retransmission

request was cncoded as a rart of a message moving in the opposite
direction and was, therefore, protected by the same level of

coding as the original 7°s~?gp. The occurrence of any error in

a returnsd mescage was construed to be a retransmission reguest

for the forward massage. This attitude results in a small decrease
in throughput rate, and a large decrease in probability of an
undetected erro ‘

In the Idle RQ scheme, BenicD and Frey postulated a one bit
confirmation message for most of the work, and this results in

a mininum DrOJqLLthy of undetected word error of about 5 x 10-8
for a bit error probability of 107 5 and a 511 word message By
changing the returned accept retra nsmit request messadge to a

7 bit forrat, the minimum probability of an undetected error was
reduced to 5 x 1038, The point to be made here is that the
retransmit reguest must be sultaoly protected if it is not to

turn out to bz the limiting factcr in the pvobabili*v of error

in the transmission syvstem. The ponal ty for this is a slight
reduction in the throughput rate of the system, which does not
appear L0 De @ priwe cousiuelatlon in the Shultle data bus sysctem.

ALIBRGGE, MASSACHUSETIS 02139 » (617) £85-1340

| S R -

&
| =

References for Appendix B

1. Berlekamp, LE.R., Algebraic Coding Theory, McGraw Hill
300k Co., New York, 1968. .

2. Abramson, N.M., "A Class of Systematic Codes for Non-—
Independent Errors", IRE Transactions on Information
Theory . PGIT5, No. 47 December 1969, pp. 150-157.

SN DR O R -

3. Peterson, W.W., Errxor Correcting Codes, The M.I.T. Press,
Cambridge, Mass., 1961. '

4. Benice, R.J. and Frey, A.H., Jr., "An Analysis of Retrans-
mission Systems", IELE Transactions on Communication
Technology. PGCOM-12, No. 6. December 1964, pp. 135-145;
and "Comparisons of Error Control Techniques", Ibid,

pp. 146-154.

ok o

£9 e

= td B £33 e

174

L 1

el e e B L s e e et VR g e e Hes T EOs D40 3 TEETN L R G8-1840

Appendix C

Literature Review of Avionics Executive Systems

The purpose of this appendix is to review several articles
whose content relates to the Space Shuttle executive design.
The executive features presented in the articles are outlined,
and those having direct bearing on the Space Shuttle executive
design are emphasized.

I. "Improved Centaur Computer Operating System", by S.W.
Matthews, AIAA Aerospace Computer Systems Conference, 19691227].

‘The Centaur executive control allows for a system driven
entirely by hardware interrupts, or entirely by a programmed
task scheduler, or a combination of both. Matthews feels
it apparent that a software system having hardware interrupts
for asynchronous nonperiodic demands of peripheral hardware
’ and a programmed -task scheduler for semiperiodic tasks,
would result in the most Flexible hardware/soitware system.
Such a structure is a desirable feature for an aerospace
executive system as explained in Chapter 2.

The task scheduler is entered when a task ends or when

the real-time interrupt occurs., It operates off a task
table which is an ordered list centaining the status of

the functional tasks to be executed. The order of the list
determines task priority since the table entries are
processed in sequential crder. Each entry contains a task
start time, frequency for cyclic tasks, location of task,
task interrupt bit, and a special action indicator.

The interrupt bit indicates whether a task has been
interrupted by the executive task scheduler; that is,
whether a higher priority task received the processor before
the former task finished execution. The special action
indicator is used as a flag to indicate the requirement

of executing a communication or control subroutine. These
routines can vary with the particular application and .
may be added to or deleted from the system as requirements
demand. Thus, the system can adapt to its environment
through special action routines.

175 _
INTERMETRICS INCORPCRATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

. e e - T -

INTERMETRICS INCORPORATED - 701 CONCUORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 -

IL.

Tasks are executed as a function of list position, interrupt
status, and start time. Any task can interrupt any task
following it on the list. Thus, the most frequently

cycled task must occur first on the list. The control
algorithm is shown in Figure C.l. This method of inter-
ruptlng a task is undesirable on the Space Shuttle because
it raises data integrity problems. Whenever a task is
interrupted, a copy of all the data which this task shares
with other tasks and which can be modified by other tasks,
must be saved. The Compool approach is an effective solution
to this problem.

"A Simple Real-Time Executive for an Aerospace Data
Management System", by Peter Adler, MIT Draper Laboratory,

E-2579, May 1971 [23].

The basic functions that this executive performs (as indeed)
most executives do) are job dispatching, resource allocation,

‘and I/0 control.

The dispatcher works off a priority queue of jobs. It is
entered when an application program ends and selects the
highest priority job for execution. Three priorities

are recommended, each having a gueue organized on a FIFO
basis. Both time and event scheduling are possible in
the system. A wait gqueue for jobs awaiting I/0 is
suggested but no dynamics are presented.

Adler recommends dynamic storage allocation for job
temporary work areas. Thus, reentrant programming and
data sharing are possible. To avoid fragmentation of
memory , all available storage is organized into equal

size blocks with a threaded list structure. Although
dynamic storage allocation is a desirable shuttle executive
feature, it is unclear whether all allocated blocks should
be of equal size. For example, if a task requires several
contiguous blocks of storage, and if memory is already
fragmented, contiguity will not be possible. However,

by having a. large sized single block of core ready for
allocation, the task's reguest can be granted.-

In Adler's system, jobs are segmented into 10 msec blocks.
Every 10 msec a breakp01nt allows the job to be suspended
if a higher priority job is pending. A programmer must
be ‘sure all vital data are entered in temporary storage
before a breakpoint occurs. This mechanism also aids in
program verification and is a desirable executive feature.

176

(617) 661-1840

- [- | T—| Besidl - | sl

)
e |

&

CLEAR
INTERRUPT

1

EiwmbLE
INTERRUPT
SYSTEM

i

4

DISARN e .
REAL-TIME :
INTERRUPT
“ :
.
|2 | save ALL i
L] VULNERAELES
~ E?\
‘.gr 7
UPDATE REAL-TI:E
- 2 INTERRUPT
® S [—
{r SET INTERRUFT | ﬁi_?ifxT}f,,TASK L
| 1 | = ‘”l‘" 1 | P 12 s | 18us
1 v b I NO ‘
SET TASK ¥ p— i\ %y 15 TASK () 5O : TIME TO ,
TOINTER —a ;g;cmﬁ,ff,}"z‘ - I8 STATE OF , START
f=1 r ‘ j 3 INTERRUPT? A TASK (1) ?
‘ ~1- YES ¥ vEs Yyes
PECIAL . «f REsET CLOCK =+
e INTERRUPT PERICO (1) =
AS REQUIR
i 1DICATOR (I START TIME (1
< 12 ks N | ‘[7 v
' o ET LINRAGE
2 RESTORE ALL - [?515{»15.1»\?
= VULI.ZRABLES (b e | entav o
o~
] “} $
DISABLE AR
ARM REAL-TIME REAL-TIME
ENABLE INTERRUPT
v X
Y
.
Figure C.1 Control Module Executive Algorithm [22]
,. 177
i
4\ s
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Gl

To avoid two jobs updating common data, an interlock bit
. mechanism is proposed. This mechanism could be avoided by

judicious program segmentation such that the use of shared
data is completed within one program segment.

Gand Geed

As an alternative to I/0O interrupts, Adler sujgests I/0
device polling which eliminates the need for hardware
buffer queues. All I/O is done by one job to avoid
conflicts. There is then one interrupt to allow iritiaticn
of the I/O monitor at a fixed frequency. This method of
I/0 handling is advantageous for data acquisition. However,
when data is .outputted, there is no way to know when

the transmission is done since there is only one fixed
frequency interrupt.

b bwad Cowend

Adler avoids mention of synchronous vs. asynchronous
structure. The executive he proposed allows time and event
scheduling, so it is not fully synchronous. However, Jjobs
can also be scheduled cyclically so it is not fully
asynchronous either. This blend of the two structures

is a desirable Shuttle feature.

B2 bk od

‘ . III. "STS Software Development (Study Task 5)", MIT Draper
Leboratory, E-2519, July 1970 [24].

MIT lists four criteria for the Space Shuttle execnutive
system:’

B

1. Efficient resource allocation

L] v

2. Sufficient features incorporated to permit efficient

programming and running of mission oriented programs.
These include:

beed &3

a. priority execution gueue

b. time execution gueue

c. event execution queue

d. temporary storage allocation
e. I/O scheduling

f. I/0 execution

ad Gd Gdd

e

178

i

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ~CAN%%NDGE.MASSACHUSETTSOZ138-(617)5614840~

P

. ‘ g. interlocking of shared data
h. modification of protected data

3. Fast and simple executive execution, e.g., by avoiding
looping, indexing, and indirect addressing.

4. Uncomplicated interfaces between executive and
application programs.

In addition, application programs must conform to certain
criteria.

1. Modularity: there must be rigid and well-defined
rules for programs interfacing with each other.

2. Use of executive routines to minimize program overhead.

3. Program segmentation to allow long tasks to be
safely interrupted.

4, Temporary storage requests must be done through the

executive.
. Dynamic storage allocation is also recommended to minimize
conflicts over dedicated locations and to allow for

reentrant subroutines. As mentioned above, this is a
desirable executive feature on the Shuttle.

These criteria for both the executive and application
programs support Intermetrics' views on Shuttle programming
as evidenced in the features of our executive system design.

@

179

g

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSFTTS 02138 - (617) 661-1840

BIBLIOGRAPHY

Ls IBM Corporation, "Space Shuttle Phase B Software
Specification (Preliminary)", IBM No. 70-~D33-0020,
December 21, 1970.

2. McDonnell Douglas Corporation, "Space Shuttle Data:
Avionics", MDC E0395, June 30, 1971

. 19 IBM Corporation, "Programming Manual for System 4 Pi
Model EP", in Aercsvace Digital Computer Data for
Mission Module Contractor, IBM No. 66-M22--020A.

4. IBM Corporation, "0S/360 Supervisor and Data Management
Services", IBM No. GC28-6646. :

5 IBM Corporation, "Space Shuttle Executive Control
Program (preliminary)", Huntsville, Aug. 16, 1971.

6. Intermetrics, Inc., Develonment of an MSC Language
and Comniler, Cambridge, lass., June 1971, prepared
‘ under Contract NAS 9-10542.
[incerm=trics, inc., The Programming Language HAL -

A Specification, Cambridge, Mass., June, 1271, pre-
pared under Contract NAS 9-10542, MSC Document #
15C-01846.

8. Intermetrics, Inc., Standard Interface Definition for
Avionics Data Bus Svstems, Cambriage, HMass., May, 1971,
o prepared under Contract NAS 9-11477.

9. Coffman, E., et al, "Deadlock Problems in Computer
Systems", Proc. Conf. sponsored by Software World,
U. Sheffield, April 1970, pp.41-48.

10. Coffman, E., et al, "System Deadlocks", Comp. Surveys,
3(2), June 1971, pp. 67-78.

11. Denning, P., "Resources Allocation in Multiprocess
Computer Systems", PH.D. Thesis, MIT, May 1968.

12, Dijkstra, E., "Structure of The Multiprogramming System", -
CACM, May 1968, pp. 341-346.

i3. Habermann, A.N., "Prevention of System Deadlocks", CACM,
12(7), July 1969, pp. 373-377. ;

°

{
L

181

f
l“INTE”VFU%CQINCORPOQATED-701CC%KINN)AVFNUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

bed Bl

. 14. Holt, R.C.; "Comments on Prevention of System Dead-
’ locks", CACM, 14(1), January 1871, pp. 36-38.

15. Murphy, J.E., "Resource Allocation with Interlock
Detection in a Multi-task System", Proc. FJCC, 1968,
pp. 1169-1176.

16. Pepe, J., "Protection Strategies in a Multiprocessor
Computer", Intermetrics, Inc., Multiprocessor Memo
#03-71, July 1971.

R

17. Vyssotsky, V., et al, "Structure of the MULTICS Sup-
ervisor",; Proc. PJEC, 1965, pp. 203-212.

%1 4

18. Berlekamp, E.R., Algebraic Coding Theory, McGraw Hill
Book Co., New York, 1968.

& a

19. Abramson, N.M., "A Class of Systematic Codes for Non-
Independent Errors", IRE Transactions on Information
Theory. PGIT5, No. 4. December 1969, pp. 139-157.

20. Peterson, W.W., Error Correcting Codes, The M.I.T.
Press, Cambridge, Mass., 1961.

‘ 21. Benice, R.J. and Frey, A.H., Fr., "An Analysis of Re-
transmission Systems", IEEE Transacticns on Communication
Technology. PGCOM-12, No. 6. December 1964, pp. 135-145;
xnd "Comparisons of Error Control Techniques", Ib.id, gg{
pp. 146-154.

: . ¢

22. Matthews, S.W., "Improved Centaur Computer Operating ig

System", AIAA Aerospace Computer Systems Conference, .
1569.

o Eg

23. Adler, P., "A Simple Real-Time Executive for an L

Aerospace Data Management System", MIT Draper Laboratory,
Report E-2579, May 1971.

24, MIT Draper Laboratory, "STS Software Development (Study
Task 5)", Report E-2519, July 1970.

e R e I e S e I

@

o

182 ra
: 14 8

o

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 651-1840 -4 j

==

L O,&/ O, ;4) / LA E T T

MNew Joh VALee

FASK D1SpRrekinls AN ppnt 7480 L

COMSTE I]S
Gunnriry oF soF%paes
CARLIC Fewisrigs o F S0 Plmre
CoMpeeresr chMepcleisries
SRR I SysSers
Bus conrmwoc p,ézlo.:a,mé;

K&y 1350a&S p7Fes A8y FXESePVE Desipa
RVIONICS Sysherr con Figawrrron
APPLicpwriods soFFuw &
NOST 00s pecteR SySFets iy Si/rB8AI20
THSK CLonrxoc
BESODOrCE pLloc prron
I Pl OPF fppidlen)s

SRS S e My reolS
CEMTRALI BED 1IL)) COMPUIER ecorplex
KGN SPEEYD DI7A 3J8 (TiM&E Mmalriplexed)
COMTPUTERS OPERNTE X Srkplek LEDUMDNNT NDE
FIRLTI CoMpicltel Oper)rT/oN
Froimne corpatett Peu Zownrs b
WREdo prsE Vo ity

Lot i1 #0 &) W ESPo/SE Jro0&
EXTERANL S YNERRON 2421104/

PRIt ACY EXELTIVE SHAcTIONS

TSN PTNNFEATENT) s foodicl i § con i
F70 SrANSFE Sl
CON Zo 5 B 0/0 PN Bt oS

COWMIEL L ST rurLE
JymespporodS
ASynekboroo s
Prrorke)y 0+Sr/HIrck 5
FOREGLOIMY
CYeLie SEQUELcER
Hi pe10e4 Ky ayeolrie FAPSKS
TI14rEse s KERIUPN E i o fed
Fixed AeLPLsic § 4
PREOG jguIrined SEQ LEN/AOF
JEQPUENCE COMTIIL I/IPEBLES
ek Groor D
Ploroms by &tsposypehle i)
rrield])r Level pr/os s>y
SEGrr O IED DISIrtrch rar

FASK SnpPrro & } MHORE PREDIcINSEE
intesesecp Frow Porois

TIMMIRG L RPESPONSE phrrsc fowisics

TASKS i .fa{z'/uté' TrISHK S
THSKS ERAM FPoST7T s/ DEPOS/ ever/7S

ne/ro,e; CRGHANIZIHIION HLlOcP770A/
JTOTARL MMtSSr0M HES/IDENT

PARSE pssvrdertT osecwlny
Dyxari c nemory by parors sy Level
TRASK Raporiee rv e /S /.e:“a/e Ferttined
Compoo l
M SSI0M Lgzrden 1/ SrRTIenily Aipied
PHRSE ovcelimy [sinriniiy fsy olets2y oS ASE

Z/o
on oermmpiwd [1FD
JrPBLE vrIVer

&R pPseovere ¥ 4
N TN e Sppoes
SOFA ARE cANOAS
STPHE 5l syshess crofosre REVIELY pckon,
TRt omch cron olmss
Adochl pgLg&coven 4
S g shesr Lo % P LN /70

CATERIWE 0 hento ol conwroe ek guss
JArESC S PavieES
EVENT SeryscsS

ED M DIMNT 977 M 188 COMPON N IS
REDLMD BT J7/958 SIDINSFE
At#;t? 7E D wS&
PCESTHICIED LI)I7E jpcclIS

MRIN prerory St2&
SUFFice&¥T forw SINGLE }riSScok phncs
APPL Soibw mws
eyelre rI*SKS (o sps)
LESPONSE JLREQIETT JrPSKS (PRE Selected roak)
DEITNLOD THRSKS (opn evenr ok ri/r6E)

