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ABSTRACT

A set of techniques is described which permits the de-
sign of computers particularly well suited for outer space and

other airborne control applications. These techniques are un-
ified by reference to a representative computer.

Some of the properties of the computer are: variable

speed, power consumption proportional to speed, relatively
few transistors, relatively large storage for program and con-
stants, and parallel transfer of words. Certain features of the
input system permit automatic incrementing of counters and

automatic interruption of normal computer processes upon re-

ceipt of inputs.

The program and constants are stored in a wired-in

form of memory which permits unusually high bit densities.
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DESIGN PRINCIPLES FOR A GENERAL
CONTROL COMPUTER

INTRODUCTION

The subject of this report is a medium-speed, general -
purpose digital computer designed to serve as a controlling ele-

ment for a deep space probe or other complex airborne system;

it is a continuation of the work presented in Report R-235:“.

Major features of the design are the small size and weight of this

computer, its rugged construction, low power consumption, and

a combination of circuits and logical organization which allows

many sophisticated operations to be accomplished quite simply.

All of this can be achieved by circuits composed of magnetic

cores, diodes, and transistors, with the latter being few in

number relative to comparable existing computers.

The computer is not presented in the context of a specific

application, but rather as a collection of useful techniques and
approaches, especially with regard to inputs and outputs. To

assist the reader in visualizing reasonable areas of potential
uses, sizes and speeds for a representative machine are none-

theless discussed These would vary with the control applica-
tion, but are meaningful in indicating the kinds of problems the

computer can best solve. The remainder of this Introduction

summarizes the principal characteristics of this machine.

Chapter 10, Vol III, A Recoverable Interplanetary Space Probe
MIT Instrumentation Laboratory Report R-235, July 1959.



Computer memory consists of a wired-in section for
program and constants plus a smaller volatile memory for

variable items. Both are random access in nature, with all

transfers occurring in parallel. The wired-in memory provides

for storage of information at a density between ten and one hun-

dred times that achieved with the volatile type of memory (see

Chap. 4, Section A of this report). As a result, the proposed

computer is well suited for the solution of a large class of air-

borne and spaceborne control problems which require the
versatility afforded by long and intricate logical or arithmetic

programs, or require the storage of many constants, but which

use relatively few variables. The representative machine pos-

sesses about 4000 words of wired-in storage and 128 words of

volatile storage, all words being of the order of 23 bits in length,

plus a parity bit. Estimates of a representative computer’s

size and weight are 0. 37 ft3  and 20 lb.

Various input-handling techniques are presented which
assist efficient computer utilization. The input lines are not

scanned; when an input line becomes active, the computer inter-

rupts its present activity to tend to that input, returning to its

former task after the input has been dealt with. This mode of

operation is particularly advantageous in the case in which there

are many slowly varying inputs. (A scanning system requires

that computer speed be increased with an increase in the number

of input lines. ) However, the computer is also well equipped
for the counting of rapid trains of input pulses; each such pulse

:::
costs only two clock cycles on the part of the computer for its

processing. These techniques employ the efficient time Sharing

of a small amount of common equipment and thereby permit a

relatively complex control situation to be handled by a small

computer.

:I:

A clock cycle is composed of two clock pulses, cy and p.

8



The order code for the representative computer is of the

single address type and is one in whrch  3 to 5 clock cycles are

required for the operations involving transfer of information

from one point to another or for logical operations. Addition

and multiplication, however, require an average of about 27 and

750 clock cycles respectively; in fact,multiplication  is accom-

plished by a subroutine. At a nominal 100 KC clock rate, multi-

plication requires 7. 5 ms, addition 0. 27 ms, and many other

operations only 0. 04 ms.

Computer speed is variable, and can be controlled both
by external events and by the computer program itself. When
functioning at full speed, the computer will consume power on

the order of 20 watts, exclusive of input and output equipment.

The electrical design, however, permits the computer to func-

tion at any clock cycle rate from a nominal maximum of 100 KC

to zero cps, with a power consumption proportional to speed.

Hence it is possible to take advantage of long periods during
which the computer need not operate very rapidly, and save

power. While in this semi-dormant status, the ability of the

computer to process input information instantly on demand is in

no way impaired; thus the effective operation speed can be ex-

actly that dictated by the input requirement. This property is
clearly useful in the case of a deep space probe.

The computer is expected to be long-lived, in the sense

of no catastrophic failures. This is because the number of actrve
components is low (of the order of 1500 transistors), and the

power dissipated in each of these is well within the components’

ratings. Tne possible sophistication and length of the computer
program can be used for checking computations and to provide

alternative actions in the case of failures of parts of the con-

trolled system. Thus the survival capabilities of the controlled

system could be increased significantly, especially in the case
of temporary malfunctions.



The remaining chapters in this report discuss in some

detail the logic and circuits for this computer. An effort is

made to lead the reader progressively from the simple and

separate elements of which the machine is composed, taward the

complexities of the overall logical organization; the report is

therefore best read in sequence. Many details are passed over

in the process; the first rudimentary version of the machine is

just now being assembled, and many changes are certain to be

made. The overall organization and logic, however, appear to

be sufficiently unique and promising in their possible applications

to justify a report at this time.

1 0



CHAPTER 1

GENERAL ORGANIZATION OF STORAGE

A. The Core Rope (Wired-In Memory)

The term “core rope” is used to denote the device used
as the wired-in or “fixed” storage for this computer and as the

selection switch controlling oper.ation  of the volatile or “erasable”

storage. The term is derived from the physical appearance of
the array of cores and wiring; a rope of 256 cores is shown in

Fig. 1-1. By means of the rope wiring pattern, an arbitary

binary address can be translated into the switching of a single

corresponding rope core, which may in turn cause other actions
such as read-out of an associated erasable (volatile) storage

register. Additional sensing-wiring through the core permits

the read-out of a wired-in binary number upon resetting the core,

providing a medium for fixed storage.

The core rope, which was invented by Olsen of Lincoln

Laboratory, and which is also known as the Diamond Switch, the
Rajchman Selection Switch, and the Linear Selection Switch,

makes use of cores as saturable pulse transformers. The cores
are small permalloy ribbon cores, with a fairly square hysteresis

loop. A small 8-core rope is shown in schematic form in Fig.
l- 2. There are two pulse generators, one providing a ground at

point (1) at TIME 1, and the other providing a ground at point (2)

at TIME 2. The duration and timing of these grounds are shown

in Fig. 1-3. The lines marked A, A,  B, B,  C, and c are called
Inhibitors. The slanted line at the intersection of a core and a

wire shows that the wire in question threads that core. The

1 1
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direction of the slant relative to the current in the wire indicates
the direction of threading.

All eight cores shown in Fig. l- 2 are initially in state

ZERO. The Set line puts a current through all the cores in a

sense that drives all cores toward state ONE. A current-carry-

ing Inhibit or, on the other hand, prevents those cores which it

threads from switching from ZERO to ONE. If it does not carry
current, i. e., if it is not connected to point (1)  by virtue of the

position of the appropriate switch”‘, then it has no effect on any

core. Each pair of Inhibitors in Fig. 1-2 may be regarded as one

binary digit position in a 3-digit address; one and only one In-

hibitor from a pair is active at any time. It is easy to verify

from the wiring pattern shown that each of the eight possible

combinations of inhibitors connected to the pulse source cor-
responds to a single core being switched from ZERO to ONE by

a current through the Set line, all other cores being inhibited by

at least one inhibiting current.

The Clear line, which carries current at TIME 2, tends
to drive all the cores toward state ZERO. However, there is
oulyolle  co1.e  to switch, the core that is in state ONE at that

time.

Thus far we have considered how a core is selected, but
not how information is stored in that core. This is accomplished
by means of an additional set of windings on the cores of the

rope, as shown in Fig. 1-4. As before, a threaded core is shown
by means of a slanted line at the intersection of core and wire.

For example, core number (7)  is threaded only by Sense line d;
core (6)  is threaded by all Sense lines. Upon selecting and
switching a core (say (4)), all Sense lines which thread it will

:::
Symbolized in Fig. l-2 as a relay contact, but electronic in
practice.
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have an emf induced on them, and the remaining lines will not.

Thus a pattern of ONE’s and ZERO’s in the resultant word can

be specified by prescribing which lines do and do not thread the

corresponding core.

In practice, the signals are observed at Clear time rather

than at Set time, because the interference or noise induced by

the currents in the many Inhibit lines masks the signals induced

by the Set current. Nevertheless, the engineering problems of
eliminating or minimizing the various sources of interference of

this nature have provided one of the main obstacles that was

necessary to overcome in the course of developing this computer.

The situation is felt to be well under control for the memory

sizes presently considered, but might constitute a problem in

extending this technique to memories of significantly larger
size.

Clearly, the size of the word stored per core is arbitrary,

depending merely on the number of Sense lines. As a last re-
mark, the whole core rope system may be thought of as a coding

switch, with a correspondence between inputs (inhibiting currents)

and outputs (emf’s on Sense lines), rather than as a “memory”

in the traditional computer sense. It is noted that the above
method for selecting a core and making it switch is very econom-

ical, for it requires the logical minimum of 2N Inhibitors for

selectin  one out of 2 N cores.

B. Erasable Storage Registers

Each core of the rope just described may be regarded as

a register, since it stores a word. However, that word cannot
be erased and a new one put in its place because of the wired -

in nature of the information, and hence these are known as “fixed
registers”. In order to store variables, it is necessary to have

registers such that their contents may be changed; these will be
called “erasable registers”. The two kinds of memories will

1 7
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be referred to as the F memory and the E memory, or often

simply as F or E. An operational description of an erasable

register is shown in Fig. 1-5. Transfer of a word into and out

of a register is done in parallel, i. e. , at one pulse time. In an

erasable register, a separate core is required for each binary

digit to be stored, in contrast to the fixed register (rope core)

which stores many digits per core.

Shown in Fig. l-6 is a three-bit erasable register. When

the control core is made to switch from a ZERO to ONE, tran-

sistor Tl  saturates, and cores (01,  (l), and (2)  are cleared to

ZERO. Those cores which are at ONE will induce an emf in

the corresponding Sensing lines in the process of being cleared;

ideally, those which are already at ZERO will not. Thus the

contents of the register may be read out; e. g. , to the special
buffer register shown in the figure. Note that the process of

reading out from an erasable register leaves all its cores at
ZERO. If the original contents are to be preserved they must

be written back into the register by a subsequent operation.

To write
:::

a word into an erasable register it is neces-

sary to provide a current source on those writing lines for which

a ONE is desired. This is indicated in idealized form by a set

of relay contacts in the buffer in Fig. l-6. Writing occurs when
the control core is switched from ONE back to ZERO. At this
time transistor T2 acts as a gate to permit current to flow from

ground to the point marked t-V). A ONE is therefore placed in

those cores which correspond to closed switches in the buffer

register. The diodes of the Write lines prevent interactions

between different registers.

A system of three erasable registers of three bits each,

-

To write into a register is physically the same as to set all the
register’s cores; the convention used here is that whole regis-
ters are written into, while individual cores are set.
cleared.

Both are

1 9
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together with a buffer register, is shown in Fig. 1-5’. It is seen

that the buffer itself is simply another erasable register, sepa-

rated from the other three by suitable sensing and writing ampli-

fiers. In order to transfer a word from a register to the buffer,
it is necessary to have time coincidence between a pulse on the

Clear line of the register and a pulse on the Write line of the

buffer. To transfer a word from buffer to register, the process

must be reversed; i. e., the Clear line of the buffer and the

Write line of the register are pulsed at the same time. The

active elements in the Clear and Write lines of each register in

Fig, l- ‘7  are the respective transistors Tl  and T2 in Fig. l-6; thus

each erasable register is composed of an array of cores and

diodes plus two transistors.

The results of pulsing a register’s Clear line without

simultaneously pulsing the buffer’s Write line will be to leave

all the cores of the cleared register at ZERO, and the cores of

the buffer unaffected. If the buffer is cleared and the register

Write line is pulsed, without having previously cleared the reg-

ister, then the contents of that register will be the “logical sum”

or bit by bit meet of ONE!sfrom the word previously in that

register (word A), and the word just cleared from the buffer
(word B). In other words, the register will contain a ONE in
those positions in which either word A or word B (or both) had

a ONE.

Another possibility is that of transferring information

between the buffer and two or more registers at the same time.

If, at the time the buffer is cleared, the Write lines of the

several registers are impulsed, the contents of the buffer will

be transferred into each register (assuming them to have been

cleared previously). Correspondingly, if two or more registers

are cleared at once, the.resultant  information written into the

buffer will be the logical sum of the contents of those registers.

‘21
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C. The Erasable Storage System

Shown in Fig. l-  8 is a ten-register erasable storage sys-

tem, identical in operation to the small system of Fig. 1-7, but

with additional useful notations illustrated. Examples are pro-
vided of several operations which can be performed on a word

by use of a register with special rearrangements of the Write

and Sense lines. For the sake of definiteness, the number of

digits and the structure of the computer word are taken to be

those for the representative machine. Each normal word has 24
binary digit positions numbered from 0 (low order bit) to 23

(high order bit). D’lgit  0 is customarily the parity bit (see Chap. 2,

Section A) and, for numerical quantities, digit 23 is the sign bit.

The Write lines in Fig. 1-8 are represented by the arrow
at the left, and directly over the arrowhead is, for each register,

the list of Write lines (W) versus the bit positions of the register

(R). Similarly the right hand numbers S and R refer to the Sense

lines which thread the registers, and to their correspondence.

For example, Register 1 has lines 23 through 0 connected to bit
positions 23 through 0, on both the Write and Sense lines. This
is of course the normal configuration; the wiring rearrangements
in Registers 2 to 5 are the exception. Unless a register has

markings to indicate the contrary, it should be assumed that it
is a normal register (e.  g. , Registers 6 through 10).

Registers 2 and 3 illustrate how wiring can be used to

break a word into separate parts for manipulation by the computer.

Transfer of a word from the buffer simultaneously into these two
registers places digits 12-l in Register 2 and digits 23-13 in

Register 3. When Register 2 is subsequently transferred back into
the buffer, only the low order digit portion of the original word

will be involved; Sense lines 23-13 pass through no cores in Regis-

ter 2, and will hence carry no pulses (i. e. , ZERO’s) to the

sensing amplifiers. The clearing of Register 3 will cause digits

1, with the23-.13 of the original word to appear on Sense lines ll-

2 3
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result that these digits are effectively shifted twelve positions

to the right by the wiring of this register. Note that the parity

bit (0) is omitted from the wiring of these registers, as it would

lose its significance here.

As a further example of wiring rearrangements, Write

line 23 is connected to bit position 1 in Register 4, Write lines

22-l are connected to bit positions 23-2 respectively, and digit

0 is left invariant. The net result of writing a word into Regis-
ter 4 is to shift it left one bit, with end-around carry, preserving

the parity bit in the process. Further transformations may be
obtained by manipulation of the Sense lines versus the register

bit positions, as in Register 5. Here, Sense lines 23 and 22
both are impulsed by the clearing of core 23; Sense lines 21-1 are

connected to bits 22-2. The result is to shift the word right by

one digit, with the new digit position 22 being filled with a ZERO

if the word is positive (digit 23 ZERO), or with a ONE if the

word is negative.

The method for selecting a register is shown in Fig. l-9.
The figure shows a more complicated arrangement of the clearing

and writing operations than is illustrated in Fig. 1-6. The added
complexity provides greater flexibility and is further made

necessary by timing considerations which are discussed in

Chap. 1, Section D.

An erasable register is selected by means of a core rope,

such as the one described in Chap. 1, Section A, where each

core of the rope corresponds to a register. As before, all
rope cores start at state ZERO. Selecting a core results in a
single core (say core x of Fig. l-9) being set to a ONE; nothing

else happens at this time. When the rope core is reset by a
pulse on the CL E line (for Clear E,  and previously called the

rope Clear line), core x is switched back to ZERO, which causes

transistor Tl to fire. The firing of Tl in turn clears the erasable

storage Register 100 (hence the name CL E), and sets core y to

2 5



ONE. All the cores in the same vertical column as core y (the

writing cores of the E registers), started at ZERO; hence after

CL E only core y from among the writing cores is at ONE. The

subsequ.ent  pulse on line W E I for Write E) drives core y from

ONE to ZERO, causing transistor T2 to switch, and allowing

the contents of the concurrently cleared buffer to be written into
Register 100. As can be seen, writing into a register controlled

in this fashion implies having cleared it previously.

D, The Complete Memory System

The memory system for this computer consists of fixed

storage (F), erasable storage (E), and a special register (S)

called the address register, by means of which storage is addressed.

There are, in addit.ion,  other special registers of the erasable

type called “central registers ‘lp which are used under direct con-

trol of the computer logic to execute the various instructions;
the buffer B is an example“‘. These are discussed separately in

Chap. 2:  Section A; the “memory system” will be defined as the

collection of registers which are controlled through the address

register S.

The address register consists of two parts, denoted by

the symbols Sd and SC, which stand for the “direct” and “comple-

ment” parts of S. Each part is itself an erasable register of a

length (12 bits-  for the representative computer) sufficient for

storing addresses of all computer words. The direct part of S

stores the pertinent address. whereas SC stores the ONE’s com-

plement of this address. The clearing of register S (i.  e. , the

simultaneous clearing of Sd and SC)  by the control pulse CL S,

causes the establishment of currents in the Inhibitor and Set

lines (Fig, l-2) required for switching a rope core associated

:”

To be qu.ite  accurate, S should properly be called a central
register rather than part of the memory system.

2 6
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with the address placed in S. These selecting currents are

represented by the dotted lines of Fig. l-10, and are seen to be

common to the fixed storage rope and the erasable storage selec-

tion rope. The two ropes thus differ only in their purpose and
name,

:‘:
and not in the method used for addressing or selecting a

core. ’

Each bit of Sd and SC has a current generating circuit

connected to it, which drives a corresponding rope Inhibit line.
The control pulse CL S clears all cores of both Sd and SC to

ZERO, generating thereby a current pulse in each Inhibit line for

which the corresponding core contained a ONE. The pulse CL S

itself initiates the current through the Set line. Each pair of

corresponding cores in Sd and SC is associated with a pair of

Inhibit lines. The fact that the contents of Sd and SC are com-

plements thus ensures that exactly one of each Inhibit pair is
active.

Register S has several peculiarities. It is not connected

to the Sense lines, and hence CL S does not result in the transfer

of a word from S to the buffer. Furthermore, S requires a
special control pulse WlSc,  which results in all the cores in SC

being driven to ONE. This pulse is applied before transferring

the address from the buffer to S, which is done by the pulse WS

(and CL B, of course). The latter is the gating pulse which

permits writing into both Sd and SC. The Write lines are con-

nected to Sd in the normal fashion for an erasable register. For
SC, however, the sense of the windings is reversed from the

normal direction for writing, so that a current (i.  e. , a ONE on

the Write line) causes the core to be driven from ONE to ZERO.

Thus any digit position on the Write lines which contains a ONE

By suitable rearrangements of the inhibit wires, it would be
possible to have the addresses for erasable registers distributed
amongst those for fixed storage in any manner whatever, if this
were desirable, even though the erasable registers were them-
selves physically grouped together.
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causes that digit in Sd to be set to ONE and in SC to ZERO; con-

versely, a ZERO (no current) leaves Sd and SC unchanged, i. e. ,
at ZERO and ONE.

It is now possible to list the sequence of pulses involved

in reading from and writing into the complete storage system,

and in so doing to explain the timing associated with Fig. 1-9.

Each computer clock cycle is divided into two equal intervals
called Q time and p time. The computer runs on a two-beat

system which, at CY  time, information flows into (or towards) the

buffer and, at /3 time, towards erasable storage. Most control

pulses have associated with them a specific time, either CY  or /3,

during which they may occur; they may not occur at the other

time. For example, CL B can occur only at 6, and WB at CY.

A more accurate statement would be that CL B may not occur

at cy,  and WB may not occur at /3,  for it is not true that a pulse

CL B occurs every /3 time or a pulse WB every (Y time.

Assuming an initial address to be in register S, then the
following sequence of control pulses will result in a word being

read out to the buffer from the register with that address, placed

back where it came from if it came from erasable storage, and

also placed in S. Each line shows the time, cy  or fl, associated

with these pulses.

Time Pulses

CY C L  s

Comments

P (wait) No control pulse occurs

CY CL E, WB,

WlSc

Reset rope, ONE into

S C

P CL B, WS

WE

Although it may not seem so at first sight, this four -
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pulse sequence takes care of both possible cases of reading from

fixed or erasable storage. CL S selects a core in the rope re-

gardless of whether it belongs to F or E, driving it to a ONE.

CL E resets that core to a ZERO. If the core is associated with
a register in E, then that register is cleared, its contents ad-

mitted to the buffer by virtue of the pulse WB, and the correspond-

ing writing core (e.  g. , core y of Fig. l-9) is set to ONE. When

the buffer is cleared at the next p time, the pulse WE resets the

writing core to ZERO, permitting the contents of B to be written

back into the E register from which it came. The word is also

admitted into S by the pulse WS; it is noted that Sd and SC have

been set to ZERO and ONE by the successive pulses CL S and

WlSc prior to the pulse WS.

If the core switched by CL S belongs to F, then the sub-

sequent CL E and WB causes a wired-in word to be read into the

buffer through a set of amplifiers”’ (Fig. l-10). The last row of

pulses again causes the buffer to be cleared and S written into.

WE here has no effect, for no writing core has been set to a ONE;

hence none of the E registers is affected.

The sequence for replacing the word in an E register bJ

a word previously stored in B is very similar, namely:

CY:  CL s

/j: (wa i t )

Q: C L  E ,  WlSc

6: CL B,  WS, WE

The only difference is the absence of WB from the second (Y

pulse. If this pulse is absent, the word cleared from the E

:::
The main electrical distinction. between F and E signals is that
those from F are weak and occur in the midst of noise, while
signals from E are strong and free from interference. Hence
the amplifiers.
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register is lost. The pulses occurring at the following /3 time

will cause the word previously placed in B to be transferred into

the E register. It was assumed that the address originally in S

was an E address, but the wired-in nature of F is such that
nothing would happen if the address were an F address.

The control pulse sequences illustrated in this section

accomplish quite elementary and restricted objectives, and are

introduced primarily to discuss principles of communication

with the computer memory. In the next chapter, after a dis-
cussion of central registers, ccnsideration  is given to the for-
mation of control pulse sequences into computer orders in the

accepted sense. In particular, an order code is given in more

or less complete form for the representative computer, and

possible variants are also presented.
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CHAPTER 2

EXECUTION OF COMPUTER INSTRUCTIONS

A. Central Registers and Overall Organization

The overall organization of the computer, shown in

Fig. 2-1, includes storage, discussed in Chapter 1, input-output

equipment, discussed in the next chapter, together with the

sequence generator and central registers which comprise the

main logic for executing computer instructions. In this chapter
the central registers and sequence generator are discussed,

first in terms of generalities, and subsequently in somewhat

more specific form in relation to the order code for the repre-
sentative computer. In spite of the latter discussion, however,
it should be emphasized that we are here concerned with a di-

verse class of possible machines rather than primarily with the

specific computer selected as “representative”; this should be

evident from the number of alternatives which are presented

from time to time.

Central registers are, by definition, all those registers

which are not addressed by means of the address register S, but

whose control pulses are provided directly by the sequence gen-

erator. Registers S and B, for example, have previously been

described as central registers; the pulses CL B, WS, etc., are

provided by the sequence generator, as are the others listed in

Chap. 1 Section D as necessary for reading from memory. The
outputs from the sequence generator are, at pulse times CY  and fi,

pulses which bear names like CL B, CL E, WE, WS, WiSc,  etc.
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Most of these control pulses go the central registers; however,a

few like CL E have other purposes. What follows is a brief

description of the various kinds of central registers and a pos-

sible central register organization.

The overall computer organization is shown in Fig. 2-1.

There are two sets of Sense and Write lines, one for the transfer

of words from the core rope side to the B side, and one for the

transfer of words from the B side to the rope side. Central

registers may be on either side of the Sense- Write amplifiers

and are of three kinds: special-purpose registers which have

extra circuitry, complementing registers, and ordinary storage

registers. The special-purpose registers are the address regis-

ter S discussed previously, the Z register, the parity register
P, and the buffer B. These are discussed separately in subsequent
paragraphs. As in E storage, ordinary storage registers may
occur with rearranged wiring to secure various special effects.

The “rope side” of the Sense- Write amplifiers is hence-
forth called thecr  side of the register system; i. e. , the side on

which registers are cleared at (Y time. The “B side” is corre-
spondingly called the /3 side. The division of the computer into
an CY  side and a p side, together with the electrical properties of

the erasable storage scheme, helps explain the working of the

computer on a two-beat system and why each control pulse has
a particular time (a or fl) at which it occurs.

At cy  time information flows from the (Y side to the 6

side and at /3 time from the /3 side back toward the cy side. It
would appear that both actions could take place simultaneously,
because separate sets of Sense-Write amplifiers are used. Con-
sider, however, the signals from the sensing windings on the CY

side. These result from certain cores on the CY  side being cleared

from ONE to ZERO at cy  time. If other cores on the CY  side are
being driven from ZERO to ONE by a simultaneous writing opera-

tion, a reverse emf is induced in the corresponding sense lines
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which cancels the desired signals where overlapping occurs. As

a result, there is a significant coupling from the write side of

one set of amplifiers to the sense side of the other set which pre-

vents them from being active at the same time. Various electri-

cal schemes could eliminate or avoid this restriction; however,

the present arrangement appears to offer a simple and reliable

system.

The 2 register is a special-purpose register that adds

“one” to a number read into it, so that a transfer into and out of

2 converts the number N into N t 1, It is used, on the one hand,

to store and increment the address of successive computer in-

structions when these occur in sequence. On the other hand, it

is used on a time-shared basis to increment the various program

or input counter registers (see Chap. 2, Section C and Chap. 3,

Section E respectively). The electrical nature of the 2 register

is fairly well established; however, at the moment of writing,

there are one or more unsettled questions concerning its logical

integration with the rest of the computer. These relate to the
treatment of input situations in which pulses to be counted may

be either plus or minus, and to the length of the Z register,

The parity register, P, accepts inputs on all 24 Sense
lines and computes whether the number of ONE’s in the word

being read into it is even or odd. Its output is one bit long and

occupies digit position 0; if the number of ONE’s in the word is

even, then the parity bit will hold a ONE. A parity system is

employed in which the total number of ONE’s in a word including

its parity bit, must be odd to pass the parity test. When such a

word is read into P, the contents of the parity bit will be zero,
so that an alarm will not be triggered when P is subsequently

cleared and tested. If, on the other hand, a 23-digit word is

read into P with its parity bit missing, the parity register com-

putes and stores the correct va1u.e  in digit position 0. Thus the

parity may be transferred to E storage along with digits 1-23 by
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clearing P at the same time the remainder of the word is stored.

The buffer register B is a special central register used
as an ordinary register in communicating with storage and also

used in the decoding of computer instructions. It is composed of
two parts, Bd and Bc, as is  the address register S. The direct

part, Bd, is a full-length register; however, the complement

part, Bc, occupies only the digit positions used by the order code

(digits 13-18 for the representative computer). The latter bit

positions of both Bd and Bc are wired to generate Inhibit pulses
in a special short core rope, for selecting a sequence in the
sequence generator. They operate in the same way as Sd and
SC, being cleared by the special pulse CL Bc. The pulse called
CL B actually should be entitled “CL Bd” since it leaves the

complement portion of B untouched. Also, the pulse CL,  Bc
clears corresponding digits in both Bc and Bd and further pro-

vides a gate to permit the Inhibit currents to flow. The latter is
necessary since Bd is used for other purposes.

Central storage registers are identical to ordinary
erasable storage registers. They each require two control
pulses, CL register and W registerlfor  “Clear” and “Write”).

Complementing registers are similar to storage registers but

with one extra common winding added. This winding is used to
set all the cores in the register to ONE, and is pulsed by a con-

trol pulse Wl Register(for  “Write Ones”). The polarity of the
windings which connect each core of a complementing register

to a Write line is reversed relative to the polarity of a storage

register. Thus if a word is written into a complementing regis-
ter which has been set to all ONE’s, the register will then hold

the bit by bit complement of the word.

The number and arrangement of central registers of
the storage and complementing types is a function of the order

code desired, and of the way in which the order is translated

into a sequence to be generated by the sequence generator. In
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general, the more powerful the order code, the larger the number

of such central registers. These registers are in themselves no

more expensive than those in erasable storage, but addressing

them must be done through the sequence generator which is a

costlier process than addressing through a rope. Later in this
report specific arrangements of central-registers will be dis-

cussed in order to illustrate how certain things can be done and

what alternatives there might be. This discussion is necessarily
tied to a discussion of the order code and of the sequence generator.

The address register S, the “add one” register Z, the parity

register P, and the buffer B are common to all computers under

discussion.

B. The Sequence Generator

The sequence generator forms what is commonly called
the “logic” of a computer. Other common names for it are pro-
gram counter and microprogram store. The basic idea is that
of associating a sequence of control pulses with each kind of order

stored in F or in E. The sequence involved in transferring the
contents of some register X into X and central register A, which

bears the name “clear and add X”, or CA X,is  one such order.
That involved in storing the contents of A in X, called “transfer

to storage Xl’, or TS X, is another. By means of the sequence
selection circuits (mentioned above in connection with the buffer),

each combination of bits in the order code digit positions of an

instruction is made to correspond to the particular pulse sequence

for execution of that instruction. For reasons which will become
clear later, all sequences produced in the sequence generator

are called “zero level sequences”.

The order structure of the representative computer is

such that bit 0 (numbering from low-toward high-order digits)

indicates the parity of the word (cf. Chap. 2, Section A), and

the next twelve bits (bits l-12) are for any address which forms
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part of the instruction (e. g. , the “X” in CA X). Digits 13 to 18

form the symbol or code for an order, i. e. , the “name” of a

sequence. The remaining five digits may have other optional
uses wh.ich,  in effect, cause them to act like part of the order

code ~

The sequence generator is a complicated device, and

hence a simplified case will be discussed first. Consider a

rectangular matrix, made of cores, with 64 rows and 22 columns

(Fig. 2-2, 2-3). At the bottom of each column there is a core -
transistor circuit, symbolized in Fig. 2-3 by a square box with

a number inside it, which, when fired, drives all cores of that

column to ZERO and drives to a ONE the core in the next tran-
sistor- core element. These 22 elements form a shift register.
All the cores in the matrix start at ZERO. Selecting a sequence

means setting a row of cores to ONE’s and placing a 0NEY.n  the
first position of the shift register (Fig. 2-2). Hence only one

core of each column may be switched to ZERO by the corresponding
:::

shift register element . As the shifting pulses Q and /3 (Fig. 2-2
and  2-3) shift the single ONE in the shift register through all

positions from (1) to (22),  all the matrix cores set to ONE (forming
a row) are cleared to ZERO one by one. Each control pulse has
a wire  associated with it, which threads (or “not threads”) the

cores of each row. Thus when a row of cores switches in sequence,
the wire has a pattern of outputs and “no outputs” impressed on it.

For example, consider control pulse A (Fig. 2-3) if the

selected row is (2). The only output (i. e. ) the only control pulse)
will occur at shift time 7, i. e., when the ONE travelling down

the shift register is being transferred from position (7) to posi-

tion (81, If the sequence selected had been sequence (= row) (3),
then there would have been outputs at time 1 and 2. Notice further

“All  cores of that column are driven to ZERO, but only one switches,- - -
since only one of the cores of that column was switched to ONE in

-the  first place.
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that sequence (I.3  involves neither pulses A nor B, while sequence

(63) involves bot,h,

There are several variants of the matrix just described

which enhance the flexibility of the sequence generator and permit

certain economies ~ The particular use of these variants depends

directly on the properties of the sequences, which will be dis-

cussed later: and hence the variants are presented here as

“tricks” which. can be used if certain situations arise.

The most obvious variant is illustrated in Fig. 2- 2 and

consists in modifying the meaning of “row”* Selection of a

sequence means setting to a ONE some cores of the matrix, where

each~  column will have at most one core set to ONE. Many se-

quences may ha.ve  common parts; for example, they must end

with an identical set of control pulses, for calling forth the next

instruction. Then She same core in the matrix may be set by the

various sequences, as in the case of the core of row (11,  column

(221,  Fig, 2-2. IIn  fact, that core is the only core present in

column (22). Also, it is possible that a sequence may require a

waiting period of one or more pulses, in which case the sequence

selecting wire which sets a “row” to all ONE’s will simply not

set.any  core of the pertinent columns to a ONE. For  examplefl,

sequence (15)  (row 15)  does not set any core of column (21).

A further “trick” consists of the use of the sequence

selecting mechanism for specifying the starting point in the shift

register. In Fig. 2-2, sequences (3)  and 615)  start at shift posi-

tion Q= time) 1, while sequence (63) starts at time 7’. This scheme

is useful in avoiding unnecessary waits and delays. Thus, the

sequence CA X (clear A and add the contents of register X into

AI and the sequence CA”:-  X, in which X is now interpreted as the

location of the address of the data, are such that the set of pulses

for CA X is a subset of those for CA/:  X, CA X starts at time ‘7;

CA” X starts at time 1 and is identical to CA X from time 7 on,

The wire which selects sequence CA X drives core 7’ on the shift

4 2



i

register to ONE, thus avoiding a wait of 6 pulse times.

A third and final variant of the basic scheme consists of
providing for branches, This is done by using a sequence to test
the state of a core, e. g. , the core in which the sign of the quantity
presently in A is stored. This result is then used to select one

of two sequences, i. e., to set to ONE’s the cores of one of two

“rows”. This is discussed further in the next section.

C. Representative Order Code System

For purpose of illustrating the variety of computer opera-

tions which can be accomplished by rather simple wiring and

logic, a representative system of central registers and instruc-
tions, is described in this-section. The~~system~is not corn-.’

pletely described here; details are not sufficiently settled to

make this possible. As show below, however, some relatively
sophisticated operations can easily be achieved.

The central register system shown in Fig. 2-4 contains
registers S (Sd, SC), B and Bc, P, and Z which have already

been discussed. In addition are shown ordinary register D,

registers A and Q, each of which consist of a direct and comple-

ment part, complementing registers Rlc and R2c, together with

register CYc which simultaneously complements a word and cycles

it left one digit with end-around carry. Four control pulses
affect register A: WAd,  and WAC  for writing respectively in the

direct and complement portions, CL A, which clears both halves

simultaneously, and WlAc  to place ONE’s in AC. Register Q
possesses corresponding properties. Registers Rlc, R2c, and

CYc,  possess three control pulses each for writing, clearing,

and placing ONE’s in the cores before writing.

To illustrate an entire sequence of steps comprising one

relatively simple order, consider the instruction “Clear and Add

X”, CA X, as described previously. Control pulses for CA X
are given in Table 2-l. Each instruction must bear the respon-
sibility for calling forth fro-m storage the next instruction in
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TABLE 2-l

CA X, Clear and Add X, C(X) into A, 8 pulses

1 u  CL S, CL A, CL D

2 p (no action)

3  C-Y  CL E, WB, WP, WlSc

4 /f3  CL Z, WS, WD
5  Q CL S,  CL D, WZ, WlR2c

6  fi C L  B ,  C L  P ,  T P ,  WAd, W E ,  WlBc

7  CY  C L  E ,  W B ,  W P ,  WR2c,  WlSc

8  p CL B,  WE, WS, WD, CL Bc,  CL P,  TP
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sequence, after its own action is complete, so that the control

pulses form a never ending sequence. A convention which states

at what point of the process the “new” order takes over the “old”
must be adopted here. The operation CL Bc, shown in the last
line of Table 2-1, sets the appropriate line of cores in the se-

quence generator core matrix for the new instruction; it is

therefore reasonable to define the cy  - pulse time which immed-

iately follows as the first pulse of the next order.

To follow the actions described by the control pulses in

Table 2-1,  it is necessary to know that certain of the central

registers are assumed to have been left with particular contents

by the previous order. Line 8 in the table is the last line ex-

ecuted by every instruction; at the time of its execution, the next
order is in B. By the action of line 8, the order is written back
into E (if it came from E), into D, and the address portion is

written in S. Thus at the time of initiating CA X, in line 1 of the

table, the last line of the previous instruction has placed the
address X in S and the entire order in D. The effect of line 1
for CA X is to clear D, to clear the accumulator A in preparation

for later receiving the contents of X, and to initiate read-out of

address X through setting the corresponding rope core.

Line 3 of Table 2-1 transfers the contents of X into the
buffer, B, and writes them also into the parity register P. The
Z register at this point contains the address of the next instruc-

tion, N + 1; line 4 transfers this address to S as the initial step

in the action of calling the next instruction forth. The number
n + 1 is also saved in register D, from where it is cleared in

line 5 back into Z. The result leaves N + 2 in Z as the address
of the instruction after next. Neither of the actions CL S or
WlR2c  interfere with this transfer since S has no sense wires

and since the sense wires for R2c are in use only at /3 time.

The control pulses WlR2c  in line 5 and WR2c  in line 7 serve

the purpose of saving in R2c the complement of each instruction

4 5



executed; this feature is required only in a very special situation

to be discussed later. It is noted that WlR2c  prepares R2c to

receive a new word just as effectively as clearing an ordinary

register. All cores are left at ONE’s, regardless of their pre-

vious status.

In line 6 the pair of pulses CL B, CL P places on sense
lines 23-O the full word, including its parity bit, that was read

from storage. The parity bit comes from digit 0 of B in this

instance; the contents of the single bit called register P are

properly a ZERO at this time since an entire 24 digit word from

storage, with presumably correct parity, was read into P in

line 3. Thus the pulse on digit 0 sense line is the logical sum
of a ZERO and digit 0 of B. The control pulse labelled  TP

(Test Parity) activates a test to verify that P does indeed con-

tain a ZERO as it is cleared An alarm, as yet specified, or
an error diagnosis procedure is to be initiated if this is not the

case.

Line 6 writes the original word from storage back into
E if required, and writes digits 23-l of the word into part Ad of

the accumulator A. Thus the contents of register X have been

placed in A, and X is left unaltered. The next instruction is

already in the process of being called forth by the pulse CL S
of line 5 which sets the appropriate rope core. The occurrence

of the pulse WE in line 6 after the pulse CL S in line 5 may offer

some confusion, until it is recalled that the write core for an

erasable register is set only when the rope core is reset. Thus

the rope core for the next order, i. e., core N + 1, may be set

prior to the time at which the erasable storage write core (if

any) associated with register X is reset.

The pulse WlBc  places ONE’s in Bc to enable the com-

plement of the order code to be obtained through the WB pulse

in line 7. The fact that WlBc  occurs simultaneously w-ith  CL B
would at first glance appear to violate basic principles. Register
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Bc contains no sense windings, however: except those connected
to the logic decoding rope. Further, CL B leaves Bc unaffected;

only WB is common to B and Bc.

The principal action of line 7 in Table 2-l is to call forth

the next instruction from storage, writing it directly in the

buffer B (and in Bc, as well), in the parity register, and in the

form of its complement into R2c. Line 8 has already been dis-
cussed briefly above; the new order is written back into E if

relevant, into D, its address portion into S, its parity is checked,

and the pulse CL Bc transforms its order code into appropriate
action in the sequence generator.

Considerable detail has been brought into the analysis of

the pulse by pulse action of a single elementary order, CA X,
because in so doing a considerable portion of the logic of most

of the rest of the orders is also presented. In the following

paragraphs and tables other typical orders are presented, gen-

erally with no more than a few sentences of description attached

to each. These descriptions are made somewhat more concise

by use of a few simple abbreviations and conventions. The

order being executed is understood to have been found in register

N, and the next order is located in register N + 1 unless other-
wise noted. The address portion of the order is denoted by X,

as in CA X above. The contents of any register al-e  denoted by

the symbol C( ) with the symbol for the register inserted in the

parentheses; e. g., the contents of A are written C(A). The
system of arithmetic used here is that in which the negative of

a word is simply its ONE’s complement, denoted by following

that word with a prime: - C(X) is the same as C(X)‘. Finally,

a register X, A, or Q is understood to be left unchanged by the
action of an order, unless a change is indicated specifically.

The order TS X, to store the contents of A, has been

mentioned previously. As seen from Table 2-2, it differs from

CA X only in that the contents of A are transferred to B and P
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in line 1, instead of being discarded, and the contents of X are

discarded in line 3 instead of being transferred to B and P. Note

that CL P in line 6 is here not accompanied by the parity test

pulse TP as it was before. Instead, the correct parity bit for

the word read into P in line 1, on digits 23-1, is supplied as the

output of P on digit 0. The physical action of the parity circuit

is the same in the two cases, but its function is different. Digit

0 of B is ZERO in line 6, since only positions 23-l were filled

from A in line 1.

TABLE 2-2

TS X., Transfer to Storage X, C(A) into X, 8 Pulses

1 (Y CL S, CL A, WB, WP

2 p (no action)

3 cy CL E, CL D, WlSc

4 /3 CL Z, WS, WD

5  (Y  C L  S ,  C L  D ,  W Z ,  WlR2c

6 /3 C L  B ,  C L  P ,  WAd,  W E ,  WlBc

7  a  C L  E ,  W B ,  W P ,  WR2c, WlSc

8  p C L  B ,  W E ,  W S ,  W D ,  C L  B c ,  C L  P ,  T P

The instruction CS X, to clear A and place the negative

of C(X) in A, is seen in Table 2-3 to differ from CA X only in

the pulse WlAc in line 2 and in the replacement of WAd  by WAC

in line 6.

TABLE 2-3

CS X, Clear and Subtract X, C(X)‘into  A, 8 Pulses

1  cy C L  5, C L A ,  C L D

2 p WlAc

3  a C L  E ,  W B ,  W P ,  WlSc

4 p CL Z, WS, WD

5  cy C L  S ,  C L  D ,  W Z ,  WlR2c

6  /3 CL  B ,  CL P ,  TP ,  WAC, W E ,  WlBc

7  cy C L  E ,  W B ,  W P ,  WR2c,  WlSc

8  ,6 C L  B ,  W E ,  W S ,  W D ,  CAL Bc ,  CL P ,  TP
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If, the first line of control pulses for CA X, the pulse

CL A is omitted, the result is an order LA X as described in
Table 2-4, called “Logical Add X”. The effect of this order is

to place in A the word which is the union or logical sum of the
previous C(A) with C(X); i. e. , the word whose digits are ONE
in any digit position where either or both of C(A) and C(X)  con-

tain a ONE. The application of an order of this type occurs

principally in such logical processes as masking, in which only

selected digits of a word are to be used in an operation. A

more suitable order for this purpose is that for forming the

logical product of C(X) with C(A); however, the operation LA X

is so simply achieved that it is probably preferable unless a

very rapid masking order is needed.

It is noted that LA X writes in the cores of Ad. If the
order just preceding LA X were a clear and subtract operation,

the cores of Ad would all contain ZERO’s and the cores of AC

would contain the real “contents of A”. It must be recognized
that the pulse CL A places on the CY  sense lines a ONE wherever

either Ad or AC contains a ONE; i. e. , the logical sum of C(Ad)

and C(Ac). Thus the effect would be the same as if it were Ad
rather than AC that contained the non-zero information. For
alU.  logical purposes, A may be regarded as a single row of

cores in which a logical sum is formed as the writing takes
place.

TABLE 2-4

LA X, Logical Add X, C(X) U C(A) into A, 8 Pulses

1 LY  CLS, CL D

2 to 8: The same as in Table 2-l

An operation having frequent convenience as a storage -
saving device in arithmetic, but which in addition has an unique

logical function in the present computer, is that of exchanging
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C(X) with C(A). The logical function has to do with counter

registers that receive input pulses from an external source. Al l

counting (which uses the Z register) occurs at a definite place

in the sequence generator shift register at which the Z register

is vacant; specifically, this is between lines 4 and 5 in the

previous tables. If the contents of an externally pulsed counter

register are to be examined without risk of missing a pulse

in the count, it is necessary to be able to pick up the counter

contents and to reset the counter to a known value simultaneously

in a single order. Even the order CA X, when applied to a

counter register, is not a safe way of examining the register as

the order is now written, since the pulses CL E and WE are

separated by the time at which counters are incremented. The

order EX X, Exchange with X, described in Table 2- 5 does

achieve the desired result, permitting the contents of the counter

to be placed in A and those of A in the counter during a time

period in which no incrementing can occur.

TABLE 2-5

EX X, Exchange with X, C(X) exchanged with C(A), 12 Pulses

1 ct CL S, CL D

2  p ( n o  a c t i o n )

3 CY  CL E, WB, WlSc

4 /3 CL B, WD

5 CY  CL A, WB, WP

6 p CL B, CL P, WE

7 CY  CLD, WB

8 p CL Z, WS, WD

9  CY  C L  S ,  C L  D ,  W Z ,  WlR2c

1 0  p C L  B ,  WAd,  WlBc

1 1  Q C L  E ,  W B ,  W P ,  WR2c,  WlSc

12 p CL B, WE, WS, WD, CL Bc, CL P, TP

50



No parity check is made on the original contents of X in

the exchange order; for counters, in the present mode of opera-

tion, a parity check is not kept. An alternate counter operation
method in which the Z register would be on the cy  side of storage

would permit parity to be preserved.

The exchange order is the first one that has been en-

countered which involves other than eight pulse times for its

exe cution. Its beginning is identical to that for LA X and its

ending is identical to all orders considered. In the interest of

economy of cores and windings in the sequence generator core
matrix, the shorter orders are therefore stretched out to match

the twelve columns of cores required for EX X. This operation

is not done in a way so as to cause the other orders to waste

four pulse times of inactivity, but requires the shorter orders

to skip over several positions of the shift register. The result
permits each instruction to proceed with no waste of time, and

yet permits many cases of sharing of matrix cores between

different orders. The numbering of the lines in the tables
shown here is for convenience only, and does not correspond

to core matrix columns.

The instruction “Edit by X”  is perhaps unique to this

particular computer, and is motivated by the fact that many of
the operations such as shifting are handled by special write

wiring in registers in E storage. The function of this order, in
brief, is to accomplish in one order of twelve pulse times what

would otherwise require the two orders TS X, CA X and six-

teen pulse times. Its operation is described in the table which

follows.
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TABLE 2-6

ED X, Edit by X, C(A) into X, then C(X) into A, 12 Pulses

1 a CL S, CL D, WB

2 p (no action)

3 cy CL E, WlSc

4 /3 CL B, WS

5 CY  CL S, CL A, WB, WP

6 j3 CL B, CL P, WE

7  cy C L  E ,  W B ,  WP,WlSc

8 /3 CL Z, WS, WD
9  CY  C L  S ,  C L  D ,  W Z ,  WlR2c

1 0  /!3  CL B,  CL P,  WAd,  WE, WlBc

1 1  cy  CL E, WB, WP, WR2c,  WlSc

1 2  /3 CL B, WE, WS, WD,CL Bc ,  CL  P ,  TP

Orders dealt with up to this point have been chiefly con-

cerned with moving information around from one point to another.

Consider now the order TC X, transfer control to X, which
causes the next instruction executed to be that in register X.

In the process, the next consecutive address (i. e. , the address

one greater than that of the location of TC X) is left in central

register Q from which it may be stored by TA X, below. This

pair of orders provides convenient entry and exit procedures

for closed subroutines.

TABLE 2-7

TC X, Transfer Control to X, N + 1 into Q.

Next Operation from X, 6 Pulses

1 (Y CLQ

2 /3 CL Z, WQd

3  cy  CL S,  CL D, WZ, WlR2c

4 /3 WlBc

5  a C L  E ,  W B ,  W P ,  WR2c,  WlSc
6  p CL B,  WE, WS, WD, CL Bc,  CL P,  TP
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It is noted that the order itself goes into the Z register
in line 3, rather than merely the address, and a similar state-

ment is true for certain branch orders considered later. This
can, in turn, result in order codes being attached to the addresses

which enter Q and thence are stored by the TA order. The effect

of this, if recognized in programming, can cause little harm.

The transfer address order, TA X, serves an additional

purpose beyond that of storing the contents of Q. This other

purpose is the transfer to Q of the contents of R2c; thus two TA
orders following each other will store successively the original

contents of Q and of R2c. Otherwise, TA X closely resembles

TS X in operation.

TABLE 2-8

TA X, Transfer Address to X, C(Q) into X, then

C(R2c)  into Q, 8 Pulses

1 cy  CL S, CL Q, WB,  WP
2 p CL R2c, WQ

3  a CL E, CL D, WlSc

4 /I3 CL Z, WS, WD

5  cy  CL S,  CL D, WZ, WlR2c

6  p C L  B ,  C L  P ,  W E ,  WlBc

7  LY C L  E ,  W B ,  W P ,  WR2c,  WlSc
8  p CL B,  WE, WS, WD, CL Bc,  CL P,  TP

We now come to consider a group of three branching

orders, that cause a transfer of control to occur or not, de-

pending upon the outcome of a test. Representative of such

orders is BNZ X, branch non-zero toX, which tests central

register A and acts as a TC X order if A contains any ONE ‘s.

Electrical details of the branching action have been considered

only in a preliminary way; however, the principles are relatively
simple. The original setting of a row of cores in the sequence
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generator core matrix for BNZ X skips certain columns (i. e. ,

shift register positions). These are filled in subsequently in

one of two alternate ways selected by the result of the testing

operation. Thus lines 3 to 7 in Table 2-9 are filled with two

choices which depend upon whether C(A) are zero or not. Con-

trol pulses describing details of this action are not shown;

however, the testing is done as C(A) are written into B in line 1,

and the actual action of setting one of two rows of cores is in-

dicated by the word “BRANCH” in line 2.

TABLE 2-9

BNZ X, Branch Non-Zero to X, Acts as TC X if C(A)

are Non-Zero, Otherwise Order is

Ignored, 10 Pulses

1 a,  CL S, CL A, WB

2  p C L  B ,  W A ,  B R A N C H

Active branch Inactive branch

(non- zero) (zero)

3 (Y  (no action)

4 /3 (no action)

5 Q CLQ

6 j3 CL Z, WQ

7  cy C L  D ,  WZ,WlR2c

8 13 WlBc

3  Q C L  E ,  W B ,  WlSc

4 /3 CL B, WE

5 crCLD

6 /3 CL Z, WS, WD

7  (Y C L  S ,  C L  D ,  W Z ,  WlR2c

9  cy C L  E ,  W B ,  W P ,  WR2c, WlSc

10 p CL B, WE, WS, WD, CL Bc, CL P, TP

A branch order closely related to BNZ X is the order

BMN X, branch minus to X, which tests the sign (digit 23) of

A and acts as TC X if this bit contains a ONE denoting a nega-

tive number. The formal table of control pulses for BMN X

is identical to that of Table 2-9 for BNZ X. The sole difference

lies in one control pulse, not shown in the table, which deter-
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mines the nature of the test. For BNZ X, all 23 bits of C(A)
are tested, whereas for BMN X only the single high-order bit

is involved.

A further branch order, similar to BNZ X except that

the control pulses CL A, WB, CL B, WA are omitted in lines
1 and 2, is that for testing for overflow of a program counter.

Certain erasable storage registers may be set aside as counters
by provision of extra circuits described in Section E of Chapter

3. Those used by the program for its own bookkeeping purposes

differ from those for external pulse inputs in the source of the

input to be counted and in the disposition of any overflow pulses.
Extra digit positions in the instruction word are so wired that

a ONE in that digit causes an associated program counter to

increment by one after the order is executed. For this part-
icular class of counters, any overflow pulses are used to set
an overflow core which may be tested at any later time. The
“branch no overflow” instruction, BNO X, is the means for

this test. This instruction acts as TC X provided than no.

overflow pulse has occurred, and is otherwise ignored (except

that it clears the overflow core).

One final branching order of frequent convenience is

that designated as TRSP X, “test register X and skip (next
order) if plus”. If C(X) are negative, the next order is taken
from N + 1; if C(X) are positive, the next order is taken from

N + 2. Further, the absolute value of C(X) is left in Q from

which it may be stored by TA.
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TABLE 2-10

TRSP X, Test Register X and Skip on Plus, 10 Pulses

If C(X)  plus, next order from N + 2 and C(X)

into Q; If C(X)  negative, next order from

N + 1 and C(X)’  into Q

1 CL S, CL Q, WlRlc

2 CL Z, WD

3 C L  E ,  W B ,  W P ,  WRlc, WlSc

4 CL B, CL P, TP, WE, BRANCH

Active branch Inactive branch
(negative) (positive)

5  C L D ,  W B 5 CL D, WZ

6 CL B, WS, WD 6  C L  Z ,  W S ,  W D ,  WlQc

7  C L  S ,  C L  D ,  W Z ,  WlR2c 7 CL S, CL D, WZ, WlR2c

8  C L  R l c  ,  WQd,  WlBc 8  C L  R l c ,  WQc,  WlBc

9 CL E, W B ,  W P ,  WR2c, WlSc

1 0 CL B, WE, WS, WD, CL Bc, CL P, TP

The order CANP X stands for “clear and add, with no

parity (check)“. Its purpose is to provide a way to operate

with registers for which the parity bit may be incorrect or ab-

sent; e. g. , the register for shifting right one digit, described

in Chap. 1, Section C, or an input register. The pulse sequence

for CANP X is essentially the same as that of CA X in Table 2-1

except that the pulse WP is missing from line 3 and the pulses

CL P, TP are absent from line 6.

The automatic interrupt, discussed in Chap. 3, Section C,

is an interruption to the normal sequence of computer operations

caused by various input circuits which require attention. It

occurs , when required, just before execution of the last line in

an instruction so that the next order has been called from stor-

age but not yet transferred to the sequence generator. Instead

of the next order, a special “interrupt” sequence of control
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pulses is generated which, in addition to several specialized

logical actions, stores away the contents of selected central
registers required to permit the normal instruction sequence

to resume later without any apparent discontinuity. These
contents are stored in other central registers, not shown in
Fig. 2-1; probably two such registers can be made to suffice.

The interrupt sequence is not itself a programmable
order, however there is at present in the order code system

an order RSM X, “resume” (X is irrelevant), which provides
a control pulse sequence for resuming operation after an inter-

rupt. The effect of RSM X is, first, to test whether another

interrupt request has occurred while the actions called for by

the original interrupt were in progress (no more than one inter-
rupt is processed at a time). If not, the contents of the central
registers are restored and the operation of the main program

is resumed.

As any programmer knows, one of the most important
computer capabilities required for compact and elegant

programming is that of address modification; i. e. , the capabil-

ity of writing an instruction whose effective address at the time
of execution depends upon other actions of the program itself.

In this computer the problem is solved in terms of quite simple

circuits by providing the capability for so-called “indirect

addressing” for every order. The effect of indirect addressing
on an instruction is to replace the address mentioned in the

instruction by the address contained in that location. For
example, let an asterisk following an order code indicate that

indirect addressing is to be applied, and let the contents of

register X be the number Y. Then CA’;  X is essentially syn-

onymous with CA Y. If X is an erasable register (otherwise the
operation is pointless) then its contents Y may be given different

values by operation of the program, and the single wired-in

instruction CA+ X may thereby have a corresponding variety



of effeckve  addresses

When combined with  the use of program counters and

the previously men5oned  capa.bility  of incrementing these

automa?ira.ily under ror:tro ! of selected digits in the order code-

the indirect addressing capabi,lity  permits some qu.ite  compact.

progra.ms For example: let. !.t  be desired t,o move N consecutive

words in s+ora.ge  loca.?:l.ons  K to K + N - I t.o i:.he  new locations

L to L + N - 1. To do this we place the address K in a counter

Cl, address L in a. counter C2, and place hhe number -(N  - lb in

a counter C3. Following this preliminary operat.ion.  the actual

execution is accomplished with a loop of three orders.

The electrical details of the indirect address feature

are rather simple. Of the six bits specifj.,ed  for the order code,

four are used for the fourteen orders thus far discu,ssed, O n e

more is reserved for the “extended operations” to be discussed

shortly, The remainfng  one is for indirect addressed orders.

I’s effect- in brief, is fo-.  precede the control. pulse sequence

normal to t.he order in qu.estion  by another of four pulses in

length which replaces the contents  of D and S by ihe  word. ob-

tained from St-or-age  in the address specifl:ed  by +he  order, The

control pulse seq-uence  for this purpose 6s gl,ven  in Table 2-11.

It is necessary ;n addillon to cause the ror’rcl  sequence shif+.

register to start at a posi.+ion  four steps prepedlng  t.he  beginning

point  for norma. orders. This is accomplish.ed  through  a rela-

tively sample  wiring in ?he sequence genera!or  core  rope, The

wh.o!e cost of proVid!ng  ?h$s  facility  is perhaps :seven or eight

transis’ors  and a few I-ores. etc



TG3LE  2-11

Indirect Addressing

1 CL S, C L  D

2 (no action)
3 CL E, WB, WlSc

4 CL B, WE, WS, WD

Normal operation of order follows

The so- called “extended operations ” form an inexpensive

storage-saving device by providing means for a one-word entry

into a number of subroutines. As an example, multiplication

exists in most variations of the computer only as a subroutine.
To multiply C(X) by C(Y), the following orders might be written:

CA  X

TS to standard location

CA Y
TC to multiply routine

The extended operation version of this would replace the last

three orders by one order. The problem is that four items of
information are required: (1) address X or its contents, (2) ad-

dress Y or its contents, (3) the address to go to after multi-

plication is complete, and (4) the fact that multiplication is de-

sired; i. e., an address associated with this particular sub-
routine. A single order does not have sufficient digit positions

to carry all of these data; two, however, can do so by relying

on the Z and Q registers to handle the next address, provided

that only a few bits are required for item 4.

The action, in brief, is that one bit in the order code

causes a special control pulse sequence to become active, which

holds C(Z) in Q as in the TC order, preserves the complement

of the original order in R2c, and transfers control to a specific

address (e. g., address 128) which is generated electrically.
There, a short standard program is initiated which files these
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data away, including the original order, and finally transfers
control to an address derived from the order code portion of the

original instruction. The whole operation requires approximately
50 pulse times whereas the three-order version cited previously

requires about half of that. Thirty-two of these extended opera-
tions are available. By and large they will be used for a variety

of instructions found in most computers which are accomplished

in ours by means of subroutines, There is some appeal, though,

in planning a computer for geometric computations required,
say, in space navigation, which may have “vector add” as a

computer instruction.

D. Addition and Multiplication-~

The selection of an order code is dependent on the partic-
ular use to which the computer is put. The choices are, as
usual, between speed and sophistication on the one hand and

simplicity and reduced equipment on the other. Of particular
interest in the present case is the method for addition, in which
no use is made of an adder. Instead, in the representative com-
puter, addition is carried out by a repetitive logical process
within a loop in the sequence generator, in which all operations

are conducted by the processes and registers already discussed.

The action is as follows. Let u @v stand for the bit by
bit logical sum of two words u and v; i. e. , the word that con-

tains a ONE in each digit position for which either u or v (or
both) contains a ONE, To add two numbers x and y, the opera-
tions

a = x@y

b = x’@y’

C= b’

S = (a’@b’)’
are performed. The word S is the sum and C the carry for a
one-digit-at-a-time summation of the words x and y. If C is
zero, the process is complete. Otherwise, C is cycled leftward
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one bit, with end-around carry, and S and the cycled carry word

are used to replace x and y in the above formulae and the addition

process repeated. The operation continues repeatedly until the

carry word is zero, at which time the corresponding sum S is

indeed the algebraic sum of x and y. The number representation

is that of ONE’s complements, in which - x is the bit by bit

complement of x.

The pulse by pulse operation of the loop portion of the

control sequence is given in Table 2-12, in which the contents

TABLE 2-12

Addition Loop

AC Ad Qd

X Y X’

1  cy CL  A ,  WR2c, WlCYc, W B ,  B R A N C H

0 0 x’

2 p WlAc, CL B

1 0 X’

3  cy C L  Q ,  WCYc, WRlc

1 0 0

4  /3 C L  R l c ,  C L  R2c, WAC, WQd,  WlQc

s 0 S’

5 Q WlRlc, WlR2c

s 0 S’

6 6 CL CYc, WAd, W&c

s c S’

Qc

Y’

Y ’

y ’

0

1

1

C’

Rlc R2c

1 1

1 a ’

1 a’

b’ a’

of the relevant central registers are shown at successive stages

of the loop. Starting with the two numbers to be added, x and y,

i n  AC and Ad before line 1, and their respective complements in

Qd and Qc, in six steps these numbers are replaced by S, C,

and their complements, and everything is ready for the cycle to

repeat. The BRANCH operation in line 1 corresponds to a test
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set up at line 6 of the previous cycle, in which Ad is wired to

test for a non- zero carry word as C is written into it. The con-

tents of A are written into B in line 1, so that when the BRANCH

operation causes the control to leave the loop, the sum S is found

in B.

The time required for execution of an addition by this
process is approximately 14 + 6 n pulse times, where n is the

number of times S and C must be formed. A digital simulation
of this addition process, using computer-generated “random
numbers ‘I, has produced the plot of average n versus word
length shown in Fig. 2- 5. For each word length from 3 to 36,
at intervals of 3, 4000 samples were taken to produce these

data. Results show that for a word length of 23 digits, corre-

sponding to the representative computer (neglecting the parity

bit, of course), the average n is very close to five cycles. Thus
approximately 44 pulse times, or 264 microseconds at 6 micro-
seconds per pulse, are required on the average. The corre-
sponding maximum time requires 24 cycles, giving 158 pulse

times or 948 microseconds. Some care should be taken in
making estimates based on the “average” value. The addition
of a small negative number and a slightly larger positiue number

requires essentially the maximum time, since the carry must

propagate all the way along the word one digit at a time.

We note in passing that the addition capability has been
obtained quite inexpensively, given that the central registers

shown in Fig. 2-4 already exist. Essentially, the only extra
circuits required are those required for the branching operations,
which involve perhaps eight or ten transistors altogether.

Roughly speaking, there are three ways of doing additions.

The fastest and most expensive way in terms of equipment is to

add with a parallel adder. With this scheme, addition of y to
some x stored in A would require a single sequence, with no

loops inside the sequence generator, of about 16 pulse times.

6 2



CD
ln

d-
M

N
-

S313A,3
 

JO
 

t139W
rlN

 
zl9w

J3hV
 

‘u

0

6
3



The next fastest way to add was described in the above paragraphs,

with a loop which is internal to the sequence generator. This
method requires about 44 pulse times on the average, and 158

pulse times maximum. The slowest and most economical method

is to perform addition with a program subroutine, using orders
of which each is a zero level sequence with no loops inside the

sequence generator, and with the orders stored in the core rope.

This method is many times slower than the method described

above, because in effect each pulse time of the microprogram

sequence is replaced by an order which is itself some eight to

twelve pulse times long. The saving in equipment consists
mostly in the elimination of control pulse circuitry. There is
little saving of registers because almost the same number of

erasable storage registers must be reserved for addition by the
program subroutine method as are used by the microprogram

sequence. The difference is that in the subroutine method the

registers are addressed by means of the S register, while in

the faster microprogram method the registers are addressed

directly by means of control pulses.

Multiplication in this computer is almost certain to wind

up as an extended operation or subroutine. It should be remarked,
however, that a “multiply loop” within the sequence generator is

not out of the question, for an application in which the extra speed
is necessary. No attempt has been made to draw up the logic

for such a loop; however the following time estimates are prob-
ably reasonable for its operation. Use of such a loop surrounding
a “one-shot” parallel adder circuit would perhaps require 200

pulse times for an average multiplication. If used in conjunction
with an inner addition loop of the form discussed above, an aver-

age might be 500 pulses. These estimates may be compared to

a value of from 1400 to 1500 pulse times for an average multi-

plication by subroutine methods, using the type of sequence gen-

erator addition loop discussed above. If addition, also, is a
programmed operation, then of course the multiply order re-
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quires much longer. It is thus seen that there are a variety of

options open in the selection of a multiplication method. It is
expected that most of the presently contemplated applications
of this computer will be adequately served by one of the simpler

procedures.

One rather unexpected consequence of the comparatively

long time required for multiplication is the fact that, in those

programs prepared to date, the operation time is easily esti-
mated simply by counting the multiplications. Viewed in another
light, the same proposition may be restated by saying that those

operations of bookkeeping etc , , which are incident to the prepar-
ation of an elaborate subroutine structure turn out to be quite

inexpensive as far as computing time is concerned. As an ex-
ample, the extended operation for vector addition requires about

400 pulse times; that for the dot product of two vectors requires

about 5000. The amount of bookkeeping is identical in the two

cases. The difference lies solely in the 4500 pulse times re-

quired for three multiplications. As a result, as long as this
unbalance in operation time remains in this computer, it is

quite likely that the compactness provided by use of numerous

subroutine operations will more than compensate for the slight

extra time this usually involves.
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CHAPTER 3

INPUT AND OUTPUT SYSTEMS

A. Introduction

It is very difficult to discuss an input-output system

without a clear definition of what the inputs and outputs are to

be, and how many, of them there are,and  how fast they operate.

As was mentioned in the introduction, it is difficult to describe

a special purpose computer when the purpose, though special,

is vague. In the present case, input-output systems will be
discussed as a collection of techniques which the authors believe

will be useful, in general, in the control of airborne and space-

borne systems.

As a background picture, it might be kept in mind that

the origins of this computer were in a program studying gui-
dance and control for an interplanetary probe. Representative

problems for that application might include control of the vehicle

orientation, through flywheels, in such a fashion as to align a
body-fixed telescope tracker with the Sun or a star; or the

positioning of a sextant to a precisely measured angle. Other

tasks would include monitoring of various discrete signals de-

scribing the current states of various items of equipment. In

general, various pulse trains are to be counted, representing

the quantization of analog signals, and other steady state signals
are to be examined. The rates involved never exceed a few
hundred cycles per second, but the number and diversity of the

data to be processed simultaneously may render an elementary
scanning system difficult to achieve. The methods presented in
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this chapter represent our approach to this type of problem.

To simplify discussion, it has been assumed that, as far
as the computer is concerned, inputs from the outside world con-

sist of on-off switches, mechanical or solid state. An output is
similarly defined as a switch closure. The intent is to control
such things as the angular position of a motor by on-off servo

techniques. This sort of thing can be done if the computer re-

sponse is fast enough. What follows is a set of schemes which
will make the computer fast enough, in some cases at least, by

logical means rather than by fast circuitry.

B. The Priority Circuit

The priority circuit (Fig. 3-l) is a novel device which
permits certain economies in the handling of inputs. The circuit
itself is related both to counters and to shift registers. In Fig. 3-1,
let all cores be initially in state ONE. When transistor TA is

saturated, core (1) starts to switch, and in so doing it causes

transistor Tl to switch. This in turn causes all current to flow
through Tl, with almost no current flowing through the windings

of cores (2), (3) and (4). It is assumed that the saturation resist-

ance of Tl  is zero compared to R2. It is further assumed that

TA is turned off at the same time that core (1) finishes switching.

The next time an advancing pulse is applied to the base of
TA, core (1) will be at zero; cores (2), (3) and (4) at ONE. This

time core (2) switches in exactly the same fashion as did core (1).

If all the cores of the chain start at ONE, then the chain
behaves much as a shift register with a single ONE travelling
down it, in the sense that the numbers of cores in the chain de-

termine the number of pulse times necessary to make the last

core switch. In the case of the priority circuit, however, it is

possible to reduce the effective length of the chain by not starting

with all ONE Is. For example, if core (3) had started at ZERO,
then it would be the third advancing pulse instead of the fourth,
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which causes core (4) to switch,

Consider next a step of input leads such that a pulse on

an input lead sets a core to a ONE (top of Fig. 3-1). Input pulses

can only occur at a specific sampling time Ts. A winding common
to all the cores in the priority circuit (labelled common output)

can be used to sense whether or not one or more inputs occur

during a sampling time Ts. If one or more inputs do occur,

then the pulse which appears at the common output can be used,

after a suitable delay, inversion, and reshaping, to trigger TA,

Triggering TA results in driving from a ONE to a ZERO, the

first core to be in state ONE, which in turn creates outputs at
both an individual output winding, and at the common output.

This last pulse, again delayed and reshaped, but this time not

inverted, can be used to trigger TA once more. The process,
schematized in Fig. 3-2, will continue until all the cores in the
priority circuit are at ZERO, and will require as many advancing

pulses as there were inputs at Ts (plus one>. The name “priority”

arises from the fact that input line 1 is always served (i. e. , core
(1) cleared to ZERO) first if it has an input, and input line 2 next,

so that line 1 has priority over line 2, and so forth.

The sampling system of Fig. 3-2 is shown in more de-
tail in Fig. 3-3. The inputs to the priority circuit are pulses
generated by memory units M indicating that a switch has changed

state since the last sampling time. This type of input, rather
than a type which gives forth a pulse for every “on” switch every

sampling time, permits an input system with some advantages

over conventional input scanning systems. Furthermore, the
memory units M of Fig. 3-3 can be so designed as to provide

information on the actual state of the corresponding switch,

and thus avoid the dangers of a pure “change of state” system,

which is vulnerable to loss of pulses. A realization of unit M
will be discussed later.

It is interesting to compare the priority circuit input
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system with one in which there is a shift register in place of the

priority circuit. proper. For the shift register, if there are N

input lines, N advancing pulses by transistor TA are required

between sampling times. This second system in effect scans the
N lines in between sampling times. If there are K sampling

times per second, then the overall pulse handling capability of

the second system is KN pulses per second. Assuming some
technological limit to the pulses per second which may be handled

by a given type of component, then the maximum sampling rate

l/K is determined essentially by the number of input lines to be

served, Furthermore, each line separately may handle on more
than K pulses per second” with this arrangement.

With the priority circuit in place on the shift register, it

is no longer necessary that there be at least N advancing pulses

on transistor TA in between every sampling time. The number
of such pulses is determined by the overall activity of the input

lines rather than number of such lines. Hence, advantage may

be taken of any properties of the input lines, such as, for in-
stance, that they be many in number but that their average act-

ivity be low.

More important perhaps is the ability to increase the

sampling rate to keep pace with the fastest of the input channels’,

without necessarily requiring the advancing pulses on transistor

TA to speed up proportionately. Suppose for the sake of definite-
ness that the processing of one pulse requires 200 microseconds

and that, of 30 input channels, 6 may have up to 400 pulses per
second whereas the rest may have no more than 10 pulses per

second each. A maximum of 2640 pulses per second isjtherefore
involved. Now if a scanning system requires 200 microseconds

‘In speaking of the pulse carrying capacity of a channel in terms
of pulses per second, we, of course, are really referring to the
reciprocal of this number which is the minimum time interval
between consecutive pulses.
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to look at each channel, whether a pulse is present there or not,

it cannot cope with the situation as described. To do so would

require a processing rate of 30 x 400 = 12,000 pulses per second.

Of course two separate scanning systems could be employed,

one to scan the six high frequency channels and the other to handle

the rest.

In a sense, the priority circuit input system acts in this

way, except that it adapts itself automatically to varying input

requirements. All that is required is to make the sampling rate

fast enough to match the fastest of the input channels and, simul-

taneously, to be able to process pulses fast enough to handle the

total load. Thus, in the example cited, a sampling rate of 500

per second would permit ten advance pulses on the pr’iority cir-
cuit during each sample period (at 200 microseconds each),

which would permit the six 400 cycle lines to be processed once

each sample time and still leave time for handling four other
pulses distributed among the remaining 24 lines. It could, of

course, happen that more than four of the remaining 24 inputs

would require processing in a particular sample period. How-
ever, the priority circuit would carry this information over un-

til the next sample period, and could be guaranteed to process

each channel before the next pulse on that channel arrived. From
the standpoint of the tie-in to the computer, discussed in the
next section, the priority circuit provides a means whereby the

computer gives exactly the minimum possible amount of attention

to its inputs, thus permitting highly efficient time sharing pro-

cedures.

A careful study of the properties of the priority circuit

input system is beyond the scope of this report, but it seems

clear that such a system can take advantage of variations in iri-

formation rate among the input lines, and that it is in no case

worse than the scanning system.

The memory unit M mentioned earlier may be realized

7 4



by the circuit shown in Fig. 3-4. Upon closure of the sampling
switch, cores Al and A2 are driven to ONE for one position of

the input switch, and to ZERO for the other. Cores Bl and B2
are driven to ZERO and ONE, correspondingly. Cores A2 and

B2 are always in opposite states, and will change states only

if the input switch has changed states since the last closure of

the sampling switch. A full wave rectifier generates a negative
pulse every time A2 and B2 change states, and this pulse con-

stitutes the input to the priority circuit.

It may be necessary to ascertain the state itself, rather
than a change of states of the input switch, and cores Al and Bl

can be used for this purpose. These cores, which may be part
of an erasable storage register, may be both cleared to state
ZERO simultaneously, and their outputs sensed. Note that only
one of Al or Bl may be at ONE. The next closure of the sampling
switch restores the proper core to a ONE, in correspondence

with the state of the input switch. This subject is developed
further in the next section.

C. The Automatic Interrupt

The automatic interrupt system provides integration of
the priority circuit input system with the rest of the computer.

The desired overall behavior of the input system is approximately

as follows : when an input occurs a signal is given to the sequence
generator and the normal chain of events is interrupted at the end

of the current sequence. The next sequence (i.  e. , order) is not
the order determined by the contents of register B, but a special

sequence called the Automatic Interrupt Sequence (AI). This
sequence transfers the contents of selected central registers for

safekeeping into other ce.ntral registers specifically reserved for

this purpose . Then, by mechanisms to be described later, pro-
gram control is transferred to a subroutine appropriate to the

particular input which activated the interrupt. When such action
is ended, a Resume sequence restores the contents of the central
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registers and program control is transferred back to the instruc-

tion displaced by the AI sequence. In short, the occurrence of

any input results in the automatic interruption of whatever the

computer is doing, preservation of the contents of certain cen-

tral registers, processing of the input, and then resumption of

the previous computer activity. There is an exception, namely

that it is not possible to interrupt a program which was entered

into because of a previous interrupt. If an input B occurs while
processing another input A, or at the same time as another in-

pilt  A with higher priority, then input B is processed after A is
processed, and before the computer resumes its previous activity.

A further exception lies in the fact that the interrupt action can

be inhibited (i. e., delayed) by the presence of a ONE in a desig- ’

nated position in the order code. Assuming this facility to be
carefully used by the programmer, certain central registers

(e.  g. ) Q and R2c) need not be preserved by the AI and Resume

sequences. Thus some equipment savings result.

Roughly speaking, inputs may be divided into two cate-
gories : those which indicate the state of a switch; and those

which indicate the presence or absence of a pulse, where the

state of the switch which generates the pulse is not itself im-

portant. For example, the switch which indicates that a rocket

motor is on is an input of the first kind. T.he  train of pulses
which comes from a flywheel pick-off is an input of the second

kind. The point is that inputs of the second kind feed into counters,
and that, in terms of input circuitry, cores Al and Bl of Fig. 3-4

can be eliminated. The integration of each kind of input with

the computer will be treated separately. The first kind will be

called State Inputs, and the second kind Counter Inputs.

D. State Inputs

State inputs are handled by associating one (or more) in-

put switches with an addressable register. This register is a
combination of the erasable and the fixed kinds. Such a register,
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with some associated circuitry, is shown in Fig. 3-5. The over-

all circuit is an elaboration of the cir-cuits  of Fig. 3-3 and 3-4.

The addressable register itself is composed of cores Rl, Al, Bl,

and R2. Core Rl  is a rope core, and can be set to a ONE by
having the proper address cleared from the S register, as usual,

or by the occurrence of a change of state of cores A2 and B2, as

will be explained presently. Cores Al and Bl  describe the state

of the input switch, as in the circuit of Fig. 3-4. Core R2

follows the state of Rl, and is threaded by some of several sen-
sing lines. (This core could actually be eliminated, by threading

the lines through Rl  itself. ) All of these sensing lines go into

the A Sense Write amplifiers shared by E storage.

Operation is as follows: A change of state of the input

switch from one sampling time to the next results, at sampling

time, in a signal on the base of transistor TP. This signal was
previously described as “input to the priority circuit” (Fig. 3-4),
and its net result is to drive to a ONE the priority circuit core

P. The act of switching core P from ZERO to ONE also results

in a signal on line L, which is common to all priority cores, and
which goes to the sequence generator. The sequence generator

then goes into the Automatic Interrupt sequence which generates,

among other things, an Advance pulse. This advance pulse

drives to ZERO the highest priority P core, say the one of Fig. 3-5.

In so doing, transistor TR  generates a pulse which drives to a

ONE the rope core Rl, and the register core R2. When the

sequence generator produces a CLE pulse during the resulting

AI sequence, core Rl  is driven to ZERO, and all cores of its

associated register, Al, Bl  and R2 in this case, are driven to a

ZERO. In so doing a word is read into B which consists of the

two bits which indicate the state of the switch, and other bits

which give the address of the subroutine pertinent to the input

being processed. The AI sequence then separates the word into

two different words, and transfers program control to the input

subroutine. When that subroutine is finished, a Resume sequence
is generated, and another advance pulse is produced to test the
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presence of other P cores which might have been driven to a ONE.

Assuming no other inputs, occur, the computer returns to its
previous task.

Cores Al and Bl, cleared by a signal from the transistor
associated with Rl,  are restored to correspond to the input

switch at the next sampling time after action is initiated. In so
doing, one of Al and Bl  changes state from ZERO to ONE, and

for this reason they cannot be used to generate the “change of

state” signal to transistor T pe If they were so used, the CLE

pulse, which clears the register Rl,  would generate a false
interrupt signal, setting P to a ONE.

In the example given above, an entire register is used

for a single input switch. Obviously, more than one switch may
be associated with each register, requiring some additional

circuitry for recording which switch caused the alarm. As a
final remark on State Input, registers, it should be noted that

these registers do not have the means for writing into them

possessed by normal erasable storage registers. They can be
written into only by means of input switches. The state of the
input switch may be examined at any time, under program con-

trol, since register Rl  can be addressed by normal means.

Since no Write busses are provided for cores Al and Bl, however,

this interrogation should not be made oftener than once per

sample time.

E. Counter Inputs

Counting is an indispensable and frequenct  acitivity  of
control computers of the type under discussion. The sources
of things to be counted are both internal and external. In the
case of a space vehicle, the external sources are things such
as accelerometer outputs, pulses generated by the rotation of

a flywheel, a clock which keeps time. Internal sources are
various bookkeeping operations necessary for a complex pro-
gram, such as the number of iterations of a converging process,
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or index modification in the case of programs dealing with

matrices or vectors,

In either case, a solution which permits programming

and computing time economies is to have special registers.

These ideal registers have all the attributes of addressable

erasable storage registers plus two others: they count pulses

on an input lead independently of other computer activity, and

they generate a signal upon overflow (Fig. 3-6).  The contents
of an ideal counter register may be examined at any time by

reading said contents into B, and a word may be transferred

from B into the counter; this last property allows counters to
be preset to any number, under program control.

It is possible to realize these ideal counter registers

or ones very nearly ideal by having active counters, with many

components. A more desirable solution, where many counter
registers are to be employed, is to have a system in which the

registers themselves are passive, i. e., cannot do any counting.

This requires a central unit which adds one to a number read

into it, which is shared by all counter units. It will be recalled

that such a unit was described in the section on central registers,
i. e. , the Z register. This solution is more desirable only be-
cause it saves equipment. The properties of the counter reg-

isters:become  %Ii$hfl;yless  than ideal, because of certain timing

hazards which arise from the use of common equipment, and

because the overall pulse handling capacity is limited to the

capacity of the Z register. However, the end product is a
reasonably economic system for a few active inpjlts, and a very

economic system for a large number of slow inputs. As will be

seen, there are many similarities between the proposed input

counting system, and the more general state input system de-

scribed previously.

Shown in Fig. 3-7 is a schematized system of two counter

inpu.ts  and counter registers. When an input occurs, the priority
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circuit core associated with that input is driven from ZERO to

ONE, and an interrupt signal is generated. As in the case of
state inputs, an interrupt signal causes the sequence generator

to enter a special sequence. However, the special sequence
which applies to counter inputs is shorter and simpler than that

which applies to state inputs. Specifically, an Advance pulse
is generated, which clears the priority circuit core to ZERO,

and at the same time, a WZ pulse is generated. Clearing the
priority core causes the Counter Register associated with it

to be cleared to all ZERO’s (just as if the proper rope core had
been set to a ONE) followed by a CLE pulse. Because of the

WZ pulse, the contents of the counter are read into Z, where

a ONE is added in the least significant place.

The very next pulse time, the pulses generated are CLZ

and WE, which cause the incremented count to be placed back

in the proper Counter Register. Following this, another Advance
pulse is generated to test for unserviced inputs, and the two
pulse time process repeated until there are no more priority

cores which have to do with counters at ONE. When this condi-
tion is met the sequence generator returns to normal functioning.

All counters are updated at the end of every sequence, and once

per cycle in the addition loop.

It is worth while to look closely at the difference between

the processes for state and counter inputs. The most striking
difference is in the times required to process each kind of

input. A state input interrupts the program currently being

executed, and transfers control to a special subroutine which

deals with that input. This requires that many orders be ex-

ecuted, and since each order is about 10 pulse times long, each

state input requires hundreds of pulse times. A counter input,
on the other hand, requires exactly two pulse times to be pro-

cessed. These pulse times are sandwiched between pulses of

a normal sequence, when the Z register is free. Thus, the
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current program is interrupted only in the sense of a short delay

being introduced. Further: the circuits may be so arranged that

no delay whatever is experienced when there is no counting to be

done a

Each Gount.er  Register has a transistor associated with
its most significant digit core (not shown in Fig. 3-7),  which

generates an overflow pulse when the count reaches a certain

size. This pulse can become a state input, so that a special

subroutine is entered into every time that counter overflows.

Alternately, the inputs to a counter can come from within the

computer itself. For example, a rope core, whose switching

causes the execution of an order, can have a transistor associated
with it which feeds a counter. Every time that order is executed,
the contents of the counter are automatically increased by one.

This permits programs to be efficient in the sense of little time

being wasted on some aspects of bookkeeping.

The counters described thus far can only be used for

a.ccumulating  positive increments. There are basically two
alternatives to the problem of positive and negative increments.

One of these assigns two counters to each variable capable of

increments of either sign, and a separate count is kept both of
positive and negative increments. This arrangement, while

workable, has the undesirable feature of requiring a subtraction

every time the absolute count of a variable is to be examined.

Th.e  other solution to the problem of bipolar increments

associates two priority input cores with each counter, one for

positive and one for negative increments. Then, depending on

which input core is excited, either an “Add One” or a “Subtract
One” sequence is entered. The “Add One” sequence can be as
before, The “Subtract One” sequence can still be done with
only the Z register  by a double complementing operation, since
complementing the contents x of a counter, adding one to the

result, and complementing this in turn is the same as subtracting
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one from x [ (x’  +  1)’  = x - 1; x = x’] . This scheme has the
disadvantage of requiring four pulse times to increment a counter,

and also that the Z register be placed on the (Y side, instead of

the fl side where it is presently assigned (Fig. 3- 8). The new
location of Z in turn requires a different incrementing sequence

for positive increments than the simple two pulse sequence used

in the case of positive increments only. The two sequences are
listed below.

Positive Increments

CL CNTR,  WC1

CL Cl, wz

CL z ,  WCl,  WP

CL Cl, CL P, WE ( - W CNTR)

Negative Increments

CL CNTR, WCZc,  WlC3c

C L  czc,  wz

C L  z ,  wc3c,  WlCZc,  WP

CL C3c, CL P, WE ( = W CNTR)

Registers such as C2c  are complementing registers. The

above four pulse sequences have the advantage of permitting a

parity bit in counters, which is updated automatically, provided
that the number of bits in a word, excluding the parity bit, is

even. The two pulse sequence, of course, disregarded parity
completely. The condition of an even number of bits is to in-

sure that the parity of a word and its complement be the same.

A final and most desirable solution to the problem of
bipolar counting involves a modified Z register capable of sub-

tracting one (by adding the complement of one), as well as adding

one to the quantity entered into it. Such a modified Z register
is currently under development, and it may be possible to build
one so that it still requires only a single transistor per bit.
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F. Output Devices

As was the case with input devices, output devices will

be discussed without any specific application, and presented as

a useful collection of ideas, circuits, and subsystems. No part
of the problem of digital to analog conversion will be discussed
here, but the generation of power pulses (as opposed to pulses

used for signalling purposes only) will be mentioned.

The backbone of the output system is the core rope. Cores
in the rope may have transistors or a latch type of solid state de-

vice connected to them. The core may be addressed by means
of the S register, just as any other fixed or erasable register.

Switching one of those cores then generates a pulse, or causes

the closure of a switch which remains closed until some other
core switches.

The latch devices mentioned above are of particular inter-

est because they approach the ideal relay contact; they are three

terminal, four layer transistors which turn on when the base is

pulsed positively relative to the emitter (Fig. 3-9),  remain on

as long as a sustaining current flows through them, and are
turned off by pulsing the base negatively relative to the emitter.

The sustaining current is of the order of 10 ma. The “on” and

“off” signals are of the order of 1 to 5 volts, and about 1 psec  in
duration. As shown in Fig. 3-9, these latches can be used to

keep a transistor turned on. When the latch is off, the base of
the transistor is held at +5 volts. If core 1 fires, the latch turns

on, and the base of the transistor is held negative relative to the
emitter. The latch is turned off by core 2. Latches may be
synthesized out of ordinary transistors, if need be.

An application of the output switch circuit is shown in
Fig. 3-10, where it is used to gate a pulse generator. Thus the

load may be subjected to trains of pulses, or rate R, under pro-

gram control. The pulse generator may be common to several
output switches.
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An important output problem is that of pulse rate genera-
tion. From the point of view of efficient computer utilization, it
is desirable that there be a kind of pulse generator whose output

rate is set by the computer by simply writing a number into a

special register. The intent is to free the computer from the
task of regulating pulse rates, The computer sets a rate in a
given pulse generator, and this rate is produced independently
of the computer until the rate is next set. The premise is that
the intervals between settings of the pulse rate are large com-

pared to the intervals between pulses. With this type of pulse
generation it is possible to use a medium speed computer for

the overall control of many independent pulse rates, each of
which varies slowly, but may be of the order of the computer

clock rate.

The desired pulse generator features may be achieved at

relatively low cost. The basic scheme is outlined in Fig. 3-11.

There is a counter associated with a clock (which could be the

computer clock), out of which come the various pulse rates
RR  -5

‘ 2 ’  4 ’ etc, each pulse rate appearing on a separate wire. For
each independent pulse rate Q to be generated there is an Output

Rate Register. These registers are part of the E storage, and

their contents can be set by the computer. Each bit position of
each register acts as a gate for one of the clock counter rates,

as shown in Fig. 3-12.. When a ONE is read into the core cor-
responding to a bit position, the solid state latch tied to that
core is turned on, and remains on until the core is cleared to a

ZERO. While the latch is on, the base of the transistor con-
nected to the latch is held negative, and the transistor acts as a

closed relay contact. While the latch is off, the transistor does
not conduct because its base is held positive.

A desired rate Q is generated by combining pulse rates

from the clock counter. Thus

Q=alR+a 2F+ a3-F+ a4.-7 + a B.
5 16
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where each a is either 0 or 1, and corresponds to a bit position.

It is necessaby  to show that the various rates R, R/2, etc., can
be generated in such a way that no pulses are lost due to time

coincidence; for example, if the desired rate were Q = 5R/8,

accomplished by combining rates R/8 and R/2, pulses would be

lost if the wires carrying these respective rates had pulses on
them at the same time.

The clock counter of Fig. 3-11 has an internal pulse source

of frequency 2R,  and five flip-flops which successively halve the

input rate. Thus, after every input pulse, the state of the Clock
Counter can be expressed as a binary number. If the outputs
R.IZR, 2 , 4 , etc., are taken to be the transitions of the halving
flip-flops, as they change from state ONE to state ZERO, then

there can be phasing problems, since it is possible to have

several flip-flops going from ONE to ZERO simultaneously.

However, there can be only one flip-flop going from ZERO to

ONE at any one pulse time. In fact, there will always be a
single flip-flop going from ZERO to ONE, with the exception

of the pulse time in which the count goes from all ONES to all

ZEROS. Therefore there are no phasing problems in the rates

R 3 R etc‘2’4’ ” are generated by the ZERO to ONE transistions

of the halving flip-flops. The situation is illustrated in the tables
of Fig. 3-13, which shows the generation of several output rates.

A variant of the Rate Generator discussed above which
could be of some importance is the Rate Multiplier. The out-
put Q of a Rate Generator is Q = AR, where A is the content of

the Rate Generator. Thus, if R were a variable rate, Q would

be the product of A and R. Rate Multipliers each require a set
of counting flip-flops, so that they are fairly expensive in

:::
equipment . However, all these special techniques are available
for generating variable pulse rates independently of the main

computer activity.

For a discussion of this subject, see Grabbe, Ramo, Wooleridge,
“Handbook of Automatic Controls and Computation”.
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CHAPTER 4

GENERAL REMARKS

A. Size, Weight, and Number of Components

In this section the size, weight and component quantity

of the various subsystems presented before will be discussed.

1. The Core Rope

This subsystem is the most unusual one from the point

of view of standard computer technology and packaging. The ropes
constructed to date (Fig. l-l) have a core density of 32 cores

3per in. . Since each core represents one or two entire words

of up to about 50 bits total, the bit density of the core rope could
3be about 1500 bits/in. . This density does not take into account

connectors, access equipment or mounting of the core rope on
some fixture. As a better measure of size, a 4000 word memory,

of 24 bits per word, will be postulated.

The core rope for this memory will consist of 2000 cores
3(two 24 bit words per core) and occupy 160 in. , complete with

mounting boards and end connectors. The forty- eight sensing
3amplifiers needed in this case require 25 in. , and the S register

3and its drivers require 50 in. . Hence the total volume of a
3 34000 word system would be 235 in. , or 0.14 ft. . It must be

emphasized that this size is not a projection based on future

improvements on existing packaging techniques, but a calculation

based on an already constructed core rope of 256 cores. The

unusually large bit density is achieved by the one core-per-word

character of the memory, not by refinement of packaging. The
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total weight of such a system, again including all connectors and
mounting boards, would be of the order of 7 lb. Reasonable re-

finements on core rope packaging techniques could be expected

to reduce both overall volume and weight by one third to one half

the figures given above.

2. The Erasable Storage.--

A board containing 16 erasable storage registers, each of
12 bit capacity, has been constructed (Fig. 4-l). From the

existing registers, the following calculations may be made for
24 bit registers. Each register, including the cores and tran-

sistors necessary for access to it, would measure 4. 75 X. 5 X. 5 in. 3 ,
3or 1. 2 in. . The weight of such a register, not counting mounting

boards and connectors, is about 20 gm. Including mounting board

and end connectors, and assuming a board size which allows ad-

vantage to be taken of the register dimensions (the board of Fig. 4-l

does not), it should be possible to have a system of 128 erasable
3storage registers inside of 160 in. , and which weighs about 5 lb.

3. The Central Registers

Except for the S, Z and Parity registers, all other central

registers are electrically similar to ordinary erasable storage

registers, and of comparable volume. The S register has already

been counted in the discussion on the core rope. The Z and Parity

registers require about three times the weight and volume of an

ordinary register. Assuming a system of 10 central registers,
plus Z and Parity; and making generous allowance for the volume

required by control pulse circuitry; the central register complex

should occupy a volume about as large as that occupied by 25
3erasable storage registers, i. e. , about 35 in. , and weigh about

1. 5 lb.

4. The Clock and Sequence Generator

These two items can fit a volume of

and weigh about 2 lb.

9 8
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Fig. 4-l Sixteen word erasable storage system
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5. Input and Output

An assignment of 100 in. 3 and 4 lb to the input-output

system seems reasonable to this writer. This would represent
approximately 32 counter inputs (and counter registers), and 180

state inputs, figured at 6 state inputs in the volume occupied by

two erasable storage registers.

6. Computer Totals

The many assumptions and calculations may be summed

up as follows: a computer with a word length of 24 bits, with
4000 words of instructions and constants, with 128 erasable reg-

isters, and 32 counter and 180 state inputs, would occupy a
volume of about 0. 37 ft3, and weigh about 20 lb. It is interesting
to note that these calculations give an overall density of 54 lb/ft3,
which is approximately the density of other airborne digital com-

puters. The various computer totals, including conservative

estimates on the number of components, are summarized in

Fig. 4-2.

B. Reliability

In discussing the potential reliability of the type of com-
puter proposed here it is necessary to make several distinctions

and assumptions. Primarily, it is necessary to distinguish be-

tween catastrophic failures e. g. , burning out of a transistor, or

opening of a solder joint, or breaking of a wire, and temporary

failure due, for example, to voltage variations or a burst of
extraneous radiation. It is assumed that a temporary failure
does not result in any mechanical or electrical damage.

If there is sufficient program storage, and if speed of
computation is not critical, then it is possible to protect against
temporary failures by computing things in two different ways,

at two different times, and checking results. A parity check
system in which each word has a parity bit associated with it

serves to detect the large majority of temporary failures and to

initiate actions that call upon the computer’s error correcting
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programs.

Catastrophic failures are a more serious concern because

of the difficulty in protecting against them. There are possibilities

such as duplicating equipment, or having “spares” which can be

connected automatically in place of a defective subsystem. These

schemes are not attractive because of the expense in terms of

volume and weight, and because it is not clear that they neces-

sarily result in a more reliable system. The glib “connected

automatically” may imply more reliability proble’ms being gen-

erated than solved. The following paragraphs will contain a

discussion of the likelihood of catastrophic failures in the pro-

pos.ed  computer, without any duplications of equipment.

There is mounting evidence that a computer of the size

and number of components of the one proposed here can be built

so as to function for years without catastrophic failures. If it is
assumed”’ that there will be no failures of a mechanical nature

(poor construction and mounting), then the failures of concern

are electrical ones. Of the various components listed In Fig. 4-2,

cores may be eliminated as a source of electrical failures, for

they may be damaged only by mechanical action or by temperatures

above 3OO’C. The components most prone to failure are tran-

sistors and diodes.

The quality of transistors is improving steadily. The
MIT Instrumentation Laboratory has had a computer in operation

for over 7000 hours, in which there have been no failures among

the 500 transistors used in the logic sections. Reports from
::: :::

Lincoln Laboratories show similar results. Experience tiith

diodes is similar to that with transistors. It is then reasonable

,k
This assumption does not imply a dismissal of the problem of
construction as trivial.

MIT- Lincoln Laboratories
Tech Report No. 199, ASTIA 214565, D. J. Eckl, P. A. Fergus,
R. L. Burke, “Transistor Life Experience”, Nov. 1959
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to expect a system in which transistors and diodes numbering

in the low thousands could be made so as to last for a few years

without any catastrophic electrical failure. If the circuits are

so designed that they are insensitive to changes in transistor

parameters, the lack of catastrophic failures would imply no
maintenance. The core-transistor circuitry which is the basis
of the proposed computer is insensitive to changes in transistor

/3’s;  the power dissipated in the transistors is well within the
device’s capabilities, and voltages are within breakdown limits.

The most serious remaining reliability problems are

physical construction, sensitivity to temperature, and sensit
to radiation.

Of these, the effects of radiation present in outer spa
are the least known.

C. Construction and Experience to Date

ivity

c e

Various parts and circuits of the proposed machine have

been built and tested in order to bring out logical and electrical

problems, and to acquire some feeling for the relationship of

the paper design to the actual physical system. This section
will describe briefly what was built and how it worked. More
detailed accounts will be published in future reports.

The most unusual element of the computer is its wired -
in memory,and  establishing the practicality of large ropes was

felt to be a necessary first experiment. As a consequence,
core rope systems of increasing sizes were built and operated.

The largest system built to date has been one of 256 cores, and
it has operated successfully. The basic electrical design pro-
blem consists of maximizing the transfer of energy from a pulse

on the CLE line to the appropriate sense lines through a selected

core, and minimizing the energy transferred through air coupling

and through saturated cores. Air coupling was minimized rela-
tive to core coupling by essentially simple construction techniques,

and by using as much iron in the core- 3 as is practical with available
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currents,

The sense lines were threaded through the rope cores

in such a way that the noise generated by the CLE pulse through

the cores that do not switch cancels out. The uniformity re-

quired of the cores is within commercial standards (i 10% vari-

ation in output signal for a given switching current). Sampling

of the output signal was required only in the sense that the noises

induced by the rise and fall of the inhibit currents are blanked

out. The conclusion derived from the experience to date is that
ropes of up to 4000 cores are perfectly feasible.

The erasable storage registers are of conservative de-

sign, and no serious problems have been encountered in that

area. Various forms of pulse amplifiers, core-transistor pairs
and shift registers have been built and tested; as a result there

now exist definite design procedures which lead to sucessful

circuits , A sequence generator has been built and operated, and

also an 18 core priority circuit. The principles and circuits

implied in the Z and P (Parity check) registers have been shown

practical.

At this time an abbreviated version of the computer is

being assembled, in which there are 32 erasable storage registers
and 224 fixed registers (i. e., a 224 core rope). The word length
is 12 bits, and there is a four instruction order code. This simple
computer is expected to be useful in preliminary system tests.

The experienced acquired to date indicates that the pro-
posed computer is feasible and basically sound. The various

design problems encountered do not call for refined circuitry or

close component tolerances, and the components used are readily

available commercially.

D. Power and Speed

It has been mentioned that with the proposed techniques

a variable speed computer results in a correspondingly variable
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power consumption. This feature is of obvious value in a space

probe, where there is ample time to compute, and hence, where

power may be saved. It is also of value in other airborne appli-

cations because it is possible to check out the computer at low

speed, and not generate appreciable heat. In fact, it might be
possible to keep the computer running continuously at very low

speed and have a constant check on its functioning.

If the computer’s oscillator clock should stop, no cores
would switch, and the only currents would be those due to tran-

:;:
sistor leakage and those due to flip-flops . The leakage current
of a transistor in the “off” condition is of the order of 10 pa.

If several transistors are in series, the leakage current is even

less. For the representative computer, the total “stopped” cur-

rent would not exceed 10 ma, exclusive of flip-flop current, which

means 0.1 watt of standby power.

It makes sense to speak of the energy (in watt-bsec)  re-

quired for various operations such as clearing a register of

switching a rope core. It turns out that it is possible to esti-

mate the energy required by the actions resulting from the various
possible control pulses. All control pulses except CLS and CLE
require between 3 and 4 watt-,usec. The inhibit currents gener-
ated by CLS have an amplitude of 300 ma, and last for about
5psec,  and are developed across a 10 volt power supply, so

that they use 15 watt-@sec. There are 12 inhibit currents, plus

a set drive; hence the CLS pulse uses 185 watt-psec. Similarly,
CLE uses 15 watt-psec. With these figures in hand it is further
possible to estimate the energy of the various instructions. For
example, the sequence for CA X has two occurrences of CLS

and CLE, and 29 of other control pulses. On this basis, per-

Flip-flops are presently used in the sensing amplifiers and
drivers of the prototype computer mentioned in Section 4C.
Present plans call for the eventual replacement of these flip-flops
by latch circuits which consume essentially no
“off” condition.

power in the
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formance of CA X uses about 520 watt-,usec. Energy required

by other instructions is approximately the same. At full speed,
i. e., performing an instruction every 48 ,usec,  the estimated

power consumption is approximately 11 watts. If flip-flops are
used instead of latches in the Sense Write amplifiers (48 of them)

then power consumption increases by about 4 watts. This inc-

crease is due to the fact that latches conduct, at most, during

3 psec  out of every 12 psec  clock cycle (the time between succes--

sive cy  pulses), whereas flip-flops conduct all the time at a rate

of 10 ma. The total power consumption for the computer, running
at maximum speed may then be estimated at 15 watts.
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