Voog et
AND

AP@ML@ i b R
NAY D RTON - Sy5TEM STUDY GUIDE

LM PRIMARY GUIDANCE NAVIGATION
AND CONTROL SYSTEM

(I 5 Januarq 14 (ﬂ)

Mr. Wil Gamp
(rade of aatm et
AR Museun Lane — Mi tchel Field
BT Gardan Ciy, NY 1530

- FTeal

"nuuunnnuunuunnuuuuuunuuunuuuuuuuuuuuunuuuuuuuuu
EX LIBRIS: DAVID T. CRAIG

736 EDGEWATER

WICHITA KANSAS 67230
gt o

At ELpeTRoNICS DS C«;wem WOTORS (ORPORATTION




APOLLO

GUIDANCE AND NAVIGATION SYSTEM

LUNAR MODULE

STUDENT STUDY GUIDE

PRIMARY GUIDANCE, NAVIGATION AND CONTROL

SYSTEM COURSE 3100

COMPUTER UTILITY PROGRAMS C3100

PREPARED BY
AC ELECTRONICS
DIVISION OF GENERAL MOTORS
MILWAUKEE, WISCONSIN

15 JANUARY 1967




PREFACE

This student study guide has been prepared by AC Electronics in responee to:

Contract NAS 9-497
for
System Assembly and Test, Inertial
Measurement Unit, Coupling Display Unit

Power and Servo Assembly - Project APOLLO

‘ This study guide containstraining material and should be used for instruction purposes only.

11/)([




Section |
Block 1.
Block 1.
Block 1.

Block 1.

Block 1.
Block 1.

Block 1.

Block 1.

1

2

w

il il i

PREPRRERR R R0

. . . Ld
N S Y YRR IR AL NG oI CEN

00 00 00 90 00 5500 P 0 0 X o @ 0 @
WV o

ook WP

TABLE OF CONTENTS

General Computer Programming Concepts
The Development of the Computer Program
The Computer's Real Time Environment
Time Sharing the Computer Hardware

Implementing the Time Sharing of the Computer

1 Counter Interrupts
.2 Program Interrupts
.3 Program Controlled Processing

Relative Priorities of the Types of Processing

Scheduling and Execution of Program Controlled Processing
on the Basis of Program Priority
Introduction
Terminology
Scheduling
Execution Control
Core Set Areas and VAC Areas
5.1 Core Set Areas
5.2 VAC Areas

Scheduling and Execution of Time Dependent Processing
Introduction

Implementing Time Dependent Functions

1
2
.3 Scheduling of Time Dependent Functions
4

Execution of Time Dependent Functions

LGC Input and Output Channel Interface
Channel 01
Channel 02
Channel 03 High-Order Scaler
Channel 04 Low-Order Scaler
Output Channel 05
Output Channel 06
Output Channel 07
Output Channel 10
Output Channel 11
Output Channel 12
Output Channel 13
Output Channel 14
Input Channel 15
Input Channel 16
Input Channels 17 through 27

mﬂq

1-10

1-12
1-12
1-12

1-13
1-13
1-13
1-13
1-13
1-13
1-13
1-13
1-13
1-14
1-14
1-14
1-15
1-15
1-15
1-15




TABLE OF CONTENTS (cont)

Page

1.8.16 Input Channel 30 1-16

1.8.17 Input Channel 31 1-16

1.8.18 Input Channel 32 1-17

1.8.19 Input Channel 33 1-17

Block 1.9 Computer/DSKY = Hardware/Astronaut Relationship 1-18

1.9.1 Keyboard 1-18

1.9.2 Display Indicators 1-20

1.9.3 DSKY Condition Indicators 1-22

1.9.4 DSKY Operation 1-22

1,9.4.1 Verb-Noun 1-22

1.9.4,.2 Data Loading 1-25

1.9.4.3 Correcting Erroneous Data 1-26

1.9.4.4 Decimal and Octal Display and hading 1-27

1.9.4.5 Monitor vs. Display 1-27

1.9.4.6 Changing of Major Mode 1-27

1,9.4.7 Mode Initiation 1-28

1.9.4.8 Computer Control of the DSKY 1-29

1.9.4.9 DSKY/Computer/Operator Interlocks 1-29

1.9.5 Verb-Noun List 1-30

1.9.5.1 Verb Codes 1-30

1.9.5.2 Verb Description 1-33

1.9.5.3 Noun Codes 1-36

Block 1.10 Interrelationship of Processing Functions 1-40
Section 11 Executive Control of Computer Processing 2-1/26

Block 2.1 The Executive Routine 2-1

2.1.1 FINDVAC and NOVAC Subroutines 2-1

2.1.2 Change Job Subroutine 2-6

2.1.3 End of Job, Job Sleep, and Priority Change Subroutines 2-8

2.1.4 Dummy Job Subroutine 2-10

2.1.5 Job Wake Subroutine 2-12

Block 2.2 Waitlist Routine 2-14

Block 2.3 TIME 3 Program Interrupt Routine (T3RUPT) 2-20

Block 2.4 Phase Table Maintenance Routine 2-22

2.4.1 Phase Change and New Phase Subroutines 2-22

2.4.2 New Mode Exchange Subroutine 2-24

2.4.3 Check Major Mode Subroutine 2-24

iv / X/




Section I
Block 3.

1
3
3
3.
3
3
Block 3.2

Block 3.3

3. .

3.

Block 3.

Block 3.

(6]

Block 3.

WWwWwo
(o)l oY

Section IV
Block 4.1
Block 4, 2

Block 4.3

[ il e

AR DN

TABLE OF CONTENTS (cont)

Input/Cutput Control Routines

TIME 4 Counter Program Interrupt Routine (T4RUPT)

1 T4RUPT Lead In, 20, 30 MSEC RUPT, Service DSPTABS
2 ALTOUT

3 ALTROUT

4 RR AUT CHK (Rendezvous Radar Automatic Check)

.5 IMU Monitor

Downtelemetry (DNRUPT)

Keyboard and Uplink Telemetry Input Processing Program

1 DSKY and Uplink Interrupt Operation
2 The Pinball Program
.3.2.1 CHARIN
3.2.2 NOUN Subroutine
.3.2.3 VERB Subroutine
3.2.4 SIGN Subroutine
3.2.5 NUM Subroutine
3.2.6 CHARALRM Subroutine
3.2.7 ENTER Subroutine
3.2.8 Error Reset Subroutine
.3.2.9 Key Release Subroutine
3.2.10 Clear Subroutine

ISS Mode Switching Routines
1 ISS CDU Zero
2 IMU Coarse Align
3 IMU Fine Align

IMU Pulsing Routine

AOTMARK Routine
Alignment Optical Telescope (AOT)
Non-flight Star Sighting

1

2
.3 Inflight Star Sighting
4

AOTMARK Routine
Miscellaneous Routines
Program Alarm Routine
Program Abort Routine

Fresh Start and Restart Routine

i

wwwwwwcfowwwwww
o N NeNerNerNe ey Nep oy Re) M) I T
COONNoOU1IoTwwwOo

w w
1

~ ~
oo




TABLE OF CONTENTS (cont)

Block 4. Self-check Routine
Self-Check Options
Error Detection
DSKY Check
How to Use the DSKY to Monitor Self-check

Self Check Flow

I SN SN S
O WN =

4
4, 4.
4.4.
4.4,
4.4,
4.4,
Appendix A

Computer Programs
Appendix B

Explanation of Sample Program Listing
Appendix C

Interpretive Programming

vi/x,'

Page

4-15
4-15
4-17
4-19
4-19
4-21




Figure

el e
]
A WN P

HI—‘I—‘I—‘ITI—\I—‘I—‘

]
P ke RO 00~NO O
>

=
|
N, O

N RN R R R RN NN NN
1
PR O©O~NDU R WN R

WWWWWWWWWwwW ww
1 1
PP OONOUTNWN R

LISTOF ILLUSTRATIONS

Counter Interrupt Processing
Program Interrupt Processing
Counter and Program Interrupt Processing

Control of Program Controlled Processing on Basis of Program

Priority Numbers

Core Set Areas of the Computer Program (Core Set List)

VAC Areas of the Computer Program

Channel 07 Fix Extension Bits

Radar Selection

Gyro Selection

Display Indicators

DSKY Display Relay Circuitry

DSKY Display Indications

Simplified Processing for Zero IMU = CDU Routine

Executive's Core Set List

Executive's VAC Areas

Executive's FINDVAC and NOVAC
Executive's Change Job

Executive's Priority Change, End of Job and Job Sleep
Executive's Dummy Job

Executive's Job Wake

Waitlist's Waiting List

Time Values Stored in List 1
Maintaining Chronological Waiting List
Waitlist

TIME 3 Interrupt Routine

Phase Change and New Phase

New Mode Exchange

Check Major Mode

General T4RUPT
DSPTAB Code
Detailed T4RUPT
Computer Interface with Telemetry
Downtelemetry Transfer
Downtelemetry General Computer Format
Nominal Downlink List, Sunburst, Rev 14
Downrupt
General Flow Diagram for Pinball
INLINK Word Format
KEYRUPT and UPRUPT
CHARIN
ISS CDU-ZERO
IMU Coarse Align
IMU Fine Align
IMU Pulsing
Generation of Merged Word
LM AOT Azimuth Positions
AOT Reticle Pattern
Basic Inflight Star Sighting Sequence
AOTMARK Routine
Vii/X(

LT NN
1 1

)
DUTWIRO©ODUTW = O©NTTWN

NN NNNNDNDNDN
1
NN RPRP PR R R

ww
[ T T Y R I B B B GO R 06
e S S S o L

o111
OO0 E~~~UlUlolol

WWWWWWWWWWWwWWwWwWww
1
ONU~NOUOIONWRRANRPOOORARWNRPRPOO®




Figure

4-1 Program Alarm

4-2 Program Abort

4-3 Fresh Start and Restart

4-4 Self Check Options

4-5 Count Registers and Self Check Error Detection
with = 10 or -0 in SMODE

4-6 Self Check Error Detection with £1 = £7 in SMODE

4-7 Self Check with = 11 in SMODE

4-a Self Check

Appendix A

A-1 SQ Register

A-13 Memory to SQ Register Transfer

A-8 Order Code Determination

A-{ Subinstruction ADO, Data Transfer Diagram

AE Subinstruction STD2, Data Transfer Diagram

A-8 Subinstruction RSM3, Data Transfer Diagram

A-7 Subinstruction NDXO, with implied Address Code RESUME,
Data Transfer Diagram

Appendix B

B-1 Sample Program Listing

Appendix C

C-1 Network Mapping Symbols

C-2 Interpretive Routing Flowgram

C-B Ynterpretive Program Flow

LIST OF ILLUSTRATIONS (cont)

viii / X [‘

c-7
C-8
C-12




Appendix A

A-1
A-2
A-3

LIST OF TABLES

Channel Assignments LM

DSKY Pushbuttons

Display Indicators and Functions
DSKY Condition Indicators
System Test Codes (VERB 57)

The 12-Word Display Table Bit Assignments
RADMODES = Channel Correlation

IMODES 30 = Channel 30 Correlation
IMODES 33 = Channel 33 Correlation

Failure Numbers for Program Alarms
Failure Numbers for Program Aborts
Erasable Addresses Checked in SOPTION 4

Machine Instructions, Alphabetical Listing
Quarter and Eighth Codes
Interpretive Instructions

ix/x"

Page

1-13A
1-19
1-20
1-23
1-36

A-3
A-13
A~-19




OBJECTIVES

The intent of this study guide is to give the student an understanding of the basic utility
programming concepts associated with the LM computer. The programs described in this
study guide are utility programs which, for the most part, are used in conjunction with all
computer operations and include the basic executive routines, input/output routines and
miscellaneous service routines along with basic programming techniques.

This study guide is organized in the sequence of instruction of the course and is divided into
four major sections. Each of these sections is associated with the LM peculiar programs.

The objectives of this study guide are to provide the student with:
a. Course materials organized in the sequence of classroom presentation for self-study.

b. A familiarity of the overall utility programs associated with the LM computer.




REFERENCES

The following documents were used in preparation of this study guide:

Digital Development Operating Procedures for AGC Block II Self Check and
Report 9 Show-Banksum

Revision 14 of Program SUNBURST Dated 9 September 1966

ND-1021042 Apollo Lunar Excursion Module Primary Guidance,
Navigation, and Control System

Digital Development Block 1T Channel Assignments
Memo # 254, Rev. B

“/ xi




SECTION |

GENERAL COMPUTER PROGRAMMING CONCEPTS
INTRODUCTION

This section presents the general programming concepts as used in the Apollo computer.
Included is (1) a discussion of the development process of the computer program, (2)the
real-time environment in which the computer operates, (3) time sharing of the computer
among its processing functions, (4)the scheduling and implementation of program con-
trolled processing functions, (5)the scheduling and implementation of time dependent
program controlled processing functions, and (6)a general discussion of the computer's
relationship with its hardware and human environment. Also included is (7) a brief dis-
cussion of the interpretive programming technique used in the computer. )

1.1 THE DEVELOPMENT OF THE COMPUTER PROGRAM

The development of the total program capability for the Apollo computer, has been, and will
continue to be an evolutionary process. This istrue because changes in hardware design,
mission, interface, ete., which must be reflected in the program of the computer and also
the magnitude of the job of programming the computer.

In this evolutionary process, several groups of programs have been released. Each group
of programs has superseded the previous group and has contained more of the required
programs or routines. Also, each of the groups of programs have had many revisions to
the programs contained within the group.

The first major series of programs which have been released for the Block II Command

Module and LM computers (CMC and LGC), was called RETREAD. Basically, RETREAD
converted Block | computer utility programs to Block I language and updated the various
routines. RETREAD was followed by the AURORA (LM) and SUNDIAL (Command Module)
series of programs. These two programs built on the foundation set by RETREAD and

branched out in there respective directions to encompass programs associated only with the
Command Module or LM. This study guide is based on the Sunburst Computer Program for LM,

Future programs will be based on the foundation developed by this series of programs. Each
new group of programs will add to those programs contained in its immediate predecessor
reflecting changes to previous programs deemed necessary by equipment changes in the
PGNCS, mission, etc. Through this progression, the final computer program will be
obtained and will afford the designers, programmers and users of the PGNCS a high degree
of confidence in the computer programs.

1.2 THE COMPUTER'S REAL TIME ENVIRONMENT

The computer operates within the spacecraft and specifically within the PGNCS. Various
systems on board the spacecraft interact with the computer to enable the required functions
to be performed, thereby enabling the mission to be accomplished. All systems within the
spacecraft operate on a real time basis, and therefore, the computer must also operate on a
real time basis keeping cognizant of the happenings in this environment. Based on these
happenings or conditions which exist at any particular time, the computer must determine if
an action is required, and if it is, what must be done.

1-1




Inputs to the computer are derived from the PGNCS Inertial Subsystem, Optical Subsystem
and Computer Subsystem. Also, inputs to the computer are derived from the Stabilization
Control System, the Communication and Instrumentation System, etc. The inputs from
these systems and subsystems may change at any time and the computer must be able to
cope with them within a reasonable period of time.

Outputs from the computer are routed to the three subsystems of the PGNCS along with
direct outputs to the Central Timing Equipment, Communications and Instrumentation
System and to the 'Stabilization and Control System. The computer is also capable of con-
trolling the outputs of the inertial subsystem of the PGNCS to the Stabilization and Control
System. The outputs to these systems must correspond to the happenings or conditions
which exist at any particular time in order that the computer effectively copes with the
situation and fulfills its role in the spacecraft.

1.3 TIME SHARING THE COMPUTER HARDWARE

The computer operates in an environment in which many parameters and conditions change
in a continuous manner. The computer, however, operates in a discrete, incremental
manner, operating on only one item at any instant in time. Therefore, in order for the
computer to process the many parameters and conditions, and perform its function in the
PGNCS and spacecraft, the computer hardware must be time shared. The time sharing of
the computer hardware is accomplished by assigning priorities to the various processing
functions required of the computer. These priorities are used by the computer so that it
processes the highest priority processing function required at any particular time.

1.4 IMPLEMENTING THE TIME SHARING OF THE COMPUTER

As previously stated, the basis for the time sharing of the computer is the priority of the
processing functions requiring processing. The implementation of the time sharing is
accomplished through one of three methods which are:

a. A pure hardware function. (Counter interrupts)
b. A hardware and program control function. (Program interrupts)
c. A pure program control function. (Program controlled processing)

Each of these three groups has a relative priority with respect to the other groups;
also, within each of the groups there are a number of processing functions, each having
a priority level relative to the other functions within the group. The majority of the
processing performed by the computer falls into a pure program control processing
category. In this category the computer hardware is controlled by the program stored
in the computer's memory.

1.4.1 COUNTER INTERRUPTS. The processing performed by the computer which is
accomplished under control of the computer hardware is referred to as a counter
interrupt. This processing handles items such as AV pulses from the PIPA's, A6
pulses from the CDU's, & time pulses from the computer timing circuitry, and control
pulse outputs from the computer used to position the stable member of the IMU.

1-2




Whenever one of these pulse inputs is present, any other processing being performed by
the computer is temporarily suspended or interrupted. Then the input pulse is pro-
cessed under control of the computer hardware. After the input pulse is processed,
control of the computer hardware is returned to the program controlled processing
which was suspended. (See figure 1-1.) The processing of one of these input pulses
requires approximately 12 microseconds.

Through the processing of the counter interrupts, the computer accumulates data such
as velocity, IMU gimbal angles, radar angles and the number of computer pulse outputs
developed to position the stable member.

1.4.2 PROGRAM INTERRUPTS. The processing performed by the computer which is
controlled through both circuit and program controlled processing functions is referred
to as program interrupt. This type of processing is performed whenever a particular
condition exists, either internal or external to the computer. The conditions which
cause a program interrupt are:

a. Timing of reaction control system.

b. Time toprocess a routine scheduled to be processed at a particular time.
c. Time to process a routine which performs computer input/output functions.
d. An input from the DSKY or MARK pushbuttons.

e. Time to load a new DOWNLINK telemetry word.

f. Time to process an UPLINK word.
g. Time to process an attitude or tranelation controller input.

h. Time to process aradar input.

The processing of one of these conditions is initiated whenever the condition exists.

The initiation of the processing is accomplished by a circuit function which forces
control of the computer hardware to a particular program controlled processing routine.
The program controlled processing function being processed at the time when a program
interrupt occurs is suspended and control of the computer is forced to the routine
corresponding to the program interrupt condition which exists. (See figure 1-2.) The
program interrupt routine then processes whatever is required, depending on the
program interrupt condition present. After completing the required processing for the
program interrupt, control of the computer hardware is returned to the suspended
program.

1.4.3 PROGRAM CONTROLLED PROCESSING, Most of the time, the computer's
hardware is controlled by the program stored in its memory. Of the many routines
or processing functions that the computer is capable of processing, some means must
be employed to enable the computer to process the routines required at any one time,
and to process the most important required routine first.

1-3




-1

A TIME FROM

—
TIMER

A8 FROM ICDY's =

A FROM RCDUS ]

AV FROM PipA's =g
RHC CONVERTER =gy
UPLINK DATA =y
RADAR DATA me———
CONTROL PULSE

OUTPUTS TO IRIG's =gy
CDU's

THRUST CONTROL =i

LEM MONITOR (SPARE)==——t»

DOWNLINK "

CONTROL PULSE

OQUTPUTS TO
ALT/ALT RATE >

METER

COUNTER
INTERRUPT

st —————————

FORCED SUSPENSION

OF PROGRAM CONTROLLED

PROGRAM
CONTROLLED fe———

PROCESSING

Figure 1-1. Counter Interrupt Processing

PROCESSING
COMPUTER
I
USAGE USAGE TO

PROGRAM
CONTROL

17502




S-1

RCS CONTROL————
TIME DEPENDENT
TASK CONTROL

TIME FOR INPUT/
OUTPUT ROUTINE

KEYBOARD INPUT ==

MARK >

DOWNLINK TELEM.
WORD REQUIRED
UPLINK WORD
ASSEMBLED

ATTITUDE OR
TRANSLATION =i

CONTROLLER

RADAR DATA sl

FORCED SUSPENSION

OF PROGRAM CONTROLLED |

PROCESSING

Figure 1-2. Program Interrupt Processing

PROGRAM
CONTROLLED
PROCESSING

PERFORM
PROGRAM
INTERRUPT
ROUTINE

COMPUTER
HARDWARE
USAGE

HARDWARE
USAGE TO
PROGRAM
CONTROL

i7583



In order for a routine or program controlled processing function to be performed, it
must first be scheduled. The scheduling of a particular routine or processing function
is a function of another routine or processing function. The scheduling also can be
initiated through the DSKY. At the present time, the computer is capable of having
up to seven routines, usually referred to as'jobs'", scheduled to be done at one time.
The job which is processed out of the possible seven scheduled jobs is determined by
the priority numbers assigned to the jobs. If a job is scheduled having a priority
higher than the job being processed, the computer suspends the processing of the
lower priority job and processes the higher priority job. When the higher priority job
is completed, the control of the complter hardware returns to the lower priority job
at the point where it was suspended. Using the scheduling of jobs and the priority
assigned to the various jobs, the most important program controlled processing function
is performed at any time.

1.5 RELATIVE PRIORITIES OF THE TYPES OF PROCESSING

As previously stated, each of the three types of processing (counter interrupt, program
interrupt and program controlled processing) have relative priorities. Of the three types,
the counter interrupt processing is the highest priority processing function. A counter
interrupt input, which requires processing, causes the processing of either a program
controlled function or program interrupt to be suspended. After processing the counter
interrupt, control is returned to the processing which was suspended. (See figure 1-3.)

Program interrupts are the next highest priority type of processing. This type of pro-
cessing causes the suspension of any program controlled processing. A program interrupt
cannot interrupt or suspend the processing of a counter interrupt or the processing of
another program interrupt. However, through program action, an inhibit can be set so that
the program interrupt processing cannot interrupt the program controlled processing.

The program controlled processing is the lowest priority type of processing. Any counter
interrupt or program interrupt processing causes the program controlled processing to be
suspended. The exception to this, as stated above, is when the honoring of a program
interrupt is inhibited through program action. The program interrupts would be inhibited if
some fairly critical function was being performed through program controlled processing.

1.6 SCHEDULING AND EXECUTION OF PROGRAM CONTROLLED PROCESSING ON THE
BASIS OF PROGRAM PRIORITY

1.6.1 INTRODUCTION. The processing of program controlled processing functions,
as previously stated, is controlled on the basis of the priority assigned to the pro-
cessing functions. However, a program controlled processing function cannot be
processed unless it has been scheduled. In the following paragraphs, the scheduling
and control of program controlled processing functions is discussed.

1.6.2 TERMINOLOGY. Program controlled processing function is a term which has
been used up to this point in the study guide to refer to program routines, subroutines,
etc., which control the processing of various functions. Any one of these categories
can be scheduled to be processed on a priority basis. These programs, routines,

.etc. , which require scheduling in order to be processed are referred to as JOBS.

1-6




LT

)

PROGRAM INTERRUPT
INPUTS

)

COUNTER INTERRUPT
INPUTS

PROGRAM
INTERRUPT
SERVICE

COUNTER
INTERRUPT
SERVICE

FORCED SUSPENSION OF
PROGRAM.CONTROLLED
PROCESSING

P TS Gm— G S GEEED G S — ———

FORCED SUSPENSION OF
PROGRAM CONTROLLED OR
PROGRAM INTERRUPT

Figure 1-3. Counter and Program Interrupt Processing

PERFORM
PROGRAM
CONTROLLED
PROCESSING

- -'_}

PERFORM
PROGRAM
INTERRUPT
ROUTINE

PROCESS
COUNTER
INTERRUPT

17584




1.6.3 SCHEDULING. Scheduling of a job must be performed under control of another
job or program interrupt routine. Whichever type of processing function schedules a
job, the scheduling process is the same.

Whenever a job or routine wishes to schedule a job, it uses a routine of the computer
program called the EXECUTIVE. The scheduling job or routine, referred to as the
callingprogram, must supply the Executive routine with the priority number to be
assigned and the starting address of the job being scheduled. The Executive routine
uses these two quantities to schedule the job. The priority number is then used to
control when'the job is processed and the starting address is used to route control of
the computer to the starting point of the job. The actual scheduling of the job is
accomplished by the Executive routine inserting the priority number and starting
address into a position on the core set list which the Executive maintains. At the
present time, the Executive's core set list provides for scheduling up to seven jobs at
any one time. The core set list is used by the Executive routine to control which of
the scheduled jobs is processed based on their priority numbers. The highest priority
scheduled job is processed at any one time.

1.6,4 EXECUTION CONTROL Whenever a job is scheduled the priority number
assigned to the job can be equal to, higher than or lower than the priority number
of the job presently being processed. I the newly scheduled job's priority is
equal to or lower than the priority of the job presently being processed, the
processing of this job continues. When this job has been completed, It is removed
from the core set list. At this time, the core set list is scanned to find the

. scheduled job with the highest priority.  After finding the highest priority job,
processing of the job is initiated if no processing of the job has been accomplished,
or is resumed if a protion of the job had already been processed. (See figure 1-4,)

However, if a job is scheduled which has a priority higher than the job presently being
processed, processing of the newly scheduled higher priority job must begin. The job
presently being processed is suspended and left uncompleted when the processing of
the higher priority job initiated. After all of the jobs of higher priority than the one
just suspended are completed, processing of this lower priority job is resumed.
Processing is resumedat the point in the job where processing was suspended. No
reprocessing is required when the processing of a job is resumed.

Most jobs, inthe course of being processed, must wait for information to be loaded
into the complter or for an action external to the computer to occur. In general,

the job cannot continue until the required information is loaded or the action has
occurred. When instances as these occur during the processing of a job, it is desirable
to deactivate the job while it is waiting rather than having a reiterative waiting loop as
part of the job. By deactivating a job, the processing of lower priority jobs can be
accomplished. The act of deactivating a job does not remove the job from the core set
list and therefore remains scheduled. This process of deactivating a job is termed
putting a job to sleep',

When the required information has been loaded or the action has occurred, the job is re-
activated. The job can then use the information that was loaded or continue on since the

required action has occurred. The process of reactivating agob is termed "waking .up
‘ a job'". It should be noted that a job can put itself to sleep but another job or routiné is

required to wake itup. (This is the same relationship which exists between you and your
alarm clock. )

1-8




EXECUTIVE TRANSFERS CONTROL T0

JOB ‘A’

PRIORITY NUMBER
10

SCHEDULE

JOB'B’ WITH
PRIORITY NUMBER
15

JoB 'B' WITH
PRIORITY NUMBER 5

JOB'A' IS NOT HIGHEST PRIORITY"
TRANSFER CONTROL TO
IEXECUTIVE CONTROL

=
IF JOB'A' IS HIGHEST
PRIORITY JOB, PROCESSING
RESUMES AT POINT IN
ROUTINE WHERE PROCESSING
WAS SUSPENDED

WHEN JOB'B| IS COMPLETED CONTROL
RETURNED TO EXECUTIVE CONTROL 17585

Figure 1-4. Control of Program Controlled Processing on Basis of
Program Priority Numbers



1.6.5 CORE SET AREAS AND VAC AREAS. The capability of the computer to suspend
and deactivate jobs and resume processing at the point where they were suspended or
deactivated is made possible by the storage provided by the CORE SET AREAS and VAC
AREAS (Vector Accumulator Area). These two areas provide storage for the informa-
tion of a job while it is being processed. A CORE SET AREA or both a CORE SET AREA
and a VAC AREA are reserved for use for every scheduled job. An area reserved for a
particular scheduled job cannot be used by another job. Therefore, with all of the
information being processed by a job stored in the reserved CORE SET and VAC areas,
a job can be suspended or deactivated and the processing can be resumed at the point in
the job where it was suspended or deactivated.

1.6.5.1 Core Set Areas. The CORE SET AREAS of the computer program are
an integral part of the core set list. Each of the seven CORE SET AREAS
consists of twelve sequential memory registers. One of the twelve is used for
storing the priority number and the VAC address associated with the job. The
priority in this register signifies that the CORE SET AREA is reserved. A mem-
ory register used for storing the starting address of the job, when the job is
originally scheduled, will store the resumption address of a job which has been
suspended or deactivated. The other memory registers are used to store infor-
mation concerned with the job using the CORE SET AREA. (See figure 1-5.)

1.6.5.2 VAC Areas. Some jobs or programs of the computer require more
storage capability than is provided by the core set area. One type of job

which requires more storage are those jobs involved with the processing of vector
quantities. Double or triple precision, three component representation is used
for most vector quantities in the computer. (Double and triple precision repre-
sentation uses two or three computer words to represent one quantity. ) Therefore,
vector quantities require up to nine memory registers for storage. Besides the
vector quantity, other information associated with a particular job must be stored.
In order to meet the storage capacity required for these type of jobs, an additional
block of memory registers can be reserved for a job. The computer program now
provides for five blocks, with each block containing 44 memory registers. These
blocks of memory registers are called VECTOR ACCUMULATOR AREAS or, in
short, VAC AREAS. If a VAC AREA is required by a job, one of the five is
reserved for the job along with one of the CORE SET AREAS. (See figure 1-6.)

Again, since a particular VAC AREA is reserved for use by a particular job,

and since information being processed by the job is stored in the VAC AREA

and CORE SET AREA, the processing of a job can be resumed at the point in

the processing where it was suspended or deactivated. It should also be noted that
with the seven CORE SET AREAS and the five VAC AREAS, sufficient scheduling
and storage capacity is provided to handle the processing loads imposed on the
computer.

1.7 SCHEDULING AND EXECUTION O F TIME DEPENDENT PROCESSING

1.7.1 INTRODUCTION. Some processing functions and corresponding output functions
of the computer require a rather stringent consideration of time. In order to accommo-
date this consideration, ajob or routine which controls a processing or output function
must be initiated at a specific time. This could be accomplished by having incorporated,

1-10




CORE SET #0

CORE SET #1

CORE SET #2

CORE SET 63

CORE SET #4

CORE SET #5

CORE SET #8

= EACH CORE SET AREA CONSISTS OF TWELVE (DECIMAL)
MEMORY REGISTERS, SEVEN OF WHICH ARE USED FOR
STORAGE OF QUANTITIES PERTAINING TO THE SCHEDULED
JOB USING THE CORE SET AREA.

= THE REMAINING FIVE MEMORY REGISTERS ARE USED TO
STORE INFORMATION ABOUT THE JOB; PRIORITY, STARTING
ADDRESS, ETC.

Figure 1-5. Core Set Areas of the Computer Program (Core Set List)

VAC AREA #1

VAC AREA #2

VAC AREA #3

VAC AREA #4

VAC AREA #5

= A VAC AREA (VECTOR ACCUMULATOR) PROVIDES 44 (DECIMAL)
MEMORY REGISTERS FOR STORAGE OR INFORMATION
PERTAINING TO THE JOB FOR WHICH IT WAS RESERVED.

=JOB, ESPECIALLY THOSE INVOLVING VECTOR QUANTITIES
REQUIRE MORE STORAGE CAPACITY THAN IS AFFORDED
BY THE CORE SET AREAS

=1F A VAC AREA IS REQUIRED FOR A JOB, BOTH A VAC
AREA AND A CORE SET AREA MUST BE RESERVED FOR

THE JOB.

Figure 1-6. VAC Areas of the Computer Program

1-11




as part of a job, a waiting loop which would continuously look at the computer's real time
reference, TIME 1and TIME 2 counters. If this method was used, a considerable
amount of computer time would be wasted. Another method of time scheduling and
execution of functions as used in the computer is discussed in general terms in this
portion of the study guide.

1.7.2 IMPLEMENTING TIME DEPENDENT FUNCTIONS. The computer, in imple-
menting the time dependent initiation of various processing functions, utilizes the TIME
3 counter. This counter is incremented at 10 m. S. intervals through the counter
interrupt priority control circuitry of the computer. By setting the TIME 3 counter to
overflow at the time a specific function is to be performed, the overflow condition of the
TIME 3 counter indicates when a function is to be performed. When the TIME 3 counter
is in an overflow state, the T3RUPT program interrupt routine is initiated. This routine
uses the starting address stored by the scheduling job to transfer control of the com-
puter's processing to the routine which controls the processing or output function which
is required at this specific time.

Implementing the initiation of a time dependent function in this manner allows the
scheduling routine to set up the TIME 3 counter and the address of the routine to be
initiated at a specific time. Then it need not be concerned with the timing of the
initiation of the routine. The scheduling job can continue to be processed or be put to
sleep, thereby conserving time.

1.7.3 SCHEDULINGOF TIME DEPENDENT FUNCTIONS. A job scheduled through the
Executive core set list or a program interrupt routine can schedule a time dependent
routine. The scheduling process is performed by a routine of the computer program
called the WAITLIST. This routine maintains a scheduling list of time dependent
routines, referred to as TASKS, to be done. For eachofthenine possible entries at any
one time of this waiting list, the WAITLIST routine requires two quantities, the time

till the function should occur in increments of 10 m. s. and the starting address of the
routine or TASK that is to be initiated at the specified time. The scheduling routine
must provide the Waitlist routine with these two quantities.

1.7.4 EXECUTION OF TIME DEPENDENT FUNCTIONS. The control over the
execution of atask is provided by the T3RUPT routine whenever the TIME 3 counter
overflows. The T3RUPT routine uses the stored starting address to route control of the
computer to process the task. After the task has been completed, it returns control to
the T3RUPT routine which in turn, returns control to the job which was interrupted.

In summary, a job or task can schedule a task to be done by providing the Waitlist
routine with the time till the task is to be performed and the starting address of the task.
Then, through counter interrupt processing, the TIME 3 counter, which was set to over-
flow minus the time till the desired function is to be executed, is incremented until an
overflow condition exists in the counter. Whenever overflow exists in the TIME 3
counter, the desired amount of time has elapsed and the TBRUPT routine is initiated
which uses the starting address of the task to transfer the control of computer process-
ing to the task. After the task has been completed, control is returned to the T3RUPT
routine which returns control of computer processing to the job that was being processed
when the TIME 3 counter overflowed. By implementing the execution of tasks in this
manner, the computer's jols do not have to concern themselves with the task it has
scheduled. This saves considerable computer time.

1-12




. 1.8 LGC INPUT AND OUTPUT CHANNEL INTERFACE

In addition to the counter interrupt and the program interrupts previously described, the
LGC has a number of other inputs derived from its interfacing hardware. These inputs are
a result of the functioning of the hardware or an action by the operator of the spacecraft.
The counter interrupts in most cases enable the LGC to process inputs representative of
data parameters such as changes in velocity. The program interrupt inputs to the LGC arce
used to initiate processing of functions which must be processed a relatively short time
after a particular function is present. The other inputs to the LGC, in general, enable the
LGC to be cognizant of **conditions™ which exist in its environment. These inputs are routed
to, and are available to the LGC's programs through the LGC's input registers.

The outputs of the LGC fall in one of the following categories: (1) data., (2) control, (3)
condition indications. Some of these outputs are controllable through the LGC's program
while others are present as a function of the LGC circuitry. All of the outputs which are
controlled by the LGC's programs are developed through the LGC's output registers. The
bit breakdown per channel is shown in table 1-1.

1.8.1 CHANNEL 01. This channel is used as the L register of the central processor,
1.8.2 CHANNEL 02. This channel is used as the Q register of the central processor.

1.8.3 CHANNEL 03 HIGH-ORDER SCALER. This channel furnishes a 14-bit positive
number whose least significantbit has a weight of 5. 12 seconds. The maximum content
. of the register is 23.3 hours.

1.8.4 CHANNEL 04 LOW-ORDER SCALER. This channel furnishes a 14-bit positive
number whose least significant bit has as a weight of 1/3200 second. 'The maximum
content of the register is 5.12 seconds.

1.8.5 OUTPUT CHANNEL 05. This channel has eight bit positions and is associated
with the reaction control system jets. The channel outputs are used for translational
and rotational motion of the LM.  The RCS jet commands from the channel are fed to
the preamplifiers of the jet drivers in the CES. The driver amplifier outputs are then
fed to the RC subsystem to provide the required control.

The first number contained in the bit positions indicates which of the 16 thrusters is
controlled by that bit. Four clusters is used. The letter indicates the direction of
thrust such as U for up and D for down.

I.8.6 OUTPUT CHANNEL 06. This channel has eightbit positions and 1s also
associated with the reaction control system jets. A logic one in any of the bit positions
will cause the appropriate reaction control jet to be fired.

1.8.7 OUTPUT CHANNEL 07. This channel is the F EXT register. It is associated
with the selection of word locations in fixed memory as shown in figure 1-7. This
channel has three bit positions.

1.8.8 OUTPUT CHANNEL 10. The information contained in this channel is routed the
DSKY's. The different configurations light various displays on the DSKY's. 1n Section

Iv, itwill be seen that there is abasic difference between the information in bit
positions 1 through 11 and the information in bits 12 through 15.

1-13




[N

e

F—

Table 1-1. Channel Assignments LM

SE(‘?ON'D OF TWP WORDS

CHANNEL NAME BIT BIT BT BIT BIT BIT BIT BIT BIT BIT BIT BIT BT BIT BIT CHANNEL
15 14 13 12 11 16 9. 8 . 6 5 4 3 2 1
‘ CP REGISTER L, BITS 16-1 : 1
CP REGISTER Q, 3ITS 16-1 2
HIGH - ORDER SCALER CHANNEL, BITS 14-1 3
LOW —oamzigu.lm CHANNEL, BITS 14-1 - o P}
S 2 #14RCS . | #13RCS- - [#16.RCS ~#5 RCS . .| #2 RCS #1RCS 5
wec | . Rt 5 T :
& #16RCS - [#4RCS - [#8 RCS #15BCS | #3-RCS #7 RCS 6
187 43 38 ¥ - Lap P .
s : : Lo | FET FE6 ) . 7
"RELAY RELAY RELAY RELAY. | RELAY | RELAY RELAY RELAY RELAY RELAY 10
ADRS 1 BIT 11 BIT 10 BIT & BIT 8 BIT 7 BIT 6 BIT 3 BIT 2 BIT 1
CAUTION | TEST op VN UPLINK | COMP 158 11
RESET CONNEC ERROR FLASH ACTY ACTY WARNING
. . OUTEIT LAMP LAMP . LAMP
~ROLL +ROLL -PTTCH +PITCH: | DISPLAY ENABLE HORIZ ENABLE ‘| ZERO 12
DELAY . AUTOTRK | COMM - | GIMBAL | GIMBAL | GIMBAL | GIMBAL | INERTIAL IMU ERR VEL LO - | RR ERR RRCDU
COMPLETE " | - TRIM TRIM TRIM TRDM' DATA CTR SCALE CTR
13 LGC: 'ENABLE RESET RESET. -] RESET | ENABLE | TEST RHC ENABLE | DNLNK BLOCK RADAR RADAR RADAR 13
C R TE6RUPT . -°°} TRAP 32 . | TRAP 31B| TRAP 3lA | STARDBY | ALARMS | READ: RHC CTR { WD ORD | INLINK UPLINK - {'ACTY a b ¢
14 INT DRIVE DRIVE DRIVE DRIVE. . | DRIVE GYRO GYRQ: GYRO GYRO GYRO THROST . | ALT ALT OUTLINK 14
: Cpux [s45115 4 CDUZ CDB T CDU S ACTY MINUS a b ENABLE DRIVE METER RATE ACTY
15 MAIN : KEY KEY KEY KEY KEY 15
DSKY 5M 1Y M M ™
16 NAV DESCENT -| DESCENT+| MARK MARKY | MARK X 16
. DSKY REJECT .
30 GNEC * TEMP ISSTURNON] IMU ICDU MU G/N CONT| IMU RRCDY DISPLAY AUTO | ABORT ENGINE STAGE ABORT 30
IN LIM REQUEST | FAIL FAIL CAGE OF 8/C OPER FAIL INERTIAL | THROTL | STAGE ARMED VERIFY
DATA i
31 TRANS & * | ATT CONT AUTO ATT -z +Z -y <y -X +X -AZ(LPD) | +AZ(LPD)] -YMI +YMI -EL (LPD) | +EL (LPD} 31
ROT OUT OF STABILI- | HOLD TRANS TRANS TRANS | TRaNS TRANS | TRANS -RMI +RMIL -PMI +PMI
DETENT ZATION .
32 IMPULSE »| ROLL PITCH T 10-11 T 9-12 T 13-15 T 14-18 T 6-7 T 1-3 T5-8% T 2-4 32
GIMBOFF| GIMBOFF| FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
33 OPTICS * | OSC WARNING | PIPA DNLNK UPLNK BLOCK LRRANG| LRVEL |LR LR LR DATA | RRDATA | RR RANGE | RR PWR 33
1.GC ALARM FAIL TOO FAST| TOO FAST| UPLINK LOSCALE DAT GOOD POS 2 POS 1 GOOD GOOD LO SCALE | ON AUTO
34 DNLNK1 FIRST OF TWO WORDS 34
35 DNLNK2 35

15

14

13

12

11

10]9]3 7

o

* INVERTED LOGIC USED

1-134A




1.8.9 OUTPUT CHANNEL 11. The information contained in this channel is also routed
to the DSKY. The function of the information in the various bit positions is detailed in
Section 1-9-3.

1.8.10 OUTPUT CHANNEL 12. This channel consists of 15 bit positions, 14 of which
are presently used. The outputs are dc signals sent to the spacecraft systems and the
PGNCS. Bits 13 and 14 are sent through the DSKY's but light no indicator.

1.8.11 OUTPUT CHANNEL 13. The first four bite of this channel are associated with
the landing and rendezvous radar. The content of bits positions 1 through 3 defines which

data is to be supplied by the radar and can select one of the Six inputs as shown in figure
1-8.

When a one has been entered into bit position 4 together with the necessary selection
bits In bit positions 1 through 3, the LGC starts to transmit one of the six control
signals. While the control signal is being transmitted, a sync pulse is also transmitted.
When the radar receives the sync pulses, it sends data pulses to the LGC.

FE7 FEG6 FE5 HIGH BANKS

— 0 X X 30-37

1 0 40-43

1 0 1 EMPTY

1 1 0 EMPTY

1 1 1 EMPTY

Figure 1-7. Channel 07 Fix Extension Bits

a b c Function

0 0 0 -

0 0 1 RR Range

0 0 0 RR range rate

0 1 1 -

1 0 0 LR X Velocity

1 0 1 LR Y Velocity

1 1 0 LR Z Velocity

1 1 1 LR Range

Figure 1-8. Radar Selection
1-14




Bit positions 12 through 14 have been covered under program interrupt priority control.

1.8.12 OUTPUT CHANNEL 14. The altitude meter control is controlled by bit
positions 2 and 3 of output channel 14.

Bit positions 11 through 15 are associated with the CDU drive control. The CDU drive
control enters the following dc signals into the counter priority control to request the
execution of a DINC instruction: X IMU CDU, Y IMU CDU, Z IMU CDU, S RR CDU and
T RR CDU.

Signal X IMU CDU is generated when bit position 15 contains a logic one, signal Y IMU
CDU is generated when bit position 14 contains a logic one, signal Z IMU CDU when bit
position 13 contains a logic one, signal T RR CDU when bit position 12 contains a logic
one, and signal S RR CDU when bit position 11contains a logic one. More than one of
these signals can be generated simultaneously.

The gyro drive control selects a gyro to be torqued positively or negatively as shown

in figure 1-9 and then applies a 3200 cps to the appropriate gyro to aocomplish this
function. The appropriate signal is determined by the bit configuration of bits 7 through
9 of output channel 14. If bit positions 6 and 10 are a logic one, a 3200 cps pulse train
is routed to the gyro electronics specified by bit positions 7 through 9, and a dc signal
is entered into the counter priority control which commands the sequence generator to
perform a DINC instruction.

a b Gyro
0 0 -

0 1 X
1 0

1 1 Z

Figure 1-9. Gyro Selection

1.8.13 INPUT CHANNEL 15. This channel consists of five bit positions. Whenever a
key on the DSKY is pressed, a unique five bit code is entered into this channel. The
RUPT 5 interrupt routine is also developed whenever a key is depressed.

1.8.14 INPUT CHANNEL 16. This channel consists of seven bit positions. If the
MARK pushbutton has been depressed, a logic one is entered into bit position 3 or 4.
This would cause a KEYRUPT 2 (RUPT 6) interrupt routine. If the MARK REJECT
pushbutton has been depressed, a logic one is entered into bit position 5 of this
channel. This will also cause a KEYRUPT 2 interrupt routine to be performed.

Bits 6 and 7 receive discretes from the crew station commanding an increase or
decrease Inthe rate of descent.

1.8.15 INPUT CHANNELS 17 THROUGH 27. Spares.

1-15




1.8.16 INPUT CHANNEL 30. This channel consists of 15bit positions and uses
inverted logic. These positions are utilized as follows:

a. Bit Position 1 (ABORT) This Signal informs the LGC that an abort using the
descent engine has been commanded and is initiated by the crew from the control panel.

b. Bit Position 2 (STAGE VERIFY) This signal informs the LGC that staging has
occurred and originates with the explosive devices.

c. Bit Position 3 (ENGINE ARMED) This signal informs the LGC that the crew has
armed either the ascent or descent engine and is initiated from the control panel.

d. Bit Position 4 (ABORT STAGE) This signal informs the LGC that an abort which
requires use of ascent engine has been commanded.

e. Bit Positions 5 (AUTO THROTTLE) Informs LGC that it is in command of descent
engine throttle.

f.  Bit Position 6 (DISPLAY INERTIAL DATA) This signal informs the LGC to supply
forward and lateral velocity to the display panel.

g. Bit Position 7 (RR CDU FAIL) This input is generated when a failure has
occurred in one of the radar CDU channels.

h. Bit Position 9 (IMU OPERATE) A binary one in this bit position indicates that the
IMU is turned on and is operating with no malfunctions.

i. Bit Position 10 (G&N CONTROL OF 8/C) This signal informs LGC that PGNCS
(as opposed to abort guidance) is in control of the LM.

j. Bit Position 11 (IMU CAGE) This input indicates that the IMU cage condition exists
in the ISS.

k. Bit Position 12 (IMU CDU FAIL) This input indicates that a failure has occurred in
one of the inertial CDU channels.

1. Bit Position 13 (IMU FAIL) This input indicates that a malfunction has occurred
in the IMU stab loops.

m. Bit Position 14 (1SS TURN-ON REQUEST) This input indicates when the ISS has
been turned on or commanded to be turned on.

n. Bit Position 15 (TEMP IN LIMITS) This input indicates when the stable member
temperature has not exceeded its design limits.

1.8.17 INPUT CHANNEL 31. This channel consists of 15bit positions and uses
inverted logic.

1-16




a. Bit Positions 1and 2 (#PMI) These signals indicate +pitch manual input commands
from the attitude controller. Bit positions are utilized for landing point designator
elevation changes.

b. Bit Positions 3 and 4 (+YMI) These signals indicate +yaw manual input commands
from the attitude controller.

c. Bit Positions 5 and 6 (xRMI) These signals indicate roll manual input commands
from the attitude controller. These bit positions are utilized for landing point designator
azimuth changes.

d. Bit Positions 7 through 12 (X, Y, Z TRANS) These signals from the translation
controller command LM translation by ON/OFF firing of the RCS jets under LGC
control.

e. Bit Position 13 (ATTITUDE HOLD) This signal indicates the SCS is operating in the
attitude hold mode.

f.  Bit Position 14 (AUTO STABILIZATION) This signal informs the LGC that the
SCS is operating in the automatic mode.

g. Bit Position 15 (ATTITUDE CONTROLLER OUT OF DETENT) This signal informs
the LGC that the attitude controller is not in the neutral position.

1.8.18 INPUT CHANNEL 32. This channel consists of 15 bit positions and uses
inverted logic.

a. Bit Positions 1 through8 (THRUSTER FAIL) These eight signals inform the LGC
of thruster pair shutoff so that the LGC immediately ceases to command these jets on
and compensates for their loss.

b. Bit Positions 9 and 10 (PITCH OR ROLL GIMBAL OFF) This signal informs the LGC

that the descent engine pitch or roll gimbal drive amplifier has been shut off by automatic
failure detection circuitry.

1.8.19 INPUT CHANNEL 33. This channel consists of 15 bit positions and uses
inverted logic.

a. Bit Position2 (RR POWER ON/AUTO) This signal indicates that the RR power is
on and the mode switch is in the automatic (computer) position.

b. Bit Position 3 (RR RANGE LOW SCALE) This signal is implemented automatically

by the rendezvous radar at a range of approximately 50 nautical miles and indicates
that the RR scale factor is on low scale.

c. Bit Positions 4 and 5 (RR AND LR DATA GOOD) These signals indicate that the
RR and LR range trackers have locked on.

d. Bit Positions 6 and 7 (LR POSITIONS 1 AND 2) These signals indicate the position
of the landing radar antenna.

1-17




e. Bit Position 8 (LANDING VEL DATA GOOD) This signal indicates that the LR
velocity trackers have locked on.

f.  Bit Position 9 (LR RANGE LOW SCALE) This signal is implemented automatically
by the landing radar at approximately 2500 feet range and supplied to the LGC to
indicate a change in scale factor.

g. Bit Position 10 (BLOCK UPLINK SWITCH) This signal is generated by a switch
closure to inhibit reception of data via uplink. (Uplink capability not presently on LM).

h.  Bit Positions 11 and 12 (UPLINK AND DOWNLINK TOO FAST) These signalsare
generated by the telemetry system indicating PGNCS telemetry rate is too high.

i. Bit Position 13 (PIPA FAIL) This signal by the computer when an accelerometer
loop failure occurs.

j. Bit Position 14 (COMPUTER WARNING) This signal is generated by the computer
if one of the following items occur:

1) Restart
2) Counter fail
3) Voltage fail in standby mode
4) Alarm test
5) Scaler double alarm
k. Bit Position 15 (OSC ALARM) This signal occurs if the computer oscillator stops.

1.8.20 OUTPUT CHANNELS 34 AND 35. These channels provide 16 bit words
including a parity bit for downlink telemetry transmission.

1.9 COMPUTER/DSKY - HARDWARE/ASTRONAUT RELATIONSHIP

The DSKY serves an important interface function in the PGNCS. Through the DSKY the
computer controls the mode of operation of the ISS and radar, keeps the astronaut cognizant
of the operational condition of certain portions of the PGNCS equipment, displays pertinent
information to the astronaut and makes requests of the astronaut to perform various actions.
The astronaut, inturn, is capable of loading data into the computer, requesting the display
of data, commanding ‘system modes of operation and commanding other miscellaneous
functions to be performed by the computer.

1.9.1 KEYBOARD. The keyboard consists of ten numerical keys (pushbuttons)
labeled 0 through 9, two sign keys (+ or -) and seven instruction keys: VERB,
NOUN, CLR (clear), STBY (standby), KEY REL (key release), ENTR (enter) and
RSET (reset), Table 1-2 lists these keys (pushbuttons) and their functions.

1-18




Table 1-2. DSKY Pushbuttons

Pushbutton Function

0 through 9 pushbuttons Enter numerical data, noun codes and verb codes
into the computer.

+ and - pushbuttons Inform the computer that the following numerical data
is decimal and indicate the sign of the data.

NOUN pushbutton Conditions the computer to interpret the next two
numerical characters as a noun code and causes the
noun display to be blanked.

CLEAR pushbutton Clears data contained in the data displays. Depres-
sing this key clears the data display currently being
used. Successive depressions clear the other two
data displays.

STBY pushbutton Commands the computer to the standby mode when
depressed the firsttime. An additional depression
commands the computer to resume regular operation.

KEY REL pushbutton 7 Féeleases the DSKY displays initiated by keyboard
action so that information supplied by the computer
program may be displayed.

ENTR pushbutton Informs the computer that the assembled data is com-
plete and that the requested function is to be executed

RSET pushbutton Extinguishes the lamps that are controlled by the
computer.

VERB pushbutton Conditions the computer to interpret the next two

numerical characters as a verb code and causes the
verb display to be blanked.

Whenever a key is depressed, a unique five bit code associated with that key is generated,
There is, however, no five bit code associated with the STBY key. If a key on the DSKY
is pressed, the five bit code associated with that key is entered into bit positions 1
through 5 of input channel 15 of the computer. Note that this input will cause a request
for the KEYRUPT 1 program interrupt.

The switches for the keys are wired in series to insure that only one input at a time is
presented to the diode encoder and, consequently, only one code at a time to the input
channel. Trap reset signals are associated with the DSKY. When a key is released on
the computer DSKY, signal TRAP 15 RESET is sentto trap circuitry in the computer
associated with the KEYRUPT 1 program priority interrupt.

1-19




1.9.2 DISPLAY INDICATORS. There are 24 display indicators on the DSKY: 21 digit
display indicators and three sign display indicators. The digit display indicators are as
follows:

a. M1 and M2 which comprise the program display

b. V1 and V2 which comprise the verb display

Cc. N1 and N2 which comprise the noun display

d. RIDI through R1D5 which comprise the numerical portion of data display R1

e. R2D1 through R2D5 which comprise the numerical portion of data display R2

f.  R3D1 through R3D5 which comprise the numerical portion of data display R3

The sign display indicators are as follows:

a.  RI1S which is the sign portion of data display R1

b. R2S which is the sign portion of data display R2

c. R3S which is the sign portion of data display R3
Figures 1-10 and 1-10A show the displays and their locations.

Table 1-3 Lists the display indicators and their functions.

The relays shown in figures 1-11and 1-11A are used in conjunction with the display indications
and some condition indicators. These relays are controlled Output Channel 10.

Table 1-3. Display Indicators and Functions

Display Indicator Function
PROGRAM indicators Indicate program being processed by the computer.
VERB indicators Indicate verb code entered at keyboard or com-

manded by the computer.

NOUN indicators Indicate noun code entered at keyboard or com-
manded by the computer.

DATA DISPLAY indicators Indicate numerical data entered at keyboard or
commanded by the computer and sign associated
with this numerical data if it is in decimal.

1-20




PROGRAM

M1 | M2

VERB NOUN
N1 | N2

*DATA DISPLAY R1* |R18 | R1D1 | R1D2 | R1D3 | R1D4 R1D5

*DATA DISPLAY R2* |R2s | r2p1 | ReD2 | R2D3 | R2D4 | R2DS |

*DATA DISPLAY R3* |R3S [RaD1 | R8D2 | RaDs | R3D4 | R3D5 |

*NOT INCLUDED ON FACE OF DSKY*

Figure 1-10. Display Indicators

1-21




% /4/p/p NN e
A=A \N

@

Ne—"

T, e
MEER R[]

U7 {
/AN

Display and Keyboard




1.9.3 DSKY CONDITION INDICATORS. There are fourteen condition indicators dis-
played on the DSKY. Table 1-4 lists the indicators and their functions.

The UPLINK ACTY indicator will not be used on the LM DSKY.

The TEMP indicator will light if bit position 15 of input channel 30 contains a logic 0.
This indicator can be lit during the standby mode,

The GIMBAL LOCK indicator will light if bit position 6 of output channel 10 contains a
logic 1 and bit position 15 through 12 of the same channel are 1, 1, 0, 0 respectively.

The PROG indicator will light if bit position 9 of output channel 10 contains a logic 1and
bit position 15 through 12 of the same channel are 1, 1, 0, 0 respectively.

The NO ATT indicator will light if bit position 4 of output channel 10 contains a logic 1
and bit positions 15 through 12 of the same channel are 1, 1, 0, 0 respectively.

The TRACKER indicator will light if bit position 8 of output channel 10 contains a logic
1 and bit positions 15 through 12 of the same channel are 1, 1, 0, 0 respectively.

The STANDBY indicator will light if the STANDBY circuit is enabled. The indicator
will also light if a light test is performed.

The KEY REL indicator will light if bit position 5 of output channel 11is a logic 1. This
indicator is modulated by the flash signal.

The OPR ERR indicator will light if bit position 7 of output channel 11is a logic 1. This
indicator is also modulated by the flash signal.

The COMP ACTY indicator will light if bit position 2 of output channel 11is a logic 1.

1.9.4 DSKY OPERATION. The operator of the DSKY can communicate with the
computer by the depression of a sequence of keys on the DSKY keyboard. Each
depression of a key inserts a five bit code into the computer. The computer responds

by returning a code to the DSKY which controls the display on a particular display panel
or initiating an operation by the computer. The computer is also capable of initiating a
display of information or a request for some action to the operator through the processing
of its program.

1.9.4.1 Verb-Noun. The basic communication language used in the interchange
of information Is a pair of words known as the VERB and NOUN. Each of these
words IS represented by a two-digit octal code. The VERB code specifies that an

action is to be performed. The NOUN code specifies on what the action is to be
performed. An example of a VERB-NOUN code combination is given below.

VERB 16 -- MONITOR IN DECIMAL ALL COMPONENTS OF --
NOUN 21 -- PIPAS

1-22




vVée-1

RELAY
DRIVER'S

DIODE DECODER

DRIVER CIRCUITS

12 BANKS OF Il BISTABLE RELAYS

111

—_—

[.55

14 141

ol

~

§|r——-4. )

T

BIT i5

!

T

BITI14 BIT I3

|

BIT 12

4 BIT RELAY WORD

CODE FROM OUTPUT
CHANNEL 10

R | R R | R R | R R | R R

R R |' R R R

R | R R | R R| R R|R | rR| R R

R R | R R| R R| R R | R R

R R | R R| R R| R R| R R

R R | R R| R R | R R | R R

R R R R R R R R R R R

R | R R | R R| R R | R R | R R

R | R R | R R | R R| R R| R R

R R R R R R R R R R

R R R R R R R R R R R

R R R R R R R R | R R

OO an
n nulo iole 9ls 8|7 7|6 6|5 5|4 al3z 3|2 2|1

1 -

|

[}

| 1]

BITH BITIO BITO9 BIT8 BIT7 BIT6 BITS BIT4 BIT 3 BIT 2 BIT |

T

[

;

|

Figure 1-11. DSKY Display Relay Circuitry

Il RELAY BITS FROM OUTPUT CHANNEL 10




Contents of Channel 10

|

Resulting Action

1

Figure 1-1 A, DSKY Display Indications

> o O O O O 0 O T x © © ¥ © R O X O ® O O % O O K O 0 ¥ © X O O K OO X
Nl 5 0O 0O O O O 4 O % © © ¥ © ¥ O % © % O O x O O ® O O ¥ © ® O O X O o X
DM 0 O 0O O O d O O x © © K © %X O % © % © o % O o x O o ¥ © K O o % O o ¥
o 0 O O O d O OO % & © % O % o % = % S 0o x O x O o ¥ o x O o K O K
Wl 6 0 0 4 0 0 0O % 5 0 %x o x o xo % o % O o x ©O o X o x O o %X O o X

o
Oleo = O 4 © O O O O &6 © % O % O % O %X O ¥ O O %X © O X © ® © O x © O ¥ o
o
Hlo o 4 O O O O O ©O 0o © %X O % O X © % O ¥ O O ¥ O O M O K O O X © O % <
o
Olo « O O O O © O O © © % © % © % © ® D X © O %X © O ® © %X © O X © O ¥ O
o
Old 6o O O O O O O O ©o © X O X © %X © ® O X O O X © O ®x > ®x © O ¥ O O ¥ ©
o
o
Alo © O O O O O O O © O ¥ © ¥ O K O ¥ O ¥ O O K O O K O KO O K O O ¢ O
—
—
Ao o O O O O O O O o - O O O O O O © O o o 4 o o Hd o o o o d o o «d o O
- W} s m—
o
1000000000U11111001110011100011000111
™
1000000000011111110011100000011111000
<
1111111111011100\[400011111111100000000
To)
M ot A A A A A H O O O Ot A 40 0O 00 0 0 0 00 0 o0 o0 0 o o0 oo
k| _
o 5 0 < o TN g A ~ o < m ~ oo < ™ o
o m w %)
mm — “)%MOOS%%%JI%%)WW\.I%%MWH’W%\.’“O

S & — A taoapaMA 00 RPlaonianooannm i A0

S % o S oBoooddd 5 50 S cc~ T TdadNanaN®®mon0 0o

o umaAaaaggggoorruuEgg%ggggggggggggg

rm = 0O 0 O O 0 O 0 9 O = - v OO O O 0 v o v © 0 O v o 0o 9 O L O D D

A ROz egor oo >>ZZgroeome @ fgoexoer g EEC@MECRX
3 — !
0222222222ﬂ_0009988|766655544433222 —
ol -~ A A A A — «

1-22B




Table 1-4. DSKY Condition Indicators

Indication

Function

UPLINK ACTY

Indicates that Information is being received via uplink.

TEMP

Indicates that the stable member temperature has exceeded its
design limits by +50F.

GIMBAL LOCK

Indicates that the middle gimbal has driven through an angle
greater than 70° from its zero position.

PROG

Indicates that a program check has failed.
This indicator is controlled by a computer program.

RESTART

Indicates:

1. That a word has been incorrectly transferred from memory -
Parity fail

2. That the computer is in an endless control loop - TC Trap

3. That the computer has been interrupted for 30 milliseconds -
RUPT lock.

4. That the computer has not accomplished a CSS new job within
1.28 sec. (Night watchman)

5. That a test alarm has been generated by program control.

TRACKER

Indicates rendezvous radar CDU failure or improper data from
rendezvous radar.

OPR ERR

Indicates that the Keyboard and Display program has encountered
some improper operating conditions.

KEY REL

Indicates that the internal program has attempted to use the
Keyboard and Display System and found it busy.

STBY

Indicates that the computer is in the standby condition.

NO ATT

Indicates to the astronaut that the ISS is not suitable for use as an
attitude reference.

COMP ACTY

Indicates that the computer is in a program other than dummy job
and that the computer is not in standby mode.

1-23




This combination of VERB-NOUN codes causes the accumulation of PIPA counts
(as accumulated by the computer) from each of the PIPA's to be displayed in R1
(X PIPA), R2 (Y PIPA), and R3 (Z PIPA).

The standard procedure of inserting the VERB-NOUN codes via the keyboard is the
depression of seven keys in a sequence. Using the VERB-NOUN codes previously
discussed, the sequence of key depressions would be as follows:

a. VERB
b. 1
cC. 6
d.  NOUN
e. 2
o1
g. ENTER

The ENTER key depression indicates to the computer that it should perform the
operation indicated by the VERB-NOUN codes.

An alternate sequence of key depressions which would accomplish the same
insertion of information would be as shown below:

a. NOUN .
b. 2

c. 1

d. VERB

e. 1

f. 6

g. ENTER

Whenever the VERB key is depressed, the two VERB display panels are blanked.
Then as the digits of the VERB code are keyed in, the digits are displayed in the two
VERB display panels. For example:
VERB KEY DEPRESSED -- VERB DISPLAY PANELS V1 AND V2 BLANKED
1KEY DEPRESSED -- 1DISPLAYED IN V1

6 KEY DEPRESSED -- 6 DISPLAYED IN V2

1-24




Whenever the NOUN key is depressed, the two NOUN display panels, N1 and N2, are
blanked. As the two digits of the NOUN code are keyed in, the NOUN display panels
display the digits of the NOUN code.

If the VERB-NOUN codes displayed in the VERB-NOUN display panels are those
desired for the next entry of information, the VERB-NOUN codes need not be keyed
in again. All that is required is the depression of the ENTER key. This indicates to
the computer to use these codes again.

Prior to depressing the ENTER key, after entering the proper VERB-NOUN codes,
the VERB-NOUN codes should be verified. If they are not the desired codes, the
wrong action would be initiated which might cause damage to the system.

1.9.4.2 Data Loading. Some VERB-NOUN codes require more information to be
keyed in other than the VERB-NOUN codes. If more data is required, after the
depression of the ENTER key following the keying in of the VERB-NOUN codes,
the VERB-NOUN display panels will flash on and off at a 1.5 cps rate. These dis-
play panels will continue to flash until all of the information associated with the
VERB NOUN code has been keyed in. For example, using VERB 21 (WRITE 18T
COMPONENT INTO) NOUN 16 (TIME IN SECONDS), the entry sequence would be
as follows:

a. VERB

b. 2

c. 1

d.  NOUN

e. 1

f. 6

g. ENTER

After the ENTER key is depressed, the VERB-NOUN display panels will flash 21 and
16, respectively. This indicates that more information is required. In this case, it
is atime in seconds. Assuming that the time to be entered is +75. 25 seconds, the
entry procedure would be as follows:

a. +
b. 0
c. 7
d 5

1-25




e. 2
f. 5
g. ENTER

After the ENTER key is depressed, the VERB-NOUN display panels will stop flashing
and remain on displaying VERB 21, NOUN 16. As the various keys are depressed
while inserting the data, the digits are displayed in positions of one of the display
registers corresponding to the order in which they were entered. For instance,

when +75. 25 seconds is being entered, the + key is depressed first and + is displayed
in the RIS position. The 0 key is depressed and 0 is displayed in R1D1. The 7 key

is depressed and 7 is displayed in R1D2, This continues until the information is com-
pletely keyed in. The ENTER key depression after keying the desired information not
only stops the flashing of the VERB-NOUN display but indicates to the computer that

it should proceed and perform the operation specified.

VERB 21 (WRITE 1ST COMPONENT INTO) 22 (WRITE 2ND COMPONENT INTO)

23 (WRITE 3RD COMPONENT INTO) 24 (WRITE 1ST AND 2ND COMPONENTS
INTO) and 25 (WRITE 1ST, 2ND AND 3RD COMPONENTSINTO) are used to enter
one, two or three components or portions of data into the computer. If VERB 25
(WRITE 18T, 2ND AND 3RD COMPONENTS INTO) is entered, the VERB display
will illuminate and display 25. When the ENTER key is depressed after keying

in the VERB-NOUN code, the VERB will display 21 (WRITE 1ST COMPONENT INTO)
flashing. After the first portion of data has been keyed in, displayed in R 1 and the
ENTER key depressed, the VERB display will illuminate 22 (WRITE 2ND COM-
PONENT INTO) flashing. After the second component or portion of the data is
keyed in, displayed in R2 and the ENTER key depressed, the VERB display
illuminates 23 (WRITE 3RD COMPONENT INTO) flashing. The third component of
data is then entered, displayed in R3, and the ENTER key is depressed. The VERB
display stops flashing and the computer proceeds to utilize the information entered.

1.9.4.3 Correcting Erroneous Data. Any time prior to depressing the last ENTER
in the loading sequence, i.e., the ENTER after the third component was inserted in
the previous paragraph, erroneous information can be corrected. To correct
erroneous data, the CLEAR key is used. This key causes the display register, R1,
R2, and R3, last loaded to be cleared and also clears the corresponding information
loaded into the computer. For example, if a three component load is being keyed in
and it is discovered that an error exists in the first component of data in R1, after
R3 has been loaded but prior to the last ENTER, the following must be done to
correct the data:

DEPRESS CLEAR KEY -- R3BLANKED -- VERB 23 DISPLAYED
DEPRESS CLEAR KEY -- R2 BLANKED -- VERB 22 DISPLAYED
DEPRESS CLEAR KEY -- R1 BLANKED -- VERB 23 DISPLAYED

RELOAD R1, R2 and R3
The CLEAR key is not used to clear the VERB, NOUN or PROGRAM displays.

1-26




1.9.4.4 Decimal and Octal Display and Loading. Decimal and octal displays or
loadings are distinguished by use of the + and = displays or key inputs. Whenever
decimal data is to be loaded, the + or - key must be depressed prior to keying in the
digits of the data to be Loaded. If the sign keys are not used, the data is assumed to
be in octal form by the computer. Whenever data is displayed using a sign, + or -,
the displayed data is in decimal. Otherwise, when the sign is not used and R1S, R2S
or R3S are blanked, the data displayed is in octal.

1.9.4.5 Monitor vs. Display. Whenever a display type VERB is used, the requested
data is transferred to the DSKY panels once each time the data is requested.

Monitoring type VERBS, in contrast, are periodically updated and the display of the

requested data changes as the requested data in the computer changes. The updating
of the displayed data for a monitor type VERB is accomplished approximately every

1 second.

1.9.4.6 Changing of Major Mode. The major mode refers to system operations in
the various phases of a flight or while operating on the ground. Examples of major
modes are:

PRELAUNCH ALIGNMENT
GUIDANCE REFERENCE RELEASE AND BOOST
ETC.
In order to request that the system initiate one or more major modes of operation, a

different sequence of entering information through the DSKY is required. The pro-
cedure would be as follows using VERB 37 (CHANGE MAJOR MODE TO).

a. VERB
b. 3

c. 7

d. ENTER

1-27




When the ENTER key is depressed, after keying in VERB 37, the VERB display
panels flash and the NOUN display panels are blanked. Now the two-digit octal code
for the desired major mode can be entered through the keyboard. As the appropriate
keys are depressed, the digits of the code are displayed in the NOUN display panels.
When the ENTER key is depressed after keying in the two code digits, the major mode
code is displayed in the two PROGRAM display panels M1 and M2. If the operator
wants to initiate the major mode PRELAUNCH ALIGNMENT which use the program
number 01, the following keying sequence must be used:

a. VERB
b. 3

c. 7

d. ENTER

e. 0 Entry for Prelaunch Alignment mode request
f. 4 Entry indicating phase to enter Prelaunch Alignment
g. ENTER

The two program display panels would now display 01 and the NOUN panels would he
blanked.

1.9.4.7 Mode initiation. Another group of VERBS enable the operation to initiate
system mode6 of operation. Examples of these are:

COARSE ALIGN -- VERB 41
FINE ALIGN IMU -- VERB 42
ZERO -- VERB 40

Some of these VERBS do not require an associated NOUN code. For example,
if the change major mode is to be initiated, the procedure would be:

a. VERB
b. 3

c. 7

d. ENTER

1-28




This would cause the system to change major mode. Other VERBS do require NOUN
codes such as VERB 40 (ZERO). This VERB refers to CDU's and the NOUN code
required with this VERB code specifies either the inertial or radar CDU's (NOUN 20,
inertial CDU; NOUN 40, rendezvous radar angles). If itis desired to ZERO the
inertial CDU's, the keying procedure would be:

a. VERB
b. 4

c. 0

d.  NOUN
e. 2

f. 0

g. ENTER

1.9.4.8 Computer Control of the DSKY. Display and monitoring of various data
can be accomplished by the computer through its own initiative without requests for
the data by the operator. The appropriate VERB-NOUN codes are displayed with
the data so that it can be properly identified and used by the operator. Whenever the
computer has initiated the display or monitoring of some data, the data will be dis-
played for at least 10 seconds. After this time duration, the computer is free to
change the data displayed if it so desires.

The computer is also capable of requesting the operator to perform an action. The
action that is requested is usually specified by a combination of VERB-NOUN codes
and additional information displayed in one or more of the display registers, R1, R2
and R3. For example, if VERB 50 (PLEASE PERFORM) NOUN 25 (CHECKLIST) is
displayed in the VERB-NOUN display panels, R1 will display a numerically coded
checklist item. When the operator has performed the requested action, the ENTER
key should be depressed. This indicates to the computer that the operation has been
completed. If the operator does not wish to perform the action requested, he may
use VERB 33 (PROCEED WITHOUT DATA) or VERB 34 (TERMINATE). These VERB
codes indicate to the computer to continue on without the data or requested action as
best it can or to terminate the function it is performing.

1.9.4.9 DSKY/Computer/Operator Interlocks. While the operator of the DSKY is
using: the DSKY to load, display, etc., the computer cannot interrupt this process.
An interlock iIs set up by the computer inhibiting itself from using the DSKY.
Therefore, the DSKY operator should remove this interlock when he is finished using
it. This is accomplished by depressing the KEY RELEASE key, This action
removes the DSKY-OPERATOR interlock and enables the computer to use the DSKY.

The computer is capable of requesting that the DSKY operator release the DSKY so
the computer may use it. Illuminating the KEYRLSE panel on the DSKY FAILURE
INDICATOR PANEL indicates that the computer has some data to display to the
operator. The operator is not obligated to release control of the DSKY if he wishes
to continue to use it.

1-29




As previously mentioned, when the computer has initiated a display of data, the data
will be displayed for at least 10 seconds before the computer is able to display
different data. This is because of an interlock the computer imposes on itself to
enable the operator time enough to read the data displayed. After 10 seconds have

elapsed, the computer drops the interlock and is free to display different data to the
operator.

1.9.5 VERB-NOUN LIST. Contained in this section of the study guide is a complete

listing of the VERB and NOUN codes which are used with the SunburstRev. 14 computer pro-
gram. A brief description is also given for each of the VERB and NOUN codes along with
the scaling of the data converted and displayed on the DSKY as a result of NOUN code

usage. Keep in mind that many combinations of these codes exist; however, some of the
combinations are non-sensical or illegal. Some VERB codes do not require a NOUN

code to completely specify the desired action.

1.9.5.1 Verb Codes. The VERB codes are divided into two groups - Ordinary an
Extended. ~The ordinary verbs generally are involved in the manipulation (loading

display, etc.) of data. The extended verbs, in general, are used for initiation of
actions (moding requests, equipment operation, etc.).

ORDINARY VERBS

Verb Function Display
Code Location
. 00 Illegal

01 Display (in octal) 1st component of: R1

02 Display (in octal) 2nd component of: R1

03 Display (in octal) 3rd component of: R1

04 Display (in octal) 1stand 2nd components of: R1, R2

05 Display (in octal) 1st, 2nd and 3rd components of: R1, R2, R3

06 Display (indecimal) all component's of: As appropriate

07 Double Precision decimal display R1, R2

10 Spare

11 Monitor (in octal) 1st component of: R1

12 Monitor (in octal) 2nd component of: R1

13 Monitor (in octal) 3rd component of: R1

1-30



Verb Function Display
Code Location
14 Monitor (in octal) 1stand 2nd component of: R1l, R2
15 Monitor (in octal) 1st, 2nd and 3rd component of: R1, R2, R3
16 Monitor (in decimal) all component(s) of: As appropriate
17 Monitor Double Precision decimal R1, R2
20 Spare
21 Load 1st component into: R1
22 Load 2nd component into: R2
23 Load 3rd component into: R3
24 Load 1stand 2nd components into: R1, R2
25 Load Ist, 2nd and 3rd components into: R1, R2, R3
26 Spare
. 27 Fixed Memory Display
30 Request Executive
31 Request Waitlist R1
32 Bump Displays ¢(R2) into R3, ¢(R1) into R2
33 Proceed without Data
34 Terminate Current test or Load Request
35 Test lights
36 Fresh Start
37 Change Major Mode to:
EXTENDED VERBS
40 Zero (used with NOUN 20, ICDU; NOUN 40, RR angles, NOUN 70;Optical
Tracker Angles; only)
41 Coarse Align (used with NOUNS 20, 40 and 70 only)
‘ 42 Fine Align IMU

1-31




Verb
Code

43
44
45
46
47
50
51
52
53

54

56
57
60
61
62
63
64
65
66
67
70
71

72

Function

Load IMU Attitude Error Meters
Illegal Verb

Command LR to Position 2
Sample Radar Once per Second
Perform LM FCS TEST
Please Perform

Please Mark

Please Mark Y

Please Mark X or Y

Pulse Torque GYRO's

Align Time

Perform Banksum

Perform System Test

Illegal Verb

Nllegal Verb

Scan LM Inbits

Initialize AGS

Illegal Verb

Illegal Verb
Illegal Verb

Illegal Verb
Illegal Verb
Illegal Verb
Illegal Verb

1-32

Display

Location




Verb
Code

73

74

*T75

*76

77

Function

RHC Used For Minimum Impulse
RHC Used For Rate Command
DAP Wide Deadband

DAP Narrow Deadband

Illegal Verb

1.9.5.2 Verb Descriptions.

ORDINARY VERBS

Verbs 01 = 05 Perform octal displays of data.

Verb 06 Performs decimal display of data, The scale factors,
types of scale factor routines, and component information
are stored within the computer for each Noun which is
required to display in decimal.

Verb 07 Performs a double precision decimal display of data. It
does no scale factoring. It merely performs a 10
character fractional decimal conversion of two consecutive
erasable registers using R1 and R2 (the sign is placed in
the R1 sign position; the R2 sign position is blank). It
cannot be used with Mixed Nouns. Its intended use is
primarily with ""Machine Address to be Specified" Nouns.

If this verb is used with nouns that are inherently not
double precision, the display will be meaningless.

Verbs 11 - 17 The monitor verbs allow other keyboard activity. It is
ended by terminate, VERB 34, any noun-verb subroutine
that passes the DSKY block or another monitor. Monitor
action is suspended but not ended, by any keyboard action
excepterror reset and begins again when the KEY
RELEASE is initiated.

Verbs 21 - 25 Perform data load. Octal quantities are unsigned.
Decimal quantities are preceded by a + or = sign.

Verb 27 Bank Display. This Verb is included to permit displaying
the contents of fixed memory in any bank. Its intended use

is for checking program ropes and the BANK position of
program ropes.

* Not included in Sunburst Rev 14 Listing

1-33




ORDINARY VERBS (Cont'd)

Verb 30

Verb 31

Verb 32

Verb 33

Verb 34

Verb 35

Enters request to Executive Routine for any machine address
with priority. This Verb is used with the Noun **Machine
Address to be Specified''. This Verb assumes that Noun 26
has been preloaded with

Component 1 Priority (bits 10-14), bit 1= 0 for
NOVAC and 1for FINDVAC.

Component 2 Job address (12 bits)
Component 3 Both Bank Constants.

The End of Job subroutine is performed after the request is
entered. The display system is also released.

Enters request to Waitlist Routine for any machine address
with any delay. This Verb is used with the ""Machine
Address to be Specified™ Noun. This Verb assumes that
Noun 26 has been preloaded with

Component 1 Delay (the desired number of 10
millisecond units of delay in the low bits)

Component 2 Task Address (12 bits)
Component 3 Both Bank Constants

The End of Job subroutine is performed after the request
is entered. The Display system is also released.

Display Shift. Useful for preserving an existing display
of a quantity while displaying another quantity.

Proceed without Data. Informs routine requesting data to
be loaded that the operator chooses not to load fresh data,
but wishes the routine to continue as best it can with old
data. Final decision for what action should be taken is
left to requesting routine.

Terminate. Informs routine requesting data to be loaded
that the operator chooses not to load fresh data, and wishes
the routine to terminate. Final decision for what action
should be taken is left to requesting routine. If Monitor is
one, it is turned off.

The Test Lamps routine checks all of the DSKY lamps.

After 5 seconds, the caution and status lamps are returned
to their original setting.

1-34



ORDINARY VERBS (cont'd)

Verb 36

Verb 37

EXTENDED VERBS

Verb 40

Verb 41
Verb 42-43

Verb 45-46
Verb 47
Verb 50

Verbs 51-53

Verb 54

Verb 55
Verb 56

Initializes the program control software and Keyboard and
Display System Program.

This verb changes the major mode. This is accomplished
by inserting VERB 37 ENTER, MAJOR MODE, ENTER.
The new major mode number is in the noun display until
ENTER is push. At this time the new major mode number
will be in the Program display.

Must be used with Noun 20 (ICDU), Noun 40 (RR Angles)
or Noun 70 (Optical Tracker Angle) only.

Must be used with Noun 20, Noun 40 or Noun 70 only.

Call programs that perform the indicated PGNCS
procedure.

Call programs to perform the indicated radar procedure.
Call program to perform the digital autopilot test.

This verb is used only by internal routines that wish the
operator to perform a certain task. It should never be
keyed in by the operator. It is usually used with Noun 25
(Checklist). The coded number for the Checklist Item to
be performed is displayed in register R1 by the requesting
routine.

Once the operator has performed the requested action, he
should press ENTER to indicate that the Checklist Item has
been performed. If he wishes not to perform the requested
action, he should key in the Verb ""Proceed Without Data''.

Verbs 51, 52 and 53 are used only by internal routines that
wish the operator to MARK. They should never be keyed

in by the operator. It is usually used with Noun 30 (Star
Numbers). The numbers of the stars to be marked are
displayed in registers R1, R2, R3 by the requesting routine.
He should never press ENTER with Verbs 51, 52 or 53.

Call program that performs the indicated PGNCS
procedure.

Used to update the computer clock.

Check the sum of the fixed memory bank as a cursory check
of the validity of the memory.

1-35




EXTENDED VERBS (cont'd)

Verb 57 Call program that will perform the selected system test,
The test is selected by VERB 57 ENTER, CODE ENTER.
The codes are listed below in table 1-5,

Verb 62 Call program to scan channel 30 through 32.
Verb 63 Call program that performs the indicated PGNCS operation.
Verbs 73 and 74 Indicates in what mode of operation the rotation hand controller
IS to be used.
*Verbs 75 and 76 Indicatles to the computer the deadband being used for attitude
control.

* Not included in Sunburst Rev 14 Listing

1.9.5.3 Noun Codes. The Noun Codes refer to a computer memory register or
registers. These codes are divided into two groups - Normal Nouns and Mixed Nouns.
The Normal Nouns refer to data stored in sequential memory registers and the data
contained in or to be loaded into these registers must use the same scaling. For
example, Noun 21 refers to the PIPA counters which are three registers sequentially
located in the computer's memory. All three of the quantities associated with these
registers require the same scaling for display purposes.

Code Nomenclature
0 Illegal
1 Gyro Drift Test
2 Repeat of IMU Test
3 IMU Alignment Test
4 M U Check
5 Gyro Torquing Test
6 Gyro Compassing
7 DSKY Check
10 Semi-Automatic Moding Check
11 Semi-Automatic Interface Test
12 AOT Angle Check
13 RR/Antenna Tracking
14 High Speed Radar Sampling
15 Zero All Erasable Memory Banks
16 Display Inertial Data Test

Table 1-5. System Test Codes (VERB 57)

1-36




The other type of noun code, the Mixed Noun, refers to data which is not necessarily
located in sequential memory registers nor necessarily use the same scaling. For
example, Noun 60 when used with a display verb causes the display of the contents
of the landing radar velocity Z and the computer's real time reference. These two
quantities are not stored in sequential memory registers nor do they require the
same scaling or conversion techniques for their display.

NORMAL NOUNS

Noun Code Function
00 Not in use.
01 Specify Machine Address (. XXXXX)
02 Specify Machine Address (XXXXX.)
03 Specify Machine Address (XXX.XX Degrees)
04 Specify Machine Address (XXX, XX Hours)
05 Specify Machine Address (XXX,XX Seconds)
06 Specify Machine Address (XX, XXX Gyro Degrees)
07 Spare
10 Channel to be specified
11 Spare
12 Spare
13 Spare
14 Spare
15 Increment Machine Address (octal only)
16 Time (XXX.XX seconds)
17 Time (XXX.XX Hours)
20 ICDU (XXX.XX Degrees)
21 PIPA's (XXXXX, Pulses)
22 New Angles | (XXX.XX Degrees)
23 Delta Angles | (XXX.XX Degrees)
24 Delta Time (XXX, XX Seconds)

1-37




NORMAL NOUNS (Cont'd. )

Noun Code Function

25 Checklist (XXXXX.)

26 Prio/Delay, Address, BBCON (Octal Only)

27 Self Test On/Off Switch (XXXXX.,)

30 Star Numbers (XXXXX.)

31 Failreg, SFAIL, ERCOUNT [R1, R2, R3 (octal only)]

32 Midcourse Decision Time [XXX.XX Hours (Internal
Units = Weeks)]

33 Midcourse Ephemeris Time [xxxxx Hours (Internal
Units = Weeks)]

34 Midcourse Measured Quantity (XXXX. X Kilometers)

35 Inbit Message (Octal Only)

36 Landmark Data 1 (Octal Only)

37 Landmark Data 2 (Octal Only)

40 RR Trunnion and Shaft Angles (XXX.XX Degrees)

41 New RR Trunnion and Shaft Angles (XXX, XX Degrees)

42 AOT Rotation Angles (XXX. XX Degrees)

43 AOT Detent Code (XXXXX.)

44 Forward Velocity Lateral Velocity (XXXXX. feet/second)

45 Rotational Hand Controller Angle Rates (XXXXX.
Degrees/second)

46 Spare

47 Spare

50 Spare

51 Spare

1-38




NORMAL NOUNS (Cont'd.)

Noun Code

52

53

54

55
56
57
60

61

62

63

64

65
66
67
70

71

72
73
74

Function
Gyro Bias Drift (. BBXXXXX millirad/second)

Gyro Input Axis Acceleration Drift (. BBXXXXX millirad/sec)
cm/sec?

Gyro Spin Axis Acceleration Drift (. BBXXXXX millirad/sec)

cm/sec?
LR Altitude, Time (XXXXX. Feet, XXX, XX sec)
LR vx, Time (XXXXX. Feet/Sec.» XXX.XX Seconds)
LR vy, Time (XXXXX. Feet/Sec., XXX.XX Seconds)

LR Vg, Time (XXXXX. Feet/Sec. , XXX.XX Seconds)

Target Azimuth and Elevation (XXX, XX Degrees, XX.XXX
Deg.)

RR Range, Shaft, Trunnion (XXXXXB. Feet, XXX.XX
Degrees, XXX.XX Degrees)

RR Range Rate, Shaft, Trunnion (XXXXX. Feet, XXX.XX
Deg. , XXX, XX Deg.)

Initial Altitude, Final Altitude, Altitude Rate (XXXXX.
Feet, XXXXX. Feet, XXXXX. Feet/Second)

Sampled Time (XXX.XX Hours, XXX. XX Seconds)
System Test Results (XXXXX., XXXXX, XXXXX.)

Delta GYRO Angles (XX. XXX Degrees for Each)

Optical Tracker Azimuth and Elevation Angles (XXX.XX
Degree, XXX.XX Degree)

Desired Optical Tracker Azimuth and Elevation Angles
(XXX, XX Degrees, XXX. XX Degrees)

Delta Position (XXXX. X Kilometers for Each)

Delta Velocity (XXXX. X Meters/Second for Each)

Midcourse Measurement Data (XXX.XX Hours, XXXX. X
Kilometers, XXXXX.)

1-39




NORMAL NOUNS (Cont'd.)

Noun Code Function
75 Midcourse Measurement Deviations (XXXX. X Kilometers,
XXXX. X Meters/second, XXXX.X Kilometers)
76 Position Vector (XXXX.X Kilometers for Each)
77 Velocity Vector (XXXX, X Meters/Second for Each)

1.10 INTERRELATIONSHIP OF PROCESSING FUNCTIONS

The interrelationship of processing functions in the computer becomes quite involved
especially when all of the possible combinations of the processing functions are considered.
The processing of counter interrupt inputs enabling the accumulation of incremental data

is performed as required. The processing of program interrupts occurs as required
handling the major portion of the input and output functions for other programs and routines,
and timing the execution of various tasks. The processing of program controlled pro-
cessing functions is carried on with the priority of the processing routine determining when
a particular job is to be processed. The scheduling, terminating, changing, etc. of jobs
and tasks is continuouslybeing performed. Considerable interchange of data between
various jobs and tasks is continuously in process.

At this point in the study guide, an example is given showing the interrelationships of some
of these processing functions. The example used is the complter controlled IMU ZERO
mode switching routine. In this example, it is assumed that the request to perform the
mode switching routine is made through DSKY entries, although it is used by other mission
programs and forms a part of these programs.

In order to request the IMU ZERO mode switching routine to be performed, the astronaut
enters through the DSKY keyboard this sequence of key depressions:

a. VERB
b. 4

c. 0

d. NOUN
e. 2

f. 0

g. ENTER

1-40




This sequence of entries indicates to the computer that is should zero the inertial CDU
channels, VERB 40 states that something should be zeroed while NOUN 20 specifies the
inertial CDU channels.

As each of the keys are depressed for the VERB-NOUN codes, the control of the computer
hardware is forced to the KEYRUPT routine. (See figure 1-12.) The KEYRUPT routine
processes the keycode input and uses the Executive routine to schedule the PINBALL pro-
gram to be processed on a program priority basis. After the scheduling is completed, the
Executive routine returns control to the KEYRUPT routine which returns control back to
the processing function Interrupted by the KEYRUPT.

Within 20 m, 8. of the time the Pinball program was scheduled, the processing of one of the
routines of PINBALL is initiated under Executive control, if PINBALL has the highest
priority of the scheduled jobs. PINBALL processee the input keycodes and furnishes the
T4RUPT routine with the data required for display of the keycode inputs. The T4RUPT
routine drives the DSKY displays with this information. The DOWNRUPT routine pro-
vides the same Information for transmission by the DOWNLINK telemetry system. After
PINBALL has completed the processing of each keycode input, the PINBALL job is
terminated and control is returned to the next lower priority scheduled job under executive

control.

Finally, when the ENTER key is depressed, the KEYRUPT routine is again initiated which
again schedules the PINBALL program through the Executive routine and returns control to
the processing function which was interrupted. Again, within 20 m.s. , PINBALL program
processing is initiated if it is the highest priority scheduled job. With the ENTER keycode
input, the PINBALL routine uses the assembled VERB and NOUN codes to transfer control
via BANKCALL to the IMU ZERO mode switching routine. This routine is executed under
control of the scheduled PINBALL routine which is, in turn, executed under control of the

Executive routines.

The IMU ZERO mode switching routine checks to determine if the IMU is being caged. If

the IMU CAGE signal is present, IMU ZERO is terminated, through Executive action. If

the IMU CAGE signal is not present, the inertial CDU and IMU fail indications are inhibited.
A command is issued to zero the inertial CDU channels. After the inertial CDU channels are
commanded to zero, the IMU ZERO2 task is scheduled on the WAITLIST to be executed in
320 milliseconds. After scheduling the IMU ZERO2 a check is made to insure that the IMU
is operating, The IMU ZERO job is now terminated through Executive action. The 320
millisecond time delay in the execution of this moding operation allows sufficient time for
the inertial CDU channels to zero.

After 320 milliseconds have elapsed from the time that IMU ZERO?2 task was scheduled on
the WAITLIST, the T3RUPT routine will result as a function of overflow. The TIME 3
counter and the IMU ZERO?2 task will be executed. If the IMU CAGE signal is present,

IMU ZERO? is terminated through TSRUPT and the interrupted job will be resumed. If the
IMU CAGE signal is not present, the computer’s inertial CDU counters are ret to zero and
the inertial CDU zero command is removed. A four second delay is now scheduled on the
WAITLIST. At the end of this delay, the task IMU ZERO3 is performed. After IMU ZERO3
is scheduled on the WAITLIST, processing control is returned to the interrupted job through
the TSRUPT routine. This ends the IMUZERO routine.

1-41




KEYROARD BROCESSING

VERSB

v

PINBALL

PROCESS
KEY CODE

INPUT

SET
DSPTABS

TO BLANK
DSKY VERB
DISPLAY

SET
DSPTABS TO
DISPLAY ''4"
AS FIRST

VERB
DIGIT

DISPLAY 0"
AS SECOND

DIGIT

®

®»® ®F

@

17589-1

Figure 1-12, Simplified Processing for Zero IMU - CDU Routine (Sheet 1 of 4)

1-42




3... J.’.ll U

SCHEDULE

PINBALL

SET
DSPTABS
TO BLANK

DSKY NOUN
DISPLAY

® ®

SET
DSPTABS TO
DISPLAY "2"

AS FIRST
NOUN
DIGIT

®©® ®

SET

PINBALL DSPTABS TO
XECUTIV NISH DISPLAY "0"
ASSEMBLY AS SECOND

NOgN NOUN

DIGIT

Figure 1-12.

®

~
(44
@
7]
Ul
N

Simplified Processing for Zero N U = CDU Routine (Sheet 2 of 4)
1-43




ENTER

EXECUTIVE

T

320
MILLISEC.

SCHEDULE

PINBALL

PINBALL

EXECUTIVE I%B—LIHIJ:ER’IBS

MODE

BANKEALL

SET UP
ADDRESS OF
IMU ZERO FOR
PROCESSING

IMU ZERO

™MU (ISTHEIMUBEING \

&

EXECUTIVE [@Tnoen| CAGED? 1F 80, END

INHIBIT INERTIAL CDU
& IMU FAIL INDICATIONS

ICOMMAND INERTIAL
CDU CHANNELS TO ZER(Q

| SCHEDULE IMU ZERO 2"
TASK TO BE EXECUTED
IN 320 MILLISEC,

INSURE THAT THE IMU|
IS OPERATING

WAITLIST

EXECUTIVE

-

&

17589-3

Figure 1-12. Simplified Processing for Zero IMU - CDU Routine (Sheet 3 of 4)

1-44




IMU ZERO 2

;;T\\.——\__,_ﬁ

MILLISEC IMUTABRO 2
b ( 18 THE IMU BEING \
CAGED? IF 80, END
IMU ZERO 2

BET COMPUTER'S 188
CDU COUNTERS TO
ZERO

REMOVE 188 CDU
ZERO COMMAND

SCHEDULE 4 SECOND
DELAY FOR I88 CDU
] .COUNTERS TO SYN-

T WAITLIST " CHRONIZE WITH.THE

IMU GIMBALS (SCHED-

ULE "IMU ZERO 3"
T ASK)

(
IMU ZERO 3
"_i_ 18 THE IMU BEING
CAGED? IF 80, END
IMU ZERO 3

IMU

& MU FAIL INHIBITS

NOT
ASLEEP| AB

T3RUPT

12, Simplified Processing for Zero IMU - CDU Routine (Sheet 4 of 4)

r‘ CAGED
i REMOVE INERTIAL CDU
’ JOB

GO TO EXECUTIVE TO
AL“WAKEN SLEEPING JO

17589-4

Figure 1-
1-45







SECTION II

EXECUTIVE CONTROL OF COMPUTER PROCESSING
INTRODUCTION

This section of the study guide presents the Executive Control routines of the computer which
includes the Executive, Waitlist, TSRUPT, Phase Table Maintenance routines. These
routines provide control over the execution of all the processing performed by the computer
with the exception of processing performed by the T4ARUPT, KEYRUPT 1& 2, UPRUPT,
RADAR RUPT, CONTROLLER RUPT and DOWNRUPT. Also, the processing resulting from
a hardware detected computer malfunction is not controlled by the Executive Control routines.

2.1 THE EXECUTIVE ROUTINE

The Executive routine of the computer controls all processing performed by the computer on
the basis of program priorities. It provides for the scheduling of jobs, a means for chang-
ing and terminating jobs, and the capability of deactivating and reactivating jobs. The Ex-
ecutive routine consists of eight subroutines which are used by jobs and tasks to perform the
functions mentioned above. The eight subroutines which are a part of the Executive routines
are:

a. FINDVAC

b. NOVAC

c. CHANGE JOB

d. END OFJOB

e. JOBSLEEP

f.  PRIORITY CHANGE

g. DUMMY JOB

h. WAKE JOB
2.1.1 FINDVAC AND NOVAC SUBROUTINES. The FINDVAC and NOVAC subroutines of
the Executive routine provide for the scheduling of jobs. The FINDVAC subroutine is
used to schedule a job which requires a fairly large amount of temporary storage for the

variables involved in the job. This routine reserves a VAC (vector accumulator) area
for use with a job and places the job on the Executive's core set list.

By placing the job on the core set list, the job is scheduled and a core set area is reserved
for the job. Therefore, when a job is scheduled through the FINDVAC subroutine, a VAC
area consisting of 44 memory registers and core set area consisting of twelve memory
registers are reserved for use by the job. Figures 2-1 and 2-2 show the core set and VAC
areas used by the computer.

2-1




Memory

Address Use
Core et 140
Area #0 v MPAC (Multi-Purpose Accumulator)
146
147 MODE (+1for TP, +0 for DP, or -1 for Vectors)
150 LOC (Location Associated with Job)
151 BANKSET (Usually contains BBANK Setting)
152 PUSHLOC (Word of Packed Interpretive Parameters)
153 PRIORITY (Priority of Present Job and VAC Area
Address, if required)
Core Set 154
Area #1
167 (See Note)
Core Set 170
Area #2
203 (See Note)
Core Set 204
Area #3
217 (See Note)
Core Set 220
Area #4
233 (See Note)
Core Set 234
Area #5
247 (See Note)
Core Set 250
Area #6
263 (See Note)

NOTE: The 12 memory locations in each core set area are used as
those in Core Set Area # 0 shown above.

Figure 2-1. Executive's Core Set List

2-2




VAC Area #1

VAC Area #2

VAC Area #3

VAC Area #4

VAC Area #5

Memory
Address

Use

0431
0432

0504

VAC1USE ~ Used to indicate if VAC area is in use.

0505

0560

VAC2USE

0561

0634

VAC3USE

0635

0710

VAC4USE

0711

0764

VACSUSE

Figure 2-2. Executive's Vac Areas

2-3




Whenever a job doesn't require a large amount of storage capacity and its requirements
are satisfied by the storage provided by the core set area, the NOVAC subroutine is used
to schedule the job. This subroutine places the job onthe core set list, thereby schedul-
ing the job and reserving a core set area for use by the job.

In order for a job to be scheduled, the job or task desiring to schedule the job supplies
either of these two subroutines, FINDVAC or NOVAC, with the priority number and the
starting address of the job to be scheduled. The job or task scheduling the job loads the
Accumulator register of the computer with the priority number of the job prior to trans-
ferring control to the Executive's FINDVAC or NOVAC routines, The two memory reg-
isters immediately following the instruction which transfers control to either of these
routines of the Executive, contains the complete starting address of the job.

The first thing done by either of these routines, as shown by the flow chart in Figure 2-3,
is to temporarily store the priority number contained in the Accumulator register. Next
the routine temporarily storesthe complete address of the job being scheduled which is
contained in the two memory registers following the transfer of control instruction which
routed control to either FINDVAC or NOVAC. The complete address of the exit point of
the scheduling routine is temporarily stored so control can be returned to the job or task
at this point after completing the scheduling.

If the NOVAC subroutine is being used, the core set areas are scanned to find one which is
not in use. This is accomplished by "looking' at the contents of the priority register in
each of the core set areas. The priority register contains the priority number of the job
for which the core set area is reserved if it is reserved. F the core set is not reserved
for a job, the priority register will contain a -0.

If an unreserved core set area is not found, the Program Caution indicator is lighted. Also,
the information for the display of VERB 05, NOUN 31 and 01202 in R1 is provlded to the
T4RUPT routine. This Verb, Noun and failure number display means: (VERB 05) Display
octal component 1, 2, 3 of (NOUN 31) FAIL REGISTER and (01202 in R1) EXECUTIVE OVER-
FLOW = NO CORE SETS AVAILABLE. After this is done, a TC TRAP condition is forced
which causes the processing of the RESTART routine.

If the FINDVAC subroutine is being used, after storing the priority number, starting ad-
dress and return address, the five VAC areas are scanned to find one which is available.
When one is found available, it is reserved for the job and the address of the VAC area is
stored. Then, the core set list is scanned to find an available core set work area as was
previously discussed for the NOVAC subroutine. The remainder of the FINDVAC sub-
routine is identical to that of NOVAC except that the address of the reserved VAC area is
also stored in the core set area.

If a VAC area is not found available when the VAC areas are scanned, the Program

Caution indicator is illuminated. Also, the information for the display of VERB 08,

NOUN 31 and 01201 in R1 is provided to the T4RUPT routine. The display in R1 of the

DSKY (01201) means EXECUTIVE OVERFLOW = NO VAC AREAS AVAILABLE. After this

is done, a TC TRAP condition is forced which causes the processing of the RESTART routine,

2-4




READ & STORE

SCHEDULED FROM
SCHEDULING PROGRAM

v

SAVE COMPUTE
ADDRESS OF EXIT
POINT OF SCHEDULING
PROORAM

v

8CAN VAC AREAS TO
FIND ONE WHICHS
NOT IN USE

18 VAC
AREA
AVAILABLE?

PROGRAM CAUTION

08 N1

Ri = D120}

(EXECUTIVE OVERFLOW -
0 VAC AREAS)

RESERVE VAC AREA
FOR JOB BEING
SCHEDULED & STORE

AREA

READ & STORE
PRIORITY & ADDREBB PRIORITY & ADDREBB
OF JOB TO BE OF JOB TO BE

SCHEDULED FROM
SCHEDULING PROGRAM

v

SAVE COMPLETE
ADDREBB OF EXIT
POINT OF SCHEDULING
PROGRAM

SCAN CORE SET LIST
TO FIND A CORE SET
AREA NOT IN USE

ADDRESS OF RESERVED

SETS)

PROGRAM CAUTION

8 N31
x? = 01202 (EXECUTIVE
OVERFLOW- NO CORE

IS CORE
S8ET AREA
AVAILABLE?

RESERVE CORE SET
AREA BY STORING
THE JOB'S PRIORITY
IN THE CORE SET

AREA

STORE ADDRENS OF
VAC AREA IF ONE 18
NEEDED

DID WE
LOAD CORE SET
AREA #07

>+0
PROGRAM CAUTION
SET NEWJOB
VoS Na1 TO+0
Ri = 01103

{UNUSED CC8 BRANCH
EXECUTED)

FORCE.TC TRAP

STORE STARTING
ADDRESS OF JOB

IN RESERVED CORE
SET AREA

18 PRIORITY
OF NEWLY SCHEDULED
JOB HIGHER THAN ANY
OTHER SCHEDULED,

SET NEW JOB TO
CORE SET AREA
RESERVED FOR JOB
BEING SCHEDULED

RESTART
RETURN
TO
CALLER
17360
Figure 2-3. Executive's Findvac and Novac

2-5




After finding an unreserved core set, the priority number and associated VAC area ad-
dress of the job being scheduled are stored in the core set area. Figure 2-1 shows which
memory registers of the core set are used for the storage of the priority number and VAC
area address.

If NEWJOB contains@ or< , a program abort is initiated. The Program Caution
indicator is illuminated, VERB 05, NOUN 31 are displayed and 01103 (UNUSED ccCs
BRANCH EXECUTED) is displayed in Regieter 1 of the DSKY. A TC TRAP is forced and
a RESTART occurs. I NEWJOB contained (9 , it is now set to(3) « If NEWJOB was
>(® , itwas not changed.

If core setarea #0 was Ioaded@a check 1a made of the contents of the NEWJOB register,

A check is made to see if the priority number of the job being scheduled is higher than the
priority number of the job presently being processed. If the priority of the job being
scheduled is higher than the one presently being processed, the number of the core set re-
served for the job being scheduled is placed into a memory register called NEWJOB. If
the priority of the job is equal to or less than that of the job presently being processed,

the register NEWJOB is not changed. In either case, the stored return address of the job
or task performing the scheduling is read and used to return control to the scheduling job
or task.

The register NEWJOB is checked at least every 20 ms by every job. I the register con-
tains + 0, there has not been a job scheduled which has a higher priority than the one
being processed, SO the processing of the job presently being processed continues. If the
contents of NEWJOB is greater than +0, a positive quantity, a job has been scheduled
which has a priority higher than the job being processed. This positive quantity in NEW-
JOB is the core set number of the core set reserved for the higher priority job which was
placed in NEWJOB by the Executive routine when the job was scheduled. Whenever this
condition exists, control is transferred to the higher priority job under control of the
Executive's CHANGE JOB subroutine.

Both of the subroutines, FINDVAC and NOVAC, are very similar, The only real differ-
ence is that FINDVAC reserves a VAC area while the NOVAC subroutine does not.

2.1.2 CHANGE JOB SUBROUTINE. The CHANGE JOB subroutine of the Executive pro-
vides the capability of changing the processing control from one job to another. The
changingfrom one job to another is done whenever: the job presently being processed is
no longer the highest priority scheduled, active job. Control is routed to this subroutine
whenever the NEWJOB register is interrogated and is found to contain a core set area
number. The only time that NEWJOB will contain a core set area number is.

when it is placed there by the FINDVAC or NOVAC subroutines if the job scheduled has a
higher priority than the job presently being processed. At all other times, with the ex-
ception of Dummy Job and Self Check, NEWJOB wiill contain +0.

Figure 2-4 is a flow chart of the Change Job subroutine. This subroutine can be entered
from abasic or an interpretive job. The firstthing that is done is to store the complete
address of the exit point of the job being suspended in the core set area associated with the
job that is to be processed next. This address is stored so that later, when the job being
suspended again becomes the highest priority scheduled job, processing can be resumed at
the point where the processing was suspended. [If the Change Job subroutine was entered
from an interpretive job, the location address stored will be complemented.

2-6




STORE THE COMPLETE ADDRESS
AT WHICH THE JOB BEING
PROCESSED IS SUSPENDED IN

THE CORE SET AREA CONTAINING
THE NEW JOB DATA, AND TRANS-
FER THE COMPLETE ADDRESS
OF THE NEW JOB TO CORE SET

AREA NO.

EXCHANGE THE REST OF THE
DATA IN CORE SET AREA #0
WITH THE DATA IN THE CORE
SET AREA CONTAINING THE NEW
JOB

SET NEW JOB = +0

BEGIN
PROCESSING
JOB AT POINT
{ SPECIFIED BY

ADDRESS STORED,
IN CORE SET #0

NOTE: CORE SET AREA #0 IS USED FOR THE JOB 17515
CURRENTLY BEING PROCESSED.

EXECUTIVE'S CHANGE JOB

Figure 2-4. Executive's Change Job
2-7




After this has been done, the Information stored in core set area #0, associated with the
job being suspended, is exchanged with the information contained in the core set area speci-
fied by the number contained in NEWJOB. NEWJOB contains the relative address of the
core set where the highest priority job's information is stored. By moving this infor-
mation to core set #0, the processing of this job is enabled.

After the data is exchanged, NEWJOB is set to +0. Then, the starting or resumption address
(whichever is applicable) of the highest priority scheduled job is read from core set area #0
and is used to transfer control to the job. If the job is interpretive, the location address will
be complemented prior to transferring control.

2.1.3 END OF JOB, JOB SLEEP, AND PRIORITY CHANGE SUBROUTINES. Since a major
portion of these subroutines is identical, the subroutines are presented together.

The END OF JOB subroutine is used to remove a job from Executive consideration. This
subroutine is "called' by the job which is to be terminated. Therefore, the job must be
processed at the time It IS terminated.

The JOBSLEEP subroutine is used to deactivate a job or willfully suspend the processing
of the job. This subroutine is used by a job to deactivate itself or put itself to sleep
whenever it must wait for data, use of a piece of equipment or for a particular condition
to exist. When a job is put to sleep, the processing of lower priority scheduled jobs can
be accomplished.

The PRIORITY CHANGE subroutine is used to change the priority of the job presently
under execution. This subroutine is used by a job to change its own priority. This job
will return to the caller as soon as its priority is again the highest.

The flow diagram for these three subroutines is shown in Figure 2-5. If the END OF JOB
subroutine is used to terminate a job, the job is removed from the core set list by setting
the priority register of core set area #0 to negative zero. By doing this, the job is not only
removed from the scheduling list, but this makes the core set area available for use by
other jobs. After making the core set area available, a check is made to see if a VAC

area was used by the job being terminated. If a VAC area was used, it is made available
for use by other jobs by setting the address of the VAC USE register in that VAC USE regis-
ter. This is an indication that VAC area 18 unreserved.

The remaining core set areas are scanned to find the highest priority, nonsleeping job.
After the core set areas are scanned, the highest active priority is checked to see if
this job is DUMMY JOB. F it is, control istransferred to DUMMY JOB.

After the check is made for DUMMY JOB, an additional test is made to see if a job change
is required. A job change will be required when the entry to this subroutine was from
the END OF JOB subroutine subroutine and DUMMY JOB was not highest priority.

Control is transferred to the CHANGE JOB subroutine with the relative address of the core
set area which contains the highest priority active job. The CHANGE JOB subroutine then
uses this information to exchange the information in core set #0 with the appropriate core
set area and transfers control to the highest priority job.

2-8



JOB

SLEEP
MAKE CORE SET #0
STORE NEW PRIORITY AVAILABLE FOR USE STORE ADDRESS OF
BY OTHER JOBS EXIT POINT OF JOB
TO BE PUT TO SLEEP

IN CORE SET #0

STORE ADDRESS OF

o v

EXIT POINT OF JOB
WHICH IS HAVING ITS
PRIORITY CHANGED

VAC AREA
SED

COMPLEMENT
PRIORITY NUMBER
OF JOB & STORE IN

YES CORE SET #0'S
PRIORITY REG.

MAKE VAC AREA
CHANGE PRIORITY AVAILABLE FOR

NUMBER USE BY OTHER JOBS

h

SCAN CORE SET
AREAS FOR JOB
WITH HIGHEST
PRIORITY

IS
DUMMY
JOB HIGHEST
PRIORITY

ISA
JOB CHANGE
REQUIRED?

NO

ENTER CHANGE JOB
TO WITH RELATIVE
CHANGE ADDRESS OF THE CORE
JOB SET CONTAINING THE
HIGHEST PRIORITY IN
NEW JOB 17559

Figure 2-5. Executive's Priority Change, End of Job and Job Sleep

2-9



The JOBSLEEP subroutine, see Figure 2-5, stores the complete address of the point in

the job where it should be awakened. After this has been accomplished, the priority
number stored in core set area #0, (which is the priority of the job being put to sleep) is
complemented. This causes the contents of the register to become a negative quantity which
signifies a sleeping job. Note that the job is still scheduled on the core set list but it has
been put into an inactive state by complementing its priority register.

When the job has been put to sleep, the remaining core set areas are scanned to find the
highest priority active job. After the core set areas are scanned, a check is made to
determine if the highest priority active job is DUMMY JOB. If it is, control istransferred
to DUMMY JOB. F DUMMY JOB is not the highest priority active job, atest is made to
determine if a job change will be required. A job change will be required when the entry
to this subroutine was JOBSLEEP.

Control is transferred to the CHANGE JOB subroutine with the relative address of the core
set area's highest priority, active job. The CHANGE JOB subroutine again exchanges the
information of the iobs contained in the core set areas so that the information for the job to

be performed is in core set area #0, Then control is transferred to the job using the address
stored in core set area #0,

The PRIOCHNG (Priority Change) subroutine, alsoshown in Figure 2-5, stores the new
priority to be assigned to the job being processed. After this has been accomplished, the
complete address of the point that this job was at the time control was transferred to
PRIOCHNG is stored. The priority number contained in core set area #0 1s now changed
to the new priority.

The remaining core set areas are now scanned to find the highest priority active job.
After the scanning of the core set areas has been accomplished, a check is made to see
if DUMMY JOB is the highest active priority. When PRIOCHNG subroutine is used,
DUMMY JOB will not be the highest priority active job.

A check is now made to see if a job change is necessary. If the new priority assigned by
the calling job to itself is still the highest, control is transferred to the caller. I itis
not the highest, a job change will be required. The CHANGE JOB subroutine will ex-
change the information in the core set area which has its relative address in NEWJOB

with the information in core eet area #0. Control 18 transferred to the new highest priority active
job using the address stored in core set area #0.

2.1.4 DUMMY JOB SUBROUTINE. (See figure 2-8) The Dummy Job subroutine provides
the computer with something to do if no other jobs requireé)rocessing. It is performed
under control of the Executive routine, is always scheduled to be processed, and has the
lowest priority of any job. Therefore, any time there are no other active jobs scheduled
on the job list, DUMMY JOB is processed.

Whenever Dummy Job is processed, the COMPUTER ACTIVITY indicator is not illumi-
nated. Any time another job is being processed under control of the Executive routine,
the indicator is illuminated. This indicator is extinguished whenever the DUMMY JOB is
entered and is illuminated when the DUMMY JOB is left.

The flow diagram of the Dummy Job is shown in figure 2-6. Control is transferred to thie
subroutine through the Executive Change Job subroutine when the Dummy Job's priority is
the 'highest" of all scheduled jobs. When control is routed to Dummy Job, the COM-
PUTER ACTIVITY indicator is extinguished by setting bit 2 of output channel 11 to a
binary 0.

2-10




DUMMY
DUNIBTY

SET NEWJOB = -0
TURN OFF COMPUTER

ACTIVITY LAMP
(SET CH11, BIT 2 = 0)

YES (NEW JOB IN POSITION

A NEW JOB FOR EXECUTION)

YES

COMPUTER ACTIVITY
(CH11, BIT 2 = 1)

COMPUTER ACTIVITY
(CH11, BIT 2 = 1)

17558

Figure 2-6. Executive's Dummy Job

2-11




Alfter servicing the COMPUTER ACTIVITY indicator, a check is made to determine if a
new job of higher priority has been scheduled. This is accomplished by checking the con-
tents of the NEWJOB register. The NEWJOB register is set to the relative address of the
core set area reserved for a scheduled job if its priority is higher than the job presently
being processed. If NEWJOB contains a core set number greater than +0, the COMPUTER
ACTIVITY indicator is illuminated by setting bit 2 of output channel 11to a binary one.
Control is then routed to the Change Job subroutine which routes control to the highest
priority job.

If the NEWJOB register contains a =0, control is transferred to the self check routine.
Periodically during the self check routine, the NEWJOB register is checked to see if a
job with a priority higher than Dummy Job IS to be performed.

The self check routine has the capability to insert a +0 into NEWJOB and to set up a
special test as a part of the self test routine. In this special test case, the COMPUTER
ACTIVITY indicator is illuminated and the address of the new job which had previously
been inserted into the A and L registers is inserted into the Z and BB registers, respec-
tively.

2.1.5 JOB WAKE SUBROUTINE. The JOB WAKE subroutine is used to wake up or to
reactivate a sleeping or deactivated job. A job or task other than the sleeping job must
awaken the sleeping job. The job or task wishing to awaken a job must furnish the JOB
WAKE subroutine with the awakening address of the sleeping job. This address was
stored in the core set area of the sleeping job when it put itself to sleep. The awak-
ening address supplied to the JOB WAKE subroutine is used to find the sleeping job.

The flow chart of the JOB WAKE subroutine is shown in Figure 2-7, On entry to this
routine, the awakening address is available and is stored temporarily for use in this
subroutine. After storing this address, the complete address of the return point of the
job or task using this routine is stored. This address is used to return control to the job
or task after awakening the job. When this has been accomplished, a scan of the job
areas is initiated to find a sleeping job. When a sleeping job is found, the awakening
address stored in the core set area is checked against the one supplied by the job or

task using the JOB WAKE subroutine. If the job is not the correct job, the scan continues.
If the sleeping job is not found, control is returned to the job or task which called for the
use of the subroutine. However, if the sleeping job is found, the priority number is com-
plemented, thereby reactivating or awakening the job.

The rest of the flow chart is identical to the end of NOVAC FINDVAC.

2-12




YES

HAVE AlLL
PRIORITY REGISTERS
EEN CHECKED?

INCREMENT COUNTER
USED TO READ
PRIORITY BY 143 IN
ORDER TO READ THE
NEXT PRIORITY
NUMBER

NEWJOB

SET NEWJOB

- +0

PROGRAM CAUTION

Rl = 01103
(UNUSED CCS
BRANCH EXECUTED

FORCE TC TRAP

RESTART

JOB
WAKE

ENTER WITH

SLEEPING JOB

COMPLETE ADDRESS
OF POINT TO RESUME

v

SAVE COMPLETE
ADDRESS OF EXIT
POINT OF PROG.

REQUESTING JOB
WAKE

v

READ STORED JOB
PRIORITY FROM
CORE SET AREA
(IN ORDER 0 ~ 6)

1S PRIORITY
A NEGATIVE
NONZERO?

IS THIS
THE JOB BEING
SQUGHT ?

COMPLEMENT
PRIORITY & STORE
IN PROPER CORE
SET AREA. MAKE
UP THE COMPLETE
ADDRESS OF THE
AWAKENED JOB

AWAKENED
JOB IN CORE
ET AREA #0

STORE STARTING
ADDRESS OF JOB

IN RESERVED CORE
SET AREA

Figure 2-7.

AWAKENED JOB
HIGHER THAN ANY
THER SCHEDULED,
JOB?

SET NEW JOB TO CORE
SET AREA RESERVED
FOR AU’AKENED JOB

Executive’s Job Wake

2-13

17557




2.2 WAITLIST ROUTINE

The Waitlist routine performs a scheduling function for processing required at specific
times within the next two minutes after scheduling occurs. This time dependent-processing
is referred to as a TASK as opposed to jobs which are processed according to the priorities
assigned to the job.

Any job or task can call upon the Waitlist routine to schedule a task. The scheduling is
accomplished by the job or task supplying to the Waitlist the time from the present time that
the task should be executed and the starting address of the task. With this information
available, the control of the computer is transferred to the Waitlist routine which performs
the scheduling. After scheduling the task, control is returned to the job or task which called
for the use of the Waitlist routine.

The computer programming provides the capability of scheduling up to nine tasks at any one
time. The Waitlist routine, therefore, maintains two lists as shown in Figure 2-8, One of
the lists (LIST 1) hes nine entries, including the TIME 3 counter, and is used to store the
time values for the tasks. The other list (LIST 2) stores the task addresses or starting ad-
dresses of the scheduled tasks and has eighteen entries. The various tasks (their times

and addresses) which are scheduled are maintained on these two lists in chronological order.

The overflow of the TIME 3 counter is used to initiate TSRUPT, a program interrupt. The
overflow implies that it is time to process the task address in LIST 2 and LIST 2 + 1.

. The TIME 3 counter, as shown in Figure 2-8, is the topmost entry of LIST 1. It will at all
times contain the time remaining till it is time to process the task which should be processed
next, of those tasks which are scheduled. This time value in the TIME 3 counter is actuall
OVERFLOW minus TIME TILL TASK EXECUTION. ¥ it is assumed that the TIME till TASK
EXECUTION, or A T is .2 minutes, the contents of the TIME 3 counter will be equivalent to
overflow -, 2 minutes. (NOTE: Remember that tasks are executed when'the TIME 3 counter
overflows).

The TIME 3 counter is then incremented towards overflow every 10 ms. When it does over-
flow, it is time to execute the task whose starting address is stored in the corresponding
LIST 2 entry.

The time values in the remaining entries of LIST 1 are basically stored as the complement
of the time between a particular task and the immediately preceding task. The actual values
have 00001g added to them so that when they are processed into the TIME 3 counter, the
overflow will occur at the correct time. The time entry in LST 1 position of LIST 1is ex-
pressed as:

AT = - (AT2 - ATl) + 000014

LST 1
The LST 1+ 1time entry is expressed as:

ATIST 1+1 = - (AT, = AT, + 00001,

. where ATy gpy and A Ty gq 7 - 1 are the values stored in the corresponding LIST 1

entries and AT, AT,, and AT3 are the actual times till the corresponding task is to be
executed. Figure 2-9 shows this on‘atime line diagram.

2-14




TASK ADDRESSES - LIST 2

. (2 CADR)

TASKTIMES =LIST1  f ~
P ~ N | GEN ADDR BBCON
TIME 3 0026 | | LST 2 E3, 1410 | | LST2+1  EB, 1411
LST 1 E3, 1400 | | LST 2+2 E3, 1412 | [ LST2+3 E3, 1413
LST1+1  E3, 1401 | | LST 2+4 E3, 1414 | | LST2+5 E3, 1415
LST 1+ 2 E3, 1402 | | LST2+6 E3, 1416 | | LST 2+7 E3, 1417
LST 1+ 3 E3, 1403 | | LST2+8 E3, 1420 | [ LST 2+09 E3, 1421
LST 1+4  E3, 1404 | [ LST2+10  E3, 1422 || LST2+11  E3, 1423
LST 1+5 E3, 1405 | [ LST2+12  E3, 1424 || LsT2+13  E3, 1425
LST 1+ 6 E3, 1406 | LST2+14  E3, 1426 | | LST2+15  E3, 1427
@1 E3, 1407 | [ LST2+16  E3, 1430 || LST2+17  E3, 1431

NOTE: 1. TIME 3 is associated with LST 2 and LST 2 + 1, LST 1 is associated
with LST 2 + 2 and LST 2 + 3, etc.

2. LST 1+ 7 should contain the time for ENDTASK and LST 2 + 16 and
LST 2 + 17 should contain the Starting address of ENDTASK. The
Waitlist routine will transfer control to the abort routine which in-
itiates the failure displays and the restart routine when the next
entry is made if ENDTASK is not as indicated above.

3. All scheduled tasks are tabulated in chronological order in LIST 1
and LIST 2. If two tasks are scheduled to be done at the same time,
the task scheduled first will be done first.

4. The eraeable memory address of each register used as a part of the
list is shown following the register name as 0026 or E3, 1400, etc.
These numbers are In octal.

. Figure 2-8. Waitlist's Waiting List

2-15




|¢— AT1; —P@—>TLsT1 —*—ATLST 141 PMAT 157 1+ 2P

To T1 Ty T3 Ta
o,

F AT, >

H AT, f‘

“i AT, >

To = PRESENT TIME
Tl 2 3 4 = TIME AT WHICH TASKS ARE PROCESSED
3 ' 1
ATI 5 3 4% TIME FROM PRESENT TO PROCESS TASK
L ’ ’

AT, = TIME VALUE FOR TIME 3 COUNTER (OVERFLOW - AT))
AT gr ; = TIME VALUE FOR LIST 1 = [ - (AT, = AT,) + 000015]

ATLST 1+1° TIME VALUE FOR LIST 1+ 1=E = (AT3 = AT, + 0000183

Figure 2-9. Time Values Stored in List 1

2-16




By storing the time values in this manner in LIST 1, the values can be directly moved up
the list. When a task time is moved from LST 1into the TIME 3 counter, POXMAS (377778)
and the contents of the TIME 3 counter are added to the contents of LST 1 and the result is
inserted into TIME 3, Whenever atask is to be processed next in chronological order, the
time value inserted into the TIME 3 counter specifies OVERFLOW minus the time remaining
till the task is to be processed. OVERFLOW is 400008. No additional computations must be
performed on the time value prior to inserting it into the TIME 3 counter.

When a new task is being scheduled, the time list, LIST 1, must be searched in order to find
the appropriate chronological position to insert it on the list. When the position is found, the
remaining tasks which follow chronologically must be displaced one position on the list. Also,
the first following time value must be modified so that it will still be executed at the proper
time. An example of this is shown in Figure 2-10 where a new task is scheduled to be pro-
cessed at time Ts. Tp is greater than T2 but less than Tg. Note that the time values for
task 3 and 4 have been displaced one position on the list and that a new time value has been
calculated for task 3. The task addresses corresponding to tasks 3 and 4 are also displaced
one position in LIST 2 with the task address of task 5 replacing the task address for task 3.

A simplified flow chart for the Waitlist routine is shown in Figure 2-11. The first action
performed by this routine is to temporarily store the task address and the time from now
till the task is to be performed which is supplied by the job or task which called for the use
of the Waitlist routine. Then, the complete address of the calling job or task is stored so
that control can be returned to this job or task after the scheduling has been completed.

After this has been accomplished, the TIME 3 counter is read and a check is made to deter-
mine if the TIME 3 counter has overflowed. Another check is made to determine if the time
till new task is greater than the time till T3 counter overflow. If not, a new value is calculated
and inserted in the TIME 3 counter. The former contents of the TIME 3 counter are appropri-
ately modified and inserted in LST 1 of LIST 1. All the remaining task times are displaced
down one position in LIST 1. The new task addresses are inserted in LST 2 and LST 2 + 1 and
the remaining task addresses are displaced two registers down the address list (LIST 2).

If the time till new task is less than time till TIME 3 counter overflow, the remaining task times
in LIST 1are compared to the new task time. This is done in chronological order until the
proper position iIs determined. When the position in determined, the task times following the
new task time chronologically are displaced one position after the new task time expressed as

a A T between it and the sum of the preceding A T task times is ineerted into the located posi-
tion in LIST 1. A new A T value is calculated for the first displaced task following the new task
which was ingerted on the list. After LIST 1 is rearranged, the addresses for the new task is
inserted in ita proper location in LIST 2 and the remnining contents of LIST 2 are shifted two
registers down the list.

In either case, as discussed above, after placing the new task on the two lists, a check is
made to make sure that too many tasks have not been scheduled. This is accomplished by
checking to see that the complement of the ENDTASK task address was located in LST 2 + 16
and LST 2+ 17. ENDTASK Is atask which gives the computer something to do when nothing
else has been time scheduled. I the complement of ENDTASK was in these positions, the
stored complete return address of the scheduling task or job is used to return control to the
job or task, If it was not present in these positions, too many tasks have been scheduled and

2-17




AT ’l‘ AT .l‘ AT AT AT
k’ T3 LST 1 LST1+1"*‘ 571+ o P r 1 — P

1
T Tl T2 T5 T3 T

NOTE: Since &Tg, which was supplied by the scheduling routine,
is larger than the present ATg and smaller than the pres-
ent AT 3, the contentsof LST 1+ 1lissetto = (AT5"4Tp)
+ 00001 and = (AT3 - ATs) + 00001g is set into LST 1+ 2.
The former contents of LST 1+ 2 and the other LIST 1
registers are moved down one register.

Figure 2-10. Maintaining Chronological Waiting List

2-18




YES NO

TASK TIMES
BEEN CHECKED],

INCREMENT LIST 1
ADDRESS SO THAT NEXT
LIST | LST CAN BE
INTERROGATED FOR
LSTAT

PICK UP & STORE
TIME TILL TASK
& TASK ADDRESS

v

STORE RETURN
ADDRESSOF
CALLING PROGRAM

. v

READ T3 COUNTER AND
CORRECT FOR OVER-
FLOW IF REQZ'IRED

SUBTRACT ATLIsT 1
FROM ATNEW TASK

PROGRA*CAL‘TION
PROGRAM CAUTION

\ 4

e

1S TIME
TILL NEW TASh
GREATER THAN
TIME TILL Ty
OVERFLOW
(BTTy)

SUBTRACT ATT3 FROM |
TIME TILL NEW TASK,
(CALL RESULT
ATNEW TASK)

18

ATNEW TASK
GREATER THAN

ATL1ST 1
ENTRY?

IFSERT & Tyew Task
INTO APFROPRIATE
LIST | LST

CALC, NEW AT VALUE
FOR CONTENTS OF
TIME 3 COUNTIER

v

SHIFT NEW TIMFE
TILL TASK INTW
T3 COUNTER

MODIFY FORMER
CONTENTS OF TIME 3
& INSERT IN LST I,
SHIFT ALL OTHER
TASK TIMES OF LIST 1
DOWN ONE POSITION

v

INSERT NEW TASK
ADDRESSES INTO
TOP POSITION OF
LIST 2

__.___—T

SHIFT ALL REMAINING
TASK ADDRESKSES
DOWN ¢ REGISTERS

Vo6 Nt
R1 . 01203
(WAITLIST OVERFLOW
TOO MANY TASKS)

v

FORCE TC TRAP

v :

CALC. NEW AT VALUE
FOR NEXT FOLLOWING

TASK

SHIFT REMAINING
LIST 1 TIMES DOWN
ONE POSITION

INSERT NEW TASK
ADDRESS INTO
POSITION ™ LIST 2
CORRESPONDING TO
THE LIST 1ENTRY OF
THE NEW TASK TIME

HAVE TOOQ
MANY TASKS BEEN
SCHEDULED?

YES

Figure 2-11.

2-19

17387

Waitlist




the PROGRAM CAUTION indicator is illuminated. Also, VERB 05, NOUN 31 are displayed

along with 01203 in the DSKY register R1. The number 01203 indicates that there has been

a Waitlist Overflow or that too many tasks have been scheduled. Then a TC TRAP condition
is forced causing the execution of the RESTART routine,

2.3 TIME 3 PROGRAM INTERRUPT ROUTINE (T3RUPT)

The T3RUPT routine is initiated by the overflow state of the TIME 3 through a circuit forcing
function. The TIME 3 counter is set to overflow at specific times according to the informa-

tion supplied to, and the scheduling performed by, the Waitlist routine. Therefore, whenever
the TIME 3 counter overflows, it istime to process a particular task.

The T3RUPT routine is used to initiate the processing of the task which was scheduled to be
processed at the time of the TIME 3 counter overflow. The routine also moves all the task
times and addresses up one register position in LIST 1and two registers in LIST 2. The
result of this is the loading of the TIME 3 counter with a new time value to increment towards
overflow.

Figure 2-12 contains the flow chart for the T3RUPT routine. Entry to this routine is forced
whenever the TIME 3 counter overflows through the program interrupt priority control cir-
cuit of the computer. The first action performed by this routine is to enter a value of 577774
on the bottom of LIST 1. This is the time value for the ENDTASK task which corresponds to

. a time to overflow, when inserted into the TIME 3 counter, of approximately 82 seconds.
After this has been accomplished, all of the time values of LIST 1are moved up one position
in the list. The contents of the TIME 3 counter are added to the time value from LST 1
which is to be inserted into the TIME 3 counter and POSMAX (37777g). The contents of the
TIME 3 counter is added to the contents to be inserted into TIME 3 counter because the
counter could have been incremented since overflow because of delays in initiating the pro-
cessing caused by the overflow condition. This could be caused by a combination of inhib-
iting interrupts and the scheduling of more than one task to be processed at a particular
time. By adding the contents of the TIME 3 counter to the next time value, the correct
times are maintained for the remaining tasks if the delay in processing occurs. Note that if
the counter has not been incremented since overflow, this addition has no effect, POSMAX
is added to prepare the value for overflow when inserted into the TIME 3 counter.

A flag Is set so that if the value inserted in TIME 3 was in overflow, the overflow wlll not be
lost during the following operation. This is accomplished by setting RUPTAGN to +1 if the
value inserted into TIME 3 was in overflow. If the value set into TIME 3 was not in over-
flow, RUPTAGN wiill be setto -0.

Having completed the manipulations on LIST 1, LIST 2 must be serviced. The complement
of the contents of ENDTASK is inserted in LST 2 + 16 and LST 2 + 17. After this has been
accomplished, all of the task addresses stored in LIST 2 are moved up two registers. The
address moved out of LST 2 and LST 2 + 1 reglsters, as a result of this operation, is used
to transfer control to the desired task. When control is returned to the T3RUPT routine, a
check is made to determine if the TIME 3 counter is again in the overflow state by checking
RUPTAGN. If the TIME 3 counter has overflowed, control is routed to the beginning of the
T3RUPT routine which is processed again. If it is not in the overflow state, control is re-
. turned to the job which was interrupted.

2-20




ENTER TIME VALUE
OF=s 82 SEC. ON
BOTTOM OF LIST 1
(TIME INTERVAL FOR
ENDTASK)

\ 4

TRANSFER CONTROL
TO THE ADDRESS
FORMERLY IN

LST 2 AND LST 2+1

\

\

SHIFT ALL TIME
VALUES IN LIST 1
UP ONE POSITION

TASK

v

ADD ¢(T3 COUNTER)
TOTHEVALUEOF
TIME TO BE INSERTED

NTO THE T3 COUNTER

TOCORRECTTHE
TIME VALUE IN CASE
THE T3 COUNTER HAS
BEEN INCREMENTED
SINCE OVERFLOW

+1

\

SET ABOVE VALUE
INTO T3 COUNTER

YES

DOES
THIS VALUE
= OVERFLOW?

DNVER
OVER

SET ¢(RUPTAGN) = +1

SET ¢(RUPTAGN) = -0

2

ENTER END TASK
ON BOTTOM OF LIST 2

v

SHIFT ALL TASK
ADDRESS IN LIST 2 UP
TWO POSITIONS AND
SAVE ¢(LST 2 AND
LST 2+1)

17586

Figure 2-12, Time 3 Interrupt Routine

2-21




2.4 PHASE TABLE MAINTENANCE ROUTINE

The PHASE TABLE MAINTENANCE Routine consists of a group of subroutines which provide
the initiation, termination, and progression through the mission or testing routines of the
computer. The mission or testing routines are sometimes referred to as mission programs,
testing programs or major modes. Throughout the description of the PHASE TABLE MAIN-
TENANCE Routine, these routines will be termed major modes programs. The major mode
programs supply the information required for the display of the program number on the
DSKY's., Each of the major mode programs is assigned a program number which is displayed
while the program Is being processed.

Each of the major mode programs is divided into a number of different phases. The PHASE
TABLE MAINTENANCE Routine maintains a table for phase numbers for the major mode
programs. The phase numbers are used to control the routing and progression through a
major mode program. Also, if a failure occurs and requires a restart, the phase numbers
stored in the phase table are used to control the restarting of the major mode program at a
particular phase of the program. The processing of the program would not necessarily begin
at the beginning of the program nor at the phase specified by the phase number.

The phase table, where the phase numbers of the various major mode programs are stored,
IS actually maintained in duplicate. This iIs done to assure that the correct phase number is

obtained if a failure occurs. The two copies of the table are called -PHASE and PHASE.
-PHASE stores the complement of the phase number while PHASE stores the actual phase

number. The phase tables consist of twelve registers.

2.4.1 PHASE CHANGE AND NEW PHASE SUBROUTINES. The PHASE CHANGE and
NEW PHASE subroutines of the PHASE TABLE MAINTENANCE Routine are used by the
major mode programs to change its phase number which is stored in duplicate in the
phase tables or to initialize the phase tables for some major mode program operation.
A flow chart of these subroutines is shown in figure2-13. Except for the '"lead~in" op-
eration, the two subroutines are identical and perform the same function.

The PHASE CHANGE (PHASCHNG) subroutine is called by

L TC PHASCHNG

I+1 OCT PPP GG
When transferring control to the PHASCHNG subroutine, the contents of the address in
the Q register contain the phase number PPP in the three most significant octal digits.
It also contains the group number in the two least significant digits. The contents of the
Q register are masked to acquire the group number. This number is doubled and becomes
the phase table relative address for use in indexing. The phase number is shifted two
octal digits to the right and IS stored in the A register.
The NEWPHASE subroutine is called by

L-1 CA PPPPP

L TC NEWPHASE

I+1 OoCT 000GG

2-22




ACQUIRE & PROCESS
THEGROUPNUKBER
FROM THE CALLING
SEQUENCE

Y

SHIFT PHASE NUMBER
TWO OCTAL DIGITS TO
THE RIGHT

ACQUIRE & PROCESS

THE GROUP NUMBER
FROM THE CALLING
SEQUENCE

il

INSERT THE NEW
PHASE NUMBER IN
L & ITS COMPLEMENT

v

SELECT THE -PHASE &
PHASE REGISTERS.
THE RELATIVE
ADDRESS OF THESE
REGISTERS ISTHE
PROCESSED GROUP

NUMBER
A A

.EXCHANGE THE
CONTENTS OF THE
SELECTED PHASE
REGISTERS WITH
THE CONTENTS OF
AL L

SELECT THE
COMPLETE
TERMINATION
ADDRESS ASSOCIATED
WITH THE SELECTED
PHASE REGISTERS.
CONTROL IS
TRANSFERRED TO
THIS ADDRESS

TO

TERMINATION
ADDRESS

Figure 2-13. Phare Change and New Phase

WERE THE
CONTENTS OF THE
OLD - PHASE REGISTER
< +0?

2-23

RETURN TO CALLER
WITH THE OLD
CONTENTS OF THE
SELECTED PHASE
REGISTERSINA & L

RETURN
CALLER

17569




Therefore, when control is transferred to NEWPHASE, the phase number is in the A
register. The contents of the address in Q contains the group number. The group num-
ber is doubled and becomes the relative address of phase table.

From this point on, PHASCHNG and NEWPHASE are identical, The new phase number,
which is in the A register is stored in the L register and the contents of the A register
are complemented. The group number is used to index the desired phase table registers,
a -PHASE and PHASE. The contents of the selected -PHASE and PHASE registers are
exchanged with the contents of the A and L registers, respectively, The former contents
of the -PHASE register are checked to determine if they were equal to or less than pos-
itive zero. If the answer IS yes, the subroutines return control to the caller with the old
contents of -PHASE and PHASE in the A and L registers, respectively. [If the answer is
no, control is transferred to the termination address associated with the selected phase
table registers.

2.4.2 NEW MODE EXCHANGE SUBROUTINE. The NEW MODE EXCHANGE (NEW-
MODEX) Subroutine of the PHASE TABLE MAINTENANCE Routine is used by various
major mode programs to set up the major mode program number which will be displayed
on the DSKY by the T4RUPT routine. If the new major mode program number is the
same as the present number, no change in the program number display is made by the
T4RUPT routine. (See Figure 2-14.)

Control is transferred to NEWMODEX by the caller with the address of the major mode
program number in the Q register. The program number is stored in MODREG. MOD-
REG contains the present or new program number. The old contents of MODREG are
compared to the new program number. If the two program numbers are the same, con-
trol is transferred to the caller. If the old and new program numbers are not in agree-
ment, the new program number has to be set up for DSKY display. The relay code for
the most significant of the two octal digits is acquired from RELTAB (Relay Code Table).
The contents of DSPTAB+10D are saved and the relay code is inserted into bits 6 through
10. The relay code for the least significant digit is acquired from RELTAB and inserted
into bits 1 through 5 of DSPTAB+10D, Control is returned to the calling routine. The
T4RUPT routine will cause the program number on the DSKY to be changed to the new
number.

2,4,3 CHECK MAJOR MODE SUBROUTINE. The CHECK MAJOR MODE subroutine of
the PHASE TABLE MAINTENANCE Routine is used by various major mode programs to
sample the program number of the major mode programs in process. The data IS used
for routing purposes by the major mode program which uses this subroutine. (See
Figure 2-15.)

Control is transferred to the Check Major Mode (CHECK ™" ) subroutine with the address
of the check number in the return address (Q) register. The check number is comple-
mented and added to the contents of MODREG. The contents of MODREG wiill be equiv-
alent to the program number displayed on the DSKY. If the contents of MODREG and the
check number are in agreement, the contents of the accumulator will be negative zero.
Branching to the next subroutine is dependent upon the contents of the accumulator and
the contents of the two addresses following the address in Q. The exact action resulting
from these two return points is dependent on the major mode program which called this
subroutine.

2-24




STORE NEW MAJOR
MODE PROGRAM
NUMBER IN NEWMODE
REGISTER

I8 THE NEW
PROGRAM NUMBER
THE SAME AS THE
OLD NUMBER?

ACQUWE THE RELAY
CODE FOR THE MOST
SIGNIFICANT DIGIT
FROM RELTAB (RELAY
CODE TABLE)

v

SAVE OLD CONTENTS
OF DSPTAB+10D

v

INSERT RELAY CODE
INBITS 8~ 10 OF
DSPTAB+10D

v

ACQUIRE THE RELAY
CODE FOR THE
LEAST SIGNIFICANT
DIGIT FROM RELTAB

v

INSERT RELAY CODE
INBITS 1~5O0F
DSPTAB+10D

RETURN

CATQER
CALLER

Figure 2-14. New Mode Exchange
2-25




CHECKMM

ADD THE CONTENTS
OF THE MODREG
REGISTER TO THE
COMPLEMENT OF THE
MAJOR MODE CHECK
NUMBER

IS THE MAJOR\
MODE CHECK NUMBER YES
THE SAME AS THE
CONTENTS OF
MODREG

TO
SUBROUTINE
SPECIFIED BY
CALLER
(L+2)

TO

SPECIFIED B
CALLER

(L+3)

17568

Figure 2-15. Check Major Mode

2-26




SECTION III

INPUT/OUTPUT CONTROL ROUTINES
INTRODUCTION

This section of the study guide presents the routines used to perform input and output func-
tions of the LGC. . The routines are ueed by most of the programs of the LGC to perform the
required input and output functions. Through these routines, the LGC is capable of com-
manding spacecraft system modes, displaying and accepting information from the DSKY's
and Radar providing for telemetry inputs and outputs, controlling the positions of the RR
antenna and the stable member, and remaining cognizant of the PGNCS and other spacecraft
gystem operatione.

3.1 TIME 4 COUNTER PROGRAM INTERRUPT ROUTINE (T4RUPT)

The TIME 4 COUNTER program interrupt routine (T4RUPT routine) is initiated whenever the
TIME 4 counter overflows. Normally this time counter is set so that it will overflow every
120 ms. Everytime it overflows, the T4RUPT routine is initiated and one or more of the
following functions are performed:

a. Updating the forward and lateral velocity meters and altitude meter.

b. Sampling and verification of the ISS mode of operation including turn-on.
Cc. Sampling and verification of the Radar mode of operation.

d. Monitoring the telemetry rates.

e. Sampling of malfunction indications from the ISS.

f.  Control of the relays of the DSKY's for display of information, for commanding ISS,
and other spacecraft modes, and for control of indicator panel’ illumination.

g. Servicing the RR mode requests and RR CDU fail inbit.

h.  Update the gimbal to pilot matrix.

All of the programs which desire to perform any of the functions listed, provide the
information to the T4RUPT routine. The T4RUPT routine then uses the supplied informa-
tion to perform the appropriate input or output function. In return, the T¢RUPT routine
furnishes information to the other routines or processing functions indicating the results of
a desired action.

A deviation from the normal 120 ms rate at which the T4RUPT routine occurs Is if the relays
are manipulated. Whenever relays are driven, the TIME 4 counter is set to overflow in 20
or 30 ms. This is done so that the driving of the relay coils is terminated after a sufficent
amount of time for the relays to latch into the proper configuration. This also prevents ex-
cessive heat build up and power consumption. After a 20 or 30 ms rupt has occurred, a 100
or 90dms rupt is scheduled respectively, so that the nominal 120 ms interrupt rate is main-
tained.

3-1



Figure 3-1is a general flow diagram of the T4RUPT routine. Following this a more detailed
flow chart of the routine is presented. The general flow chart is presented to enable the
student to obtain an overall knowledge of what is accomplished by this routine and in what
order it is accomplished.

Referring to figure 3-1, entry is forced whenever the TIME 4 counter overflows. This occurs
every 120 msec (with the exception of when DSKY or LMP relays have been driven). The dis-
play tables are serviced every 120 msec. This implies the capability of displaying new infor-
mation or change in information every 120 msec, thus providing the operation '"continuously"
updated information.

After servicing the DSPTAB's, a check is made to determine the pass through the TARUPT
routine. This is determined by looking at a counter which is initially set to 7 and is decre-
mented every time a 120 ms interrupt routine is processed. Therefore, the counter expresses
eight states; 7, 6, 5, 4, 3, 2, 1and 0. Whenever the counter goes to 0, it is setto 7. This
counter is used to determine which of the 5 subroutines of the T4RUPT routine is to be
processed for this interrupt.

Noting the numbers adjacent to the lines one sees that when the counter is in the 3 or 7 state
the GP matrix is updated. If the counter is in state 0 the forward and lateral velocity meters
along with the altitude meter receive updating. The counter in the 2 or 6 state routes ser-
vicing to the ISS failure, turn-on, and gimbal lock monitoring. Counter state 1 or 5 forces
the T4RUPT into monitor the RR CDU fail inbit in addition to servicing RR moding and posi-
tioning. Counter state 4 forces an update of the forward and lateral velocity meters and an
update of the altitude rate meter.

The following sections present detailed flow diagrams (figure 3-3 is located at the end of
this chapter) illustrating how the program executes the T4RUPT routine,

3.1.1 T4RUPT LEAD IN, 20, 30 MSEC RUPT, SERVICE DSPTABS. The overflow

of the TIME 4 counter forces the program interrupt T4. The first operation after trans-
ferring control to the T4ARUPT program is to store the address of the exit point of the
interrupted program to enable a return to the interrupted program at the completion of

the specific T4RUPT routine, Setting the output channel 10to zero removes the drive cur-
rent to the DSKY relays. This is done regardless of whether DSKY relays were set or

not on the previous pass through T4RUPT,

The contents of memory register T4LOC is checked to identify what type of interrupt
this is. If it was either a 20 or 30 msec rupt approximate routing is accomplished to
keep the total normal time equal to 120 msec. Thus for a 20 msec rupt, 100 msec is
added prior to going through the normal T4 routing, for a 30 msec rupt, 90 sec are
added in real time.

Then, the contents of memory register, DSRUPTSW (DISPLAY RUPT), is checked.
Whenever the normal 120 ms interrupt occurs, the DSRUPTSW will be positive or
positive zero. If it is positive, the contents of DSRUPTSW is decremented or if it is
positive zero, itis setto 7. The decrementing and setting to 7 of the DSRUPTSW is used
to control the routing to the various subloops of the T4RUPT routine. The contents

of DSRUPTSW is used in this manner later in the routine.

3-2




SERVICE DSPTARS AND
LMP CMDS

\ 4

SET T4 COUNTER TO
OVERFLOW IN THE
APPROPRIATE TIME

v

SERVICE T4 ROUTING
CONTROL IT4 LOC
AND DSRUPTSW)

v

\4 960 MSEC

960 MSEC 0 WHICH PASS
THROUGH T4 RUPT?
(DSRUPTSW) 3,7
480 MSEC
ALTOUT /
UPDATE FWD AND 1,5 2,6 GP MATRIX
LAT VEL. METERS 480 480
i MSEC MSEC UPDATE GP MATRIX
UPDATE ALT METER h 4
IMU MON
SERVICE CH 30
STATE CHANGES
(BITS 9, AND 11-15)
PROCESS TURN ON
* REQUEST
RRAUTCHK '
ALTROUT
MONITOR RRCDU FAIL §$§¥ECEHC:N§ES
AND SERVICE RR MODE (BITS 11 - 13)
CHECK FOR
UPDATE GPMATRM SIMBAL LOCK METER
Figure 3-1. General T4RUPT

3-3

v

UPDATE PWD AND
LAT VEL. METERS

\ 4

UPDATE ALT. RATE

18523




A check of the word in memory called LMPCMD is made. This word acts as a pseudo
DSPTAB and is used for setting particular relays associated with LM interfacing. A unique
requirement calling for a 30 msec ""power on time" rather than the DSKY relay 20 msec on
time. Assuming that a LMPCMD is required, flag bit 15 is reset so that this route won't

be forced next pass. A special relay code of 740008 is added to the marked low order eleven
bits that were in LMPCMD and the relay bits and code are placed in output channel 10. After
the data is in channel 10 the time 4 counter is set to overflow in 30 msec and the appropriate
routing is placed in T4LOC. Now the interrupted program is resumed.

Assuming a LMPCMD is not required a check of DSPTAB 11 is made. If it is negative some
other program has made the request for a display of one or more of the items listed for
DSPTAB 11. Note table 3-1 which depicts the contents of all display tables. At this point

a brief discussion on the mechanism of displaying information will be presented.

Referring to figure 3-2, note that there is an interrelationship between a calling program,
the T4RUPT routine, and the output channel 10. The calling program (which desires a
display) supplies the appropriate code for the display to the appropriate DSPTAB. [f it
is a character display for Ry, R2, Rg, a verb-noun or program number, the low order 9
DSPTAB's are used. The calling program places the code in the correct DSPTAB and
sets the sign of that DSPTAB negative (i.e., bit 15= 1). This bit 15 will identify to the
T4RUPT program that the contents of that particular display table requires processing.
Notice bits 12 = 14 are not used in the DSPTAB word. Only the low order 11 bits (and bit
15) have any significance. By virtue of the address of the particular DSPTAB a 4 bit
code is assigned. This 4 bit code is a relay code whose sole function is to apply ground
to the appropriate relay bank associated with the desired display.

T4RUPT scans the DSPTAB's every 120 msec starting at DSPTAB 11. [f a particular
DSPTAB is negative, T4RUPT "attaches' the particular relay code to the low order relay
bits and places the resulting 15 bits into output channel 10 which, in turn, results in the
activation of the appropriate relays causing the desired display,

If arequirement to drive a C relay exiets, reset bit 15 S0 that on the next pass a redisplay
of identical data will not occur. Then, extract low order 11 bits (relay bits) and attach
associated 4 bit relay code.

Transfer the entire 15 bit display word into output channel 10 and identify 20 msec RUPT.
This allows sufficient time for the latching relays to pull in.

If there is not display requirements in DSPTAB 11 each of the DSPTAB's 10 - 0 are checked
twice, |If a display is required, bit 15 is reset and its code and command are set into
output channel 10.

If no displays are required the normal 120 msec RUPT is set up and the contents of DSRUPTSW
is checked to identify the pass #.

3-4




Bit 11 10 9 8 6 4 3 2 1

DSPTAB+11D Program Tracker Gimbal No
Caution Warning Lock Att
DSPTAB+ 10D MD1 (5 bit Relay Code) MD2 (right hand character)
DSPTAB+9D VD1 VD2
DSPTAB+ 8D ND1 ND2
DSPTAB+7 RIDI (left hand character)
DSPTAB+6 +R1S R1D2 R1D3
DSPTAB+5 -R18 R1D4 R1D5 (right hand character)
DSPTAB+ 4 +R2S R2D1 R2D2
DSPTAB+3 -R2S R2D3 R2D4
DSPTAB+ 2 R2D5 R3DI
DSPTAB+ 1 +R3S R3D2 R3D3
DSPTAB -R3S R3D4 R3D5
Table 3-1. The 12-Word Display Table Bit Assignments




CALLING PROG.

IDENTIFIES NEED FOR
A DISPLAY AND
SUPPLIES
APPROPRIATE 11BIT
CODE TO APPROPRIATE

DSPTAB
(RELAY CODE)
FIXED CODE |
PROVIDED FOR (RELAY BITS)

EACH DSPTAB
FROM MEMORY DSPTAR

(I T +——— ([T T T e—
O+ O T T [
N Y o o o o o o 0 0 D O
T+ (O T [ [
I T+ [T I [ —
I (O T T T T e—r
0 N o o o o o o I T
N o o o o o o 0 P P
EEED————*LJ[IIII?IIIIP——

EEED——————-UIHHOHH:—:]
DT TTITITITTI]

MERGE T4RUPT SCANS AND

C(DSPTAB) + CODE ASSEMBLES DISPLAY
INFORMATION

CHANNEL 10 l]J .I,L,r,l.u.l,l.LH

—
CODE ID'S R T R T T I | DSPTAB CODE

|
APPROPRIATE IDS WHICH RELAY(S)
BANK VIA ARE TO BE ENERGIZED
MATRIX

-

Figure 3-2. DSPTAB Code

3-6




Assuming we are on pass 0, control is rerouted to the ALTOUT portion of the TARUPT
routine.

3.1.2 ALTOUT. This routine is entered every 960 msec or every eighth pass through
the T4RUPT routine when the contents of DSRUPTSW is equal to zero. The purpose of
this subroutine is to update the altitude and forward and lateral velocity meters. The
ALTROUT subroutine uses a portion of the ALTOUT subroutine and also updates the
forward and lateral velocity meters. The forward and lateral velocity meters are updated
every 480 msec.

The computer receives altitude, altitude rate and forward and lateral velocity information
from the landing radar; this information is used in developing the various display drive
signals. The altitude display data is transferred into the ALTM output counter and gated
out to the altitude meter, The forward and lateral velocity display data is transferred
into the OPTXCMD and OPTYCMD output counters and gated out to their respective
meters. The actual gating out of information does not begin until output channel 14

bits 3, 11 and 12 are setto equal 1. Forward and lateral velocity information is applied
to the RR CDU error counters where it is converted from digital to analog information.
The information is then routed to the altitude meter for display, The altitude information
is gated directly to the altitude meter, the altitude meter converts the information from
digital to a visual readout. Altitude information can be calculated by multiplying the
altitude rate by the loop time (. 96 sec) to develop the change in altitude, and by subtracting
the altitude change from the lastaltitude, the latest altitude can be generated.

3.1.3 ALTROUT. The ALTROUT subroutine is entered every 960 msec or every time
the contents of the DSRUPTSW is equal to 4. The purpose of this subroutine is to

update the altitude rate meters display. The ALTROUT subroutine updates the forward
and lateral velocity meters as well as the altitude rate meter.

3.1.4 RR AUT CHK (RENDEZVOUS RADAR AUTOMATIC CHECK). The T4RUPT
program does this routine every 480 msec. RRAUTCHK services the RR inbits and
drives the antenna. Erasable memory location RADMODES is updated to the latest

RR condition every time the RR inbits change. See table 3-2.

F the RR AUTO MODE bit of channel 33 changes, a check is made to determine whether
it just came on or just went off. The RR AUTO MODE bit just going off while a program
is using the radar causes a PROGRAM CAUTION and the failure is displayed in R1 of the
DSKY. If the RR AUTO MODE bit just came on while no other program was using the
radar, the RR TURN-ON is initiated by scheduling the RR TURN-ON task.

The RR TURN-ON task: zeroes the radar CDU channels, sets the computer RR CDU
counters to zero, sets RADMODES to agree with the antenna angles, and lights the
TRACKER WARNING lamp if there are any tracker fails present.

The RRCDU CHK is performed if the RR CDU fail bit of channel 30 changes. If the RR is
in the AUTO mode and the RR CDU FAIL, LR FAIL, or RR DATA FAIL is present, the
TRACKER WARNING lamp is lit.

The RRGIMON routine monitors the RR antenna angles and initiates a reposition of the

antenna is needed (DORREPOS) if the antenna angles exceed their limits specified by the
particular mode.

3-7




The DORREPOS task selects the proper zero reference for the RR antenna mode and
repositions the antenna to these reference positions. The antenna is driven one axis

at a time; trunnion firstand then shaft to within 1% of the reference position. The drive
pulses are limited to 384 pulses maximum for each CDU load. Every 1/2 second the CDU
is driven until the particular axis angle is within one degree of the zero reference posi-
tion. After driving the antenna to the zero reference position a check is made for the
designate request. If the designate request is present, a check is made for a remode
request and if not present, the START DES routine is performed.

The START DES routine schedules the job DODES every 1/2 second and monitors the
amount of time required to achieve lock-on. If more than 30 seconds is required, the job
is terminated and the PROGRAM CAUTION lamp is lit along with a display of the failure
in R1 of the DSKY.

The job DODES calculates the shaft and trunnion 46 angles to the desired target, scales
the A6 angles, develops and limits the necessary drive commands to a maximum of 384
pulses and terminates DODES when the antenna is within . 7° of the desired angle.

If a REMODE request is present after a reposition, the antenna is driven as follows:
(1) trunnion to 00 or 1800 (mode 1 or 2), (2) shaftto -450, and (3) then trunnion to -120°
or -600 (mode 1 or mode 2).

3.1.5 IMU MONITOR, This portion of the T4RUPT program is entered every 480

msec when the contents of DSRUPTSW = 2 or 6. The purpose of this subroutine is to pro-
cess changes in the status of the IMU and its associated moding or failures. See tables
3-3 and 3-4. Upon entering IMU monitor, channel 30 bits 9, 11 = 15 are checked to see if
any bits changed. This is done by comparing ¢(IMODES 30 bits 9, 11 = 15) with channel30
bits 9, 11~ 15. IMODES 30 contains the last configuration of channel 30 and if any bit
changed the appropriate action is initiated. The bits are scanned from 15 - 9 in order.

If any bit changed, IMODES 30 is updated to reflect latest change and the appropriate
action is initiated.

If bit 15 changed, the IMU temperature status changed and a check is made to see if the
temperature just went in limits or out of limits. If it went out of limits, the TEMP
CAUTION lamp is lit. If the temperature just went in limits, the TEMP CAUTION lamp
is turned off if lamp test is not in progress. After servicing bit 15 a check is made of bit
14.

If bit 14 changed, it means that there has been a change in the TURN-ON REQUEST
discrete associated with 1SS TURN-ON. If the request just came on and there is not a fail
bit present, a flag is set to indicate first sample and nothing is done until the second
sample. If the request just went off and the 90 second delay was not completed, a fail
flag is set and the PROGRAM CAUTION lamp is lit and the failure indicated.

If bit 13 or 12 changed either the IMU or the CDU FAIL status changed, If the failure
wasg not inhibited, the 1SS WARNING lamp is lit. If the failure was inhibited and lamp
test was not in process, the ISSWARNING lamp is turned off if on.

If bit 10 changed (the caging indication), a check is made to determine whether it came on
or off. If it came on, all ISS drivin%is terminated, the NO ATTITUDE lamp is lit, and
PIPA, ICDU and IMU failure inhibit bits of IMODES 30 are set. If the caging indication
was just removed, the next channel 30 bit is checked.

3-8




If bit 9 (IMUOPERATE) changed, a check is made to determine if it just came on, If it

is just on and no turn on request fail present, the first sample bit is set. I bit 9 was just
removed and a program was using the IMU, the PROGRAM CAUTION lamp is lit and the
failure displayed in R1.

After servicing the channel 30 bits, the turn on test is entered. If the first turn on
sample bit is present, the second turn on sample bit is set and the next time through T4
the turn on test will be completed. Assume that the second sample bit has been set and
we enter turn on test. The turn on sample bits are reset and if the turn on request and
IMU operate bits are present turn on is initiated. The coarse align, zero ICDU discretes
are issued, the NO ATTITUDE lamp is lit, the IMU failure inhibit bits are set and a

90 second time delay is initiated. After 90 seconds the ENDTNON task is initiated.

If the turn on request bit had been present and no IMU operate present, the PROGRAM
CAUTION lamp is lit and the failure displayed in R1. If the TURN ON REQUEST bit is
not present and coarse align not present and no program using IMU, the IMU fail inhibit
bits are set, zero ICDU is issued and the UNZ2 task is scheduled for 300 msec. The
normal exit from the turn on test is to the channel 33 test (C33 TEST). After 300 msec,
the task UNZ2 is performed which removes coarse align and zero ICDU discretes, and
after a delay of 4 seconds removes ICDU and IMU failure inhibits, and checks for these
failures. If either is present, the ISS WARNING lamp is lit. If neither is present, the
ISS WARNING lamp is turned off if on and not in lamp test. The ISS turn on delay com-
plete discrete is removed and task PFAIL OK is scheduled for 10 msec. After 10 msec
the PIPA FAIL bits are RESET and the caging indications are reset. F any uninhibited
failures are present, the ISSWARNING lamp Is turned on.

The C33 test monitors channel 33 bits 13 - 11 for failure indications. [If no bits changed
the GLOCKMON check is made.

If bit 13 (PIPA FAIL) changed, IMODES 33 is updated to reflect the latest and if any
uninhibited failures are present, the 18S WARNING lamp is lit. If a PIPA FAIL and
its inhibit bit are present with the IMU in operate after initialization, the PROGRAM
CAUTION lamp is lit and the failure displayed.

If bit 12 changed, the PROGRAM CAUTION lamp is lit, if bit 12 just came on and the
failure (downlink too fast) is displayed in R1.

If bit 11 changed, the PROGRAM CAUTION lamp is lit if bit 11just came on and the
failure (uplink too fast) is displayed in R1.

After servicing channel 33 the gimbal lock monitor routine is initiated (GLOCKMON).
The GLOCKMON routine monitors the middle gimbal angle. If the angle is > 70°, the
gimbal lock lamp is lit. If the middle gimbal angle is > 85° and the ISS is not in coarse
align; the coarse align discrete is issued, the NO ATTITUDE lamp is lit and the
IMUFAIL INHIBIT bit is set.

If the gimbal angle 18 <709, the GIMBAL LOCK lamp is turned off if not in lamp test.

3-9




30 MSEC

RUPT

SET T4LOC FOR

NORMAL T4RUPT LMP RELAYS

. 2

UPDATE LMP OUTPUT
POINTER (LMPOUT
AND LMPOUTT)

v

120 MSEC

SAVE C(B, Z, A AND 1))
AND SET O/PCH10 = 0

20 MSEC

WERE ANY
RELAYS SET LAST
PASS? C(T4LOC)

YES RUPT
DSKY RELAYS

SET T4LOC FOR
NORMAL T4RUPT

NO (NORMAL T4)

v

SCHEDULE 100 MSEC
T4RUPT

SCHEDULE 80 MSEC
T4RUPT

DECREMENT
DSRUPTSW 8

SE7T DSRUPTSW

l

1

YES

1S THERE A
REQUEST FOR A
LMPCMD?

SET T4LOC FOR
MP CMD

v

SET LMP CMD AND
RELAY CODE INTO
O/PCH10 (74XXX)

SET LMPOUTT
= 38

DECREMENT
LMPOUTT

-

I SCHEDULE A 30 MSEC

Figure 3-3.

T4RUPT

Detailed T4RUPT (Sheetl of 28)

-3-10



.NO
+ 0r +0

DOES
DSPTAB+LLD

18
A DISPLAY

REQUIRFE
SERVICE?

NO
+0

REQUIRED?
C(NOUT)

. 4

SET BIT 15 OF
DSPTAB+11D =0

SCHEDULE A 120 MSEC
T4RUPT

v

DECREMENTNOUTAND
SET DSRUPTEM = -0

<3

SCAN DSPTABS+10D

DSPTAB (STARTING
WITH THE LAST DSPTAB
SERVICED)

LOAD LOW ORDER 11
BITS OF DSPTAB+11D
AND RELAY CODE INTO
O/ PCHL0

DOES
ANY DSPTAB
REQUIRE
SERVICE?

SET C(DSRUPTEM)

= +0

COMPLEMENT THE
APPROPRIATE
DSPTAB AND LOAD
THE LOW 11BITS AND
THERELAYCODE
INTO O/C CH10

SET T4LOC FOR
A DSKY RELAY CMD

v

YES T

SCHEDULE A 20 MSEC
T4RUPT

AA

18
THIS FIRST

CHECK C(DSRUPTSW) 4
TO DETERMINE WHICH
PASS THROUGH T4
PASS?
C(DSRUPTEM)
216 3 \7
= GP
SET C(NOUT) = +0 AUTO MATRIX

SCHEDULE A 120 MSEC
T4RUPT

Figure 3-3. Detailed T4RUPT (Sheet2 of 28)

3-11




860 MSEC

YES

-0

C(DIDFLG)
ARE WE ABLE TO
USE THE PROG FOR

BIT 6 OF /P
CH30 = 0?
(DID BIT)

THIS FIRST

v

SETBIT8 OF O/P
CH 12 (DID)

¥

SET TO +0:
1. DID FLG
2. LASTX CMD
3. LAST Y CMD

v

SCHEDULE ™INTLZE™
ON WAITLIST FOR
80 MSEC

SET BIT 2 OF O/P CH 12
= 1 (ENABLE RRCDU
ERROR COUNTER)

Figure 3-3.

PASS THROUGH?
C(DIDFLG)

NO

960 MSEC

v

RESET BITS 2 AND 8 OF
O/P CH12 = 0 (RESETS
RRERRORCOUNTER

ENABLE AND DID)

DEVELOP OPTXCMD
(FORVEL = LASTCMD)
AND STORE FORVEL IN
LASTXCMD

v

DEVELOP OPTYCMD
(LATVEL = LASTYCMD)
AND STORE LATVEL IN
LASTYCMD

v

SETBIT 20F O/P
CH 14 =1 (SELECT
ALT RATE)

v

SET C (ALT RATE)
INTO ALTM (OUTPUT
COUNTER FOR METER

DRIVE)
v

THIS ALTOUT
OR ALTROUT?

ALTOUT

3-12

SET BITS 3, 11 AND 12
OF O/P CH 14 =1 (ALT
METER ACT., DRIVE
OCDU SHAFT AND DRIVE
OCDU TRUNNION)

Detailed T4RUPT (Sheet 3 of 28)




+

\ 4

.SETBIT 2 OF O/P
CH 14 =0 (RESET ALT
RATE SELECT)

v

ARE WE GOING TO
EXTRAPOLATE OLD
ALTITUDE INFO OR
USE NEW INFO
C(ALT)?

;‘V + NEW

SET"ALT' = -1

AND OLD VALUE OF
DP"ALT" INTO ALT
SAVE AND ALTSAVE +1

Y

ADD BIT 15 TO
ALTSAVE+1

r

OLD
DATA

v

UPDATE DP ALT WORD
(MULT ALTRATE BY
LOOP TIME. 96 SEC AND
ADD TO OLD ALT SAVE)

4

¥

IS HIGH ORDER

) ALTSAVE = +1 OR 0?

Figure 3-3.

PLACE 15 BIT UNSIGNED
C(ALTSAVE +1) INTO
ALTM (OUTPUT COUNTER)

"SET BITS 3, 11 AND 12

OF O/P CH 14= 1 (ALT
METER ACT., DRIVE OCDU
SHAFT AND TRUN-

NION)

3-13

Detajled TARUPT (Sheet 4 of 28)

IF THE C(ALTSAVE)
WAS NEGATIVE FORCE
DPALTSAVE WORD = 0




HAS RR AUTO MODE\ NO
BIT OF CH 33

CHANGED? (BIT 2f
¢ YES

UPDATE RADMODES
TO PRESENT CONFIG,
(RIT 2)

DID
RR AUTO
MODE JUST GO
ON? RADMODES
RIT 2 = ()

WAS ANOTHEZR
ANOTHER PROGRAM USING RR NO
PROCRAM 118ING vEe WHEN IT WENT OFF?
RR? (STATE BIT 7)
STATE BIT 7)
YES
( PROGRAM CAUTION )
SET RR TURN-ON AND
RR ZERO BITS OF
RADMODES (BITS 1 AND
13=1) V05 N31 R1 = 00514
(RADAR GOES OUT OF)
AUTO MODE WHILE
BEING USED
SCHEDULE TASK'"RR
TURN-OW' TO BE
EXECUTED IN 10 MSEC

GP
MATRIX

Figure 3-3. Detalled T4RUPT (Sheet 5 of 28)

3-14




RR
Cchu
CHK

HAS THERE BEEN\
NO A CHANGE IN RR YES
CDU FAIL BIT?
(CH 30 BIT 7)
p .

1s
RR AUTO
NO

G
MATRIX

(RADMODES
BIT 2 < 0)

YES

MODE BIT PRESENT

UPDATE RADMODES TO
REFLECT RRCDU FAIL
(RADMODES BIT 7)

NO

DID

18
LAMP TEST
IN PROGRESS?
(IMODES 33
BIT 1= 1)

NO
DID
RR CDU T AIL?

(RADMODES BITS
2, 7 AND 13 = 0)

YES

\ 4

GRACKER WARNING ’

NO LR FAIL? YES
(RADMODES BITS
5&8=1)
DID
RR DATA
NO FAIL? YES P>
(RADMODES
BIT 4= 1)
1S
TRACKER NO
WARNING ON?
YES
TURNOFFTRACKER
WARNING
(DSPTAB+11D BIT 8 = 0)
SO
Figure 3-3. Detailed T4RUPT (Sheet 6 of 28)

3-15




CHECK RADMODES

BITS 2, 11, 13, AND 14

(RR AUTO MODE, MONI- NO
TOR REPOSITION,

RR ZERO AND REMODE)

ANY PRESENT?

GP
MATRIX

STORE C(OPTX ARD
OPTY) (RR CDU
COUNTERS)

WHAT
MODE IS RR
IN? (RADMODES
BIT 12)

MODE 1

IS
SHAFT ANGLE
WITHIN LIMITS?
(-25° TO -1359)

1S

TRUN ANGLFE
WITHIN LIMITS?
(£55°)

1S
TRUN ANGLE
WITHIN LIMITS?
¢+125 TO +235)

IS
SHAFT ANGLE
WITHIN LIMITS?
#+55 TO -70)

SET RADMODES BIT 11
=1 (MONITOR

YES
REPOSITION)

GP
MATRIX

SET CH 12 BITS 2 AND
14 = 0 (DISABLE

RRCDUERRCTRAND
RR AUTO TRACKENABLE)

v

SCHEDULE 20 MSEC
T3RUPT (DORREPOS)

|
20 MSEC

DO
RREPOS

Figure 3-3. Detailed TARUPT (Sheet 7 of 28)

3-16




RR TURN
QR ONR

(ZERO RRCDU)
T

SETCH12BIT1=1 *

SCHEDULE 1 SEC

TIRUPT (WAIT 1 SEC
SCHEDULE 20 MSEC BEFORE REMOVING RR
T3RUPT TURNON FLAG TO AVOID
A POSSIBLE MONITOR

20 MSEC REPOSITION ALARM
SET OPTX AND 1 SEC
Y=0

SET RADMODES BIT 1 =
SETCH12BIT1=0 ; 0 (REMOVE RR TURNON)
(RESET RRCDU ZERO)

i I

SCHEDULE 4 SEC

T3RUPT 18
T PROGRAM WAITING
4 SEC TO USE THE RR?
v C(STATE)
SET RADMODES
BIT13=0
(RR ZERO)

v

SET RADMODES BIT 12
(RR MODE) = 10R 0 TO
AGREE WITH PRESENT
ANT POSITION C(OPTY)
IF TRUNNION ANGLE
1S > +90°%, BIT 12= 1

ARE
WE IN LAMP
TEST?
(IMODES 30 BIT 1)

YEB

ARE

THERE ANY
TRACKER FAILS
PRESENT?

L

TRACKER WARNING
(DSPTAB+11DBIT8=1)

Figure 3-3. Detailed T4ARUPT (Sheet 8 of 28)

3-17




T3

DO
RREPOS

SETCH12BIT2=1

(ENABLE RR CDU ERR
CTR)

v

SET LASTXCMD AND
LASTYCMD =0

WAS
RR JUST TURNED
ON? (RADMODESB
BIT 1)

NO

‘ PROGRAM CAUTIOI\D

V05 N31
R1 = 00501
(ANT OUT OF LIMITS)

SCHEDULE 20 MSEC
T3RUPT (DELAY)

I
20 MSEC
REPOSITION

18T PASS

2ND PASS (REMODE)

T4R

ES /s REMODE
REQUEST PRESENT ?
(RADMODES BIT 14)

MODE 1 MODE 2
1

ANT MODE?
(RADMODES BIT 12)

START
DES

SET TRUN ZERO REF =0° SET TRUN ZERO REF =

FOR REPOSITION AND
FIRST PASS OF REMODE
OR -120° FOR REMODE
SECOND PAS

180° FOR RREPOS AND

REMODE FIRST PASS OR
-60° FOR REMODE
SECOND PASS

SET C(RRINDEX) = 0

Figure 3-3.

(-180)

Detailed T4RUPT (Sheet9 of 28)

3-18




ARE REMODE AND |
REPOSITION CMDS NO
PRESENT? (RADMODES

\BITS 14 AND 11) i !
TERMINATE REPOSITION |

(RADMODES BIT 11= 0) CALC A6 CMD AND |
SCALE WITH. 59062

(CALC TRUN ON FIRST

PASS AND SHAFT ON |

SEC PASS) DIFF BETWEEN

ACTUAL AND ZERO REF. |

18
DESIGNATE
REQUEST PRESENT?
(RADMODES BIT 10)

s

CMD ANGLE
WITHIN 10 OF
DESIRED?

SETCH12BIT2=0
(REMOVE RR CDU EEC)

1s
THIS PASS
FOR TRUN OR
SHAFT
(RRINDEX)

SHAFT

SET C(OPTYCMD) = 0 SET C(OPTXCMD) = 0 |
TRUN SHAFT

. v |

ouT 2 AXIS |
CONTROL

LIMIT CMDS TO |
384 PULSES MAX |

y |

CALC DIFF BETWEEN
LASTCMD AND |
DESIRED AND SET INTO
APPROPRIATE OPT () |
CMD (OUTPUT COUNTER)

v

|

SET CH 14 BITS 11 AND |
12= 1 (OCDUX AND Y

DRIVE) |

|

v

SCHEDULE 1/2 SEC
T3RUPT (RELAY)

L ]

Figure 3-3. Detailed T4RUPT (Sheet 10 of 28)

3-19




YES YES

HAS RREPOS
REMODE SHAFT BEEN
SERVICED?
HAS
TRUNNION
BEEN SERVICED
TWICE? WHAT
MODE 1

ANT, MODE? MODE 2
(RADMODES BIT 12)

INVERT RADMODES

BIT 12

SET SHAFT ZERO SET SHAFT ZERO
Sggg)c TS OPPOSITE REF = 0° FOR RREPOS REF = -900 FOR RREPOS
) OR -45° FOR REMODE OR -45 FOR REMODE
TERMINATE REMODE T
(RESET RADMODES BIT
14 = 0) SET RRINDEX = 1
(SHAFT)

Figure 3-3. Detailed T4RUPT (Sheet 11 of 28)

3-20




NO /|s REPOSITION \
REQUEST PRESENT?
(RADMODES BIT 11)
18
CONTINUOUS -

DESIGNATE PRESENT?

BAD REMODE
YES

(l\r\DlﬂQDDB DIT 1E)

YES

YES

HAS

(30 SEC)

DESCOUNT
TIME EXPIRED?

YES

DECREMENT
DESCOVNT

—

SCHEDULE "DODES"

VIA EXEC WITH
PRIORITY 26

v

SCHEDULE 1/2 SEC
T3RUPT (DELAY)

|
b

PROGRAM CAUTION

V05 N31
R1 = 00503
(ANT DESIGNATE FAIL)

SETCH 12 BITS 2 AND
14= 0 (REMOVERR
ECR ENABLE ANDRR
AUTO TRACK ENABLE)

v

REMOVE DESIGNATE
FLAG (RADMODES
BIT 10)

IS
DESIGNATE

REQUEST PRESENT?
(RADMODES BIT 10)

18
RRCDU FAIL

PRESENT?

(RADMODES BIT 7)

OR
BEG DES
TERMINATE DES

(SET RADMODES BIT
10 = 0)

¢

SET INTERNAL FLAG
TO INDICATE UNSUC-
CESSFUL JOB

WAS

JOB PUT
AQLOCT?

WAKE JOB

@
©

Figure 3-3. Detailed T4ARUPT (Sheet 12 of 28)

3-21




(o
N

CALCULATE SHAFT AND
TRUNNION CMDS USING
PRESENT ANT. ANGLES
AND RR TARGETVECTOR
IN N. B. COORDINATES

v

SCALE TRUNNION CMD
WITH. 53624

\ 4

SCALE SHAFT CMD WITH

. 53624

IS CONTINUOUS
DESIGNATES REQ.
PRESENT?
(RADMODES BIT 15= 1)

YES

AND TRUNNION CMD'S

ARE

SCALE SHAFT YES

WITHIN . 707

18

REMOVE RR AUTO TRACK
ENABLE
(CH12BIT 2= 0)

PROGRAM NO
USING RADAR?
(STATE BIT 5)

ISSUE RR AUTO TRACK
ENABLE

*

IS MONITOR
REPOSITION REQ.
PRESENT?
(RADMODES BIT 11) ,

v

LIMIT SHAFT AND
TRUNNION CMDS
TO 384 MAX.

v

CALCDIFF BETWEEN
LAST CMD AND DESIRED
AND LOAD OPTX AND Y
CMD COUNTERS

v

ISSUE SHAFT AND TRUN-
NION CDU DRIVE
(CH 14 BITS11 AND 12=1)

Figure 3-3.

(CH 12 BIT 14=1)

I
RR DATA
GOOD?
(CH33 BIT 4 = 0)

YES

v

REMOVE DESIGNATE
REQUEST
(RADMODES BIT 10 = 0)

\ 4

REMOVE RRCDU ERROR
COUNTER ENABLE
(CH12BIT2=0)

Detailed T4RUPT (Sheet 13 of 28)

3-22




COMPARE IMODES 30,
BITS 9, and 11 THRU °

15 WITH CHANNEL 30

DID
ICDU FAIL
CHANGE??
BIT 12)

UPDATE IMODES 30 TO
NEW CHANNEL 30 CON-
FIGURATION & SAVE
CHANGE BITS

DID
‘TEMP CHANGE ?
(BIT 15)

IMU OPERATE

Figure 3-3. Detailed TARUPT (Sheet 14 of 28)

3-23

YES

YES

YES

YES

I7614-3




IS TEMP \ NO
WITHIN LIMITS?

(CH30, BIT 15= 0) /

YES

TEMP CAUTION
(CH11, BIT 4= 1)

ISA LAMP \ NO
TEST IN PROCESS?
(IMODES 33, BIT 1= 1)

YES
TURN OFF TEMP
CAUTION LAMP. (SET
CH11, BIT 4=0)

i !

v

DID ANY OTHER

BITS CHANGE ? NO
(IMODES 30, BITS 9
AND 11 THRU 14.)

[ YES

17614 -4

Figure 3-3. Detailed T4RUPT (Sheet 15 of 28)

3-24



N

s/ 18 TURNON RE-
QUEST FAIL
PRESENT?
(IMODES 30,
MTZ—U

DID TURN ON RE SET FIRST TURN ON
QUEST.JUST COME ON? SAMPLE BIT. (IMODES p=
(IMODES 30, BIT 14 = 0) 30, BIT 7 = 1)

(o)

HAS "ISS TURN SET TURN ON RFQULST
ON DELAY COMPLETE D" FAIL. (IMODES 30, BIT
BEEN ISSUED? 2=1)
. (CH12, BIT 15 = 1)

YES
¥ # PROGRAM CAUTION

V05 N31
R1 - 00207
8S TURN ON REQUEST
NOT PRESENT FOR
90 SEC)

z

I¢
A 4

DID ANY OTHER
BITS CHANGE ? NO
(IMODES 30, BITS 9
AND 11 THRU 13)

YES

17614-5

Figure 3-3. Detailed TARUPT (Sheet 16 of 28)

3-25




COMPARE PIPA, ICDU,
AND IMU FAIL BITS
(IMODES 30, BITS 10,
12, AND 13) WITH
THEIR INHIBIT BITS
(IMQDES 30, BITS 1,

3 AND 4

ANY
UNINHIBITED
FAILURES?

YES

188 WARNING
(CHIL, BIT 1= 1)

IS A LAMP
TEST IN PROCESS?» ) NO ,
(IMODES 33, BIT 1 - 1) i

TURN OFF 188 WARN-
ING LLAMP (SET CHI1,
BIT | - 0)

R’

WAS THIS
PASS FOR IMU
FAIL

NO

—
' DID ANY OTHER DID ANY OTHER
* (IMOUSHSHANGECY DITAICHANGE R
(IMODES 30, BITS fMODES 30, BITS
9, 11, AND 12 § AND 13
YES YES

17614-6

Figure 3-3. Detailed T4RUPT (Sheet 17 of 28)

3-26




YES

ARE WE CAGING? YES

(IMODES 30, BIT
11=0)

NO

<

A 4

DID THE OTHER

BIT CHANGE ?

(IMODES 30 BIT 9)

NO

S

Figure 3-3.

TERMINATE GYRO AND
ICDU DRIVING. (SET
CH14, BITS 10,13, 14,
AND 15= 0)

v

REMOVE IMU ERROR
CNTR ENABLE AND
ISS TURN ON DELAY
COMPLETED. (SET
CH12, BITS 6 AND

15 = 0)
v

ISSUE COARSE ALIGN
ENABLE AND ZERO
IMU CDUS. (SET CH12,

BITS4 AND 5 = 1)

NO ATTITUDE

INHIBIT PIPA, ICDU,

INDICATE CAGING
(SET IMODES 30, BITS
1 AND 3 THRU 6 = 1)

AND IMU FAILURES AND

v

SET CDU (X, Y, AND 2)
& GYRO CMD OUTPUT
REGISTERS = 0

v

DE-SELECT GYROS

(SET CH14, BITS 1,8
9 AND 10 =0

Detailed T4RUPT (Sheet 18 of 28)

3-27

17614-7




*_.

DID IMU OPERATE \
JUST COME ON? NO

(IMODES 30, BIT
9 = ()

ES

v

WAS A PROGRAM
USING THE IMU

WHEN TURNED OFF?

(STATE, BIT 8= 1)

[

\ | vES
IS TURN ON
REQUEST FAIL PRE-

SENT? (IMODES 30, BIT

PROGRAM CAUTION

N
~

g

0

V05 N31
R1 = 00214

—] =

(PROGRAM USING IMU
WHEN TURNED OFF)

SET FIRST TURN ON
SAMPLE (IMODES 30,
BIT 7 = 1)

17614 -8

Figure 3-3, Detailed TBRUPT (Sheet 19 of 28)

3-28




1S SECOND N
TURN ON SAMPLE o
IT PRESENT ?(IMODES
30, BIT 8 = 1)

IS FIRST
TURN ON SAMPLE \YES
BIT PRESENT ? (IMODE
30, BIT7 = 1)

NO +YES

RESET TURN ON
SAMPLE BITS (SET
IMODES 30, BITS 7
AND 8 = O

v

. / IS TURN ON NO
YES/ REQUEST PRESENT?

f IMODES 30, BIT
14 = 0)

PRESESOPERAIEE \ vEg
PR. T2 (IMODLS
30, BIT 9= 0) \ 4

REMOVE "IMU ERROR

- CSTR ENABLE" AND
.1@0 "ISS TURN OX DELAS
COMPLETED, "(SET
a CH12, BITS 6 AKD 15 =0)

SAMBEERIR (SEN O

IMODES 30, BIT 8 = 1)

YES

IS COARSE
ALIGN ENABLE
PRESEST? (CH12,

BIT 4=1)

? NO
IS ANOTHER
PROGRAM USING

THE mMU2 (STATE
BIT & = 1)

vxo

) ES

(PROGRAM CALTION ) . v

ISSUE "COARSE ALIGN
ENABLE" AND ""ZERO
IMU CDUS. * (SET CH12,
BITS 4 AND 5= 1)

V05 N31 Rl = 00213
(IMU NOT OPERATING

INHIBIT PIPA. ICDC,
AND IMU FAILURES
AND INDICATE CAGING.
(SET IMODES 30. BITS
1AND 3THRP6 = 1)

L 2

WITH TURNON
REQUEST)

NO ATTITUDE

INHIBIT PIPA, 1CDU, AND
M U FAILURES AND INDI-
CATE INITIALIZATION
(SET MODES 30, BITS 1
AKD 3 THROUGH 6 = 1)

SCHEDULE TASK

ISSUE "ZERO IMU CDUS'
(SET CH12, BIT 5= 1)

v

SCHEDULE TASK "UNZ2'
TO BE EXECUTED IN 30C
MSEC.

"ENDTNON" TO BE
EXECUTED IN 90 SEC.

Figure 3-3.

3-29

17614-9

Detailed T4ARUPT (Sheet 20 of 28)




SETCDU X, YAND 2 -
GIMBAL ANGLE UNINHIBITED

COUNTER3 = 0 FAILURES?

ANY

REMOVE 'COARSE ALIGN

ENABLE"™ AND "ZERO ISS WARNING
IMU CDUS". SET CH12, {CH11, BIT I =1
BITS4AND 5 =0

v

ISA LAMP
SCHEDULE A 4 SEC DE- TEST IN PROCESS'>
LAY FOR COUNTERS TO (IMODES 33, BIT 1=
STABILIZE
I
: 4 SEC i
' TURN OFF ISS WARN-
ING LAMP (SET CH11,
|REMOVE I1CDU AND IMU BIT 1= 0)

FAIL INHIBITS AND

INITIALIZATION INDICA
TION. (SET IMODES 30,
BITS3.4, AND 6 = 0)

; REMOVE "ISS TURN ON

DELAY COMPLETED".
(SET CH12, BIT 15 = 0)

COMPARE PIPA, ICDU ! i

AND MU FAIL BITS

(IMODES 30, BITS 10,

12, AND 13) WITH SCHEDULE TASK
THEIR INHIBIT BITS ' vPFAILOK" TO BE
(IMODES 30, BITS 1, EXECUTED IN 10 SEC
3 AND 4)

v

IS ANOTHER
PROGRAM WAITING \!ES
TO USE IMU?
(STATE BIT 8 = 1)

NO

TASK
OXER
17614-11

Figure 3-3. Detailed T4RUPT (Sheet 21 of 28)

3-30




frmr
\&5/

RESET TURN ON RE-

UEST FAIL'(SET _
IMODES 30, BIT 4 = 0)

v

WAS 90 SEC NO
DELAY SUCCESSFUL?
(OLD IMODES 30.
BIT 2 = 0)

lns

TURN OFF "NO
ATTITUDE"
INDICATOR

A

13 TURN ON
REQUEST PRESENT?

(IMODES 30,
BIT 14=0)

YES

RESCHEDULE TASK
"ENDTNON" TO DE
EXECUTED IN 00 SEC

TASK
OVER

NO

IS ANOTHER
PROGRAM WAITING
TO USE IMU?

(STATE, BIT 8 = 1)

YES

Y

YES / IS 188
WARNING LAMP

MOUE 8WI1TCH

SET INTERNAL FLAG
TO INDICATE BAD

ON7 (CHLL, BIT 1= 1)

NO

SET INTERNAL FLAG TO
INDICATE GOOD MODE
SWITCH

YES

"

18
CALLING JOB

v

WAKE SLEEPING JOB

SLEEPING?

Figure 3-3.

17614-10

Detailed T4RUPT (Sheet 22 of 28)

3-31




T3
PFAILOK

IS
IMU BEING
CAGED?

YES

(IMODES 30 BIT 6 = 1)

REMOVE PIPA FAI
INDICATIONS
(IMODES 30 BITml0
AND IMODES 33 BIT
13= 1)

v

REMOVE CAGING
INDICATION
(IMODES 30

BIT 5= 0)

ARE
THERE ANY
UNINHIBITED FAILURES?
(IMODES 30 BITS 1, 3, & 4
WITH 10, 12 & 13)

NO YES

IS
LAMP TEST
IN PROGRESS
(IMODES 30 BIT 1SS WARNING
1=1) CH11BIT1=1

INSURE ISS WARNING
ISOFF
(SET CH 11 BIT 1= 0)

v

Figure 3-3. Detailed T4ARUPT (Sheet 23 of 28)

3-32




COMPARE IMODES 33,
BITS 11, 12 AND 13
WITH CHANNEL 33.

DID
ANY BITS
CHANGE ?

UPDATE IMODES 33 TO
NEW CHANNEL 33 CON-
FIGURATION

DI
PIPA FAIL
CHANGE ?
(BIT 13)

nID
DOWNLINK
TOO FAST CIIANGE ?
(BIT 12)

DID
UPLINK TOO
FAST CIIANGE ?
(BIT 11)

17614 -3

Figure 3-3. Detailed T4ARUPT (Sheet 24 of 28)

3-33



UPDATE RPA FAIL IN
IMODES 30 (SET IMODES
30, BIT10 =1

IS PIPA FAIL
ON? (IMODES 33, BIT
13 = 0)

UPDATE PIPA FAIL
IN IMODES 30 (SET
IMODES 30, BIT 10 = 0)

COMPARE PIPA, 1CDU
AND IMU FAIL DITS
(IMODES 30, BITS L0,
12 AND 13) WITH THEIR
INIEBIT BITS. (MODES
30, BITS 1, 3 AND 4)

ANY

UNINHIBITED YES

FAILURES

IS A LAMP

TEST IN PROGRFSS?
(IMODES 33, BIT

1.1

TURN OFF [SS WARN-
ING LAMP (SET CHII,

BIT 1 - 0)

188 WARNING
(CH1L, BIT 1 = 1)

IS'THERE A
PIPA FAIL INHIBIT?
(IMODES 30, BIT 1 - 1)

1S THERE A PIPA
FAIL? (IMODES 30,
BIT 10 = 1)

1S IMU
OPERATING ? YES
(IMODES 30,

BITO - 0)

NO

DID ANY OTHER
BITS CHANGE ?
(IMODES 33, BI'TS
11 OR 12)

Figure 3-3.

1S 1SS BEING

YES INITIALIZED ?
(IMODES 30, BITS
5,6,7, OH8 - 1)

iNo
GROGRAM CAU'[‘IOD

vos N31

R1 = 00212
PIPA FAll. BUT PIPA
IS NOT BEING USED)

17614-14

Detailed T4RUPT (Sheet 25 of 28)

3-34




NO

TELEVBEIWN TOO

TELEMETRY TOO

FAST? (IMODES 33
BIT 12 = 0)

YES

PROGRAM CAUTION

V05 N31
R1 = 01105
(DOWNLINK TOO
FAST)

DID THE OTHER
BIT CHANGE? (IMODES
33, BIT 11)

NO

GLOCK
QUOBK

N

FAST? (IMODES 33,
BIT 11= 0)

0 / TELEMETRY TOO

YES

PROGRAM CAUTION

V05 N31
R1 = 01106
(UPLINK TOO FAST)

17614-15

Figure 3-3, Detailed T4ARUPT (Sheet 26 of 28)



IS
MIDDLE

GIMBAL ANGLE
=07

IS GIMBAL
LOCK LAMP Oh'? NO

(DSPTAB 11D, BIT
6- 1)

YES
A 4

IS A LAMP
TEST IN
PROGRESS ? (IMODES
30, BIT1= 1)

‘NO

TURN OFF GIMBAL
LOCK LAMP (SET
DSPTABI11D, BIT 6 = 0)

YES

1S
COARSE
AUGN ENABLE
PRESENT?
(CH 12, BIT 4 = 1)

¢

A 4

IS GIMBAL
LOCK LAMP ON?
(DSPTAB 11D.
BIT 6 = 1)
ISSUE “"COARSE ALIGN \ '
ENABLE" (SET CH 12, No
BIT 4 = 1)

: YES
ARE WE
* INITIALIZING ? YES
( ODES 30,
NO ATTITUDE > gﬁ 6= 1)

INHIBIT IMU FAIL ‘
(SET IMODES 30 BIT 4 = 1)

RESUME
17614-16

Figure 3-3. Detailed T4RUPT (Sheet 27 of 28)

3-36



GP
MATRIX

CALCULATE THE TERMS FOR THE
GIMBAL TO PILOT (GP) AND THE
PILOT TO GIMBAL (PG) MATRIX.
CALCULATE:

SIN (MG

COS (MG)

SIN (OG)

-SIN (OG) COS (MG)
-SIN (OG) / COS (MG)
COS (0G)

COS (0G) COS (MG)
COS (0G) / COS (MG)

NI WN

Figure 3-3. Detailed T4RUPT (Sheet 28 of 28)

3-37




Table 3-2, RADMODES - Channel Correlation

CHANNEL 30 RADMODES CHANNEL 33
BIT DESCRIPTION DESCRIPTION DESCRIPTION
RR TURN-ON

éL RR AUTO MODE RR POWER ON/AUTO

3 RR HI SCALE RR RANGE LOW SCALE
4 RR DATA RR DATA GOOD

g LR POSITION DATA If; R@A FC’;OOSOITDION ‘1

° RR CDU FA|L | LRANT. POSITION # 2 :

8 RR CDU FAIL

LR VEL DATA FAIL LR VEL DATA GOOD

9 LR HI SCALE LR RANGE LOW SCALE

10 DESIGNATE

11 MONITOR REPOSITION

12 RR MODE (ANT)

13 RR ZERO

14 REMODE

15 CONTINUOUS DESIGNATE

MARK STAT

BIT DESCRIPTION

|t

2

3 A

4 =]

5 vl

6 <0

7 > <

5|y

9

[y
(]

X MARK MADE
.Y MARK MADE

ek ki
[ )

MARK REJECT
INFLIGHT

bt
%20

MARKS ACCEPTED




Table 3-3. IMODES 30 - Channel 30 Correlation

IMODES 30 Channel 30 (Inverted Logic)
Bit Description Bit Description
1 PIPA FAIL INHIBIT (1SS WARNING)
2 TURN ON REQUEST FAIL
3 ICDU FAIL INHIBIT
4 IMU FAIL INHIBIT
5 PIPA FAIL INHIBIT (PROG. CAUTION)
6 IMU BEING INITIALIZED
7 ISS INITIALIZATION REQUEST
8 ISS INITIALIZATION WAIT 1 SAMPLE
9 IMU OPERATING 9 IMU OPERATE
10 PIPA FAIL
11 IMU CAGE 11 | IMU CAGE
12 ICDU FAIL 12 ICDU FAIL
13 IMU FAIL 13 | IMU FAIL
14 ISS TURN ON REQUEST 14 ISS TURN CN REQUEST
15 ISS TEMP IN LIMITS 15 ISS TEMP IN LIMITS
Table 3-4. IMODES 33 - Channel 33 Correlation
IMODES 33 ‘ Channel 33 (Inverted Logic) I
Bit Description Bit Description
1 LAMP TEST IN PROGRESS
2 GYRO SCALE FACTOR TEST
11 UPLINK TOO FAST 11 | UPLINK TOO FAST

12
13

DOWNLINK TOO FAST
PIPA FAIL

12
13

DOWNLINK TOO FAST
PIPA FAIL

3-39




3.2 DOWNTELEMETRY ROUTINE (DNRUPT)

The Downtelemetry Program IS used to select the appropriate computer words to be trans-
mitted via the Downlink Telemetry System and setting the selected words into channels 34
and 35.

The overall synchronization of the downlink is obtained from the external telemetry pro-

grammer. In order to understand the sequence of events occurring during this program,

one must know terminology and control pulse rates. The following is a synopsis of terms
and data required for a discussion of this program:

Telemetry Word = 8 bits

Two telemetry words = 1 computer word

1 Prime Frame = 128 telmetry words

5 Telemetry Words = 1 DP Computer Data Word
*BIT RATE = 51.2 KCor 1.6 KC
*TL START PULSE = 50 pps or 10 pps
*TL END = 50 pps or 10 pps

*NOTE: The two rates given are basic rates, the lower of which is
used to transmit data when the spacecraft is located a con-
siderable distance from the ground tracking station. Our
discussion will be based on the higher of the two rates.

The telemetry system transmits data to the ground at the rate of 50 frames per sec.

A frame consists of 128 eight bit telemetry words, five of which are allotted for computer
data. Thus, every 20 msec computer data is sent out (figure 3-4). At the high rate 50 DP
computer words are transmitted each second, with some single precision words grouped
together and sent two at a time as double precision pairs,

If one considers the five telemetry words (figure 3-5) to be repeated 50 times per second
and each transmission to contain different data, one would have a picture of what the down
telemetry program must accomplish. A general format is shown in figure 3-6.

The nominal downlink list for Sunburst, Rev 14 is provided as figure 3-17.

The downrupt flow diagram is shown in figure 3-8. The arrival of the TELEND pulse

will cause the program interrupt service to route control of the computer to the DNRUPT
routine. Each pass through the DNRUPT routine will load output channels 34 and 35 with

the next two words to be outputed via the telemetry system. These two words will picked
from these channels upon occurrence of the next TELSTART pulse. The FRESHSTART/
RESTART routine initializes the contents of DNTMGOTO to the starting address of DNPHASE
1 so that the first TELEND pulse will cause a DNRUPT which will transfer the control of the
computer to the routine defined as DNPHASE 1.

3-40




BIT RATE |
61.2 KC

1.6 KC

TLSTART " ”
50 PPS
10 PPS

TLEND ” ”
50 PPS
10 PPS

120 5 3 120 5 3 >
WORDS | WORDS (WORDS| WORDS [ WORDS |WORDS \\

1 FRAME
msm 128 WORDS —™

20 MSEC/FRAME

17561

The arrival of the TLEND pulse forces a DNRUPT which transfers control to the
DODOWNTM program. This program loads the next double-precision data scheduled to be
sent down into channels 34 and 35, and sets bit 7 of channel 13 (Word Order Bit) to a ZERO
for transmission of the other 49 DP words of the 50 DP word format. Channel 13, bit 7,
controls the logical state of the leading bit (word order bit) in each 40 bit transmission so
that the first 40 bit word transmitted is distinct from the remaining 49. Bits 2-33 consist
of the contents of channels 34 and 35; bits 34-40 are all zeros.

Figure 3-4, Computer Interface with Telemetry
3-41




ev-e

TELEMETRY
WORD 5

Time is increasing to the left and that the computer words

Note:
are outputted serially from high to low order bit position.
SERIAL OUTPUT’
TELEMETRY TELEMETRY TELEMETRY TELEMETRY
WORD 4 WORD 3 WORD 2 l WORD 1

8 7065 43 1l gl lgs gl gl lglsl, 1 8176050435018, Tl T, Tl T
0 /7///7/'//////l
5 6|7 1 15(16
SET TO
ALL ZEROS CHANNEL 35 CHANNEL 34
T
ER B
oRD OF2
PARITY
7
CHANNEL 13

R IR P O O P P O D P O R

et t—

Figure 3-5. Downtelemetry Transfer



WORD #1
2

LAST 7 BITS WORD
ORDER
CHANNEL 35 CHANNEL 34 BIT
LIST START,
0000000 00437, 00000 ( ADDRESS ) 0
0000000 1
1
1
1
1
3819 COMPUTER 3819 COMPUTER 1
WORDS DEFINED WORDS DEFINED 1
BY DATA LIST BY DATA LIST i
1
1
1
1
1
1
1
0000000 DSPTAB+1 DSPTAB 1
DSPTARB+3 DSPTAB+2 1
DSPTAB+5 DSPTABA+4 1
DSPTAB +7 DSPTAB+6 1
DSPTAB+8 DSPTAB+8 1
DSPTAB+11D DSPTAB+10D 1
TIME 1 TIME 2 1
0000000 CHANNEL 12 CHANNEL 11 1
CHANNEL 14 CHANNEL 13 1
CHANNEL 31 CHANNEL 30 1
CHANNEL 33 CHANNEL 32 1
REPEAT
Figure 3-6. Downtelemetry General Computer Format

3-43




CHANNEL 34 CHANNEL 35
DNPHS 1 1] 00000 (LIST ADDRESS) 00437g

2| PIPA X PIPA Y
DNPHS X AND 3| PIPA Z RHCP
gNNEPHSSHZO.FrRé)S{':FER 4 | RADMODES SAMPLIM

5| OLDATAGD DESCOUNT

6 | SAMPLSUM SAMPLSUM+ 1

7| OPTYHOLD OPTYHOLD+ 1

8| TIMEHOLD TIMEHOLD+ 1

9| ALT ALT+1

10 | ALTRATE FMALT

11| ALTSAVE ALTSAVE + 1

12| FINALT FINALT+ 1

13| FOHVEL LATVEL
DNPHS 3 14| cDu X CDU Y

15| cbDuU 2z OPT Y

16| OPTY OPT X

17| STATE STATE+ 1

18 STATE+ 2 STATE+3

19| REDOCTR FAILREG

20| LMPCMD LMP CMD +1

21| LASTYCMD LASTXCMD

22| TANG TANG+ 1

23| THETAD THETAD+ 1

24| THETAD+2 DELVX

25| MARKSTAT XYMARK

Figure 3-7.

Nominal Downlink List, Sunburst, Rev 14 (Sheet 1 of 2)

3-44




CHANNEL 34 CHANNEL 35
DNPHS 3 (cont) 26 DRIFT O DRIFT O+ 1
27 DRIFT | DRIFT K+ 1
28 DRIFT T DRIFT T+ 1
29 INTY INT Y+l
30 ANG 2 ANG Z + |
31l ANG Y ANG Y+1
32 ANC X ANG X+ 1
33 VLAUN VLAUN + 1
34 VLAUN+4 VLAUN+5
35 DATA PL DATA PL+1
36 DATA PL+2 DATA PL+3
37 DATA PL+4 DATA PL+5
38 DATA PL+6 DATA PL+7
39 UPLOCK T6LOC
DNPHS 4 40 DSPTAB DSPTAB+1
41| DSPTAB+2 DSPTAB+3
42 DSPTAB +4 DSPTAB+5
431 DSPTAB+6 DSPTAB+17
441 DSPTAB+8D DSPTAB+9
45 DSPTAB+10D DSPTAB+11
46 TIME 2 TIME 1
DNPHS 5 47 c¢(CHAN 11) c¢(CHAN 12)
48] ¢(CHAN 13) c(CHAN 14)
49| ¢(CHAN 30) c(CHAN 31)
50/ c(CHAN 32) c(CHAN 33)
Figure 3-7. Nominal Downlink List, Sunburst, Rev 14 (Sheet 2 of 2)

3-45




n

ONRUPT ) TELEVDFASEE

5 BRANCH BASED ON
PHS CONTENTS OF
DNTMGOTO

M

DNPHASE
1

@%

OBTAIN LIST SET BIT 7 CHANNEL

13=1
START ADDRESS (WORD ORDER BIT)

v

PUT LOW ORDER 10
ADDRESS BITS IN

CHAN 34 & ZERO THRU 1319, FIG
REMAINING BITS 3-7) AND STORE

SNAPSHOT 11g
DP WORDS (3

’ IN DNTMBUFF

THRU
SET BIT 7 CHANNEL DNTMBUFF +21
13=0 (WORD ORDER

BIT) 4

* SET TMINDEX = 1119

SET DNTMGOTO TO
DNPHASE 2 FOR NEXT
PASS

(13g)

L J

SET DNTMGOTO TO
DNPHASE X FOR

f NEXT PASS
PUT 604374 IN v
CHANNEL 35 PUT 2ND DP WORD

(FIGURE 3-7) IN
CHAN 34 AND 35
(LOW ORDER IN 35)

Figure 3-8, Downrupt (Sheet 1 of 2)

17567-1




[

JR—

j
g

[v—

DNPHASE 3 FOR
NEXT PASS

:0TO TO

v

_NEXT PASS

SET DNTMGOTO
TO DNPHASE 4 FOR

SET TMINDEX = 6

SET DNTMGOTO TO
DNPIIASE 5 FOR
NEXT PASS

DECREMENT
TMINDEX

DECREMENT
TMINDEX

v

v

PUT KEXT 2 DSPTABS
INTO CHANNELS -
34 & 35

PUT TIME 2 IN
CHAN 34 AND TIME
IN CHAN 35

PUT FIRST DP
. DSPTAB WORD IN
DECREMENT
» SET TMINDEX TMINDEX CHAN .34 AND 35,
3 {DSPTAB 0 IN
CHAN 35.)
PUT CONTENTS OF
CHAN 11 & 12 INTOD
Ak LREGS
THANSFER CONTENTS
OF A 113} PUT CONTENTS OF
CHA 5 &5 CHANS 13 & 14 INTO
RESPECTIVELY A & L REGS
\ 4
PUT CONTENTS PUT CONTENTS
OF 32 & 33 INTO OF CHANS 30 & 31
A & L REGS INTO A & L REGS
‘ ‘ 17567-2

Figure 3-8. Downrupt (Sheet 2 «{ 2)

3-47




DNPHASE 1 = DNPHASE 1will set the ID word into channels 34 and 35. This ID word is
composed of the downlink list starting address in channel 34 and octal 00437 in channel 35.
DNPHASE 1 will also set the word order bit to zero to indicate that the word in channels 34
and 35 is the ID word. DNTMGOTO is set up so that the next DNRUPT will transfer control
to DNPHASE 2.

DNPHASE 2 - DNPHASE 2 sets the word order bit to 1 to indicate that the contents of
channels 34 and 35 is ID WORD. DNTMGOTO is set to route computer control to DNPHASE X
on the next DNRUPT. DP words 3 through 13 are obtained and stored in buffer registers and
DP word 2 is inserted into channels 34 and 35. The words stored in the buffer will be loaded
into channels 34 and 35 by the next eleven DNRUPT routines. They are sampled and stored
at this time so that when interpreted on the ground they can be compared to each other with
reference to the same time frame.

DNPHASE X - DNPHASE X merely obtains the next sequential snapshot word and puts it in
channels 34 and 35 to be plucked upon receipt of the next TELSTART pulse.

DNPHASE 3 = DNPHASE 3 sets up DNTMGOTO for DNPHASE 4 on the next DNRUPT and
sets the first DP DSPTAB word in channels 34 and 35.

DNPHASE 4 - DNPHASE 4 sets the remaining DSPTABS, TIME 2, and TIME 1 and channels
11 and 12 into channels 34 and 35.

DNPHASE 5 - DNPHASE 5 sets the remaining words of the downlink list into channels 34
and 35 in the following order: channels 13 and 14; channels 30 and 31; and channels 32 and
33. The next entry into DNPHASE 5 will route control of the computer to DNPHASE 1 to

begin the second transmission of the downlink list.

3.3 KEYBOARD AND UPLINK TELEMETRY INPUT PROCESSING PROGRAM

The keyboard and uplink telemetry processing program includes the KEYRUPT routine, the
UPRUPT routine and the routines of the PINBALL program. The KEYRUPT and UPRUPT
routines accept the input keycodes from the keyboard and uplink telemetry system. The
PINBALL program assebles the accepted inputs into meaningful information and controls
the execution of that which is indicated by the assembled information. Besides performing
the functions mentioned above, the PINBALL program can be used by internal programs to
perform the various functions which can be performed through keyboard or uplink inputs.

The KEYRUPT and UPRUPT routines operate under control of the program interrupt circuit-
ry of the computer and the processing specified by them is initiated whenever the appropriate
input is present, The PINBALL program is executed under control of the Executive program
and is scheduled by the KEYRUPT or UPRUPT routines to process the keycodes that they
accept. When an internal program uses the PINBALL program, it is processed under the
scheduling of the internal program using one or more of its routines.

Basically, the PINBALL program is made up of a group of routines with a routine for each
of the types of keys on the DSKY's. There is a NUM, NOUN, VERB, CLEAR, SIGN,

ERROR RESET, KEYRELEASE, and an ENTER routine. In addition to these routines, there
are numerous other routines which control is transferred to by the ENTER routine which
perform the requested action.

3-48




Figure 3-9 is a general flow diagram for the PINBALL program and the related KEYRUPT
and UPRUPT routines. Inputs are accepted by the KEYRUPT routine from the computers
DSKY or by the UPRUPT routine from a ground based keyboard via the uplink telemetry
system. Both of these routines accept the keycode input and schedule the CHARIN (CHARAC-
TER INPUT) routine of the PINBALL program to be executed through the Executive routine.

Because of the relatively high priority assigned to the Job CHARIN, the processsing of the
input keycode begins quickly. CHARIN routes control to the proper routine depending on the
keycode input. If the NOUN key is depressed, control is routed to the NOUN routine, etc.
After the processing required for a keycode input is completed, control is routed to the
Executive End Job routine to terminate the PINBALL program. When another key is de-
pressed, the KEYRUPT or UPRUPT routine schedules CHARIN which routes control to the
proper routine, the processing is performed and the PINBALL job isterminated. This
sequence continues until the required information has been loaded. When the final ENTER
key is depressed, this sequence occurs again except that the ENTER routine routes control
to another routine which performs the specified action. When the processing required is
completed, control is routed to the Executive End of Job routine.

The internal programs of the computer supply the appropriate information to the ENTER
routine and can thereby utilize any of the routines which are used as a result of keyboard or
uplink inputs. Prior to transferring control to the ENTER routine to utilize one or more of
the routines accessible through the ENTER routine, the internal program must make sure
that there is not another internal program or that the astronaut is not using the PINBALL
program. If the PINBALL program is already in use, control is returned to the internal
program. What is accomplished then is up to the internal program but, in most cases,

the internal program is put to sleep until the PINBALL routine is available for its use.

3.3.1 DSKY AND UPLINK INTERRUPT OPERATION. The keyboard and uplink
telemetry interrupt processing program includes the KEYRUPT and the UPRUPT rou-
tines. These routines process the keycodes which will be used by CHARIN. The KEY-
RUPT and UPRUPT routines accept the input keycodes from the keyboard and uplink
telemetry system. PINBALL assembles the accepted inputs into meaningful information
and controls the execution of that which is indicated by the assembled information. The
KEYRUPT and UPRUPT routines operate under control of the computer and processing
specified by them is initiated whenever the appropriate input is present.

The KEYRUPT and UPRUPT routines accept input keycodes from the DSKY keyboard or
from a ground based keyboard, respectively. The KEYRUPT routine obtains the five

bit keycode from input channel 15 register bits 1through 5 (MAIN DSKY) or input channel
16 bits 1 through 5 (NAV DSKY). The UPRUPT routine obtains the keycode information
from the INLINK counter of the computer memory. The information obtained from the
INLINK counter consists of 16 bits of data, shown in figure 3-10, which has been re-
ceived serially and manipulated into parallel form. Of the 16 bits of information, 15 bits
are used for three copies of the keycode being transmitted. Bits 15 through 11 (high 5)
and 5 through 1 (low 5) contain the keycode, while bits 10 through 6 (middle 5) contain
the complement of the keycode. The 16th bit is always a binary 1and is used to indicate,
through the computer's program interrupt circuitry, that the complete 16 bits of informa-
tion have been received.

3-49




DSKY UPLINK TELEMETRY
k INTERNAL PROG
KEYRUPT PICKS UP UPRUPT CHECKS
KEY CODE INPUT UPLINK TRANS-
1 : AND SCHEDULES MISSION AND SCHED-
L | CHARINX JoB ULES CHARIX JOB

|

) ARALRM “ s RETURN
’ = CHARIN TO INTERNAL
NUMERICAL INPUTS 0-8 USES KEYCODE PROGRAM

'} NOEN, RL,RERY,
-} AS DATA IS ENTERED,
VASSEMBLES DATA
‘CONVERTS DECIMAL
INPUTS TO BINARY,
CONVERTS OCTAL
INPUTS TO BINARY
NOUN )
CONDITIONS NUM (DR
TO ACCEPT NEXT : KEY RELEASE
‘CLEAR [ : TWO NUMERICAL ; RELEASE DSKY/
BLANKS DSKY . INPUTS AS NOUN o OPERATOR INTERLOCK
B : CODE: BLANKS . SO INTERNAL JOBS
Z NOUN DISPLAY - = CAN USE DSKY
: CHARALRM SETS BIT 7
- OF CHANNEL 11 TO A
BINARY ONE TO TURN VERB ENTER
ON THE OPERATOR CONDITIONS NUM CONDITIONS NUM DEPENDING ON
T ERROR LaMP TO ACCEPT NEXT TO CONVERT NEXT |- WHAT TYPE OF
3 TWO KUMERICAL FIVE NUMERICAL |- ENTRY HAS BEEN
INPUTS AS VERB INPUTS FROM MADE, THIS ROUTINE
CODE. BLANKS DECIMAL To ROUTES CONTROL
. } VERB DISPLAY BINARY: DISPLAY To ROUTINES
i SIGN IN PROPER WHICH ENABLE
w4 REGISTER R1, 2 ‘ THE VARIOUS
. : e R2O0R R3 ACTIONS TO BE
N . : DONE As SPECIFIED
: - ) - BY THE VERB
H NOUN CODES &
. ERROR RESET A "SPECIFIED
4 RESETS FAILURE MACHINE ADDRESS"
: ) INDICATORS. IF LOADED
: UNBLOCKS UP
i TELEMETRY
RELEASES DSKY
o\ |

17513
Figure 3-9. General Flow Diagram for Pinball

3-50




16} 15§14 1312 ]11]10}9|8f7 {6 }514]3(|21}1

1 X'TXIXIXIXIXIx'x'"xiIx|xixixixix

j¢——KEYCODE —#+44—KEYCODE —#4@—KEYCODE —t

X CAN EQUAL A BINARY 10R 0
BIT 16 ALWAYS IS A BINARY 1

Figure 3-10. INLINK Word Format

The flow chart for the KEYRUPT and UPRUPT routines are shown in figure 3-11. The
processing performed by the KEYRUPT 1 routine (the KEYRUPT 2 routine is associated
with mark commands) is presented here. Upon initiation of the KEYRUPT 1 routine, via
keyboard entry, real time is recorded. This is accomplished by reading and storing the
following computer memory registers:

a. TIME 1 COUNTER
b. TIME 2 COUNTER

These quantities are recorded in case the KEYRUPT 1was initiated by Noun 65 (Sampled
Time) and are recorded immediately to obtain the magnitudes as close to the time of the
entry as possible.

The Executive's NOVAC subroutine is used to schedule the Job CHARIN. After CHARIN
is scheduled, the keycode is stored in MPAC of the core set area reservied for CHARIN
by NOVAC. This concludes the KEYRUPT routine and control is returned to the job
which was interrupted by the KEYRUPT routine.

Whenever the UPLINK routine is initiated, real time is recorded. This is accomplished
by reading and storing the contents of the TIME 2 and TIME 1counters, These quantities
are recorded in case the UPRUPT was initiated by Noun 65 for the same reason it was
during KEYRUPT.

A 16 bit uplink word, which has been assembled in the computer's INLINK counter, is
read from the counter and the counter is setto +0 in preparation for the receipt of the
next uplink transmission. Bit 3 of channel 11 is set to a logic 1 to turn on the uplink
activity lamp. The routine now checks the accuracy of the uplink transmission. This
check i1s performed by comparing the three copies of the keycode contained in the uplink
word. If all three copies do not compare, further uplink activity is locked out by placing
a linbit 1 of UPLOCK and the interrupted job is resumed. The uplink lock can be re-
moved by the ground station sending an error light reset keycode or by performing a
FRESH START.

3-51




READ & STORE
CONTENTS OF
TIME 2 & TIME 1

v

STORE CONTENTS
OF INLINK COUNTER
& SET IT TO +0

UPLINK ACTIVITY
(CH 11, BIT3=1)

TEST TRIPLE
CHARACTER
REDUNDANCY

READ & STORE
CONTENTS OF
TIME 2 & TIME 1

SAVE KEYCODE

'

STORE

DATA

o IN BIT 1

OFUPLOCKTO
ACCEPT UPLINK

SCHEDULE JOB
CHARIN WITH
PRIORITY 30 VIA
EXECUTIVE NOVAC

SET BIT 1 OF UPLOCK
TO"1" TO LOCKOUT

FURTHER UPLINK
ACTIVITY UNTIL
ERROR LIGHT RESET

IS SENT VIA UPLINK

KC = ERROR

INLINK

y

STORE KEYCODE IN
MPAC OF CORE SET
AREA RESERVED
FOR CHARIN

Figure 3-11.

17576

KEYRUPT and UPRUPT

3-52




If the uplink transmission is good, a check is made to determine if an error light reset
keycode was transmitted. The 5 bit error light reset keycode is 10010. This keycode
is the same as the operator error keycode of the DSKY and will perform the same func-
tions. If the uplink word is error light reset, a 0 is placed in bit 1of uplock to remove
the uplink lock if the lock was in use.

The Executive's NOVAC subroutine is now used to schedule the Job CHARIN. After
CHARIN is scheduled, the keycode is stored in MPAC of the core set area reserved for
CHARIN by NOVAC and the interrupted job is resumed.

If the uplink transmission is good and the keycode is not error light reset, a check is
made to determine if the uplink activity is locked out. If the uplink activity is locked
out, the interrupted job is resumed. If the uplink data is not locked out, the CHARIN
subroutine is scheduled as before by NOVAC and the keycode is inserted into the
reserved core set area as previously noted. The interrupted job is resumed.

3.3.2 THE PINBALL PROGRAM. The PINBALL program as previously stated per-
forms the functions of assembling information as it is entered through the keyboard of
uplink telemetry system. It also initiates the proper function as indicated by the key-
board or uplink inputs. This program is divided into various subroutines which are
presented in the following paragraphs.

3.3.2. 1 CHARIN. CHARIN performs a routing function to other subroutines of the
PINBALL program. The routing performed by CHARIN is based on the keycode input
received by the computer from either the DSKY keyboard or the uplink telemetry system.
CHARIN is scheduled to be performed by either the KEYRUPT or UPRUPT routines
when a keycode is accepted by these routines, and is performed under control of the
Executive routine as shown in figure 3-12.

When the Executive routine determines that the CHARIN is the highest priority job
scheduled, control is routed to the CHARIN job. The processing performed by the job
is shown by the flow diagram in figure 3-12. Upon initiation of the processing for
CHARIN, an interlock is set up by the computer on itself so that no other programs can
use the DSKY. In other words, the use of the DSKY is reserved for the PINBALL pro-
gram and the astronaut or a ground based keyboard operator.

Control is routed to the CHARIN subroutine dependent on the keycode input. For
instance, if a numerical keycode has been entered, control is routed to the NUM
routine, If the NOUN keycode is entered, control is routed to the NOUN routine,
etc. If the keycode input is illegal, control is route? to the CHARALRM subroutine.

3.3.2.2 NOUN Subroutine. Control is routed to the NOUN subroutine of CHARIN
whenever the input keycode is that of the NOUN key.

The following is performed by this subroutine:

a. The NOUN REG, a memory register used to store the assembled NOUN code, is
set to zero in preparation for the receipt of a new NOUN code.

b. The NUM subroutine, which will assemble the new NOUN code as it is entered,
is conditioned to accept the next two keycodes as a NOUN code.

3-53




—SET 1D ITERI OCK

SO NO OTHER
INTERNAL CALLING
PROGRAM CAN

USE THE DSKY's

.

/ USE KEYCODE

TO TRANSFER

VERB CONTROL TO THE KEY RELEASE VB
RELDSP

ROUTINE WHICH
PROCESSES THE
KEYCODE

/2]
-]
<|8
] [«
=1 1%
e
=1
-
CHARALRM

LEGAL KEY CODES

10000 =0 10001 = VERB

00001 = 1 10010 = ERROR RESET

00010 = 2 11001 = KEY RELEASE

00011 = 3 11010 = +

00100 = 4 11011 = =

00101 = 5 11100 = ENTER

00110 = 6 11110 = CLEAR

00111 = 7 11111 = NOUN

01000 - 8

01001 = 9

OTHER 14 CODES ARE ILLEGAL 17514

Figure 3-12. CHARIN (Sheet 1 of 11)

3-54



SET NOUNREG TO +0
(NOUNREG IS AN
INTERNAL REGISTER
WHICH CONTAINS THE
LAST NOUN USED)

v

CONDITION NUM SUB-
ROUTINE TO ACCEPT
A NOUN CODE

BLANK THE DSKY
NOUN DISPLAYS

ESET OCTAL 73777
NTO DSPTAB+8D)

SET VERBREG TO +0
(VERBREG IS AN
INTERNAL REGISTER
WHICH CONTAINS THE
LAST VERB USED)

v

CONDITION NUM SUB-
ROUTINE TO ACCEPT
A VERB CODE.

v

BLANK THE DSKY
VERB DISPLAYS

(SET OCTAL 73777
INTO DSPTAB+9D)

CHECK
OLD CONTENTS OF

DSPTAB

. 4

INCREMENT NOUT

CONDITION NUM ROUTINE
TOACCEPTANOCTAL
ENTRY

17514-2

Figure 3-12, CHARIN (Sheet 2 of 11)

3-55




IS SIGN
VALID AT THIS
TIME

IS SIGN
VALID AT THIS
TIME

SET = SIGN BIT OF
DSPTAB ASSOCIATED
WITH SELECTED DSKY
REGISTER TO "1"

CHECK
OLD CONTENTS OF
DSPTAB

INCREMENT NOUT

SET + SIGN BIT OF
DSPTAB ASSOCIATED
WITH SELECTED DSKY
REGISTER TO"o"

SET + SIGN BIT OF
DSPTAB ASSOCIATED
WITH SELECTED DSKY
REGISTER TO"1"

CHECK
OLD CONTENTS OF
DSPTAB

INCREMENT NOUT

SET = SIGN BIT OF
DSPTAB ASSOCIATED
WITH SELECTED DSKY
REGISTER TO "0"

CHECK
OLD CONTENIS OF
DSPTAB

v

INCREMENT NOUT

CONDITION NUM
ROUTINE TO ACCEPT
A DECIMAL ENTRY

Figure 3-12.

CHARIN (Sheet 3 of 11)




0 KEYCODE LOADED

1,2,3,4,5,6, OR 7

NUM
-2

THE SUBROUTINE
18 CONDITIONED
TO USE +0 INSTEAD

KEYCODE LOADED

8 OR 9 KEYCODE LOADED

18
CHARACTER

OF THE ZERO
KEYCODE

IS THIS AN
EXTRA CHARACTIER
FOR THIS ENTRY?

-

SET APPROPRIATE
DSPTAB TO PROPER
CONFIGURATION FOR
DIGIT BEING LOADED.

| INCREMENT
prerrerreeeeed

OCTAL

SHIFT WORD BEINC
FORMED 3 PLACES
LEFT & ADD NEW
CHARACTERTO
SHIFTED WORD

OCTAL
Nno

CHECK
OLD CONTENTS OF
DSPTAB

DECIMAL

80R 9
LEGAL

CHARALRM

v

CONVERT TO DECIMAL
INPUT TO BINARY AND
STORE IN APPROPRIATE
INPUT BUFFER (XREG,
YREG, OR ZREQ),
[MULTIPLY OLD
¢(BUFFER) BY 103

AND ADD NEW

l } NUMERAL],
SCALE THE DOUBLE
PRECISION ENTRY I8 +
—3» WORD BY MULTIPLING DATA +
IT BY 214/105 (. 16384 OR -
IN DECIMAL)
COMPLEMENT

OCTAL

R
DECIMAL DECIMAL

DOUBLE PRECISION
WORDS TO OBTAIN
THE NEGATIVE
MAGNITUDE

Figure 3-12,

3-57

CHARIN (Sheet 4 of 11)

17514-4



CHAR
ALARM

DSP
ALARM

SETUP EXIT VIA
END OF JOB

(CH11, BIT 7 =1)

SUBROUTINE

EXTERNAL ENTERED FROM

OPERATION?

OPERATOR ERROR

INTERNAL OR EXTERNAL

INTERNAL

PROGRAM CAUTION

V05 N31
R1 = 01501
(KEYBOARD AND DISPLAY
ALARM DURING
INTERNAL USE)

FORCE TC TRAP l

17514-5

Figure 3-12. CHARIN (Sheet5 of 11)

3-58



LOADING
ANOUNORVERRB?

1S
VERB CODE
>307

YES

SELECTT NOUN
ADDRESS AND TYPE
FROM NOUN TABLES

IS
NOUN CODE
>557

NOUNS)

NO, DATA OR
AuDRESS

NO (NORMAL
NOUNS)

YES (MIXED

SELECT SCALE FACTOR
FROM TABLE

18
NOUN LEGAL?

NO

DECIMAL
OR OCTAL?

DECIMAL

5
CHARACTERS
LOADED?

TURN OFF VERB-
NOUN FLASHER
(SET CH11, BIT6 =0)

"OR ERROR
iR A BT = 1y

FLASH REMAINS ON
AND NU'M CONDITIONED
SO THAT MISSING
CHARACTERS CAN BE
LOADED

RETURN
TO VERB-NOUN
ROUTINE WHICH
CALLED FOR
DATA

1S
VERB CODE
01 - 067

USING MACHINE ADDRESS
FROM NOUN ADDRESS
TABUS, PICK UP ADDRESSES
TO THE DATA TO BE
DISPLAYED

Figure 3-12.

OPERATOR ERROR
(CH11, RIT 7=1)

17514-6

CHARIN (Sheet 6 of 11)

3-59




o

[S—

- TURN OFF m SET UP DSKY
.RELEASE LAMP BY - INTERNAL
SETTING BIT 50OF INTERLOCK FOR
CHANNEL 11 TO 0. AWAKENED JOB

-SET DSPLOCK TO
RELEASE DSKY
GR UPLDH{ INTER-

L p VB4O ZEBO (USEDWITH NOUNS 20 & 40 ONLY)

- === VB4} COARSE ALIGN (USED WITH NOUNS 20 & 40 ONLY)
——4# VB42 FINE ALIGN MU

p———a VB43 LOAD ATT. ERROR METERS

f—— VEB45 CMD LR ANT, 'POS #2

— VB46 SAMPLE RADAR ONCE/SECOND

|—& VB14 MONITOR OCT COMP 1, 2(B1, R2)
—3& VB15 MONITOR OCT COMP 1, 2, 3 (R1. R2, Ra)
-— VB15 MONITOR DECIMAL

)]
+—> VB2410AD COMP 1, 2 (R1, Rg}
}——% VB25'LOAD COMP 1, 2, 3R, B2, Rg) .
f—p V827 FIXED MEMORY DISPLAY -

_._* VBSS PBOCEED wn'mu'r IMTA
. CURRENT TEST OR LOAD REQUEST

VB37 CEANGE MAJOR MODE

1B 00, 10, 20 AND 26 [ Dpsp

ALARM

ILLEGAL VERBS

_; »547 1M FCS TEST:
'B50 PLEASE PERFORM
H Vle PLEASE MARK:

VBS2 PLEASE MARK ¥

}—» VB53 PLEASE MARK X OR Y
- VBS4 PULSE TOROUE GYROS
— VB55 ALIGN TIME

—— VB56 PERFORM BANKSUM
{—-=p VB57 PERFORM SYSTEM TESTS
—% VB0 PREPARE FOR STANDBY
| VB61 RECOVER FROM STANDBY
j=—» 'B62 SCAN LM INBITS

[~ VBS3 INITIALIZE AGS

|oeepp VB73 RHC USED FGR MIN. MP.
p—p YB74 RHC USED FOR RATE CMD.
4 VB75 DAP WIDE DEADBAND *
b——>% VB76 DAP NARROW DEADBAND =

© NOT INCLUDED IN SUNBURST REV 14 LISTING

OPERATOR ERROR
(CH11. BIT 7-11

SET ILLEGAL VERB
FLAG BY SETTING
EXTVBACT, BIT 3=0

17514-7

Figure 3-12. CHARIN (Sheet7 of 11)

3-60



(NOUN ADDRESS PROVIDED)

NOUN CODE

PROCESS THE
ADDRESS PRO

FOR MACHINE USE.

VIDED

SPARE
OR UNUSED NOUN

OPERATOR ERROR
(CH 11, BIT 7 = 1)

(MACHINE ADDRESS
TO BE SPECIFIED)

5
&
&
&

ADDRESS FROM
CALLING PROG

PICK UP MACHINE

WAS
THIS ACTIO
INITIATED INTER-
NALLY OR
XTERNALLY

INTERNAL

INCREMENT MACHINE
ADDRESS USED FOR
PREVIOUS VERB-NOUN
ENTRY

YES

DOES
VERB CODE
= 05 OR 157

R3 = ADDRESS OF
DATA DISPLAYED

Figure 3-12.

3-61

EXTERNAL

SET BUFFER REG.
ASSOCIATED WITH R3

TO +0
v

CONDITION NUM TO
ACCEPT AN OCTAL

ENTRY
v

SET DSPTABS TO
BLANK R3

v

CONDITION NUM TO
LOAD DATA IN R3

VERB-NOUN FLASH
11, BIT 6=1)

17514-8

CHARIN (Sheet 8 of 11)




ERROR
RESET

FREE WKY 80 INTERNAL PROGRAM CAN
USE THE D8KY

RESET CAUTION INDICATORS
(SET CH11, BIT 10 = 1)

v

RESET DSPTAB+11D WITH THE EXCEPTION
OF BIT8 4 AND 8 (NO ATTITUDE AND
GIMBAL LOCK WHICH ARE LEFT INTACT

v

RESET TELEMETRY TOO FAST & PIPA FAIL
(SET IMODES 33, BITS 11, 12 AND 13 = 1)

v

RESET PIPA FAIL. BIT IN IMODES 30
(SET IMODES 80, BIT 10 = 1)

2

RESET RADAR FAIL
BITS IN RADMODES

v

RESET TEST ALARM,
(SET CH13, BIT 10 = 0)

v

TURN OFF UPLINK ACTIVITY & OPERATON
ERROR LAMPS. (YET CH11, BITS3 AND 7 = 0)

"

SELECT DISPLAY TABLE (DBPTAB) TU
BE CHECKED

ENSURE PROPER DSPTAB BIT 12 FORMAT

HAVE ALL
DISPLAY TABLES FROM
DSPTAB THROUGH DSPTAB +10D
BEEN CHECKED?

I BET FAILREQ & SFAIL TO +0- 1

17514~9

Figure 3-12. CHARIN (Sheet9 of 11)

3-62




VBRELDSP

TURN OFF UPLINK
ACTIVITY LAMP (SET

CH11, BIT3=0)

DOES

LIST HAVE AN
ENTRY?

YES

WAKE UP SLEEPING
JOB WAITING TO USE

DSKY (EXECUTIVE'S
JOB WAKE SUBROUTINE)

RESERVE DSKY FOR
USE BY THE
AWAKENED JOB

TURNOFF THE KEY
RELEASE LAMP
(SET CH11, BIT 5= 0)

!

RELEASE INTERLOCK SET
UP BY OPERATOR USE OR
UPLINK USE OF DSKY

Figure

3-12. CHARIN (Sheet 10 of 11)

3-63

17514-10



T

SELECT RELATIVE ADDRESS FOR CLEARING
SPECIFIED BUFFER REGISTERS & DSPTABS

W

IS
THIS CLEAR
LEGAL

18
THIS CLEAR NO

LEGAL?

DECREMENT THE VERB
CODE

SET BUFFER REGISTERS ASSOCIATED WITH
THE DSKY REGISTER BEING USED TO +0

CONDITION NUM TO ACCEPT AN OCTAL
ENTRY

SET DSPTABS TO BLANK THE SELECTED
DSKY REGISTER

CONDITION NUM TO LOAD DATA IN THE
DSKY REGISTER JUST CLEARED

@ 1751411

Figure 3-12. CHARIN (Sheet 11 of 11)

3-64



c. The display table, DSPTAB+8D, is set to octal 73777 to blank the two NOUN
display panels.

d. The NUM subroutine is conditioned to accept octal keycode entries.

After performing these functions, control is routed to the Executive End Job
routine.

3.3.2.3 VERB Subroutine. The VERB Subroutine is similar to the NOUN Routine,
Control is routed to this subroutine whenever a VERB keycode is received.

The following functions are performed by this routine:

a. The VERB REG, a memory register used to store the VERB code, is set to
zero in preparation for the receipt of a new VERB code.

b, The NUM subroutine is conditioned to accept the next two numerical inputs as
a VERB code.

c. The display table, DSPTAB+9D, is setto octal 73777 to blank the VERB display
panels.

d. The NUM subroutine is conditioned to accept octal keycode entries.

After performing these functions, control is routed to the Executive End Job sub-
routine.

3.3.2.4 SIGN Subroutine. Control is routed to the SIGN subroutine of CHARIN if
the keycode is for either the + or - key.

The processing performed by the POSGN (positive sign) is listed below:

a. A check is made to determine if a SIGN is valid at this time in the sequence of
keycode entries. If it is not, control is routed to the End Job subroutine of the
Executive. If the SIGN is valid, which it would be prior to entering a piece of
decimal data, the processing proceeds.

b.  The = sign bit (bit 11) of the selected DSPTAB (display table) is setto 1. The
DSPTAB is using inverted logic so the above action will reset the = sign bit.

c. The + sign bit (bit 11) of the selected DSPTAB is setto 0. Since the DSPTAB
uses inverted logic, this action sets the + sign bit.

NOTE: Different DSPTAB registers contain the + sign bit and the - sign bit for
the DSPTAB's used to provide displays in R1, R2 and R3 of the DSKY.
The result of the above operation is that the + sign will be displayed
In the appropriate DSKY register.

d. The NUM routine is conditioned to accept decimal keycode entries.

After performing these functions, control is routed to the End Job subroutine of the
Executive.

3-65




The processing performed by the NEGSGN (negative sign) subroutine is essentially
the same as the POSGN subroutines. The differences are that the + SIGN bit is set
to 1, the = SIGN bit is set to 0 which will result in the negative sign being lighted
on the selected DSKY register.

3.3.2.5 NUM Subroutine. The NUM Subroutine is used whenever a numerical
keycode is received. This routine provides for the assembly of the numerical
information as it is entered into the computer. Control over the type of data
(either decimal or octal) that is to be entered and the number of characters to
accept is established by the NOUN, VERB and SIGN subroutines. The NOUN and
VERB subroutines condition the NUM subroutine to accept two octal characters
while the SIGN subroutine conditions the NUM subroutine to accept a five decimal
Characters. If a word is to be entered in octal, the sign keys are not used prior
to entering the characters of the word and the NUM subroutine assumes that the
data is being entered in octal. In the assembly process, the information being
entered is converted from octal or decimal to a natural binary form,

The processing performed by the NUM routine is as follows:

If CHARIN is provided with a zero (10000) keycode, control is routed to NUM-2
prior to the keycode being processed by NUM. NUM-2 converts the zero keycode
to +0 for use by NUM.

If CHARIN is provided with an 8 or 9 keycode, control is routed to 89TEST, The
89TEST will determine if digit 8 or 9 is valid at this time.

NOTE: F the NUM subroutine had been conditioned to accept an octal input and
one of these two numerical characters are used, an operator error
exists since these digits do not exist in the octal numbering system.
Control is then transferred to the CHARALRM subroutine. The OPERATOR
ERROR indicator will be lighted. Then control is routed to the End Job sub-
routine. If the keycode entered is not an 8 or 9 for octal loads or if decimal
data is being loaded, processing proceeds.

A check is made to determine if all of the required characters have been entered

for the information being loaded. In the case of entering VERB and NOUN codes,

the required number of characters is two while five are required for either octal

or decimal data word entries. If all of the required characters have been processed,
control is routed to the End Job subroutine and the character input is not utilized.
However, when all of the required characters have not been entered, processing
proceeds.

The correct display table (DSPTAB) location is selected corresponding to the
numerical entry being processed, and this DSPTAB is set to the proper configura-
tion to light the digit being loaded on the DSKY.

If an octal load is being made, all previously assembled information for this load
is shifted three digit positions toward the most significant digit position. Then the
newly received keycode input is added to the shifted word with the keycode in the
least significant digits. By shifting the previously assembled portion of a quantity
being loaded in octal, the magnitude of the previously assembled information is
increased by a'factor of eight. As the information is keyed in most significant
octal digit first, the information is assembled and '"converted" to a natural binary
form.

3-66



If the information is being entered in decimal, a similar procedure is followed,
With decimal loads, all previously assembled information for a particular quantity
is shifted three digit positions toward the most significant digit position and the
same quantity shifted one digit position towards the most significant digit posi-
tions. These two quantities are added. This increases the magnitude of the previ-
ously assembled information by a factor of 10. After forming the sum of the two
shifted quantities, the newly entered keycode is added to this sum.

If a decimal load is being made, all previously assembled information is multi-
plied by 10 (Decimal) and the newly received keycode is added. The result IS the
natural binary equivalent of the present decimal entry and is stored in the buffer
register corresponding to the DSKY register (R1, R2 or R3) being loaded.

In either case, octal or decimal loading, after the assembly and conversion proce-
dure outlined above is completed, a check is made to determine if the required
number of input characters have been provided. If not, control is routed to the
End Job subroutine.

If the required number of characters have been entered, a check is made to deter-
mine if the load is octal or decimal. I the information loaded was octal, control
is routed to the End Job subroutine.

If the load was decimal, the information loaded is scaled by a factor of 0. 16384
and a check is made to determine if the decimal data is negative or positive. If
the quantity loaded is negative, the words of the load are complemented putting
them in negative form. If the load was positive, the information is used in its
uncomplemented or positive form. In either case, control is then routed to the
End Job subroutine.

3.3.2.6 CHARALRM Subroutine. The CHARALRM subroutine is used whenever
an illegal 5 bit keycode is processed by PINBALL's subroutines. The following is
performed:

a. Bit7 of channel 11is set to 1to turn on the operator error lamp on the DSJSY.
The operator error lamp flashes.

b, A check is made to determine if the illegal keycode resulted from an external
input such as uplink telemetry or the DSKY keyboard. If the keycode originally
was an external input, control is transferred to the EXECUTIVE'S End of Job Sub-
routine.

c. If the keycode originated internal to the computer, control is transferred to the
ABORT Routine which will result in the Program Caution lamp being lighted, Verb
05, Noun 31 being displayed and 01501 being in R1,

d. The program abort sets the computer operation into a TC Trap condition which
will force a restart.

3.3.2.7 ENTER Subroutine. Control is routed to the ENTER subroutine when the
keycode for the ENTER key is received. Internal programs also use the capabili-
ties provided by the routines accessible through the ENTER subroutine.

3-67




In the procedure of entering the VERB and NOUN codes, the ENTER key is used.
When it is used in this instance, the ENTER subroutine performs a routing function
to a particular routine specified by the VERB code. Also, if it is applicable, the
ENTER subroutine selects a machine address to be used by the routine specified

by the VERB code using the NOUN code. When the ENTER key is used after load-
ing a five character data word, the ENTER subroutine returns control to the routine
which requested that data be loaded.

The processing performed is as follows:

a. A check is made to determine if the ENTER is for a NOUN-VERB. Ifit is
not, the ENTER must have been a result of a data or address load. In this case,
the flashing of the VERB-NOUN display panels is occurring as set by this routine
or the routine which requested the load. A check is made to determine if the data
or address entry was made in octal or decimal. If the entry was in decimal, an
additional check is made to insure that five characters were entered. If the entry
was octal or five decimal characters, the noun-verb flasher is turned off and con-
trol is returned to the caller. If a decimal entry was initiated but five characters
were not entered, the OPERATOR ERROR lamp on the DSKY is lighted. The noun-
verb flasher will remain on and the NUM subroutine is conditioned to accept the
missing characters. Control is routed to the End of Job subroutine.

b. If the load was that of a VERB-NOUN code, a check is made to determine if the
VERB code is equal to or greater than octal 30. If it is, control is routed to
connecting point #1. If the VERB code is less than 30, the processing proceeds by
selecting the nouns machine address and type from applicable tables.

c. X the NOUN code is equal to or greater than 55, the scale factors associated
with that NOUN are selected from applicable tables. A check is made to determine
if the NOUN is legal. If the NOUN is not legal, the OPERATOR ERROR lamp is
lighted and control is routed to the End of Job subroutine. Then a check is made to
determine if the VERB code is 1through 6. If itis, the machine address from the
Noun Address Table is used to obtain the address of the data to be displayed,
Whether the VERB code is 1through 6 or not, control is routed to connecting point
#1. If the NOUN code is less than 55, control is routed to a check which deter-
mines the NOUN address requirement.

d. The NOUN code is checked to determine if the NOUN machine address is pro-
vided, if the previous NOUN's machine address should be incremented, if the NOUN
IS a spare or unused NOUN or if the machine address is to be specified.

e. If aspecified machine address is required, a check is made to determine whe-
ther the entry to the ENTER subroutine was due to external (keyboard or uplink)
action. If the entry was from an internal source, the address is picked up from
the calling routine. If the entry was from an external source, the buffer registers
associated with R3 of the DSKY are set to +0 and the NUM subroutine is conditioned
to accept an octal entry. The display tables (DSPTAB's) are set to blank R3 of the
DSKY. The NUM subroutine is now conditioned to load data into R3 and the NOUN-
VERB flasher is turned on.

f.  If a spare or unused noun code is used, the OPERATOR ERROR lamp is lighted
and control is routed to the End of Job subroutine.

3-68




g. If the noun code address iIs provided, the address is processed for use in the
operation specified by the VERB code.

h.  F the noun code requirement calls for the previous address to be incremented,
the incrementation is performed on the machine address used for the previous
NOUN-VERB entry.

i, If the machine address is picked up from the calling routine or if the machine
address of the previous NOUN-VERB entry was incremented, the VERB code is
checked to determine if it is 05 or 15. |If these are used, control is routed to
connecting point #1. If not, the display tables (DSPTAB's) are set so that the
T4RUPT routine will display the machine address of the data displayed in R1 in R3.
Control is then routed to connecting point #1.

j-  From connecting point #1, control is routed to a check on the VERB code. If
the VERB code is less than 40, the VERB code is used to route control to the
appropriate VERB routine. These routines essentially provide for the display,
monitor and load of data.

k. If the VERB code is greater than or equal to 40, a check is made to determine
if a job is waiting to use the DSKY. If it is, 'the waiting job is activated using the
Job Wake subroutine. Then, an internal/DSKY interlock is set so that no other
internal program or job can use the DSKY other than the job just awakened. Then,
the KEY RELEASE indicator is turned off if it was illuminated. The operator/DSKY
interlock is removed to allow the internal programs to use the DSKY. The VERB
code is used to route control to the appropriate VERB route.

3.3.2.8 Error Reset Subroutine. Whenever the ERROR RESET key is depressed
on the DSKY or the keycode is received via the uplink telemetry system, CHARIN
routes control to the ERROR RESET routine, to turn off error lamps and forces
bit 12 of all DSPTAB's to proper configuration,

After the display tables are checked, FAILREG (FAILURE NUMBER REGISTER)
and SFAIL (SELF CHECK FAILURE REGISTER) are set to zero.

3.3.2.9 Key Release Subroutine, The KEY RELEASE subroutine (VBRELDSP)

is processed whenever the key is depressed on the DSKY or the keycode is received
via the uplink telemetry system. This key is used after completing an entry to the
computer and releases the operator/DSKY interlock. This enables an internal pro-
gram to utilize the DSKY.

3.3.2,10 Clear Subroutine. CHARIN transfers control to the CLEAR subroutine
whenever it receives a keycode for CLEAR from the DSKY or uplink telemetry
system. This subroutine ""clears' the register R1, R2, or R3 of the DSKY which
is presently being loaded. Successive depressions of the CLEAR key cause the
previously loaded registers to be "cleared". This enables the correction of
erroneously entered data but is effective only if used prior to using the last ENTER
in a sequence of entering data. Beside clearing the DSKY registers, the memory
registers used to assemble and store the information within the computer are also
cleared. Neither verbs nor nouns can be cleared by the clear subroutine.

3-69




3.4 1SS MODE SWITCHING ROUTINES

The mode switching routines presented in this portion of the study guide provide the com-
puter with the capability of commanding modes for the ISS. These routines can be used
whenever the appropriate subsystem is under computer control,

These routines are used by internal programs which use the ISS to perform the mode con-
trol function. Also, these modes can be requested to be performed through DSKY key-
board or uplink telemetry entries. When the requests are made through the DSKY or up-
link telemetry, control is routed to the routines by the ENTER routine of the Pinball pro-
gram.

3.4.1 ISS CDU ZERO (Figure 3-13). As a result of the operator entering a v40 N20 E
in the DSKY or an internal request for the ISS CDU ZERO mode, control will be routed
to the IMU ZERO routine. This routine provides the computer with the capability of
synchronizing the computer CDU counters with the actual CDU positions. This sub-
routine can be reduced to two steps; (1)to send a discrete "ZERO IMU CDU's" to the
ISS. This discrete causes the electronic CDU read counter to be set to zero and further
inhibit any input(s) to this read counter, and (2) to set the computers- CDU counters to
zero after a 320 ms time delay.

Upon entry into IMU ZERO, a check will be made of coarse align and gimbal lock, since
zeroing of the IMU is not allowed with coarse align and gimbal lock condition. Assuming
these conditions do not exist, STATE is set to indicate use of the IMU and a check is
made to determine if the CAGE pushbutton is pressed. K CAGING is in progress, the
interrupted program is resumed. If not, task IMU ZERO 2 is scheduled to be executed
in 320 msec if the IMU OPERATE discrete is still present. If not, a program caution
condition exists and a display of a 00210 error code is forced into R, identifying that

the IMU is not operating and in this case the 1SS CDU ZERO cannot He accomplished,

Assuming that the IMU OPERATE discrete is present, the task is scheduled and 320
msec later the TIME 3 counter overflows causing a program interrupt and thus via the
T3RUPT program, the IMU ZERO 2 task is entered. Again a check on the caging dis-
crete IS made. If caging is not in progress, the computers' CDU input counters are set
to zero, thus synchronizing the CDU Counters and the computers' CDU counters, The
ISS CDU ZERO bit position in channel 12 is set to zero to terminate this mode and a
four second delay is scheduled to allow synchronization of the CDU counters with the
gimbal angles.

After the four second delay, another check is made to see if caging is in progress. If
not, the failure inhibit bits are removed and the appropriate action is taken with respect
to the status of the ISS WARNING light. If the calling program was put to sleep prior to
zeroing the CDU's it is awakened via the Job Wake subroutine and this task is terminated,

3.4.2 IMU COARSE ALIGN (Figure 3-14). The IMU coarse align mode is entered as
a result of depressing a N20V41E or by an internal entry. It is assumed that the opera-
tor or the calling program has provided the desired gimbal angle to this routine so that
the calculations and eventual positioning of the gimbals can be accomplished.

This routine calculates, scales, and delivers the necessary pulses to cause the position-
ing of the CDU X Y Z via channel 14 and the OUTPUT COMMAND registers.

3-70




IMU
ZERO

I8 THERE A
COARSE ALIGN
ENABLE?
(CH 12, BIT 4= 1)

_ yas

IB THERE A
GIMBAL LOCK
CONDITION?
(DSPTAB 11D
BIT® = 1)

YES

PROGRAM CAUTION

V05 N31
R1 = 00208
ZERO IMU NOT ALLOWE
WITH COARSE ALIGN
AND GIMBAL LOCK)

BET IMUCADR TO
MINUS ZERO TO
INDICATE BAD MODE
SWITCHING

RETURN
CALLER

Figure 3-13.

NO

BET BTATE TO
INDICATE USE
OF IMU

NO

INHIBIT ICDU AND
IMU FATL

(BET IMODES 30,
BITS3 AND 4 = |)

v

REMOVE:
COARSE ALIGN ENABLE &
IMU ERROR CNTR ENABLH
(8ET CH 12, BITS4 AND 8

— %

TURN OFF ""NO
ATTITUDE"
INDICATOR

\ 4

ZERO IMU CDUS.
(SETCH 12, BIT 6 = 1)

v

SCHEDULE TASK
"IMUZER®2" TO BE
EXECUTED IN 320 MS

v

I8 IMU OPERATE
PRESENT?

PROORAM CAUTION

V05 N31
R1 = 00210
(IMU NOT OPERATING)

RETURN

CALLER

3-71

(IMODES 30. BIT
8=1)

‘YES

17670-1

\

ISS CDU-ZERO (Sheet 1 of 2)



SETCDUX, Y, AND Z
COUNTERS TO ZERO

L 2

K

REMOVE:
MU FAIL INHIBIT
ICDU FAIL INHIBIT

(SET IMODES 30

BITS 3 AND 4 = 0)

2

IS THERE AN UNIN-

HIBITED PIPA, ICDU, NO
OR IMU FAIL? (IMODES

30, BITS 10, 12 AND 13)

REMOVE:
ZERO IMU CDUS.
(SET CH 12, BIT 5 = 0)

1SS WARNING
(CH 11, BIT 1= 1)

SCHEDULE 4 SEC
DEWY FOR COUNTERS
TO STABILIZE

IS A
LAMP TEST IN
PROGRESHS?

ARE
WE CAGING?

WARNING WMP.
(SET CH 11, BIT 1= 0)

DNER
OVER

Is
ISS WARNING
LAMP ON?

SET INTERNAL FLAG
TO INDICATE BAD

SET INTERNAL FLAG
TO INDICATE GOOD

MODE SWITCH MODE SWITCH
18 CALLING
A YES
SLEEPING?
NO WAKE SLEEPING
JoB
17670-2
Figure 3-13. ISS CDU-ZERO (Sheet2 of 2)

3-72




IMU
COARS

ALIGN.
(SETCH 12, BIT 4= 1)

l ENABLE COARSE

{  NOATTITUDE )
J/

v

ENABLE IMU ERROR
COUNTER
(SETCH 12, BIT 6 = 1)

INHIBIT IMU FAIL
(SET IMODES 30,
BIT4 = 1)

v

v

SET CDUIND = 2

SCHEDULE TASK
""COARS" TO BE
EXECUTED IN 60 MS

&

CALCULATE THE
DIFFERENCE BETWEEN
THETA D AND

CDU (*) AND STORE

IN COMMAND BUFFER

CHECK

SCHEDULE 20 MSEC
DELAY

=zo MSEC

NEXT
PAGE

Figure 3-14.

¢(CDUIND)

——
r DBEORHMENT

CDUIND| CDU

2 Y/
1 Y
0 X

IMU COARSE ALIGN (Sheet 1 of 3)

3-73

17579-1



600 MS SCHEDULE 600 MS
DELAY ¢+
AREK ’
WE CAGING? SET CDUIND = 2

IS DIFFERENCE BE-
+ TWEEN ICDU Z, Y, X AND

DESIRED CDU ANGLE PoS,
NEG OR ZERO? (CALL
THE DIFFERENCE A6)
<@ |A@ |- MaX
ALLOWABLE
+
REDUCE CONTENTS OF SET 88 INTO PROPER | [ REDUCE CONTENTS OF
PROPER COMMAND
BUFFER BY MAX COM- COMMAND REGISTER BRPFER H9WMMRND
MAND I COMMAND
SET MAX ALLOWABLE SET PROPER COMMAND| [SET MAX ALLOWABLE
INTO PROPER COMMAND INTO PROPER COMMAND
REGISTER (18210) BUTEER TIERO REGISTER (1990
o(CDUIND) 0 SET PROPER COMMAND |
REGISTER TO ZERO

DECREMENT CDUIND

ANY
NO PULSES TO BE YES
v SENT ? : v
SCHEDULE 1.5 SEC DRIVE CDUX, Y AND Z.
DELAY TO ALLOW (SET CH 14, BITS 13, 14, e
GIMBALS TO SETTLE AND 15 = 1)
T
CHK
COARS / NEXT
PAGE 17579-2

Figure 3-14. M U COARSE ALIGN (Sheet 2 of 3)
3-74




CHK
COARS

>

CDU ACTUAL -
THETAD = A8'

Ag'

HAVE WE
CHECKED ALL 3
ANGLES?

SET GYRO COMPENSATION
REGISTERS TO ZERO IN
PREPARATION FOR COM-
PENSATION

PROGRAM CAUTION

V05 N31
R1 = 00211
(COARSE ALIGN
ERROR)

17579-3

Figure 3-14. IMU COARSE ALIGN (Sheet 3 of 3)

3-75




After entering the IMU coarse align routine, the coarse align enable discrete is sent to
the ISS. This discrete results in the mode switch to coarse align. The IMU Failure
INHIBIT is placed in | MODES 30 because during coarse align an IMU failure could

occur during the expected high drive rates. A task ""COARS" is scheduled via the waitlist
to be executed in 60 msec. This allows time for the mode switching to take place.

In 60 msec the TIME 3 counter overflows and the "COARS" task is started.

A check is made to see if the CAGE switch is energized. [If so, the task is terminated,
Assuming that caging is not in progress, the IMU error counter is enabled and a cyclic
counter called the CDUIND (CDU indicator) is initialized to 2. This counter identifies
the specific CDU which is being operated on. If the ¢(CDUIND) is +2 calculations are

on the CDUZ if the ¢(CDUIND) = +1 the CDUY is operated on and if +0, the CDUX. No-
tice each time a calculation on a specific CDU angle is performed, the CDUIND is
decremented to set the routing control to select the next CDU, After calculating the last
A@ (difference Angle) a 20 msec wait is entered. This insures that the last calculation
is complete.

Again a check on CAGING is accomplished. Assume caging is not in progress, the
CDUIND is initialized for a limiting check on all three CDU's, The magnitude of the
maximum allowable output pulses is =192 per 600 msec. This limiting insures that

the ECDU will not saturate. If the number of pulses required is less than the maximum
allowable, then the actual number of pulses is put into the COMMAND register, If the
number of required pulses is greater than the maximum allowable, the maximum allow-
able is placed into the COMMAND register and any remaining pulses will be evaluated
and sent in 600 msec. After all three CDU COMMAND registers have been loaded, a
check is made to see if pulses are to be sent.

If there are pulses to be sent, bits 13, 14 and 15 of channel 14 are set = 1.causing driv-
ing of all three ECDU channels at once. 600 msec is allowed to send out the pulses
prior to going through the loop again.

F there are no pulses to be sent (as will be the case when coarse align is completed) a
1.5 sec settle time is provided.

Since the pulsing requirements for coarse align are completed, a check is now made on
the status of the CAGE switch. Assuming no caging, a check is made to see if the
coarse alignment of the IMU was accomplished to within 20 about all three axes. If
not, a program caution condition exists and the error code 00211 is displayed (coarse
align error) and the program caution light is illuminated.

If, however, all axes check to within 20, the gyro compensation registers are initial-
ized in preparation for the gyro compensation routine.

3.4.3 IMU FINE ALIGN (Figure 3-15). The Fine Align mode is entered by either an
internal program request or by entering a V42E via the DSKY. (It should be recalled
that in the Fine Align mode of operation, the CDU's repeat the gimbal position. )

Assuming that CAGING is not in progress, bits 4 and 6 of channel 12 are set to zero

and two tasks are scheduled. The first "IFAILOK" is scheduled to be executed in 5
seconds and the second IMUFINED in 90 seconds.

3-76




¥E8

ARE
WE CAGING?

v

SET INTERNAL FLAG
-+~ INDICATE CAGING

REMOVE:
COARSE ALIGN ENABLE
ZERO IMU CDUS I
IMU ERROR CNTR ENABLE
(SET CH 12, BITS 4, 5, AND

v

TURN OFF ""NO
ATTITUDE"
INDICATOR

o K2

SCHEDULE TASK "IFAILOK"
TO BE EXECUTED IN

6 SEC

SCHEDULE TASK "IMUFINED!
TO BE EXECUTED IN 80 SEC

WE CAGING?

. 17578

Figure 3-15. IMU FINE ALIGN (Sheet 10f 2)

3-77




(s )

1FAILOK
ARE WE \ YES
INITIALIZING ?

IMODES 30, BIT 6=1 /

(CH12, BIT 4=1)

ino

RESET IMU FAIL
INHIBIT
(IMODES 30, BIT 4=0)

ARE ANY o\
voo /48 FAlLUHgéNgFIz%lsTEano NU

(IMODES 30, BIT 10, 12,
OR 13 = 0)

mﬁm} o

/{S LAMP TEST

NO
(CH 11, BIT 1=1) [ IN PROGRESS ?
L WODES 33, BIT 1=1)

YES

ISS WARNING

TURN OFF
"ISS WARNING" IF ON
(CH11, BIT 1=0)

‘ 18555

Figure 3-15. IMU FINE ALIGN (Sheet 2 of 2)

3-78




Task "IFAILOK" checks to see if CAGING is in progress and to see if a return to coarse
align has been requested, Sf, in both cases, the answer is no, the IMU FAIL INHIBIT bit
in | MODES 30 is set= 0 and a check is made for any uninhibited failures.

In 90 seconds, the task "IMUFINED" is executed. The function of this task is to see if
the CAGE pushbutton has been activated and to identify a transfer to either GOOD END
or BAD END, based on caging information. It is well to note that the overall purpose of
waiting 90 seconds prior to ending the FINE ALIGN MODE switching routine is that
usually the Fine Align mode switching routine is entered immediately after performing
the Coarse Align mode switching routine. During the coarse alignment of the stable
member, the floats of the IRIG's are driven to their stops causing the float to be off
center. Therefore, during the fine alignment, the 90 second wait is scheduled to allow
the IRIG floats to recenter before any drive pulses are generated if required.

3.5 IMU PULSING ROUTINE

Initiation of this routine (Figure 3-16) is accomplished by either an internal entry (from a
calling program) or by a keyboard request of V65E,

After initiation of this routine, VERB 25 NOUN 67 (load delta gyro angles), will be re-
quested by the program. This will cause VERB 21 NOUN 67 to be flashed on the DSKY re-
questing the operator to load the first double precision delta gyro angle. The format of
this data is assumed to be # XX, XXX degrees. Likewise, VERB 22 NOUN 67 and VERB 23
NOUN 67 will be flashed. The double precision data will be loaded into the GYROD regis-
ters:

X gyro: GYROD, GYROD+1
Y gyro: GYROD+2, GYROD+3
Z gyro: GYROD+4, GYROD+5

If no data is to be loaded and the r|a1)_resent contents of the GYROD regioters are to be used
as data, a VERB 33 is entered which will allow the program to proceed, If the program is
to be terminated, a VERB 34 is entered.

The IMU Pulsing routine examinee the contents of the GYROD registers and sets up the
high and low order parts of the gyro command, (The gyros are torqued in the sequence Y,
Z and X, )

When the mode switching routine is completed, control is returned to the calling program,
which is either TORQGYRS or the internal calling program.

After all required data ia loaded, the job IMU PULSE is scheduled via NOVAC. The IMU
PULSE routine stores the contents of the 3 DP registers containing the gyro torque com-
mands and checks to see if the IMU is being caged in which case the pulse torque gyro
routine would be terminated. Assuming that the IMU is not being caged, a check is made to
see if another program is using the gyros. If another program is using the gyros, the IMU
pulse routine is put to sleep via the Job Sleep routine to be wakened by the job which is
presently using the gyros. Once the IMU pulse routine is awakened, it will schedule the
task ''Strt Gyro' via the Waitlist routine, t0 be executed in 10 msec. (Notethat if another
program was not using the gyros this task is scheduled to be executed in 40 msec rather
than 10 msec. ) The high and low order words of the three DP gyro torquing words are
forced into sign agreement and control is returned to the caller.

3-79




PULSE

¥

SAVE STARTING ADDRESS
OF THE 3 DP REGISTERS
CONTAINING THE TORQUING
COMMANDS

RETURN
1y

MATTDD

<_ WE éﬁgme?

18

ANOTHER PROGRAM YES v
USNGJHE -
PUT THISJOB TO SLEEP
NO TO BE AWAKENED WHEN

GYROS BECOME AVAILABLE

ENARLE GYROS
(SETCH 14, BIT 6 = 1)
JOB
L ' SLEEP
SCHEDULE TASK "*STRT GYRO'
TO BE EXECUTED IN 40 MS
IOR
YES WAKE
/s

ANUOTIIER TROGDAM
USING THE
GYROS?

SCHEDULE TASK "STRT GYRQO!
TOBE EXECUTED IN 10 MS

RESERVE GYROS FOR CALL- Eg?@%é‘fﬁléﬁﬁl%'\ﬂfgvz RE%RN
INC PROGRAM —{ ORDER DP TORQUING . 1
S— COMMAND WORDS

17571-1

Figure 3-16, IMU PULSING (Sheet 1 of 4)
3-80




ARE

fromcrn

DE-SELECT GYROS,

©

HAVE

WE SERVICED
THE X GYRO?

WE CAGING? SET CH 14, BITS 7, €,
. AND 10 = 0)
SELECT GYRO TO BE
SERVICED IN ORDER
Y, Z, X X

WHICH
GYRO IS TO BE
SERVICED?

WAKE JOB WAITING TO
USE GYROS (IF ANY)

SET GYRO SELECT TO
Z FOR NEXT PASS

WAS
THIS A
GYROTORQUE
SCALE FACTOR
TEST?

YES

\ 4

SET GYRO SELECT TO
X FOR NEXT PASS

 Z

<
\ 4

WAS A
JOB
AWAKENED?

YES

EXTRACT DP TORQCING
COMMAND WORD AND SAVE

YES, NEG

DISABLE GYROS

(SET CH 14. BIT 6 = 0) NEXT

PAGE

YES, NEG

NEXT
PAGE

NO

IMU
BAD

COMMAND IN THE HIGE
ORDER WORD?

FOR INTERROGATION
:YES, POS

L 4
NEXT

IS THERE A TORQUING
{'AGE

'NO

IS THERE POSSIBLE
TORQUING COMMAND
IN THE LOW ORDER
WORD?

YES: I'OS

NEST

PAGE

NO

17571~ 2

Figure 3-16. IMU PULSING (Sheet 2 of 4)

3-81



DATA IN BITS

ADD =.219 TO LOW.
ORDER DP TORQUING
COMMAND WORD TO
ROUND OFF

L 2

NEGATIVE PULSING

REQUIRED, .
(SETCH 14, BIT 8= 1)

SET BIT 14 OF THE
TEMPORARILY STORED
MENRGED WORD = 1

Y

LOAD MERGED WORD
INTO QY ROCMD OuT-
PUT REGISTER

‘ NO

v

SCHEDULE TASK "STRT
GYRQ' TO BE EXECUTKED
30 MY AFTER ALL PULSES
HAVE BEEN SENT

PREVIOUS
PAGE

ANY

8- 147

I SELECT GYRO TO RECEIVE
TORQUING COMMAND

(SET CH 14, BITS 7 AND 8
ACCORDING TO GYRO
SELECTED)

A 4

MERGE HIGH ORDER
DP WORD, BITS1-6
WITH LOW ORDER DP
WORD, BITS 8 = 14 AND
STORE TEMPORARILY

v

WAS THERE MORE THAN,
LESS THAN, OR EXACTLY
16383 PULSES REQUIRED?
(AS DEFINED BY THE ORI-
GINAL DP TORQUING
COMMAND WORD. )

FQUAL

18
BIT 7 OF
HIGH ORDER DP
wWOKrD = 17

DRIVE GYRO
(SET CH 14, BIT 10 = 1)

ANY
DATA IN BITS
8 - 147

MORE

POS

ADD +219 TO LOW
ORDER DP TORQUING
COMMAND WORD TO
ROUND OFF

A 2

POSITIVE PULSING
REQUIRED.
(SET CH 14, BIT 9 =)

SET BIT 14 OF THE
TEMPORARILY STORED
MERGED WORD = 1

A 4

SAVE THE NUMBER OF
ADDITIONAL AUGMENTS
REQUIRED TO PROVIDE
ENTIRE GYRO TORQUING
COMMAND. (EACH
AUGMENT = 8192 PULSES)

v

LOAD MERGED WORD
INTO OYHOCMD OUT-
PUT REGISTER

v

SCHEDULE TASK 8192 AUG"
TO BE EXECUTED 30 MS
BEFOHE ALL PULSES HAVE

BEEN SENT

17571-3

Figure 3-16. IMU PULSING (Sheet 3 of 4)

3-82




8192AUG

WE €R8ING? -~

WILL ONE MORE

YES

COMPLETE THE GYRO
TORQUING COMMAND?

SET BIT 14 OF THE
CONTENTS OF GYROCMD
OUTPUT REGISTER = 1

v

SCHEDULE TASK ""STRT
GYRO™ TO BE EXECUTED
30 MS AFTER ALL PULSES
HAVE BEEN SENT

AUGMENT (8192 PULSES) >

DECREMENT THE NUMBER
OF ADDITIONAL AUGMENTS

REQUIRED
v

SET BIT 14 OF THE CON-
TENTS OF GYROCMD
OUTPUT REGISTER = 1

\ Z

SCHEDULE TASK '"8192 AUG"
TO BE EXECUTED 30 MS
BEFORE ALL PULSES
HAVE BEEN SENT

Figure 3-16.

DRIVE GYRO
(SETCH 14, BIT 10 = 1)

DWER
OVER

17571-4

IMU PULSING (Sheet 4 of 4)

3-83




When the time 3 counter overflows, the task "STRT GYRO" begins. Immediately upon
entering the task bits 7 through 10 of channel 14 are set to zero (gyro select a, b & ¢ and
Drive Gyro). This action deselects all gyros and disables the driving of any gyro, .Again
a check to see if the IMU cage switch is"on", If soend this task and return to caller.
Assuming that the IMU is not caged, the specific gyro to be pulsed is selected. (Gyros
are pulsed individually in the order of Y Z X. Each gyro will be driven to the desired
position before the next gyro is selected. )

The program identifies which gyro is to be selected and provides routing in accordance
with this information. Regardless of which gyro is selected, the double precision word
associated with that gyro is extracted and stored for interrogation. The interrogation
consists of looking at the high order word first to identify whether or not the contents are
zero. I the high order word is zero, the low order word is checked for a possible com-
mand. A logic one in the low order seven bits of the low order word does not necessarily
mean that a pulse will be generated since the binary point is located between bits 7 and 8.
In order to round out any low order bits a+ or =.219 is added to the low order word to
force any "borderline case'' to result in a full pulse. If the addition of + or =.219 to the
low order 7 bits of the low order word does not yield one pulse (a 1in bit 8), the low order
7 bits are ignored. After the rounding Is completed, negative or positive pulsing is selec-
ted. In addition to directional information, routing information as to which gyro is to be
serviced must be provided.

In order to acquire the resultant 14 bit data word used to drive the gyros, the double pre-
cision words are merged by using bits 8 = 14 of the low order word and bits 1 - 6 of the
high order word. This merging operation is explained in detail on Figure 3-17. A check
is made to see if there is more than, less than, or exactly 16383 pulses to be sent.

If there is exactly 16383 pulses to go a logic 1is set in bit 14 of the merged data word
and the entire word is placed in the ""GYROCMD" output register and the task "START
GYRO'" is scheduled to be executed in X sec, (Where X will be calculated based on the
number or pulses required. If the number of pulses is less than 16383, the high order
word is examined to see if bit 7= 1. If so, it is added to the merged word before it is
placed in the GYROCMD output register and the ""START GYRO" task is scheduled to be
executed in X gec,

If, however, the original DP pulsing words indicated more than 16383 pulses, bit 14 is
added to the merged data and is set in the "GYROCMD" register. Now, a differenttask

is scheduled for X sec. The task ''8192 AUG" is used for large pulse train outputs and is
rescheduled as long as the required output after sequential loops exists. NOTE: Each
time thru task '"8192 AUG" 8, 192 pulses are added to the GYROCMD register. After suf-
ficient pulse trains have been sentto reduce the required pulses to zero, task "STRT GYRO"
is scheduled to complete the pulsing requirements of the other gyros. Note that in any
case, the final action is to set bit 10 of channel 14 = 1 causing the gyro drive sequence.
The routine for pulsing the gyros does the following:

a. Determines direction and amount of pulsing.

b. Services and reschedules itself.

c. ldentifies desired gyro to be serviced (Y Z X).

d.  Terminates itself.

3-84




B AR S o FRABREERREE r RERPDPER A
AR O , B “GTW[ E‘mlu ols il I l I l I LeTw |14[13|12'11 l I I l J4Izlzl1]
LI : : . ‘ SET HIGH ORDER GYRO TORQUING WORD IN RUPTREG 1 AND LOW IN RUPTREG 2

HlH |H|H] H] H HIH H

RRZ' L|L LILLILyLiLiL|L{L| L
10 8 |7}j615[4}3]2]1 g 1413121119876543

'12[11

MULT]PLY C(A) B BIT 9

JEE] lnlmls i

da “”‘”f“f[ I;*J:m;wmol;:;lo!,,iomol
HEHHBARARAR N S ARRARRRARRRRR

D SN SET C(A) IN MVERGED WORD
e A[H[A[R[R[H[TIC]L[LIL ] L[T]
: sislalalelafiaafiz|1ifro] ofs

ral
oo
Nm

HUoHH

(-]

Figure 3-17. GENERATION OF MERGED WORD

3-85



3.6 AOTMARK ROUTINE

The LM Optical Sighting MARK Routine, AOTMARK, incorporates two different star
sighting procedures to implement alignment of the LM IMU during periods of free fall and
prior to launch from the lunar surface. A description of AOTMARK is presented after a
brief description of the Alignment Optical Telescope (AOT) and the procedures used to
obtain star data during the in-flight and non-flight modes. A more detailed description of
the LM optics can be found in MIT R-466. Also included, figure 3-20 is a flow diagram
showing the astronaut displays and the general functions of the LGC during the sighting
MARK routine.

3.6.1 ALIGNMENT OPTICAL TELESCOPE (AOT). The AOT is a unity power peri-
scope with a 60 degree field of view. The shaft axes of the telescope is parallel to the
X-axis of the LM,

The center of the field of view forms an angle of 45 degrees with the LM thrust or
X-axis. By means of a pinion knob, the astronaut may rotate the telescope head
assembly about the shaft axis. This shaft angle rotation, shown in figure 3-18, is
detented at three viewing positions: the vehicle XZ plane (zero rotation), 60 degrees to
the left, and 60 degrees to the right.

Since the shaft rotation detents and the corresponding centers of fields of view (elevation)
will not be exactly + 60 degrees and 45 degrees respectively, a table of the actual values
corresponding to the particular AOT in use will be stored in the LGC memory. The
astronaut need only specify one of three code numbers (DETENT) listed below to obtain
the correct values of azimuth and elevation.

The AOT reticle pattern is shown in figure 3-19. The pattern consists of two straight
lines and a spiral which is so constructed as to depart radially from the 'center as a
linear function of the rotation about the center. The astronaut can rotate the entire
reticle pattern about the center of the field of view by turning a knob near the eyepiece.

A micrometer readout is provided near the knob to indicate the amount of reticle rotation.

3.6.2 NON-FLIGHT STAR SIGHTING. To perform a star sighting from the lunar
surface, the AOT shaft is rotated to one of the three viewing positions (DETENT) such
that the desired star falls within the field of view. The astronaut rotates the reticle
pattern until the Y reticle line intersects the star, The micrometer dial is read and

the rotation angle (Y ROT) is recorded. The astronaut then rotates the pattern until the
spiral intersects the star and this rotation (S ROT) is recorded. These two angles keyed
in by the astronaut along with the DETENT code provide sufficient data to determine a
star direction. Only one MARK is required for a star sighting for the non-flight mode.
The X MARK button is used to perform this MARK.

3.6.3 IN-FLIGHT STAR SIGHTING. During free fall the astronaut uses only the
straight lines of the reticle pattern to perform a star sighting. The reticle pattern is

set at zero rotation and the spacecraft attitude is changed so as to produce crossings of
the Y and X reticle lines by the navigation star. When the star intersects the Y reticle
line, the astronaut presses the Y MARK button, The X MARK button is pressed when

the star intersects the X reticle line. Since the crossing of a reticle line by a star defines
a plane containing the star, the crossing of two different lines by a single star defines the
direction of the star. In addition to the two MARKs, the DETENT code must be entered
by the astronaut in order to complete the star sighting.

3-86




LEM Z AXIS

?

FIELD JOF VIEW

60° —————NLEM YZ PLANE

s

AOT
Figure 3-18, LM AOT Azimuth Positions

\I
ZERO REFERENCE
sn{&\v RETICLE LINE

_/ X RETICLE LINE

Figure 3-19. AOT Reticle Pattern

IN-FLIGHT

PERFORM | |KEY IN KEY IN AOT KEY INTWO

MARK ) STAR CODE gy DETENT CODE AOT RETICLE |—fgn| AOTMARK
ROT. ANGLES DONE

?

NON-RIGHT

Figure 3-20, Basic Inflight Star Sighting Sequence
3-87




Although the optical sighting procedures are different for the two flight modes, the
sequence of operations performed by the astronaut are the same as-illustrated in
figure 3-20.

During the MARKing phase of the routine, one of three verbs will be displayed to indicate
to the astronaut the MARKS that are wanted. The following is a description of these
verbs,

Verb 51 This is a request to the operator to perform a MARK using the X MARK
button. During in-flight operations this request would normally appear
after a Y MARK has been performed. During non-flight operations this
verb is the only MARK request to appear.

Verb 52 This is a request to the operator to perform a Y MARK, This verb will not
appear as a MARK request during non-flight operations,

Verb 53 This verb is normally used during in-flight operations to indicate to the
operator that two MARKs (an X MARK and a Y MARK) are wanted. The
operator ie free to press either the X or Y MARK button at his convenience.

After the required MARKSs have been made, Verb 21, Noun 30 will be displayed indicating
that the sighted star code is wanted. I the operator is satisfied with the MARKs, he will
key in the star code and press the ENTER button showing MARKSs accepted (MK ACCEPT).

3.6.4 AOTMARK ROUTINE. The AOTMARK routine is called up for each star sighting
which prepares the LGC to accept MARKs and sighting data for one of the two flight
modes. For in-flight alignment of the LM IMU, both an X MARK and a Y MARK are re-
quired and for non-flight alignment only an X MARK is required.

The program sets up a VAC area for storage of the MARK and sighting data and stores
the VAC area address and desired flight mode in MARKSTAT as follows:

BITS
1-9 VAC Area Address

10 = 0 Initially to indicate an X MARK ie wanted
- 1 after an X MARK is performed

11 =0 Initially to indioate a Y MARK is wanted (in-flight only)
=1 after a Y MARK is performed

12 =0 while MARKs are being performed
=1 after a MK ACCEPT (ENTER)

13 =0 after each MARK
=1 after each MK REJECT

14 -0 for non-flight MARKs
=1 for in-flight MARKSs

15 =0

3-88




Upon entering AOTMARK, c¢(MARKSTAT) is tested and if found to be >+ 0, the MARK
buttons are busy and Alarm (105) is fired and the job terminated. If+ 0, the buttons
are available and an idle VAC area is found. [If none is available, Alarm (1207) is fired
and the job aborts, Refer to figure 3-21.

After a VAC area is found and reserved, the GETMEKS job is scheduled via the executive
NOVAC routine. Job GETMKS initiates to appropriate verb code to be flashed (v63 for
inflight or V51 for non-flight). The job is then put to sleep until the star code Is entered
via the DSKY.

Upon receiving a mark, the MARK RUPT routine is entered. The ISS CDU angle and time
are recorded and stored for later use and control is transferred to the appropriate routine
to process the input (mark X, mark Y, mark reject or descent bit) which caused the
MARK RUPT.

If the MARK RUPT was caused by a mark X or Y, a check is made to insure that the
particular mark was not made previously ¢(MARKSTAT), If the particular mark was
marked a second time, the PROGRAM CAUTION lamp is lit along with the failure code
00114. If not marked twice, the CDU X, Y, Z and time information is transferred into
the VAC area reserved for the AOTMARK and the REMARK routine is performed.

REMARK schedules the CHANGE VB job via the executive and sets up the information
used in changingthe verb display. CHANGE VB causes the appropriate verb code to
be displayed, V52 is displayed if a MARK Y is needed, V51 Is displayed if a MARK X
is needed, V53 is displayed if a MARK REJECT occurred (INFLIGHT)or V21N30 Is
displayed if both marks have been entered.

Upon entering the star code, MK CHEK is performed. MK CHEK checks for both

marks, accepts marks and requests the AOT detent code V21 N43. After entering the
AOT detent code, the AOT elevation and azimuth detent calibration is stored in the VAC
area for later use and the tilt compensation is calculated and stored in the VAC area.

If this is a non-flight AOT mark, the AOT reticle angles must also be loaded. The VAC
area reserved for the AOTMARK routine will contain the following information for the two
flight modes.

INFLIGHT NON-FLIGHT
VAC TIME 2 TIME 2
VAC+1 TIME 1 TIME 1
VAC+2 CDU Y (XMARK) ChUY
VAC+3 CDU Y (YMARK) Y ROT
VAC+4 CDU Z (XMARK) Cbuz
V4 C+5 CDU Z (YMARK) S ROT
VAC+6 CDU X (XMARK) CDU X
VAC+17 CDU X (VMARK) BLANK
VAC+8 AZIMUTH AZIMUTH
VAC+S ELEVATION ELEVATION

3-89



YUs

PROGRAM CAUTION

V05 N31
R1 = 00105

(MARK BUTTONS
NOT AVAILABLE)

1= INFLIGHT
0= NON FLIGHT

Figure 3-21.

IS
MARK SYSTEM
IN USE
(MARKSTAT = >+ 0) _,

LOCATE VACANT
VAC AREA (SCAN1 - 5)

1S
A VAC
AREA AVAILABLE?

NO

PROGRAM CAUTION

STORE ADDRESS OF
VAC AREA +1 IN MARKSTAT
BITS 1 THROUGH 9

V05 N31
R1 = 01207
(NO VAC AREAS

v

INITIALIZE MARK BUFFER
(SET X Y MARK = 0

AVAILABLE)

v

v

RESERVE VAC AREA FORCE TCTRAP

{SET VACUSE = 0)

\ 4

INDICATE TYPE OF
MARK SIGHTING (SET
MARK STAT BIT 14 =

RESTART!

10R 0)

SCHEDULE JOB "GET
MKS' VIA NOVAC
WITH PRIORITY 32

RTN
TO
CALLER,

18522~ |
AOTMARK Routine (Sheet 1 of 9)

3-90




INITIALIZE X Y
MARK (SET XYMARK =
0)

IS THIS AN
NO INFLIGHT MARK

SIGHTING?

(MARKSTAT BIT 14 = 1)

V53 FLASH PLEASE
MARK X OR Y

INDICATE Y MARK
(SET MARKSTAT BIT
11= 1)

V 51 FLASH
(PLEASE MARK)

)

PUT JOB ""GET MKS'
ASLEEP AND WAIT
FOR DSKY ENTRY

DSKY |
ENTER

WAS

NO STAR CODE

- ENTERED?
OR 18522-2
V34

Figure 3~-21, AOTMARK Routine (Sheet2 of 9)

3-91




MARK
RUPT

READ AND STORE

CDU Y, Z AND X AND
TIME 1 AM) 2 COUNTERS
IN RUPTSTOR THROUGH
RUPTSTOR+6

v

STORE RETURN
ADDRESS

1s
MARK X, Y
OR MARK REJECT
PRESENT?
(CH 16 BITS
3, 4, 5=1)

NO

YES

HAVE
ALL MARKS
BEEN ACCEPTED?

(MARKSTAT BIT
12=1)

I8
A+ OR-~
DESCENT PRESENT?
CH16 BITS6OR7=1

C PROGRAM CAUTION )

ARE
MARKS BEING
ACCEPTED?

(MARKSTAT = > + 0)

YES

V05 N31
R1 = 00113
(NO INBITS)

v

SERVICE DESCENT INBIT

‘ PROGRAM CAUTION )

18
MARK REJECT
PRESENT?
(CH16 BIT 5 = 1)

V05 N31
R1 = 00112

(MARKS NOT BEING
ACCEPTED)

18

MARK Y
PRESENT?
(CH 16 BIT 4 = 1)

NO

18

MARK X
PRESENT?
(CH 16 BIT 3 = 1)

X MARK
RUPT

Y MARK
RUPT

18522-3

Figure 3-21.

AOTMARK Routine (Sheet 3 of 9)

3-92




X MARK
XBURRK

SET ITEMP 1= 0

R

SET X MARK
FLAG (XY MARK
BIT10=1) °

v

WAS AN X MARK
ALREADY MADE?
(OLD CONTENTS OF
MARKSTAT BIT 10= 1)

TYES o

PROGRAM CAUTION

V05 N
Rl = 00114
(MARK MADE BUT
NOI DESIRED

\ NO NO

T

STORE LOW 9 BITS OF
MARKSTAT IN ITEMP 2

N

v

STORE TIME 1AND 2,
ANDCDUXYZINVAC
AREARESERVEDFOR

MARK

SET X Y MARK INDICA-
TOR TO INDICATE

MARK MADE. (MARK-
STAT BIT 10 OR 11-= 1)

v

SET MARK REJECT
INDICATOR = 0
(MARKSTAT BIT 13 = 0)

Y MARK
RUPT

SETITEMP 1= 1

v

SET Y MARK
FLAG (XY MARK
BIT 11= 1)

v

WAS A 'Y MARK
ALREADY MADE?
(OLD CONTENTS OF
MARKSTAT BIT 11= 1)

YES

PROGRAM CAUTION

V05 N31
Rl =00114 .
{MARK MADE BU
NOT DESIRED

Figure 3-21.

3-93

18522-4

AOTMARK Routine (Sheet 4 of 9)



IS THIS AN INFLIGHT

,  YES NO
MARK? (MARKSTAT
+ BIT 14 = 1)
YES / WAS A MARK MADE\ NO NO WAS AN X

(MARKSTAT BIT 10
OR11=1)

>

INDICATE MARK REJECT
(SET MARKSTATBIT 13=1)

PROGRAM CAUTION

V05 N31
R1 = 00115
(X MARK NOT MADE)

MARK YES

MADE? (MARKSTAT
\ BIT 10 = 1)

REMOVE X AND Y MARK

INDICATIONS (SET MARK-
STAT BITS 10 AND 11=0)

REJECT LAST MARK
(SET MARKSTAT BITS
10 AND 11 = 0)

(SET MARKSTAT BIT
1= 1)

/ IS THIS AN INFLIGHT
REJECT? (MARKSTAT
BIT 14=1)

YES

Figure 3-21.

3-94

AOTMARK Routine (Sheet 5 of 9)




SET MKDEX = 0

ST AALLID N, = O

[ = IVII\FI_I\ \%4

NO HAS A Y MARK BEEN
MADE?

(MARKSTAT BIT 11=1)

YES

INDICATE Y MARK
REQUIRED
(MKDEX BIT 8 = 1)

|

!

No / HAS AN X MARK BEEN
MADE?

(MARKSTAT BIT 10 = 1)

YES

INDICATE X MARK
REQUIRED
(MKDEX BIT 7 = 1)

»

SCHEDULE JOB CHANGE
VB VIA NOVAC WITH A
PRIORITY OF 32

v

STORE MKDEX IN MPAC
FOR DISPLAY
DETERMINATION

(X OR Y MARK)

@ 18522-6

Figure 3-21. AOTMARK Routine (Sheet 6 of 9)

3-95




©

IS A MARK ' \ YES
REQUIRED? /

C(MPAC) = >+0 l
3 /ARE BOTH X AND Y
YhS MARKS REQUESTED?

\(MPAC BITS7 & 8= 1)

NO

V21 N30
(REQUEST LOAD OF
STAR NUMRER)

Vb3
(PLEASE MARK
X OR

v

Y MARK/WHICH MARK
REQUEST IS PRESENT?
\TPAC BIT7 OR 8= 1)
Ve |
(PLEASE MARK Y)

X MARK

V51
(PLEASE MARK)

: 185227

Figure 3-21. AOTMARK Routine (Sheet 7 of 9)

3-96




WAS
AN X MARK
MADE?
(MARKSTAT BIT
10 = 1)

PROGRAM CAUTION

V05 N3l
R1 = 00111
(MARK IS MISSING
AFTER ENTER

RE-INITIALIZE MARKS
(MARKSTAT BITS 10 -
13=0)

Figure 3-21.

A"Y" MARK MADE?

YES

WAS
YES

(MARKSTAT BIT
11=1)

INDICATE MARKS
ACCEPTED
(MARKSTAT BIT 12 = 1)

V21 N43
(LOAD AOT DETENT
CODE)

PUT JOB TO SLEEP
UNTIL DATA IS
LOADED.

|
v

WAKE UP JOB

DETENT CODE
LOADED?

18
THE CODE

VALID?
(BIT1OR 2 =1)

3-97

I

STORE AOT ELEVATION
CALIBRATION FOR THIS
DETENT POSITION IN
VAC AREA.

v

STORE AOT AZIMUTH
CALIRRATION FOR THIS
DETENT POSITION IN
VAC AREA.

v

COMPUTE TILT COM-
PENSATION FOR THE
APPARENT TILT OF

THE AOT F. 0. V. FOR
THIS POSITION AND STORE
IN VAC AREA.

-

18522-8

AOTMARK Routine (Sheet 8 of 9)



NON-FLIGHT

NO IS MA
FOR AN INFLIGHT

SIGHTING?
(MABRKISTAXT BIT
14=1

V24 N42

(LOAD COMP 1 AND 2
OF THE AOT "*
ROTATION ANGLES)

OF MARKSTAT

CLEAR HIGH 5 BITS W

PUT JOB TO SLEEP
UNTIL DATA IS i )

LOADED

SCHEDULE TASK
ENDMARKS VIA
WAITLIST TO BE

I EXECUTED IN 10 MSEC
WAKE JOB

T3
END
MARKS,

WERE
ROTATION ANGLES
LOADED?

NO

STORE Y ROTATION

ANGLE IN VAC AREA SET INTERNAL FLAG

+3 INDICATING GOOD

i END TO MARK
STORE SPIRAL ANGLE
IN VAC AREA +5
J
L ! 1852 2-9

Figure 3-21. AOTMARK Routine (Sheetg of 9)

3-98




SECTION IV

MISCELLANEOUS ROUTINES

INTRODUCTION

This section of the study guide presents routines that perform various functions which are
not categorized in the other sections of the study guide. The routines presented in this
section are as follows:

a. PROGRAM ALARM

b. PROGRAM ABORT

Cc. FRESH START & RESTART

d, SELF-CHECK

4.1 PROGRAM ALARM ROUTINE

The Program Alarm routine is used by all programs which require the display of a program
alarm condition. The routine illuminates the Program Caution indicator and causes Verb 05,
Noun 31 to be displayed'and a failure number to be displayed in R1, Verb 05, Noun 31 indi-
cates; display octal component 1, 2, 3 - FAILREG, SFAIL, ERCOUNT. The failure number
displayed in R1 is supplied by the processing function which is using the Program Alarm rou-
tine. This number indicates what failure condition was detected. Table 4-1 lists the failure
numbers for the program detected failures processed by this routine.

The program alarms processed by this routine are of a nature which does not require the
restarting of the computer operations, Other program caution conditions which require a
restart, are processed by the Program Abort routine.

The flow chart for the Program Alarm routine is shown in figure 4-1. Control is routed to
this routine by an internal calling program whenever a program alarm condition is detected.
The calling program also provides the failure number. Upon entry to the routine, the return
address of the calling program is stored. Then, a check is made to determine if this is the
first alarm condition since the ERROR RESET key of the DSKY was used. [f it is the second
failure, bit 15 of FAILREG is set to a binary 1to indicate a multiple failure and control is
returned directly to the calling program using the stored return address. It should be noted
that if the T4RUPT routine has already provided the error number for the first failure to
the DSKY display (R1) the multiple failure will not be indicated to the operator. If, however,
the second error is detected and bit 15 of FAILREG is set before the display R1 will indicate
4XXXX. If it is the third or more failure, control is returned directly to the calling program,

If this is the first alarm condition since an Error Reset, bit 9 of output channel 10 is set to
a binary 1to illuminate the PROGRAM CAUTION lamp, Then the job DOALARM is sched-
uled to be executed using the Executive's NOVAC subroutine. After performing the schedul-
ing, the FAILREG (FAILURE NUMBER REGISTER) is set to the failure number supplied by
the calling program and control is returned to the calling program using the return address.



FROM
CALLING
PROGRAM

STORE RETURN
ADDRESS

IS THIS
THE FIRST ALARM

3 OR MORE 7nd

SINCE ERROR
RESET ?

‘ PROGRAM CAUTIOID

1

INDICATE MULTIPLE

FAILURES (SET FAIL
SCHEDULE JOB DOALARM E
ON EXECUTIVE VIA REG, BIT 15= 1)

NOVAC

SET FAIL REG TO
ALARM NUMBER
FROM CALLING PROG.

*

USE STORED RETURN
ADDRESS TO RETURN
TO CALLING PROG.

TO
CALLING
PROGRAM
17555

Figure 4-1. Program Alarm (Sheet 1 of 2)

4-2




NO

DSKY
DISPLAY BUSY? YES

{

RESERVE DSKY
DISPLAY
(SET GRABLOCK = +1)

DSKY
DISPLAY INHIBITED ?
(DSPLOCK=> +0)

VOBNS31
R1 = FAIL CODE
R2 =S FAIL

R3 = ERCOUNT

C(GRABLOCK> +0) %

SCAN DSPLIST

2 THROUGH 0O
(LOCATE VACANT
WAITLIST LLOCATION)

YES

IS

FREE DSKY
DISPLAY

DISPLAY WAITLIST
FULL?

SCHEDULE
DOALARM ON
DSKY DISPLAY
WAILTLILST

v

PUT JOB ASLEEP

Figure 4-1. Program Alarm (Sheet 2 of 2)

4-3

18554



When the processing of the DOALARM job is initiated, it obtains the use of the DSKY's
through the normal procedure. Having obtained the use of the DSKY the display table is
set to display Verb 05, Noun 31 and the contents of FAILREG (the failure number) in R1.
The DSKY interlock is then released and the DOALARM job is terminated by routing control
to the End Of Job routine.

Table 4-1. Failure Numbers For Program Alarms

Prog. Alarm No. Prog. Alarm Condition

JPTICS SUB-SYSTEM

00105 Mark Buttons Not Available
00111 Mark Is Missing After Enter
00112 Mark Not Being Accepted
00113 No Inbits

00114 Mark Made But Not Desired
00115 X Mark Not Made

INERTIAL SUB-SYSTEM

00206 Zero CDU Not Allowed With Coarse Align or Gimbal Lock
00207 1SS Turn-on Request Not Present For 90 Sec.

00210 IMU Not Operating

00211 Coarse Align Error

00212 PIPA Fail But PIPA Is Not Being Used

00213 IMU Not Operating With Turn-on Request

00214 Program Using IMU When Turned OFF

4-4




Table 4-1. Failure Numbers for Program Alarms (Cont)

Prog. Alarm No.

Prog. Alarm Condition

PROCEDURAL D

IFFICULTY

00401
00402
00403

Desired Gimbal Angles Yield Gimbal Lock
Star Out Of Field Of View
Star Out Of Field Of View

RADAR ERRORS

00501
00502
00503
00510
00514
00520
00521

00522
00523

00524

Radar Antenna Out Of Limits

Bad Radar Gimbal Angle Inputs

Radar Antenna Designate Fail

Radar Auto Discrete Not Present

Radar Goes Out Of Auto Mode While Being Used
No Radar Rupt Expected

Radar Data Could Not Be Read

Wrong LR Position
LR Antenna Did Not Make It

Bad Radar Target

COMPUTER HARDWARE MALFUNCTIONS

01102
01105
01106

AGC Self Test Error
Downlink Too Fast

Uplink Too Fast

DISPLAY ALARMS

01400
01410
01411

Pitch And/Or Roll Trim Fail Is On (ShownWith V50N25),

Temporary Jet Fail
CDU Does Not Agree With Command To 1 Degree

SYSTEM TEST ALARMS

01600
01601

Drift Test Overflow

Bad IMU Torque in Drift, in Compasy

4-5




4.2 PROGRAM ABORT ROUTINE

The Program Abort routine is used by internal programs which have detected a program
abort condition. A program abort condition requires that the computer operations be
restarted. Otherwise, the computations or functions being performed would be erroneous
or could not be completed.

The end result of a program abort, besides the restarting of the computer's processing, is
the illumination of the PROGRAM CAUTION indicator and the display of Verb 05, Noun 31
and a failure number in R1. Table 4-2 tabulates the failure numbers associated with pro-
gram abort conditions. The processing performed by the program abort routine is shown
in figure 4-2.

Upon entry to the Program Abort routine the failure number is available from the internal
program which detected the failure condition. The first item accomplished is a check to
determine if this is the first failure since the last time the ERROR RESET key was used.

If it is the first failure, bit 9 of output channel 10 is set to a binary I'to illuminate the
PROGRAM CAUTION lamp. Then the FAILREG is set to the failure number which was
supplied by the internal calling program.

Then, whether this is the first failure or not, a TC TRAP conditionis generated. This is
accomplished by having a TC (TRANSFER CONTROL) instruction transfer control it itself,
After about 10 ms, the computer's TC TRAP detecting circuitry will detect this condition.
When it does, a restart "isforced which is similar in nature to the program interrupts.
Control is forced to the Restart routine. The Restart routine among its other functions
causes the display of Verb 05, Noun 31 and the failure number in R1.

4.3 FRESH START AND RESTART ROUTINE

The Fresh Start and Restart routines are closely related and will be presented together.
The Fresh Start routine provides the computer with the capability of initialization when the
computer is first turned on or if a major malfunction occurs which requires almost total
initialization| The Restart routine also prwides an initialization function but not as com-
plete as is performed by the Fresh Start routine. The Restart routine restarts programs
at some logical point in their execution. However, when a restart is being performed and
the two phase tables maintained by the Phase Table Maintenance routine do not agree, a
Fresh Start is essentially performed.

Thr Fresh Start routine is entered as a result of entering Verb 36 via the DSKY or uplink.
The Restart routine is entered whenever one of the following malfunctions is detected.

a. PARITY FAIL

b. POWER FAIL

c. RUPT LOCK

d. TC TRAP

The TC TRAP condition is purposely generated by the Program Abort routine if any program

abort condition exist. The processing performed by the Fresh Start and Restart routines is
shown by the flow chart in figure 4-3.

4-6




e

STORE RETURN
ADDRESS

3 OR MORE

IS THIS
THE FIRST ABORT

2nd

SINCE ERROR
RESET ?

1st
PROGRAM CAUTION

SET FAIL REG TO ABORT
NUMBER FROM CALLING
PROG.

y

INDICATE MULTIPLE
FAILURES (SET FAIL
REG, BIT 15= 1)

—

FORCE TC TRAP

Figure 4-2. Program Abort

4-7

17556




RESTART

FRESH
START

INHIBIT PROGRAM
INTERRUPTS

INHIBIT PROGRAM
INTERRUPTS

v

INCREMENT REDOCTR

!

RESTORE E MEMORY

IF RESTART OCCURRED
DURING SELF CHECK
OF E MEMORY

INITIALIZE NEW JOB
(SET = -0)

®

<

INITIALIZE OUTPUT
CH 12, 14, Af) 11 BY
SETTING = +0

\ 4

SET ERESTORE = +0

v

RESET TRAPS
(SET CH 13 = 340008)

1

SET TS, T3 AND T4
COUNTERS TO OVER-
FLOW IN 10 MS

!

INITIALIZE WAITLIST
(8ET TASK TIMES TO
<82 SEC 'AND_TASK
ADDRESS TO END TASR)

i

MAKE ALL CORE SET
AREAS AVAILABLE.
(SET PRIORITY
REGISTERS = ~-0)

MAKE ALL VAC AREAS
AVAILABLE

(SET VACUSE REG-
ISTERS VACUSE
ADDRESS)

2

SET DISPLAY INERTIAL
DATA FLAG=12g

v

BLANK DSKY DISPLAYS
ASSOCIATED WITH
DSPTAB THROUGE
DSPTAB 10D (SET
DSPTABS = 73777)

Y

INITIALIZE DSKY DIS-
PLAY ROUTINES, (SET
INLINK, DSPCNT,
CADRSTOR, REQRET,
CLPASS, DSPLOCK,
MONSAVE, MONSAVE +1,
GRABLOCK, VERBREG,
NOUNREG, DSPLIST
THROUGH DSPLIST +2,
MARKSTAT AND
EXTVBRCK = +0)

INITIALIZE IMU CADR,
OPTCADR, RAD CADR
AND LGYRO (SET=+0)

NEXT
PAGE

17588-1

'Figure 4-3. Fresh Start and Restart (Sheet 10of 5)

4-8




RESTART

IS
THIS A FRESH
START OR A
RESTART ?

SET T4 ROUTING FRESH
SWITCH (DSRUPTSW)

= 40
SET NOUT=000138
AND SAMPLIM=77776g

SET DSPTAB + 11D =
400008 TO TURN OFF
THE ASSOCIATED

DSKY DISPLAYS SET DSPTAB +11D
i ‘ 404404 TO BLANK THE

ASSOCIATED DSKY
DISPLAYS EXCEPT PROG
CAUTION & GIMBAL LOCK

SET IMODES 33=
16000 (NO PIPA OR
TLM FAILS)

SET FAIL REG=+0

IS
NO GIMBAL LOCK
LAMP ON?
DMODES =
SET RADMODES = 001424 gOE;I")ZRSA M SET O/P CH12 BIT ‘
4 = 1 (COARSE ALIGN)
i
INITIALIZE SELF SET T5RUPT FOR
CHECK BY SETTING DAPIDLER PROG
SELFRET = 02101g
(GENADR) £
* SCHEDULE DOALARM
1 DSPCOUNT = VIA THE EXEC NOVAC
Sla e WITH A PRIORITY OF 37
77754 (VD1) (TO DISPLAY C(FAIL
. * REG)

INITIALIZE

TLM PROGRAM &
SELECT NOMINAL
DOWNLINK LIST

18556-2
Figure 4-3. Fresh Start and Restart (Sheet 2 of 5)

4-9




YES

RESTART

THE ERROR
LIGHT RESET P.B.

THE MARK
REJECT P.B.
DEPRESSED ?

IS
AN LMBBMB
IN O/P CH10?

REISSUE THE LMP
CMD (SET O/P CH10
BIT 15 = 1)

4

UPDATE LMP
REF. POINTER
(LMPOUT) & SET
LMPOUTT = -1

Figure 4-3.

%

INITIALIZE T4LOC
FOR NORMAL T4
RUPT

i‘

CHECK EACH PHASE
TABLE GROUP FOR
PHASE NO, & PHASE NO.
AGREEMENT IN ORDER
FROM b5-—e0

18556-3

Fresh Start and Restart (Sheet 3 of 5)

4-10




FRESH
START

SET S FAIL =,
01107g FOR DISPLAY
IN R2 (PHASE TABLE
DISAGREEMENT IN
RESTART)

INITIALIZE BY SETTING
TO +0: SMODES, MODREG,
AGSWORD, UPLOCK, CDU
COUNTERS, LMPCMDS,
LMPIN, LMPOUT &
PHASE 0 =& 5

'3

INITIALIZE BY SETTING N
TO =0 PHASE 0= 5

v

INITIALIZE LMPOUTT
BY SETTING TO -1

v

INITIALIZE T4 LOC
FOR NORMAL T4 RUPT

v

INITIALIZE IMODES 30
FOR FRESH START
(SET IMODES 30 = 37411)

v

SCHEDULE 1FAILOK
ON WAITLIST TO
OCCUR IN 5 SEC.

v

SET T5 ADR. FOR SETIDLER
(TO INSURE A ONE SEC.
DELAY BEFORE DAPIDLER)
SET DAPBOOLS = 04016 &
INITIALIZE STATE — STATE
+ 3 (SET TO +0)

v

NO

RESTART

DO
ALL PHASE
NUMBERS AGREE ?

PHASE TABLE
GROUPS 5 THRU
0 IN ORDER

INACTIVE

ACTIVE OIt
TERMINATE

[R]
PHASE DATA

GOOD?
(< 128g)

YES

SCHEDULE THE
REQUIRED JOB

ALL GROUPS
BEEN CHECKED ?

WAS
ANY GROUP

ACTIVE?

RETAIN 1MODES30

FAIL INHIBITS (1, 3, 4 & 5)
& RESET ALL IMU FAIL
BITS (9 THRU 14 = 1)

.

18556~4

Figure 4-3. Fresh Start and Restart (Sheet4 of 5)

4-11




IS
GIMBAL LOCK YES

LAMP STILL > ~
ON/
NO SET 1MODES 30 X
BIT 9 (TMU OPERATE)

TO+0 . (SO THAT T4
WILL NOT ZERO CDUS)

v

RELEASE PROGRAM
INTERRUPT INHIBIT

v

DISPLAY MAJOR
MODE

18556-5

Figure 4-3. Fresh Start and Restart (Sheet 5 of &)

4-12




Table 4-2. Failure Numbers For Program Aborts

Prog. Abort No. Prog. Abort Condition

COMPUTER HARDWARE MALFUNCTION

01103 Unused CCS Branch Executed

LIST OVERFLOWS

01201 Executive Overflow-No VAC Areas

01202 Executive Overflow-No Core Sets

01203 Waitlist Overflow-Too many Tasks

01206 Keyboard And Display Waiting Line Overflow
01207 No VAC Area For Marks

01210 Two Programs Using Device at Same Time

INTERPRETER ERRORS

01301 ARCSIN-ARCCOS Input Angle Too Large
01302 SQRT Called With Negative Argument.

IKEYBOARD AND DISPLAY PROGRAM

01501 Keyboard And Display Alarm During Internal Use (NVSUB)

An entry through FRESH START or RESTART will set the computer so that all program
interrupts will be inhibited during the routine.

If this is a RESTART the REDOCTR will be incremented to maintain the total number of
times the RESTART has been performed.

If the RESTART occurs when the self check has two words removed from erasable memory
these words are restored before continuing.

Output channels 12, 14, and 11 are initialized by setting them to +0 and ERESTORE is like-
wise set to +0.

All traps are reset by setting channel 13 bits 12, 13 and 14 to logic 1L

The TIME 5, TIME 3 and TIME 4 counters are set to overflow in 10 MS so their respective
routines will be executed the next time the counters are incremented.

4-13




The WAITLIST is initialized by setting all task times to approximately 82 seconds and all
task addresses to ENDTASK.

All core set areas are made available for executive use by setting the priority register of
each to -0. The register NEWJOB will likewise be set to -0.

All VAC areas are made available by setting the contents of each VACUSE register to the
corresponding VACUSE address and the display inertial data flag is set to 12g.

The blanking constant, 73777 is set into each DSPTAB through DSPTAB10D so that T4 will
blank the DSKY displays associated with these DSPTABs when program interrupts are again
allowed.

The following locations, which are concerned with DSKY display routines are initialized by
setting them to +0: INLINK, DSPLNT, CADRSTOR, REQRET, CLPASS, DSPLOCK,
MONSAVE, MONSAVE+ 1, GRABLOCK, VERBREG, NOUNREG, DSPLIST, through
DSPLIST+2, MARKSTAT, and EXTVBACT.

IMUCADR, OPTCADR, RADCADR, and LGYRO are all initialized by setting to +0.
The T4 routing switch (DSRUPTSW) is initialized by setting it to +0.

NOUT is set to octal 13 to serve as a flag for the T4RUPT routine to indicate that DSPTAB 0
through DSPTAB 10D all require interrogation and consequently a change in the DSKY displays
associated with these DSPTABs.

IMODES 33 FAIL bits are reset, and RADMODES is initialized.

The SELFRET register is set so that when the computer first enters self check after a
FRESH START or RESTART it will enter at the beginning.

DSPCOUNT is initialized to octal 23, the telemetry program is initialized and the nominal
downlink list is selected for transmission of downlink data.

DSPTAB 11D is set to blank all associated lamps on the DSKY if this is a FRESH START,
or to blank all except PROGRAM CAUTION and GIMBAL LOCK if this is a RESTART.

If this is a RESTART the status of the coarse align enable (channel 12, bit 4) will depend
on the condition of the GIMBAL LOCK lamp,

The job DOALARM is scheduled with a priority of 37 to set up the DSPTABs associated with
R1 so that the contents of FAILREG will be displayed.

Further action in the RESTART routine is dependent upon the condition of the MARK REJECT
and the DSKY RSET pushbuttons. If the MARK REJECT and the DSKY RESET pushbuttons are
pressed, the computer will essentially perform a FRESH START. Assuming this is not the
case, the LM mission programmer command pointer is updated and if a LMPCMD was in
progress, the command is reissued, (T4LOC) is set for a normal T4RUPT, and the phase
tables are checked for agreement. The two registers in each phase table group should con-
tain the complement of each other for agreement. If any group disagrees or if the phase data
is bad (contains a phase larger than 127 decimal) octal code 01107 will be processed for dis-
play in R2. (Phase Table Disagreement DOFSTART) and the computer will proceed as if in
FRESH START,

4-14




After all phase tables have been determined satisfactory, and all jobs associated with the
active groups have been scheduled, all failure codes inIMODES 30 will be reset. Although
the failure codes in IMODES 30 are reset, the IMU Fail inhibits will be left intact.

Had a FRESH START been requested initially or entered through RESTART, the following
registers would be setto+0; SMODES, MODREG, AGSWORD, UPLOCK, CDU Counters,
LMPCMDS, LMPIN, LMPOUT, and the PHASE 0 through 5. The PHASE 0 through 5 would
be setto -0 and LMPOUT T setto -0. T4LOC would be set for a normal T4RUPT and
IMODES 30 initialized, Task IFAILOK would be scheduled on the waitlist to occur in 5
seconds and the T5 address initialized.

From this point on the FRESH START and RESTART routines are identical. The GIMBAL
LOCK lamp is interrogated and if on IMODES 30, bit 9 is set to 0 to prevent zeroing of the
CDU's,

The program interrupt inhibit is then removed and the major mode is displayed prior to
entry into DUMMY JOB.

4.4 SELF-CHECK ROUTINE

There are 19 possible options in the SELF-CHECK routine. The first 18 options are used

to check the internal operation of the computer (0 to £10) while the 19th option (x11) checks
the electroilluminescent displays and associated controlling hardware on the DSKY. Options
associated with £10 or = zero will probably be used the most since all three of these options
perform a complete internal self-check of the computer. However, these three options
perform different diagnostic functions when an error is detected. The options associated
with £1 to 7 check out various parts of the computer and are useful for diagnostic testing of
the computer. The normal use of SELF-CHECK is as a routine to check the computer con-
tinuously when the computer is not busy with other routines. The £10 or -zero options are
used for this purpose.

4.4.1 SELF-CHECK OPTIONS. The SELF-CHECK option depends on what is written
into the SMODE register to tell the computer what option of SELF-CHECK is desired.
Placing a +0 in the SMODE register forces the computer to go into the backup idle loop
where 1t continuously looks for a new job. The SMODE register is setto +0 during
FRESHSTART, however, the content of SMODE can be controlled by the operator
through use of the DSKY.

Placing a £NON~-ZERO number below octal 12 or -0 in the SMODE register starts one of
the active options of SELF-CHECK. Below is a description of what section or sections
of the computer the options check. A block diagram in figure 4-4 shows the options
available and indicates the number to put in the SMODE register for the desired option.

+1 octal: SOPTION 1. Checks all pulses possible by internal control of the
- computer except those used exculsively by the IN-OUT instructions,
In addition, SOPTION 2 will always be performed before re-entering

SOPTION 1.

+2 octal: SOPTION 2. Checks all the IN-OUT instruction pulses.

+3 octal: SOPTION 3. Checks central processor registers and all bit com-
binations.

+4 octal: SOPTION 4. Checks erasable memory.

4-15




——ail.

|

ALL PULSES POSSIBLE TO BE

CHECKED EXCEPT IN-OUT

SQPTION1

i

IN-OUT PULSES
SOPTION 2

1

1

'

SPECIAL AND CENTRAL REGISTERS

SOFTION 3

y

+10

ERASABLE MEMORY
SOPTION 4

OR
-ZERO

|

y

FIXED MEMORY
SOPTION 5

J

y

ARITHMETIC MULTIPLY
SOPTION 6

|

Y

ARITHMETIC DIVIDE
SOPTION 7

11

.

DSKYCHK

'

PUT +0 IN SMODE
(GO TO BACKUP IDLE LOOP)

17572

Figure 4-4. Self Check Options

4-16




+5 octal: SOPTION 5. Checks fixed memory.

£6 octal: SOPTION 6. An extensive multiply arithmetic check.

A7 octal: SOPTION 7. An extensive divide arithmetic check.

+#10 octal or -0: Next SOPTION. Checks everything in the previous seven options
(complete self-check of the computer).

=11 octal: DSKY CHK. Checks the electroilluminescent displays in the DSKY.

+ Zero: Does not purposely check any part of the computer but forces

the computer to stay in the backup idle loop, a tight loop which
looks for a new job from the EXECUTIVE.

SELF-CHECK has its own verb-noun combination that is utilized
when starting any of the options from the DSKY (verb21 and
noun 27).

V21N27E (0 or tNON-ZERO) E

This procedure puts the desired number in the SMODE register
depending upon the option desired. The pressing of the second
enter (E) button completes the procedure.

4.4.2 ERROR DETECTION, The block diagram in figure 4-5 shows the Count Registers
and Self-Check Error Detection with 10 or -0 in SMODE. If SELF-CHECK should detect
an error, the following sequence of events will occur:

Step 1: The contents of the Q register is put in the SFAIL register.
(This is the address of where the error occurred, +1)
Step 2: The ERCOUNT register is incremented by one.
Step 3: The Program Caution lamp on the DSKY is turned on.
Step 4: Octal 01102, AGC SELF CHECK ERROR, is inserted into FAILREG,

C(FAILREG), C(SFAIL) and C(ERCOUNT) are displayed in R1, R2,
and R3 of the DSKY, respectively.

Step 5: (a) Enter Backup Idle if C(SMODE) = +10.
(b) Start at beginning again if C(SMODE) is -10.

(c) Continue on with SELF-CHECK at the next address after the
error if C(SMODE) is -ZERO.

If a second malfunction is located octal 41102 is put in the FAILREG register but steps 3
and 4 are omltted since Program Caution lamp IS already on and 01102 is already in R1.
Steps 3 and 4 are omitted from all successive malfunctions until the FAILREG register is
made +zero (normally by performing a "FRESH START'"), A FRESH START will also
set SMODE (if a Verb 36 had been entered), SFAIL, and ERCOUNT to +zerowhile a
RESTART will set SFAIL to +zero.

4-17




; ERROR DETECTED

' INCREMENT SCOUKT |

| PERFORM SOPTION 1

1

/
/

SET CONTENTS OF
Q IN SFAIL REG,

| PERFORM sopTION 2

:

|

g
/
/
f
/

/

r INCREMENT SCOCNT

INCREMENT ERCOUNT

-~

I

PERFORM SOPTION 3

1

-

/
f
/

‘ PROGRAM CAL'TION)

/

[ INCREMENT SCOUNT l

4

[ PERFORM SOPTION 4

/T
/
;

/I

I INCREMENT SCOUNT+1

[ INCREMENT scounTt |

I PERFORM SOPTION 5

‘ ~

INCREMENT SCOUNT I

v

| PERFORM soPTION 6

+ ~a =~ —.
INCREMENT SCOUNT

v

I PERFORM SOPTION 7

1

L

/
/

/
A Y A AR )

/

~—_ ~— CONTINUE H'ITH
* T~ T~ !SELF CHECK AT
INCREMENT SCOUNT+2 ADDRESS DEFINED
BY SFAIL

|

~10 CHECK

V05 N31
R1 = 01012

R2 = c(SFAIL)

R3 = ¢(ERCOUNT)

C(SMODE)

GO TO BACK-UP IDLE

[SET c(SMODE) =@ ]

Figure 4-5. Count Registers and Self Check
Error Detection with £10 or -0 in SMODE

4-18

17574



It is possible to leave SELF-CHECK on for a long period and keep track of the number of
malfunctions that have occurred by observing the ERCOUNT register. The SFAIL
register will contain the error address +1 of the last malfunction.

Figure 4-6 is the flow diagram for Self Check with £1 =7 in SMODE. The corresponding
SOPTION is performed continuously until an error is detected at which time the error is
displayed in the same manner as previously discussed.

4.4.3 DSKY CHECK. Putting a 11 in the SMODE register (see figure 4-7) illuminates
all possible electroilluminescent displays on the DSKY. The subroutine then puts a
+zeroin the SMODE register. This routine does not automatically check for a malfunction
of the computer. It depends on an observer to watch the DSKY for the proper displays.

No useful function will be performed by putting a number larger than octal 11 in the
SMODE register because no SELF-CHECK subroutines have been written for these
numbers. If octal 12 or a larger number is put in the SMODE register a subroutine will
change the contents of the SMODE to +zero, which forces the computer to go to the
backup idle loop.

4.4.4 HOW TOUSE THE DSKY TO MONITOR SELF-CHECK. The block diagram in
figure 4-5 shows how the three SCOUNT registers may be utilized to monitor the opera-
tion of SELF-CHECK. SCOUNT (1366) is incremented at the start of each of the seven
minor loops that make up the internal computer self-check even if they are run through
consecutively as they are when 10 or -zero is in SMODE.

EXCEPTION: When £10 or -zero is in SMODE SCOUNT is not incremented
at the beginning of the SOPTION concerned with IN-OUT pulses.

SCOUNT +1(1367) is incremented upon the completion of the erasable memory SOPTION
when i4, £10, or -0 is in SMODE. SCOUNT +2(1370) is incremented upon the completion
of the arithmetic divide SOPTION when %7, 10, or -0 is in SMODE. The incrementing
of the SCOUNT +2 indicates the successful completion of the complete self-check of the
computer. If a V1I5NO1E 1366E is performed on the DSKY, the contents of these three
count registers will appear in R1, R2, and R3 of the DSKY, respectively.

It may be desirable, for information or diagnostic reasons, to set the three SCOUNT
registers and the ERCOUNT register to zero before initiating one of the options of
SELF-CHECK. If so, these four registers have to be set to zero from the DSKY. The
following procedure will accomplish this operation:

Step 1: V2INO1E 1765E 00000E (ERCOUNT register)
Step 2: N1SE 00000E (SCOUNT register)
Step 3: E 00000E (SCOUNT +1 register)
Step 4: E OO0OCE (SCOUNT +2 register)

4-19




__’( INCREMENT SCOUNT

PERFORM SOPTION ERROR DETECTED
DEFINED BY ¢(SMODE) v

SET CONTENTS OF
Q IN SFAIL REG.

‘ 3

INCREMENT ERCOUNT

GO TO BACK-UP IDLE
[SET ¢(SMODE) = + 0]

CHECK
¢(SMODE)

PROGRAM CAUTION

V05 N31
R1 = 01102

R2 = ¢(SFAIL)

R3 = ¢(ERCOUNT

Figure 4-6, Self Check Error Detection with =1 - =7 in SMODE

PERFORM DSKY CHK

v

GO TO BACK-UP IDLE
[SET ¢(SMODE) = + 0]

17573

Figure 4-7. Self Check with i1l in SMODE
4-20




4.4.5 SELF CHECK FLOW. Self check (figure 4-8) is entered from DUMMY JOB
whenever a job of higher priority is not scheduled. The self check routtne is composed

of eight major subroutines; SOPTION 1 through 7 and DSKY CHECK. '*he operator can
route the computer to the desired subroutine by loading the SMODE register with the
appropriate value, through the use of the DSKY. In order to cause the computer to con-
tinuously perform any option the SMODE register must be loaded with the option number
desired. Either a plus or minus may be used as both will cause entry into the desired
option and as long as an error is not detected the computer will react identically to both.
However, if an error is detected, the computer reacts differently to a plus than to a minus
value. If the SMODE register is loaded with =10 or -0 all seven options will be performed
consecutively beginning with SOPTION 1. Again, the computer reacts identically to all
three of these values until an error is detected. If the SMODE register is loaded with +11,
the computer will perform the DSKY CHECK. The operator has control over the contents
of SMODE, however, the computer will set SMODE to +0 under certain conditions.

Upon entry into self check, the starting address of SOPTION 1is saved to be used in case
the contents of SMODE = +10 or -0.

After checking again to make sure that another job with a higher priority is not waiting,
the SMODE register is checked to determine which subroutine to enter. If the SMODE
register contains +0, a tight loop exists in which the computer does not perform a
meaningful function, but merely continuously checks for a higher priority job or a change
in SMODE. This loop is designated the "back-up idle loop''.

F SMODE contains -0 or 1 through +10 the SCOUNT register is incremented. This
register is incremented each time to provide a total of the number of times the computer
passes through this point. The SCOUNT register can be loaded through use of the DSKY.

If SMODE contains a quantity greater than +110r less than -11, SMODE is set to +0
which forces the computer into the back-up idle loop. A number larger than =11 in
SMODE therefore is meaningless to the computer,

If SMODE contains ill, SMODE is setto +0 and DSKY CHECK is entered. The next
time SMODE is checked (upon completion of DSKY CHECK) the back-up idle condition
will exist.

The seven options perform the following:

SOPTION 1 Checks all instruction pulses generated by the computer except
those used exclusively by the IN-OUT instructions.

SOPTION 2 Checks the IN-OUT instruction pulses.

SOPTION 3 Checks the counting ability and the ability to handle overflow and
underflow situations.

SOPTION 4 Checks erasable memory.

SOPTION 5 Checks fixed memory.

SOPTION 6 Checks multiply arithmetic ability.

SOPTION 7 Checks divide arithmetic ability.

4-21




The option specified by SMODE will be entered and upon completion (providing an error
is not detected) will return to check for a scheduled job of higher priority. If none is
found, SMODE will again be checked and assuming it has not been changed, the option
will be repeated, The specified option will, therefore, be performed continuously
whenever the computer is in SELF CHECK. If SMODE contains #1 SOPTION 1 and
SOPTION 2 will be performed. K SMODE contains £10 or -0, SOPTION 1is entered and
all options are performed consecutively. Again upon successful completion of the entire
loop, It is repeated as long as the computer is in SELF CHECK.

Whenever an error is found, the subroutine ERRORS is entered. The address of the
instruction immediately following the point where the error was detected is saved and
stored in the SFAIL register and the ERCOUNT register is incremented.

The PROGRAM CAUTION lamp is lit if not already on and V05 N31 is displayed. R1
displays the contents of FAILREG, whichis 01102 (AGC self check error); R2 displays
the contents of SFAIL; and R3 displays the contents of ERCOUNT. If an error had been
detected previously and the alarm displayed, the second error will set bit 15 of FAILREG
to 1to indicate the existance of multiple errors.

The contents of SMODE is examined to route the computer to the desired point. If the
contents of SMODE is less than -0, the option specified is entered again, at the beginning,
If the contents of SMODE is -0, self check is continued at the next instruction after the
point where the error was detected. If the contents of SMODE is +0 or greater, SMODE
IS set to +0 and the computer is forced into the back-up idle loop. Each of the eight

major subroutines is discussed below.

SOPTION 1 = This option checks the pulses which are generated to implement all
Instructions, except those used exclusively with IN-OUT instructions. The method used
to check the control pulses is to perform the instruction, check the result, and transfer
control to the ERRORS subroutine whenever the result is not as expected, The branching
type instructions are provided with direct access to the ERRORS subroutine on a wrong
branch, whereas the arithmetic functions generally make extensive use of -0 CHECK,

+0 CHECK, -1 CHECK and +1 CHECK subroutines. Values are chosen such that when
manipulated by the instruction(s) being checked a result equal to one of the above values
is obtained, A failure will route control to the ERRORS subroutine.

Upon completion of SOPTION 1, SOPTION 2 is always performed before returning to
check SMODE.

SOPTION 2 = This option checks all control pulses used in the IN-OUT instructions.
The method used is identical to that used in SOPTION 1.

SOPTION 3 = The firstpart of this option is used to check the ability of the computer
to count up a 14 bit number. This is accomplished by initializing SKEEP 6 to 37777 and
SKEEP 7 to 40000 and decrementing SKEEP 6 and incrementing SKEEP 7 until SKEEP 6
contains +0 and SKEEP 7 contains -0.

4-22




Immediately after initializing SKEEP 6 and SKEEP 7 the contents of SKEEP 6 is checked
for+0, Assuming SKEEP 6 Is not +0 its contents minus 1is added to the complement of
its contents. The result, provided all control pulses are being generated properly, is -1.
An incorrect value will cause a transfer to the ERRORS subroutine while a correct value
will cause a continuation of this option. A check is made at this point to see if a new job
of higher priority has been scheduled since the last time we looked. After checking for a
new job, the complement of SKEEP 6 is examined. If this value is less than -0, the con-
tents of SKEEP 6 is decremented; if the value is -0, SKEEP 6 is not decremented. In
either case, the contents of SKEEP 6 and SKEEP 7 are added which should result in -1.

A check is made for this quantity as before, after which SKEEP 7 is incremented and the
loop is repeated, This action continues until SKEEP 6 contains +0. At this point SKEEP 7
should contain -0. Addition of these two quantities then will produce a -0 and the count
check portion of SOPTION 3 is complete.

The second portion of SOPTION 3 checks the ability of the computer to handle overflow
and underflow situations when they occur.

Initially, SKEEP 5 is set to 40000 and a maximum overflow quantity is set up. This
quantity Is checked, determined to be greater than +0, decremented, and stored in
SKEEP 4. Next, a check is made to see if the quantity is still overflow. The low 14 bits
of the overflow quantity is then added to the contents of SKEEP 5 which should result in

a -1. F this is the first time through this point, a maximum underflow quantity is set up
and the second half of the OVFLOW loop is entered. This time the quantity is determined
to be less than -0 after which it is complemented and decremented. The quantity should
still be overflow, inwhich case the low 14 bits is again added to the contents of SKEEP 5
to produce a -1. The computer now looks for a job of higher priority and upon finding
none the contents of SKEEP 5 is diminished, the last overflow quantity checked is decre-
mented, and the loop is repeated. This action continues until an overflow quantity after
being decremented results in a quantity which is no longer overflow, At this time the
contents of SKEEP 5 should be -0 and the contents of SKEEP 4 should be 37777. These
two values are checked and control is either transferred to ERRORS or to the lead in
section of SELF CHECK to check for a new job and to interrogate SMODE. This option
is now complete and the next self check subroutine depends on the contents of SMODE.

SOPTION 4 = This option provides an extensive check of the erasable memory. Most
locations are checked to make sure that the computer can write into the location and read
out what was written. SOPTION 4 is begin by selecting erasable bank 00 and starting
address 01462 as the first location to be checked, The address to be checked is stored

in SKEEP 7. The check of the addrdss is started by saving the present contents of the
address contained in SKEEP 7 as well as the next successive address. The contents of
these two addresses are then set to their own address. (e.g. ¢(01462) - 01462 and
¢(01463) = 01463. ) The contents of the first address is then added to the complement of
the contents of the second which should provide a -1 result. Next, the content of the two
addresses IS set to the complement of their own address. (e.g. ¢(01462) = 76315 and
¢(01463) = 7.6314.) The contents of the second address is now added to the complement of
the first which again will result in a -1. If either of the -1 checks is unsatisfactory, con-
trol will be transferred to the ERRORS subroutine, After successful completion of these
checks, the original contents of the two addresses is restored, a check for new job is
made and assuming none is found, the next address is determined. Assuming we have the
EBANK set to select bank 00, a few decisions must now be made. If address 01777 has not
been checked, SKEEP 7 is incremented and the ERAS LOOP is performed again.

4-23



NOTE: The first time through the ERAS LOOP,
addresses 01462 and 01463 were acted
upon. This time, since the contents of
SKEEP 7 is 01463, addresses 01463 and
01464 will be acted upon. (The second
address of the first pair is the first
address of the second pair. )

This loop is repeated until address 01777 has been checked at which time, since address
00062 has not been checked, SKEEP 7 is set to 00062 and the loop continues to be repeated
until address 01374 has been checked.

NOTE: Even though EBANK is set to bank 00,
addresses 00062 through 00377 will be
picked from bank 00; addresses 00400
through 00777 will be picked from bank
01; and addresses 01000 through
01364 will be picked from bank 02.
Addresses 00062 through 01374 will
always be picked from these three
banks regardless of the content of
EBANK.

After address 01374 has been checked, checking will continue at the desired address of
the next bank. The method of checking the erasable memory with other values in EBANK
is identical except that the block of addresses checked may be different. Table 4-3 shows
the addresses checked and their bank designations with different contents in EBANK.

After checking erasable memory with EBANK = 7, control is transferred to the CNTR
CHECK portion of SOPTION 4. The CNTR CHECK portion of SOPTION 4 performs a CS
instruction on all addresses from 00061 through 00010, and manipulates data in all shift
and cycle registers. The data is chosen such that when shifted or cycled and added to a
constant, the result is -1 on two occasions. The normal check for -1 is performed and the
normal transfer of control to the ERRORS subroutine will follow if it fails. A satisfactory
check will terminate this option, however, before returning to the lead in section of SELF
CHECK to check for a new job and look at SMODE the SCOUNT register will be incremented.
This register will contain the number of times we have passed through SOPTION 4.

SOPTION 5 = This option performs a check of fixed memory by adding every word in a
bank together. The lastword in each bank is always chosen such that the sum of all words
in the bank will equal either the bank number or the complement of the bank number.

The option begins by selecting fixed bank 0, obtaining the first word in the bank and

starting it in SKEEP 1. Since this is the first word in the bank, the next decision will

be based on whether we are in ROPECHK (SOPTIONS5) or SHOWSUM. (SHOWSUM is a
separate job which is not a part of the SELF CHECK routine. SHOWSUM, however, does
use the the same block of instructions and therefore will be discussed here. ) Assuming

we are in ROPECHK a check is made to make sure a higher priority job is not waiting before
the next word in the bank is obtained. This word is then added to the contents of SKEEP 1
and the sum Is stored in SKEEP 1. This loop continues to be repeated until the last word

in the bank has been obtained. The sum of the bank is then present in SKEEP 1. Again
assumingwe are in ROPECHK, control is transferred to the subroutine BNKCHK.

4-24




Table 4-3. Erasable Addresses Checked in SOPTION 4

C (EBANK) Address Checked Bank Designation
00 01462 = 01777 00
00062 = 00377 00
00400 = 00777 01
01000 - 01374 02
01 01400 = 01777 01
00062 - 00377 00
00400 - 00777 01
01000 - 01374 02
02 01400 = 01777 02 .
00062 - 00377 00
00400 = 00777 01
01000 - 01374 02
03 01400 - 01774 03
00062 = 00377 00
00400 - 00777 01
01000 - 01374 02
04 01400 - 01777 04
00062 = 00377 00
00400 - 00777 01
01000 - 01374 02
05 01400 = 01777 05
00062 = 00377 00
00400 - 00777 01
01000 - 01374 02
06 01400 - 01777 06
00062 - 00377 00
00400 = 00777 01
01000 - 01374 02
07 01400 = 01777 07
00062 = 00377 00
00400 = 00777 01
01000 - 01374 02

4-25




BNCHK sets the contents of SKEEP 1equal to the absolute value of the old contents of
SKEEP 1 decremented by 1, and puts the bank number in the 5 low order bits. The bank
number is then complemented and added to the contents of SKEEP 1. The result should
be -1. The bank number is then incremented and providing the new bank number is less
than 22, SKEEP 1 is initialized to zero and the same process is repeated for the next
bank. Each bank is checked until bank number 22 is specified, at which time (again
assume ROPECHK) control is transferred back to the SELF CHECK lead in to look at
SMODE.

The job SHOWSUM is scheduled via the executive NOVAC with a priority of 02 whenever
the operator keys in V56 ENTR. (Perform BANKSUM.) This also sets the content of
SMODE to +0 which puts the computer in the back-up idle loop whenever SELF CHECK is
entered. The job SHOWSUM begins by reserving the DSKY for use in 'the job. Bank 0 is
then selected and all words in the bank are added together and the sum stored in SKEEP 1
as in ROPECHK. The difference occurs after the last word has been obtained at which
time the subroutine SDISPLAY is performed. SDISPLAY puts the bank number in the 5
low order bits and sets the DSPTABS to flash V05 N01, (display octal comp 1, 2, 3, -
specify address). The DSPTABS will then be set to display the bank sum, the bank
number, and the bugger word in R1, R2, and R3 respectively. (The bugger word, also
known as CKSM, is the last word in each bank. The value of this word is chosen such that
when added to all other words in the bank the resulting sum will be equal to, or the com-
plement of, the bank number. ) SHOWSUM then goes to sleep to await operator action. If
the operator desires to have the next bank displayed he will key in V33 ENTER (proceed
without data). This will wake the sleeping job, increment the bank number and, providing
the new bank number is less than 22, will obtain and display the information about the
next bank. If the bank number is 22, it will be set to zero and the information for bank 0
will be displayed, The cycle will continue as long as the operator continues to key in

V33 ENTER. Job SHOWSUM is terminated by keying in V34 ENTER (terminate). Upon
termination of SHOWSUM the computer will not return to the self check option which it was
performing when interrupted by V56 ENTER, but will continue in the back-up idle loop.

In order to once again enter a meaningful SELF CHECK routine, SMODE must be loaded
to the desired option,

SOPTION 6 - This option performs an extensive check of the multiply arithmetic.

First, a loop is set up which multiplies 37777 x (37777 through 00001). Each product is
checked for accuracy by adding the upper product + lower product + 40000. This will
result in a -0 which is then checked. Next, a loop is set up which multiplies -1 X

(37777 through 00001). Each product is checked in two ways: 1) the upper product should
be equal to -0; 2) the lower product plus the multiplier should also be equal to -0. The
next two loops are identical to the first two except the multiplier and multiplicant are
interchanged.

In each loop a check is made between every multiply operation to make sure that a job
of higher priority is not waiting. At the end of the last loop, control is transferred back
to the SELF CHECK lead into check SMODE.

SOPTION 7 = The divide capability is checked during this option. Several divide opera-
tions are made and after each operation the quotient or remainder or both are checked.
After passing through the divide loop, the contents of SKEEP 4 are incremented and if it
is still not equal to 0 the loop is repeated. (SKEEP 4 is initialized to 73777.) When
SKEEP 4 becomes 0, register SCOUNT +2 is incremented, after which control is trans-
ferred back to SELF CHECK lead in to look at SMODE. SCOUNT +2 will contain the
number of times the divide check option has been performed.

4-26



DSKYCHK = 1If the SMODE register contains 11 the DSKYCHK subroutine will be entered
after setting the contents of SMODE to +0. DSKYCHK merely sets the contents of SKEEP 3
to 00012 and schedules the task NXTNMBR on waitlist to be executed in 10 msec. After
the delay, task NXTNMBR checks the contents of SKEEP 3 (which was initialized to 00012)
and finding a value greater that +0 decrements SKEEP 3. DSPTRBS 0 through 10D are
then set to display the contents of SKEEP 3 (00011) in decimal (9) in each DSKY digit loca-
tion. This task will then reschedule itself (NXTNMBR) in the waitlist to be executed in
5.12 seconds. - 5.12 seconds later NXTNMBR again checks SKEEP 3, decrements it, sets
DSPTABS 0 through 10D to display a decimal eight in each DSKY digit location, and
reschedules NXTNMBR on waitlist. The process will continue until the contents of
SKEEP 3 =+0. SKEEP 3 will then be setto 01, the VN flash and COMPUTER ACTIVITY
lamps will be turned on, and the DSPTABS will be set to display a minus sign in R1, R2,
and R3. All digits will remain zeros from the previous DSPTAB contents. The next pass
will set SKEEP 3 - -0, SKEEP 2 = +1, and display a plus sign in R1, R2, and R3. All
digits will remain zeros, The next pass will blank each DSKY digit location and the final
pass through will turn off the VN flash and COMPUTER ACTIVITY lamps. After DSKY
CHK, the computer will remain in the back-up idle loop until SMODE is loaded with a
value other than +0.

4-27



ERRORS

STORE RETURN
ADDRESS IN SFAIL

w

INCREMENT ERCOUKT

PROGRAM CAUTION

V05 N31
Rl = 01102

R2 = c(SFAIL)
R3 = ¢(ERCOUNT)

CHECK
¢(SMODE)

+0, > +0

o O

SET ¢(SMODE) = +0

|

SAVE STARTING ADD
OF NEXT SOPTION
(SOPTION1)

SAVE STARTING ADD
OF NEXT SOPTION

v

DO JOB HAS A JOB OF NO
OF HIGHEST HIGHER PRIORITY
PRIORITY BEEN SCHEDULED?
>+0 \ 4
<-of CHECK +0
\ ¢(SMODE)
~0
1S
¢(SMODE) >+10
OR < -10
INCREMENT
SCOUNT
4
INCREMENT
SCOUNT

¢(SMODE) = + 7

ROUTE TO THE
DESIRED OPTION

c(SMODF) =

= 10

SOPTION
7 '

|

SET ¢(SMODE) = +0

®

¢(SMODE) = + 6

Figure 4-8.

¢(SMODE) =% 5

AS SPECIFIED BY

¢(SMODE)

\ C(SMODE) = = 2
SOPTION
4

¢(SMODE) = # 4 ¢(SMODE) =% 3

¢(SMODE) = +

Self Check (Sheet 1 of 19)
4-28

1

17581 -1



RETURN TO E
ANI, CONTINU

XIT POINT (SFAIL);
E SELF CHECK.

4-29

. CHECK ALL PULSES OF DXCH ~
A BAD /' AND DIM, ALSO CHECK: TS I
- MITH OVERFLOW), TS SC,
pap / CHECK ALL PULSES OF TC \ ERY LOY
- ANDTCFEXCEPTTHE | CA SC. AND AD E. |
AL .
ABILITV TOTCF Taoon
GOOD //1
,{ CHECK ALL PULSES OF Dag
CHECK ALL PULSES OF CCS AND INCR, ALSO CHECK: ‘
RAD ESCEPT RB W&, ALJC ”C:\".“. LXC1! S(' NCA E,
CHECK: TSE. CSSC, AND AD E, DCS F. NCS F. AND
CSE NXCH SC.
3000 300D ' /'
v J -
BAD CHECK ALL PULSES OF B0 R L e oF § |
BZMF. ALSO CHECK CA F |
I‘OOI\
I 1AL CHECK ALL PULSES OF
CHECK ARILITY TO READ MD. AUG. AND ADS. l
BAD BACK INTO E-MEMORY.
ALSO CHECK: NI'{ E. NDX F. ‘ =o0h
CA EEMASF E. XCH E, i /l
pcs E ¢ SC. AND DC E. P |
CHECK \LL PULSES OF
BaD DV AND QXCI.  ALSO |
v 4 CUECK TS (WITH UNDER-
FLOV)
CHECK ABILITY TO RESTORE\( '
BAD INSTRUCTIONS BACK INTO | 3001
E MEMORY. ALSO CHECK |
TC E. | i
BAD CHECK ALL PULSES OF
GOOD MSU EXCEDPT RB WG g
RAD CI'ECK ALL PULSES
OF R
|aoon
17581-2
Figure 4-8. Self Check (Sheet2 of 19)



e URN TO EXIT
INT [ ¢(SFAIL) 3
CONTINUE
SELF CHECK

f

: 7
FINISH CHECKING i
BAD < PULSES OF MASK
| GOOD )

|
o |
BAD FIMSH CHECKING PULSES
OF BOTH NDX INSTRUCTIONS,

ALSO CHECK ALL PULSES
OF SU EXCEPT RB WG,

J1

GOOD
7~
r'd

BAD CHECK ALL PULSES OF
DCS SC, DXCH SC, AND

DCA SC.

IGOOD
, 7~
CHECKTHATOVERFLOWIS
BAD LOST IN PROCESS OF GOING
THROUGH L REG. ALSO
CHECK THAT @ WILL HOLD
16 BITS.
GOOD /i

e
CHECK OVERFLOW, UNDER-
FLOW, END-AROUND-CARRY,
BAD AND S1GN CHANGE OF ADDER.

N

ALSO CHECK: ADS SC WITH
OVERFLOW) AND TS A'
(WITH UNDERFLOW)

GOOD

e
e
v

/ CHECK THAT AN INTER- \- w
RUPT DOES NOT OCCIJR
BAD WHILE OVERFLOW OR
UNDERFLOW IS IN THE
A REG. ALSO CHECK THAT
INHINT AND RELINT WORK -
PROPERLY.
/

7~
e

ERRORS
RROR I7581-3

O

IFigure 4-8. Self Check (Sheet 3 of 19)
4-30



SOPTION

“ RETURN TO EXIT
POINT [ c(SFAIL)]
AND CONTINUE
SELF CHECK

BAD / CHECK ALL
\ WRITE PULSES

/
BAD CHECK ALL
READ PULSES
LOOD .
BAD CHECK ALL
ROR PULSES

| GOOD -
-—
BAD CHECK ALL
WOR PULSES
‘GOOD -
/
BAD CHECK ALL
RAND PULSES
I GOOD o -

BAD CHECK ALL
WAND PULSES

ieooo

& -
-
BAD CHECK ALL
RXOR PULSES

ERRORS

'Figure 4-8. Self Check (Sheet4 of 19)
4-31

| GOOD ,_./

(Dr

o

-
|
a1
|

17581-4




NEX

SET ¢(SKEEP 6)
= 37777 AND
o(SKEEP 7) = 40000

»

N 2
< i§8(§ﬁ§§8§9j/ YES

= 00000
*NO
INCREMENT ADD: [¢(SKEEP 6) -1)+ ADD: c(SKEEP 6)
o(SKEEP 7) by, ) + ¢(SKEEP 7)

X

HAS A JOB OF
HIGHER PRIORITY
BEEN SCHEDULED

LNO
YES ISS(SKEEP 8)
= 77777

*NO

DECREMENT
c(SKEEP 6)
¥

'

ADD: c(SKEEP 6§
+ ¢(SKEEP 7)

17581-5

Figure 4-8. Self Check (Sheet5 of 19)
4-32



sr:'g o(SKEEP §)

ERRORS
= 40000 ' :
SET UP MAX OVER-
FLOW QUANTITY
l | -0 +0
CHECK <0

QUANTITY /

¢> ?

ERRORS

DECREMENT OVF RETURN TO EXIT POINT
QUANTITY . { ¢(SFAIL) ] AND CONTINUE
* SELF CHECK
STORE IN
SKEEP 4

I8
QUANTITY STILL
OVF

CHECK
c(SKEEP 5)

ADD: c(SKEEP B) +
LOW 14 BITS OF
OVF QUANTITY

ADD: ¢(SKEEP 4) +
37776

FIRST
PABS THROUGH
HERE

INCREMENT LAST

UNDERFLOW
BET UP MAX UNDER- QUANTITY
FLOW QUANTITY CHECKED.

y :

COMPLEMENT
AND DECREMENT
QUANTITY

1
QUANTITY STILL
OVF

ADD: c(SKEEP 8) +

50\\! 14 BITS OF
VF QUANTITY

HAS A JOB OF
HIGHER PRIORITY
BEEN SCHEDULED

4

DIMINISH
o(SKEEP 5)

!

DECREMENT LAST
OVERFLOW
QUANTITY
CHECKED.

Figure 4-8. Self Check (Sheet6 of 19)

4-33

|7881-6




NEXT
SOPTION

SOPTION

4

SET ¢(EBANK) = 00000.
(EBANK 0 SELECTED.)

v

SET ¢(SKEEP 7
SET ¢(SKEEP 7

)

= 01462,
= (01462,

PN

P

BANK 0

NO HAS ADDRESS

01777 BEEN
CHECKED

‘yzs

HAS ADDRESS
00062 BEEN
CHECKED

NO

N

'JEYES

(o] HAS ADDRESS
01374 BEEN
CHECKED

YES

INCREMENT ¢(SKEEP 7)

>

A

l

SET ¢(SKEEP 7)
= 00062

LOOP

Figure 4-8. Self Check (Sheet7 of 19)

4-34

17581-7



ERAS
LOOP

RETURN TO EXIT
POINT (c(SFAIL)]
AND CONTINUE
SELF CHECK

SAVE CONTENTS OF
ADDRESSES X AND X+1.,
[(X) = c(SKEEP 7)]

SET c(X) X and
c(X+1) - |

:

1 ADD ¢(X) TO COMPLEMENT
OF c(X+1), CHECK FOR -1.

-

ADD ¢(X+1) TO COMPLEMENT
ERRORS OF ¢(). CHECK FOR -

i—l

”
RESTORE ORIGINAL CONTENTSF

A

-
|
J

SETe
cX+1

IN ADDRESSES X AND X +1

'

HAS A JOB OF HIGHER \ _YEs
PRIORITY BEEN SCHEDULEDf

DO
JOB OF
HIGHEST
' PRIORITY
TO BANK
BEING
CHECKED

17581~-8

JFigure 4-8. Self Check (Sheet 8 of 19)
4-35




ADD 00400 TO

c(EBANK)
* YES
IS EBANK 3
SELECTED
NEXT \ BANK 1, 2, 4,
ADD J 5 6OR7
CHECK
¢(EBANK)

NO HAS ADDRESS 01777
SET c¢(SKEEP 7) BEENCHECKED
= 01400
lYES

< HAS ADDRESS 00062 \ NO

BEENCHECKED /

lms
NO HAS ADDRESS 01374 \ YES
BEENCHECKED

v

INCREMENT SET ¢(SKEEP 7)
c(SKEEP T7) = 00062
ERAS
LOOP
17581-9

Figure 4-8. Self Check (Sheet9 of 19)
4-36




MISSING
PAGE

4-37




ERRORS

I SET ¢(EBANK) = 3

PERFORM CS ON
ADDRESS 00061
THROUGH 00010

WRITE INTO ALL CYCLE
AND SHIFT REGISTERS.
(ADDRESSES 00020
THROUGH 00023. )

v

ADD ¢(00020 THROUGH

00023) + A CONSTANT.
CHECK FOR -1

-1 e
7

ADD NEW ¢(00020

THROUGH 00025) + A -1
CONSTANT. CHECK

FOR -1

v

INCREMENT
SCOUNT+1

|

Figure 4-8. Self Check (Sheet 11 of 19)
4-38

RETURN TO EXIT

POINT [c(SFAIL)]
AND CONTINUE
SELF CHECK

17581-1|



PERFORM
BANKSUM

SET ¢(SMODE) = +0

v

SCHEDULE JOB.8HOWSUM
WITH PRIORITY OF 02
VIA EXECUTIVE NOVAC

END
JOB

SHOW
SUM

ROPECHK

SHOWSUM

INCREMENT
BANK NUMBER

18
NEW BANK

SELECT BANK 0

NUMBER = 22

SET c(SKEEP 1) = 0

OBTAIN FIRST WORD
OF BANK AND STORE
IN SKEEP 1

|  mesemvepsky |

YES
THIS BANK BEEN
OBTAINED
ROPECHK ROPECHK
OR
SHOWSUM
SHOWSUM ROPECHK CB’ABLQ' N R‘DESTF(‘SVORDQN
SHOWSUM ‘ OR - C(SKEEP 1)
SHOWSUM AND STORE THE SUM IN
SKEEP 1
ROPECHK Y
HAS A JOB OF NO
< HIGHER PRIORITY \ )

BEEN SCHEDULED

DO
JOB OF
HIOHEST
PRIORITY

+0

CHECK NEWJOB

Figure 4-8,

Self Check (Sheet 12 of 19)
4-39

17581-12



SET ¢(SKEEP 1
= | c(SKEEP 1) |-1

v

PUT BANK NUMBER
IN 5 LOW ORDER

BITS
v

ADD ¢(SKEEP 1) TO
COMPLEMENT OF
BANK NUMBER

ERRORS

RETURN TO EXITI
POINT [c(SFAIL)]]
AND CONTINUE |
SELF CHECK |

L—

VERB 34
ENTER

TERMINATE

'3 Fo oRBER Ei s

FLASH V05 NO1
R1 = BANK SUM
R2 = BANK NUMBER
R3 = BUGGER WOR]

PROCEED

PROCEED
OR

TERMINATE

TERMINATE

Figure 4-8. Self Check (Sheet 13 of 19)

4-40




&

SET c(SKEEP 2) = 37777 I

NO /\ YES

C(SKEEP 2) = +0
MULTIPLY:

37777 X ¢(SKEEP 2) DECREMENT ¢(SKEEP 2

v Q NO
ADD: UPPER PRODUCT -+
LOWER PRODUCT +40000 HAS A JOB OF

HIGHER PRIORITY
BEEN SCHEDPLED

Tf

|
. RETURN TO EXIT POINT I

DO
JOB OF
HIGHEST

RIORITY,

[c(SFAIL)] AND CONTINUE
SELF CHECK
—————
|
‘ 1
SET ¢(SKEEP 2) = 37777 |
I

¢(SKELEP 2) = +(

MULTIPLY:
-1% o(SKEEP 2)

DECREMENT c(SKEEP 2)

7 ~ NO
ADD: LOWER HAS A JOB OF
PRODUCT + ¢(SKEEP 2) HIGHER PRIORITY

DO

BEEN SCHEDULED
JOB OF
HIGHEST

o )
PRIORITY

‘ 1758i-14

ERRORS

Figure 4-8. Self Check (Sheet 14 of 19)
4-41




SET ¢(SKEEP 1) = 37777

18
¢ NO ¢(SKEEP 1) = +0 YES

MULTIPLY: J.
¢(SKEEP 1) X 37777 il
* DECREMENT ¢(SKEEP 1)

ADD UPPER PRODUCT +
LOWER PRODUCT +40000 NO

HAS A JOB OF
HIGHER PRIORITY
BEEN SCHEDULED

YES

DO
JOB OF
HIGHEST
PRIORITY

-0

: RETURN TO EXIT POINT [ ¢(SFAIL)]
’ AND CONTINUE SELF CHECK

s
v

SET c¢(SKEEP 1) = 377777

NO 1S

¢(SKEEP 1) = +0

—— s — —

I

MULTIPLY:
¢(SKEEP 1)X -1

DECREMENT c¢(SKEEP 1)

~ NO

HAS A JOB OF
HIGHER PRIORITY
ADD: LOWER BEEN SCHEDULED

PRODUCT + o(SKEEP 1)

DO
JOB OF
HIGHEST

PRIORITY

17581-15

Figure 4-8. Self Check (Sheet 15 of 19)
4-42




ERRORS

SOPTION
7

RETURN TO EXIT POINT e(SFAILY)
AND CONTINUE SELF CHECK

——— ——— ——

[ seT eroxeze 4« 1977 |

[mcnsmsm' ¢(SKEEP ﬂ
DIVIDE:
17177 40000
20000

v

STORE QUOTIENT
(37774) IN SKEEP 7

CHECK
REMAINDER

\

K
N

DIVIDE:
17777 40000

87777

v

ADD. QUQTIENT
(40003) + ¢(B8KEEP 7)

\

CHECK
REMAINDER

v

DIVIDE:
80000 37777

20000

*

STORE QUOTIENT
(40003) IN SKEEP 6

v

ADD: QUOTIENT
(40003) + ¢(SKEEP 7)

CHECK
REMAINDER

DIVIDE:
00000 57777

20000

v

ADD: QUOTIENT
(37774)% ¢(SKEED &)

CHECK
REMAINDER

ADD: c(SKEEP 6)
+77778 + 37777

Figure 4-8.
4-43

\

Self Check (Sheet 16 of 19)

\

\

N x» N

\

\

\

o\

I7581-16




ERRORS

DIVIDE:
17777 371777

DAYasey 777

L :

ADD: QUOTIENT
(37777)+ 40000

ADD: REMAINDER
(17777) + 67777

DIVIDE:
37776

37776

I

ADD: CONPLEMENT
OF QUOTIENT
(40000) + 37776

RETURN TO EXIT POINT [¢(SFAIL))
AND CONTINUE SELF CHECK

R CHECK -1
FOR -1

ADD: REMAINDER
(37776) .- 40000

DIVIDE:
77777 00000

00000

v

STORE QUOTIENT
(37777) IN SKEEP 7

CHECK
REMAINDER

DIVIDE:
77777 00000

77771

v

STORE QUOTIENT
(40000) IN SKEEP 6

v

ADD: QUOTIENT
(40000) + ¢(SKEEP 7)

CHECK
REMAINDER

+0

‘Figure 4-8. Self Check (Sheet 17 of 19)

4-44

‘ /

17581-17




DIVIDE:
00000 77777

00000

v

ADD: QUOTIENT
(40000) + ¢(SKEEP 7)

CHECK
REMAINDER

DIVIDE:
00000 77777

77777

!

ADD: QUOTIENT
(37777) + ¢(SKEEP 6)

CHECK

STUR N X | THRT [ CWMRIL) ]
AND CONTINUE SELF CHECK cmmmn

/

ADD: * 1

C¢(SKEEP 6) + 37776

HAS A JOB OF
HIGHER PRIORITY
BEEN SCHEDULED

YES

18
c(SKEEP 4) > +0

DO
JOB OF
HIGHEST
PRIORITV

INCREMENT
SCQUNT+2

REMAINDER

Figure 4-8.

Self Check (Sheet 18 of 19)
4-45

1758118




?

SET ¢(SKEEP 3)
= 00012

v

SCHEDULE TASK
"NXTNMBR™ ON WAIT-
LIST TO BE EXECUTED
IN 10 MS

S

\
< -0 )/

TURM OFF VN FLASH
AND COMPUTER
ACTIVITY LAMPS

CHECK
¢(SKEEP 3)

1

I

v

0/ CHECK
\ c(SKEEP 2)

>+0

SET ¢(SKEEP 2)
= 00000

SET DSPTABS 0 THROUGH
10D TO BLANK EACH
DSKY DIGIT LOCATION

SET ¢(SKEEP 3)
= 771771

SET ¢(SKEEP 3)
- 77778

DECREMENT
c(SKEEP 3)

.

v

*

SET ¢(SKEEP 2)
= 00001

TURN ON VN FLASH
AND COMPUTER
ACTIVITY LAMPS

SET DSPTABS 0 THROUGH
10D TO DISPLAY c(SKEEP 3)

IN DECIMAL IN EACH
DSKY DIGIT LOCATION

SET DSPTABS 1, 4,
AND 6 TO DISPLAY
PLUS SIGN IN R1, RZ2,
AND R3, (DIGITS WILL
REMAIN ALL ZEROS
FROM PREVIOUS
DSPTAB CONTENTS

SET DSPTABS 0, 3,

AND 5 TO DISPLAY
MINUS SIGN IN R1,

R2, AND R3. (DIGITS
WILL REMAIN ALL
ZEROS FROM PREVIOUS
DSPTAB CONTENTS

\Figure 4-8.

P
v

SCHEDULE TASK

""NXTNMBR™ ON WAIT-
LIST TO BE EXECUTED

IN 5.12 SECONDS

Self Check (Sheet 19 of 19)
4-46

17581-19




APPENDIX A

COMPUTER PROGRAMS
A.1 DESCRIPTION OF COMPUTER INSTRUCTIONS
Instructions, which are directions given to perform specific operations, are the same for
CMC and LGC. Together with data addresses, they constitute the building blocks of a
program. Programs are sequential lists of instruction words. There are two general
categories of inetructions, machine and interpretive. Several types of instructions used
in the LGC may be categorized as follows:
MACHINE (56)
REGULAR (42)
BASIC (15)
EXTRACODE (12)
CHANNEL (7)
SPECIAL (8)
INVOLUNTARY (9)
INTERRUPT (2)
COUNTER (7)
PERIPHERAL (5)
INTERPRETIVE
The machine instructions can be interpreted and executed directly by using the sequence
generator to control the LGC operation. The interpretive instructions are a programmer's
convenience and must be interpreted under program control, converted to machine instruc-
tions and then executed as machine instructions. Table A-1 lists the machine instructions
alphabetically and gives abrief description of each. The reader will find it to his advantage
to refer back to this table once he has gained a greater familiarity with the LGC. The
following symbols are used in table A-1,

K represents any address in the central processor, erasable memory or fixed
memory.

F represents an address in fixed memory only.
E represents an address in the central processor or erasable memory.

H represents any channel address.




C represents any counter address.

A represents the A register on the central processor.

L represents the L register in the central processor.

c(K) represents the contents of K, i.e., the data located in address K.

1, I+ 1,1+ 2 represents the addresses of successive instruction words stored
in memory.

c (1), C (I+1), C(l+2)represents the contents of successive instruction words
stored in memory.

A. 1.1 MACHINE INSTRUCTIONS. The LGC has three classes of machine instructions:
regular, involuntary, and peripheral. Regular instructions are programmed and are
executed in whatever sequence they have been stored in memory. Involuntary instruc-
tions (with one exception) are not programmable and have priority over regular instruc-
tions: no regular instruction can be executed when the LGC forces the execution of an
involuntary instruction. The peripheral instructions are used during ground testing
when the LGC is connected to the CTS or PAC: the LGC cannot perform any program
operation during a peripheral instruction.

A. 1.2 REGULAR INSTRUCTIONS. There are four types of regular instructions: basic,
channel, extracode, and special. The difference between the regular instructions is
directly related to the way in which the LGC interprets an instruction word. Instruction
words stored in memory are called ""basic instructions words™ and consist of a three

bit order code and a twelve bit address code. The order code defines an operation and
the address code defines a location.

The contents of the SQ register will determine what instruction the LGC will perform.
The SQ register reflects that data transferred into It from memory. The SQ register
consists of six bits and an EXTend bit (figure A-1). A binary point is assumed to be
located between bits thirteen and twelve. When an instruction word is transferred from
memory to the SQ register, bfts 15 through 10 of the word in memory are transferred
to bits 16 and 14 through 10 of the SQ register (figure A-2). In the following paragraph,
however, only the transfer of bits 15, 14 and 13 from memory to bits 16, 14 and 13 of
the SQ register will be considered.

EXT 16 14 13 12 11 10

- BINARY POINT

Figure A-1. SQ Register

A-2




Table A-1. Machine Instructions, Alphabetical Listing (Sheet 1of 8)

Symbolic Order Code Description Execution
Instruction Time in
Word MCT's
AD K , 06. Basic Instruction: add c(K) to c(A); stores 2
result in A; takes next instruction from I + 1
where | is location of AD K.
ADS E 02.6 Basic Instruction: adds c(A) to ¢(E) and 2
stores result in both A and E; takes next
instruction from I + 1where I is location of
ADS E.
UG E 12.4 Extra Code Instruction; adds +1 to ¢(E), 2
if ¢(E) is positive and -1 if ¢(E) is negative;
stores result In E; takes next Instructfon
from | + 1 where |18 location of AUG E.
NOTE: AUG, DIM and INCR are slightly
- modified counter increment sequences.
Accordingly, if one of this group over-
flows when addressing a counter for which
overflow (during involuntary increment-
ing) IS supposed to cause an interrupt, the
interrupt will occur. It should be noted
that all three of these instructions unlike
the increment sequences, always operate
in one's complement, even when address-
ing CDU counters,
BZF F 11.2 Extra Code Instruction: takes next instruc- 1if c(A)
11.4 tion from F if c(A) IS #0; otherwise takes next Is £0;
11.6 instruction from '+ 1 where | is location of otherwise
BZF F. 2
BZMF F 16.2 Extra Code Instruction: takes next instruc- 1if c(A)
16.4 tion from Fif c(A) IS +0 or negative; other- is+0 or
16.6 wise takes next instruction from | + 1where negative,
I is location of BZMF F. otherwise
2
CAK 03. Basic Instruction: clears ¢(A) and copies ¢(K) 2

into A; takes next instruction from | + 1 where
| is location of CA K.




Table A-1.

Machine Instructions, Alphabetical Listing (sheet 2 of 8)

—

Symbolic
Instruction
word

CCSE

CSK

CYL

CYR

DAS E

DCA K

Order Code

Description

Execution
Time in

01.0

04,

,0022

,0020

02.0

13.

Basic Instruction: if ¢(E) is nonzero and posi~
tive, takes next instruction from I + 1where 1
is location of CCS E, adds -1 to ¢(E) and stores
result in A. [If ¢(E) is +0, takes next instruc-
tion from | + 2 and sets c(A) to +0. I c(E) is
nonzero and negative, takes next instruction
from | + 3, adds -1 to the abeolute value of the
¢(E) and stores result in A. If ¢(E) i8 -0,
takes next instruction from | + 4 and seta c(A)
to +0.

Basic Instruction: clears c(A) and copies?(l;l_)
into A; takes next instruction from | + 1 where
1 is location of C8 K.

ipgc_ia_&l_nﬁt_r%gigu: cycles quantity, which is
entered Into location 0022, one place to left.

Special Instruction: cycles quantity, which is
entered into location 0020, one place to right,

Btgsic,,,vlnstrugti,orl: adds c(A, L) toc(E, E + 1);
stores result In E and E + 1; sets ¢(L) to +0 and
sets ¢(A) to net overflow if address E is not
0000g. Net overflow is +1 for positive overflow
-1 for negative overflow, otherwise c(4A) is set
to +0. Takes next instruction from | + 1 where
I is location of DAS E.

Note: DAS A doubles the contents of the
double precision accumulator = implied
address code DDOUBL assembles as DAS
A. Since the hardware must operate on
the low order operands first, consider
DAS as the operation code 20001 to which
the address E is added to for the instruc-
tion.

Extra Code Instruction: copies e(K, K + 1)into
A and L; takes next instruction from | + 1 where
I is location of DCA K.

MCT's




Table A-1.

Machine Instructions, Alphabetical Listing (Sheet 3 of 8)

Symbolic
Instruction
word

Order Code

Description

Execution
Time In
MCT!s

DCS K

DIM E

DINC C

DV E

DXCH E

EXTEND

FETCH K

14.

12.6

None

11.0

05.2

00.0006

None

Extra Code Instruction: copies c(K, K + 1)

into A and L; takes next instruction from
I + 1where | is location of DCS K.

Extra Code Instruction: adds -1 if ¢(E) is

nonzero and positive and +1 if ¢(E) IS non-
zero and negative; stores result in E; if ¢(E)
is 0, ¢(E) is not changed; takes next instruc-
tion from 1 + 1where I is location of DIM E.
See NOTE under AUG.

Counter Instruction: adds +1 to ¢(C) if ¢(C)

is negative: adds -1to c(C) if ¢(C) is positive;
provides no change if ¢(C) 'is #0; stores result
in C, delays program execution for 1MCT.

| Extra Code Instruction: divides ¢(A, L) by

c(E); stores quotient In A; stores remainder
in L; takes next instruction from | + 1where
I is location of DV E.

NOTE: The signs of the double length
dividend in A & L need not agree. The
net signof the dividend is the sign of c(4)
unless c¢(A) is £0, in which case it is the
sign of ¢(Ly, The remainder bears the
net dividend sign, and the quotient sign
is determined strictly by the divisor and
net dividend signs.

Basic Instruction: exchanges ¢(E, E + Dwith

c(A, L);takes next instruction from | + 1wher
I is location of DXCH E.

Special Instruction: Take the next instruction

from I + 1, where | is the EXTEND instruc-
tion and execute it as an extracode instruction.
If 1 + 1is INDEX (full operation code 15), the
following instruction will also be executed as
an extracode.

Peripheral Instruction: reads and displays

c(K) as binary numbers on CTS or PAC where
K is address supplied by CTS or PAC.

3

A-5




Table A-1,

Machine Instructions, Alphabetical Listing (Sheet 4 of 8)

Symbolic
Thstruction
Word

Order Code

Description

Execution
Time in
MCT's

IEDOP

COJ

INCR E

INHINT

INOT LD H

INOTRD H

LXCH E

MCDU C

.0023

00.

02.4

00.0004.

None

None

02.2

None

Special Instruction: shifts quantity, which
is entered Into location 0023, seven places
to left.

Interrupting Instruction: transfers control
to instruction stored In location 40008 and
proceeds from there.

‘Basic_Instruction: adds + 1to c(E); stores
result in E; takes next instruction fromI + 1
where T is location of INCR E. See NOTE
under AUG.

iSpecial Instruction: Inhibit program interrupts
until a subsequent RELINT.. Take the next

instruction from | + 1where | was INHINT.

NOTE: The inhibition set by INHINT and
removed by RELINT in entirely inde-
pendent of the one set by an interrupt and
removed by a RESUME.

Peripheral Instruction: loads data supplied by
CTS or PAC into location H where H is chan-
nel address also supplied by CTS or PAC.

Peripheral Instruction: reads and displays
c(H) as binary number on CTS or PAC where
H is channel address supplied by CTS or PAC.

Basic Instruction: exchanges ¢(E) with ¢(L);
takes next instruction from | + 1where | IS
location of LXCH E.

Counter Instruction: adds -1 (two's comple-
ment) to ¢(C). NOTE: Incrementing in two's
complement modulator notation transfers octal
40000 to 37777 and 00000 to 77777 and IS other-
wise like one's complement. PCDU and MCDU
replace PINC and MINC for counters 0032
through 0036.

S




Table A-1. Machine Instructions, Alphabetical Listing (Sheet 5 of 8)

Symbolic Order Code Description Execution
Instruction Time In
Word MCT's
MINC C None Counter Instruction: adds -1 to ¢(C); delays 1

program execution for IMCT. If negative
overflow occurs, c(C) is setto ~0,

MP K 17. Extra Code Instruction: multiplies e(A) by 3

c(K); stores result in A and L; ¢(A, L) agree
in sign; takes next instruction from I+ 1
where | is location of MP K. A zero result
IS positive unless c¢(A) = £0 and ¢(K) IS non-
zero with the opposite sign.

MSK K 07. Basic Instruction: AND's c(A) with ¢(K); 2
stores result in A! takes next instruction
from | + 1where | Is location of MSK K,

MSU E 12.0 Extra Code Instruction: forms signed one's 2
complement difference between c(A) and

c(E) where c(A) and c(E) are unsigned (modu-
lar or periodic) two's complement numbers;
stores result in A; the method 1S to form the
two's complement difference, to decrement it
if it is negative, and to take the overflow-
uncorrected sum as the result; takes next in-
struction from | + 1 where 1 is location of
MSU E.

NDX K 05.0 Basic Instruction: adds c¢(K) to ¢(I + )where 2
I 1s location of NDX E; takes sum of c(K) +

c(I + 1) as next instruction. INDEX 0017 is an
implied instruction to resume an interrupted
program.

NDX K 15. Extra Code Instruction: adds ¢(K) to ¢(I + 1) 2
where | IS location of NDX K; sets extra code
switch; sum of ¢(K) + c(I + 1) becomes an
Extra Code Instruction which is taken as next
instruction. This INDEX will not act as a
RESUME.

PCDU C None Counter Instruction: adds +1 (two's comple- 1
ment) to ¢(C); delays program execution for
1 MCT. See NOTE under MCDU.

A-T




Table A-1. Machine Instructions, Alphabetical Listing (Sheet 6 of 8)

Symbolic Order Code Description Execution
Instruction Time in
Word MCT's
PINC C None Counter Instruction: adds +1 to ¢(C); delays 1

program execution for 2LMCT. If positive
overflow occurs, the counter is set to +0 and
an interrupt is set up if the counter is T3,
T4, T50r setup a PINC for T2 if the
counter was T1,

QXCH E 12.2 Extra Code Instruction: exchanges ¢(E) with 2
¢(Q); takes next instruction from | + 1 where
I is location of QXCH E.

RAND H 10.2 Channel Instruction: AND's c(H) with c(A); 2
stores result in A: takes next instruction
from | + 1 where I is location of RAND H.

READ H 10.0 Channel Instruction: copies ¢(H) into A; takes | 2
next instruction from | + 1 where | is location
of READ H.

ROR H 10.4 Channel Instruction: Inclusive OR's ¢(H) with 2

c(A); stores result in A; takes next instruction
from | + 1 where | is location of ROR H.

RELINT 00.0003 | Special Instruetions: Removes program 1
interrupt innhibits, Allows interrupts after
this instruction subject to the restriction
that an interrupt cannot occur while there
is plus or minus overflow in A.

RESUME 05.00 17 | Special Instruction: takes next instruction 1
from return address (location of which ad-
dress is stored in location 0017). This
allows the resumption of the interrupted
program.

RUPT 10.7 Interrupting Instruction: takes next instruc- 3
tion from address supplied by Interrupt Prior-
ity Control; stores ¢(B) (instructionthat was
to be executed) in location 0017g; stores

¢(Z) = 1 in location 00158 where | is assigned
location of instruction stored in 0017. This
instruction is for machine checkout only.

A-8




Table A-1.

Machine Instructions, Alphabetical Listing (Sheet 7 of 8)

Symbolic
Instruction
Word

Order Code

Description

RXOR H

SHANC C

SHINC C

SR

STORE E

SUE

TC K

10.6

None

None

.0021

None

16.0

00.

Channel Instruction: forms the exclusive OR

of ¢(H) and c(A); stores result in A; takes next

instruction from | + 1where I is location of
RXOR H.

Counter Instruction: doubles ¢(C) and adds

+1; stores result in C; delays program execu-

tion for 1 MCT. This action amounts to shift-
ing c(C) one digit to the right and adding +1.

NOTE: SHANC and SHINC are used to
convert incoming serial bit streams into
words for parallel access.

Counter Instruction: doubles ¢(C); stores re-

sultin C; delays program execution for 1
MCT. This action amounts to shifting ¢(C)
one digit to the right. See NOTE under
SHANC.

Special Instruction: shifts quantity, which is

entered Into location 0021, one place to right.

Peripheral Instruction: data supplied by CTS

Extra Code Instruction:

Basic Instruction:

or PAC is stored in Tocation E where E is
address supplied by CTS or PAC; delays pro-
gram execution for 2 MCT's.

subtracts ¢(E) from
c(A); stores result in A; takes next instruc-
tion from I + 1 where | is location of SU K.

takes next instruction

from K; stores I + 1in Q where I is location

of TC K; if Kis 0006 (EXTEND), sets extra
code switch and takes next instruction from

I +1;if Kis 0004g (INHINT), sets inhibit inter-
rupt switch and takes next instruction from I + 1;
if K is 0003g (RELINT), resets inhibit interrupt
switch and takes next instruction from |+ 1.

‘Execution
Time in
MCT's

=

2




R —

Table A-1.

Machine Instructions, Alphabetical Listing (Sheet 8 of 8)

Symbolic
Instruction
word

Order Code

Description

Execution
Time In
MCT's

TCFF

TCSAJ K

TS E

WAND H

WOR H

WRITE H

XCHE

05.4

10.3

10.5

10. 1

05.6

Bagic Instruction: takes next instruction
from F. Does not change the contents of Q.

Perigheral Instruction: takes next instruc-
tion from K where K IS address supplied by
CTSor PAC.

|_Basic Instruction: if c(A) is not an overflow
quantity, copies ¢(A) into E and takes next
instruction from I + 1where | is location of
TS E; if ¢c(A) iIs a positive overflow quantity,
copies c¢(4) into E, sets ¢(A) to +1, and takes
next instruction from | + 2; if ¢(A) is a nega-
tive overflow quantity, copies c¢(A) into E,
sets c¢(A) to -1, and takes next instruction
from | + 2.

Channel Instruction: ANDts ¢(H) with c(A);
stores result in H and A; takes next instruc-
tion from I + 1where | is location of WAND
H.

| _Channel Instruction: Inclusively OR's c(H)
with ¢(A); stores result in H and A; takes
next instruction from I + 1where | is loca-
tion of WOR H.

Channel Instruction: copies ¢(4) into H; takes
next instruction from I + 1 where | is location
of WRITE H.

Basic Instruction; exchanges ¢(A) with ¢(E);
takes next instruction from | + 1 where |
is location of XCH E.

1

A-10




15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

. INSTRUC-
TION
WORD IN
MEMORY

EXT 16 14 13 12 11 10 SQ REGISTER

PROGRAM ACTION
Figure A-2. Memory to SQ Register Transfer

The three bit order code in the memory basic instruction words has a capability of
uniquely deflning eight operations: To increase the number of operations defined by the
SQ register, bit EXT (extend) is made a 1 or 0 under program control, therefore, bits
EXT, 16, 14 and 13 of the SQ register define sixteen operations.

Note the order codes in column 2 of table A-1. These order codes are determined, in
most cases, by the contents of the 8Q register. Figure A-3 shows how the order codes
in table A-1are related to the actual contents of the SQ register. The order code
defined by figure A-3is TS E.

In table A-1, the instructions can be categorized into three distinct groups by their
listings in the order code column.

a. Those that list "None."
b. Those that list four digits to the right of the binary point.

c. Those that list two or three digits with the binary point written to the right
of the second digit.

Group a contains the counter and peripheral instructions. There are no order codes
associated with these instructions.

Group b contains the special instructions that are address dependent basic instructions.
Their order codes are, in part, determined by bits 1through 12. Those special instruc-
tions with no digits to the left of the decimal point can be combined with any basic
instruction order code. Those with digits to the left of the decimal point are combined
with that basic instruction whose order code appears to the right of the decimal point.

Group c contains the basic, extracode and channel instructions, i.e., all the regular

instructions with the exception of the special instructions. Also included in this group
are the two interrupt instructions; these are got regular instructions.

A-11.



Note that the instructions in this group may or may not have a digit to the right of the
decimal point. When there is a digit to the right of the decimal point, it is determined
by bits 11 and 12 or bits 10, 11 and 12 of the SQ register. Whenbits 11 and 12 are
necessary to extend the order code field, their configuration IS called a ""quarter code.""
When bits 10, 11 and 12 are necessary to extend the order code field, their configuration
is called an "eighth code.' Table A-2 shows the configuration of the various quarter and
eighth codes associated with this group. Note that there are two ways of defining a zero
or an even digit to the right of the decimal point. Observe instructions CCS E and TCF
F in table A-1. These instructions are identical if only the digits to the left of the
decimal point are considered. There, two instructions can be distinguished, however,

if bits 11 and 12 of the SQ register are observed. Note that the content of bit 10 in
register SQ is irrelevant because only four cases have to be distinguished and, conse-
quently, a quarter code is sufficient to define the necessary operation. Now observe the
instruction in table A-2 which have digits 1 and 0 to the left of the decimal point in the
order code column. There are eight of these instructions and to differentiate between
them, bits 10, 11 and 12 of the SQ register are necessary because eight cases must be
differentiated. If just bits 11 and 12 were used, only four cases could be distinguished.

EXT 16 14 13 12 11 10

1 (0 1] 1] 0| X |CONTENTSOF 8Q REGISTER
\. J \ J

—~ ~

5 4

o%—] ©

X SIGNIFIESA 10R 0

Figure A-3. Order Code Determination

Basic instructions can be differentiated from extracode and channel instructions by the
left hand digit of the order code, If bit EXT inthe SQ register is a 0, then the left hand
digit is a zero and the instruction is abasic instruction. If bit EXT is a 1, then the left
hand digit is a one and the instruction is an extracode or channel instruction.

A, 1.3 INVOLUNTARY INSTRUCTIONS. The involuntary instruction class contains two
types of instructions = interrupt and counter. The interrupt instructions use the basic
instruction word format just as the regular instructions do. However, the interrupt
instructions ace not entirely programmable, The contents of the order code field and the
address field are supplied by computer logic rather than the program. The counter
instructions have no instruction word format. Signals which function as a decoded order
code specify the counter instruction to be executed and the computer logic supplies the
address. The address for these instructions is limited to one of 29 counter locations in
memory.

There are two interrupt instructions. One instruction initializes the computer when
power is first applied and when certain program traps occur. The other interrupt
instruction is executed at regular intervals to indicate time, receipt of new telemetry or
keyboard data, or transmission of data by the computer. This interrupt instruction may
be programmed to test the computer.

A-12




EIGHTH OR QUARTER SQ REGISTER
CODES BITS

It 12 11 | 10
EIGHTH .0 0 0 0
QUARTER .0 0 0 X
EIGHTH .1 0 0 1
EIGHTH o2 0 1 0
QUARTER 2 0 1 X
EIGHTH .3 0 1 1
EIGHTH .4 1 0 0
QUARTER .4 1 0 X
EIGHTH .5 1 0 1
EIGHTH .6 1 1 0
QUARTER .6 1 1 X
EIGHTH .7 1 1

X stands fora 1or 0
Table A-2. Quarter and Eighth Codes

There are several counter instructions. Two instructions will either increment or
decrement by one the content of a counter location using the one's complement number
system, Two other instructions perform the same function using the two's complement
number system. Certain counter instructions control output rate signals and convert
serial telemetry data to parallel computer data.

A. 1,4 PERIPHERAL INSTRUCTIONS. There are two types of peripheral instructions.
One type deals with memory locations and the other type deals with channel locations.
The peripheral instructions are not used when the computer is In the spacecraft. They
are used when the computer is connected to peripheral equipment during subsystem and
preinstallation system testing. The peripheral instructions are not programmable and
are executed when all computer program operations have been forcibly stopped. These
instructions are used to read and load any memory or channel location and to start the
computer program at any specified address. The peripheral instructions and counter
instructions are processed identically.

A-13




A. 1.5 INSTRUCTION DATA FLOW. Examples of the instruction data flow are illus-
trated on the subinstruction flow charts ADO, STD2, RSM3, and NDXO, figures A-4,
A-5, A-6 and A-7,

A. 1.6 INTERPRETIVE INSTRUCTIONS. Interpretive instructions, a programmer's
convenience and a means of saving memory storage area, must be interpreted under
program control, converted to machine instructions and then executed as machine
instructions. The coding into interpretive instructions of routines which contain double
precision, triple precision, vector, and vector matrix operations results in a con-
siderable saving in program storage area in fixed memory. This saving is achieved at
the expense of computer operating speed; however, when operating in basic machine
language the computer operates much faster than the equipment with which it interfaces.
Since most of the PGNCS problems the computer is required to solve involve complex
mathematical e?uations, the use of interpretive instructions for vector matrix algebra
and complex differential caleulus is a definite asset. Interpretive instructlone are
shown in table A-3.

A-14




Fu ?
™ 025252 II § 25252
|
cH |
\
s |an | WS § 0660
[
|
¢ |oscizi . toooooo 4028282 ) WG 021252 ® 025252
"G
| 025252 § 029292
o |osoians @ we 025252 " ne 025282
' ooo@ |
[ N
A Q00102 '5C+ WA (25354
L Rsc +
RS
a + fozs2sz: (02s334)
ns: i ot N
7 000660 rsc b *2 6 000CCO
!
u |ooos60 AL LC25154
Y |o00657 wy 025252
x |000000 A2X 0000102
cr | 0
8o |ceo
TIME 2 ) 4 s s 7 s ’ 0 i 12
ITAGE msc IS FIXED sT2 SETS
JOUNTER INMIBITED MEMORY STAGE
$ SET BY ADDRESS STROME IS COUNTER
10 000 1213 INS INMIB(TED T0 010
BY ADDRESS
1203 INS
10738

Figure A-4. Subinstruction ADO, Data Transfer Diagram

A-15




FM "
]
EM 26007 4 26077
T
CH I
S | 0660 | wsh 6077
: P2607?
G | 025282 W6 4000000 026077 ! RAD® 0026077
] 1
|| 026077
T
8 | 020252 | wa ¥026077 R
l A I 028384  mscé
L rsc T
1]
a rsc ¢
RZ )
2z ooouoT Rsco wzh 00086
@Gooeso) (Goossi 026 )
U | o2s38e RU 600066
Y | o262529wWri2 000680
X 0001020 WYi2Z 000000
Ci !
I SQI wsq¥oze
TIME | 2 3 4 5 6 8 10 H 12
STAGE Cl NISQ FIXED
COUNTER SETS CAUSES MEMORY
SET CARRY RS AND STROBE IS
010 FLIP WSO AT INHIOITED
FLOP TIME TZ. BY ADDRESS
RSC 18 0000 IN 8
INHIBITED
BY ADDRESS
0660 IN 8
17636
Figure A-5, Subinstruction STD2, Data Transfer Diagram

A-18




FM
EM p 31416 4}24145
CH
S IOGQWSTOOIB w314|45
D)
G |o24148 34000000 031416 &G WG) 024145 RAD§ 024148 © 024148
| 024148 “za14B
e
B |ozeias neé we¥ 024145 RS 0241484
I
|
A usc‘ 03ieI8
I
L rach
-t
Q rscéd
L
Z |ooiose rscd
024145
u |oo1014
Y |ooiwoes
X |oo0000
Cl |
SQ{oso WSO 024‘
TIME | 2 3 4 5 6 8 10 1l 12
STAGE RIS L)
COUNTER PLACES GENERATES
1S SET  0000I5 RBAND SG
TO Ol: ON AT TIME t2-
WRITE RSC IS
LINES  INHIBITED
8¢ ADDRESS
COISINS
40727
Figure A-6. SubinstructionRSM3, Data Transfer Diagram

A-17




FM T
EM 24(45 | 2414
|
CH |
1
L]
S oot | wSQ 064
T
|
G |osool? W34000000 Vo24148 ] naI bo24148
i 64024148
| 024148 (024145
1
B 050317 00000 w8 0241459 DoI064 Rll
A rscéd
£
L ascé
3
Q ascé
i
001064 Rscé RZ®00I064
U |oo01064
Y | 001063
X | 000000
I Ci | i
so]oso
TIME | 2 3 4 5 6 7 8 9 10 1l 12
STAGE WSC IS TRSM SETS FIXED STI SETS )
COUNTER INHIBITED STAGE MEMORY CBITIOF
SSET BY ADDRESS COUNTER STROBE IS STAGE
TO 000 0017 IN § TOO010  INHIBITED COUNTER
SINCE SYADDRESS RESULTING
c(8Y IS 0017 0017 IN § IN O

40726

Figure A-7. Subinstruction NDXO, with Implied Address Code RESUME,
Data Transfer Diagram

A-18




Table A-3. Interpretive Instructions (Sheet 1 of 14)

Detailed Description of Operation Codes with Probable Average Addressing
Execution Times. Class
A.  Store, Load, and Push-Down Instructions.
STORE X Store MPAC .62 M. S. 01
11
D(MPAC), T(MPAC) or V(MPAC) replace D(X), T(X),or V(X),
respectively. X may be indexed or direct.
STODL X Store MPAC
Y and re-load in DP 1.24 m.s. o1
11
D(MPAC), T(MPAC) or V(MPAC) replace D(X), T(X) or V(X).
(D(Y), 0) become T(MPAC) setting the store mode to DP. X may
be indexed, or direct and Y indexed, direct or vacuous (push-up).
STOVL X Store MPAC
Y and re-load as Vector 1.43 m.S. 01
11
Same as STODL except V(X) become V(MPAC) and store mode
is setto vector.
STCALL X Store MPAC
Y and CALL a Routine 1.40 m. s. 01
11
D(MPAC), T(MPAC), or V(MPAC) replace D(X), T(X) or V(X),
leaving the store mode unaltered. Call the routine at Y, leaving a
return address (of the location after the second address) in QPRET,
Both addresses must be direct.
DLOAD X Load MPAC in DP 04 m.s. 01
11
(D(X), 0)become T(MPAC), setting the store mode to DP.
Address may be direct, indexed or vacuous.
TLOAD X Load MPAC in TP 77 m,S. 01
11
Same as DLOAD except T(X) become T(MPAC) and store mode -
is setto TP.
VLOAD X Load MPAC with a Vector .91 m. S. 01
11
Same as DLOAD except V(X) become V(MPAC) and store mode
is setto vector.

A-19




Table A-3. Interpretive Instructions (Sheet 2 of 14)

Addressing
Llass,
SLOAD X Load MPAC in Single ‘01
Precision 74m.s. 11
Same as DLOAD except (8(X), 0,0) become T(MPAC). X
rnay not be vacuous.
PDDL X Push Down and
load MPAC in DP Bl m. 8. 01
11
D(MPAC), T(MPAC) or V(MPAC) are pushed down; (I{X), 0)
become (T(MPAC) with the store mode setto DP. X may be direct,
indexed, or vacuous.
PDVL X Push Down and load
MPAC with a vector 1.14 m. s. 01
11
Same as PDDL except V(X) become V(MPAC) and the store mode
is set to vector.
PUSH Push Down .55 M. 8, 01
11
D(MPAC), T(MPAC) or V(MPAC) are pushed down.
SETPD X Set Push-down Pointer . .58 m. s,
Set the Push-down Pointer PUSHLOC to X, where X is in local
erasable memory. X must be direct.
B. Scalar Arithmetic Operations - All addresses may be direct, indexed,
or vacuous.
DAD X DP Add .66 M. 8. 01
11
D(MPAC) + D(X) replace D(MPAC). Set OVFIND on Overflow,
and leave the overflow-corrected result in MPAC.
DU X DP Subtract .66 M. S. 01
11
D(MPAC) ~D(X) replace D(MPAC). Set OVFIND on overflow, and
overflow-correct the result.
BDSU X DP Subtract From .74 m.S. 01
11

D(X) - D(MPAC) replace D(IMPAC). Set OVFIND on overflow,
and overflow-correct the result.

A-20




Table A-3, Interpretive Instructions (Sheet 3 of 14)

Addressing,
Class,
DMP X DP Multiply 1.13 m. s, 01
11
D(X) times D(MPAC) replace T(MPAC).
DMPR X DP Multiply and Round 1.29 m.s. 01
11
D(MPAC) D(X) = P is formed and rounded to DP so that (P,0)
replace T(MPAC).
DDV X DP Divide By 2.48 m. 8. 01
11
If | DIMPAC) | < | D(X)| , the DP quotient Q=D(MPAC) /
D(X) is formed and (Q, 0) replace T(MPAC). Overflow indication is set
if required. +,999999 replace D(MPAC) in this case.
BDDV X DP Divide Into 2.50 m. s. 01
11
Same as DDV except Q = D(X) / D(MPAC) if
| DX)| < | D(MPAC) | .
SIGN X DP Sign Test 70 M. S. 01
11
X must be inerasable memory. I D(X) 2 0, no operation occurs.
Otherwise if store mode is DP or TP, -T(MPAC) replace T(MPAC); if
store mode is vector, -V(MPAC) replace V(MPAC).
TAD X TP Add LT85 m. s,
T(MPAC) + T(X) replace T(MPAC). OVFIND is set on overflow,
with the overflow-corrected result left in MPAC.
C. Vector Arithmetic Operations.
All addresses may be direct, indexed, and any but MXV and VXM
may have vacuous addresses.
VAD X Vector Add 92 m.s. 01
11

V(MPAC) +V(X) replace V(MPAC). Set OVFIND on overflow in
any component, leaving the overflow-corrected result.

A-21




Table A-3. Interpretive Instructions (Sheet 4 of 14)

Addressing

VSu X Vector Subtract .92 M. S. 01
11
V(MPAC) - V(X) replace V(MPAC). Set OVFIND on overflow in
any component, leaving an overflow-corrected result.
BVSU X Vector Subtract From 1.17 m.Ss. 01
11
V(X) - V(MPAC) replace V(MPAC). Set OVFIND on overflow of
any component, leaving an overflow-corrected result.
DOT X Vector Dot Product 3.08 m.S. 01
11
V(MPAC). V(X) replace T(MPAC), settingthe store mode to DP.
Set OVFIND if overflow occurs, leaving an overflow-corrected result.
VXS8C X Vector Times Scalar 3.27 m.s. 01
11
If the initial store mode is Vector, each component of V(MPAC)
is multiplied by D(X), the rounded products replacing their respective X
components of V(MPAC). If the initial store mode is DP or TP, change
it to Vector, and each component of V(X) is multiplied by D(MPAC) to
form V(MPAC) as above.
v/sC X Vector Divided by Scalar 5.39 m. s. 01
11
If the initial store mode is Vector, each component of V(MPAC)
is divided by D(X), the DP quotients replacing their respective com-
ponents of V(MPAC). If the initial store mode is DP or TP, it is changed
to Vector, and each component of V(X) is divided by D(MPAC) to form
V(MPAC). If overflow occurs in any component, the operation is
terminated with OVFIND set and unspecified results in MPAC.
VXV X Vector Cross Product 4.98 m.s. 01
11
V(MPAC) * V(X) replace V(MPAC). Set OVFIND if overflow
occurs, leaving an overflow-corrected result.
VPROJ X Vector Projection 5.75 m.s. 01
11

[V(MPAC)-V(X)] V(X) replace V(MPAC). Set OVFIND on
overflow, and leave the result obtained with overflow-corrected
V(MPAC). V(X)]

A-22




Table A-3. Interpretive Instructions (Sheet5 of 14) Addressin:
Class
VXM X Matrix Pre-Multiplication
by Vector 8.98 m. s. 01
11
V(MPAC)T Mx)T replace V(MPAC). Set OVFIND on overflow,
leaving an overflow-corrected result.
MXV X Matrix Post-Multiplication
by Vector 8.97 m.s. . 01
11
M(X) V(MPAC) replace V(MPAC), Set OVFIND on overflow,
leaving an overflow-corrected result.
D. Scalar Functions.
SQRT DP Square Root 1.94 m. s. 00
SQRT (D(MPAC)) replace T(MPAC); i.e. the initial contents
of MPAC are normalized, the DP square root of the normalized number
computed, and that result unnormalized so that MPAC +2 has marginal
significance. Receipt of an argument less than ~10-4 causes an abort.
SIN (SINE) DP Sine 5.63 m. s. 00
.5 (Sin (27 D(MPAC)) replace T(MPAC).
COS(COSINE) DP Cosine 5.80 m. s. 00
.5 (Cos (2™ D(MPAC)) replace T(MPAC).
ARCSIN (ASIN) DP Arc-sine 9.26 m. sS. 00
(1/2m) Arc-sine (2DMPAC)) replace T(MPAC). This is the
inverse of the SIN function. Receipt of an argument greater than . 5001
in magnitude causes an abort.
ARCCOS (ACOS) DP Arc-Cosine 9.12 m.,s. 00
(1/27) Arc-Cosine (2D(MPAC) replace T(MPAC). This isthe
inverse of COS, Receipt of an argument whose magnitude is greater
than , 5001 causes an abort.
DSQ DP Square .76 m.S. 00

D(MPAC) times (D(MPAC) replace T(MPAC).

A-23




Table A-3. Interpretive Instructions (Sheet6 of 14) Addressing
CIage
'ROUND ‘ Round to DP «56 M. 8. 00
T(MPAC) are rounded to DP so that (ROUND (T(MPAC)), 0)
replace T(MPAC), Set OVFIND if overflow occurs, leaving an overflow-
corrected result, +0.
DCOMP TP Complement .52 m. 8. 00
~-T(MPAC) replace T(MPAC).
ABS TP Absolute Value 48 M. S, 00
| T(MPAC) | replace T(MPAC),
E. Vector Functions.
UNIT Unit Vector Function 6.46 m. s. 00
V(MPAC)/2 | V(MPAC) | replace V(MPAC). |V(MPAC)| 2
replace D(34D)and | V(MPAC) | replace D(36D), Set OVFIND if
| V(MPAC) | <2-210r |V(MPAC) | = 1in which case the result
is incorrect.
ABVAL Vector Length 3.86 m. s. 00
| V(IMPAC) | become T(MPAC), changing the store mode
to DP. In addition, | V(MPAC) | 2 replace D(34D). The result is zero
if | V(MPAC) | <2-21, K |V(MPAC) | = 1 setOVFIND to indicate
unspecified result.
VSR Square of Vector Length  2.21 m, s, 00
| V(MPAC) | 2 become TMPAC), changing the store mode
to DP. If | V(IMPAC) | = 1, set OVFIND and leave an overflow-
corrected result.
VCOMP Vector Complement .63 M. 8. 00
-V(MPAC) replace V(MPAC).
VDE F Vector Define .87 mM.S. 00

Push up for Vv and again for Vz so that (D(MPAC), Vy,VZ)
become V(MPAC), settingthe store mode to vector.

A-24




Table A-3. Interpretive Instructions (Sheet7 of 14)

F. Shift Instructions.

Addressin
Class

1, Short Shifts 00

SR1 Scalar Shift Right -85 M. 8. 00

SR2 ,85m.S.

SR3 .85 m.S.

SR4 .85 m. s,

T(MPAC) 27J replace T(MPAC) (j= 1,2, 3,4).

SL1 Scalar Shift Left .72 m. 8. 00

SL2 .95 m. 8.

SL3 1.17 m.s.

SL4 1.39 m.s.

T(MPAC)x 213 replace T(MPAC) (J = 1,2, 3,4). If significant
[bits are lost, set OVFIND but leave the overflow-corrected result as
T'(MPAC).

SRIR Scalar Shift Right 99 M. 8. 00

SR2R and Round .99 m. s.

SR3R .99 m. s.

SR4R 99 m. s.

T(MPAC)x 27J is rounded to a DP number R and (R, 0) replace
T(MPAC) () = 1, 2, 3,4).

SL1R Scalar Shift Left .88 m.s. 00

SL2R and Round 1.10 m.s.

SL3R 1.32 m.s.

SI4R 1.54 m. s.

T(MPAC)x 2™ is rounded to a DP number R and (R, 0) replace
T(MPAC) (j = 1,2,3,4). If overflow occurs, set OVFIND and leave the
overflow-corrected result as T(MPAC).

VSR1 Vector Shift Right 2.01m.s 00

VSR2 and Round 2.01 m.s.

VSR3 2,01 m.s.

CSR4 2,01 m.s.

VSRS 2.01 m.s.

VSR6 2.01 m.s.

VSR7 2,01 m.s.

VSRS 2.01 m.s.

multiplied by 2-J and rounded to DP. (J = 1(1)8).

Each component of V(MPAC) is replaced by the original value

A-25




Table A-3. Interpretive Instructions (Sheet 8 of 14) ck_ﬂ__gAddressin
VSL1 Vector Shift Left .81 m.s. 00
VSL2 1.18m. s
VSL3 1.55 m, s,
VSL4 1.93 m.s.
VSL5 2.30 m. s.
VSL6 2.68 m. s.
VSL7 3.05 m. s,
VSLS8 3.43 m. s.
~ Each component of V(MPAC) is replaced by the original value
multiplied by 2 +J (j = 1(1)8). If overflow occurs in any component, leave
the overflow-corrected result and set OVFTND.
2. General Shifts. Addresses may be direct or indexed.
SR X General Scalar Shift 1.38 m. S. 01
11
Right +,23 INTEGER (X/14) m.,s.
T(MPAC)x PIRE replace T(MPAC) where -42 <X <42 (X can
be negative only if the address was indexed. Address limits are 0 <X <42
if direct and -128<Xg < 128 if indexed. Xgis the stored address before
index modification: X is the net address in any case. On overflow leave
the overflow-corrected result and set OVFIND.
SL X General Scalar Shift 1.03 m. S. 01
Left +. 22X m.s. 11
Same as SR except that T(MPAC)2X replace T(MPAC).
SRR X General Scalar Shift 1.52 m.s. + 01
Right and Round .23 INTEGER (X/14) m. S. 11
Same as SR except that T(MPAC)x g'x Is rounded to a DP number
R and (R,0) replace T(MPAC). Address limitsare 0< X < 29 if direct.
SLR X General Scalar Shift 1.18 m.s. + 01
Left and Round 22 X m. S. 11

Same as SL except that T(MPAC)x 2x is rounded to a DP number
R and (R, 0) replace T(MPAC), Direct address limits are 0 < X < 14.

A-26




Table A-3. Interpretive Instructions (Sheet 9 of 14)

VSR X General Vector Shift 2.61m.s. 01
Right +. 82 INTEGER (X/14)m. s. 11
Each component of V(MPAC) is replaced by the original value
multiplied by 2=X and rounded to DP. If X is an indexed address and the
result address negative, do a VSL -X instead. Address limits are
0< X< 29 if direct and -128 < Xg < 128 if indexed.
VSL X General Vector Shift .89 m. a. 01
Left + 37 X m. 8. 11
Each component of V(MPAC) is replaced by the original com-
ponent multiplied by 2X. On overflow of any component, leave the
overflow-corrected result and set OVFIND. If the address was indexed
and the resulting address negative, VSR(-X) instead. Address limits'are
0< X< 28 if direct.
3. Normalization. Address may be direct or indexed.
NORM(SLC) X Scalar Normalize .88 m. s. 01
+.21 N m.s. 11
An N is found such that | T(MPAC) | 2N = .5 provided T(MPAC)
= 0. -N replaces S(X) and T(MPAC)x 2N replace T(MPAC). K T(MPAC)
= 0, -0 replaces S(X) and T(MPAC) are unchanged.
G. Branching, Sequence Changing, and Subroutine Linkage Instructions.
All have a direct address except EXIT and RVQ. Any such
address except those associated with transition to basic language (RTB
and BOVB) is interpreted as indirect if it refers to erasable memory.
Any level of indirect addressing is allowed.
GOTO X Go To .77 m. s. 10
Begin executing interpretive instructions at X. QPRET is
undisturbed. GOTO is a right-hand operation code.
CALL X Call a Subroutine .89 m.s. 10
Begin executing interpretive instructions at X. A return address
is leftin QPRET. CALL is a right-hand operation code.
CGOTO X Computed .90 m. s, 10
Y GoTo

The contents of X(X in erasable) are added to address Y(Y in

fixed) and the address at Y + S(X) is selected. Begin executing interpretive

instructions there unless the address is in erasable, in which case it is
interpreted as indirect. CGOTO is a right-hand op code.

A-27




Table A-3, Interpretive Instructions (Sheet 10 of 14)

Addressin
Class

CCALL X Computed 1.07 m. s. 10
Y Call
Same as CGOTO except that a return address is leftin QPRET in
addition. CCALL is a right-hand op code.
RVQ(ITCQ) Return Via QPRET .69 m. s. 10
Begin executing interpretive instructions at the locationwhose
address is in QPRET. This may be used to return from a subroutine
which contains no CALL or CCALL instructions. [If QPRET contains the
address of an erasable register, the address is interpreted as an in-
direct address. RVQ is a "'right-hand op code''.
STQR(ITA) X Store QPRET .69 m. s. 10
S(QPRET) replaces S(X) (X in erasable). This may be used to save
the return address in subroutines which contain CALL and CCALL instruc-
tions. The STQ X in this case is eventually followed by GOTO X to return.
BPL X Branch Plugs .65 m.s. + 10
.19 m.s. GO
If TIMPAC) ~ 0, do a GOTO X. Otherwise, no operation occurs.
BZE X Branch Zero .65 m.s. 10
+.19m.s. GO
If T(MPAC) =0, do a GOTO X. Otherwise, no operation occurs.
BMN X Branch Minus .67 m. s, 10
+.19m.s. GO
If T(MPAC) < 0, do a GOTO X. Otherwise, no operation occurs.
BHIZ X Branch High .6 m. s. 10
Order Zero + 19m.s. GO
If S(MPAC) = 0, do a GOTO X. Otherwise, no operation occurs.
BOV X Branch On .58 m. s, 10
Overflow +.23 m.s. GO
If OVFIND is set, reset it to zero and do a GOTO X.  Otherwise,
no operation occurs.
BOVB X Branch On .58 m. s. 10

Overflow to Basic +.,16 m,8, GO

If OVFIND is set, reset it to zero and begin executing basic
instructions at X. Otherwise, no operation occurs, X mustbe in fixed
memory.

A-28




Table A-3. Interpretive Instructions (Sheet 11 of 14)

Addressing

£1ass
RTB X Return to Basic .71m.S. 10
Begin executing basic instructions at X. X must be in fixed
memory.
EXIT Exit from Interpreter .26 m. S. 10
Begin executing basic instructions after the last op code or
address word referenced by the interpreter as follows:
1) If EXIT is a left-hand op code, go to the word after the
EXIT instructions;
2) I EXIT is a right-hand op code, go to the word following the
last address used by the left-hand op code.
EXIT is a right-hand op code.
H. Switch Instructions,
SET X Set Switch 1.27 m. s. 10
Set switch X to 1.
CLEAR X Clear Switch 1.25 m. s. 10
Clear switch X to 0.
INVERT X Invert Switch 1.27 m. s. 10
Invert switch X; i.e., if 0, setto 1;if 1, clear to 0.
SETGO X Set Switch 1.54 m. s. 10
Y and Go To
Set switch X to 1and do a GOTO Y. SETGO is a right-hand op code,
CLRGO X Clear Switch 1.52 m.s. 10
Y and Go To
Clear switch X to 0 and do a GOTO Y. CLRGO is a right-hand
op code.
INnvVGo X Invert Switch 1.54 m. s. 10
Y and Go To

Invert switch X and do a GOTO Y. INVG@GO is a right-hand op code.

A-29




Table A-3. Interpretive Instructions (Sheet 12 of 14)

1 Switch Test Instructions.

Addressin
CIEss

BON X Branch if' 1.26 m. s. 10
Y Switch On +.23 M. 8.
If switch X is setto 1, doa GOTO Y. Otherwise, no operation
occurs.
BOFF X Branch if 1.27 m.s. . 10
) Y Switch Off +,23 m. s. GO
If switch X is cleared to 0, do a GOTO Y. Otherwise, no operation
occurs.
BONSET X Branch if Switch 1.37 m.s. 10
Y On, Setting Switch +.23 m. s. GO
Set switch X to 1. If initially setto 1, do a GOTO Y. Otherwise,
no further operation occurs.
BOFSET X Branch if Switch 1.39 m.s. 10
Y Off, Setting Switch +.23 m.s. GO
Set switch X to 1. If initially clearedto 0, do a GOTO Y. Other-
wise, no further operation occurs.
BONCLR X Branch if Switch 1.35 m.s. 10
Y On, Clearing Switch +.23 m.s. GO
Clear switch X to 0. If initially setto 1, do a GOTO Y. Other-
wise, no further operation occurs.
, BOFCLR X Branch if Switch . 1.36 m. s. 10
Y Off, Clearing Switch +,23 m.s. GO
Clear switch X to 0. If initially cleared to 0, do a GOTO Y.
Otherwise, no further operation occurs.
BONINV X Branch if Switch 1.37 m.s. 10
Y On, Inverting Switch +. 23 m.s. GO
Invert switch X. If originally setto 1, do a GOTO Y. Otherwise,
no further operation occurs.
BOFINV X Branch if Switch 1.39 m.,s. 10
Y Off, Inverting Switch +,23 m.s. GO

Invert switch X. If originally clearedto 0, do a GOTO Y. Other-
wise, no operation occurs.

A-30




Table A-3. Interpretive Instructions (Sheet 13 of 14)

Addressin
J. Index Register Instructions. Class

AXT, 1 X Address to ,75 m. S. 10
AXT, 2 X Index True

X replaces $(XT) (T = 1,2).

AXC, 1 X Address to .76 m. S. 10
AXC, 2 X Index Complemented

-X replaces S(XT).

LXa, 1 X Load Index .78 m. S. 10
LXA, 2 X from Erasable

S(X) replaces S(XT).

LXc, 1 X Load Index .78 m. S. 10
LXxc, 2 X from Erasable Complemented

-S(X) replaces SXT).

SXA, 1 X Store Index .78 m. s. 10
SXA, 2 X in Erasable

SXT) replaces S(X).

XCHX, 1 X Exchange Index .83 m. s. 10
XCHX, 2 X with Erasable

S(XT) replaces S(X) which then replaces 8(XT).

INCR, 1 X Increment Index .76 m. S. 10
INCR. 2 X

The overflow-corrected sum of 8(XT) and X replaces S(XT).

XAD, 1 X Index Register L7 m. s, 10
XAD, 2 X Add

The overflow-corrected sum of S(XT) and S(X) replace S(XT).

Xsu,1 X Index Register Subtract .78 M. 8, 10
Xsu, 2 X

The overflow-corrected difference S(XT) - S(X) replaces S(XT).

A-33.




Table A-3. Interpretive Instructions (Sheet 14 of 14) Addressing

Llass
TIX, 1 X Transfer on Index I8 m.s. . 10
™, 2 X +.26 M. s. GO
If S(XT) = S(ST) (T=1,2), no operation occurs. Otherwise,
S(XT) = S(ST) replaces S(XT) and a GOTO X is executed.
K. Miscellaneous Instructions.
SSP X Set Single .67 m.s. 10
Y Precision
Y replaces 8(X). Y may be any constant: arithmetic, logical,
address, etc.
STADR Push Up On .26 m. S. 00
Store Code
During assembly, the appearance of STADR causes the next store
code to be stored complemented. During execution, STADR complements the
next word to be referenced by the interpreter and enters the store code
processor. STADR is a right-hand op code.

A-32




APPENDIX B.

EXPLANATION OF SAMPLE PROGRAM LISTING

INTRODUCTION

A page from a program listing is shown on Figure B-1. Call numbers 1 through 20 have
been added for ease of explanation. The numbers below correspond with the call numbers
on the figure.

1.
2.
3.
4,

5,

10.

Assembler language.

Program title,

Program listing page number.

Routine title.

Routine page number.

Basic data.

Calling sequence of the Alarm routine by another routine. Assume TC ALARM = L
and OCT AAANN = L+ 1. The alarm number is NN and the general area of the alarm
is AAA, A listing of the complete alarm numbers (AAANN) and their definitions is

provided in the section of this study guide which contains the explanation of the Alarm
routine.

This is a card used to indicate to the assembler to start the assembly of the routine at
at octal address 5644.

This notifies the programmer that the EBANK being used is the same bank as is
associated with FAILREG. In this case, E2 is used.

Column depicting the programmer’s punch card number.




2 3

T e e = e AT T T e e e e - e - > a—

Tt T —‘"——*——

e e M B ‘\ ( e Y R
—-392038 YML 5Y§IL FOR 8(K2: “IVISITY G OF EROSRA S'J_{DIALB EY ‘iﬁﬁl\ ZOZIIQQ_QIL.____ IR ___MU.‘_M_._(MAML_..PM_
U SO S - - — - e e — —— - . _§ —

TTALAAK_£3D_ABCRT ‘_‘ﬂ T ' ) . _T_USER'S OWK PAGEMO. 1_. . _

_Rooar THE _ZOLLOAL: 6 SUSROJTINE _AY BE CALLED T£ DISPLAY. _A_.\IJ‘I.ABQ_TLVE _ALARM CONDITION, 1T MAx_JaEJ:ALLa@__
_Ro0o3. _EITHE? IN INTERRUPT 0N \:r£R EXECLIIVE CONTROLa .. . oo o

_RODC4& .. .- _ CALIING SEJUTILE IS A4S S FILLOMSE o __ft____.,d.._ R

O U

T ROODS .. CTC  ALARY oo T S 2 S,
L RO0CE. OCT ARANA ALLRJJQ._NN N .GE’IERALJEEA_AAA._ R - :
- ~-RODGT : - e lsLIuBQS.HERE

- FAILRES _. ——SEE_JEQNE_EALLURE HAS' OCCUREED SINCEM——
e i JHE | AST _ERROR RESETe- - . ——
MULTFAIL . __ _YES = UiDlCAIE.-MULIlELE-ﬂILURES. R
"JEaALARL,-_. ——FIRST. SINCE RESETe it e .. R

0015 _ , .
e QOdE e

' ",,'_-‘nau T LT T vOLTEXIT rzupmese - FREE RUPTREGA agFoRaREL}iqT
YT S ' 5553 0 a3c3 % - . R Y

o R S - S
0 . T 1 ZRETURN To CALLER. 2
v ... Ses6 663621 MULTFAIL AD - CCT4000L _ .”._—_ax“t_ﬁq' = 1 JNDICAT Eﬂﬁﬁ;ﬁim&m‘—’—w_
_oe22 . . __ | . =s%7 550331 . __ . 1S FAILREG . ... SR A

. 5653 RS ST 5" 5 S oI L LTI

0019 L '5:34 50 2601
_nnzn_ O o oL =ass 2 23010

Sed2a .. ... 461 C 5071 L. XEWALARM TC PRCGLARM rusw ON THE PROGRAM ALARM. usux. SR

. 0525 Tl ) 56862 3 44853 1 CAF. BRIC3T L S e
...0026° . Tl . . BA%3 O 4276 ) 1C NOYAL . e e . e
. 0e27 - _ G&sz. FTVEN! 2CADR DOALARM )20 ..CALL (SEPARATE] JCB FOR DISPLAY, .. ._ _—

T0EX BJPTREGS . T T

1
S 5 1
-.0C23 N 5657 3 coe0 1 . CAF o] . — e —
.. G339 . —~ S€T3 C 3577 0 TC MULTFAIL #1 . R o me e e e e e
003y, . 8e.71 & 5576 1 PRIOGLARY &5 2CT49400 TURN. 0N PROGRAM. ALARM. LIGHT via aurn._ —_—
Qc32 Eer2 7 032222 TASK DSETAR 11D e
0C33 £273 & 58T€ ) 8) 20740400 . e
G234 R 347y 54 22 D TS NS3TAR +11D .
o235 =275 € 0512 90 TZ o} — L oo

.. 15 e -
0I35 BRI #5422 1) 0CT42600 227 40400 -

J —— O — _

10 11 12 16 17 18

Figure B-1. Sample Program Listing
B-2




11. Column depicting the fixed memory address. FBANK 2 is implied when the general
address is 40008 or 50008. FBANK 3 is implied when the general address is 60008 or
70008. Any other FBANK is designated by, for example, 01, 2160 where 01 is FBANK 1
and 2160 is the general address.

12.  Column depicting the contents of the adjacent fixed memory address. The contents
can be instruction or data words. Two instruction words are explained in 13 and 14. A
data word is explained in 15.

13. A typical instruction word is shown and is broken down into its parts below:

56 002 0 XCH Q (mneumonics)
Operation Code ————J (TAKE CONTENTS OF Q AND
(noted as 05.6; an PUT IT INTO A, AND TAKE
Exchange Instruction) THE CONTENTS OF A AND

PUT IT INTO Q)
General Data Address

(Inthis case Q)

Parity

(Inthis case 0, because

odd parity is used)

14. Shownbelow is a contraction of an instruction word as noted by the apostrophe mark.
11 ! 363 1 CCS FAILREG

To determine the operation code, general address, EBANK and Parity, the word will be
converted from octal to binary:

BITS 15 14 13 12 11 10,9 8 7 6 5 4 3 2 1
BINARY NOTATION o o 170 O 1(0 1 1|1 1 0|0 1 1
OCTAL NOTATION 1 1 3 6 3 1

PARITY
BIT

Bits 1 = 10 define the general address, 1363g.
Bits 9 = 10 define the EBANK, 2g.

Bits 11 - 15 define the operation code 01.0sg.

B-3




15. Shown below is a typical data word:

40400 1 OCT 40400
—
DATA WORD 1 L NOTE: A 1is required for odd parity since
there is an even number of 1's in the
PARITY BIT l word given.
0Ot1 0 0|0 0 0|1 0 O0}0 0 0jO0 0 O
0 4 0 4 .0 0

16. Subroutine orscontent referral.

17.  Mneumonics associated with the contents of the adjacent memory location (for ease
of reading only).

18. Programmer's remarks (explain unique situations or functions).

19, Note that INHINT, inhibit program interrupt, and RELINT, remove program
interrupt inhibit, are implied instructions using the operation code of "transfer control"'
to an address which is specifically designated to functionally establish the inhibits or
release inhibits of program interrupts.

20. The 2CADR address constant is described below. This constant code is intended to
be used as the operand of a DTCB (DXCH Z) instruction.

Two constant words are generated by this code, The first word, in this case, Octal 03113,
is called GENADR (General Address) while the second word, Octal 02002, is called BBCON
(Both Bank Constant), The explanation of 2CADR DOALARM is as follows:

DOALARM is located in FBANK 01.
¢(BBANK) :OctaI02002:Binary \0 0O 00, 00O OOO 0,06 4 90,

v

FBANK = 0lg EBANK = 24

Since FBANK uses'the top five bits of BBANK (Both Banks), the FBANK associated with
the ZCADR is 01. The low three bits of BBANK are assoclated with EBANK. Therefore,
the EBANK used will also be 2.




APPENDIX C

INTERPRETNE PROGRAMMING

INTRODUCTION

The list-processing, algebraic interpreter is a Program Section in the CMC's and LGC's
Fixed Memory which Is used to decode and execute mission function routines that are stored
in the computer's memory in interpretive language. Interpretive language IS defined as a
pseudo-algebraic language which is oriented toward the specific types of problems that
must be solved on the Apollo Mission. Mission function routines can be prepared and then
assembled in interpretive language with a considerable saving of required program-storage
memory area, however the savings in program-storage is offset by the additional time
required to perform a specific arithmetic operation,

The problem orientated programs are assembled by another computer program referred to
as a YUL assembler. The assembled program is then wired into the fixed memory of the
Apollo computer, The Interpreter Program Section converts the problem orientated
program listing into the basic machine instructions, or language, atthe time on interpretive
program IS to be executed.

The organization and operation of the Interpreter Program Section and an analysis of
interpretive language programming will be presented after a general discussion of multi-
precision operation of the computers under program control.

C.1 MULTI-PRECISION OPERATION

C. 1.1 MULTI-PRECISION NUMBERS. Most of the variables used in solving the cam-
plex, mathematical equations which make up the Apollo Guidance & Navigation Program
require more accuracy in expression than can be obtained from 14 significant bits of
binary data. Therefore, the interpretive language system for the Apollo computers is
centered around multiple-precision computation. The Interpreter Program Section
provides for three, multi-precision modes of operation:

a. Double Precision Mode: where the double-precision quantity X is stored at locations

x and x + 1, and where the value of x is equated to [c(X) +cX+1) X 2‘14].

h, Triple Precision Mode: where the triple-precision quantity u is stored at locations
U, U+1, and U+2, and where the value of u is equated to {e(U) + ¢(U +1) X o~14

o(U +2) x2728] .

c. Double Precision Vector Mode: where the three, double-precision, orthogonal
components r, S, and t of vector v are stored at locations V through V + 5, and where
the value of the components are equated to r = [c(V) + ¢(V +1)X Z'Iﬂ , S~=

[ev+2) + o(v +3) x 2714] | and t = [e(vsd) + o(v+5) x 2714].




As with single-precision variables in the basic machine language, the fixed, binary point
for a multi-precision variable Is considered to be located between bit positions 15 and 14
of the most significant 14 binary bits; and therefore, the variable IS expressed entirely
fractional.

C. 1.2 INTERPRETIVE ACCUMULATOR = MPAC. In order to carry out multi-
precision calculations, the Interpreter Program Section is provided with a Multi-Purpose
Accumulator (MPAC) which is used in a manner similar to the accumulator In the
computer's Central Processor. The use of the MPAC is completely under program
control. The MPAC consists of a set of seven E-Memory locations which are assigned
by the Executive and which are, by definition, located in the Core Set Area for the
active job that is currently being executed. Actually, the first seven locations in the
Core Set Area for each job listed on the Job list can be considered to be the MPAC for
that job, (See figure 2-1 Executive Core Set List), However, these locations are really
used for temporary storage locations only if the job has been placed on the Job list,

but not yet initiated; or, they are used to store the contents of the MPAC when the job

is "'put to sleep" or when the job is displaced for a higher-priority job by the Executive.
The array of the seven locations of the MPAC is similar to the array for any multi-
precision quantity (i.e. X, u, or vy, except that in the Double-Precision Vector Mode,

the three double-precision components are stored at locationsE\(IPAC + (MPAC + 1) X

2"14] | [MPAC +3) + (MPAC + 4) x 2°1%] and[MPAC + 5) + (MPAC + 6) x 2-14]

and, location MPAC + 2 is not used,

C. 1.3 MEMORY ORGANIZATION, When a multi-precision quantity is stored in
memory, the 14 significantbits stored at location K will always be the most significant
14 bits of the quantity. The Interpreter Program Section automatically uses the
locations which immediately follow location K (i.e., K+ 1, ---K + 5) as required to
store the lesser significant, 14 bit segments, A vector quantity will always have its
orthogonal components stored in the order: 1, j, k (i.e., i= K&K+ 1 j=K+2&
K+3, k=K+4&K+5). For this reason, whenever an E-Memory location IS
assigned to a particular, variable, multi-precision quantity, the next-higher-numbered
location(s) must be reserved for storage of the quantity's lesser-significant, 14 bit

segment(s).

Most of the banks of the computer's Fixed-Switchable Memory and most of the E-Memory,
including all of the E-Banks, may be used for interpretive language program sections,
interpretive constants and variables. However, some limitations on usage and bank
switching do exist, For interpretive considerations, Fixed-Switchable Memory can be
divided into three parts, The lower part consists of Banks 04 through 17. Fixed-
Fixed Memory (Banks 02 and 03) and Banks 00 and 01 Fixed-Switchable Memory contain
the Interpreter Program Section itself, and are not available for interpretive language
program sections or interpretive constants. The two upper (or higher) parts consist

of the higher-order banks of Fixed-Switchable Memory (Banks 21 through 27) and the
five, Fixed-Extension Channels (Banks 30 through 77) respectively. Bank 20 is not
available for interpretive language program sections or interpretive constants.

c-2




The Interpreter Program Section cannot switch Fixed-Extension Channels; it is assumed
that any interpretive language program section can be contained in the first and second
parts or Fixed-Switchable Memory plus one Fixed-Extension Channel (eight banks).
Interpretive language program sections may be stored anywhere in the above three parts
of Fixed-Switchable Memory that IS available to interpretive language program sections,
Any interpretive language program section that is located in the first or second part

or in any single channel of the third part of Fixed-Switchable Memory may branch to
any other interpretive language program section that IS not in another Fixed-Extension
Channel. However, constants used by a program must be taken from the section con-
taining the program.

Variables may be stored anywhere in erasable memory except the input/output channels
and registers (00)g through (57)g. The Interpreter Program Section cannot switch
E-Banks; however, general-erasable memory from location (60)¢ through location
(1377)g plus the current E-Bank (referredto as "local erasable"? are together available
for variable storage and temporary storage for calculated results.

C. 1.4 THE PUSHLIST. The Interpreter Program Section provides a set of 38 locations
in the Work Area assigned by the Executive that is known as the Pushlist. The name

is derived from the term push-down list or a set of storage locations which exhibit

a last-in, first-out behaviour (i.e., the last quantity entered into the list is normally
the first quantity to be recalled.) Sufficient work-area locations are provided in the
Pushlist to allow more than one double-precision, triple-precision, or vector quantity
to be stored. If three such quantities are stored before any quantity is recalled, the last
quantity entered would be recalled first, the second quantity entered would be recalled
next, and the first quantity entered would be recalled last.

The push-down list that is provided by the AGC Interpreter Program Section is peculiar
in its design in that any quantity stored anywhere in the list (double-precision, triple-
precision, .or vector) may be read out by an indexed address operation without erasing
the quantity stored or changing its location with respect to any other quantity stored in
the list. This peculiar capability is in addition to, and does not affect the normal
capability which effectively ""erases' the content of the last location used after recall

to make it available for future temporary storage use.

The advantage of the Interpreter Program Section% peculiar type of push-down list is
that a quantity may be formed == for example, a double-precision multiply operation
followed by a double-precision add operation == and then stored in the Pushlist in the
normal manner. It may then be recalled as many times as is needed, without erasing
it or changing its value or location in the Pushlist as long as It Is always recalled by the
indexed-address method instead of the normal method. The indexed-address recall
provision does not affect or nullify the normal push-down capability (i.e., the last-in,
first-out capability) of placing another guantity 'on top of"* the first quantity, and then
recalling the last quantity first.

The manner in which quantities are entered into and recalled from the Pushlist will be
discussed in the following section.




C.2 INTERPRETIVE INSTRUCTIONS

C.2.1 ORGANIZATION OF INTERPRETIVE LANGUAGE PROGRAMMING. Interpretive
language programming differs considerably in format from basic language programming.
An interpretive instruction requires a 7-bit order code for expression; whereas, the
basic language instruction order code requires only three to five bits. It is desirable

to employ address codes for constants that allow these constants to appear In a

different bank from the instruction program routine. It is also desirable to allow
instruction program routines to branch to other routines anywhere In Fixed-Switchable
Memory. Therefore, the interpretive address code must be a complete address code

(a CADR); whereas, the basic language instruction address code gives only the sub-
address within the current F-Bank.

Due to the limited CGC/LGC word length, it is not practical to pack the interpretive
instruction order code and its relative address code into one word of computer
memory. Interpretive instructions are packed In Interpretive Instruction Words (IITW's)
with two order codes in bit positions 1through 7 and 8 through 14, respectively.
Addresses for constants and branch addresses are given a full computer memory word;
whereas, the address of a variable in local erasable memory only requires 10 bits.
Instructions which store the contents of an accumulator are generally the only ones
whose addressing capability may be restricted to local erasable memory; therefore,
these instructions contain an E-Memory address in bit positions 1through 10, and the
instruction order code in bit positions 11through 14.

An 1IW which contains two interpretive instruction order codes will normally be fol-
lowed in an interpretive program listing with two Interpretive Address.Words (IAW's)
which contain the relative addresses for the two interpretive instructions. If the

second interpretive instruction order code (bit positions 8 through 14) is a branch
instruction, the second IAW below will be a branch address. Some interpretive instruc-
tions such as function codes (for sine, cosine, square root, etc. functions) and some
shift instructions (shift right one, shift left two, etc.) are unary in nature and require no
IAW. (All function and shift instructions operate exclusively on an accumulator.)

When more than one mathematical execution is involved in solving an equation, the
OW's which program the executions, together with their relative IAW's, are formed
into an Interpretive Program String. The first interpretive instruction order code in a
program string will always be a LOAD Instruction to "load" the interpretive
accumulator (MPAC). This instruction also sets the mode of operation (D.P., T.P.,
or Vector Mode) of the Interpreter for the program string. When program control is
transferred to the Interpreter, program operation extracts one IIW at a time from the
Interpretive Program String, decodes the order code(s), then mates each interpretive
instruction with Its relative CADR. The CADR(s) is/are obtained from the IAW(s)
immediately below the TW in the program string. Each interpretive instruction IS
then executed by the Interpreter before another ITW is extracted from the program
string. Interpretive Program Strings are normally terminated by a STORE Instruction
which stores the resultant contents of the accumulator (MPAC) at some designated
E-Memory storage location, The number of successive locations used to store the
result is determined by the mode of operation for the program string.




C. 2.2 INTERPRETIVE INSTRUCTION ADDRESSING CLASSIFICATIONS. Two index
registers, XI, and X2, are provided in the Work Area that is assigned by the Executive
for addressing modification of IAW's under Interpreter program control. When the
interpretive instruction order code specifies that a given IAW is to be indexed, the IAW
will be stored complemented for Index Register 2, and stored normally if Index Register
listo be used. The indexed operand address IS obtained by subtracting the content of the
specified index register from the address specified In the IAW. In addition to the index
registers, two step registers , S1 and S2, are provided for reducing the contents of the
two index registers by specified "step-function' amounts. A set of interpretive instruc-
tion order codes is provided exclusively for manipulating the contents of the index
registers and for counting and branching on the contents of the index registers by using
the step registers.

The 7-bit order code which characterizes the interpretive instruction allows the general
code set to be divided into four addressing classes. The 2 least-significant bits of the
7-bit code are used to specify the addressing class for the instruction:

Class Code Addressing Class

00 Unary instructions which require no address (i.e., act
only on an accumulator). Included in this class are the
function order codes and some shift instructions.

01 Arithmetic instructions with non-indexed addresses.
Address may be in any location of ""local erasable" or
any location of the part of Fixed-Switchable Memory
from which the instruction was taken.

1 Arithmetic instructions with indexed addresses. Con-
tent of an index register Is subtracted from the given
address to form the net operand address. Address lo-
cation limitations of Class 01 apply.

10 Branch instructions and index register instructions.
This set of instructions is used to perform sequence
changes and to modify the contents of an index register.
Address may be any location of "local erasable' or any
location in any part of locally available, Fixed-switchable
Memory.

C.2.3 CLASS 00 INSTRUCTIONS FUNCTION ORDER CODES AND UNARY SHIFT
INSTRUCTIONS, The function order codes that are recognized by the interpreter pro-
gram section include nine scales and five vector functions. A complete listing of these
functions and other interpretive instructions appear in the appendix of this study guide.
Each of these instructions operates on the contents of MPAC and therefore require no
Interpretive Address Word in the interpretive string.

c-5




A total of thirty-two unary shift instructions are provided for the interpretive scaling
adjustments that are frequently required for fixed-point computation. These shift in-
structions require no address because the individual order codes specify fixed, short-
length shifts. The first 16, "short-shift" order codes provide: Scaler Shift Right, one

to four places; Scaler Shift Left, one to four places; Scaler Shift Right And Round (to DP),
one to four places; and, Scaler Shift Left And Round (to DP), one to four places. The
remaining sixteen "short~shift" order codes provide Vector Shift Right And Round (to DP),
one to eight places; and, Vector Shift Left (without round), one to eight places.

C.2.4 CLASSES 01 AND 11INSTRUCTIONS, LOAD AND GENERAL SHIFT
INSTRUCTIONS. These instructions form a special group of interpretive instructions
which operate only on the contents of MPAC. The instructions do, however, require
either a direct address (class 01) or an indexed address (class 11) to load the MPAC for
an arithmetic or shifting operation. Twelve store or load instructions, seven general
shift instructions, nine scaler arithmetic operations and ten vector arithmetic operations
are included in these classes of instructions.

C.2.5 CLASS 10 INSTRUCTIONS, PROGRAM MECHANIZATION INSTRUCTIONS. The
program mechanization instructions are used for branching, sequence changing, sub-
routine linkage and for loading, storing and modifying the contents of the two index
registers (X1, X2), These instructions must be followed by an address word to indicate
where to branch to etc. They do not affect the contents of MPAC. Forty instructions
fall into this instruction class including fourteen used for sequence changing, branching
and subrouting linkage under general interpretive language program control.

A second sub-group of fourteen instructions are used for setting, resetting, inverting,
branching and testing a set of sixty-twovalued indicators called Interpretive switches.
These switches are located in four consecutive E-Memory locations called STATE,
STATE +1,STATE +2, and STATE +3 with fifteen switches per location. Each instruc-
tion requires an address word defining which switch is to be operated on.

A third sub-group of class 10 instructions include 101q instructions to manipulate the
contents of the two index registers X1, and X2.

There are two additional program mechanization instructions with order codes that

allow them to fall into the class 00. These instructions are STADR (recognize store

code) and SSP (Set Single Precision).

A complete description of the interpretive instructions are included in the appendix.
C.3 INTERPRETER PROGRAM OPERATION

C. 3.1 NODAL ANALYSIS OF GENERALIZED PARENTHETICAL EXPRESSIONS. The

format for the programmed solution of an equation which requires several Interpretive
Program Strings and which uses the Pushlist can best be illustrated in the form of an

C-6




example. The equation to be programmed is the solution for the sum and difference
roots of the familiar, second-order, quadratic equation:

ax2+bx+c=0

The equation for the roots is:

-b £ Vb2 - 4ac

2a

X (rootly, x (root?2) =

-g + /(b/2)2 -ac

a

An example of the interpretive programming techniques can beet be shown by a simplified
flow-gram of the computer operations necessary to performed. Figure C-1 illustrates

the symbols used in an Interpretive flowgram. Use of a temporary storage location,
pushlist, is implied in this operation.

a+b a-b eb a/b . -
‘ / \ / \ / \ / \ é
[ b Q b o b 0 b e
VL] a/2
END OF
EXPRESSION
ﬁgm %)

Figure C-1. Network Mapping Symbols

c-7




Each node is limited to one or two input links (dependent upon the type of operation), but,
each node may have as many output links as required. The topographical network for
the interpretive routine for the roots equation Is shown In Figure C-2.

A complete expression is directly computable if, and only if, for every two-input node,
at least one of the input links comes from a stored operand or a temporarily-stored,
partial result. Therefore, for every two-input node in which both inputs are the result
of mathematical operations represented by other nodes, one of the partial results
must have been temporarily stored before the order code represented by the two-input
node is executed.

If any operation node has more than one output link, the result of the mathematical
operation represented by that node must be temporarily stored before it IS used as an
input to the first node which uses it. In the symbols used as two-input nodes, it is
assumed that the input on the right side is always added to, subtracted from, divided
into, etc., the input on the left side.

x(root 1) x{root 2)

Figure C-2. Interpretive Routing Flow-gram

C-8




An interpretive language program routine may be written by starting at the lower-most
node on the left side of a network and by proceeding up the linkages of the network toward
the end-of-expression symbol. When a two-input node IS reached whose other input
comes from another node, the present partial result must be temporarily stored, and
the other input treated as a sub-network and synthesized in the same manner. \When the
original two-input node is reached, the partial result is recalled and the synthesis con-
tinues up the linkages toward the end-of-expression symbol. The interpretive language
program routine is as follows:

ROOTS TC INTPRET (basic language)

DLOAD SR1 (divide by 2)
BOPADR

DCOMP PUSH (positions 0, 1)

DSQ PDDL (positions 2, 3)
AOPADR

DMP BDSU (recallsb2/4 from2, 3)
COPADR

SQRT PUSH (positions 2, 3)

DAD DDV
00000 (index on Pushlist)
AOPADR

STODL ROOTIADR

BDSU

DDV
AOPADR

STORE ROOT2ADR

EXIT (return to basic

language)

c-9




In the five Interpretive Program Strings which program the equation for the roots in
double precision, the operand address for the operand (a) is assumed to be AOPADR;
the location ROOTIADR is assumed to be the E-Memory storage location for the first
root, x (root 1), and the location ROOT2ADR is used to store the second root, X (root 2).
A special feature of the PUSH Instruction is that the pushed-down quantity IS retained in
the accumulator (MPAC); therefore, it can be temporarily stored for future use without
disrupting the present computational flow. The STORE Instruction also retains the
stored quantity in MPAC. The address word 00000 implicitly refers to the work-area
assigned by the Executive; and, it is, by definition, Position Number 1 (DB in the
Pushlist. This is the indexed-address method of referring to the Pushlist that was
described in paragraph 2.1.4. One additional feature of the PDDL and PDVL Instruc-
tions is that they can be used to effectively exchange the contents of the accumulator
(MPAC) with the last quantity previously entered into the Pushlist. If no operand
address is provided for the load portion of these instructions, the Interpreter will
extract the last quantity previously entered into the Pushlist, and then will temporarily
store the present contents of MPAC in the location vacated by the quantity that was
extracted for loading into MPAC. The STODL and STOVL Instructions will also extract
the last quantity previously entered into the Pushlist if no operand address is provided
for the load portion of the instructions.

C. 3.2 THE DISPATCHER ROUTINE = PROGRAM OPERATION. For the purpose of
illustration, the Interpreter can be considered to be equivalent to a program-level,
sequence generator. The Sequence Generator in the AGC's Control Section consists of
an SQ Decoder (command generator) and a Control Pulse Generator. The AGC's
Sequence Generator depends on the Central Processor to load an instruction order code
from a programmed list of basic language instructions into the SQ Register (buffer),

The Sequence Generator then decodes this order code and generates a sequence of control
pulses which execute the instruction designated by the order code. The method by which
the Interpreter decodes and then executes the interpretive language instructions differs
from the Sequence Generator in only two points:

a. The Interpreter is a program section in the AGC's Fixed-Memory, and therefore,
all interpretive decoding and execution is under basic language program control.

b, The Interpreter uses basic language program control to retrieve interpretive
language order codes from memory, and therefore, it does not depend on any external
source (such as the Central Processor in the analogy) to obtain each interpretive order
code.

The Interpreter Program Section is made up of two major routines called the Dispatcher
and the Executer. In the above analogy, the command generator (SQ Decoder) can be
compared to the Dispatcher portion of the Interpreter. The Dispatcher Routine iS made
up of several minor routines and a number of subroutines. These routines decode the
interpretive language order code(s) in each Interpretive Instruction Word (@Iw), and also,
decode the relative interpretive address(es) and/or constant(s) in the relative Tnterpre-
tive Address Word(s) (IAW's). After taking care of the necessary internal thousekeeping"
such as setting up the interpretive mode of operation, etc., the Dispatcher Routine
stores the relative address in its decoded form in a location that is known to the
Executer Routine. It then transfers Interpreter program control to the subroutine in

the Executer that is commanded by the decoded, interpretive language order code.

c-10




C.3.2.1 THE INTERPRETIVE PROGRAM. The interpretive program section always
uses the Interpretive Dispatcher to determine, is the word an instruction or a store
code word? what class of instruction code is it? and which of the many subroutines
shall be selected? The Executer commands the specific subroutine called to be
performed and returns operation to the Dispatcher. The Dispatcher operation requires
entry by an instruction TC INTPRET each time an interpretive instruction string IS
begun.

C.3.2.2 DISPATCHER FLOW. (See figure C-3.)

(1) Whenever the interpretive language on mode of the computer is selected the
contents of register (Q) is stored in a temporary storage location LOC, Q contains

the address of the instruction following TC INTPRET. The contents of FBANK is
stored in BANKSET register enabling the program to return to the bank which requested
INTPRET. Bit 150f FBANK IS stored to indicate which half of fixed memory IS
accessable to the interpreter.

(2) The contents of the address defined in LOC is checked to determine ifthe contents
are an instruction code pair or an interpretive store code, For the later the operation
is transferred to a store operation.

(3) If an instruction word is detected by the above test an edit operation is performed.
The high seven bits of the instruction code is shifted into storage location EDOP. The
low seven bits of the word is loaded into a location designated CYR. This transfer
operation shifts bits 7 through 2 of the initial code to bits 6 through 1 of CYR and the
original bit one of the OP code is shifted into bit 15 of CYR.

(4) Bit 15 of CYR is checked to determine if the content is a one or zero. This is
one step in determining the class of the interpretive instruction. A one in bit 15
defines a class 01 or 11instruction.

(5) Check the contents of bit 1 of CYR (this was originally bit 2 of the instruction OP
code). If bit 1= 1 a class 11 instruction an index operation is permitted in which the
contents of the INDEX register is subtracted from the given address to form the net
operand address. A TC to INDEX is commanded.

IF bit 1of CYR is '0' a class 01 address is defined. The address defines locations in
any location in ""local erasable’™ or any location in the half of Fixed-Switchable
memory selected. A subroutine DIRADRES is selected eliminating the indexing
operation.

(6) & (7) Ifbit 15 of CYR is a '0' when checked in (4) above, the contents of CYR are
checked again to see if the code is all zeros or a positive quantity. If all zeros an
automatic exit is commanded. If a positive quantity is detected in CYR a TC to
OPJUMPS is commanded. Class 00 and 10 addresses are defined when bit 15 is ' 0’
and the contents of CYR is positive.

(8) We have identified an arithmetic operation with a non-indexed address location =

class 01 address - to this point. Now clear and subtract the contents of the address
location LOC + 1 and see if bit 15isa'l' or '0', If the complemented contents

C-11




NEW OPS-1

ADD 1TO LOC
TO UPDATE

SAVE C(Q) IN LOC
STORE FBANK AND

BIT 15

BIT 15=1

(1)

O0OR1

v v

CHECK CONTENTS OF
ADDRESS IN LOC IS

STORE CODE

CONTENT AN IIW OR
AN ADDRESS CODE

(2)

+]IW

PERFORM EDIT OP-
ERATION ON HIGH 7
BITSOF CONTENTS
OF ADDRESS IN LOC.
LOAD LOW 7 BITS
OF CONTENTS OF
ADDRESS IN LOC

INTO CYR
3

BIT 1 OF CYR

DIRADRES

LOW
7 BITS=0

TC AUTOMATIC
EXIT

TC
OPJUMP3

Figure C-3. Interpretive Program Flow (Sheet 1of 14)

c-12




indicate PNZ TC to PUSHUP where the mode of operation, double precision, triple
precision or.Vector, for the interpreter routine is defined. A NNZ content defined
an address in erasable or fixed memory but not in the PUSHLIST.

(9) I an address is defined in (8) the content of LOC and the ADDRWD are incre-
mented to update for the next operation.

(10, 11, & 12) Where is the address location is the next question asked? Is it in the
work area - < 4510, in general erasable 4510 < address < 97710 orisitin Fixed? If

it is in the work area the specific work area is selected by updating the address word
with the contents of FMLOC. FIXLOC contains the address of .the work area selected.

If the address is in fixed memory the FBANK register is loaded with the new fixed
bank number. 2000, is added to the contents of ADDRWD making the contents of

ADDRWD lie between 2000 and 3777, the addresses used to define a memory location

in a specified FBANK . At this point the ADDRWD and FBANK, if needed, define the
complete address of the constant or variable to be operated on by the interpretive
instruction defined by the code in CYR.

(13) After the location of the constant to be operated on is defined a TC instruction
is generated by indexing the code in CYR with the address of a jump table INDJUMP
to select the subroutine to be performed, These subroutines include all the instruc-
tions listed as class 01 or 11in the interpretive instruction list.

(14) & (15) If an index address code (class 11) is recognized, the INDEXLOC register
is loaded with the address of the work area (FMLOC) for indexing operations. The
content of LOC is incremented to define a new address for the next following operation.
The content of this new address is complemented and loaded into the accumulator.

A CCS on the content of address defined by LOC is performed. If a PNZ quantity is
detected the INDEXLOC register is incremented, If a PZ or a NNZ quantity is
detected the contents of a (low 14 bits) are transferred to the ADDRWD register. If a
NZ quantity is detected the operation is continued in block (16).

(16) The contents of the accumulator are anded with 7600_ to mask out the bank

number of the address in the accumulator. If a check inditates a non-zero quantity
in the bank (upper 4 bits) portions of the address in A, the original value of bit 15 at
TC INTPRET must be recalled. If a zero is detected a TC to INDEX2 is generated.

(17) A non-zero bank number from (16) above causes the program to pick up the
most significant bit (Bit 15) of the original Bank number when a TC INTPRET was
generated. This bit is added to the ADDRWD giving a full 15 bit address containing
bank number and address. Bit 15 will define which half of the fixed memory banks
are being addressed.

18) & (19) By the use df an index operation subtract the contents of INDEXLOC + X1
Index 1register) from the ADDRUD. A new ADDRWD (Indexed) is obtained. A MASK

operation is performed on ADDRWD to determine the relative location of the address
defined. If a non-zero quantity is detected the address is in fixed memory or general
erasable memory. |If a £ zero is detected the work area erasable memory address is

C-13




DIRADRES,

CCS ON THE COMPLI-

MENT OF THE CONTENTS

OF ADDRESS DEFINED

BY LOC+1 ‘
(8)

NNZ PNZ

TC
PUSHUP

v

UPDATE LOC UPDATE
ADDRWD

(9)

UPDATE ADDRWD
UPDATE ADDRWD

TC TO
INDJUMP+1 +
OP CODE IN CYR

(13)

IN WORK
ARE
REA WHERE 1S ADDRESS? \ IN FIXED
10 /"
IN GENERAL T
ERASABLE FIXEDADR

UPDATE FBANK
UPDATE ADDRWD TO
LOCATION BETWEEN
2000g & 3777g

(12)

Figure C-3. Interpretive Program Flow (Sheet 2 of 14)

C-14



LOAD INDEX LOC
UPDATE LOC TAKE
COMPLIMENT OF
ADDRESS GIVEN IN
LOC AFTER UPDATE

(14)

PNZ

CCS ON
CONTENTS OF A

INCREMENT INDEXLOC

PZ
NNZ

=0

TC
INDEX 2

\ A

UPDATE ADDRWD WITH

C(A) (15)

\ 4

REMOVE BANK NUMBER
FROM C(A) & CHECK TO

SEE IF IT IS 0 (16)

NZ

NON ZERO

ADD BIT 15 FROM
ORIGINAL BANK NO.
TO ADDRWD

(17)

Figure C-3. Interpretive Program Flow (Sheet 3 of 14)

C-15




modified, as before, by adding the address of FMLOC (work area address) to
ADDRWD to obtain the address of the specific work area to be used.

(20) & (22) If the check in block 18 indicated a NON Zero a further check is made on
ADDRWD to determine if the address is in general erasable or in fixed memory. I
the address indicates a fixed memory location the high order bits of ADDRWD are

loaded into FBANK and 20008 is added to ADDRWD and 017778 to make the contents of

ADDRWD fall between 20008 and 37774, the addresses associated with a fixed bank.
A complete fixed memory location is now defined.

(21) & (23) If the address is in general erasable from above check, if in the work
area (18, 19) and after defining a fixed memory location (20, 22) an index operation is
performed. The contents of CYR ~the applicable OP code is added to the address of
INDJUMP to identify the subroutine for a specific interpretive instruction to be per-
formed on the content of the address defined in blocks 18, 19, 20, and 22. Block 13
is again repeated as a TC operation.

(24) The operation which allowed a TC to OPJUMP 3 was a CCS on CYR. This
operation would leave the absolute value of the contents decremented by 1 in the
accumulator. This value is used to update the Fixed Bank register. The OPJUMP 3
subroutine is used whenever a class OO-Addressing code = (Unary instruction) is
found in CYR.

(25, 26, & 28) Following the loading of FBANK register a CCS on CYR is again
performed. F the path into OPJUMP 3 was from TC INTPRET CYR will contain a
PNZ quantity however the possibility exists of entry into this subroutine from another
point in the program. [If a positive non-zero is found the contents of CYR is added to
the address of UNAJUMP to select a subroutine falling into the UNARY instruction
group (no address required perform operation on contents of MPAC, VAC, etc.).
Several instructions included are: SQRT, SINE, UNIT.

If a positive zero (PZ) is found in CYR the previous CCS on CYR should have caused
the program to exit. I a negative zero (NZ) is found a TC to SHORT T = short
shift operation subroutine is generated.

(27) When a negative non-zero quantity is found in CYR a check is made on the MODE
register. The MODE register defines the interpreter mode, double precision, triple
precision or'vector, If a double or triple precision made is selected control is
transferred to a short shift scalar operation subroutine SHORT T. [If the vector mode
is used to subroutine SHORT V = Vector Shift is selected.

(29) If the check on the contents of the address contained in LOC + 1 indicate that
the content of the PUSHDOWN LIST (Block 8) is to be used as the operand for the
arithmetic or vector operation defined in CYR we end up in this routine (PUSHUP).
The first operation in this routine is check the contents of CYR. If CYR contains a
code 20g 21, 224, Or 235 a normal usage of the contents of the PUSHDOWN list is

signified. A TC to REGUP is generated. If, however, the contents of CYR are 0, 1,
2, or 3 several possible variations in the use of PUSHLIST contents are possible. A
further check on the contents of CYR is performed (Block 32).

C-16




UPDATE ADDRWD &

+0 BRANCH ZERO FIXED NON ZERO

ON ADDRWD AND 777008
(18)
NO =
UPDATE ADDRWD ADDRESS IN

FIXED /.
(19) BANK %/ (40)

t YES

LOAD FBANK &

}ggngCpYR WITH MODIFY ADDRWD
(21) (22)

:

INDEX CYR WITH
INDJUMP

(23)

) 4

TCTO
INDJUMP + OP

CODE IN CYR (13)

Figure C-3. Interpretive Program Flow (Sheet4 of 14)
C-17



T

LBAB EBANK

(24)

NZ CSS ON NNZ

CYR
(25)
PNZ

INDEX CYR WITH
UNAJUMP
(26)

TC TO
UNAJUMP +
OP CODE IN CYR

28)

Figure C-3. Interpretive Program Flow (Sheet 5 of 14)
C-18



(30) Depending on the MODE double precision, triple precision, or vector which
was determined elsewhere number of words in pushlist 2, 3, or 6, to be used is
entered into the accumulator.

(31) The accumulator contents, -2, -3, or -6 are added to PUSHLOC to define a
specific address location. This same information is stored in ADDRWD to provide
an address for the next operation.

(32, 33, 34, & 35) The contents of the accumulator, which willbe a7, 6, 5, or 4
following the previous CCS (Block 29) are added to a constant negative 4. A check
(CCS) is then made on the contents of the accumulator. The contents of the accumu-
lator after the addition will be negative zero (4), positive zero (6), positive one (6),
or positive two (7). Three possible types of operations are possible at this time:

a. An arithmetic operation which requires a standard type of operand regardless
of the previous operation (standard operand). If this type of operation is defined
a clear and subtract 2 (NOWORDS) is commanded for a double precision operation.

b. The second type of operation possible using the PUSHLIST is an operation in
which the accumulator is loaded with a load code which is independent of the
previous operation. Examples of these codes are VLOAD, DLOAD, TLOAD,
PDDL, and PDVL. If this type of operation is selected by the OP code in CYR
the accumulator, which contains a plus 1 or plus 2 is indexed with NOWORDS to
select the double, triple or vector mode of operation.

c. The third type of operation using the PUSHLIST as an address location for an
operand is a reversing operation. If the last operation yielded a vector result the
next operand should be a scaler. VXSC is an example of the operation requiring a
reversal of this type. F this type of operation is commanded the contents of the
MODE (0, + 1) register are indexed with REVCNT to select the reversed conditions
from the previous operation.

In all cases after completion of the selection of double, triple, or vector operation
for selecting data from the PUSHLIST a TC to REGUP + 2 2 is commanded returning
the operation to block (30) above.

(36) In the event a store code was detected in the operation in Block (2), the type of
store operation must be selected. The contents of the accumulator are transferred
to storage as the ADDRESS WORD. The data in the accumulator is anded with a
constant to pull out the local erasable memory locations, bits 1 through 10. The 10
bit address code is stored in the ADDRESS WORD and the complete address word
(old one) is put back into the accumulator.

(37) K the store code was recognized the exact operation to be used in the storage
routine must be defined. The high order bits, bits 11 through 14 of the contents of
LOC + 1are masked out, The resultant is multiplied by 000400, t0 shift the contents

of the accumulator from bits 11-+14 to bits 1=»5, This enables the programmer to
use an index type operation to select a proper storage routine.

c-19




REGULAR
PUSHLIST

PUSHUP

CHECK ON THE TYPE
OF OPERATION RE-

QUESTED BY CYR 29)

SPECIAL
PUSHLIST

REGUP

CLEAR & SUBTRACT THE
NUMBER OF WORDS IN

PUSHLIST TO BE USED IN
AN OPERATION (30)

v

ADD THE NUMBER OF
WORDS IN PUSHLIST
TO BE USED TO
PUSHLOC & SET
ADDRWD = TO PUSH-
LOC

(31
INDEX CYR WITH
INDJUMP
(23)

TC TO INDJUMP

+1 PLUS OP CODE
IN CYR

(13)

STANDARD CONTINUE CHECKS ON REVERSE
OPERATION /' TYPE OF PUSHLIST OPERATION
| OPERATION REQUESTED
BY CYR (32)
INDEPENDENT
OF LOST
OPERATION
INDEX
ACCUMULATOR INDEX MODE WITH
WITH NO WORDS REVCNT
(34) . (39)
CLEAR & SUBTRACT
NO WORDS
(33)
TC
REGUP +2

Figure C-3. Interpretive Program Flow (Sheet 6 of 14)

c-20



(38) The contents of the accumulator 00 to 32,4 are indexed with a TC STOREJUMP

to generate a store subroutine TC instruction which will in turn select one of the TC
STORE commands in the STOREJUMP table.

(39) If the code is found in the high order bits of the old address word it is recog-
nized as a command to update CYR with a CALLCODE. The CALLCODE register will
contain a new OP code to be used in CYR in following operations.

(40, 41, 42, & 43) If the TC STOREJUMP transfers control to STORE 1 the address
contained in ADDRWD is first updated with the contents of FIXLOC which contains the
address of the work area selected. Block 41 identifies a work area address or a
general erasable address for storage. If a work area is defined FIXLOC is again
used to update the ADDRWD. If a general erasable address Is found in ADDRWD a
storage operation is performed (Block 43). The storage operation will transfer the
data contained in MPAC and MPAC + 1 into the erasable memory locations defined by
ADDRWD and ADDRWD + 1. A double precision transfer to storage is thus performed
using ADDRWD to define the location used for storage.

(44) After the initial transfer to storage of the double precision quantities a check is
made to see if the quantity to be stored is a double or triple precision quantity or a
vector quantity by looking at a MODE indicator. The MODE indicator will contain a
zero for double precision, a plus one for triple precision or a minus one for vector
operations.

(45) If a plus one was found in MODE the third component of the triple precision
quantity, which is located in MPAC + 2 is transferred to the erasable location defined
in ADDRWD + 2. Operation is picked up in the DODLOAD subroutine., Triple pre-
cision data is stored at this time.

(46) If the Vector mode of operation is detected the other two double precision
components of the vector, the Y & Z components, must be stored. The 2nd and 3rd
components of the vector are taken from MPAC + 3, 4, and MPAC + 5, 6. The
contents of these four locations are transferred to the storage locations defined by
ADDRWD + 2, 3, 4, 5. MPAC + 2 does not contain a usable quantity as it is not
used during vector mode operations.

(47) I the MODE indicator contained an indication of double precision or the vector
quantity is stored, a transfer control to Q is commanded. The contents of Q are the
TC instruction of the next following address which commanded the STORE subroutine
to be selected. The operations commanded are shown in the illustration.

(48) & (49) If a TC DODLOAD, or DOVLOAD the contents of CYR is updated with a
new OP code to command a double precision or vector load operation followed to a TC
to DIRADRES. This indicates that a class 01 instruction address is to follow.

(50, 51, & 52) |If a TC to DOVLOAD* or DODLOAD¥* is commanded (47 above) CYR

is again updated with an OP code which will call an address class 11 which indicates
that an indexing register operation is permitted for an arithmetic operation.

c21



DOSTORE

MASK OUT THE LOW 10
BITS OF THE ADDRESS
WORD EXCHANGE THE
OLD ADDRESS WORD

WITH THE NEW  (36)

MASK OUT BITS 11 TO
14 OF THE OLD

ADDRESS WORD &
MULTIPLY BY BIT 6(37)

v

INDEX C(A) WITHTC
STOREJUMP

(38)

0,6,12, 18,24* 4,10, 16,22,28

1,3,5 13,15,17

2,4, 8, 14, 20, 26 (STOREJUMP) 19, 21,23
+

7,9,11 25, 27,29

31

TC TC
DODLOAD DOVLOAD*

TC
DOLOAD*

UPDATE CYR

TC TC
15 BIT ADR DOVLOAD

Figure C-3. Interpretive Program Flow (Sheet 7 of 14)

c-22




UPDATE ADDRWD WITH

FIXLOC
(40)
STORE
| STORE
CENERAL WORK
ERASABLE /' wyERE IS DATA TO BE AREA
STORED ?
(41)

UPDATE ADDRWD

(42)

STARTSTO
STORE CONTENTS OF

MPAC, +1 IN LOCATION

DEFINED BY ADDRWD,
+1 (43)

Figure C-3. Interpretive Program Flow (Sheet 8 of 14)
C-23




WHAT MODE OF
OPERATION?
MODE = 2 (4q)

DOUBLE
PRECISION
3PERATION

-1
VECTOR
OPERATION

‘ v
VSTORE

STORE 2nd & 3rd COM-
PONENT OF VECTOR
FROM MPAC, +3, +4,
MPAC, +5, +6 IN LO-
CATION DEFINED BY

ADDRWD, +2, 3, 4, 5‘1
(

v v

6)

+1 TRIPLE PRECISION
OPERATION

TSTORE

TSTORE

LOAD C(MPAC+2) INTO
LOCATION DEFINED
BY ADDRWD+2 (45)

TRANSFER CONTROL
TO LOCATION DE-

DODLOAD

FINED IN THE Q

REGISTER 47

DOVLOAD

DODLOAD DODLOAD*

DOVLOAD*

Figure C-3. Interpretive Program Flow (Sheet9 of 14)

C-24




DODLOAD

DOVLOAD

UPDATE CYR WITH UPDATE CYR WITH CLEAR & ADD VLOAD *
DLOADCOD = 40014 VLOADCOD = 40000 = 40001
(48) (49) (50)
‘DODLOAD*’
TC
DIRADRES

Figure C-3. Interpretive Program

C-25

= 40015

CLEAR & ADD DLOAD*

(51)

UPDATE CYR WITH
VLOAD* OR
DLOAD* (52)

INDEX

Flow (Sheet 10 of 14)




(53, 54, 55, & 56) I a load instruction is found, as will generally be the case for a
first interpretive instruction in a string, the single, double, triple precision or vector
load operation is defined. The contents of the ADDRWD plus the necessary following
words, ADDRRD for single precision ADDRWD, + 1 for double precision; ADDRWD, +
1, 2 for triple precision and ADDRWD, + 1, 2, 3, 4, 5for vector operations are
loaded into their appropriate location in MPAC, MPAC + 2 is not used for loading of
vector quantities. In all cases the accumulator is loaded with an appropriate quantity
to define interpretive MODE, 0 = double precision, + 1 = triple precision and -1 =
vector. A TC to NEWMODE is commanded.

(57) Here's where you come after you load MPAC for an operation and set up
conditions describing the interpretive mode to follow. The MODE indicator is set to
a minus 1, 0 or plus 1 depending on what happened in Blocks 53, 54, 55, and 56.

(58) After the loading of the appropriate data into MPAC by the first instruction in
an instruction string we have to look at the second instruction in the same IW if there
is one. The subroutine labeled DANZIG assures that the proper Fixed Banks are
selected for future operations and looks at the contents of EDOP which should contain
the second half of an ITW if there was one. If an OP code was loaded in EDOP it
would have been a Positive Non Zero or a Positive Zero quantity. The CCSon a PZ
quantity looks at NEWJOB to see if the job presently being done is the highest priority.

If a higher priority is detected a change job subroutine is called. [If a higher priority
job is not found we close the loop and go back to NEWOPS-1.

If on the check on EDOP an OP code is found we go to OPJUMP which will take the
content of EDOP, decrement it by 1and set this value into CYR and we go around
again.

(59, 60, 61, & 62) For addressing class 10 instructions are located in CYR. The
STOREJUMP + CYR transfer control instruction selects a subroutine for selecting
a 15 bit address location. The address words are updated by the usual incrementing
method and the contents of CYR are summed with the address location MISCJUMP.
The resulting command is to select a branching or indexing routine to change the
operation sequence of the computer program.

(63)& (64) The operations defined by the subroutine PDDL (Pushdown and Load
MPAC) in Double Precision is the beginning of the EXECUTER portion of the inter-
pretive program flow. In this operation the contents of the pushlist defined by the
location in PUSHLOC, is transferred to MPAC, + 1. A check is made on MODE, is
a double or triple precision or the vector mode selected? Depending on the choice a
subroutine for double, triple or vector is chosen,

(65, 66, & 67) If atriple precision (65) is detected in the check on MODE the third
component of the data is taken from the pushlist and loaded into MPAC + 2. The
MODE Switch is set to double precision. If a double precision (66) operation was
detected MPAC + 2 is setto zero. If a vector operation (67) is found by looking at
MODE, MPAC + 2 is set to zero and the remaining components of the vector are
taken from the pushlist and loaded into MPAC + 3, 4, 5, 6. The pushlist indicator,
PUSHLOC, is decremented appropriately when data is removed from the list. The
data removed from the list is no longer available from the list; it is destroyed.
Upon completion of the transfer of data from the pushlist to MPAC for an operation
to follow control is transferred back to DANZIG, the beginning of the interpretive

C-26




CLEAR & ADD THE
CONTENTS OF LOCA-
TION DEFINED BY

ADDRWD (54)

DLOAD

VLOAD

EXCHANGE CONTENTS
OF LOCATIONS DE-
FINED BY ADDRWD,

+1, 2, 3, 4, 5WITH
MPAC, +1, 3, 4, 5, 6.
SET C(A) = -1 (56)

>

TRANSFER CONTENTS
OF LOCATIONS DE-
FINED BY ADDRWD +1
TO MPAC, +1.SET
C(A) =0 (53)

TRANSFER CONTENTS
OF LOCATIONS DE-
FINED BY ADDRWD,

+1, +2 TO MPAC,

+1, +2. SET C(A) = 1(55)

Figure C-3. Interpretive Program Flow (Sheet 11 of 14)

c-27




NEWMODE

v

SET INTERPRETIVE
MODE INDICATOR TO
PROPER VALUE

. SR | | =
k DANZIG /‘ : + l
DANZIG
: PNZ CCS ON EDOP
PZ
TCF
OPJUMP
\ 4
TCF
CCS ON NEWJOB CHANG

PZ

NEWD®ES-1

NEWOPS-1

Figure C-3. Interpretive Program Flow (Sheet 12 of 14)

C-28



15 BIT ADR

INCREMENT LOC &
STORE CONTENTS
OF ADDRESS DE-

FINED

BELWORK

UPDATE ADDRWD.

GET OP CODE FROM

CYR

(62)

MISCIJUMP TABLE INST.

AXT
AXC
LXA
LXC
SXA
XCHX
INCR
TIX
XAD
XSuU

BZE/GOTO

BPL/BMN
CALL/ITA
RTB/BHIZ
Sw

BOV(B)

JSELECT PROPER FBA

GET OP CODE FROM

CYR

(60)

TCTO

MISCJUMP+ OP

CODE IN CYR

(GD

CYR OP CODE

00
01
02
03
04
05
06

10
11
12
13
14
15
16

Figure C-3. Interpretive Program Flow (Sheet 13 of 14)

C-29

4




TRANSFER CONTENTS
OF LOCATION DE-
FINED BY ADDRWD, +1
INTO MPAC

(63)

K J

DECREMENT PUSHLOC
BY NUMBER OF WORDS
FOR DOUBLE, TRIPLE
OR VECTOR OPERA-
TIONS

(64)
PNL(L) NNZ(-1)
CCS ON MODE
o |rz
ENDT PUSH ENDDPUSH ENDVPUSH

SET MODE = 0 LOAD
THIRD COMPONENT
OF TRIPLE PRECISION
DATA INTO MPAC (65

SET MPAC +2 =0

(66)

SET MPAC + 2 =0 LOAD
2nd & 3rd COMPONENT
OF VECTOR INTO MPAC

(67)

Figure C-3. Interpretive Program Flow (Sheet 14 of 14)

C-30




program routine to pick up the next OP code which is stored in EDOP and we start
over again.

C.4 SUMMARY

The interpretive section of the computer program is used for programming convenience in
the writing of problem orientated computer programs. This program seetion consists of
two basic parts a dispatcher and an executer. The dispatcher determines the type of inter-
pretive program operation commanded by the operation code in an Interpretive Instruction
Word and what type of addressing scheme is to follow. The executer portion of the program
is the specific subroutines which are selected by the dispatcher, which take an instruction
such as SQUARE ROOT and perform a square root operation in the basic machine language.
The executer subroutines always return the operation back to the dispatcher to select the
next operation or to allow an exit from the interpretive program

The interpretive program by use of seven bit order codes and 15 bit address codes contribute
a great deal to the versatility of the computer as a problem solving device.

FINIS

C-31



	Block 1.1 The Development of the Computer Program
	Block 1.2 The Computer's Real Time Environment
	Block 1.3 Time Sharing the Computer Hardware
	Block 1.4 Implementing the Time Sharing of the Computer
	1.4 1 Counter Interrupts
	1.4 2 Program Interrupts
	1.4.3 Program Controlled Processing

	Block 1 5 Relative Priorities of the Types of Processing
	the Basis of Program Priority
	1.6.1 Introduction
	1.6.2 Terminology
	1.6.3 Scheduling
	1.6.4 Execution Control
	1.6 5 Core Set Areas and VAC Areas
	Core Set Areas
	VAC Areas



	Block 1.7 Scheduling and Execution of Time Dependent Processing
	1.7.1 Introduction
	1.7.2 Implementing Time Dependent Functions
	1.7.3 Scheduling of Time Dependent Functions
	1 7.4 Execution of Time Dependent Functions

	Block 1.8 LGC Input and Output Channel Interface
	1 8 1 Channel
	1 8.2 Channel
	1.8.3 Channel 03 High-Order Scaler
	1.8.4 Channel 04 bw-Order Scaler
	1.8.5 Output Channel
	1.8.6 Output Channel
	1.8.7 Output Channel
	1.8 8 Output Channel10
	1 8.9 Output Channel11
	1 a 10 Output Channel12
	1.8 11 Output Channel13
	1.8.12 Output Channel14
	1.8.13 Input Channel15
	1 8 14 Input Channel16
	1 8 15 Input Channels 17 through27
	1.8.16 Input Channel30
	1 8 17 Input Channel31
	1.8.18 Input Channel32
	1.8.19 Input Channel33


	Block 1.9 Computer/DSKY - Hardware/Astronaut Relationship
	1.9.1 Keyboard
	1.9.2 Display Indicators
	1.9.3 DSKY Condition Indicators
	1.9.4 DSKY Operation
	1.9.4.1 Verb-Noun
	1.9.4.2 Data Loading
	1.9.4.3 Correcting Erroneous Data
	1 9 4.4 Decimal and Octal Display and hading
	1.9.4.5 Monitor vs Display
	1.9.4.6 Changing of Major Mode
	1.9.4.7 Mode Initiation
	1.0.4.8 Computer Control of the DSKY
	1 9 4 9 DSKY/Computer/Operator Interlocks

	Verb-Noun List
	Verb Codes
	Verb Deecription
	Noun Codes


	Block 1.10 Interrelationship of Processing Functions
	Block 2.1 The Executive Routine
	2 1.1 FINDVAC and NOVAC Subroutines
	2.1.2 Change Job Subroutine
	2.1.3 End of Job Job Sleep and Priority Change Subroutines
	2 1.4 Dummy Job Subroutine
	2 1.5 Job Wake Subroutine

	Block 2.2 Waitlist Routine
	Block 2.3 TIME 3 Program Interrupt Routine (T3RUPT)
	Block 2.4 Phase Table Maintenance Routine
	2.4 1 Phase Change and New Phase Subroutines
	2.4.2 New Mode Exchange Subroutine
	2.4.3 Check Major Mode Subroutine

	Block 3.1 TIME 4 Counter Program Interrupt Routine (T4RUPT)
	3.1.1 T4RUPT had In 20 30 MSEC RUPT Service DSPTABS
	3.1.2 A LTOUT
	3.1.3 ALTROUT
	3.1.4 RR AUT CHK (Rendezvous Radar Automatic Check)
	3 1.5 IMU Monitor

	Block 3.2 Downtelemetry (DNRUPT)
	Block 3.3 Keyboard and Uplink Telemetry Input Processing Program
	3.3.1 DSKY and Uplink Interrupt Operation
	3.3.2 The Pinball Program
	3.3.2.1 C HARIN
	3.3.2.2 NOUN Subroutine
	3.3.2.3 VERB Subroutine
	3.3.2.4 SIGN Subroutine
	3.3.2.5 NUM Subroutine
	3.3.2.6 CHARALRM Subroutine
	3.3 2.7 ENTER Subroutine
	3.3.2.8 Error Reset Subroutine
	3.3.2.9 Key Release Subroutine
	3.3.2.10 Clear Subroutine


	Block 3.4 ISS Mode Switching Routines
	3.4.1 JSS CDU Zero
	3.4.2 IMU Coarse Align
	3 4.3 IMU Fine Align

	Block 3 5 IMU Pulsing Routine
	Block 3.6 AOTMARK Routine
	3.6 1 Alignment Optical Telescope (AOT)
	3.6.2 Non-flight Star Sighting
	3.6.3 Inflight Star Sighting
	3.6.4 AOTMARK Routine

	Block 4.1 Program Alarm Routine
	Block 4.2 Program Abort Routine
	Block 4.3 Fresh Start and Restart Routine
	Counter Interrupt Processing
	Program Interrupt Processing
	Counter and Program Interrupt Processing
	Priority Numbers

	Core Set Areas of the Computer Program (Core Set List)
	VAC Areas of the Computer Program
	Channel 07 Fix Extension Bits
	Radar Selection
	Gyro Selection
	Display Indicators
	Simplified Processing for Zero IMU - CDU Routine
	Executive's Core Set List
	Executive's VAC Areas
	Executive's FINDVAC and NOVAC
	Executive's Change Job
	Executive's Priority Change End of Job and Job Sleep
	Executive's Dummy Job
	Executive's Job Wake
	Waitlist's Waiting List
	Time Values Stored in List1
	Maintaining Chronological Waiting List
	Waitlist
	TIME 3 Interrupt Routine
	Phase Change and New Phase
	New Mode Exchange
	Check Major Mode
	General T4RUPT
	DSPTAB Code
	Detailed T4RUPT
	Computer Interface with Telemetry
	Nominal Downlink List Sunburst Rev14
	Downrupt
	General Flow Diagram for Pinball
	INLINK Word Format
	KEYRUPT and UPRUPT
	CHARIN
	ISS CDU-ZERO
	IMU Coarse Align
	IMU Fine Align
	IMU Pulsing
	Generation of Merged Word
	LM AOT Azimuth Positions
	AOT Reticle Pattern
	Basic Inflight Star Sighting Sequence
	AOTMARK Routine
	Program Alarm
	Program Abort
	Fresh Start and Restart
	DSKY Puehbuttons
	Display Indicators and Functions
	DSKY Condition Indicators
	System Test Codes (VERB57)
	The 12-Word Display Table Bit Assignments
	RADMODES - Channel Correlation
	IMODES 30 - Channel 30 Correlation
	IMODES 33 - Channel 33 Correlation
	Failure Numbers for Program Alarms
	Failure Numbers for Program Aborts

