**The primary Bulbs counting**

*Robert L. Devaney*
One can obtain ^{m}/_{n} rotation number for the
largest bulb between the ^{1}/_{2} and
^{1}/_{3} bulbs
(note that they are both larger then our new bulb)
by adding the numerators and adding the denominators (*Farey addition*
rule) [1]

^{2}/_{5} = ^{1}/_{2}
+ ^{1}/_{3}

*click the picture to explore it and test bulbs rotating numbers
*^{m}/_{n}

So we get next primary bulbs sequences:

^{1}/_{2} +
^{1}/_{3} = ^{2}/_{5} +
^{1}/_{2} = ^{3}/_{7} +
^{1}/_{2} = ^{4}/_{9} +... and

^{1}/_{2} +
^{1}/_{3} = ^{2}/_{5} +
^{1}/_{3} = ^{3}/_{8} +
^{1}/_{3} = ^{4}/_{11} +....

And at last ^{1}/_{n} sequence!

^{1}/_{2} +
^{0}/_{1} = ^{1}/_{3} +
^{0}/_{1} = ^{1}/_{4} +
^{0}/_{1} = ... = ^{1}/_{n}

(but may be the right ^{0}/_{1} bulb is a trick only :)

*"square" parametrisation*

"5 Stars" Julia trip animation.

[1] *Robert L. Devaney* The Fractal Geometry of the Mandelbrot Set II.

How to Count and How to Add:
6 How to Add

Contents
Previous: Bulbs period
Next: The Secondary Bulbs Symmetry

*updated* 12 February 2000