Mastery testing

Cover page
Introduction
A problem
A solution
A recipe
Examples at BTC
INST230 mastery exam sample questions
Questions?
FAQs
Fail rate
Time
Time (cont.)
Stress
Today’s presentation begins with a critique of a common problem within academic courses
Today’s presentation begins with a critique of a common problem within academic courses.

Next, we will explore a strategy to address this problem.
Today’s presentation begins with a critique of a common problem within academic courses

Next, we will explore a strategy to address this problem

Finally, we will look at examples of how this solution finds application at BTC
Meet David

One of my second-year Instrumentation students, David, was unable to manipulate algebraic expressions as simple as this:

$$2x - 5 = 13 \quad (solve \ for \ x)$$
Meet David

One of my second-year Instrumentation students, David, was unable to manipulate algebraic expressions as simple as this:

$$2x - 5 = 13 \quad (solve \ for \ x)$$

This was despite having passed MATH 98, MATH 99, and MATH& 141, as well as the entire first-year sequence of Instrumentation courses.
Have you ever seen this before, where a student comes to your class with major “holes” in their competence?
Deja-vu

Have you ever seen this before, where a student comes to your class with major “holes” in their competence?

Have you ever contributed to this before, where a student passed your class with major “holes” in their competence?
Deja-vu

Have you ever seen this before, where a student comes to your class with major “holes” in their competence?

Have you ever contributed to this before, where a student passed your class with major “holes” in their competence?

I certainly have!
How does this happen?
Conceptual crutches

Students are very good at finding “crutches” for their conceptual weaknesses. Typically this takes the form of memorization in lieu of reasoning.
How does this happen?
Conceptual crutches

Students are very good at finding “crutches” for their conceptual weaknesses. Typically this takes the form of memorization in lieu of reasoning.

Does this sound familiar to anyone?
How does this happen?
Conceptual crutches

Students are very good at finding “crutches” for their conceptual weaknesses. Typically this takes the form of memorization in lieu of reasoning.

Does this sound familiar to anyone?

This is how David survived his first year of Instrumentation: he would memorize every form of every algebraic formula used in order to avoid having to solve for variables.
How does this happen?

The Points Game

Students “play the points game” to pass courses. Most courses spread enough points over a range of measures to allow students to pass even if they fail to grasp one or more major concepts.
How does this happen?
The Points Game

Students “play the points game” to pass courses. Most courses spread enough points over a range of measures to allow students to pass even if they fail to grasp one or more major concepts.

Does this sound familiar to anyone?
How does this happen?
The Points Game

Students “play the points game” to pass courses. Most courses spread enough points over a range of measures to allow students to pass even if they fail to grasp one or more major concepts.

Does this sound familiar to anyone?

This is how David survived his math courses: the grading structure left enough room for him to earn a passing grade despite never learning how to solve for variables.
Swiss-cheese competence

Any course where a passing grade is based on achieving a minimum average score guarantees *swiss-cheese competence* where some students exit with “holes” in their knowledge and abilities.
Swiss-cheese competence

Maybe this won’t matter much, if the “holes” lie in areas of knowledge and skill that aren’t essential. But what if some of those holes happen to fall on one or more really important areas?
Perfection is unrealistic

Expecting every single student to master every single concept in any complex course of study is simply not realistic. Students are human beings, after all!
Raise the cut score?

Raising the minimum passing score helps, but at the risk of unnecessarily failing students who could succeed given the right circumstances. Students are human beings, after all!
Some years ago, I read an online post on an engineering discussion website where a professional engineer described his experience taking the exam for his engineering license. He said this exam came in two parts:
Some years ago, I read an online post on an engineering discussion website where a professional engineer described his experience taking the exam for his engineering license. He said this exam came in two parts:

1. The first part of the exam had to be passed with 100% competence – failing any part of this meant failing the entire examination!
Some years ago, I read an online post on an engineering discussion website where a professional engineer described his experience taking the exam for his engineering license. He said this exam came in two parts:

1. The first part of the exam had to be passed with 100% competence – failing any part of this meant failing the entire examination!

2. The second part of the exam had a regular “cut score” of 70% correct to pass
Mastery exams

The technical term for the first kind of assessment is a *mastery exam*. The student cannot pass unless and until they demonstrate *mastery* of all concepts represented on that exam. Some common traits of mastery exams include:
The technical term for the first kind of assessment is a *mastery exam*. The student cannot pass unless and until they demonstrate *mastery* of all concepts represented on that exam. Some common traits of mastery exams include:

- Exclusive focus on only the most important concepts
Mastery exams

The technical term for the first kind of assessment is a *mastery exam*. The student cannot pass unless and until they demonstrate *mastery* of all concepts represented on that exam. Some common traits of mastery exams include:

- Exclusive focus on only the most important concepts
- A very high minimum score to pass (generally 80% or higher)
The technical term for the first kind of assessment is a *mastery exam*. The student cannot pass unless and until they demonstrate *mastery* of all concepts represented on that exam. Some common traits of mastery exams include:

- Exclusive focus on only the most important concepts
- A very high minimum score to pass (generally 80% or higher)
- Multiple opportunities to re-try
The PE exam set limits where “holes” are allowed:

In other words, a Professional Engineer had to score 100% on the “must know” areas. The rest could be imperfect.
Mastery in the lab
Safety first!

Mastery assessments are commonly found in clinical and lab teaching environments where students practice safety-related skills. The reasoning here is self-evident:
Mastery in the lab
Safety first!

Mastery assessments are commonly found in clinical and lab teaching environments where students practice safety-related skills. The reasoning here is self-evident:

- What would less than 100% competence mean for a nurse administering a dose of medicine?
Mastery assessments are commonly found in clinical and lab teaching environments where students practice safety-related skills. The reasoning here is self-evident:

- What would less than 100% competence mean for a nurse administering a dose of medicine?
- What would less then 100% competence mean for a mechanic replacing brakes on a vehicle?
Mastery in the lab
Safety first!

Mastery assessments are commonly found in clinical and lab teaching environments where students practice safety-related skills. The reasoning here is self-evident:

- What would less than 100% competence mean for a nurse administering a dose of medicine?
- What would less then 100% competence mean for a mechanic replacing brakes on a vehicle?
- What would less than 100% competence mean for an electrician wiring lights in a new home?
Mastery assessments are commonly found in clinical and lab teaching environments where students practice safety-related skills. The reasoning here is self-evident:

- What would less than 100% competence mean for a nurse administering a dose of medicine?
- What would less then 100% competence mean for a mechanic replacing brakes on a vehicle?
- What would less than 100% competence mean for an electrician wiring lights in a new home?

Mastery is the standard here because the stakes are so high
Mastery in the classroom
Ensuring a solid foundation!

Why not apply a standard of mastery to all concepts we know to be absolutely fundamental to the students’ future success, not just those related to safety?
Why not apply a standard of mastery to all concepts we know to be *absolutely fundamental* to the students’ future success, not just those related to safety?

This is what helped David fill the holes in his algebra competence: being faced with mastery exams in second-year Instrumentation courses where he *had* to manipulate equations.
Mastery in the classroom
Ensuring a solid foundation!

Why not apply a standard of mastery to all concepts we know to be absolutely fundamental to the students’ future success, not just those related to safety?

This is what helped David fill the holes in his algebra competence: being faced with mastery exams in second-year Instrumentation courses where he had to manipulate equations.

David mastered this skill after just one week of remediation, knowing this was necessary for him to pass.
Good mastery objectives

Objectives represented on a mastery assessment must share these three traits:
Good mastery objectives

Objectives represented on a mastery assessment must share these three traits:

1. They must be *critically* important
Good mastery objectives

Objectives represented on a mastery assessment must share these three traits:

1. They must be *critically* important
2. They must be within all students’ reach
Good mastery objectives

Objectives represented on a mastery assessment must share these three traits:

1. They must be *critically* important

2. They must be within all students’ reach

3. They must be clearly stated and thoroughly covered
Example #1
(sampled from BTC course syllabus)

GRADING CRITERIA FOR CLASS: 4 module exams and one math exam will be given; these will count for 80% of the course grade. To receive a passing grade, exam scores must have a combined average of 80% or greater, 100% is a passing score for math exams. Students who do not maintain this average will not receive a passing grade in the course and will not be able to progress in this program. The math exams may be retaken two times. If not passed on the third time, this is unsatisfactory progress and the student will not be allowed to progress in the program. Scoring below 80% on an individual theory exam requires content remediation. The student is responsible for meeting with the instructor to create a remediation plan.
Example #2
(sampled from BTC course syllabus)

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests, Labs, Presentations</td>
<td>80%</td>
</tr>
<tr>
<td>Attendance</td>
<td>20%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
</tr>
</tbody>
</table>

Exams and Quizzes: All exams and quizzes must be completed with 80% correct to pass the course. Scores less than 80% correct will require a retake of the exam or quiz. The retake must be passed at 80% correct or above. The recorded score on the grade sheet will be the first attempt.
Example #3
(sampled from INST230 course syllabus)

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completing all mastery exams and mastery lab objectives</td>
<td>50%</td>
</tr>
<tr>
<td>Proportional exam</td>
<td>40%</td>
</tr>
<tr>
<td>Lab questions</td>
<td>10%</td>
</tr>
</tbody>
</table>

Mastery exam re-takes carry no penalty. Failure to successfully pass a mastery exam by the deadline will result in an F grade. Failure to complete any “mastery” lab objective by the deadline will result in a C- grade cap, with a one-day extension to complete. Failure to complete those mastery objectives by the end of that extra day will result in an F grade.
INST230: Motor Controls course
Objectives covered on first mastery exam:

1. Sketch proper wire connections for a relay control circuit
2. Determine status of a relay logic circuit given a schematic diagram and switch stimulus conditions
3. Calculate either the full-load current or the horsepower of an electric motor (single-phase) given the other relevant parameters
4. Solve for a specified variable in an algebraic formula
5. Determine the possibility of suggested faults in a simple circuit given measured values (voltage, current), a schematic diagram, and reported symptoms
INST230: Motor Controls course

Objectives covered on first mastery exam:

1. Sketch proper wire connections for a relay control circuit
2. Determine status of a relay logic circuit given a schematic diagram and switch stimulus conditions
3. Calculate either the full-load current or the horsepower of an electric motor (single-phase) given the other relevant parameters
4. Solve for a specified variable in an algebraic formula
5. Determine the possibility of suggested faults in a simple circuit given measured values (voltage, current), a schematic diagram, and reported symptoms

This list appears on every assignment given to students during the INST230 course
Sketch a circuit *de-energizing* the lamp when the switch is pressed and *energizing* the lamp when the switch is released. The switch contacts must not experience more than 24 volts:

- **120 VAC power plug**
- **120 VAC lamp**
- **Pushbutton switch**
- **24 VDC supply**
- **Relay**
Determine the statuses of the red and green lamps:

Pressure = 40 PSI ; Level = 2.2 feet ; Temp = 232 °F
A 2.5 horsepower, single-phase electric motor runs on a line voltage of 117 volts. Calculate the line current for this motor while operating at its rated power, assuming 94% efficiency and a perfect power factor (1.0).
This formula describes the amount of reactance \((X_C)\) exhibited by a capacitor \((C)\) at different frequencies \((f)\):

\[
X_C = \frac{1}{2\pi fC}
\]

Algebraically manipulate this formula to solve for \(f\).
This electric motor won’t start. A voltmeter reads 0 volts between C and D when the motor should be running:

Typical circuit fault question

INST230_x1 mastery exam

Typical circuit fault question

This electric motor won’t start. A voltmeter reads 0 volts between C and D when the motor should be running:

INST230 mastery exam sample questions

Questions?

FAQs

Fail rate
Time
Time (cont.)
Stress

Mastery testing

Cover page

Introduction

A problem

A solution

A recipe

Examples at BTC

480 VAC 3-phase

15 A fuses

E

F

G

motor

A

0.5 A fuse

B

C

D

24 volts
Identify the likelihood of each specified fault for this circuit, considering each fault one at a time (i.e. no coincidental faults):

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible</th>
<th>Impossible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistor failed open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transistor failed shorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor winding(s) failed open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 amp fuse blown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 amp fuse blown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay coil failed open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If *any* question is incorrectly answered on this exam, the student must re-take a new version of the same mastery exam in its entirety.

No penalty for failed mastery exams, except that it must be passed by a specified deadline in order to pass the course. Limit of one re-take per day.

Student confers with instructor following a failed attempt. Problem(s) identified and remediation recommended.
Frequently Asked Question
Won’t this fail a lot of students?
Frequently Asked Question

Won’t this fail a lot of students?

No, because:

- Students know what’s expected of them well in advance
- The concepts are covered thoroughly
- Multiple re-tries are allowed
Frequently Asked Question
Won’t this take a lot of time?
Frequently Asked Question

Won’t this take a lot of time?

Not really. Time spent ensuring a solid foundation saves time later in the course (and in the program, if you teach a sequence of courses) because students progress with a stronger grasp of foundational concepts.
Frequently Asked Question
What about the time required for re-takes?
Frequently Asked Question
What about the time required for re-takes?

Encourage students to get it right the first time, to reduce re-takes. Options include:

- First-attempt score recorded toward the grade
- Bonus for passing on the very first attempt
Frequently Asked Question
What about the time required for re-takes?

Encourage students to get it right the first time, to reduce re-takes. Options include:

- First-attempt score recorded toward the grade
- Bonus for passing on the very first attempt

Schedule re-takes so as to not disrupt your teaching:

- Exam re-takes administered during office hours
- Exam re-takes scheduled after hours, outside of class time (e.g. ExamView)
Frequently Asked Question

Won’t such high standards over-stress students?
Frequently Asked Question

Won’t such high standards over-stress students?

No, because they know the opportunity to try again gives them room to make honest mistakes.
Frequently Asked Question
Won’t such high standards over-stress students?

No, because they know the opportunity to try again gives them room to make honest mistakes.

Also, mastery standards communicate a very important message to students: you can do this! This is encouraging, not discouraging.