MODULAR ELECTRONICS LEARNING (MODEL)
PROJECT

* SPI CE ckt

vl 1 0 dc 12

2 21 dc 15

1 2 3 4700

2 3 0 7100

dc vl 12 12 1

print dc v(2,3)
print dc i(v2)
end

IR
1

COMBINATIONAL LocIc

(©) 2019-2025 BY TONY R. KUPHALDT — UNDER THE TERMS AND CONDITIONS OF THE
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL PUBLIC LICENSE

LAST UPDATE = 29 MAY 2025

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction
1.1 Recommendations for students
1.2 Challenging concepts related to combinational logic
1.3 Recommendations for instructors

2 Case Tutorial
2.1 Example: gate circuits from 4-input truth tables
2.2 Example: ladder logic circuits from 4-input truth tables
2.3 Example: timing diagrams for combinational gate circuits
2.4 Gallery of logic gate applications L o
2.4.1 Power circuit fault detector L Lo
2.4.2 H-bridge driver circuit e
2.4.3 Two-out-of-three voting circuit oL
2.4.4 Binary word comparator e e e
2.4.5 Binary decoder circuits L L Lo
2.4.6 Binary adder circuits Lo

3 Tutorial
3.1 Logic functions L e
3.2 Universal logic functions L
3.3 Combinational relay logic
3.4 Boolean expressions into circuits Lo
3.5 Truth tables into circuits L Lo
3.5.1 Sum of Products
3.5.2 Negative Sum of Products
3.5.3 Productof Sums

4 Historical References
4.1 Claude Shannon makes the connection
4.2 NASA’s Apollo Guidance Computer

5 Derivations and Technical References
5.1 Normal status of a switch contact
5.2 Logic families L

iii

S Ut w W

11
15
19
19
20
22
23
24
26

29
29
32
36
38
41
42
44
47

51
52
54

iv

6 Programming References

6.1 Programming in C++
6.2 Programming in Python
6.3 Modeling combinational logic using C++

Questions

7.1 Conceptual reasoning
Reading outline and reflections
Foundational concepts Lo
Use of spare NAND gates

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12
7.2.13
7.2.14
7.2.15
7.2.16
7.2.17
7.2.18

7.3.1
7.3.2

Unanimous vote detector circuit

Combination lock circuit
Triple-redundant power supply
Chemical weapons incinerator
7.2 Quantitative reasoning
Miscellaneous physical constants

Introduction to spreadsheets

Using Python to evaluate combinational logic expressions

Using Python to evaluate a combinational function diagram

Boolean expressions from gate circuits
Boolean expressions from relay circuits
Truth tables from Boolean expressions
Gate circuits from Boolean expressions
Relay circuits from Boolean expressions
Circuits from two-input truth tables
SOP and POS expressions from the same truth table
Circuits from three-input truth tables

Boolean expression for an undocumented logic circuit

SOP expression and ladder logic from a truth table
Gate circuit from a truth table
Relay circuit from a truth table
Seven-segment decoder Lo
Timing diagrams for gate circuits
7.3 Diagnostic reasoning

Projects and Experiments

8.1 Recommended practices
Safety first!

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5

8.2 Experiment: Relay circuit implementation of an arbitrary truth table
8.3 Project: Combinational gate circuit driving 120 VAC load

Other helpful tips

Terminal blocks for circuit construction
Conducting experiments

Constructing projects

Effect of gate fault on Boolean expression
Seven-segment decoder/driver problem

CONTENTS

....... 126

CONTENTS

A Problem-Solving Strategies

B Instructional philosophy
B.1 First principles of learning . . .
B.2 Proven strategies for instructors
B.3 Proven strategies for students .
B.4 Design of these learning modules

Tools used

C
D Creative Commons License
E References

F

Version history

Index

141

143
144
145
147
148

151

155

163

165

168

CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

Logic functions such as AND, OR, and NOT form the basis of nearly all digital systems. However,
each one of these functions by itself is of limited use. Practical applications usually demand logic
functions of additional complexity, and when multiple AND/OR/NOT functions are connected
together to form a more advanced logical function the result is called combinational logic.

A defining characteristic of any combinational logic system is that the output state(s) are entirely
defined by the input states. That is to say, it is possible to write a truth table for any combinational
logic function exactly describing which input states immediately lead to which output states. This
stands in contrast to other digital functions such as timing functions and latching functions, the
output states of which depend on input states as well as past history for that function (e.g. elapsed
time for timing functions, and previous output states for latching functions).

Important concepts related to combinational logic include logic states, logic levels,
high and low logic states, logic functions, truth tables, Boolean algebra, logic gates,
electromechanical relays, logic function universality, DeMorgan’s Theorem, the normal state
of a switch, algebraic order of operations, sum-of-products, product-of-sums, and logic circuit
minimization.

Here are some good questions to ask of yourself while studying this subject:

e How might an experiment be designed and conducted to explore DeMorgan’s Theorem? What
hypothesis (i.e. prediction) might you pose for that experiment, and what result(s) would
either support or disprove that hypothesis?

e What are some practical applications of SOP and POS Boolean expressions?

What does a truth table represent?
e What is a logic function?

e What are some basic forms of logic functions?

3

CHAPTER 1. INTRODUCTION

How may we use lettered variables to represent logic states and logic functions?

How are digital logic states represented as electrical voltage signals?

How may logical functions be implemented using electromechanical relays?

Which logic functions may be configured to emulate other logic functions?

How do series and parallel switch networks relate to logical functions?

What is a practical application for “universal” logic functions?

What is DeMorgan’s Theorem and where might we apply it?

How does a Boolean product relate to logic gate functions, and also to relay contact networks?
How does a Boolean sum relate to logic gate functions, and also to relay contact networks?

Why is the order of operations important when translating a Boolean expression into a logic
circuit?

Describe how a “Sum of Products” (SOP) Boolean expression may be derived from a truth
table.

Describe how a “Negative Sum of Products” (NSOP) Boolean expression may be derived from
a truth table.

Describe how a “Product of Sums” (POS) Boolean expression may be derived from a truth
table.

Why is it useful to have multiple techniques for translating a truth table into a Boolean
expression?

Why might it be beneficial to reduce or minimize logic circuits?

1.2. CHALLENGING CONCEPTS RELATED TO COMBINATIONAL LOGIC 5

1.2 Challenging concepts related to combinational logic

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

e Sourcing versus Sinking output currents — a common misconception is that since the
output of a logic gate is called “output” it must mean that current only ever exits that
terminal. This is untrue. All that “output” actually signifies is the fact that the gate
is outputting information consisting of voltage values measured between that terminal and
ground. Sometimes the assertion of a “low” (zero-voltage) logical state requires that the gate
actually draw current in through its “output” terminal!

e Gates require DC power — since logic gates are really just transistor amplifier circuits, those
treansistors require constant DC voltage applied between their power terminals to function
properly. Gates are not powered through their input terminals — these terminals only receive
information in the form of “high” and “low” logic states, and ideally pass negligible current.

e Pullup and pulldown resistors — in digital circuits, resistors are often used to provide a
secure logic state when an input device (such as a switch) goes to a high-impedance (open)
mode. Students often have difficulty figuring out exactly where these resistors should go in a
circuit. The most common mistake I've seen is to place one of these “pullup” or “pulldown”
resistors in series with a gate input, which will accomplish absolutely nothing. The “trick”
to getting this placement right, if you can call it a trick at all, is to literally follow the word
“pullup” or “pulldown”. A pullup resistor pulls the logic state of a wire up to the positive
supply rail, and so must connect between the gate input and +V. A pulldown resistor pulls the
logic state of a wire down to ground potential, and so must connect between the gate input
and ground. In either case, the resistor provides a sure path to the opposite power rail that
the input device connects to when active (closed).

e DeMorgan’s Theorem — a common tendency for students is to attempt to memorize new
mathematical formulae and techniques, and DeMorgan’s Theorem is no exception. However,
a more insightful approach is to see how DeMorgan’s Theorem works in practical applications
such as logic function universality, where we use just one type of logic function to emulate
other logic functions.

6 CHAPTER 1. INTRODUCTION

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

e Outcome — Demonstrate effective technical reading and writing

Assessment — Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment — Students explain how gate universality is proven in the Tutorial chapter’s
examples.

Assessment — Students explain how logic circuits were derived from Boolean expressions
in the Tutorial chapter’s examples.

Assessment — Students explain how logic circuits were derived from truth tables in the
Tutorial chapter’s examples.

e Outcome — Design logic circuits to implement given truth tables

Assessment — Given a truth table with desired output states, design a semiconductor logic
gate circuit to implement that function.

Assessment — Given a truth table with desired output states, design an electromechanical
relay “ladder logic” circuit to implement that function.

e Outcome — Independent research

Assessment — Locate logic gate datasheets and properly interpret some of the information
contained in those documents including supply voltage range, input logic voltage levels, output
logic voltage levels, maximum switching speed, maximum output current, internal schematic
diagrams (not available in all datasheets), etc.

Assessment — Read and summarize in your own words reliable source documents on the
subject of NASA’a Apollo Guidance Computer (AGC) which was built entirely of NOR gates.

Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module — can you explain why the circuits behave as they do?

CHAPTER 2. CASE TUTORIAL

2.1 Example: gate circuits from 4-input truth tables

A | B | C|D| Output
0]0]01|O 0
0]0]0]|1 1
0j0|1]|0 0
0]0|1]|1 0
0j1]01|0O0 0
0]1]01 0
0Oj1|1]|0 0
0111 0
110|070 0
110071 0
110(11]0 0
1170111 1
111]01]0 0
1111011 0
111(11]0 0
1111171 0
Boolean SOP expression: ABCD+ ABCD

A B CD
. _r_r_[>°_
,_r_r_[>°—
._r_[>°_
4 NN
,_r_r_[>°_
N, N

j>7 Cut put

2.1. EXAMPLE: GATE CIRCUITS FROM 4-INPUT TRUTH TABLES

A|B | C|D| Output
0]0]01|O 0
01]0]01 0
0]0|1]|0O0 0
01011 0
0j1]01|0O0 1
0]1]0/1 0
Oj1|1]|0 0
011111 0
1100710 0
110071 0
110(11]0 1
11701111 0
111]01]0 0
1111011 1
111(11]0 0
111171 0

Boolean SOP expression: ABC D + ABCD + ABCD

A B CD
ITE }
N~ |
S —
P O N7 N7 N ~
lb—fz\—Do— D Qut put
1/
P N7 N7 N
N 0 |

10

Boolean Negative-SOP expression:

CHAPTER 2. CASE TUTORIAL

A B CD

—]
L

N1
-

N1
-

N1
N1
-

Do

N1
N1
-

N1
N1
-

[>o

A|B|C Output
01010 1
01010 1
0101 1
0101 1
01110 1
0]1]0 1
0111 0
0111 1
117010 1
110]0 1
11011 1
11011 1
11110 0
11110 1
1]1]1 1
11111 0
ABCD + ABC D + ABCD

Qut put

2.2. EXAMPLE: LADDER LOGIC CIRCUITS FROM 4-INPUT TRUTH TABLES

11

2.2 Example: ladder logic circuits from 4-input truth tables

Lo

A | B | C|D| Output
0]0]01|O 0
0]0]0]|1 0
0j0|1]|0 0
0]0|1]|1 1
0j1]01|0O0 0
0]1]01 0
0Oj1|1]|0 0
0111 1
110|070 0
110071 0
110(11]0 0
1170111 0
111]01]0 0
1111011 0
111(11]0 1
1111171 0
Boolean SOP expression: ABCD + ABCD + ABCD
Ly
A B C D Qut put
'
/
A B C D
A B C D

12 CHAPTER 2. CASE TUTORIAL

And of course it should be evident from the ladder-logic circuit that certain simplifications may
be made while still retaining the same logical functionality:

L, L,
A D C Qut put
/V’ | | | | 4R

I | | /
A B D

| | | | /V’
| | |

The process of simplifying the original ladder-logic circuit to what you see above is a matter of
identifying identical contacts (e.g. the normally-open C contact) present in multiple rungs which
may be consolidated into a single rung in series with the non-common contact rungs. Note also how
the normally-closed B and normally-open B contacts were eliminated as the upper and middle rungs
were consolidated into one rung, because having NO and NC contacts in parallel driven by the same
input is pointless — there would always be a path through one or the other of them regardless of B’s
state, therefore B need not have a presence in the consolidated rung.

A good simplification strategy is to consolidate contacts shared amongst the greatest number
of rungs first. This is why the first consolidation was the normally-open C contact, because it was
found in all three of the original rungs. This is also why the second consolidation was the upper
and middle rungs: with C removed they still they had A (normally-closed) and D (normally-open) in
common with each other.

2.2. EXAMPLE: LADDER LOGIC CIRCUITS FROM 4-INPUT TRUTH TABLES

A|B|C Output
0(10]0 1
01010 1
0101 1
0|01 1
0110 1
0(1]0 1
0111 1
0 1 1 1
17010 0
11010 1
1 0 1 1
1101 0
1 110 1
1 110 0
1 111 1
1 1 1 1
Boolean Negative-SOP expression: ABC D+ ABCD + ABCD
L, L,
A D CR1
'
-/
A D
A D
CR1 Qut put
()
/

13

14 CHAPTER 2. CASE TUTORIAL

Certain simplifications are possible for this circuit while still retaining the same logical
functionality:

L, L,
A B C D CR1
| | M
| -/
B C D
B C
CrR1 Qut put
J/ I
| /

2.3. EXAMPLE: TIMING DIAGRAMS FOR COMBINATIONAL GATE CIRCUITS 15

2.3 Example: timing diagrams for combinational gate
circuits

A timing diagram shows the “high” and “low” states of logic signals as waveforms in the time
domain (i.e. with time being the horizontal axis). These diagrams are essential for analyzing logic
circuits with latching (memory) capability, but they may also be used to document the behavior of

non-latching logic circuits too. The following examples show this for different configurations of logic
networks.

A_
B_

Out

C

C._ |
Out I_I

Note: a good way to approach the analysis of this and other circuits where conditions change
over time is to make multiple copies of the schematic diagram — one for each different moment
in time shown on the timing diagram where there is a unique set of input conditions — and then
annotate each of those diagrams with all the logic conditions at that particular moment in time.
Essentially, we perform several “thought experiments” on the logic circuit, each one representing a
different moment with a unique set of input conditions. This breaks a complex problem down into
simpler, more manageable parts.

16 CHAPTER 2. CASE TUTORIAL

;j

S =

Out |_|

2.3. EXAMPLE: TIMING DIAGRAMS FOR COMBINATIONAL GATE CIRCUITS 17

LT o

Out

18 CHAPTER 2. CASE TUTORIAL

-

Outl

High

Low

High

Low

High

Low

High

Outl

Low

High

Out2

Low

2.4. GALLERY OF LOGIC GATE APPLICATIONS 19

2.4 Gallery of logic gate applications

Semiconductor logic gates have many, many practical applications. The following subsections show
just a few!

As is customary with most logic gate schematic diagrams, DC power terminals for the logic gates
themselves have been omitted in order to reduce clutter on the diagrams. Know, however, that logic
gates are transistor circuits which require DC power to function!!

2.4.1 Power circuit fault detector

A power circuit equipped with voltage and current sensors providing boolean (“true” or “false”)
indications of voltage and current may be equipped with a logic circuit to take those sensor signals
and from their values determine if there is any fault in the power circuit:

Power <+> Voltage | _ %
source \= sensor Load

Current
sensor

\ %

Open fault detected

Y/

00

Shorted fault detected

.

Healthy power circuit

20 CHAPTER 2. CASE TUTORIAL

2.4.2 H-bridge driver circuit

H-bridge circuits are networks of four power transistors useful for controlling power to a load. By
activating either one of the lower transistors in the bridge, the appropriate upper transistor becomes
activated as well, passing current through the load in one direction or the other. However, the
simplistic H-bridge circuit shown below is a bad design because all four transistors will activate (and
short-circuit the +V source) if anyone happens to press both pushbuttons happen at the same time:

+V +V
H-bridge circuit
— —
+V I, W—
Load l

4 (

1l
f—%

7
—/\/\/\—e

Bad design!

2.4. GALLERY OF LOGIC GATE APPLICATIONS 21

The addition of some logic gates will safeguard against this improper mode of operation,
by activating the H-bridge only if one of the two pushbuttons is pressed but not if both are
simultaneously pressed:

+V +V

NS % %

|

Tond 1

¢ Load *

T

i

1
|

1

3 [
T[
N

22 CHAPTER 2. CASE TUTORIAL

2.4.3 Two-out-of-three voting circuit

High-reliability systems often use redundant components to achieve fault tolerance. For example
a system may use three identical sensors (A, B, and C) all detecting the same physical stimulus,
all three sensors reporting their statuses to an electronic “voting” logic circuit providing a reliable
output signal based on a two-out-of-three (“2003”) vote:

A B C (from sensors)

) W,) W—
._f\—}
¢) —
ﬂ, D 2003 vote
._r_r\—}
) W,) W—
.
D Sensor failed
L M 1
L
A | B | C | 2003 vote | Sensor failed
0]01]0 0 0
0|01 0 1
0O]11]0 0 1
0 1 1 1 1
11010 0 1
1101 1 1
1 1 0 1 1
1 1 1 1 0

All it takes is for at least two of the three redundant sensors to agree with each other to generate
a reliable “high” or “low” output from the voting circuit, and if there is any disagreement at all
between the three sensors we will know by the “sensor failed” output going high. This provides
a fault tolerance of one, which means any one of the three sensors could fail in any state and the
voting circuit would still reliably indicate the true status of the measured stimulus.

2.4. GALLERY OF LOGIC GATE APPLICATIONS 23

2.4.4 Binary word comparator

A binary word is a collection of bits representing a numerical quantity or a symbolic code!. This
circuit compares two 4-bit binary words to check for equality:

Binary word A Binary word B
I

1
I'A‘?: A2 Al AOI IB3 BZ Bl B0I

L= L
) >—

Each Exclusive-NOR gate compares a pair of respective bits in words A and B, outputting a
“high” signal if those two bits are equal in state. The AND gate outputs a “high” signal only if
every one of its input lines is also “high”, which can only happen when the two 4-bit words are
identical.

LFor example, the American Standard Code for Information Interchange (ASCII) uses 7-bit words to represent all
numerical and alphabetical characters on a standard English computer keyboard.

24 CHAPTER 2. CASE TUTORIAL

2.4.5 Binary decoder circuits

Binary numeration represents numerical quantities using multiple bits, each bit capable of being
either “high” (1) or “low” (0). Basic whole-number representation in binary is simple — each bit has
a place-weight that is some power of two, as opposed to decimal numeration where each place-weight
is a power of ten. For example, compare the decimal versus binary representations of the number

fifty-three:

Fifty-three in decimal Fifty-three in binary
5|3 1 1 0 1 0 1
s 9 5 £ & ¢ 7 9
Ba BE NS NE NE Na NG N
So B 23T 3g BE s o Yo
g 2 5 2 5§ 2 3 8
® o g % 2 2 ® o
o} o)
(o]
(0]

Fifty-three = (5 x 10%) + (3x 10%) =50 + 3

Fifty-three = (1x2°) + (1x 2% + (0x 2 + (1 x 2% + (0x 21) + (1 x 2°)
Fifty-three = (1x32) + (1x16) + (0x8) + (1 x4)+(0x2) + (1 x 1)

Modern digital computers use binary as the means of representing numbers because each bit of
a binary number may be unambiguously symbolized using Boolean-state (true/false, on/off, 1/0)
logic circuits.

Any circuit designed to input a binary number and activate one or more outputs selected by the
value of that binary number is generally referred to as a decoder. For example, in the illustration
below we see a 4-line to 16-line binary decoder decoding the number eleven:

15+—0

14+—0
Decoder 13}—o0
120

11+—1 eleven
- D 10+—0
9 (o0
c 8 o
b 7 —o
—eo—B 6 ——0
50
- A 4t—o0
3 o0
2 —o
— 10
0 (o

2.4. GALLERY OF LOGIC GATE APPLICATIONS 25

Binary decoders are really nothing more than a collection of AND and inverter (NOT) gates. In
the example circuit below, inverters placed on the input of each AND gate appear as “bubbles” for
the sake of compactness:

=
(4]

5
i

=
w

[
N

[y
=

[
o

©

~

(2]

a1

S

w

N

[

o

SuSusvs vV

Only one of these AND gates will have its input conditions satisfied to generate a “high” output,
for any given combination of bit-states in the four-bit binary input.

26

2.4.6 Binary adder circuits

Gate circuits may be built to perform simple arithmetic operations on binary numbers. Shown below
is a binary half-adder circuit, able to add two binary bits to produce sum and a carry outputs:

CHAPTER 2. CASE TUTORIAL

Half adder
A
Sum

B
A | B | Carry out | Sum | Explanation
010 0 0 0+0=0
011 0 1 0+1=1
110 0 1 1+0=1
1)1 1 0 1+1=2

2.4. GALLERY OF LOGIC GATE APPLICATIONS 27

Next is a binary full-adder circuit, able to add two binary bits as well as a carry-in signal to
produce sum and a carry outputs:

Full adder

A

B D*Sum

C,——> H

Cout

Carry in | A | B | Carry out | Sum | Explanation

0 010 0 0 0+0+0=0

0 0|1 0 1 0+0+1=1

0 110 0 1 0+1+0=1

0 111 1 0 O+1+1=2

1 010 0 1 1+0+0=1

1 011 1 0 1+0+1=2

1 110 1 0 1+1+0=2

1 1|1 1 1 1+1+1=3

28 CHAPTER 2. CASE TUTORIAL

Neither a half-adder nor a full-adder circuit is very useful on its own. In order to actually add two
binary numbers of any significant magnitude together we must cascade multiple full-adder networks
together. Below we see a full adder network for two 4-bit binary numbers (A + B = F):

A | Cout
A3
3 aader
C.
in Sum F3 (MSB)
A
A2 COUt
B B Full
2 C,, adder Sum i
2
A
A]_ COUt
B B Full
' Cin adder Sum =
1
A
AO COUt
° Cin adder Sum
— ————F, (LSB)

Binary adders are a fundamental building-block of Arithmetic Logic Units (ALUSs), which perform
numerical operations on binary numbers within microprocessor systems. Most readers of this
document will do so using some digital electronic device, and rest assured each and every one
of those devices will contain at least one ALU!

Chapter 3

Tutorial

3.1 Logic functions

Digital logic is the realm of “discrete” quantities having only two possible values, or “states”: 1 and
0. From this simple idea springs forth the concept of logical functions where specific combinations
of input signal states result in pre-defined output states. Several fundamental logic functions are
shown in the following illustration, each function accompanied by a truth table declaring the output
state for each possible combination of input states, as well as a Boolean algebra expression describing

the function mathematically:

OR function AND function NOT function NOR function NAND function Exclusive-OR function
A A A A A
e e ea e Te e
B B B B B
A B Qut A B Qut A Cut A B Qut A B Qut A B Qut
0 |0 |0 0|0 |0 0|1 0|0 |1 0|0 |1 0|0 |0
0|11 0|1]0 1|0 0|1]0 0|1]1 0|1]1
10 |1 110 |0 _ 110 |0 110 |1 110 |1
Qt = A
101 |1 1011 111 (0 111 |0 1]11|0
Qut = A+ B Qut = AB Qut = A+ B Qut = AB Qut =AB+ AB

Although the use of arithmetic (e.g. A+ B for the OR function, AB for the AND function) may
seem strange, it makes sense when you consider the limited values each discrete variable has. If each
variable may only be a 0 or a 1, it makes sense, for example, that an AND function whose output is
1 only if all inputs are 1 is equivalent to multiplication, where the product is 1 only if all multiplied
values are 1. Likewise, addition makes sense for the OR function up until 1 + 1 = 1, and even that
makes sense once you realize there is no such thing as a value of “two” in the Boolean numbering
system. An overhead bar symbol represents logical inversion or complementation, which flips the
value to its opposite. Thus, A means the opposite! logical state of A, and A + B (NOR) represents
a function with output states exactly opposite of A+ B (OR).

I'When spoken, one generally says “A-bar” or “not-A” to represent the complement of A.

29

30 CHAPTER 3. TUTORIAL

All of the two-input logic functions previously shown, with the exception of the Exclusive-OR
(also called XOR), are available in versions having more than two inputs. A four-input OR function,
for example, would have an expanded truth table with sixteen (2%) rows, only the first of which
has a 0 output state (with all four inputs in their 0 states); and a Boolean equivalent expression of
Out=A+B+C+D.

Electrical logic circuits use discrete voltage signals to represent 0 and 1 logical states. Typically,
a “high” voltage value (at or near the positive power supply rail voltage with respect to ground)
represents 1 and a “low” voltage value (at or near ground potential) represents 0. Logical functions
take the form of transistor or relay networks in digital circuits, transistor-based logic circuit elements
being called gates and relay-based logic being called relay ladder logic.

The NOT function, for example, may be constructed using bipolar junction transistors and
packaged in an integrated circuit (IC), or alternatively it could manifest as an interconnection of
electromechanical relays. Four diagrams below show how the NOT function may be implemented
using either solid-state or relay technology, two of these diagrams use standard electronic schematic
diagram symbols, while the other two use special symbols made for the purpose of simplifying digital
diagrams:

Semiconductor NOT function schematic diagram

Semiconductor NOT function gate diagram
V supply
V supply (—)
.) NOT function symbol
Bipolar logic

gate IC A—I>o—0ut

Load
Boolean statement
w at = A
&’VEE
Relay NOT function schematic diagram Relay NOT function ladder diagram

CR1

= -
. 5 | 3)
V spply é) ‘ ‘ Load = ~
A CI:Rl Load
s W——
Semiconductor technologies other than bipolar junction transistors (BJTs) may alternatively be

used. A type of logic gate called CMOS using complementary N-channel and P-channel MOSFETs
is also quite popular.

3.1. LOGIC FUNCTIONS

31

Basic logical functions such as AND and OR may be implemented using electromechanical relays
just as they can using transistors. AND and OR functions in particular have direct relation to series
and parallel contact connections, respectively. Please note that electrical power supply connections
are typically omitted from these diagrams for simplicity, but are shown here in order to present a
complete view of all required connections to make these logic systems functional:

AND function

+V
A_
Cut
B_
A B CQut
0|0 |0
01110
1 (0 |0
1 (1 (1
OR function
+V
A
Cut
B
A B Qut
0|0 |0
0 (1 |1
110 (1
11111

Voltage source
)

CR1

>
T

B
1

O
CRL

Series relay contacts
fulfill the AND logic function

mVoItage source

CR1

>
T

g e
T

QX

g

Parallel relay contacts
fulfill the OR logic function

It is important to closely study the conventions of each diagram style, where we find similar
or even identical symbols used to represent different things. A small circle, for example, refers to
a terminal on an integrated circuit (IC) package, whereas on a gate diagram an identical circle
represents logical negation (inversion, or complementation). A larger circle drawn as a component
in a ladder diagram represents the coil of an electromechanical relay.

32 CHAPTER 3. TUTORIAL

3.2 Universal logic functions

When we combine basic logical functions to make other (usually more complex) logical functions, it
is called combinational logic. A simple and practical application of combinational logic is the use of
one basic function to create another basic function. Two logical functions are classified as universal
because any other logical function may be made from combinations of either type. Both NAND and
NOR functions share this property of universality, meaning we may build up any logic function at
all simply by connecting a sufficient number of NAND functions together, or a sufficient number
of NOR functions together. The key to this universality is the ability of both NAND and NOR
functions to operate as inverters (i.e. as NOT functions), and from this property we may combine
multiple instances of each gate type to form any other.

First, demonstrating how NAND and NOR gates may function as inverters, either by connecting
both input terminals together to function as a single input, or by connecting the unused input
terminal to a particular power supply rail to force its logical state all the time?:

NOR function NOR function NAND function NAND function
(both inputs made common) (one input made low) (both inputs made common) +y (one input made high)
A

A A A

B —B B B
A B Qut A B Qut A B Qut A B CQut
0|0 |1 0|0 010 |1 =104
O—T4—10 0|1 O—T+—T4 Gt
41616 41616 G=—6—1% 0|1
1 (1 (0 F o I B 1 (1 (0 1 (0

An excellent active reading exercise is to take the time to annotate the logic diagrams presented
in this (and future) Tutorials with various combinations of “1” and “0” input states, then reference
truth tables for the respective functions to determine what the output states must be. For example,
if we annotate the upper-left NOR diagram with a “0” state at its input we see that both NOR
inputs must be “0” which according to the NOR truth table must yield a “1” output; annotating
the same diagram with a “1” state at its input means both of the NOR inputs must be “1” as well
which according to the NOR truth table yields a “0” output.

2 Although from a strictly logical perspective it makes no difference whether a NAND or NOR gate is turned into
an inverter (NOT gate) by connecting its input terminals together or by forcing the state of one of those inputs with
a direct connection to a power supply rail, usually the latter method is preferred in actual circuit design. The reason
for the latter preference has to do with the current sourcing or sinking demands of logic gate inputs: tying input
terminals together means the driving device must service the current requirements of two inputs rather than just one,
and additional loading degrades high-speed performance.

3.2. UNIVERSAL LOGIC FUNCTIONS 33

The following illustration demonstrates® how it is possible to use nothing but combinations of
NOR gates to construct the other three basic logic functions (OR, AND, and NAND). As an aid to
understanding, every signal line bears a Boolean expression describing its state:

wl

i

w >

||

ot
o

&

NAND

wl
i
w >
Q
&l

Upon first inspection it may not be clear why some of these NOR gate networks are logically
equivalent to their basic equivalents shown on the right. The first example, turning a NOR into
an OR by inverting its output, is simple enough because any double-negation cancels itself, and
so A+ B is equivalent to A + B. The next example, turning a NOR gate into an AND gate by
inverting its input signals, is not so obvious. They key to understanding this conversion is a theorem
in Boolean algebra known as DeMorgan’s Theorem, which states any negation bar spanning an
arithmetic operation may be divided (“broken”) and that arithmetic operation exchanged for the

other* type. Following DeMorgan’s Theorem, we may break the long bar over A+ B and convert

the addition into multiplication, resulting in A B, which then becomes AB according to the principle
of double-negations canceling. Likewise, the next example where NOR gates become a NAND gate,

involves first canceling double-bars to turn A + B into£+ B, at which point DeMorgan’s Theorem
shows us the equivalence between this statement and AB.

3This illustration itself, of course, does not actually demonstrate the universality of NOR gates. In order for a true
demonstration to be complete, one must observe the system operating as intended. For this, it is left as an exercise
to the reader to perform “thought experiments” on these three logic circuits, imagining the input terminals in their
various possible states and following through to the consequent output states based on the truth table of a NOR
function.

4In standard Boolean algebra, the only two arithmetic operations are addition and multiplication.

34 CHAPTER 3. TUTORIAL

This next illustration shows the same principle of universality with combinations of NAND gates
rather than combinations of NOR gates:

+V AND
T _ L A
T m = e
B— AB
d OR
T Y
A o
A— } A B f— BD A+B
+V
T B
B_

+V

;j
H:jz
a
Il

- B
B—i

Once again we see DeMorgan’s Theorem in action, where a long complementation bar may be
“broken” into shorter pieces with a corresponding change of arithmetic operation below the break
(e.g. A B becomes A+ B which becomes A+ B after canceling the double-bars). This example, like
the others, shows the power of Boolean algebra as a means of expressing logical functions: it may
not be apparent by inspection of the diagram how combining three NAND gates results in an OR
function, but a rule such as DeMorgan’s Theorem lets us manipulate these symbols to prove that
equivalence. In other words, Boolean algebra is a tool for understanding combinational logic.

Combinational gate circuits may be created to implement any conceivable digital function. The
examples shown so far merely illustrate one application, and that is the creation of basic logic
functions using just one type of “universal” gate.

The practical procedure for deriving a Boolean expression from any combinational gate circuit
diagram is apparent in both the NOR and NAND combinational logic examples: begin by labeling
the inputs with unique letters (variables), then label the output terminals of each logic gate based
on those inputs and the Boolean mathematical operation for each logic function (e.g. addition for
OR, multiplication for AND, complementation for NOT), repeating this procedure through to the
final output(s) of the circuit. Similarly, the procedure for determining the logic states within any
combinational gate circuit diagram is to label all the given input states, then reference truth tables
to determine the output state of each gate those inputs feed into; then repeat this procedure as

3.2. UNIVERSAL LOGIC FUNCTIONS 35

the output states of those gates feed into the input terminals of other gates. A truth table may be
generated for any combinational function the same way: analyze all logic states within the circuit
for every possible combination of input states, the number of rows in this truth table being equal to
2 raised to the power of the number of discrete inputs.

36 CHAPTER 3. TUTORIAL

3.3 Combinational relay logic

Logic functions and Boolean algebra are abstractions, and as such are independent of physical form.
This means the same principles apply to digital circuits built using different technology, for example
electromechanical relays rather than semiconductor gates. Consider the following “ladder logic”®
relay circuit shown below, using pushbutton switches for inputs and a lamp for the single output. We
will define® a 1 state as electrically conductive (for a switch contact) or energized (for a load), and
write a Boolean expression to the right of each “rung” in the “ladder” circuit. With these definitions,
series-connected contacts implement the AND function, parallel-connected contacts implement the
OR function, and normally-closed contacts represent the NOT function:

Ly

B

c
=l

L2
A CR1
<= O—
CR2
O

BC
CR1 D
1 —ale O—' (R + BOD
CR2
| |

The state of relay coil CR1 is identical to the state of switch A’s actuation (i.e. 1 = pressed
switch = closed contact = energized coil), and so that coil’s Boolean expression is simply A. In
the next rung we have a normally-open B switch in series with a normally-closed C' switch, and so
coil CR2’s expression is BC. Relay contact CR2 is normally-open and so carries with it the same
state as coil CR2 (BC), but contact CR1 is normally-closed and so it inverts or complements its
coil’s state (A). Those two relay contacts are connected together in parallel, and so their combined
expression is the Boolean sum A + BC. Connected in series with those paralleled relay contacts is
a normally-closed pushbutton switch D, and so the expression of the lamp in the last rung is the
Boolean product (A + BC)D.

Similar to gate circuits, the procedure for deriving a Boolean expression from any combinational
relay circuit diagram begins by labeling the inputs with unique letters (variables), then labeling each
relay coil based on the Boolean mathematical operation for each connection type (e.g. addition for
parallel, multiplication for series, complementation for normally-closed), repeating this procedure
through to the final load(s) of the circuit.

5The term “ladder logic” refers to the ladder-like orientation of the components and connecting wires in the
diagram. Each horizontal row is called a rung, while the two vertical lines (representing the poles of a voltage source)
are called rails. The voltage source symbol is usually omitted for simplicity, with the labels L1 and L2 representing
these “line voltage” rails not unlike Voo and Vg in a bipolar logic gate circuit.

6This would be positive logic as applied to a relay circuit, analogous to defining 1 as a “high” voltage state and 0
as a “low” voltage state for a semiconductor gate circuit.

3.3. COMBINATIONAL RELAY LOGIC 37

Logic states within a relay ladder logic circuit are easy to track using simple annotations to
represent the electrical status of each contact and each load. I recommend a line or arrow drawn
near the component to represent continuity (switch) or energization (load), and an “X” symbol to
represent non-continuity (switch) or de-energization (load). For example, the previous ladder logic
circuit is shown here annotated for a condition where switches A, B, and D are pressed but C is
released:

L, L,
A (pressed) CR1
L
= (O— A
B C
(pressed) CR2
L _
Sl (O)—t &
_
CR1 D (pressed)
1/ ” (— (A + BOD
X
2
|
—_

Switch contacts A and B are both closed (lines drawn) because they are normally-open switches
and are both being pressed. Switch C is closed (line drawn) because it is normally-closed and is not
being pressed. Switch D is open (X drawn) because it is normally-closed and is being pressed.

Relay coils CR1 and CR2 are both energized (lines drawn) because there is electrical continuity
through their rungs. Relay contact CR1 is open (X drawn) because it is normally-closed and actuated
by its energized coil. Relay contact CR2 is closed (line drawn) because it is normally-open and
actuated by its energized coil.

Whether the contact in question is a pushbutton switch or a relay contact, its electrical status is
a function of its normal type and its actuation state. Always remember that the “normal” condition
for any electrical switch is its state when at rest (i.e. no actuating stimulus applied), and that
electrical contact symbols are always drawn’ in their “normal” (resting) states.

7This is why one should never draw a slash mark through a relay contact symbol as a means to annotate closure,
because this unnecessarily confuses the disparate concepts of a switch’s current status with its normal status. Sadly,
this is an all-too-common habit both of students and of (some) working professionals, and it represents a temptation
to conflate two different concepts in a misguided attempt to simplify the task of relay circuit analysis. A relay contact
drawn with a diagonal slash through it is a normally-closed contact, and not necessarily in its closed state at the time
of analysis.

38 CHAPTER 3. TUTORIAL

3.4 Boolean expressions into circuits

At times it is necessary to design a digital circuit to implement a given Boolean expression. In
such cases the procedure is simply to step through the Boolean expression using proper algebraic
order-of-operations®, applying the following equivalent circuit structures to the Boolean operations:

e Boolean addition is equivalent to the OR function, also equivalent to parallel switch contacts

e Boolean multiplication is equivalent to the AND function, also equivalent to series switch
contacts

e Boolean inversion is equivalent to the NOT function, also equivalent to normally-closed
switch contacts

For example, suppose the Boolean expression we needed to implement is as follows:
Output = D(AB + AC)

The proper order of operations for evaluating this expression is shown here:

1. Invert the value of B

2. Multiply B by A

3. Invert the value of A

4. Multiply A by C

5. Add AB and AC

6. Multiply AB + AC by D

8Beginning algebra students typically learn a mnemonic such as PEMDAS to remember which operations take
precedence over others. In the case of PEMDAS, it is first any operation enclosed within Parentheses, followed by
Exponents, then by Multiplication and Division, and finally by Addition and Subtraction. Boolean order-of-operations
is simpler because there is no such thing as an exponent, division, or subtraction. A comparable mnemonic for Boolean
expressions is PIMA: Parentheses followed by Inversion (complementation or negation), followed by Multiplication,
followed by Addition.

3.4. BOOLEAN EXPRESSIONS INTO CIRCUITS 39

Building a gate circuit to implement D(AB + AC) is as simple as following this ordered list,
using a NOT gate for inversion, an AND gate for multiplication, and an OR gate for addition. Note
the number labels for each of the logic gates in the schematic diagram, showing which logic gate
implements which step we followed with mathematical order-of-operations.

1.

2.

Invert the value of B — Connect input B to a NOT gate

Multiply B by A — Connect the NOT gate’s output to one input of an AND gate, with the
other AND gate input connected to input A

Invert the value of A — Connect input A to a second NOT gate

Multiply A by C' — Connect the second NOT gate’s output to one input of a second AND gate,
with the other AND gate input connected to input C

Add AB and AC — Connect the two AND gate outputs to the inputs of an OR gate

Multiply AB + AC by D — Connect the OR gate’s output to one input of a third AND gate,
and input D to the other input of this AND gate

s [

A

} Output

40 CHAPTER 3. TUTORIAL

Much the same is true for creating a relay logic circuit from a Boolean expression: we
use normally-closed contacts to invert, series-connected contacts for multiplication, and parallel-
connected contacts for addition. Again, implementing the Boolean expression D(AB + AC), but
this time in relay ladder logic form:

L, L,

A

CR1
L O_
B

CR2
L O_
C

CR3
L O_
D

CR4
L O_
CR4 CR1 CR2 Output
| | I I | Y

A useful strategy for logic circuits with mechanical switch inputs to minimize the number of
electromechanical relays required is to only include a relay when a variable appears more than once
in the Boolean expression. For the expression D(AB+ AC') only A requires a relay. All other inputs
are simply switches wired NO or NC as needed:

L, L,
A
CR1
1
D CR1 B Output
I I | _'J_'_ N~

If the given Boolean expression contains no repeated variables, the circuit may be constructed
entirely of switches with no relays necessary!

3.5. TRUTH TABLES INTO CIRCUITS 41

3.5 Truth tables into circuits

When designing a digital logic circuit to perform some practical function, we usually begin the
design process by sketching a truth table describing exactly what we wish this circuit to do. The
truth table is where we declare which input state combinations will cause the output to achieve a
certain state. Once we’ve defined our truth table, we need to find some way to translate this abstract
representation into a real working circuit diagram.

Fortunately, Boolean expressions make this process relatively straightforward. The following
subsections describe slightly different methods of developing a Boolean expression from any arbitrary
truth table, and then from that Boolean expression we may create a logic gate or relay “ladder logic”
circuit to fulfill the function (as described in earlier sections).

The first technique utilizes a Boolean form called sum-of-products (SOP), consisting of a Boolean
expression that is a sum of terms comprised of multiple variables multiplied together. For example,
ABC + DEF is a sum-of-products where ABC and DEF' are both products that are being added
(summed) together. The basic circuit form used to implement any SOP expression is a set of AND
gates (or series-connected switch contacts) for each product and an OR gate (or parallel connection)
for the sum. The basic SOP technique works very well when a minority of the truth table’s output
values are true (1).

The second technique is a variation of sum-of-products method optimized to work best when a
minority of the truth table’s output values are false (0).

The third technique uses a Boolean form called product-of-sums (POS), consisting of a Boolean
expression that is the product of several sums contained in parentheses. For example, (A + B +
C)(D 4 E + F) is a product-of-sums where (A + B + C) and (D + E + F) are both sums that are
being multiplied together. The basic circuit format for a POS expression is a set of OR gates (or
parallel-connected switch contacts) for each sum and an AND gate (or series connection) for the
product. The POS technique works well for truth tables where a minority of the output values are
false (0).

In full disclosure, any of these techniques may be used to translate a given truth table into a
correct circuit. What makes one of them better than another for any specific problem is really the
balance of true (1) versus false (0) states in the truth table’s output column. That is to say, some
techniques generate Boolean expressions with fewer terms than others for a given truth table, and
therefore translate that truth table into equivalent circuits with fewer components than others.

For students new to this topic I recommend mastering the first two techniques, both based on
sum-of-products (SOP) Boolean expressions. The product-of-sums (POS) technique works well,
but can be confusing because nearly everything about it seems “backwards” compared to the basic
SOP technique. If you master the SOP-based techniques — which I call “Sum of Products” and
“Negative Sum of Products” respectively — you will be able to translate any arbitrary truth table
into a reasonably efficient circuit with a minimum of confusion.

42

3.5.1 Sum of Products

CHAPTER 3. TUTORIAL

The number of products in any sum-of-products Boolean expression is equal to the number of “1”
output states listed in the truth table. Take the following truth table as an example:

A | B | C | Output
01010 0
0101 1
0]1]0 0
0111 0
110]0 0
11011 0
11110 0
111 1

Only two rows in this table contain “1” output states, and so our sum-of-products expression

may be described in the following terms:

The Output will be 1. . .

when A=0and B=0and C =1
LLLor ...

when A=1and B=1and C=1

The italicized words and and or are intentionally emphasized for the purpose of associating with
Boolean operations of multiplication and addition, respectively. Writing this same statement in

mathematical form:

Output = A BC + ABC

The product A BC expresses the “truth” of the second row, where A =0 and B =0 and C =1,
the individual variables complemented or uncomplemented as necessary to make the product equal
1 for those conditions. The product ABC expresses the “truth” of the eighth row, where A =1
and B =1 and C = 1. The overall function is the sum of these two products; i.e. the function will
output a 1 if either of these products are “true”. Each of the two products represents a three-input
AND function, while the sum of those two products represents a two-input OR function.

3.5. TRUTH TABLES INTO CIRCUITS 43

Taking this sum-of-products expression (Output = A BC' + ABC') and converting into both logic
gate and relay ladder logic circuits as previously described:

Relay ladder logic circuit
Logic gate circuit L, L,

A
oL Ly
Bt o
B
CH Output 1 O_‘
C
CR3
1 O_'
CR1 CR2 CR3 Output
| | L Y
giximinesCs
CR1 CR2 CR3

—

The structure of these two circuits reflects the structure of the sum-of-products Boolean
expression. Note how the product A BC is evident in the upper AND gate of the logic gate circuit,
as well as in the second rung from the bottom of the ladder logic diagram; also how the product
ABC is represented by the lower AND gate and also by the lowest rung. The OR gate (and the
paralleled network of the lowest two rungs) embodies the sum between the two products.

If we consider the fact that the number of products in a sum-of-products Boolean expression is
equal to the number of truth table rows with a “1” output state, it becomes apparent that both
the sum-of-products expression and the equivalent circuit(s) becomes larger as the number of “1”
output states in the truth table increases. In other words, the more “1” output states in a truth
table, the larger the sum-of-products solution will be. For truth tables containing more “1” output
states than “0” output states, this fact can be problematic.

In answer to this challenge, multiple techniques exist to derive Boolean expressions from truth
tables. The best technique for any application depends on the nature of the truth table, in particular
whether the function has a super-majority of “1” or “0” output states.

44 CHAPTER 3. TUTORIAL

3.5.2 Negative Sum of Products

One such alternative approach designed to work best for truth tables containing a minority of “0”
output states, is to write a sum-of-products expression while thinking in “negative” terms, identifying
Boolean products describing truth table rows with “0” output states rather than “1” output states.
The intrinsic problem-solving technique here is to simplify the problem, imagining the truth table’s
majority-1 output states to be majority-0 instead and then writing an SOP expression for that
inverted table using the previously-described technique. To make the SOP expression correct for
the original table, one must place a long inversion (complement) bar covering all terms. Take the
following truth table as an example:

A | B | C | Output
01010 1
01011 1
0]1]0 1
0111 0
110]0 1
11011 0
11110 1
1]1]1 1

Only two rows in this table contain “0” output states, and so our sum-of-product expression may
be described in the following terms:

The Output will be 0 . . .

when A=0and B=1and C =1
P

when A=1and B=0and C =1

Once again the italicized words and and or intentionally emphasize the Boolean operations of
multiplication and addition, respectively. Writing this same statement in mathematical form:

Output = ABC + ABC

The product ABC expresses the “negative truth” of the fourth row, where A = 0 and B =1 and
C = 1. The product ABC expresses the “negative truth” of the sixth row, where A =1 and B =0
and C = 1. By “negative truth” we mean that the overall function is the inverted sum of these two
products; i.e. the output is 0 if either of these products equal 1. In other words, if either ABC' or
ABC is true, the output will be false. Each of the two products represents an AND function, while
the final sum and negation represents a NOR function.

3.5. TRUTH TABLES INTO CIRCUITS 45

Taking this sum-of-products expression (Output = ABC + ABC') and converting into both logic
gate and relay ladder logic circuits as previously described:

Relay ladder logic circuit

Logic gate circuit L, L,
A
CR1
A L O
B B
CR2
CH Output 1 O_'
C
CR3
Ll L O—

CR1 CR2 CR3 CR4
CR1 CR2 CR3

— =

CR4 Output

rdi O

Once again we see how the circuits’ topologies reflect the structure of the sum-of-products Boolean
expression. Note how the product ABC is evident in the upper AND gate of the logic gate circuit,
as well as in the third rung from the bottom of the ladder logic diagram; also how the product ABC
is represented by the lower AND gate and also by the second rung from the bottom. The NOR gate
implements the inverted sum of the two products in the gate circuit. In the relay circuit, this final
inversion requires a fourth relay with a normally-closed contact, its coil powered by the positive sum
(parallel network) of two rungs.

46 CHAPTER 3. TUTORIAL

Close inspection of the relay ladder logic circuit for the Boolean expression ABC 4+ ABC reveals
potential for simplification. Notice how the two normally-open CR3 contacts are redundant to each
other, and how we may implement the exact same logical function by eliminating one of those CR3
contacts. Going further, we may eliminate one relay altogether, since C' now appears only once in
the Boolean expression and therefore relay CR3 contributes nothing to the circuit. The following
set of diagrams show the original circuit (left) and two levels of simplification (middle and right):

L, L, L, L, L, L,
A CR1 A CR1 A CR1
1 1 1

O O— O
B CR2 B CR2 B CR2
1 1 1
O— O— O—
c CR3 c CR3 CR1 cR2 © cRr3
1 1 1
O— O— i —(O
CR1 CR2 CR3 CR4 CR1 CR2 CR3 CR4 CR1 CR2
A H wdme O =
CR1 CR2 CR3 CR1 CR2 CR3 Output

H A = T

CR4 Output CR4 Output

|
|

The first simplification — eliminating one of the CR3 relay contacts — could have been done (first)
to the Boolean expression prior to drawing any circuit diagram. If we examine the two products
underneath the long complement bar, we see both of them have a common C' variable. This means
we may factor C out of the two products as demonstrated here:

ABC + ABC = C(AB + AB)

The simplified expression is directly implemented in the middle relay ladder logic diagram shown
above. The far-right diagram simplification comes not from Boolean algebra, but rather from the
realization that relay CR3 just wasn’t necessary.

Boolean algebra offers several identities and properties useful’ for simplifying long expressions.
A full exploration of these techniques will be left to another learning module.

9nterestingly, while simplified Boolean expressions require fewer circuit components to implement, which typically
decreases construction cost and increases operational reliability, Boolean simplifications lend little benefit to
programmed logic functions, whether in a microcontroller or in a PLC (Programmable Logic Controller). AND,
OR, and NOT functions programmed in code cost nothing either in capital investment or in non-reliability, and so a
large expression programmed into a digital controller works just as well as an equivalent reduced expression. In fact,
there are circumstances where the simplified version of a Boolean logic function actually makes less sense to anyone
examining the code than the raw expression generated directly from the truth table, in which case Boolean reduction
does more harm than good!

3.5. TRUTH TABLES INTO CIRCUITS 47

3.5.3 Product of Sums

Another alternative approach well-suited to truth tables having more “1” output states than “0”
is to write a product-of-sums Boolean expression (e.g. (A + B + C)(D 4+ E + F)) rather than a
sum-of-products (e.g. ABC + DEF'). Here, the strategy is to identify those “0” input conditions
leading to an output value of 0. As before, we will begin with an example truth table, our goal being
to derive both logic gate and relay ladder logic circuit implementations of the arbitrary function
represented by the truth table:

A | B | C | Output
01010 1
01011 1
01110 1
0171 1
110]0 0
11011 1
11110 1
11111 0

The “0 truth” sum representing the fifth row is A+ B+ C, the individual variables complemented
or uncomplemented as necessary to yield a sum of 0 when A = 1 and'® B =0 and C = 0. The “0
truth” sum representing the eighth row is A 4+ B + C. Multiplying'' these two sums to arrive at a
product-of-sums expression for the truth table:

(A+B+C)A+B+0)

Implementing this Boolean product-of-sums expression in circuit form requires either OR gates
or parallel relay contacts for the sums (addition), and AND gates or series relay contacts for the
product (multiplication).

10At first it may seem incorrect to use Boolean addition (which is normally equivalent to an OR function) to
associate particular states of A, B, and C, but this is actually legitimate because we are thinking in “negative” terms.
Recall that a three-input OR function outputs a 1 if A=1 or B =1 or C = 1; but it is also true to say that an OR
function outputs a 0 if A =0 and B = 0 and C = 0. Therefore, when thinking in terms of a “0” result, it is fair to
use Boolean addition (i.e. an “OR” function) to identify some simultaneous set of “0” input states. This is actually
an example of DeMorgan’s Theorem in action: inverting both the inputs and output of a fundamental logic function
changes its type from OR to AND or vice-versa.

1 The reason we choose Boolean multiplication to piece these two sums together is because we want the output to
be 0 if either sum is equal to 0. Again, this may seem wrong to use multiplication to represent an “or” condition, but
it works because we are thinking in “negative” terms, and an AND function (multiplication) always has a 0 output if
any of its inputs are 0.

48 CHAPTER 3. TUTORIAL

_ Both equivalent logic gate and relay ladder logic circuits for the product-of-sums expression
(A+ B+ C)(A+ B+ C) are shown in the following diagrams:

Relay ladder logic circuit

Logic gate circuit L, L,
A CR1
A L
) O
CH }— Output _IB_ 25:
c CR3
L
O
CR1 CR1 Output
Einmrimese
CR2 CR2
sinBEin
CR3 CR3

HH Or

As with the previous example, a close inspection of the relay ladder logic circuit reveals potential
for simplification. Note how the two normally-closed CR1 relay contacts are redundant to each
other, and may be replaced by a single normally-closed CR1 contact passing power to the Output
lamp: any time pushbutton A is unpressed, both CR1 contacts will be in their closed (resting) states,
guaranteeing energization of the load. From an electrical perspective, it makes no sense to have two
series-connected relay contacts with the exact same state doing what one contact could do by itself.
That simplification leads to the next, where we realize with only one CR1 contact in the circuit we
may simply replace it with a normally-closed “A” pushbutton switch and dispense with one relay.

3.5. TRUTH TABLES INTO CIRCUITS

49

The following diagrams show these three versions of the circuit, the original (left), the first
simplification (center), and the simplest version (right):

-

(@)
Py
[

72T

/

Ly
A
L
B
L
C
L
CR1 CR1 Output
EamEd
CR2 CR2
sinBEdn
CR3 CR3

j/F

7

7

2

L, L
A CR1
1

O
B CR2
1
O
c CR3
1
O
CR1 Output
48 Ct
CR2 CR2
—
CR3 CR3

_{

2

L, L,
B
CR1
L O—
C CR2
L O—
A Output
e 9!
CR1 CR1
CR2 CR2

Mathematically demonstrating why these three circuits are functionally equivalent is much more
difficult to do with a product-of-sums expression than for a sum-of-products expression, which is a
strong argument against the product-of-sums approach of converting a truth table into an equivalent
circuit and simplifying through Boolean algebraic techniques.

50

CHAPTER 3. TUTORIAL

Chapter 4

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.

51

52 CHAPTER 4. HISTORICAL REFERENCES

4.1 Claude Shannon makes the connection

One of the great minds of electrical engineering, Claude Shannon, recognized the application of
Boolean logic to relay switching circuits while studying for his Master’s degree at Massachusetts
Institute of Technology (MIT) in 1940. His thesis paper submitted as part of the graduation
requirements for this degree has been widely hailed as a breakthrough for the analysis of digital
circuits.

On pages 2 and 3 of Shannon’s paper, we read the following paragraph where he states an
equivalence between propositional logic and electrical switching:

The method of solution of these problems which will be developed here may be described
briefly as follows: Any circuit is represented by a set of equations, the terms of the
equations representing the various relays and switches of the circuit. A calculus is
developed for manipulating these equations by simple mathematical processes, most
of which are similar to ordinary algebraic [sic] algorithms. This calculus is shown to be
exactly analogous to the Calculus of Propositions used in the symbolic study of logic. For
the synthesis problem the desired characteristics are first written as a system of equations,
and the equations are then manipulated into the form representing the simplest circuit.
The circuit may then be immediately drawn from the equations. By this method it is
always possible to find the simplest circuit containing only series and parallel connections,
[page 2]

and for certain types of functions it is possible to find the simplest circuit containing any
type of connection. In the analysis problem the equations representing the given circuit
are written and may then be interpreted in terms of the operating characteristics of the
circuit. It is also possible with the calculus to obtain any number of circuits equivalent
to a given circuit. [page 3]

Note his express intent of using Boolean algebra as a tool for circuit minimization. In his era,
when logical functions required electromechanical relays to implement, the minimization of relay coils
and contacts meant a logic circuit with fewer components, translating into lower cost of manufacture
and greater reliability. When solid-state (semiconductor) transistor-based logic circuits appeared,
this same Boolean algebra proved useful as a tool for determining the simplest (and therefore most
compact) circuit that could be etched into a silicon chip.

Shannon’s mathematical approach to switching circuits was to consider an open circuit to have
a value of 1, and a closed circuit to have a value of 0. He referred to this as the hinderance of the
switching network, similar in concept to resistance but discrete in nature rather than continuous.
This is inverse of how we now consider most switching circuits in Boolean form, energized (closed)
being 1 and de-energized (open) being 0. Based on his definition of 0 and 1 for switching circuits,
Shannon then reasoned that series switch networks would be represented by the Boolean addition of
their hinderance values and that parallel switch networks would be represented by the multiplication
of their hinderances. Again, this seems backwards from our modern perspective where we relate
series-connected switch contacts to the logical AND function (Boolean multiplication) and parallel
contacts to the OR function (addition), but it is important to realize that either approach is
mathematically valid. As with any other application of axiomatic reasoning, the outcomes depend
greatly upon one’s initial definitions.

4.1. CLAUDE SHANNON MAKES THE CONNECTION 53

Shannon then proceeds in his paper to present a set of postulates relating 0 and 1 values to open
and closed switching networks (pages 5 and 6):

Boolean expression Electrical interpretation

0-0=0
1+1=1
1+0=0+1=1

A closed circuit in parallel with a closed circuit is a closed circuit

An open circuit in series with an open circuit is an open circuit

An open circuit in series with a closed circuit in either order is an
open circuit

0-1=1-0=0 A closed circuit in parallel with an open circuit in either order is a
closed circuit

0+0=0 A closed circuit in series with a closed circuit is a closed circuit

1-1=1 An open circuit in parallel with an open circuit is an open circuit

Rather than use bar-lines over Boolean variables to denote inversion or negation, Shannon opted
to use apostrophe (“prime”) characters. So, rather than print the inversion of X as X, Shannon
writes X’. If groups of variables are inverted (e.g. A + B), one must use parentheses to group the
variables together and then follow the closing parentheses symbol with an apostrophe, for example
(A4 B)’. This choice of symbols may very well have been a result of the crude typesetting available
in Shannon’s time, apostrophes being much easier to properly typeset on a page than bar-lines.

On page 11 of his paper, Shannon neatly summarizes and compares relay switching logic with
Propositional Logic:

Symbol | Relay interpretation Propositional interpretation

X The circuit X The proposition X

0 The circuit is closed The proposition is false

1 The circuit is open The proposition is true

X+Y The series connection of circuits X and Y | The proposition which is true if either X

or Y is true

XY The parallel connection of circuits X and | The proposition which is true if both X
Y and Y are true

X’ The circuit which is open when X is | The contradictory proposition X
closed, and closed when X is open

= The circuits open and close | Each proposition implies the other
simultaneously

Again, recall that Shannon assumed an electrical open to be a 1 and a short to be a 0, which

is why series is equivalent to addition and parallel to multiplication in his application of Boolean
algebra. This is opposite of how modern relay logic circuits are typically interpreted, with an
energized load (i.e. a closed switch allowing current) being 1 and a de-energized load (i.e. an open
switch preventing current) being 0.

54 CHAPTER 4. HISTORICAL REFERENCES

4.2 NASA’s Apollo Guidance Computer

The digital computer used for guidance functions in the 1960’s era Apollo spacecraft (the one used to
transport the first humans to Earth’s Moon) built by NASA used bipolar transistor logic, consisting
almost entirely of NOR logic gates. The schematic diagram for each three-input NOR gate was as
follows, along with its corresponding logic gate symbol:

B+
—g Schematic diagram
Ou;put Logic gate symbol

Input Input Input Input
P P P Input Output
Input

Note how the positive power supply terminal is labeled B+, an anachronistic reference to the
positive terminal of a high-voltage battery (hence the letter “B”) used to power vacuum tube circuits.
Based on the knowledge that bipolar transistors are normally “off” devices, and require the base-
emitter junction to be forward-biased in order to turn “on”, we can tell if any input goes to a high
state (i.e. connected to the positive rail of the DC power source), that respective NPN transistor
will turn on and bring the output terminal’s potential down (nearly) to ground. In other words, any
high input forces the output to be low: the very definition of a NOR, function.

The three transistors can only sink current, and therefore this NOR, gate’s sourcing capability
is limited by the resistor between the three collectors and the B+ power supply terminal. In other
words, this NOR gate had a significantly greater current-sinking rating than its current-sourcing
rating.

A rather short technical document entitled “A Case History Of The AGC Integrated Logic
Circuits” describes how nearly the entire computer consisted of these three-input NOR logic gates:

The standardization approach, which is particularly adaptable to digital computers, has
been demonstrated with the Polaris flight computer and extended with integrated circuits
to the Apollo Guidance Computer. Both computers were designed to use a three input
NOR Gate as the only logic element. All logic functions are generated by interconnecting
the three input NOR Gate with no additional logic blocks, resistors, or capacitors. At first
glance, it appears that using only one type of logic block greatly increases the number
of blocks required for the computer. But, by judiciously selecting and organizing the
logic functions it is quickly apparent that few additional blocks are necessary. The few
additional units required are greatly counterbalanced by the increased reliability gained
during both the manufacturing of components and fabrication of the components into
modules. [page 3]

4.2. NASA’S APOLLO GUIDANCE COMPUTER %)

It is possible to construct any digital logic function using nothing but NOR gates, because the
NOR gate is one of two universal logic gate types (NAND being the other). The key to gate
universality is the ability to function as an inverter (i.e. the NOT function) because inverting the
input(s) and/or output of any logic function makes possible the transformation of that logic function
into all other types. Any NOR gate will function as an inverter if the unused input(s) are fixed to
“high” (1) logic states, the one remaining input controlling the gate’s output. With a NOR gate
such as the type used by NASA to build the Apollo Guidance Computers, the unused inputs may
simply be left floating.

The following illustration demonstrates' how it is possible to use nothing but NOR gates to
construct the other four basic logic functions (NOT, OR, AND, and NAND):

Input
Output

NOT

Input 4|>o— Output

OR
Input

Input
Input Output Output
Input

Input —
Output Output
—— Input —

Input —
Output Output
Input —

1This illustration itself, of course, does not actually demonstrate the universality of NOR gates. In order for a true
demonstration to be complete, one must observe the system operating as intended. For this, it is left as an exercise
to the reader to perform “thought experiments” on these four logic circuits, imagining the input terminals in their
various possible states and following through to the consequent output states based on the truth table of a NOR
function.

56 CHAPTER 4. HISTORICAL REFERENCES

This next passage from the NASA document explains why NOR gates were chosen rather than
NAND, and gives some technical specifications for the integrated circuits:

The logic element utilized in the Apollo Guidance Computer is the three input NOR
Gate as shown in Fig. 1. At the time that the decision was made to use integrated
circuits, the NOR Gate, as shown, was the only device available in large quantities. The
simplicity of the circuit allowed several manufacturers to produce interchangeable devices
so that reasonable competition was assured. Because of recent process development in
integrated circuits, the NOR Gate has been able to remain competitive on the basis of
speed, power and noise immunity. This circuit is used at 3 V and 15 mW, but is rated
at 8 V and 100 mW. Unpowered temperature rating is 150 °C. [page 4]

These NOR gate integrated circuits were enclosed in “flatpack” packages and soldered into printed
circuit board assemblies. In the following photograph? we see three of these “flatpack” NOR gate
ICs soldered into place:

Each of these ten-terminal “flatpacks” contained two NOR gates, as shown in this NASA
schematic®:

SCHEMATIC

THIS SCHEMATIC IS REPRESENTATIVE OF THE
ELECTRICAL CHARACTERISTICS ONLY. THE
PHYSICAL CIRCUITRY IS ENTIRELY CONTAINED
WITHIN A MICRO NOR GATE FLAT PACK
Note how, just as with modern multi-gate ICs, some of the terminals on this early example of an
integrated circuit are shared in common with each of the internal gates. In this case we see terminal

10 (B+) common to both NOR gates, as well as terminal 5 (ground).

2This image was cropped from a public-domain photograph made courtesy of Grabert who posted it to Wikipedia.
3 Another public-domain photograph courtesy of Grabert.

4.2. NASA’S APOLLO GUIDANCE COMPUTER 57

Here we see a close-up view” of the silicon wafer inside one of these dual-NOR gate IC packages:

In another photograph® of the Apollo guidance computer assemblies, we see several of these NOR
gate ICs lying on a table next to one of the module assemblies of the computer called “Block 2 AGC
Logic”:

En‘mu:
B8LOCK IT AGC
LOGIC MODULE

AUCLET & 966

4 Another photograph courtesy of Grabert, graciously released into the public domain.
5 Another photograph courtesy of Grabert, graciously released into the public domain.

58 CHAPTER 4. HISTORICAL REFERENCES

A photograph showing the operator console for this digital computer appears in the following
photograph, from page 12 of the NASA Case History document:

Interconnections between NOR, gates were quite extensive in this computer, the connections made
by wire-wrapping on the side of the printed circuit board opposite of the ICs themselves. In other
words, the ICs were soldered to one side of the circuit board but wire-wrap pins protruding through
the other served as connection points for the wrapped wires connecting gates to each other. The
following photograph, taken from page 11 of the NASA document shows wiring on the underside of
the computer chassis. The quality of this photograph is too poor to see anything but a dense field
of wire-wrap terminal pins and courses of thin wires interconnecting those pins:

Chapter 5

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

59

60 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.1 Normal status of a switch contact

An perennial source of confusion among students new to electric switching circuits is the use of the
word normal to refer to an electrical switch’s default state. Switches, of course, are discrete devices
capably only of two definite states: open (i.e. no electrical continuity) and closed (i.e. electrical
continuity). Toggle switches are constructed in such a way that they may latch in either of these
two states, which means they have no default condition. A great many switch types, however, are
designed with a spring-return mechanism or equivalent functionality to make the switch return to a
certain default state in the absence of any external stimulus. This is called the “normal” state
of the switch: its electrical state when at rest.

Where this becomes confusing is in applications where such a switch is typically found in an
actuated state, such that ordinary operating conditions for the circuit maintain that switch in its
non-normal state. Colloquial use of the word “normal” is synonymous with “typical” which makes
it possible for someone to see a switch’s “normal” status and mistakenly think this refers to its
state in the circuit’s normal operation rather than meaning its “normal” status as defined by its
manufacturer.

A brief illustration is helpful here. Consider a flow switch used to detect the presence of liquid
coolant flow through a pipe, carrying coolant to an operating engine. Engines, of course, dissipate
heat as they run, and so a continuous flow of coolant to the engine is critical for maintaining safe
operating temperature. A simple diagram shows how this flow switch would be connected to a
warning lamp to alert personnel of any interruption in coolant flow to the engine:

Voltage source

)
N
Low flow
Flow switch alarm lamp
T O
(NC)

Since the purpose of this circuit is to energize the warning lamp in the event of no coolant flow,
the flow switch’s spring-return mechanism must be configured in such a way to close the switch
contact in the absence of flow. In other words, this flow switch’s contact will be closed when at rest
— i.e. it will be a normally-closed flow switch. However, during typical operation when adequate
coolant flow is present in the pipe, this switch will be held in its open state and the alarm lamp will
be de-energized. Even though the flow switch is normally-closed (NC), in this application it will be
typically open — the “normal” and “typical” states for this switch in this application are opposite.

5.1. NORMAL STATUS OF A SWITCH CONTACT 61

Now consider the addition of a different type of switch and alarm lamp to the circuit, with the
new switch installed on the same heat-dissipating engine serving to warn personnel if the engine
becomes too hot:

Voltage source

G
N
Low flow
Flow switch alar[n I/amp
f (NC) ’Q
High temperature
Temperature switch alar[nr\llamp
£ (NO) ~

This new switch’s purpose is to energize its warning lamp in the event the engine overheats, and
its mechanism must be configured to close the switch in the presence of high temperature. This
means the temperature switch’s spring-return will force it open at rest, making it a normally-open
temperature switch. During typical operation when the engine’s temperature is within reasonable
bounds, this switch will still be in its resting state, and so this normally-open (NO) temperature
switch will also be typically open — a case where “normal” and “typical” states happen to be identical.

Let us consider one more switch application for this hypothetical engine, this time using a single-
pole, double-throw (SPDT) speed switch to monitor the engine’s shaft speed and trigger energization
of two indicator lamps, one for “safe speed” and another for “overspeed”:

Voltage source

)
N\
Low flow
Flow switch alar[n I/amp
T C
NO High temperature
Temperature switch alar[nr\llamp
£ (No) A
; Overspeed
Speed switch o
com _ & NO)
\ NC \C//
Safé speed

Note the COM, NO, and NC labeling of this switch’s three terminals, denoting “Common”,
“Normally-Open”, and “Normally-Closed”, respectively. As with the other two switches, these
contact labels as well as the switch symbol itself as drawn in the diagram represent the switch’s
state when at rest. This is strict convention in electrical switching circuits: the “normal” state of
any switch is defined by a condition of minimal stimulus, and this is always how it is drawn.

62 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

A helpful tip to remember about sensing switches and their respective symbols is that the symbols
are conventionally drawn in such a way that an upward motion of the movable switch element
represents increasing stimulus. Here are some examples of this, showing various switch types and
NO/NC contact configurations, comparing their states with no stimulus versus when the stimulus
exceeds the each switch’s threshold or “trip” setting. The normal status of each switch as defined
by the manufacturer is labeled in green text:

NO pressure switch NC pressure switch
S L
Open when there is zero pressure (minimum stimulus), Closed when there is zero pressure (minimum stimulus)
Closed when pressure increases beyond threshold Open when pressure increases beyond threshold
NO level switch NC level switch
ol T
Open when there is zero level (minimum stimulus) Closed when there is zero level (minimum stimulus)
Closed when level increases beyond threshold Open when level increases beyond threshold
NO temperature switch NC temperature switch
.%{ -

Open when temperature is cold (minimum stimulus) Closed when temperature is cold (minimum stimulus)
Closed when temperature increases beyond threshold Open when temperature increases beyond threshold
NO flow switch NC flow switch
‘ﬁ _._E:_

Open when there is zero flow (minimum stimulus) Closed when there is zero flow (minimum stimulus)

Closed when flow increases beyond threshold Open when flow increases beyond threshold

Interestingly, the convention of upward motion representing the direction of stimulus is not
maintained for hand-operated switches.

5.1. NORMAL STATUS OF A SWITCH CONTACT 63

Switch contacts within electromechanical relays are also characterized as being either normally-
open (NO) or normally-closed (NC), and in this case the stimulus in question is the energization of
the relay’s electromagnet coil. When the coil is de-energized, the contacts will all be in their resting
(i.e. “normal”) states which is also how the relay’s contacts are drawn in diagrams. When the coil
is energized, though, all contacts within the relay flip to their opposite states: all NO contacts close
and all NC contacts open. The specific symbols used to represent relay coils and contacts differ
according to the type of diagram, but their meaning is the same:

Schematic representation Ladder diagram representation
Relay Relay
NC |

com NC

COM i o /r
i —| Ii NO

Coil ‘ ‘
|_'_l
Coil

A normally-closed (NC) relay contact is one which will be in its closed state when the coil is
de-energized, represented in diagram form by touching lines or by a slash mark between the two
contact plates. A normally-open (NO) relay contact is one which will be in its open state when
the coil is de-energized, represented in diagram form by an air gap between the contacting surfaces.
Upon energization of the relay coil, all the contacts within that relay change state, but their written
symbols remain the same' in order to represent their resting states.

1A bad habit some people adopt is to draw a slash mark through a relay contact symbol in order to annotate
that relay contact’s closure when analyzing the diagram for a relay-based circuit. This habit should avoided, as the
symbols used to represent normal status should never be used to represent present status. There is enough confusion
as it is surrounding the term “normal” without any more being added, so please do not contribute to the chaos!

64 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

When analyzing electrical switching circuits, a helpful problem-solving strategy is to annotate
the diagram with symbols denoting the actual status of each switch contact in any given circuit
condition, and not the normal status. Such annotations make it easier to determine which loads in
a circuit will be energized, and which will not, for any given circuit condition. For this I recommend
sketching an arrow or a line nearby a contact to show a closed state, and an “X” nearby a contact to
show an open state. These annotations demonstrate real contact status without obscuring normal
status. Consider these annotations used in the following example diagram:

Voltage source

)
_/
60 kPa 51°C
Pressure Temperature C R 1
trip = 35 kRa trip = 80 ° -'Qf’
S

Solenoid

A
CR1 "%g‘:"‘ Lgp

In the upper “rung” of this ladder-style diagram we see the normally-open pressure switch is
actuated (i.e. closed) because the applied pressure of 60 kPa exceeds the switch’s trip setting
of 35 kPa. The normally-closed temperature switch is unactuated (i.e. closed) because the applied
temperature of 51 °C is less than the trip threshold of 80 °C. The red arrows annotating both switches
show their closed statuses. Wired in series, these two closed switch contacts permit energizing current
to the coil of relay CR1, and so another red arrow drawn there indicates that coil’s energized status.

In the second and third rungs we see the present status of each CR1 contact. Since the CR1
relay coil is energized it places each CRI1 relay contact into a state opposite of its “resting” or
“normal” condition, therefore the normally-closed CR1 contact in rung 2 is open (shown with a red
“X” annotation) and the normally-open CR1 contact in rung 3 is closed (shown with a red arrow
annotation). The level switch’s stimulus is less than its trip setting, and so that normally-closed
contact remains closed and gets a red arrow. The flow switch’s stimulus is also less than its trip
setting, and so that normally-open switch remains open and gets a red “X” annotation. Neither
rung 2 nor rung 3 is completed because one of the series-connected contacts in each rung is open thus
preventing energization of its load. Therefore, both the solenoid coil and the lamp are de-energized,
shown with red “X” annotations.

5.2. LOGIC FAMILIES 65

5.2 Logic families

Many possible circuit designs exist to create digital logic gates and associated logic circuitry. For
example, one could design and build a NAND gate using nothing but bipolar (NPN and/or PNP)
transistors; alternatively, one could make a NAND gate using nothing but MOSFETs. And, for each
of these transistor types there are many variations of circuit design possible, such that any logic gate
made according to a particular circuit design standard would have unique characteristics, some of
which are listed here:

e DC power supply voltage range

)

e Acceptable “high” and “low” signal voltage levels at gate input terminals

e Guaranteed “high” and “low” signal voltage levels at gate output terminals
e Typical propagation delay times
e Typical output current limitations

When selecting logic ICs to form larger, more complex digital logic systems, it is important for
the circuit designer to know that those logic components will function well with each other: that
their DC power supply voltage ranges are compatible, that their output signal voltage levels will
comply with their input signal voltage requirements, etc. In order to facilitate compatible device
selection, logic IC manufacturers label their products with part numbers and codes designating
each device’s membership within different families of logic circuits. Each of these “families” is
guaranteed to be interoperable within itself, meaning that any logic component from one family will
be fully compatible with any other logic component belonging to the same family. Some families
are interoperable between each other, too, but compatibility amongst members of a single IC logic
family is the basic purpose of having these “family” classifications.

The early years of digital logic circuit manufacturing saw emergence of families such as Resistor-
Transistor Logic (RTL), Diode-Transistor Logic (DTL), and Emitter-Coupled Logic (ECL), the
first two now considered obsolete. Later emerged the Transistor-Transistor Logic (TTL) family
based on NPN and PNP bipolar transistor circuitry, this family identified by part numbers
beginning with either 54 or 74, the 54-series ICs having military-grade specifications (e.g. operating
temperature limits) and the 74-series ICs having commercial-grade specifications. After that came
the Complementary Metal-Oxide Semiconductor (CMOS) family based on N-channel and P-channel
MOSFETSs rather than bipolar transistors, this family identified by part numbers beginning with 4
or 142,

IC logic families soon developed into sub-families having different characteristics such as power
consumption and switching speed, some of these sub-families designated by letters in the middle
of the part number. For example, the classic 7411 is a triple 3-input AND gate IC based on TTL
(bipolar transistor) technology, but in the years to follow the classic 54/74 TTL family’s introduction
there developed the “LS” sub-family (e.g. 74LS11 triple 3-input AND gate IC) using Schottky diodes
within the internal circuitry to reduce power consumption, and then later the “HC” sub-family (e.g.

2The prepending of a “1” to the 4000-series part number was typical of ICs manufactured by Motorola, just to
make things confusing!

66 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

74HC11 triple 3-input AND gate IC) using MOSFETS rather than bipolar transistors but otherwise
designed to be backward-compatible with legacy 74 and 74LS sub-families.

More recent developments in IC logic have resulted in logic circuit designs optimized for lower
and lower DC supply voltage ranges, this design trend addressing the need for more advanced
consumer electronic products powered by chemical batteries. For any given amount of current, a
lower operating voltage means less power dissipation, and this in turn means a battery of any given
size will be able to energize that logic circuit for a longer period of time. Portable computers, mobile
telephones, and other personal electronic devices naturally benefit from this technological trend.

An exhaustive list of IC logic families would be beyond the scope of this reference, and frankly
is better left to the manufacturers themselves. However, here I will provide a listing of some of the
more common digital IC logic families at the time of this writing (2023):

e 5400/7400 classic TTL family — uses bipolar transistor technology; operates on 5 Volt DC
power supply with a tight margin, typically 4.75 Volts minimum and 5.25 Volts maximum for
the 7400 commercial-grade series, 4.5 Volts minimum and 5.5 Volts maximum for the 5400
military-grade series

e 4000 classic CMOS family — uses complementary (N- and P-channel together) MOSFET
technology; operates on a wide range of DC power supply voltages, typically 3 Volts minimum
to 18 Volts maximum, often standardized at 5 Volts, 10 Volts, or 15 Volts; notably slower in
switching speed than classic TTL but operates at a far lower power dissipation®

e 5400/7400 ALS, AS, S, and LS sub-families — uses Schottky diodes within the internal
TTL circuitry to help avoid transistor saturation and thereby increase maximum switching
speeds; same DC power supply range as classic 5400/7400 TTL

e 5400/7400 F sub-family — this is a “fast” variant of TTL logic designed for low propagation
delay times and high-speed operation; limited to the same DC power supply voltage range
as classic 5400/7400 TTL devices but with significantly higher current requirements and
consequently higher power dissipation

e 5400/7400 HC sub-family — uses MOSFETS rather than bipolar transistors internally, but
designed to mimic the operation of classic TTL devices at much-reduced power dissipation;
enjoys a wider DC power supply range than classic TTL, typically 2 Volts minimum and 6
Volts maximum

e 5400/7400 HCT sub-family — similar to the HC sub-family in its use of MOSFET's rather
than bipolar transistors, but designed to be fully interoperable with classic TTL devices;
limited to the same 5400-series classic TTL power supply range of 4.5 Volts minimum and 5.5
Volts maximum

e 5400/7400 BCT sub-family — uses a combination of bipolar transistors and MOSFETs
internally (BiCMOS); limited to the same 5400-series classic TTL power supply range of 4.5
Volts minimum and 5.5 Volts maximum

3This trade-off between device speed versus device power dissipation is a common one in digital electronics. Often
we need to sacrifice one to achieve superior performance in the other.

5.2. LOGIC FAMILIES 67

e 5400/7400 LVC sub-family — this “low-voltage CMOS” sub-family operates with a
considerably lower DC power supply range than previous 5400/7400 digital logic sub-families,
typically 2 Volts minimum and 3.6 Volts maximum, often standardized at 3.3 Volts

e 5400/7400 LVT sub-family — this “low-voltage BiCMOS” sub-family uses a combination
of bipolar transistors and MOSFETSs internally and operates on a DC power supply voltage
range of 2.7 Volts minimum and 3.6 Volts maximum, often standardized at 3.3 Volts

e 5400/7400 AVC sub-family — this “advanced low-voltage CMOS” sub-family extends the
operating DC power supply voltage to even lower levels with 1.4 Volts being minimum, often
standardized at 3.3 Volts, 2.5 Volts, or 1.8 Volts

e 5400/7400 AUC sub-family — this “advanced ultra-low voltage CMOS” sub family pushes
the DC power supply voltage envelope down even further, with 0.8 Volts minimum and 3.6
Volts maximum, often standardized at 2.5 Volts, 1.8 Volts, and 1.2 Volts

68

CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

Chapter 6

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

69

70 CHAPTER 6. PROGRAMMING REFERENCES

6.1 Programming in C++4

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C+-+ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>
using namespace std;

int main (void)

{
float x, y;
x = 200;
y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;
cout << "the two numbers " << x << " and " << y << " and then" << endl;
cout << '"displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;
cout << "Difference = " << x - y << endl;
cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0O;

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing! to view.

L Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.

6.1. PROGRAMMING IN C++ 71

Let’s examine the C++ source code to explain what it means:

#include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C4++ programming.

Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz
would be a single variable).

The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout
command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.

72 CHAPTER 6. PROGRAMMING REFERENCES

After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system?, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

gt++ -0 myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram. exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram. exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio®, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on
the two numbers 200 and -560.5 and then
displays the results on the computer’s console.

Sum = -360.5
Difference = 760.5
Product = -112100
Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.

6.1. PROGRAMMING IN C++ 73

learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.

74 CHAPTER 6. PROGRAMMING REFERENCES

6.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python3* and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200
>>> y = -560.5
>>>x +y
-360.5
>>> x -y
760.5
>>> x x y
-112100.0
>>x /vy
-0.35682426404995538
>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.

6.2. PROGRAMMING IN PYTHON (0]

More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *
>>> 5in(30.0)
-0.98803162409286183
>>> sin(radians(30.0))
0.49999999999999994
>>> pow(2.0, 5.0)

32.0

>>> 10g10(10000.0)

4.0

>>> e
2.7182818284590451

>>> pi
3.1415926535897931

>>> log(pow(e,6.0))
6.0

>>> asin(0.7071068)
0.78539819000368838
>>> degrees(asin(0.7071068))
45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the 1og10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.

76 CHAPTER 6. PROGRAMMING REFERENCES

Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors® as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * £ * 4.7e-6)

>>> zc complex (0,-xc)

>>> x1 =2 % pi * f % 1.0

>>> z1 = complex(0,x1)

>>> r + zc + z1
(400-187.388112391548823)

>>> 1/(1/r + 1/zc + 1/21)
(355.837695813625+125.357937776193853)
>>> polar(r + zc + zl)
(441.717448903332, -0.4381072059213295)
>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)
-0.4381072059213295

>>> degrees(phase(r + zc + z1))
-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect () function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as X¢ £ —90° with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 §2), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0 — j X, © and
0+ jX; Q, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Q / —25.102°).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians; abs() returns
just the polar magnitude; phase () returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.

6.2. PROGRAMMING IN PYTHON 7

assignment of variables as well as a convenient text record® of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram. py:

x = 200
y = -560.5

print ("Sum")
print(x + y)

print ("Difference")
print(x - y)

print ("Product")
print(x * y)

print ("Quotient")
print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5
Difference
760.5

Product
-112100.0
Quotient
-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.

78 CHAPTER 6. PROGRAMMING REFERENCES

If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.

6.3. MODELING COMBINATIONAL LOGIC USING C++

6.3 Modeling combinational logic using C+-+

79

Here is an example C++ program intended to display a crude representation of a four-function
combinational logic circuit and then compute its output state, using the bool data type defined in

the C++ language:

#include <iostream>
using namespace std;

int main (void)

{

bool A, B, C, D, Qut;

o Qwre
o
= O O =

cout
cout
cout
cout
cout
cout
cout

cout
cout
cout
cout

cout

Qut =

cout << "Qut =

<<
<<
<<
<<
<<
<<
<<

<<

<<
<<
<<
<<

|IA ___|

" INOR|-——--

IIB ___|

"C -—-|NOT|---—-

endl;

"A =" <A KL

"B = " << B <<

||C = " << C <<

||D = " << D <<
A |

return O;

B) &% !C && D);

" << Qut << endl;

|AND | -—-|

endl;
endl;
endl;
endl;

|
INAND | --- Out

<<
<<
<<
<<
<<
<<
<<

endl;
endl;
endl;
endl;
endl;
endl;
endl;

80 CHAPTER 6. PROGRAMMING REFERENCES

When compiled and executed, this program generates the following output:

A -]

INOR [----- |
B ——-| !

| AND| -~ |
C ——-INOT|——-—- | |
NAND | --- Out

D ———————— |
A=1
B=0
cC=0
D=1
Out =1

Let’s analyze how this program works, exploring the following programming principles along the
way:

e Preprocessor directives, namespaces

e The main function

e Delimiter characters (e.g. { } ;)

e Variable types (bool), names, and declarations
e Variable assignment/initialization (=)

e Printing text output (cout)

e Boolean operators (!, ||, &&)

e Accepting user input (cin)

Beginning at the top of the source code listing, we see #include and namespace directives
instructing the compiler how to interpret some of the other instructions (e.g. cout) found in the
source code. The main function contains all the code we wish to run; i.e. all the lines of code
following the opening-brace symbol ({) and preceding the closing-brace symbol (}).

Variables A through D are declared to be of the bool type, which means they can only possess
one of two values, either true or false; 1 or 0. These four Boolean-type variables are assigned values,
then a sequence of cout lines print text to its console: text enclosed within quotation marks printed
verbatim and mathematical expressions printed as their logical values. endl control characters force
a line of text to end and a new line of text to begin.

As you can see, most of the cout instructions exist only to print explanatory text to the console
for the user’s benefit. This program could be re-written to be much simpler by omitting these lines
and focusing solely on the calculation of the Out variable.

Note the use of the Boolean NOT operator (!) preceding each inverted variable. This is
similar the to legacy use of an apostrophe (“prime” symbol) to denote inversion in typeset Boolean

6.3. MODELING COMBINATIONAL LOGIC USING C++

81

expressions, except the apostrophe symbol always came immediately after the variable, while the
C++ inversion symbol must come immediately prior to the variable. Parentheses are necessary to

properly group the variables together for these inversions.

One improvement we can make to this program is to give the user ability to enter their own values
for A through D, and this is easily done using the cin instruction as shown below. Furthermore,
we can streamline the text presentation by showing the variable states at the left-hand edge of the

diagram instead of listing them separately:

#include <iostream>
using namespace std;

int main (void)

{
bool A, B, C, D, Out;
cout << "A = ";
cin >> A;
cout << "B = ";
cin >> B;
cout << "C = ";
cin >> C;
cout << "D = ";
cin >> D;
Out = '('(A || B) && !C && D);
cout << endl;
cout << "A " << A KK " -—=| " << endl;
cout << " INOR|--——- | " << endl;
cout << "B " << B << " ———| | " << endl;
cout << " [AND|---] " << endl;
cout << "C " << C << " -——|NOT|----- | | " << endl;
cout << " INAND|--- QOut " << Out
cout << "D " << D <K< "M —mmmmmmm e | " << endl;
return 0O;
¥

<< endl;

The gate-symbol characters shown in the cout statements do not appear as well-aligned as in
the first version of the program, because some of these cout statements instruct the computer to
print variable values to the console while others merely display static text.

82 CHAPTER 6. PROGRAMMING REFERENCES

When compiled and executed, though, the result is much more useful than before. The first four
lines are the prompts for my input, revealing that I happened to enter zero values for A through C
and one for D:

A=0
B=0
C=0
D=1
A0 ——|
INOR | -——-- |
B O -——| I
[AND | -—~|
C 0 -—-|NOT|--—--- | I

INAND|--- Out O

Chapter 7

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read' the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture?, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding — How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

83

84 CHAPTER 7. QUESTIONS

GENERAL CHALLENGES FOLLOWING TUTORIAL READING

e Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

e Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

e Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

e Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

e Identify any new concept(s) presented in the text, and explain in your own words.

e Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

e Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

e Devise an experiment to disprove a plausible misconception.

e Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

e Describe any useful problem-solving strategies applied in the text.

e Devise a question of your own to challenge a reader’s comprehension of the text.

85

GENERAL FOLLOW-UP CHALLENGES FOR ASSIGNED PROBLEMS

e Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

e Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

e Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

e Is there more than one way to solve this problem? Which method seems best to you?

e Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

e What would you say was the most challenging part of this problem, and why was it so?
e Was any important information missing from the problem which you had to research or recall?

e Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

e Examine someone else’s solution to identify where they applied fundamental laws or principles.

e Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

e For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

e For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

e For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

e Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

e Identify where it would be easy for someone to go astray in attempting to solve this problem.

e Formulate your own problem based on what you learned solving this one.

GENERAL FOLLOW-UP CHALLENGES FOR EXPERIMENTS OR PROJECTS

e In what way(s) was this experiment or project easy to complete?

e Identify some of the challenges you faced in completing this experiment or project.

86

CHAPTER 7. QUESTIONS

Show how thorough documentation assisted in the completion of this experiment or project.

Which fundamental laws or principles are key to this system’s function?

Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

What will happen if (component X) fails (open/shorted/etc.)?

What would have to occur to make this system unsafe?

7.1. CONCEPTUAL REASONING 87

7.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking®. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3 Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

88 CHAPTER 7. QUESTIONS

7.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” — Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning
as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as
you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded
in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor
and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.
Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

Specifically identify any points you found CONFUSING. The reason for doing this is to help
diagnose misconceptions and overcome barriers to learning.

7.1. CONCEPTUAL REASONING 89

7.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Thought experiments as a problem-solving strategy

Discrete signal

Logic function

Truth table

Boolean algebra ‘

OR function

AND function

NOT function

NOR function

NAND function |

XOR function

Logic state

90

‘ Relay ladder diagram ‘

‘ Combinational function ‘

‘ Universal function ‘

‘ DeMorgan’s Theorem ‘

‘ Double-negation ‘

‘Converting circuit to Boolean‘

‘ Annotating relay states ‘

‘Normal state of a switch‘

‘ Converting Boolean to circuit ‘

‘ Converting truth table to circuit ‘

‘ Simplifying Boolean expressions ‘

‘ Simplifying relay circuits ‘

CHAPTER 7. QUESTIONS

7.1. CONCEPTUAL REASONING 91

7.1.3 Use of spare NAND gates

Digital logic gates are often manufactured in sets packaged inside of one housing. An example of
this is the CD4011 quad NAND gate integrated circuit (IC), called “quad” because it contains four
two-input NAND gates inside of one 14-pin “DIP” package. In the following schematic diagram we
see all four NAND gates of one IC used in this circuit:

+9V

!

+GV

VDD

=
—
Ui
i(ﬁi)k 4011 l ULE
4011

GND

R9
10k

u1c UiD « b 03
4011 4011 =Y/ s

J 8 G 12
| Pt P
15
o} R D&
{ SW1 _{ Sw2 =Y/ Tripped

iCtose iTrip
R1C

GNE GND i 10k

GND

L vss

What purpose do the “C” and “D” gates of this one CD4011 IC serve, and why do you suppose
the designer of this circuit chose to use these two NAND gates rather than some other type of logic
gate?

e Which terminals of the CD4011 IC accept DC power, and how can you tell from this schematic
diagram?

92 CHAPTER 7. QUESTIONS

7.1.4 Unanimous vote detector circuit

The digital circuit shown here is a unanimous-yea vote detector. Votes are cast by eight different
voters by the setting of switches in either the closed (yea) or open (nay) positions. According to
the logic function provided by the TTL gates, the LED will energize if and only if all switches are
closed:

A

jﬁj}

| —) - \

As is common in digital circuit schematics, the power supply (Vo) is omitted for the sake
of simplicity. This is analogous to the omission of power supply connections in many operational
amplifier circuit schematics.

If we were to draw a truth table for this circuit, how large (number of rows and columns) would
the table have to be?

Suppose we wished to modify this circuit, such that an electromechanical bell would ring whenever
a unanimous-yea vote was cast, rather than merely lighting a small LED. The bell we have in mind
to use is rather large, its solenoid coil drawing 3 amps of current at a voltage of 12 volts DC: well
beyond the final gate’s ability to source. How could we modify this circuit so that the final gate is
able to energize this bell instead of just an LED?

e Explain why pullup resistors are not required in the input lines to this logic circuit.

e Redesign this circuit so that it performs the same unanimous vote detection function without
the use of any logic gates.

7.1. CONCEPTUAL REASONING 93

7.1.5 Combination lock circuit

The following schematic diagram shows a simple electronic combination lock, controlling power to
a door lock solenoid:

Voo
A
B L
C) o—
D Fuse
\) —r 1
7
3 ‘ ‘ Solenoid
2s ’ 120 VAC
1 a)Df ‘\I Solid-state
| b / s k relay
_Lc
1L d — —— L2

The four pushbutton switches (a, b, ¢, and d) are accessible to the person wishing to enter the
door. The four toggle switches (A, B, C, and D) are located behind the door, and are used to set
the code necessary for entering.

Explain how this system is supposed to work. What are the logic states of the respective gate
outputs when a matching code is entered through the pushbutton switches? How about when a
non-matching code is entered?

Do you see any security problems with this door lock circuit? How easy would it be for someone
to enter, who does not know the four-bit code? Do you have any suggestions for improving this lock
design?

e Explain how to properly size the banks of resistors at the gate inputs.

94

CHAPTER 7. QUESTIONS

e We often see commutating diodes installed in parallel with inductive loads, to protect the
semiconductor switching device(s) controlling that load’s energization. Here, however, we do
not. Explain why.

7.1. CONCEPTUAL REASONING 95

7.1.6 Triple-redundant power supply

A critical electronic system receives DC power from three power supplies, each one feeding through
a diode, so that if one power supply develops an internal short-circuit, it will not cause the others
to overload:

~ | o e
e > + Critical
electronic

- L system

- N |

> >

° N |

—— >

The only problem with this system is that we have no indication of trouble if just one or two
power supplies do fail. Since the diode system routes power from any available supply(ies) to the
critical system, the system sees no interruption in power if one or even two of the power supplies
stop outputting voltage. It would be nice if we had some sort of alarm system installed to alert
the technicians of a problem with any of the power supplies, long before the critical system was in
jeopardy of losing power completely.

96 CHAPTER 7. QUESTIONS

An engineer decides that a relay could be installed at the output of each power supply, prior
to the diodes. Contacts from these relays could then be connected to some sort of alarm device
(flashing light, bell, etc.) to alert maintenance personnel of any problem:

+ —P **+ Critical
electronic
< | system

=
T

Y/

_&.

A 4

=

The first solution to this problem is to connect a warning lamp such that it will illuminate if any
of the three power supplies fails:

A+ B+ C
Ll L2
CR1 (A)
CR2 (B)

CR3 (C)

7.1. CONCEPTUAL REASONING 97

However, it is soon discovered that this circuit generates “nuisance alarms” whenever a technician
powers down any of the redundant power supplies for routine maintenance. Re-design the ladder
logic circuit so that the lamp illuminates only if two out of three power supplies fail.

Design an alternate solution whereby the lamp illuminates if any of the power supplies fail, but
there is provision for an alarm bypass switch that the maintenance technician could use to suppress
the alarm during routine work.

e What would be the result of one of the diodes failing open?

98 CHAPTER 7. QUESTIONS

7.1.7 Chemical weapons incinerator

A chemical weapons agent incinerator uses high-temperature combustion to neutralize toxic
chemicals, in an effort to safely dispose of unused chemical weapons. Maintaining an ever-present
flame is obviously important for this system to function safely because if the flame ever went out
the toxic chemicals could pass through the incinerator unaltered and pose an immediate threat to
life and health near the incinerator’s exhaust vent.

Three independent flame sensors monitor the incinerator’s combustion, and under typical
operating conditions all three sensors must indicate a “good” flame to keep the master relay
energized. If any of the sensors lose flame signal, the corresponding relay contact will open which
will cause the master relay to de-energize, and this in turn shuts down the flow of chemical agent
into the incinerator and also activates an alarm:

L, L,
Flame sensor contacts
A B C CR1
| | | | N
| | /
CR1 Shutoff valve
(De-energize
/\/—‘ to shut off)
CR1 Alarm lamp
Y
A

However, this system has a problem. If ever a maintenance technician performs a routine service
test on any of the flame sensors, the system interprets that test as a failed signal and shuts everything
down. Somehow, we must find a solution allowing routine testing yet providing redundancy of flame
detection so that we never rely on just one of the sensors for safety. Unlikely thought it may be, it is
possible for a sensor to fail with a false-positive indication of flame, which is why we have multiple
flame sensors.

An engineer suggests installing a “Maintenance Bypass” switch forcing the system into a two-
out-of-three (2003) redundancy mode instead of the typical three-out-of-three (3003). This way a
maintenance technician could flip the Bypass switch, then perform routine checks of any one of
the sensors (at a time), and the system would still operate if the remaining two sensors provided
indication of good flame in the incinerator.

7.1

CONCEPTUAL REASONING

Implement this switchable 2003/3003 system in relay ladder logic:

e Why do you suppose it is wise to build this system using a de-energize-to-shut-off valve?

99

100 CHAPTER 7. QUESTIONS

7.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases™” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely” on an answer key!

49

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students
to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

7.2. QUANTITATIVE REASONING 101

7.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (o) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) x 10~% H/m represents a center value (i.e. the location
parameter) of 1.25663706212 x 10~ Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 x 106 Henrys per meter.

Avogadro’s number (N4) = 6.02214076 x 10?* per mole (mol™!)

Boltzmann’s constant (k) = 1.380649 x 10~2% Joules per Kelvin (J/K)

Electronic charge (¢) = 1.602176634 x 107! Coulomb (C)

Faraday constant (F) = 96,485.33212... x 10* Coulombs per mole (C/mol)

Magnetic permeability of free space (o) = 1.25663706212(19) x 1076 Henrys per meter (H/m)
Electric permittivity of free space (€y) = 8.8541878128(13) x 10~!2 Farads per meter (F/m)
Characteristic impedance of free space (Zp) = 376.730313668(57) Ohms (€2)

Gravitational constant (G) = 6.67430(15) x 107! cubic meters per kilogram-seconds squared
(m?/kg-s”)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 x 10~3* joule-seconds (J-s)

Stefan-Boltzmann constant (o) = 5.670374419... x 10~® Watts per square meter-Kelvin*
(W/m?K*)

Speed of light in a vacuum (¢) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants — Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

102 CHAPTER 7. QUESTIONS

7.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

A B C D
Di stance travel ed 46. 9 Kiloneters
Time el apsed 1.18 Hour s
Aver age speed = Bl / B2 knm h

G |W|IN |

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables® would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

7.2. QUANTITATIVE REASONING 103

Common’ arithmetic operations available for your use in a spreadsheet include the following:
e Addition (+)

e Subtraction (-)

e Multiplication (*)

e Division (/)

e Powers ()

e Square roots (sqrt())

e Logarithms (1n() , 1og10Q))

Parentheses may be used to ensure® proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of az? + bz + c:

_ —b=EVb? —4ac

. 2a
A B
1 x_1 = (-B4 + sqrt((B4n2) - (4*B3*B5))) / (2*B3)
2 X_2 = (-B4 - sqrt((B4A2) - (4*B3*B5))) / (2*B3)
3 a = 9
4 b = 5
5 c = -2

This example is configured to compute roots’ of the polynomial 922 4 5z — 2 because the values
of 9, 5, and —2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and ¢ coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coeflicients.

"Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9962 + 52 — 2) the two roots happen to be z = 0.269381 and = = —0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

104 CHAPTER 7. QUESTIONS

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y = V/b% — dac z=2a

_—bEy
z
A B C

1 x_1 = (-B4 + C1) / C2 |= sqrt((B4r2) - (4*B3*B5))
2 X_2 = (-B4 - c1) / Cc2 |= 2*B3

3 a= 9

4 b = 5

5 c =)

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary'? — all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

7.2. QUANTITATIVE REASONING 105

7.2.3 Using Python to evaluate combinational logic expressions

Python is a computer programming language that is able to be run in an interpreted environment.
This means you can start up a software application called a Python interpreter, and within that
application type Python commands which will be immediately executed. One of the many features
of this programming language is the ability to handle discrete logical values such as True and False,
and the ability to apply logical operations to those values such as and and or and not.

The following example shows eight commands typed at the prompt (>>>) of a Python
interpreter!! demonstrating the truth table for a three-input combinational function where two
inputs feed into an OR function, then the output of that and a third input feed into an AND
function, with the results immediately following the typed line. The final command, quit (), exits
the Python interpreter:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)
[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> (False or False) and False

False

>>> (False or False) and True

False

>>> (False or True) and False

False

>>> (False or True) and True

True

>>> (True or False) and False

False

>>> (True or False) and True

True

>>> (True or True) and False

False

>>> (True or True) and True

True

>>> quit()

'To start the Python interpreter, simply type python3 (for version 3 of Python, the newest at the time of this
writing) at the command-line prompt of any computer with Python installed.

106 CHAPTER 7. QUESTIONS

Once you have Python installed and working on your computer'?, demonstrate the following:

e Demonstrate the truth table for a four-input combinational function, where two inputs feed
into an AND function, two more inputs feed into an OR function, and the outputs of the AND
and OR functions feed into a two-input OR function.

e How many commands would you need to enter at the Python prompt to fully explore the truth
table of a five-input combinational function?

e How many commands would you need to enter at the Python prompt to fully explore the truth
table of a six-input combinational function?

e How many commands would you need to enter at the Python prompt to fully explore the truth
table of an n-input combinational function?

7.2.4 Using Python to evaluate a combinational function diagram

Examine the following combinational logic diagram, and then use Python (the computer
programming language) to compute its output for the input conditions A =1, B =0, and C = 1:

A—
B—

o—{>

e How many commands would you need to enter at the Python prompt to fully explore the truth
table of a five-input combinational function?

e How many commands would you need to enter at the Python prompt to fully explore the truth
table of a six-input combinational function?

e How many commands would you need to enter at the Python prompt to fully explore the truth
table of an n-input combinational function?

120ne option for Microsoft Windows users is to install Cygwin which is a Unix shell (terminal) application, and
included in the “Development” package installation of Cygwin is Python. Another option uses the online interpreter
available at https://python.org/shell.

7.2. QUANTITATIVE REASONING 107

7.2.5 Boolean expressions from gate circuits

Write Boolean expressions for each of the following logic gate circuits, also writing Boolean sub-
expressions next to each gate output in the diagrams:

e Explain why it is helpful to write the sub-expressions rather than just the final expression.

108 CHAPTER 7. QUESTIONS

7.2.6 Boolean expressions from relay circuits

Write Boolean expressions for each of the following relay ladder-logic circuits, also writing Boolean
sub-expressions next to each rung in the diagrams:

L, L,
A B CR1
CR1 C
'/: \O/
L, L,
A CR1
— O
CR1 B
J/}’ e Y
| /u\
C
e
L, L,
A B CR1
L/ S O
CR1 C
|| /. Nt
| A
D
’—/' \O/
CR1

e Explain why it is helpful to write the sub-expressions rather than just the final expression.

7.2. QUANTITATIVE REASONING 109

7.2.7 Truth tables from Boolean expressions

Complete truth tables for the following Boolean expressions:

Output = A+B+C

C | Output

o

—

B
0
0
1

o|lo| ool @
i R=)

—_
= O O
o | = | O

—_
—_
—_

Output = A(B + AC + A)

C | Output
0

B
0
0
1

ol o O ©

—_
= O O
o | = | O

—_
—_
—_

e Explain how it is possible to conclude, at first glance, that the truth table for the second
Boolean expression must have “0” output states for the first four rows.

110

CHAPTER 7. QUESTIONS

7.2.8 Gate circuits from Boolean expressions

Design logic gate circuits to fulfill each of the following Boolean expressions, each circuit driving a
heavy DC load requiring more current than the final gate is able to either source or sink:

AB+C(A+ B)

(A+ B)(AB+C)

An important mathematical principle is order of operations, instructing us as to which
arithmetic operation needs to be performed first, next, etc. Explain how this fundamental
principle applies to this particular problem.

Determine the output states for each of these combinational circuits for a condition where
A=0and B=0and C =0.

Determine the output states for each of these combinational circuits for a condition where
A=0and B=1and C =0.

Determine the output states for each of these combinational circuits for a condition where
A=1land B=1and C =0.

How may we ensure that the transistor is fully “saturated” when turned on by the gate’s
output?

7.2.9 Relay circuits from Boolean expressions

Design relay ladder-logic circuits to fulfill each of the following Boolean expressions:

ABC + (B + AQ)

(A+ BC)(A+B+0)

An important mathematical principle is order of operations, instructing us as to which
arithmetic operation needs to be performed first, next, etc. Explain how this fundamental
principle applies to this particular problem.

7.2. QUANTITATIVE REASONING 111

7.2.10 Circuits from two-input truth tables

Design a Boolean algebra expression, a logic gate circuit, and a relay ladder logic circuit implementing
the following truth tables:

Example #1:
A | B | Output
01]0 0
0|1 1
110 0
1|1 1
Example #2:
A | B | Output
01]0 0
011 1
110 1
1|1 0
Example #3:
A | B | Output
01]0 1
011 0
110 0
1|1 1

e Can any of the direct implementations of the truth table’s function be simplified to require
fewer Boolean variables, or fewer circuit components?

e Check your answers by plugging in all possible combinations of the input variable states and
verifying that the expression and circuits all result in the same output states.

112

CHAPTER 7. QUESTIONS

7.2.11 SOP and POS expressions from the same truth table

Examine this truth table and then write both SOP and POS Boolean expressions describing the

Output:
A | B|C| Out
0010 1
0101 0
0] 1]0 1
011 0
11010 0
1101 1
1 110 1
1|11 0

e Which of these two expressions is most concise?

e How would the equivalent logic gate circuits differ?

7.2. QUANTITATIVE REASONING 113

7.2.12 Circuits from three-input truth tables

Design a Boolean algebra expression, a logic gate circuit, and a relay ladder logic circuit implementing
the following truth tables:

Example #1:
A | B | C | Output
010710 1
0101 0
01110 0
0|11 0
110]0 1
11011 1
1]111]0 0
11111 0
Example #2:
A | B | C | Output
010710 0
010711 0
01110 0
0111 0
11010 0
1101 1
11110 1
1 1 1 1

e Can any of the direct implementations of the truth table’s function be simplified to require
fewer Boolean variables, or fewer circuit components?

e Check your answers by plugging in all possible combinations of the input variable states and
verifying that the expression and circuits all result in the same output states.

114 CHAPTER 7. QUESTIONS

7.2.13 Boolean expression for an undocumented logic circuit

Suppose you were faced with the task of writing a Boolean expression for a logic circuit, the internals
of which are unknown to you. The circuit has four inputs — each one set by the position of its own
micro-switch — and one output. By experimenting with all the possible input switch combinations,
and using a logic probe to “read” the output state (at test point TP1), you were able to write the
following truth table describing the circuit’s behavior:

SW1 sw2 Sw3 sw4 TPl

N\

0

i

l

== SW1
= | SW2
| SW3
|| sw4

O o TP1

[Ll L Ll L L L L [=) =) (=) [=) (=) [@] (@) @]

[l Ll Lo L (=1 =) (= K= L Ll Ll Ll K=l K =) =)
I—‘HOOI—‘HOOI—‘HOOI—‘HOO\
O] | O] | O] ||| O] | OOl |O
O|O||O|O|O| O |O|O|+|O|O|O|O|O

Write a Boolean expression based on this truth table “description” of the circuit.

e Sketch a logic gate diagram equivalent in function to this circuit.

7.2. QUANTITATIVE REASONING 115

7.2.14 SOP expression and ladder logic from a truth table

Write an SOP expression for this truth table, and then draw a ladder logic (relay) circuit diagram
corresponding to that SOP expression:

Ly L,
A
L ~
B _/
A|B|C| Output T|T ?Fiz
olojo| O /
olof1| 1 _Cl_ CR3
o[1]o] 0 X O
o(1({1| 1
1(0(o0| O
1(o1] 1
1(1|o0| O
1(1(1] O

Implement the SOP logic function using contacts of relays CR1, CR2, and CR3. A partial ladder
logic diagram has been provided for you.

e Sketch a logic gate circuit to implement the same truth table.

116

7.2.15 Gate circuit from a truth table

CHAPTER 7. QUESTIONS

Sketch a logic gate circuit to implement this truth table, showing how the circuit may be used to
drive a heavy DC load having current requirements exceeding that of the final gate’s sinking or

sourcing ability:

A | B|C| Out
01010 1
001 1
01110 0
011 1
1 101]0 0
11011 1
1111]0 1
11111 1

e Explain why a standard SOP expression would be very cumbersome describing this circuit.

e How may we ensure that the transistor is fully “saturated” when turned on by the gate’s

output?

7.2. QUANTITATIVE REASONING

7.2.16 Relay circuit from a truth table
Sketch a relay ladder-logic circuit to implement this truth table:

A|B|C|Out
0]0|0 1
01011 1
01110 1
0|11 1
110]0 1
11011 0
1 111]0 1
11111 1

117

e Explain why a standard SOP expression would be very cumbersome describing this circuit.

118 CHAPTER 7. QUESTIONS

7.2.17 Seven-segment decoder

A seven segment decoder is a digital circuit designed to drive a very common type of digital display
device: a set of LED (or LCD) segments that render numerals 0 through 9 at the command of a
four-bit code:

Display driver IC
Voo Seven-segment display

e

a

c

Inputs B d
1

The behavior of the display driver IC may be represented by a truth table with seven outputs:
one for each segment of the seven-segment display (a through g). In the following table, a “1” output
represents an active display segment, while a “0” output represents an inactive segment:

D|IC| B|A|la|lb|c|d|e]|f]|g]| Display
0o(o0ojo0ojoj1rj1ry1y1j111/0 “0”
0(0j0]1]0j1T|)1/0]0|0]|O0 “1”
ojoj1y0j1|1{011|1]0]|1 “27
ojoj1 |1 |1|1|1)1]0]0]|1 “3”
of1{0j0jO0j1T|1|0]O|1]|1 “47
oOoj1j0|1]1jO0|11|0]1]|1 “5”
of1{1joj1{of1|1|1|1|1 “6”
oj1}j1,1}j1{1(1|]0]0]0|O0 “7”
r]10jo0ojo |11 1}1}|1f1]|1 “8”
rjo0joj1 1|11} 170f1]|1 “9”

Write the unsimplified SOP or POS expressions (choose the most appropriate form) for outputs
a, b, ¢, and e.

7.2. QUANTITATIVE REASONING 119

e Use the laws of Boolean algebra to simplify each of the above expressions into their simplest
forms.

120 CHAPTER 7. QUESTIONS

7.2.18 Timing diagrams for gate circuits

A timing diagram is a time-domain illustration of high/low logic signals, useful for showing how
a digital logic system responds to changing inputs over a period of time. Most digital electronic
systems have pulsing data states in at least some portions of the circuit, and timing diagrams show
the relationships between these pulsing signals.

Complete the following timing diagrams by sketching the Output waveforms these digital logic
gate circuits will produce given the input signals (A, B, and C') shown:

Example #1:

A
B Out
C
A
B [E—
C
Out

Example #2:

7.2. QUANTITATIVE REASONING

A
B — Out
C_
A
B
C I —
Out

Example #3:

) O o

Out

e What 3-input logic gate is the Example #2 circuit equivalent to?

121

122 CHAPTER 7. QUESTIONS

7.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough — you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

7.3. DIAGNOSTIC REASONING 123

7.3.1 Effect of gate fault on Boolean expression

Write the Boolean expression for the following logic gate circuit:

e L
—~ Bailbs

C _
Now suppose the lower-left gate (the one connected to the C' input) fails with a “high” output
status regardless of input status. How does this fault affect the Boolean expression describing this
circuit’s functionality?

e Identify a single fault that would continually force the output to a “high” state.

e Identify a single fault that would continually force the output to a “low” state.
e Simply this circuit to implement the same logical function using fewer gates.

e Describe a good reason for building this circuit with identical gates, rather than building a
logically equivalent circuit with a mix of gate types.

124 CHAPTER 7. QUESTIONS

7.3.2 Seven-segment decoder/driver problem

Two electronics students attempt to build 7-segment display circuits, one using a 7447 decoder/driver
IC and the other using a 7448. Both students connect their ICs to common-cathode 7-segment
displays as such:
Display driver IC
Voo Seven-segment display

e

744X

Inputs

OOw>
Q00T

The student using the 7448 notices the LED segments glowing faintly, but the patterns are not
correct for the digits that are supposed to be displayed. The student using the 7447 has an even
worse problem: no light at alll Both have checked and re-checked their wiring, to no avail. It seems
as though all the connections are in the right place.

What do you think the problem is?

e Redesign the circuit so that it will work properly.

Chapter 8

Projects and Experiments

The following project and experiment descriptions outline things you can build to help you
understand circuits. With any real-world project or experiment there exists the potential for physical
harm. FElectricity can be very dangerous in certain circumstances, and you should follow proper safety
precautions at all times!

8.1 Recommended practices

This section outlines some recommended practices for all circuits you design and construct.

125

126 CHAPTER 8. PROJECTS AND EXPERIMENTS

8.1.1 Safety first!

Electricity, when passed through the human body, causes uncomfortable sensations and in large
enough measures’ will cause muscles to involuntarily contract. The overriding of your nervous
system by the passage of electrical current through your body is particularly dangerous in regard
to your heart, which is a vital muscle. Very large amounts of current can produce serious internal
burns in addition to all the other effects.

Cardio-pulmonary resuscitation (CPR) is the standard first-aid for any victim of electrical shock.
This is a very good skill to acquire if you intend to work with others on dangerous electrical circuits.
You should never perform tests or work on such circuits unless someone else is present who is
proficient in CPR.

As a general rule, any voltage in excess of 30 Volts poses a definitive electric shock hazard, because
beyond this level human skin does not have enough resistance to safely limit current through the
body. “Live” work of any kind with circuits over 30 volts should be avoided, and if unavoidable
should only be done using electrically insulated tools and other protective equipment (e.g. insulating
shoes and gloves). If you are unsure of the hazards, or feel unsafe at any time, stop all work and
distance yourself from the circuit!

A policy 1 strongly recommend for students learning about electricity is to never come into
electrical contact® with an energized conductor, no matter what the circuit’s voltage® level! Enforcing
this policy may seem ridiculous when the circuit in question is powered by a single battery smaller
than the palm of your hand, but it is precisely this instilled habit which will save a person from
bodily harm when working with more dangerous circuits. Experience has taught me that students
who learn early on to be careless with safe circuits have a tendency to be careless later with dangerous
circuits!

In addition to the electrical hazards of shock and burns, the construction of projects and running
of experiments often poses other hazards such as working with hand and power tools, potential

IProfessor Charles Dalziel published a research paper in 1961 called “The Deleterious Effects of Electric Shock”
detailing the results of electric shock experiments with both human and animal subjects. The threshold of perception
for human subjects holding a conductor in their hand was in the range of 1 milliampere of current (less than this
for alternating current, and generally less for female subjects than for male). Loss of muscular control was exhibited
by half of Dalziel’s subjects at less than 10 milliamperes alternating current. Extreme pain, difficulty breathing,
and loss of all muscular control occurred for over 99% of his subjects at direct currents less than 100 milliamperes
and alternating currents less than 30 milliamperes. In summary, it doesn’t require much electric current to induce
painful and even life-threatening effects in the human body! Your first and best protection against electric shock is
maintaining an insulating barrier between your body and the circuit in question, such that current from that circuit
will be unable to flow through your body.

2By “electrical contact” I mean either directly touching an energized conductor with any part of your body, or
indirectly touching it through a conductive tool. The only physical contact you should ever make with an energized
conductor is via an electrically insulated tool, for example a screwdriver with an electrically insulated handle, or an
insulated test probe for some instrument.

3 Another reason for consistently enforcing this policy, even on low-voltage circuits, is due to the dangers that even
some low-voltage circuits harbor. A single 12 Volt automobile battery, for example, can cause a surprising amount of
damage if short-circuited simply due to the high current levels (i.e. very low internal resistance) it is capable of, even
though the voltage level is too low to cause a shock through the skin. Mechanics wearing metal rings, for example,
are at risk from severe burns if their rings happen to short-circuit such a battery! Furthermore, even when working on
circuits that are simply too low-power (low voltage and low current) to cause any bodily harm, touching them while
energized can pose a threat to the circuit components themselves. In summary, it generally wise (and always a good
habit to build) to “power down” any circuit before making contact between it and your body.

8.1. RECOMMENDED PRACTICES 127

contact with high temperatures, potential chemical exposure, etc. You should never proceed with a
project or experiment if you are unaware of proper tool use or lack basic protective measures (e.g.
personal protective equipment such as safety glasses) against such hazards.

Some other safety-related practices should be followed as well:

All power conductors extending outward from the project must be firmly strain-relieved (e.g.
“cord grips” used on line power cords), so that an accidental tug or drop will not compromise
circuit integrity.

All electrical connections must be sound and appropriately made (e.g. soldered wire joints
rather than twisted-and-taped; terminal blocks rather than solderless breadboards for high-
current or high-voltage circuits). Use “touch-safe” terminal connections with recessed metal
parts to minimize risk of accidental contact.

Always provide overcurrent protection in any circuit you build. Always. This may be in the
form of a fuse, a circuit breaker, and/or an electronically current-limited power supply.

Always ensure circuit conductors are rated for more current than the overcurrent protection
limit. Always. A fuse does no good if the wire or printed circuit board trace will “blow” before
it does!

Always bond metal enclosures to Earth ground for any line-powered circuit. Always. Ensuring
an equipotential state between the enclosure and Earth by making the enclosure electrically
common with Earth ground ensures no electric shock can occur simply by one’s body bridging
between the Earth and the enclosure.

Avoid building a high-energy circuit when a low-energy circuit will suffice. For example,
I always recommend beginning students power their first DC resistor circuits using small
batteries rather than with line-powered DC power supplies. The intrinsic energy limitations
of a dry-cell battery make accidents highly unlikely.

Use line power receptacles that are GFCI (Ground Fault Current Interrupting) to help avoid
electric shock from making accidental contact with a “hot” line conductor.

Always wear eye protection when working with tools or live systems having the potential to
eject material into the air. Examples of such activities include soldering, drilling, grinding,
cutting, wire stripping, working on or near energized circuits, etc.

Always use a step-stool or stepladder to reach high places. Never stand on something not
designed to support a human load.

When in doubt, ask an ezpert. If anything even seems remotely unsafe to you, do not proceed
without consulting a trusted person fully knowledgeable in electrical safety.

128 CHAPTER 8. PROJECTS AND EXPERIMENTS

8.1.2 Other helpful tips

Experience has shown the following practices to be very helpful, especially when students make their
own component selections, to ensure the circuits will be well-behaved:

e Avoid resistor values less than 1 k{2 or greater than 100 k€2, unless such values are definitely
necessary?. Resistances below 1 k) may draw excessive current if directly connected to
a voltage source of significant magnitude, and may also complicate the task of accurately
measuring current since any ammeter’s non-zero resistance inserted in series with a low-value
circuit resistor will significantly alter the total resistance and thereby skew the measurement.
Resistances above 100 k2 may complicate the task of measuring voltage since any voltmeter’s
finite resistance connected in parallel with a high-value circuit resistor will significantly alter
the total resistance and thereby skew the measurement. Similarly, AC circuit impedance values
should be between 1 k2 and 100 k2, and for all the same reasons.

e Ensure all electrical connections are low-resistance and physically rugged. For this reason, one
should avoid compression splices (e.g. “butt” connectors), solderless breadboards®, and wires
that are simply twisted together.

e Build your circuit with testing in mind. For example, provide convenient connection points
for test equipment (e.g. multimeters, oscilloscopes, signal generators, logic probes).

e Design permanent projects with maintenance in mind. The more convenient you make
maintenance tasks, the more likely they will get done.

e Always document and save your work. Circuits lacking schematic diagrams are more
difficult to troubleshoot than documented circuits. Similarly, circuit construction is simpler
when a schematic diagram precedes construction. Experimental results are easier to interpret
when comprehensively recorded. Consider modern videorecording technology for this purpose
where appropriate.

e Record your steps when troubleshooting. Talk to yourself when solving problems. These
simple steps clarify thought and simplify identification of errors.

4An example of a necessary resistor value much less than 1 kQ is a shunt resistor used to produce a small voltage
drop for the purpose of sensing current in a circuit. Such shunt resistors must be low-value in order not to impose
an undue load on the rest of the circuit. An example of a necessary resistor value much greater than 100 k2 is an
electrostatic drain resistor used to dissipate stored electric charges from body capacitance for the sake of preventing
damage to sensitive semiconductor components, while also preventing a path for current that could be dangerous to
the person (i.e. shock).

5 Admittedly, solderless breadboards are very useful for constructing complex electronic circuits with many
components, especially DIP-style integrated circuits (ICs), but they tend to give trouble with connection integrity after
frequent use. An alternative for projects using low counts of ICs is to solder IC sockets into prototype printed circuit
boards (PCBs) and run wires from the soldered pins of the IC sockets to terminal blocks where reliable temporary
connections may be made.

8.1. RECOMMENDED PRACTICES 129

8.1.3 Terminal blocks for circuit construction

Terminal blocks are the standard means for making electric circuit connections in industrial systems.
They are also quite useful as a learning tool, and so I highly recommend their use in lieu of
solderless breadboards®. Terminal blocks provide highly reliable connections capable of withstanding
significant voltage and current magnitudes, and they force the builder to think very carefully about
component layout which is an important mental practice. Terminal blocks that mount on standard
35 mm DIN rail” are made in a wide range of types and sizes, some with built-in disconnecting
switches, some with built-in components such as rectifying diodes and fuseholders, all of which
facilitate practical circuit construction.

I recommend every student of electricity build their own terminal block array for use in
constructing experimental circuits, consisting of several terminal blocks where each block has at
least 4 connection points all electrically common to each other® and at least one terminal block
that is a fuse holder for overcurrent protection. A pair of anchoring blocks hold all terminal blocks
securely on the DIN rail, preventing them from sliding off the rail. Each of the terminals should
bear a number, starting from 0. An example is shown in the following photograph and illustration:

Electrically common DIN rail en
points shown in blue / ail end
(typical for all terminal blocks)

® —«—— Anchor block
[OO OO0 @ OO OQ]—<«— 4-terminal block
[OIc—=—7 O] = Fuseholder block
—~«—— 4-terminal block
OO0 O03m@ OO OQ|-«—4-terminal block
OO O04m@ OO OQ|-«—4-terminal block
OO0 OO05@ OO OQ|-«—4-terminal block
OO O06 M OO OQ|-«—4-terminal block
OO OO7/mm 00 OO|-«—4-terminal block
OO O08mM OO OQ|-«—4-terminal block
OO0 O09 @ OO OQ|-«—4-terminal block
OO OO0L0@m OO OQ|-«—4-terminal block
OO0 OOLlImM OO OQ|-«—4-terminal block
OO OOL.ZMm OO OQ|-«—4-terminal block

@ —«— Anchor block

DIN rail end

Screwless terminal blocks (using internal spring clips to clamp wire and component lead ends) are
preferred over screw-based terminal blocks, as they reduce assembly and disassembly time, and also
minimize repetitive wrist stress from twisting screwdrivers. Some screwless terminal blocks require
the use of a special tool to release the spring clip, while others provide buttons? for this task which
may be pressed using the tip of any suitable tool.

6Solderless breadboard are preferable for complicated electronic circuits with multiple integrated “chip”
components, but for simpler circuits I find terminal blocks much more practical. An alternative to solderless
breadboards for “chip” circuits is to solder chip sockets onto a PCB and then use wires to connect the socket pins to
terminal blocks. This also accommodates surface-mount components, which solderless breadboards do not.

7DIN rail is a metal rail designed to serve as a mounting point for a wide range of electrical and electronic devices
such as terminal blocks, fuses, circuit breakers, relay sockets, power supplies, data acquisition hardware, etc.

8Sometimes referred to as equipotential, same-potential, or potential distribution terminal blocks.

9The small orange-colored squares seen in the above photograph are buttons for this purpose, and may be actuated
by pressing with any tool of suitable size.

130 CHAPTER 8. PROJECTS AND EXPERIMENTS

The following example shows how such a terminal block array might be used to construct a
series-parallel resistor circuit consisting of four resistors and a battery:

Schematic diagram Pictorial diagram

Fuse

®
[®@0 Ooo0m o0 o
\ ol—=—1

oo 2m w0 00 -
R, || [O8 O03m]00 09| R, +
1 1| [Oo\oo4m 33ka
— 71kQ 1S5 \005 0| [00 o6
6V — oo po6myao 1ol {|g
R, oo ©o7m |00 00 2
o0 Qo8 m tee o 22kQ
R oo @on9m oo oo 6V
4 11 |00 @olocm o0 o0
47kQY IS dolio_ o0 0o

OO Oolzmo 0O oo
@

Numbering on the terminal blocks provides a very natural translation to SPICE'? netlists, where
component connections are identified by terminal number:

* Series-parallel resistor circuit
vl 10 dc 6

rl 2 5 7100

r2 5 8 2200

r3 2 8 3300

r4 8 11 4700

rjmpl 1 2 0.01

rjmp2 0 11 0.01

.op
.end

Note the use of “jumper” resistances rjmpl and rjmp2 to describe the wire connections between
terminals 1 and 2 and between terminals 0 and 11, respectively. Being resistances, SPICE requires
a resistance value for each, and here we see they have both been set to an arbitrarily low value of
0.01 Ohm realistic for short pieces of wire.

Listing all components and wires along with their numbered terminals happens to be a useful
documentation method for any circuit built on terminal blocks, independent of SPICE. Such a
“wiring sequence” may be thought of as a non-graphical description of an electric circuit, and is
exceptionally easy to follow.

10SPICE is computer software designed to analyze electrical and electronic circuits. Circuits are described for the
computer in the form of netlists which are text files listing each component type, connection node numbers, and
component values.

8.1. RECOMMENDED PRACTICES 131

An example of a more elaborate terminal block array is shown in the following photograph,
with terminal blocks and “ice-cube” style electromechanical relays mounted to DIN rail, which is
turn mounted to a perforated subpanel'!. This “terminal block board” hosts an array of thirty five
undedicated terminal block sections, four SPDT toggle switches, four DPDT “ice-cube” relays, a
step-down control power transformer, bridge rectifier and filtering capacitor, and several fuses for
overcurrent protection:

Four plastic-bottomed “feet” support the subpanel above the benchtop surface, and an unused
section of DIN rail stands ready to accept other components. Safety features include electrical
bonding of the AC line power cord’s ground to the metal subpanel (and all metal DIN rails),
mechanical strain relief for the power cord to isolate any cord tension from wire connections,
clear plastic finger guards covering the transformer’s screw terminals, as well as fused overcurrent
protection for the 120 Volt AC line power and the transformer’s 12 Volt AC output. The perforated
holes happen to be on }1 inch centers with a diameter suitable for tapping with 6-32 machine screw
threads, their presence making it very easy to attach other sections of DIN rail, printed circuit boards,
or specialized electrical components directly to the grounded metal subpanel. Such a “terminal block
board” is an inexpensive'? yet highly flexible means to construct physically robust circuits using
industrial wiring practices.

H An electrical subpanel is a thin metal plate intended for mounting inside an electrical enclosure. Components are
attached to the subpanel, and the subpanel in turn bolts inside the enclosure. Subpanels allow circuit construction
outside the confines of the enclosure, which speeds assembly. In this particular usage there is no enclosure, as the
subpanel is intended to be used as an open platform for the convenient construction of circuits on a benchtop by
students. In essence, this is a modern version of the traditional breadboard which was literally a wooden board such
as might be used for cutting loaves of bread, but which early electrical and electronic hobbyists used as platforms for
the construction of circuits.

12 At the time of this writing (2019) the cost to build this board is approximately $250 US dollars.

132 CHAPTER 8. PROJECTS AND EXPERIMENTS

8.1.4 Conducting experiments

An experiment is an exploratory act, a test performed for the purpose of assessing some proposition
or principle. Experiments are the foundation of the scientific method, a process by which careful
observation helps guard against errors of speculation. All good experiments begin with an hypothesis,
defined by the American Heritage Dictionary of the English Language as:

An assertion subject to verification or proof, as (a) A proposition stated as a basis for
argument or reasoning. (b) A premise from which a conclusion is drawn. (c) A conjecture
that accounts, within a theory or ideational framework, for a set of facts and that can
be used as a basis for further investigation.

Stated plainly, an hypothesis is an educated guess about cause and effect. The correctness of this
initial guess matters little, because any well-designed experiment will reveal the truth of the matter.
In fact, incorrect hypotheses are often the most valuable because the experiments they engender
lead us to surprising discoveries. One of the beautiful aspects of science is that it is more focused
on the process of learning than about the status of being correct'®. In order for an hypothesis to be
valid, it must be testable'®, which means it must be a claim possible to refute given the right data.
Hypotheses impossible to critique are useless.

Once an hypothesis has been formulated, an experiment must be designed to test that hypothesis.
A well-designed experiment requires careful regulation of all relevant variables, both for personal
safety and for prompting the hypothesized results. If the effects of one particular variable are to
be tested, the experiment must be run multiple times with different values of (only) that particular
variable. The experiment set up with the “baseline” variable set is called the control, while the
experiment set up with different value(s) is called the test or experimental.

For some hypotheses a viable alternative to a physical experiment is a computer-simulated
experiment or even a thought experiment. Simulations performed on a computer test the hypothesis
against the physical laws encoded within the computer simulation software, and are particularly
useful for students learning new principles for which simulation software is readily available!®.

13Science is more about clarifying our view of the universe through a systematic process of error detection than it is
about proving oneself to be right. Some scientists may happen to have large egos — and this may have more to do with
the ways in which large-scale scientific research is funded than anything else — but scientific method itself is devoid
of ego, and if embraced as a practical philosophy is quite an effective stimulant for humility. Within the education
system, scientific method is particularly valuable for helping students break free of the crippling fear of being wrong.
So much emphasis is placed in formal education on assessing correct retention of facts that many students are fearful
of saying or doing anything that might be perceived as a mistake, and of course making mistakes (i.e. having one’s
hypotheses disproven by experiment) is an indispensable tool for learning. Introducing science in the classroom — real
science characterized by individuals forming actual hypotheses and testing those hypotheses by experiment — helps
students become self-directed learners.

M This is the principle of falsifiability: that a scientific statement has value only insofar as it is liable to disproof
given the requisite experimental evidence. Any claim that is unfalsifiable — that is, a claim which can never be
disproven by any evidence whatsoever — could be completely wrong and we could never know it.

15A very pertinent example of this is learning how to analyze electric circuits using simulation software such as
SPICE. A typical experimental cycle would proceed as follows: (1) Find or invent a circuit to analyze; (2) Apply
your analytical knowledge to that circuit, predicting all voltages, currents, powers, etc. relevant to the concepts you
are striving to master; (3) Run a simulation on that circuit, collecting “data” from the computer when complete; (4)
Evaluate whether or not your hypotheses (i.e. predicted voltages, currents, etc.) agree with the computer-generated
results; (5) If so, your analyses are (provisionally) correct — if not, examine your analyses and the computer simulation
again to determine the source of error; (6) Repeat this process as many times as necessary until you achieve mastery.

8.1. RECOMMENDED PRACTICES 133

Thought experiments are useful for detecting inconsistencies within your own understanding of
some subject, rather than testing your understanding against physical reality.

Here are some general guidelines for conducting experiments:

The clearer and more specific the hypothesis, the better. Vague or unfalsifiable hypotheses
are useless because they will fit any experimental results, and therefore the experiment cannot
teach you anything about the hypothesis.

Collect as much data (i.e. information, measurements, sensory experiences) generated by an
experiment as is practical. This includes the time and date of the experiment, too!

Newver discard or modify data gathered from an experiment. If you have reason to believe the
data is unreliable, write notes to that effect, but never throw away data just because you think
it is untrustworthy. It is quite possible that even “bad” data holds useful information, and
that someone else may be able to uncover its value even if you do not.

Prioritize quantitative data over qualitative data wherever practical. Quantitative data is more
specific than qualitative, less prone to subjective interpretation on the part of the experimenter,
and amenable to an arsenal of analytical methods (e.g. statistics).

Guard against your own bias(es) by making your experimental results available to others. This
allows other people to scrutinize your experimental design and collected data, for the purpose
of detecting and correcting errors you may have missed. Document your experiment such that
others may independently replicate it.

Always be looking for sources of error. No physical measurement is perfect, and so it is
impossible to achieve exact values for any variable. Quantify the amount of uncertainty (i.e.
the “tolerance” of errors) whenever possible, and be sure your hypothesis does not depend on
precision better than this!

Always remember that scientific confirmation is provisional — no number of “successful”
experiments will prove an hypothesis true for all time, but a single experiment can disprove
it. Put into simpler terms, truth is elusive but error is within reach.

Remember that scientific method is about learning, first and foremost. An unfortunate
consequence of scientific triumph in modern society is that science is often viewed by non-
practitioners as an unerring source of truth, when in fact science is an ongoing process of
challenging existing ideas to probe for errors and oversights. This is why it is perfectly
acceptable to have a failed hypothesis, and why the only truly failed experiment is one where
nothing was learned.

134 CHAPTER 8. PROJECTS AND EXPERIMENTS

The following is an example of a well-planned and executed experiment, in this case a physical
experiment demonstrating Ohm’s Law.

Planning Time/Date = 09:30 on 12 February 2019

HYPOTHESIS: the current through any resistor should be exactly proportional
to the voltage impressed across it.

PROCEDURE: connect a resistor rated 1 k Ohm and 1/4 Watt to a variable-voltage
DC power supply. Use an ammeter in series to measure resistor current and
a voltmeter in parallel to measure resistor voltage.

RISKS AND MITIGATION: excessive power dissipation may harm the resistor and/
or pose a burn hazard, while excessive voltage poses an electric shock hazard.
30 Volts is a safe maximum voltage for laboratory practices, and according to
Joule’s Law a 1000 Ohm resistor will dissipate 0.25 Watts at 15.81 Volts
(P=V"2/R), so I will remain below 15 Volts just to be safe.

Experiment Time/Date = 10:15 on 12 February 2019

DATA COLLECTED:

(Voltage) (Current) (Voltage) (Current)
0.000 V. = 0.000 mA 8.100 = 7.812 mA
2.700 V. = 2.603 mA 10.00 V. = 9.643 mA
5.400 V. = 5.206 mA 14.00 V.= 13.49 mA

Analysis Time/Date = 10:57 on 12 February 2019

ANALYSIS: current definitely increases with voltage, and although I expected
exactly one milliAmpere per Volt the actual current was usually less than
that. The voltage/current ratios ranged from a low of 1036.87 (at 8.1 Volts)
to a high of 1037.81 (at 14 Volts), but this represents a variance of only
-0.0365% to +0.0541%, from the average, indicating a very consistent
proportionality -- results consistent with Ohm’s Law.

ERROR SOURCES: one major source of error is the resistor’s value itself. I
did not measure it, but simply assumed color bands of brown-black-red meant
exactly 1000 Ohms. Based on the data I think the true resistance is closer
to 1037 Ohms. Another possible explanation is multimeter calibration error.
However, neither explains the small positive and negative variances from the
average. This might be due to electrical noise, a good test being to repeat
the same experiment to see if the variances are the same or different. Noise
should generate slightly different results every time.

8.1. RECOMMENDED PRACTICES

135

The following is an example of a well-planned and executed wvirtual experiment, in this case
demonstrating Ohm’s Law using a computer (SPICE) simulation.

Planning Time/Date = 12:32 on 14 February 2019

HYPOTHESIS: for any given resistor, the current through that resistor should be
exactly proportional to the voltage impressed across it.

PROCEDURE: write a SPICE netlist with a single DC voltage source and single
1000 Ohm resistor, then use NGSPICE version 26 to perform a "sweep" analysis
from O Volts to 25 Volts in 5 Volt increments.

* SPICE circuit
vl 1 0 dc
rl 1 0 1000

.dc v1 0 256 5

.print dc v(1) i(vl)

.end

RISKS AND MITIGATION: none.

DATA COLLECTED:

DC transfer characteristic

Thu Feb 14 13:05:08 2019

.000000e+00
.000000e+00
.000000e+01
.500000e+01
.000000e+01
.500000e+01

Analysis Time/Date = 13:06 on

.000000e+00
.000000e+00
.000000e+01
.500000e+01
.000000e+01
.500000e+01

0.000000e+00
-5.00000e-03
-1.00000e-02
-1.50000e-02
-2.00000e-02
-2.50000e-02

14 February 2019

ANALYSIS: perfect agreement between data and hypothesis -- current is precisely

1/1000 of the applied voltage for all values.
agreement would have probably meant my netlist was incorrect.

Anything other than perfect
The negative

current values surprised me, but it seems this is just how SPICE interprets

normal current through a DC voltage source.

ERROR SOURCES: none.

136 CHAPTER 8. PROJECTS AND EXPERIMENTS

As gratuitous as it may seem to perform experiments on a physical law as well-established as
Ohm’s Law, even the examples listed previously demonstrate opportunity for real learning. In
the physical experiment example, the student should identify and explain why their data does not
perfectly agree with the hypothesis, and this leads them naturally to consider sources of error. In
the computer-simulated experiment, the student is struck by SPICE’s convention of denoting regular
current through a DC voltage source as being negative in sign, and this is also useful knowledge for
future simulations. Scientific experiments are most interesting when things do not go as planned!

Aside from verifying well-established physical laws, simple experiments are extremely useful as
educational tools for a wide range of purposes, including;:

e Component familiarization (e.g. Which terminals of this switch connect to the NO versus NC
contacts?)

e System testing (e.g. How heavy of a load can my AC-DC power supply source before the
semiconductor components reach their thermal limits?)

e Learning programming languages (e.g. Let’s try to set up an “up” counter function in this

PLCY)

Above all, the priority here is to inculcate the habit of hypothesizing, running experiments, and
analyzing the results. This experimental cycle not only serves as an excellent method for self-directed
learning, but it also works exceptionally well for troubleshooting faults in complex systems, and for
these reasons should be a part of every technician’s and every engineer’s education.

8.1.5 Constructing projects

Designing, constructing, and testing projects is a very effective means of practical education. Within
a formal educational setting, projects are generally chosen (or at least vetted) by an instructor
to ensure they may be reasonably completed within the allotted time of a course or program of
study, and that they sufficiently challenge the student to learn certain important principles. In a
self-directed environment, projects are just as useful as a learning tool but there is some risk of
unwittingly choosing a project beyond one’s abilities, which can lead to frustration.

Here are some general guidelines for managing projects:

e Define your goal(s) before beginning a project: what do you wish to achieve in building it?
What, exactly, should the completed project do?

e Analyze your project prior to construction. Document it in appropriate forms (e.g. schematic
diagrams), predict its functionality, anticipate all associated risks. In other words, plan ahead.

e Set a reasonable budget for your project, and stay within it.
e Identify any deadlines, and set reasonable goals to meet those deadlines.
e Beware of scope creep: the tendency to modify the project’s goals before it is complete.

e Document your progress! An easy way to do this is to use photography or videography: take
photos and/or videos of your project as it progresses. Document failures as well as successes,
because both are equally valuable from the perspective of learning.

8.2. EXPERIMENT: RELAY CIRCUIT IMPLEMENTATION OF AN ARBITRARY TRUTH TABLE137

8.2 Experiment: Relay circuit implementation of an
arbitrary truth table

Conduct an experiment demonstrating how a circuit using toggle switches (inputs) and at least
one electromechanical relay may be used to implement an arbitrary truth table for a three-input
combinational logic function. A truth table template is given here for your use, to arbitrarily write
“1” and “0” states in the output column:

A | B | C | Output
01010
01011
0]1]0
0111
1100
11011
1 11]0
111

EXPERIMENT CHECKLIST:

e Prior to experimentation:

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

rite a procedure to test the hypothesis, complete with adequate controls an
Writ dure to test the hypothesi lete with ad t trol d
documentation (e.g. schematic diagrams, programming code).

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

e During experimentation:

Safe practices followed at all times (e.g. no contact with energized circuit).
Correct equipment usage according to manufacturer’s recommendations.
All data collected, ideally quantitative with full precision (i.e. no rounding).

e After each experimental run:

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

Identify any uncontrolled sources of error in the experiment.

138

CHAPTER 8. PROJECTS AND EXPERIMENTS

After all experimental re-runs:

Save all data for future reference.

Write an analysis of experimental results and lessons learned.

Identify a truth table function possible to implement with no relay at all.

Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your mext hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

It is possible to implement your chosen logic function using only toggle switches and no relays?

Describe a different relay-based circuit that would implement the exact same logic function.

8.3. PROJECT: COMBINATIONAL GATE CIRCUIT DRIVING 120 VAC LOAD 139

8.3 Project: Combinational gate circuit driving 120 VAC
load

Design a combinational logic circuit using toggle switches (inputs) and integrated circuit (IC) logic
gate “chips” to implement an arbitrary truth table, and power a small 120 VAC load with the
function’s output state. No electromechanical relays should be used in this project to perform logic
functionality. If any relay is to be used, it should strictly be for interposing to the load. A truth table
template is given here for your use, to arbitrarily write “1” and “0” states in the output column:

A | B | C | Output
01010
0101
011]0
01111
11010
1101
1]11]0
1 1 1

PROJECT CHECKLIST:

e Prior to construction:

Prototype diagram(s) and description of project scope.
Risk assessment/mitigation plan.
Timeline and action plan.

e During construction:

Safe work habits (e.g. no contact made with energized circuit at any time).
Correct equipment usage according to manufacturer’s recommendations.

Timeline and action plan amended as necessary.

SR E

Maintain the originally-planned project scope (i.e. avoid adding features!).

e After completion:

All functions tested against original plan.

<

Full, accurate, and appropriate documentation of all project details.

140 CHAPTER 8. PROJECTS AND EXPERIMENTS

Complete bill of materials.
Written summary of lessons learned.

e Describe a different logic gate circuit that would implement the exact same logic function.

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

e Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions — learn why those solutions work.

e Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

e Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

e Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

e Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

e Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

e Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

141

142

APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

Work “backward” from a hypothetical solution to a new set of given conditions.

Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

143

144

APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.1 First principles of learning

Anyone can learn anything given appropriate time, effort, resources, challenges,
encouragement, and expectations. Dedicating time and investing effort are the student’s
responsibility; providing resources, challenges, and encouragement are the teacher’s
responsibility; high expectations are a responsibility shared by both student and teacher.

Transfer is not automatic. The human mind has a natural tendency to compartmentalize
information, which means the process of taking knowledge learned in one context and applying
it to another usually does not come easy and therefore should never be taken for granted.

Learning is iterative. The human mind rarely learns anything perfectly on the first attempt.
Anticipate mistakes and plan for multiple tries to achieve full understanding, using the lessons
of those mistakes as feedback to guide future attempts.

Information is absorbed, but understanding is created. Facts and procedures may be
memorized easily enough by repeated exposure, but the ability to reliably apply principles
to novel scenarios only comes through intense personal effort. This effort is fundamentally
creative in nature: explaining new concepts in one’s own words, running experiments to test
understanding, building projects, and teaching others are just a few ways to creatively apply
new knowledge. These acts of making knowledge “one’s own” need not be perfect in order to
be effective, as the value lies in the activity and not necessarily the finished product.

Education trumps training. There is no such thing as an entirely isolated subject, as all
fields of knowledge are connected. Training is narrowly-focused and task-oriented. Education
is broad-based and principle-oriented. When preparing for a life-long career, education beats
training every time.

Character matters. Poor habits are more destructive than deficits of knowledge or skill.
This is especially true in collective endeavors, where a team’s ability to function depends on
trust between its members. Simply put, no one wants an untrustworthy person on their team.
An essential component of education then, is character development.

People learn to be responsible by bearing responsibility. An irresponsible person is
someone who has never had to be responsible for anything that mattered enough to them.
Just as anyone can learn anything, anyone can become responsible if the personal cost of
irresponsibility becomes high enough.

What gets measured, gets done. Accurate and relevant assessment of learning is key to
ensuring all students learn. Therefore, it is imperative to measure what matters.

Failure is nothing to fear. Every human being fails, and fails in multiple ways at multiple
times. Eventual success only happens when we don’t stop trying.

B.2.

PROVEN STRATEGIES FOR INSTRUCTORS 145

B.2 Proven strategies for instructors

Assume every student is capable of learning anything they desire given the proper conditions.
Treat them as capable adults by granting real responsibility and avoiding artificial incentives
such as merit or demerit points.

Create a consistent culture of high expectations across the entire program of study.
Demonstrate and encourage patience, persistence, and a healthy sense of self-skepticism.
Anticipate and de-stigmatize error. Teach respect for the capabilities of others as well as
respect for one’s own fallibility.

Replace lecture with “inverted” instruction, where students first encounter new concepts
through reading and then spend class time in Socratic dialogue with the instructor exploring
those concepts and solving problems individually. There is a world of difference between
observing someone solve a problem versus actually solving a problem yourself, and so the
point of this form of instruction is to place students in a position where they cannot passively
observe.

Require students to read extensively, write about what they learn, and dialogue with you and
their peers to sharpen their understanding. Apply Francis Bacon’s advice that “reading maketh
a full man; conference a ready man; and writing an exact man”. These are complementary
activities helping students expand their confidence and abilities.

Use artificial intelligence (AI) to challenge student understanding rather than merely provide
information. Find productive ways for Al to critique students’ clarity of thought and of
expression, for example by employing Al as a Socratic-style interlocutor or as a reviewer of
students’ journals. Properly applied, Al has the ability to expand student access to critical
review well outside the bounds of their instructor’s reach.

Build frequent and rapid feedback into the learning process so that students know at all times
how well they are learning, to identify problems early and fix them before they grow. Model the
intellectual habit of self-assessing and self-correcting your own understanding (i.e. a cognitive
feedback loop), encouraging students to do the same.

Use “mastery” as the standard for every assessment, which means the exam or experiment or
project must be done with 100% competence in order to pass. Provide students with multiple
opportunity for re-tries (different versions of the assessment every time).

Require students to devise their own hypotheses and procedures on all experiments, so that the
process is truly a scientific one. Have students assess their proposed experimental procedures
for risk and devise mitigations for those risks. Let nothing be pre-designed about students’
experiments other than a stated task (i.e. what principle the experiment shall test) at the
start and a set of demonstrable knowledge and skill objectives at the end.

Have students build as much of their lab equipment as possible: building power sources,
building test assemblies', and building complete working systems (no kits!). In order to provide

n the program I teach, every student builds their own “Development Board” consisting of a metal chassis with
DIN rail, terminal blocks, and an AC-DC power supply of their own making which functions as a portable lab
environment they can use at school as well as take home.

146

APPENDIX B. INSTRUCTIONAL PHILOSOPHY

this same “ground-up” experience for every new student, this means either previous students
take their creations with them, or the systems get disassembled in preparation for the new
students, or the systems grow and evolve with each new student group.

Incorporate external accountability for you and for your students, continuously improving the
curriculum and your instructional methods based on proven results. Have students regularly
network with active professionals through participation in advisory committee meetings,
service projects, tours, jobshadows, internships, etc. Practical suggestions include requiring
students to design and build projects for external clients (e.g. community groups, businesses,
different departments within the institution), and also requiring students attend all technical
advisory committee meetings and dialogue with the industry representatives attending.

Repeatedly explore difficult-to-learn concepts across multiple courses, so that students have
multiple opportunities to build their understanding.

Relate all new concepts, whenever possible, to previous concepts and to relevant physical laws.
Challenge each and every student, every day, to reason from concept to concept and to explain
the logical connections between. Challenge students to verify their conclusions by multiple
approaches (e.g. double-checking their work using different methods). Ask “Why?” often.

Maintain detailed records on each student’s performance and share these records privately with
them. These records should include academic performance as well as professionally relevant
behavioral tendencies.

Address problems while they are small, before they grow larger. This is equally true when
helping students overcome confusion as it is when helping students build professional habits.

Build rigorous quality control into the curriculum to ensure every student masters every
important concept, and that the mastery is retained over time. This includes (1) review
questions added to every exam to re-assess knowledge taught in previous terms, (2) cumulative
exams at the end of every term to re-assess all important concepts back to the very beginning of
the program, and (3) review assessments in practical (hands-on) coursework to ensure critically-
important skills were indeed taught and are still retained. What you will find by doing this is
that it actually boosts retention of students by ensuring that important knowledge gets taught
and is retained over long spans of time. In the absence of such quality control, student learning
and retention tends to be spotty and this contributes to drop-out and failure rates later in
their education.

Finally, never rush learning. Education is not a race. Give your students ample time to digest
complex ideas, as you continually remind yourself of just how long it took you to achieve
mastery! Long-term retention and the consistently correct application of concepts are always
the result of focused effort over long periods of time which means there are no shortcuts to
learning.

B.3. PROVEN STRATEGIES FOR STUDENTS 147

B.3 Proven strategies for students

The single most important piece of advice I have for any student of any subject is to take
responsibility for your own development in all areas of life including mental development. Expecting
others in your life to entirely guide your own development is a recipe for disappointment. This is
just as true for students enrolled in formal learning institutions as it is for auto-didacts pursuing
learning entirely on their own. Learning to think in new ways is key to being able to gainfully use
information, to make informed decisions about your life, and to best serve those you care about.
With this in mind, I offer the following advice to students:

e Approach all learning as valuable. No matter what course you take, no matter who you
learn from, no matter the subject, there is something useful in every learning experience. If
you don’t see the value of every new experience, you are not looking closely enough!

e Continually challenge yourself. Let other people take shortcuts and find easy answers to
easy problems. The purpose of education is to stretch your mind, in order to shape it into a
more powerful tool. This doesn’t come by taking the path of least resistance. An excellent
analogy for an empowering education is productive physical exercise: becoming stronger, more
flexible, and more persistent only comes through intense personal effort.

e Master the use of language. This includes reading extensively, writing every day, listening
closely, and speaking articulately. To a great extent language channels and empowers thought,
so the better you are at wielding language the better you will be at grasping abstract concepts
and articulating them not only for your benefit but for others as well.

e Do not limit yourself to the resources given to you. Read books that are not on the
reading list. Run experiments that aren’t assigned to you. Form study groups outside of class.
Take an entrepreneurial approach to your own education, as though it were a business you
were building for your future benefit.

¢ Express and share what you learn. Take every opportunity to teach what you have learned
to others, as this will not only help them but will also strengthen your own understanding?.

e Realize that no one can give you understanding, just as no one can give you physical
fitness. These both must be built.

e Above all, recognize that learning is hard work, and that a certain level of
frustration is unavoidable. There are times when you will struggle to grasp some of these
concepts, and that struggle is a natural thing. Take heart that it will yield with persistent and
varied? effort, and never give up! That concepts don’t immediately come to you is not a sign
of something wrong, but rather of something right: that you have found a worthy challenge!

20n a personal note, I was surprised to learn just how much my own understanding of electronics and related
subjects was strengthened by becoming a teacher. When you are tasked every day with helping other people grasp
complex topics, it catalyzes your own learning by giving you powerful incentives to study, to articulate your thoughts,
and to reflect deeply on the process of learning.

3As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

148

APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.4 Design of these learning modules

“The unexamined circuit is not worth energizing” — Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits. Every effort has been made to embed the following instructional and
assessment philosophies within:

The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

Articulate communication is fundamental to work that is complex and interdisciplinary.

Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

B.4. DESIGN OF THESE LEARNING MODULES 149

These learning modules were expressly designed to be used in an “inverted” teaching
environment? where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic® dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity® through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

4In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary ezplain where gaps in understanding still exist.

5Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

6This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

150 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

To high standards of education,

Tony R. Kuphaldt

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU
project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

151

152 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSTIAYG (What You See Is All You
Get).

Leslie Lamport’s XTEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was KTEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to I/ TEX as C is to C++. This means it is permissible to use any and all TEX
commands within I#TEX source code, and it all still works. Some of the features offered
by ETEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

153

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

154 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. T typically set my gnuplot
output format to default (X11 on my Linux PC) for quick viewing while I'm developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I'm writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I'm listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import
* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

155

156 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 — Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

157

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor — Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 — License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if

designated);

ii. a copyright notice;

158 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 — Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

159

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 — Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 — Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

160 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c¢. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

161

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

162 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

Bogart, Theodore F. Jr., Introduction to Digital Circuits, Glencoe division of Macmillan/McGraw-
Hill, 1992.

163

164 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

29 May 2025 — minor formatting changes made in the SOP and NSOP sections of the Tutorial.
6 May 2025 — minor edits to the Tutorial, and some edits made to instructor notes as well.

4 May 2025 — changed the “Universality” Tutorial section title to “Universal logic functions”, and
also edited some of that section’s text for readability.

5 December 2024 — added more bullet-points to the Introduction chapter list of recommendations
for instructors.

6 November 2024 — divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.

14 April 2024 - added example numbers to the “Circuits from two-input truth tables” and “Circuits
from three-input truth tables” Quantitative Reasoning question, added more timing diagram sub-
questions to the “Timing diagrams for gate circuits” Quantitative Reasoning question, and fixed a
minor typographical error in this Version history chapter.

11 December 2023 — minor edits to the Tutorial.

14-16 September 2023 — added a Case Tutorial section showcasing a gallery of practical logic
gate application circuits.

25 April 2023 — Added a Case Tutorial section on timing diagrams applied to simple combinational
logic circuits.

19 April 2023 — fixed typographical error where the text said “division” and should have said

165

166 APPENDIX F. VERSION HISTORY

“addition”. This fix courtesy of Daniel Wing.
15 January 2023 — added a Technical Reference section on IC logic families.

15 December 2022 — altered the SOP table-to-circuit example to avoid confusion, based on
a recommendation by Nolan Call. The original SOP expression was ABC + ABC, which was
potentially confusing because the two terms’ bit states were opposite which meant a reader might
not properly associate 0 and 1 states with each term’s variable complementation. The new truth
table and circuit diagrams now reflect the Boolean expression ABC + ABC where there exists no
such ambiguity. Also corrected an unrelated typographical error where I described an AND gate as
being “NAND?” instead.

12 December 2022 — edited image_1316 to make all inverter gate symbols consistent.

8-9 December 2022 — added more references in the Tutorial to the equivalence of AND = Boolean
multiply = series contacts, OR = Boolean add = parallel contacts, and NOT = Boolean inversion
= normally-closed contacts. Added numerical labels to image 1306 as well. Also added a new
Conceptual Reasoning question based on a schematic capture image showing a creative use of spare
NAND gates.

28 November 2022 — placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

25 May 2022 — renamed the Tutorial section “Gate universality” to “Universality” because this
concept relates to abstract logic functions and is not specific to logic gates.

5 May 2022 — added Historical Reference section on NASA’s Apollo guidance computer which was
made of just NOR gates.

20 April 2022 — added more questions to the Introduction chapter.

13 December 2021 - added more explanatory text describing why we might use SOP or POS to
translate a truth table into a working circuit.

26 November 2021 — added section title to the logic function review at the start of the Tutorial.

17-19 November 2021 — shortened some of the Quantitative Reasoning question names (e.g.
“Boolean expressions and circuits from...” is now “Circuits from...”). Also divided the “Truth
tables into circuits” section of the Tutorial into subsections. Finally, added a Case Tutorial chapter
with examples showing translation from truth tables into actual circuits.

9 May 2021 — commented out or deleted empty chapters.
9 December 2020 — minor additions to the Introduction chapter.

5 December 2020 — added a requirement to the “Gate circuits from Boolean expressions” and
“Gate circuit from a truth table” questions that the combinational logic circuit be able to drive a
heavy DC load.

167

15 October 2020 — replaced + and * operators in C++ programming examples with | | and &&.
12 October 2020 — minor additions to the Introduction chapter.

1 October 2020 — significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

15 May 2020 — added more questions.

1 April 2020 - added a “frame” box around the C++ code for the combinational logic circuit
simulation that should have been there originally. My formatting policy for coding examples is to
print source code as verbatim text inside of a frame, and to print the output of a program’s execution
as just verbatim text (with no frame).

23 March 2020 - added more challenge questions to “Gate circuits from Boolean expressions”
Quantitative Reasoning problem.

14 March 2020 — minor edits to the Tutorial, mostly dealing with the alternative method to POS
(using SOP when the truth table contains a majority of 1 states). Also correct some typographical
errors.

5 January 2020 - added bullet-list of relevant programming principles to the Programming
References section.

2 January 2020 — moved C++ demonstration program of a combinational logic circuit from
mod_boolean to mod_comblogic. Also deleted frames from text output, reserving those just for
source code listings.

23 December 2019 — minor edit to a question.
13 November 2019 — added more questions.

20 April 2019 - clarified the use of logic gate ICs to perform logical function (not relays) in one
of the projects.

15 April 2019 — added Quantitative Reasoning questions centered around deriving Boolean, gate,
and ladder logic circuits from truth tables.

11 April 2019 — added two Quantitative Reasoning questions centered around the use of Python
to evaluate combinational logic functions.

27 March 2019 — added questions to Conceptual, Quantitative, and Diagnostic Reasoning sections.
Also added Claude Shannon’s work on Boolean algebra to the Historical References chapter.

14 March 2019 - added more content to the Tutorial, corrected a few typographical errors, edited
two images.

13 March 2019 - added an experiment, to build a circuit fulfilling some arbitrary logic function

168 APPENDIX F. VERSION HISTORY

defined by a truth table. Also, corrected a typo in the module’s title (it was “Combinational Logic
module” when it should have been “Combinational Logic”)!

10 March 2019 — continued writing Tutorial chapter, finished Foundational Concepts list.
5 March 2019 — continued writing Tutorial chapter.

3 March 2019 — document first created.

Index

2003 voting, 22
4000/14000 CMOS family, 65
5400/7400 TTL family, 65

Active reading, 32

Adding quantities to a qualitative problem, 142

ALU, 28
AND function, 29

Annotating diagrams, 15, 32, 37, 64, 141

Apollo, 54
Arithmetic Logic Unit, 28
ASCII, 23

B+, 54

Bipolar, 30, 54

Boolean algebra, 29
Breadboard, solderless, 128, 129
Breadboard, traditional, 131

C++, 70

Cardio-Pulmonary Resuscitation, 126
Checking for exceptions, 142
Checking your work, 142

CMOS, 30

Code, computer, 151

Combinational logic, 3

Compiler, C++, 70

Computer programming, 69

CPR, 126

Dalziel, Charles, 126
DeMorgan’s Theorem, 33, 34, 47
Diagram, timing, 15, 120
Dimensional analysis, 141

DIN rail, 129

Diode-Transistor Logic family, 65
DIP, 128

Discrete, 29

DTL family, 65

ECL family, 65

Edwards, Tim, 152

Electric shock, 126

Electrically common points, 127
Emitter-Coupled Logic family, 65
Enclosure, electrical, 131
Equipotential points, 127, 129
Experiment, 132

Experimental guidelines, 133

Factoring, 46
Family, logic gate, 65
Fault tolerance, 22

Graph values to solve a problem, 142
Greenleaf, Cynthia, 83

Hinderance, 52
How to teach with these modules, 149
Hwang, Andrew D., 153

IC, 128

Identify given data, 141
Identify relevant principles, 141
Intermediate results, 141
Interpreter, Python, 74
Inverted instruction, 149

Java, 71
Knuth, Donald, 152

Ladder logic diagram, 36
Lamport, Leslie, 152
Limiting cases, 142
Logic function, 29

169

170

Logic gate family, 65
Logic gate sub-family, 66
Logic level, 29

Logic state, 29

Maxwell, James Clerk, 51
Metacognition, 88
Microcontroller, 46
Microprocessor, 28
Moolenaar, Bram, 151
Motorola, 65

Murphy, Lynn, 83

NAND function, 29

NASA, 54

NC, 60

Negative truth, 44

NO, 61

NOR function, 29, 54
Normal state of a relay contact, 37
Normal state of a switch, 60
Normally-closed, 60
Normally-open, 61

NOT function, 29

Open-source, 151
OR function, 29
Order of operations, 38

PEMDAS, 38
PLC, 46
Potential distribution, 129
Power supply rail, 30, 54
Problem-solving: annotate diagrams, 15, 32, 37,
64, 141
Problem-solving;:
Problem-solving:
Problem-solving:
Problem-solving:
Problem-solving:
Problem-solving:
Problem-solving:
141
Problem-solving:
Problem-solving:
Problem-solving:

check for exceptions, 142
checking work, 142
dimensional analysis, 141
graph values, 142

identify given data, 141
identify relevant principles, 141
interpret intermediate results,

limiting cases, 142
qualitative to quantitative, 142
quantitative to qualitative, 142

INDEX

Problem-solving: reductio ad absurdum, 142
Problem-solving: simplify the system, 141
Problem-solving: thought experiment, 15, 33, 55,

133, 141

Problem-solving: track units of measurement,
141

Problem-solving: visually represent the system,
141

Problem-solving: work in reverse, 142
Product-of-sums expression, 41, 47
Programmable Logic Controller, 46
Programming, computer, 69

Project management guidelines, 136
Python, 74

Qualitatively approaching a
problem, 142

quantitative

Rail, 36

Rail, power supply, 30, 54

Reading Apprenticeship, 83

Reading, active, 32

Reductio ad absurdum, 142, 148, 149
Resistor-Transistor Logic family, 65
RTL family, 65

Rung, 36

Safety, electrical, 126
Schoenbach, Ruth, 83
Scientific method, 88, 132
Scope creep, 136
Shannon, Claude, 52
Shunt resistor, 128
Signal, discrete, 29
Simplifying a system, 141
Sinking current, 54
Socrates, 148

Socratic dialogue, 149
Solderless breadboard, 128, 129
Source code, 70

Sourcing current, 54
SPICE, 83, 133

SPICE netlist, 130
Stallman, Richard, 151
Sub-family, logic gate, 66
Subpanel, 131

INDEX 171

Sum-of-products expression, 41
Surface mount, 129

Terminal block, 127-131

Thought experiment, 15, 33, 55, 133, 141
Timing diagram, 15, 120

Torvalds, Linus, 151

Trip setting, switch, 62

Truth table, 3, 29, 55

Units of measurement, 141
Universal function, 32

Visualizing a system, 141

Whitespace, C++, 70, 71

Whitespace, Python, 77

Wire wrap, 58

Wiring sequence, 130

Work in reverse to solve a problem, 142
WYSIWYG, 151, 152

XOR function, 29

	Introduction
	Recommendations for students
	Challenging concepts related to combinational logic
	Recommendations for instructors

	Case Tutorial
	Example: gate circuits from 4-input truth tables
	Example: ladder logic circuits from 4-input truth tables
	Example: timing diagrams for combinational gate circuits
	Gallery of logic gate applications
	Power circuit fault detector
	H-bridge driver circuit
	Two-out-of-three voting circuit
	Binary word comparator
	Binary decoder circuits
	Binary adder circuits

	Tutorial
	Logic functions
	Universal logic functions
	Combinational relay logic
	Boolean expressions into circuits
	Truth tables into circuits
	Sum of Products
	Negative Sum of Products
	Product of Sums

	Historical References
	Claude Shannon makes the connection
	NASA's Apollo Guidance Computer

	Derivations and Technical References
	Normal status of a switch contact
	Logic families

	Programming References
	Programming in C++
	Programming in Python
	Modeling combinational logic using C++

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Use of spare NAND gates
	Unanimous vote detector circuit
	Combination lock circuit
	Triple-redundant power supply
	Chemical weapons incinerator

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Using Python to evaluate combinational logic expressions
	Using Python to evaluate a combinational function diagram
	Boolean expressions from gate circuits
	Boolean expressions from relay circuits
	Truth tables from Boolean expressions
	Gate circuits from Boolean expressions
	Relay circuits from Boolean expressions
	Circuits from two-input truth tables
	SOP and POS expressions from the same truth table
	Circuits from three-input truth tables
	Boolean expression for an undocumented logic circuit
	SOP expression and ladder logic from a truth table
	Gate circuit from a truth table
	Relay circuit from a truth table
	Seven-segment decoder
	Timing diagrams for gate circuits

	Diagnostic reasoning
	Effect of gate fault on Boolean expression
	Seven-segment decoder/driver problem

	Projects and Experiments
	Recommended practices
	Safety first!
	Other helpful tips
	Terminal blocks for circuit construction
	Conducting experiments
	Constructing projects

	Experiment: Relay circuit implementation of an arbitrary truth table
	Project: Combinational gate circuit driving 120 VAC load

	Problem-Solving Strategies
	Instructional philosophy
	First principles of learning
	Proven strategies for instructors
	Proven strategies for students
	Design of these learning modules

	Tools used
	Creative Commons License
	References
	Version history
	Index

