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Chapter 1

Introduction

1.1 Recommendations for students

Many practical electrical and electronic circuit applications are characterized by a combination of
signals which must be separated from one another. Radio communication works by broadcasting
electromagnetic waves at high frequency, and all these broadcasts must be distinguished from one
another by their set frequencies. Sensors used to measure physical variables such as temperature
and position and convert them into electrical signals may suffer from interference by noise (i.e.
random disturbances to the voltage or current signal) picked up from surrounding circuitry or
mechanisms, and that noise must somehow be screened from the received signal in order to accurately
interpret the sensor’s measurement. Precision AC-to-DC power supply circuits must have their
outputs conditioned to screen out any unwanted “ripple” or other AC disturbances in the otherwise
continuous (DC) power sent to sensitive loads.

A filter circuit is one designed to perform any of these tasks, discriminating one signal from
another based on frequency. A broad range of filter circuit designs exist, and their analysis can
be quite mathematically complex. This tutorial seeks to introduce the topic in as general terms as
possible, using as little math as possible for the sake of building a strong conceptual understanding
of the subject.

Important concepts related to filters include capacitive reactance, inductive reactance,
effects of opens versus shorts, voltage divider networks, cutoff frequency, parasitic properties,
resonance, Bode plots, quality factor, roll-off, decibels, crystals, fundamental frequency,
and harmonic frequency.

A problem-solving technique applied throughout the text is limiting cases, where we consider
the behavior of a circuit at some extreme condition(s). In this case, the variable we take to these
limiting cases is frequency of an AC signal, and we examine the reactance values of capacitors and
inductors at those extreme frequency values. Like all limiting-case examples, this tends to simplify
the circuit being analyzed, and in so doing provides us with a description of how the circuit will
respond to smaller (less-extreme) changes in frequency.

Here are some good questions to ask of yourself while studying this subject:

3



CHAPTER 1. INTRODUCTION

How might an experiment be designed and conducted to prove the existence of harmonic
frequencies within a non-sinusoidal waveform? What hypothesis (i.e. prediction) might you
pose for that experiment, and what result(s) would either support or disprove that hypothesis?

How might an experiment be designed and conducted to gather enough data to sketch a Bode
plot for a filter network having unknown characteristics? What hypothesis (i.e. prediction)
might you pose for that experiment, and what result(s) would either support or disprove that
hypothesis?

How might an experiment be designed and conducted to measure the input impedance of a
filter network? What hypothesis (i.e. prediction) might you pose for that experiment, and
what result(s) would either support or disprove that hypothesis?

In what form do inductors store energy?

In what form do capacitors store energy?

How does the problem-solving technique of “limiting cases” help us understand filter networks?
What are some practical applications of filter networks?

How is “cutoff frequency” defined for a filter network?

Why are capacitors usually favored over inductors for creating filter networks?

What is “resonance” and how does it manifest in both electrical and mechanical systems?
How does a Bode plot differ from an oscillograph?

When might we prefer a filter network with a high quality factor?

When might we prefer a filter network with a low quality factor?

What does “roll-off” mean for a filter network?

What does the phrase “brick wall” mean for the response of an ideal filter network?
What advantage(s) do quartz crystals bring to filter networks?

How does filtering affect the frequency-domain spectrum of an AC signal?

How may filtering be used to re-shape the time-domain shape of an AC signal?
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1.2 Challenging concepts related to elementary filter
networks

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

¢ Reasoning from trusted principles — many students enter college-level study of electronics
with an educational background stressing rote memorization at the expense of logical reasoning
from trusted principles, and as such tend to find circuit analysis daunting where there is no
single procedure or single formula always yielding the correct answer(s). These students also
try to rote-memorize circuit configurations rather than use logic to determine what each of
those configurations does. In the case of simple filter networks the tendency is to try to
memorize the component positions and associate them with labels such as “high-pass”, “low-
pass”, etc. A much better approach is to view each new filter network from the perspective
of a voltage divider when subjected to signals of different frequency, using general principles
of “opens” and “shorts” to conclude the effects on the output signal as frequency values go
to extremes (i.e. DC versus super-high frequency). In other words, apply the problem-solving
strategy of limiting cases to every filter circuit so as to figure out its function rather than try
to memorize it!

e Shorts versus Opens — these are two distinctly different types of electrical conditions, and
are not generic labels for any problem that might occur in a circuit'. Each of these conditions is
characterized by a prohibition of some electrical measure: shorts prevent voltage from existing
between the two points that are shorted together, and opens prevent current from passing
through the conductors that used to be joined. A very common misconception is that shorts
ensure current and opens ensure voltage, but it is more accurate to say that shorts prohibit
voltage and opens prohibit current.

e Decibels — “decibels” are an attempt to express power ratios (i.e. power gains or attenuation
factors) logarithmically rather than linearly, and as such they tend to generate confusion for
students less familiar (or unfamiliar) with exponential and logarithmic functions.

e Practical filter applications — Bode plots show how filter circuits respond to inputs of
changing frequency, but this is not how filters are typically used in real applications. Rarely
does one find a filter circuit subjected to only one particular frequency at a time — usually
a simultaneous mix of frequencies are seen at the input, and it is the filter’s job to select a
particular range of frequencies to pass through from that simultaneous mix. Understanding
the superposition theorem is helpful for comprehending practical filter applications.

The Case Tutorial chapter section on decibels gives an overview of this mathematical concept.

Tt is common for new students of electricity to assume, for example, that “short” means any type of fault
whatsoever!
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

e Outcome — Demonstrate effective technical reading and writing

Assessment — Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment — Students show how quantitative results were obtained by the author in the
Tutorial chapter’s examples.

e Outcome — Apply the “limiting cases” problem-solving strategy to the identification of filter
network types

Assessment — Identify types of filter networks based on qualitative analysis of their
schematic diagrams; e.g. pose problems in the form of the “Identifying filter types” and
“Identifying (more) filter types” and “Identifying (even more) filter types” Conceptual
Reasoning questions.

e Outcome — Calculate cutoff frequency values for given filter networks

Assessment — Calculate the cutoff frequency of a filter circuit given its schematic diagram
and component values; e.g. pose problems in the form of the “Filter type and cutoff
identifications” Quantitative Reasoning question.

Assessment — Design a filter network for an application with a specified cutoff frequency
and filtering type; e.g. pose problems in the form of the “Designing filters using IEC standard
component values” Quantitative Reasoning question.

e Outcome — Independent research

Assessment — Locate filter network datasheets (e.g. SAW-type filters) and properly
interpret some of the information contained in those documents including pass characteristic(s),
frequency ranges, power ratings, etc.



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module — can you explain why the circuits behave as they do?
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2.1 Example: filter network testing
A simple test arrangement for any passive filter network is to energize its input using a function

generator while measuring its output using an oscilloscope. Here we see a diagram of a low-pass
resistor-capacitor filter network set up for testing:

Oscilloscope

Volts/Div A Sec/Div
\en Posiion A
FUNCTION GENERATOR o @ B o ;s:
ooooooao & oc G ac —
1 10 100 1k 10k 100k 1M @ ﬁ
Position
A B Alt ChopAdd
@ ® coo 0@ @ Trgerg] eve
coarse fine VY DC output oA °
Volts/Div B S BM Holdoff
Ps m“’;ﬂ'm Position gé‘;“e ]

Ext input

mﬁn In(t;suy pac.us Beaﬁ‘"" ﬂo:m gg
uto

DC Gnd AC o Single I, LF Rej
foE 1 + HF Rej

©!
B

Ideally, you could use an AC voltmeter to measure both V;, and V., but most affordable
voltmeters have rather limited accuracy over wide ranges in AC frequency, and so an oscilloscope is
a more suitable voltage-measuring instrument for this application.

As you manually set the function generator to output sine-wave AC voltages at different
frequencies, the oscilloscope will register sine-wave voltage signals at those same frequencies but
at different amplitudes. Note how channel A of the oscilloscope measures V;,, at the filter’s input
terminals, while channel B measures the filter’s V,,,;. The filter network attenuates the signal, which
explains why V,,; (channel B) has less amplitude than V;,, (channel A).

This attenuation factor varies with frequency: for a low-pass filter such as the one being tested
here, the output signal weakens with respect to the input signal as frequency rises. If we were testing
a high-pass filter instead (just swap the positions of R and C' in the circuit diagram!) the V,,; signal
would grow in strength (approaching V;,,) with increasing frequency. Using the oscilloscope as a
two-channel AC voltmeter, you can gather V;;,, and V,,; data at different frequencies to plot their
ratios. Tracking the value of the ratio % at different frequencies will show us the characteristic
behavior of this filter network. "
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Here is an example of data collected from such a filter network where R is 4.7 k2 and C' is

0.01 pF. From these values we expect the filter to “cut off” at approximately 3386 Hz following the

formula, fcutoff = ﬁ:

Frequency | V;, (measured) | V,,¢ (measured) “/;”:f (calculated)
1000 Hz 3.00 VAC 2.88 VAC 0.96
1500 Hz 3.00 VAC 2.74 VAC 0.91
2000 Hz 3.00 VAC 2.58 VAC 0.86
2500 Hz 3.00 VAC 2.41 VAC 0.80
3000 Hz 3.00 VAC 2.25 VAC 0.75
3500 Hz 3.00 VAC 2.09 VAC 0.70
4000 Hz 3.00 VAC 1.94 VAC 0.65
4500 Hz 3.00 VAC 1.80 VAC 0.60
5000 Hz 3.00 VAC 1.68 VAC 0.56
5500 Hz 3.00 VAC 1.57 VAC 0.52

Plotting these “/;jf ratio and frequency values on a graph yields a Bode plot:
1.0 —
0.707 ~g===============--==-2 ;
i |
\YAYS |
?gtio " 05 |
- —
- Pass-band | Stop-band
f< fcutoff ! f> fcutoff
— |
|
I
|
n 1
I
. i
i
0.0 L A A
0 1k 2k 3k 4k 5k 6k
fcutoff

Frequency (Hz)

Cutoff frequency is commonly known to be that signal frequency at which the filter network’s
attenuation is 70.7% (expressed as a ratio). The more fundamental definition, though, is that cutoff
frequency is the half-power point where the output signal’s power is exactly one-half that of the
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input signal’s. Since for any fixed load resistance, voltage is proportional to the square root of power
(V =4/ %), a power attenuation of one-half is equivalent to a voltage attenuation of \/g , which is

where we get the 70.7% value from (0.70711).
If we convert the “half-power” figure into a decibel value, we see that the “cutoff” point for a
filter network is equivalent to a power attenuation of approximately —3 decibels:

10log (0.5) = —3.01 dB
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If the function generator you are using does not output a “clean” sinusoidal waveform,
experimental determination of input and output voltages will be complicated by the fact that the
shape of the output waveform will not exactly match the shape of the input waveform. This is
because any non-sinusoidal waveform is actually composed of multiple sinusoids superimposed on
each other, and the filter network you’re testing will attenuate all of these harmonic frequencies to
different degrees, effectively changing the shape of the output waveform.

One solution to this problem, assuming you cannot obtain a better-quality signal generator, is
to use the spectrum-analyzer function on a digital oscilloscope' to measure the input and output
voltage spectra. By comparing the rebpective heights of same-frequency peaks in the input and
output spectra, you can easily compute 32 Yout ratios. Additionally, if the input waveform is “impure”
you will have several pairs of peaks to Compare against each other with each frequency setting of
the function generator, which will make your testing faster!

For example, the spectrum display shown below (channel A is input, channel B is output) shows
a 1 kHz square-wave signal passed through this same filter network, with the same % ratios as
obtained by sweeping a sinusoidal signal and taking several measurements every 500 Hz'

A=3V
3V
B =288\
2V
1vVv A1V
B=075V| , _ligy
B =0.336V
1kHz 3kHz 5kHz

The peak heights of the input signal (3 Volts, 1 Volt, 0.6 Volts) is simply the result of the Fourier
series for a square wave and has nothing to do with the filter network:

sinwt + 1sin?x,ut + 1 sin bwt + 1 sin Twt 4 - - - + l sin nwt
3 5 7 n
What the filter is responsible for is the attenuation of the output signal (channel B), and from
the three pairs of peaks in this spectrum display we see the same amplitude ratios as shown in the
previous table (% = attenuation of 0.96 at 1 kHz, % = attenuation of 0.75 at 3 kHz, % =
attenuation of 0.56 at 5 kHz).

LAt the time of this writing (2021) decent-quality spectrum analysis in the audio-frequency range is actually
less expensive than decent-quality sinusoidal function generators! Even the least expensive hobbyist-grade digital
oscilloscopes come with powerful FFT capability, but similarly-graded function generators struggle to output clean
sine waves.
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A more sophisticated instrument for testing filters, especially at radio frequencies, is a device
called a Vector Network Analyzer or VNA. This special instrument contains its own high-frequency
signal generator (source) as well as precision high-frequency measurement circuitry which makes it
ideal for testing the frequency response of any network such as a filter. Here we have a low-pass
filter? connected between the output port 1 and input port 2 of the VNA through coaxial cable and
SMA-style connectors:

The resulting Bode plot generated by the VNA and displayed on a personal computer connected
to the VNA through a USB cable shows a typical low-pass frequency response:

821 LogMsg

0048 50 dBDN. MARKERS

Cinph 1 531
i Sl 100 ey

Markae 1 (571}
Vi 000 e e

2The low-pass filter network is housed inside of the small brass cylinder threaded onto port 2 of the VNA with a
cable threaded into its other end.
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2.2 Example: RC filter design

Suppose we require a low-pass filter with a cutoff frequency of 5 kHz. On hand we have two different
capacitors we might use, a 2.2 nanoFarad (2.2 nF) and a 0.01 microFarad (0.01 uF), as well as a
wide range of resistors®. First, it is a good idea to sketch the general form of a resistor-capacitor
(RC) low-pass filter:

o— VW —0
I I
[} [}
| —1 1

Vin : -1 : Vout

[} I

O : : O
I I
[} [}
|

Since we want this to be a low-pass filter, and we know that a capacitor’s reactance decreases
as frequency rises (X¢ = ﬁ), it makes sense to place the capacitor in parallel with the output
terminals so that as its reactance approaches zero with increasing frequency it will “short out” the
output signal and cause it to grow weaker.

An ideal low-pass filter will fully pass any input signal through to its output terminals below
the specified cutoff frequency while completely blocking any signal(s) above that cutoff frequency.
However, ideal filter networks do not exist. Real filter networks gradually attenuate signals past
a specified frequency value, and so “cutoff” must be defined in terms of some amount of signal
passing through the filter. In the case of a simple RC filter such as this, cutoff frequency is given
by the formula f. = ﬁ, but there is actually a more fundamental principle defining this point.
For simple reactive filters (whether resistor-capacitor or resistor-inductor) the “cutoff” point is that
frequency at which reactance equals resistance (f = f. when X = R). In fact, this is where the
formula f, = 5—5 comes from: if we set resistance (R) equal to capacitive reactance (X¢) and
then solve for frequency f, we get f. = ﬁ. This exact same principle is true for simple inductor-
resistor filter networks as well: setting R = 27 fL and then solving for frequency yields a cutoff
frequency of f. = %.

Calculating capacitive reactance at 5 kHz yields 14468.6 Ohms for the 2.2 nF capacitor and
3183.10 Ohms for the 0.01 pF capacitor. This means we may make an RC low-pass filter either
by connecting a 14468.6 Ohm resistance* to the 2.2 nF capacitor, or by connecting a 3183.10 Ohm

resistance to the 0.01 pF capacitor.

3This is a common state of affairs: resistors tend to be more commonly available in a wider range of values than
capacitors, and so it makes more sense to choose resistance values to work with a given capacitance value than
vice-versa.

4It’s impossible to locate a single resistor having this particular resistance value, so our actual circuit will use
either a series-parallel network of resistors to achieve 14468.6 Ohms and/or a potentiometer (rheostat) that could be
precisely adjusted to this value. Alternatively, if our cutoff frequency specification didn’t demand high accuracy, we
could perhaps use the closest standard resistor value (in this case, 15 kiloOhms) instead.
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Both solutions are shown by the following schematics:

! 14468.6 Q ! ! 3183.10Q !

o0— YAVAYA —0 o— VA +——0
I I | I
I | f.=5kHz ! I

Vin i 22nF == i Vou © Vin i 0.01 yF == i V out

| | | |

o— —o o—! —o
] | | ]

[}

Each of these filter networks is low-pass, and each of them has the exact same cutoff frequency
value of 5 kHz. They differ in one important regard, though, and that is the amount of impedance
they present to the signal source at their respective input terminals. If we consider each filter
network on its own with no load connected, we may calculate input impedance as the simple series
combination of R and X¢, summing their respective impedance vectors in right-triangle form. Recall
that resistance is an impedance with a phase angle of zero, while capacitive reactance is an impedance
with a phase angle of negative 90 degrees:

! 14468.6 Q ! ! 3183.10Q !
o— VW —0 o— VW —0
| I | I
Z,,=20461.7 Q ! ! Z,,= 45016 Q ! !
5k n 220F == | Vout 5kt Vin : 001UF == | Vout
| | | |
1 1 1 1
o | I © o | I ©
| I | I
L e | L e |
14468.6 1 0° 3183100 0°
14468.6 +j0 3183.10+j0
D: 3183.10 [ -90°
4501.6 [ -45 0-]3183.10
3183.10-j3183.10
14468.6 [1 -90°
20461.7 0 -45° 0-)14468.6

14468.6 - j14468.6

Input impedance matters to whatever electrical source is sending the AC signal to the filter
network. If a filter network’s impedance is too low for its source, it will cause the source’s signal
voltage to “sag” (weaken) and possibly even distort the waveform from its proper shape. Conversely,
some signal sources require a certain amount of minimum impedance to present a proper amount of
load, and so it may be detrimental for a filter network’s impedance to be too high. In this example,
though, we were not given any specified input impedance — as far as we know, the choice between
these two filter designs is entirely arbitrary.



2.2. EXAMPLE: RC FILTER DESIGN 15

By contrast, had we been given an acceptable range of input impedance for our filter design such
as “Zi, must be within the range of 3 kK to 8 k7, we could tell that of these two designs only
the one with the 0.01 pF capacitor with its input impedance value of 4501.6 2 would work for this
application.

Armed with an acceptable input impedance range, we may actually compute a range of possible R
and C values for building a filter network with a 5 kHz cutoff frequency. Knowing that the Z—R—X
vector diagram will always form a 45° angle at cutoff, we may use trigonometric functions to calculate
the R and X values for minimum and maximum Z;,,:

At Z;, = 3 kQ:
R = X¢ = (3000 2) sin(45%) = 2121.3 0
C= ! = 15.005 nF
27(5000 Hz)(2121.3 Q)
At Z;, = 8 k:

R = X¢ = (8000 ©) sin(45°) = 5656.9

1

C =
27 (5000 Hz)(5656.9 ©2)

= 5.6270 nF

Finding any available capacitor between the values of 5.6270 nF and 15.005 nF, and then
combining that capacitor with a resistor whose resistance is equal to that capacitor’s reactance
at the cutoff frequency of 5 kHz, will yield a filter network having the correct cutoff frequency and
an acceptable input impedance for the application.
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2.3 Example: HVDC harmonic filters

Some large-scale electric power grids benefit from transmission of power via DC rather than AC.
Alternating current (AC) came to dominate power grid technology because AC induction motors
and generators were simpler and much more reliable than DC brush-type motors and generators, and
also because transformers allowed reliable and efficient transformation between different levels of
voltage and current than possible with DC. However, modern semiconductor device technology now
permits reliable and efficient conversion from AC to DC and also from DC to AC. Such technology,
when applied to high-voltage DC transmission of electric power, is commonly referred to by the
acronym HVDC, which stands for High Voltage Direct Current.

One challenge of semiconductor-based AC/DC conversion, though, is the creation of harmonic
frequencies in power network voltages and currents. These harmonics, if not attenuated, create
problems ranging from excessive component heating to electromagnetic interference with other
systems, and so must be mitigated through the use of filter networks installed at HVDC substation
facilities.

In the following single-line diagram we see the layout of a very large® AC-to-DC converter system
where three-phase AC power at a fundamental frequency of 60 Hz gets rectified to DC using a twelve-
pulse semiconductor rectifier network. “Twelve-pulse” simply means that for every one cycle of the
60 Hz AC there will be twelve distinct pulses applied to the DC bus. This unavoidably creates a
strong 12th harmonic, or 720 Hz, on the DC side of the system. However, other harmonics result
from semiconductor switching, including strong 11th and 13th harmonics on the AC side of an
HVDC system, which is why we see multiple filters represented in this single-line diagram:

Each filter appears in this diagram as a grey-colored box with the harmonic numbers represented
within. For example, the left-most grey box with “DT 11/13” written inside is a filter network
designed to attenuate the 11th and 13th harmonics. Immediately to the right of that filter network
is another (“DT 24/36”) designed to attenuate the 24th and 36th harmonics. Another to the right of
that one marked “DT 11/25” attenuates the 11th and 25th harmonics. These three filter networks
exist on the AC side of the converter system operating at a nominal system voltage of 550 kiloVolts.
On the DC (right-hand) side of this converter system we see another pair of filter networks: one
filtering out the 2nd and the 12th harmonics, and another one filtering the 6th and 24th harmonics.

These harmonic numbers all relate to the AC side’s fundamental frequency of 60 Hz, and the
particular harmonics generated in this HVDC converter system are a function of the number of

5This particular HVDC converter facility has a full-power rating in excess of 3000 MegaWatts!
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switching elements in the converter (in this case, twelve) and the pattern in which they are switched.

Harmonic filters designed for this purpose consist of resistor-inductor-capacitor networks where
the L and C values are “tuned” to resonate together at such frequencies as to attenuate the undesired
harmonics from the power circuit. In the photographs shown below we see two views of such a filter
network belonging to the DC side of a HVDC converter system, each filter operating at a potential
of 550 kV with respect to Earth ground:

In the left-hand photo we see the tall tower-like structure holding the filter’s capacitors, and
in the background we see the filter’s cylindrical air-core inductors, all of them suspended above
the Earth on porcelain insulator stacks. The capacitor assembly consists of multiple capacitors
connected in series so as to divide the impressed voltage across them rather than have the full
550 kV across any single capacitor’s dielectric layer. In the right-hand photo we see a sign on the
security fence declaring this filter network to be tuned to the 6th and 24th harmonics (of 60 Hz),
screening out those harmonics created by the twelve-pulse thyristor array from reaching the DC
power transmission line.
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3.1 Phasor analysis review

When analyzing any AC circuit, it is not enough to simply quantify every voltage and current in
terms of amplitude (e.g. how many Volts or Amperes) as we do in DC circuits. Instead, we must
consider both the amplitude of each signal as well as the amount of phase shift separating them.
A mathematically elegant way of accomplishing both is to use complez numbers which may be
expressed either in rectangular form (e.g. a + jb) or polar form (e.g. m/6). When we use complex
numbers to represent any AC circuit quantity, we call that value a phasor.

An illustrative example is how we characterize the impedance of passive components. Resistors
function by dissipating energy in the form of heat, with voltage and current waveforms being perfectly
in-phase. Inductors and capacitors, however, function by absorbing and releasing energy rather than
dissipating, and as such we find voltage and current waveforms shifted by one-quarter of a cycle (i.e.
90°) for each, voltage leading current for an inductor and voltage lagging current for a capacitor:

Zg=R+]0 Z =0+ )X Zc=0-jXc
Zg=ROO0° Z, = X 0+90° Ze= Xe 0-90°
V and | are in-phase V leads | by 90 degrees \% Iags | by 90 degrees

\/ -7 W W X

5
o

Graphical expressions of complex-number resistance and reactance values are called phasor
diagrams. Three such diagrams illustrate the difference between a 50 €2 resistor versus an inductor
having 50 Q of reactance and a capacitor also having 50 €2 of reactance. Each has 50 Ohms of
impedance, but each of these impedances has a different phase angle defined by the phase shift
between the component’s voltage and current:

+imag +imag +imag
R=500Q X, =500 Xc=500
—M— | Zg=50Q00° —— | Z, =50Q [790° %}7
Zr=50+j0Q Z,=0+j50Q
-real e +real -real +real -real +real
Z.=50Q 0-90°
Z.=0-j50Q

-imag -imag -imag
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The ratio of voltage to current in a DC network is resistance (R = %), and in an AC circuit where
phase shifts exist is impedance (Z = %) Both are measured in unit of the Ohm (£2). The ratio
of current to voltage is the reciprocal of these quantities: for DC networks we call it conductance

(G = L) and for AC it is known as admittance (Y = {+). We measure both in the unit of Siemens'

().
Some examples? of component impedances and admittances are shown here:

e A 570 Q) resistor at any frequency will have the following impedance and admittance values:
Z =570 Q £ 0° (polar form) = 570 + jO Q (rectangular form)
Y =0.0017544 S £ 0° (polar form) = 0.0017544 + jO S (rectangular form)

e A 3.5 H inductor at a frequency of 120 Hz will have the following impedance and admittance
values:

Z = 2.639 kQ £ 490° (polar form) = 0 + j2.639 kQ (rectangular form)
Y =0.00037894 S / —90° (polar form) = 0 — j0.00037894 S (rectangular form)

e A 0.01 uF capacitor at a frequency of 3 kHz will have the following impedance and admittance
values:

Z =5.305 kQ /£ —90° (polar form) =0 — j5.305 kQ (rectangular form)
Y = 0.00018850 S Z 90° (polar form) = 0 + j0.00018850 S (rectangular form)

The utility of phasor representation in AC circuits is that with all signal and component values
expressed in phasor form we find most of the foundational principles learned for DC circuit analysis
still apply in AC circuits. Quantities that add in series DC networks (e.g. voltage V, resistance
R) add as phasor quantities in AC networks (e.g. voltage V, impedance Z); additive quantities
in parallel DC networks (e.g. current I, conductance G) add as phasor quantities in AC networks
(e.g. current I, admittance V). With phasor quantities, Ohm’s Law, Kirchhoff’s Voltage Law, and
Kirchhoff’s Current Law still hold true in AC networks just as they do for DC.

IPrior to the adoption of German engineer Werner von Siemens’ surname as the unit of measurement for
conductance and admittance, the unit of the Mho served quite well. This, of course, was a sort of pun on the
spelling of Ohm, since “mho” is “ohm” spelled backwards, intended to represent the fact that the reciprocal of any
Ohm value yields a value in Mhos.

2Try calculating these impedance and admittance values from the given component values, to check your
understanding. This is a good learning strategy to apply when reading any mathematical text: work through the
presented examples on your own to see if you achieve the same results! Please note that when you apply either the
X1, = 2nfL formula or the X¢ = ﬁ formula using your calculator to compute reactance, the result will only be a
reactance value and not a (complex) impedance value. In order to attach the desired phase angle to your computed
reactance value, you will have to perform the additional step of multiplying that reactance by a unit phasor which is
nothing more than the quantity of 1 with the correct phase angle. For example, a capacitive reactance of 5.305 k2
would be multiplied by 1 Z —90° to yield a capacitive impedance of 5.305 kQ Z —90°.
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It is equally valid to express any phasor quantity in either polar or rectangular form. However,
unless we have access to an electronic calculator capable of performing complex-number arithmetic,
we find certain arithmetic operations much easier to perform with one notation more than the
other. Specifically, addition and subtraction are simplest when phasors are in rectangular form,
while multiplication and division are simplest when phasors are in polar form.

Addition of rectangular-form complex numbers consists simply of adding their real components
together to find the real component of the sum, and doing the same with the imaginary components.
Expressing this algebraically, (a 4+ jb) 4+ (x + jy) = (a + ) + j(b+ y). Subtraction follows much the
same pattern: (a + jb) — (z + jy) = (a —z) + j(b — y).

Here are some practical examples of rectangular-form phasor arithmetic where the calculations
are simple enough to perform without a calculator:

Series impedances | Parallel admittances 'R~ >10S
Z,=7+j0Q |
Y.=0+j5S
|
Zc=0-5Q —— - Zeis=7-J1Q
Y, =0-j1S
— N
Z,=0+j4Q
O o
A
= Y paratg =314 S

Multiplication of polar-form complex numbers consists simply of multiplying their magnitudes
together to find the magnitude of the product, and adding the angles to find the angle of the product.
Expressing this algebraically, (aZb) x (x/y) = (a x x)/(b+ y). Division follows a similar pattern:
(alb) +~ (xly) = (a+xz)L(b—y).

Here are some practical examples of polar-form phasor arithmetic where the calculations are
simple enough to perform without a calculator:

4:1 voltage divider Voltage drop across an impedance
0 @ ,Eemmmemem e ————
3R BAKD\SO rT2o0ar E
&% i 2

ey T S

L |
o I
R% 6V 0O-71 12V [0 13°
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When analyzing AC circuits without the use of a complex-number calculator, we invariably
must convert between rectangular and polar forms in order to prepare the phasor values for
addition/subtraction or multiplication/division, respectively. Both conversions are most easily
understood in terms of a right triangle, seeing the rectangular form’s real and imaginary components
as the adjacent and opposite sides, and the polar form’s magnitude and angle as the hypotenuse:

+imaginary

(hypotenuse)

J y(opposile of 6)

-real +real

(adjacent to 6)

-imaginary

Converting rectangular (z + jy) into polar (AZ6):

A=+/22+y2 0:arctang

Converting polar (A/0) into rectangular (x + jy):

x = Acosf y= Asinf

Some cautionary notes are in order here. First, I highly recommend storing all computed values
in your calculator’s memory rather than re-entering them manually, because you will find even slight
rounding errors tend to become exaggerated with trigonometric functions. Second, when computing
the phase angle () from real and imaginary quantities (z and jy) be careful to verify the angle
against your qualitative expectations. For example, 5+ j5 = 7.071/45° and —5 — j5 = 7.071/225°,
but you’ll find arctan _—g yields the same result (45°) as arctang because :—g = g To put it simply,
the arc-tangent function does not “know” whether the phasor exists in the first or in the third
quadrant of the complex plane.

Here are some rectangular and polar equivalents, useful for practice as you master these concepts:

20 — j11 = 22.83/ — 28.81° 11.49 + j9.642 = 15/40°

—10+ 42 =10.20/168.7° —11.82 — j2.084 = 12/ — 170°
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3.2 Signal separation

Separating thoroughly-mixed materials can be rather difficult. Liquid solutions such as saltwater or
colloidal suspensions such as dairy milk, for example, require significant investments of energy to
separate into their constituent compounds. One method for performing such separation is to pass
the liquid solution through a filter with pores sized appropriately”® to strain out some components
from the rest.

Electrical signals of differing frequency, once mixed together, are generally much easier to separate
than mixtures of matter. Any circuit designed to perform this task of separating one or more signals
from the rest is called a filter as well, and for the same reason: a filter allows some components to
pass through while blocking others.

Most people are quite familiar with a simple example of electrical filtering in music reproduction
systems: the treble and bass controls on a typical audio amplifier serve to boost or attenuate tones of
a certain frequency range from the complex mixture of frequencies that is music. “Treble” controls
affect high-frequency components of the music (e.g. cymbals, violin, flute) while “bass” controls
affect low-frequency components of the music (e.g. kick drum, tuba, bass guitar). Turning either
of these controls to their minimum settings filter out those frequency ranges to make them less
prominent in the final mix you hear. A more sophisticated device called an equalizer allows the
listener to control the relative volumes of narrower frequency ranges in order to customize the range
of frequencies heard.

3 Reverse osmosis is an example of a type of filtration suitable for separating salt and other minerals from water.
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3.3 Reactive filtering

A filter circuit must discriminate one signal from another on the sole basis of frequency. In order
to build a circuit that performs this task, we must use electrical components whose characteristics
vary with frequency. Fortunately, we already know of two classes of electrical component responding
to frequency: capacitors and inductors. Capacitors store and release energy electrostatically as a
function of voltage, while inductors store and release energy electromagnetically as a function of
current. When subjected to AC, the alternate storage and release of energy in these components has
the effect of impeding changes in voltage or current, and this manifests as a value in Ohms called
reactance (X). The fundamental difference between resistance and reactance is that while resistance
“spends” energy, reactance “borrows” and “returns” energy. Either way, though, a component
impeding electricity may be used to attenuate an electrical signal, and reactive components impede
electrical signals differently according to their frequency.

Capacitive reactance opposes changes in voltage; the greater the frequency, the less opposition.
Inductors are just the opposite, opposing changes in current with greater frequency equating to more
opposition. Two formulae expressing the number of Ohms of reactance for these components are
shown here:

1

L=2nf ¢ = 9nfC

Where,
X1, = Reactance of the inductance (Ohms)
f = Frequency of the waveforms (Hertz, or cycles per second)
L = Inductance (Henrys)
Xc = Reactance of the capacitance (Ohms)
C' = Capacitance (Farads)

AC circuit calculations in general tend to be math-intensive, and filter circuit analysis even more
so. For this tutorial we will rely heavily on a problem-solving technique called limiting cases, where
we simplify a quantitative problem into a qualitative problem by considering the effects of some
parameter taken to extreme limits. The simplifying power of this technique will become rather
obvious by example.
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Consider the response of an inductor to limiting cases of frequency: zero frequency (DC) and
infinitely? high frequency (AC). According to the inductive reactance formula X; = 27 fL an
inductor will mimic a short-circuit when energized by DC (i.e. X, = 0 when f = 0) but will
mimic an open-circuit when energized by AC of infinitely high frequency (i.e. X = oo when f =
o0). Capacitors are just the opposite (i.e. X¢ = oo when f =0 ; X¢ = 0 when f = o00).

If we need to determine the response of a reactive circuit as frequency decreases, we may take the
limiting case of a frequency decrease (all the way to zero) by replacing all inductors with shorts and
all capacitors with opens. Likewise, to determine circuit response as frequency increases, we may
take the limiting case of a frequency increase (all the way to infinity) by replacing all inductors with
opens and all capacitors with shorts. Opening or shorting components in a circuit generally simplifies
that circuit, hence the problem-solving value of the “limiting cases” technique when applied to the
frequency response of filter circuits.

f=0 L f=o
o——o0 oYy o o— —o
inductor acts as short inductor acts as open
C
capacitor acts as open capacitor acts as short

The following two circuits are both called low-pass filters for reasons which will soon become
clear. You may think of them as frequency-dependent voltage divider networks:

Low-pass filter circuits

L R%
Ve (V) Vin (V) +—

R VOUY C:: VOUt

4Infinity simply refers to a quantity that is larger than anything imaginable. As I like to tell my students, infinity
is bigger than big, huger than huge.
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To see how these circuits respond as frequency decreases, we will analyze them in the limiting-case
condition of zero frequency (DC):

L | Short
“®
e R% Vo -0 Copen bV,
o] ¢ o)
Vou = Vin Vou = Vin

Next, we will check their response as frequency increases by analyzing them in the limiting-case
condition of infinite frequency:

1
L Open R%
Vin /\’> Vin ’\D o
f=oo fzw
R Vou C | short = Vi
0, °]
Vout =0 Vout =0

Both circuits exhibit the same fundamental behavior under these limiting-case conditions: they
fully pass the input signal to the output terminals when frequency is zero, but fully block the input
signal when frequency is infinitely high. This is why these circuits are called low-pass filters. Such
filter circuits would be useful for passing DC power while blocking AC noise picked up along lengths
of cable, or for accentuating bass tones over treble tones in an audio system.

Remember that these are limiting-case analyses, and so these conclusions of full signal versus
zero signal at the output terminals only apply to the extremes of zero and infinite frequency. For any
non-zero, finite frequency value the output voltage will lie somewhere between zero and full input
voltage.
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The exact opposite type of filter circuit may be constructed simply by swapping the positions of
the two components. Once again, we will analyze each circuit under the two limiting-case conditions
of zero and infinite signal frequency:

High-pass filter circuits

R cl
Vin (V) Vi (V)

L Vou R Vou

\°] O

First, considering the limiting-case condition of zero frequency (DC):

1
R% C Open

Vin -—> —=° Vin D
f=0 f=0

L |shot = Vo R Vou

Vo =0 Vo =0

Next, considering the limiting-case condition of infinite frequency:

R C | Short
Vin (V) Vin (V) +—o
o L Open Vg, e R% Vo
¢ o o)
Vou = Vin Vou = Vin

Once again we see how both circuits exhibit the same fundamental behavior under these limiting-
case conditions: they fully pass the input signal to the output terminals when frequency is infinitely
high, but fully block the input signal when frequency is zero. This is why these circuits are called
high-pass filters. Such filter circuits would be useful for accentuating treble tones over bass tones in
an audio system, or for separating AC signals intentionally superimposed on DC power wiring.
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3.4 Bode plots

If we compute the output voltage of any filter circuit and plot that as a function of frequency,
we obtain what is known as a Bode plot. The following plots, generated using NGSPICE circuit
simulation software, show the frequency response of a low-pass filter and of a high-pass filter, each
one comprised of a 10 k() resistor and a 0.22 pF capacitor powered by a 1 Volt AC source with a
frequency sweeping from 1 Hz to 1000 Hz:

Voo vm@) - = vm()

1

R; S 10kQ C, 0.22 pF 080

v,(V) 2 3

C, T 022puF Ry > 10kQ 00 AN
0 A

* Low pass Rl and Cl, out = node 2

* High-pass R2 and C2, out = node 3 Y
vl 10ac 1 \
rl 1 2 10000 020 ‘

cl 2 0 0.22e-6
r2 3 0 10000
c2 1 3 0.22e-6
.ac dec 10 1 1k oot

.plot ac vm(2) vn(3) 1 10 100 108 100
.end frequency He

You will note that both of these demonstration filter networks use capacitors rather than
inductors as the reactive element. The reason for this is that inductors tend to have worse parasitic
properties such as wire resistance and turn-to-turn capacitance than capacitors: capacitors are
simply purer reactive components than inductors and for this reason behave closer to ideal.

Note how the output signal for the low-pass filter (node 2 / node 0 voltage) reaches a peak of
nearly 1 Volt and a low point of just less than 0.1 Volt, while the high-pass filter’s output signal
(node 3 / node 0 voltage) begins at a non-zero value and almost reaches 1 Volt at its high point.
Neither filter circuit ever perfectly passes or blocks the signal.

Despite the imperfections of real filter circuits, it is useful to rate them as having a certain cutoff
frequency so we will be able to practically apply them to real applications. Accepted convention
for cutoff frequency is that frequency resulting in the output signal having half the power (i.e. —3
dB power attenuation) of the input signal, corresponding to an output voltage g of the input
voltage. This happens to be the point at which the two simple filter circuits’ output values cross
when overlaid on the same Bode plot. Closely examining the Bode plot, we see this happens to be
approximately 72 Hz. For simple RC and LR filters having only two components, cutoff frequency
is that point at which X = R in the circuit. For an RC circuit where Xo = ﬁ, cutoff frequency
may be calculated as f. = ﬁ, which yields 72.3 Hz for the filters shown above. For an LR circuit

where X = 27 fL, cutoff frequency may be calculated as f. = %
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The following Bode plots show the response of real and ideal filter networks, both low-pass (left)
and high-pass (right). An ideal low-pass filter passes all signals below the cutoff frequency and
completely blocks all signals above the cutoff frequency, as shown by the dashed red lines in the
left-hand image. However, a real low-pass filter has a curved response as shown by the blue trace
in the left-hand image. We see the same ideal/real contrast for high-pass filters in the right-hand
Bode plot:

Low-pass filter High-pass filter

13dB -3dB

Real filter Real filter
response response|

I I
] ]
I I
I I
| |
| | "
|deal filter| | | Idedl filter
fesponse | | | resonse
T I
I I
I I
T T
I I

T
~«— Passband — - Stopband

Cutoff frequency divides the spectrum into two frequency bands: the passband (representing all
signal frequency values able to make it through the filter network), and the stopband (representing
all frequencies blocked by the filter network). Ideal filter response is easy to understand, with the
step-response Bode plot representing a “brick wall” through which no inappropriate signal may pass.
In this case, cutoff frequency is a clear and unambiguous threshold marking the transition between
passband and stopband. Real filters, however, cannot muster this idealized “brick wall” response,
and so the transition between passband and stopband is necessarily gradual. This means we must
define cutoff frequency at some arbitrary point between 100% signal passage and 0% signal passage.

Historically this has been defined as the frequency at which the signal attenuates by —3 dB (i.e.

output voltage is ? of input voltage). As previously mentioned, this happens to be the frequency

value where X = R in a simple two-component reactive-resistive filter network.
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3.5 LC resonant filters

If we combine capacitors and inductors together in the same circuit to form resonant networks, we
may create another class of filter circuit® capable of passing or blocking a specific range of frequencies
not bound by zero or infinity:

Band-pass filter circuit Band-stop filter circuit

R ]5 L C_—,—
Vin (V) ? v ® —

L C Vou R% Vi
O

The band-pass and band-stop filter circuits shown here exploit the phenomenon of parallel

resonance between a capacitor and an inductor, where their combined impedance approaches infinity
at their resonant frequency predicted by the formula f, = 27”}@.

Voo-eesvm@) - = wm(@)

t Vgl

R; >10ka 00 i

L,=310H C, 33pF
vin (V) 2 1

3

L;=3100 C; 33pF
R, >10kQ 060

0

* Band-pass Rl, Cl, and L1 ; out node 2 ,i:l
* Band-stop R2, C2, and L2 ; out node 3 [
vli10acl )
ri 1 2 10000 i !

cl 2
112
r2 3
c2 1
121

WWo o
=
=}
o
o
]
N

.ac dec 100 1 1k 000 E
.plot ac vm(2) vm(3) E 10 100 103
.end frequency Hz

Note how each of these filter circuits “peaks” at the resonant frequency of 27.7 Hz predicted by
the combination of a 10 Henry inductor and a 3.3 microFarad capacitor. The band-pass filter nearly
outputs 100% of the signal at this frequency, and the band-stop filter nearly outputs 0% at this
same frequency. Band-pass filters are useful for applications such as selecting one radio broadcast

5Parallel resonance is not the only means of creating a band-type filter. We may also use series resonance, as well
as use combinations of non-resonant high- and low-pass filter networks to form either band-pass or band-stop filters.
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signal out of a myriad of other signals in the same area. Band-stop filters (sometimes called notch
filters) are useful for blocking noise of known frequency (e.g. 60 Hz AC power line interference)
while passing all other signal frequencies.

Note also how the output signals for these two filters cross at the same amplitude: approximately
70.7% of Vi, (i.e. %VW) which is the conventionally-accepted definition of cutoff frequency. With
band style filters, each circuit has two cutoff points: a low cutoff and a high cutoff. For the band-
pass filter, any