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Chapter 1

Introduction

1.1 Recommendations for students

Inductance is the ability to store energy in a magnetic field, caused by a flow of electric charge carriers
through a conductor, typically a coil of wire wrapped around a ferromagnetic material such as iron.
Any device constructed to exhibit this property is called an inductor. The amount of inductance
offered by any inductor is directly proportional to the area of the wire coil, directly proportional to
the permeability of the core material within the wire coil, directly proportional to the square of the
number of wire turns, and inversely proportional to the axial space between turns of the coil (i.e.
total length for any given number of turns). The amount of energy stored in any inductor is directly
proportional to the inductance (measured in Henrys) and directly proportional to the square of the
current as described by the formula EL = 1

2
LI2.

Important concepts related to inductance include Conservation of Energy, magnetic fields,
permeability, sources versus loads, “Ohm’s Law” for inductors, rates of change (e.g.
“speed”), natural decay functions, time constant (τ), inductor ratings, properties of series
networks, properties of parallel networks, and energy storage.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to explore the phenomenon of
inductance? What hypothesis (i.e. prediction) might you pose for that experiment, and what
result(s) would either support or disprove that hypothesis?

• What is a field, and how might we measure its presence?

• How may we construct an inductor?

• What factors influence the amount of inductance offered by an inductor?

• Is the amount of energy stored within an inductor a function of its voltage, its current, or
both?

• Which parameter is able to vary most rapidly for an inductor, voltage or current?

3



4 CHAPTER 1. INTRODUCTION

• What is the mathematical relationship between voltage and current for an inductor?

• What are some practical applications for inductors?

• Why do voltage and current tend to rise or “decay” in inverse-exponential fashion in a resistor-
inductor circuit?

• What does time constant mean?

• What factors influence the maximum voltage or current ratings for an inductor?

• Why does inductance add in series and diminish in parallel? Explain in terms of the energy
stored by each component versus by the larger network!

• What “parasitic” properties are found in real inductors other than inductance?

• Is there such a thing as a polarized inductor?

A useful resource for understanding inverse-exponential growth and decay as it relates to a
resistor-inductor network is found in the Programming References chapter. There you will find
example code showing how these changes in voltage and current occur over time.

The calculation of voltages and currents in inductor-resistor circuits is universally challenging
for students new to the subject. Part of this challenge is a general unfamiliarity with exponential
equations, but perhaps the biggest obstacle is the unrealistic expectation of students that concepts
should be completely understandable through explanation. The truth is that deep concepts almost
never clarify in one’s mind without focused effort and application. A very direct and effective way
to learn new concepts with focused effort and application is to try solving the exact same problems
shown as examples in the text, including performing the author’s calculations on your own until you
can see the patterns yourself, explaining to yourself the first principles underlying those calculations,
and annotating the schematic diagrams with your own notations showing current directions, voltage
polarities, etc.

This advice – to actively articulate and solve (or at least attempt to solve) the example problems
used by the author – is both simple and effective, but surprisingly difficult to inculcate as a habit.
Most of my students seeing subjects like this for the first time find themselves staring at the text,
trying to understand the author’s words, and shortly giving up when the desired understanding does
not spring to mind. This is true even when they have practiced active approaches studying earlier
concepts such as series-parallel resistor network analysis. They’ve been advised what to do, and
indeed have done it before, but when presented with a new and daunting concept their behavior
reverts to a familiar passivity.

Becoming a proficient technologist therefore consists in much more than just learning new
concepts, most importantly learning new habits of thought and of action. When you find yourself
challenged by a complicated concept, actively apply it and you will be surprised by how much better
you will comprehend it! Always link each of your analytical steps to trusted principles so that you
may explain why you’re doing the necessary steps, never satisfying yourself with mere procedures.
Always bear in mind that your goal is not just to learn how to analyze circuits, but to learn how to
tackle any new problem and learn any new concept more effectively.
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1.2 Challenging concepts related to inductance and
inductors

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Determining initial and final values – the fact that inductor current cannot
instantaneously change but inductor voltage can is something many students try to rote-
memorize. A far better approach is to reason from first principles. In this case, always begin
by analyzing the circuit in terms of energy storage and energy conservation: inductors store
energy in magnetic fields which are associated with current; this means an inductor’s current
cannot vary without work being done on or done by the inductor, which always requires
some amount of time. Voltage, on the other hand, is what constitutes power (i.e. energy
exchange per unit time) when combined with current. Therefore, voltage can jump to new
values instantaneously across an inductor, such as when a de-energized inductor is suddenly
connected to a source, or a pre-energized inductor is suddenly connected to a load.

• Rates of change – When learning the relationships between voltage and current for inductors
and capacitors, one must think in terms of how fast a variable is changing. The amount
of voltage induced across an inductor is proportional to how quickly the current through it
changes, not how strong the current is. Likewise, the amount of current “through” a capacitor
is proportional to how quickly the voltage across it changes. This is the first hurdle in calculus:
to comprehend what a rate of change is, and it is far from obvious. A helpful strategy here is
to relate electrical rates of change to other, more common, rates of change such as speed (i.e.
the rate-of-change of physical position over time).

• The time-constant equation – Many students find the time-constant equation difficult
because it involves exponents, particularly exponents of Euler’s constant e. This exponent
is often expressed as a negative quantity, making it even more difficult to understand. The
single most popular mathematical mistake I see students make with this equation is failing to
properly follow algebraic order of operations. Some students try to overcome this weakness by
using calculators which allow parenthetical entries, nesting parentheses in such a way that the
calculator performs the proper order of operations. However, if you don’t understand order of
operations yourself, you will not know where to properly place the parentheses. If you have
trouble with algebraic order of operations, there is no solution but to invest the necessary time
and learn it!
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• Determining voltage and current trajectories – an important step in analyzing voltages
and currents in DC circuits containing energy-storing components is to qualitatively graph
the trajectories of those voltages and currents. This begins with determining initial and final
values, but continues to show either decay or growth that is inverse-exponential, the values
in question always asymptotically approaching some final value over time. A very common
misconception is for students to plot these graphs with the wrong shape, showing voltages
and/or currents changing slowly at first and then more rapidly as time progresses. This is a
sign of attempting to memorize shapes (and recalling them incorrectly) rather than thinking
through how inverse-exponential growth and decay actually works from a mathematical
perspective. A gentle way to approach this is to reflect on half-life decay which is based
on negative powers of two (i.e. after one half-life there is 1

2
the original quantity left, after two

half-lives there is 1

4
remaining, etc.) and then extend that concept to e−

t

τ .

decay

growth

CorrectIncorrect

timetime

growth

decay

• Parasitic effects – phenomena such as resistance, capacitance, and inductance don’t just
exist where we want them to, but in fact always exist everywhere they can. All conductors
(except for superconductors) have some amount of resistance, all conductors separated by an
insulating gap exhibit capacitance, and all conductors possess inductance by virtue of their
ability to produce a magnetic field with the passage of current. Often these “parasitic” effects
are small enough to ignore, but in some applications they may be severe.
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Students show how inverse-exponential quantitative results were obtained
by the author in the Tutorial chapter’s examples.

• Outcome – Apply the concept of inverse exponential functions to inductor charging and
discharging

Assessment – Calculate voltages and currents at specified times for a given resistor-
inductor network.

Assessment – Calculate times when specified voltages and currents will reach specified
values for a given resistor-inductor network.

Note – The importance of having students work through all their own calculations in class
cannot be overstated!

• Outcome – Demonstrate how to create inductance

Assessment – Conduct an experiment showing how to create different amounts of
inductance with materials such as enameled “magnet” wire, steel bolts, etc. using an LRC
meter or other instrument capable of inductance measurement.

• Outcome – Prove the concept of inductive energy storage by experiment

Assessment – Energize an inductor and then transfer that energy to a load such as an
LED, judging the amount of energy by the brightness and duration of the LED’s illumination.

Assessment – Re-run these experiments with multiple inductors connected in series versus
parallel to compare their relative energy-storage abilities.

• Outcome – Independent research

Assessment – Locate inductor datasheets and properly interpret some of the information
contained in those documents including inductance tolerance, current ratings, saturation limits,
etc.
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Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

9
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2.1 Example: superconducting energy-storage inductor

In a US patent by inventor Gary Van Stephenson, a toroidal inductor wound with a coil made of
superconducting wire (i.e. having zero electrical resistance) is used to store energy. Figures 3A, 3B,
and 3C in this patent show the inductor’s magnetic field and current over time as it is receiving
energy from a source (3A), idly storing energy previously received (3B), and delivering energy to a
load (3C), shown here from left to right:

Note the graphs of current (I) and magnetic field (B) plotted over time for each of these
conditions, as well as the existence of an external source or external load required to alter these
quantities over time.
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2.2 Example: inductor storing and releasing energy

It is easy to use a battery, inductor1, resistor, and LED to demonstrate the principle of inductance
storing and releasing energy:

+
-

6 V

Cathode (-)Anode (+)

LED

+
-

6 V

Cathode (-)Anode (+)

LED

Iron-core
inductor

Inductor storing energy

Inductor releasing energy

In the upper configuration the inductor acts as a load. The LED does not illuminate here
because the polarity is backwards. In the lower configuration (lifting one wire) the inductor acts as
a source, which energizes the LED because the inductor’s voltage polarity reverses. The purpose of
the resistor is to limit current through the inductor to a value that is safe for the LED, since the
LED’s initial current will be equal to the inductor’s final current. This resistor value will need to
be customized for your experiment, so that the series combination of this resistor and the inductor’s
winding resistance together limit the energization current to an LED-safe value.

1The high-voltage winding of a step-down power transformer generally works well for this inductance. If the
transformer has dual-voltage capability (e.g. 120/240 Volts), wire it for the highest-voltage configuration in order to
have the greatest amount of inductance.
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A recommended variation of this experiment is to try using multiple inductors of the same rating
as the original, energized by the same source current as well. The point of these experiments is
to compare how long the LED remains energized when powered by the series inductor network,
versus when powered by the parallel inductor network, versus when powered by single inductor,
total current being equal in all cases:

+
-

6 V

Cathode (-)Anode (+)

LED

Series inductors

+
-

6 V

Cathode (-)Anode (+)

LED

Parallel inductors

LED

Cathode (-)Anode (+)

+
-

6 V

+
-

6 V

LED

Cathode (-)Anode (+)

Since inductance is defined as the capacity to store energy in the form of a magnetic field, the
comparative results of these experiments will prove whether inductance is enhanced in parallel or
in series. The configuration resulting in the LED remaining energized longest is the one having the
most inductance.

An important principle in scientific experimentation is to control for all variables in an experiment
except the one variable we wish to explore. This is why it is important here to use identically-valued
inductors in all cases, and use the same amount of source current too. Fixing the source current
while using a voltage source (e.g. battery) and experiencing different amounts of inductor winding
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resistance in each case requires the resistor value be customized for each iteration of the experiment,
using an ammeter to measure source and adjusting the resistor value in each version of the circuit to
achieve the same total current for each. This way, the only variable is the total amount of inductance
resulting from the number of inductors and the manner in which they interconnect with each other.
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2.3 Example: series versus parallel inductors

Calculating energy stored within a series network of 20 mH inductors based on the number of
inductors (n) connected in series, in each case energized by a 5 Ampere source. The amount of
energy stored within each inductor is given by the following formula, and the total energy stored is
the simple sum of all inductors’ stored energy:

EL =
1

2
LI2

Where,
EL = inductor energy in Joules (J)
L = inductance in Henrys (H)
I = current in Amperes (A)

. . .

. . .

5 A
20
mH

20
mH

20
mH

Number of Current through Energy stored in Energy stored

inductors (n) each inductor each inductor (total)

1 5.000 A 250.00 mJ 250.00 mJ

2 5.000 A 250.00 mJ 500.00 mJ

3 5.000 A 250.00 mJ 750.00 mJ

4 5.000 A 250.00 mJ 1.0000 J

Connecting more inductors in series results in a direct increase in stored energy, because each
inductor receives the same source current (5 Amperes) and therefore stores the same amount of
energy.

Since inductance is defined as the ability to store energy within a magnetic field, we must conclude
that connecting inductors in series results in more over-all inductance.
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Calculating energy stored within a parallel network of 20 mH inductors based on the number of
inductors (n) connected in parallel, in each case energized by a 5 Ampere source. The amount of
energy stored within each inductor is given by the following formula, and the total energy stored is
the simple sum of all inductors’ stored energy:

EL =
1

2
LI2

Where,
EL = inductor energy in Joules (J)
L = inductance in Henrys (H)
I = current in Amperes (A)

. . .

. . .

20 mH 20 mH 20 mH5 A

Number of Current through Energy stored in Energy stored

inductors (n) each inductor each inductor (total)

1 5.000 A 250.00 mJ 250.00 mJ

2 2.500 A 62.500 mJ 125.00 mJ

3 1.667 A 27.778 mJ 83.333 mJ

4 1.250 A 15.625 mJ 62.500 mJ

Connecting more inductors in parallel results in the source current (5 Amperes) being divided
into smaller portions. With less current through each inductor, there is dramatically less energy
stored within each owing to the squared current term in the EL = 1

2
LI2 equation, so that with more

inductors in the parallel network there is actually less total energy stored for the entire network.
Since inductance is defined as the ability to store energy within a magnetic field, we must conclude

that connecting inductors in parallel results in less over-all inductance.



16 CHAPTER 2. CASE TUTORIAL

2.4 Example: current source energizing an inductor

Assume the inductor begins in a completely de-energized state. The switch begins in a closed state
and is opened at time t = 0.

R L3.5 106

Switch opening time IL IR V

−1 seconds 0 mA 0 mA 0 V

0 seconds 0 mA 6 A 21 V

1 second 1.7719 A 4.2281 A 14.798 V

2 seconds 3.0205 A 2.9795 A 10.428 V

3 seconds 3.9004 A 2.0996 A 7.349 V

4 seconds 4.5204 A 1.4796 A 5.179 V

5 seconds 4.9574 A 1.0426 A 3.649 V

6 seconds 5.2653 A 737.74 mA 2.572 V

7 seconds 5.4822 A 517.76 mA 1.812 V

8 seconds 5.6351 A 364.86 mA 1.277 V

∞ 6 A 0 mA 0 V

After the switch opens the inductor is free to accept energy from the current source and so its
magnetic field increases in strength and so does its current. Thus, IL follows the inverse-exponential
growth equation from 0 Amperes at t = 0 building up to a maximum of 6 Amperes at infinite time:

IL = (6 A)
(

1 − e−
t

τ

)

Once inductor current is calculated for each time value, all other circuit parameters may be
calculated from those IL values following Kirchhoff’s Current Law and Ohm’s Law.
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Here is a step-by-step conceptual analysis of this circuit:

1. Zero inductor energy before the switch is opened, stated as a given condition.

2. Zero circuit voltage before the switch is opened, since shorts guarantee zero voltage and
this is a parallel circuit which means voltage must be equal for all components.

3. Zero inductor energy at the precise moment the switch opens, since energy transfer takes
time and so far no time has yet elapsed with the switch in the open state. Again, this means
zero inductor current at the precise moment of switch opening.

4. Full resistor current (6 Amperes) at the precise moment of switch opening, as per Kirchhoff’s
Current Law, flowing downward through the resistor.

5. Full resistor voltage (21 Volts) at the precise moment of switch opening, as per Ohm’s Law,
positive on top and negative on bottom across the resistor.

6. Full voltage across all components (21 Volts positive top and negative bottom) at the
precise moment of switch opening, since this is a parallel circuit and voltage must be equal
across all parallel-connected components.

7. Increasing inductor energy over time as the source imposes a voltage across it and transfers
energy into it. Since inductors store energy in magnetic fields, and magnetic fields directly
relate to current, we may conclude that the inductor’s current must increase as well over time,
flowing downward through it because the inductor is acting as a load now.

8. Decreasing resistor current over time as the inductor’s current increases, as per Kirchhoff’s
Current Law.

9. Decreasing resistor voltage over time as the resistor’s current decreases, as per Ohm’s Law.

10. Decreasing circuit voltage over time, being a parallel circuit where all components share
the same voltage value at each point in time.

11. Full inductor current after the switch has been open a long while and the entirety of the
source current passes through it (6 Amperes), following the increasing trend established after
the switch opened. This means the inductor now possesses the maximum amount of energy
it can for this circuit, since inductor energy is directly related to magnetic field strength and
inductor current.

12. Zero resistor current after the switch has been open a long while, as per Kirchhoff’s Current
Law with the inductor passing the entire source current.

13. Zero resistor voltage after the switch has been open a long while, as per Ohm’s Law.

14. Zero circuit voltage after the switch has been open a long while, all components being
connected in parallel and therefore sharing the same voltage.
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15. SUMMARY: inductor current grows from zero to 6 Amperes when the shorting switch opens;
resistor voltage spikes to 21 Volts when the switch opens and then decays to zero over time;
circuit voltage spikes to 21 Volts when the shorting switch opens and then decays to zero over
time. We are now ready to commence inverse-exponential calculations of voltages and currents
over time!

Many students have a bad tendency to skip these conceptual steps in lieu of jumping immediately
to the inverse-exponential formulae which they know will ultimately give them the answers they seek
for voltages and currents at certain times. Remember, it is important to always let the physical
concepts guide the application of mathematics, lest you fall into the common error of blindly plugging
numbers into equations in the hope of getting the right answers! Your schematic diagram should be
fully annotated with current arrows and voltage polarities before any calculations are performed.
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2.5 Example: voltage source energizing an inductor

Note: these calculations all assume an ideal inductor having no internal resistance, as well as perfect
wire connections having no resistance either. The switch begins in an open state and is closed at
time t = 0.

+
−

R

L

2

6.512

Switch closure time VL VR I

−1 seconds 0 V 0 V 0 mA

0 seconds 12 V 0 V 0 mA

1 second 10.2344 V 1.7656 V 882.8 mA

2 seconds 8.7285 V 3.2715 V 1.636 A

3 seconds 7.4442 V 4.5558 V 2.278 A

4 seconds 6.3489 V 5.6511 V 2.826 A

5 seconds 5.4148 V 6.5852 V 3.293 A

6 seconds 4.6181 V 7.3819 V 3.691 A

7 seconds 3.9386 V 8.0614 V 4.031 A

8 seconds 3.3591 V 8.6409 V 4.320 A

∞ 0 V 12 V 6 A

The switch’s open contact status prior to and at time t = 0 ensures zero current through the
inductor, which means it will have no magnetic field within and will store no energy. After the switch
closes the inductor is free to accept energy from the voltage source and so its magnetic field increases
in strength and so does its current. Thus, IL follows the inverse-exponential growth equation from
0 Amperes at t = 0 building up to a maximum of 6 Amperes at infinite time:

IL = (6 A)
(

1 − e−
t

τ

)

Once inductor current is calculated for each time value, all other circuit parameters may be
calculated from those IL values following Kirchhoff’s Voltage Law and Ohm’s Law.
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Here is a step-by-step conceptual analysis of this circuit:

1. Zero circuit current before the switch is opened, since opens guarantee zero current and
this is a series circuit which means current must be equal for all components.

2. Zero inductor energy before the switch is closed, since inductors store energy in magnetic
fields, and magnetic fields directly relate to current which we know at this time is zero.

3. Zero inductor energy at the precise moment of switch closure, since energy transfer takes
time and so far no time has yet elapsed with the switch in the closed state. Again, this means
zero inductor current at the precise moment of switch closure.

4. Zero current through all components at the precise moment of switch closure, since this
is a series circuit and current must be equal through all series-connected components.

5. Zero resistor voltage at the precise moment of switch closure, as per Ohm’s Law.

6. Full inductor voltage (12 Volts) at the precise moment of switch closure, as per Kirchhoff’s
Voltage Law, positive on top and negative on bottom across the inductor.

7. Increasing inductor energy over time as the source imposes a voltage across it and transfers
energy into it. Since inductors store energy in magnetic fields, and magnetic fields directly
relate to current, we may conclude that the inductor’s current must increase as well over time,
flowing downward through it because the inductor is acting as a load now.

8. Increasing resistor current over time as the inductor’s current increases, since they are
connected in series with each other and series-connected components must share the same
current.

9. Increasing resistor voltage over time as the resistor’s current increases, as per Ohm’s Law.

10. Decreasing inductor voltage over time, as per Kirchhoff’s Voltage Law.

11. Zero inductor voltage after the switch has been closed a long while, following the decreasing
trend established after the switch closed.

12. Full resistor voltage after the switch has been closed a long while, as per Kirchhoff’s Voltage
Law with the inductor dropping zero voltage.

13. Full resistor current after the switch has been closed a long while, as per Ohm’s Law (6
Amperes, given 12 Volts dropped across the 2 Ohm resistor).

14. Full inductor energy after the switch has been closed a long while, since inductor energy is
directly related to magnetic field strength and inductor current.

15. SUMMARY: inductor current grows from zero to 6 Amperes when the switch closes; resistor
voltage grows from zero to 12 Volts over time; inductor voltage spikes to 12 Volts when the
switch closes and then decays to zero over time. We are now ready to commence inverse-
exponential calculations of voltages and currents over time!
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Many students have a bad tendency to skip these conceptual steps in lieu of jumping immediately
to the inverse-exponential formulae which they know will ultimately give them the answers they seek
for voltages and currents at certain times. Remember, it is important to always let the physical
concepts guide the application of mathematics, lest you fall into the common error of blindly plugging
numbers into equations in the hope of getting the right answers! Your schematic diagram should be
fully annotated with current arrows and voltage polarities before any calculations are performed.
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2.6 Example: LR time-delay network values

Example #1

Determine the trajectories of inductor voltage and current in this circuit once the switch toggles
position (t = 0), assuming the switch has been in the position shown for a very long time prior to
toggling, as well as values for VL and IL at t = 20 microseconds, t = 30 microseconds, and t = 40
microseconds.

+−
10 V

2.7 kΩ

150 mH

6.8 kΩ

Before the switch toggles (t < 0) the inductor is connected in series with the 10 Volt source
through the 2.7 kΩ resistor. After the inductor has absorbed all the energy it will from the voltage
source, the inductor will neither behave as a source nor as a load but will simply pass current with
no voltage drop. This current is determined by Ohm’s Law, being 3.7037 mA.

At the moment of switch toggling (t = 0) the inductor still has the same amount of current
passing through it in the same direction as it did before because inductors store energy in magnetic
fields (manifest as current), and there has been no time for any energy to transfer out of it into the
6.8 kΩ load resistor, and energy cannot simply disappear into nothing. By Ohm’s Law this means
the 6.8 kΩ resistor will initially develop 25.185 Volts across it. Note that this voltage, which is
greater than the DC source’s, is possible because the conserved energy within an inductor at the
moment of switch toggling manifests as current which was defined by the DC source voltage and a
different (lesser) resistance of 2.7 kΩ.

As the switch remains in its new position (t > 0) the inductor loses energy as it powers the 6.8
kΩ resistor, eventually depleting its stored energy as the resistor dissipates it in the form of heat.
This means inductor current must decay to zero over time, and with that the resistor’s voltage will
also decay to zero. Once voltage reaches its final value of zero, the inductor will no longer be a load
(nor a source) and its energy value and current value will remain constant at zero.

• At t = 20 microseconds: VL = 10.171 Volts and IL = 1.4958 milliAmperes

• At t = 30 microseconds: VL = 6.4640 Volts and IL = 0.95060 milliAmperes

• At t = 40 microseconds: VL = 4.1079 Volts and IL = 0.60411 milliAmperes
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Example #2

Determine the trajectories of inductor voltage and current in this circuit once the switch closes
(t = 0), assuming the switch has been open for a very long time prior, as well as values for VL and
IL at t = 100 microseconds, t = 150 microseconds, and t = 200 microseconds.

+−
5 V

1 kΩ

330 Ω

220 mH

Before the switch closes (t < 0) the inductor completely de-energized. We know this because
inductors store energy magnetically, manifesting as current, and the open switch prohibits current
everywhere in this series circuit.

At the moment of switch closure (t = 0) the inductor will still have no current passing through
it because there has been no time for any energy to transfer into it from the 5 Volt DC source, and
energy cannot simply appear from nothing. Zero current everywhere in this series circuit means
neither resistor drops any voltage (by Ohm’s Law), and using Kirchhoff’s Voltage Law we must
conclude the entirety of the DC source’s voltage must drop across the inductor.

As the switch remains closed (t > 0) the inductor gains energy from the source, gradually
increasing current. When this growing current develops a combined total of 5 Volts’ worth of drop
across the two resistors, Kirchhoff’s Voltage Law predicts the inductor’s voltage will reach zero. At
this point the inductor behaves as neither a source nor a load, and energy transfer ceases. Current
will stabilize at this maximum value defined by the 5 Volts DC source and the two series resistors
which is 3.7594 mA.

• At t = 100 microseconds: VL = 2.7316 Volts and IL = 1.7056 milliAmperes

• At t = 150 microseconds: VL = 2.0190 Volts and IL = 2.2413 milliAmperes

• At t = 200 microseconds: VL = 1.4923 Volts and IL = 2.6373 milliAmperes
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Example #3

Determine the trajectories of inductor voltage and current in this circuit once the switch opens
(t = 0), assuming the switch has been closed for a very long time prior, as well as values for VL and
IL at t = 300 microseconds, t = 500 microseconds, and t = 1 millisecond.

50 mA

47 Ω 10 Ω

100 mH

75 mH

Before the switch opens (t < 0) the inductors should collectively have no current through them,
having had ample time to exhaust their stored energy in circuit wiring resistance. Voltage will also
be zero in this de-energized state given the closed status of switch preventing any voltage drop.

At the moment of switch opening (t = 0) the inductors will still have no current through them
because there has been no time for any energy to transfer into them from the 50 milliAmpere source,
and we know stored energy in any inductor manifests as current through its terminals. With the
switch in its new position, though, the inductors will be able to absorb energy from the source over
time. Kirchhoff’s Current Law tells us the two resistors (taken together as a 57 Ω series equivalent
resistance) must carry the full current of the 50 mA source, and by Ohm’s Law this must yield a
voltage drop of 2.85 Volts.

As the switch remains open (t > 0) the inductors will act as loads absorbing energy from the
50 mA source, which means both inductors’ currents will grow over time until they collectively (in
parallel) reach 50 milliAmperes. At that point the resistors will also have no current through them
(by Kirchhoff’s Current Law) and this means voltage will ultimately decay down to zero.

It is helpful to simplify this circuit by considering it as one with a single inductor (42.857 mH)
and a single resistor (57 Ω), having a time constant of t = 751.88 microseconds.

• At t = 300 microseconds: VL = 1.9123 Volts and IL = 16.450 milliAmperes

• At t = 500 microseconds: VL = 1.4657 Volts and IL = 24.286 milliAmperes

• At t = 1 millisecond: VL = 0.75376 Volts and IL = 36.776 milliAmperes
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2.7 Example: simplifying complex LR networks using
Norton’s Theorem

Determining the time constant (τ) and initial/final voltages for an elementary LR network is usually
a straightforward process, especially time constant which is simply the quotient τ = L

R
. However,

for networks containing multiple resistors it may not be clear upon first inspection exactly how those
resistors interact with the inductor. In some multi-resistor networks every resistor impacts the time
constant, while in others only some do.

An extremely useful tool for this application is Norton’s Theorem, applying it to the original LR
network in such a way that the inductor is identified as the load, reducing the rest of the original
network to a single current source (IN ) and a single equivalent resistance (RN ). That Norton
equivalent current limits the inductor’s maximum current at any time (assuming the inductor was
not pre-charged to some greater current value prior to connection to the network), and that Norton
resistance combined with the “load” inductance directly defines time constant (τ = L

RN
).

The following LR network examples showcase the utility of Norton’s Theorem to help make
comprehensible what might otherwise defy intuition. You, as the reader, are strongly encouraged to
Nortonize each of these example networks on your own in order to see for yourself how the equations
for time constant and maximum current emerge. Simply regard the inductor in each case as the load,
remove that load from the network and determine RN by replacing the source with its ideal internal
resistance value (shorts for voltage sources and opens for current sources) and then determining total
resistance as measured from the load terminals, and then determine load terminal current with the
source activated once again and the load terminals shorted together.

Example #1

R1

R2I L

RN = R2 τ =
L

R2

IN = I

In this network the value of R1 is irrelevant to time constant, and neither resistance value affects
maximum inductor current.
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Example #2

R1

R2 IL

RN = R1 + R2 τ =
L

R1 + R2

IN =
I

R1

(

1

R1

+ 1

R2

)

In this network both the values of R1 and R2 affect time constant and maximum inductor
current. That maximum current (IN ) is derived using the current divider equation, since R1 and
R2 effectively form a current-division network with current source I from the perspective of the
(short-circuited) load terminals.

Example #3

R1

R2
+
−VL

RN = R1 τ =
L

R1

IN =
V

R1

In this network the value of R2 is irrelevant both to time constant and to maximum inductor
current, while R1 affects both.
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Example #4

R1

R2
+
−V L

RN =
1

1

R1

+ 1

R2

τ = L

(

1

R1

+
1

R2

)

IN =
V

R1

In this network both the values of R1 and R2 affect time constant but only R1 affects maximum
inductor current.
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2.8 Example: interesting relay behavior

An electromechanical relay is a device using the magnetic field from an electromagnet coil to attract
a movable iron piece (called an “armature”) which in turn actuates switch contacts. The following
schematic symbols show a relay with a normally-open contact (left) and one with a normally-closed
contact (right):

SPST relay
(NO contact)

SPST relay
(NC contact)

In the following photograph we see a relay with its plastic cover removed:

A coil spring holds the switch contacts in their “normal” (resting) positions, and is overcome by
the electromagnet’s attraction when sufficient current passes through the relay’s coil.
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If we perform an experiment by connecting a low-resistance shunt resistor in series with a relay’s
coil and using an oscilloscope to measure voltage across that resistor, the oscilloscope’s indication
will be proportional to the current through the relay coil:

Rshunt

To oscilloscope probe

Lcoil

Relay

Vshunt = (Icoil)(Rshunt)

What we might expect upon pressing the pushbutton switch is a classic inverse-exponential rise
from zero current to full current due to the inductance (L) of the relay’s electromagnet coil, with a
time constant (τ) equal to L

R
, but what we get instead is this:

A normal inverse-exponential growth curve for an ordinary inductor would smoothly rise over
time, but this curve appears to have a sharp “dip” mid-way up. What might be the cause of this?
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Continuing our experiment, we will now manually hold the relay’s armature in the attracted
position while pressing the pushbutton switch. Current still passes through the relay coil upon
energization, but now the coil will not do any useful work because we will manually do that work
ourselves. What we see during this second run of the experiment is a standard inverse-exponential
growth curve with no unusual “dip” anywhere to be found:

Clearly, moving the relay’s armature by hand affects the rise of current through the coil over
time – but why? How can a mechanical stimulus impact an electrical behavior?

Reviewing foundational principles of magnetic fields and of inductance, we know that inductors
store energy in their magnetic fields, and that magnetic field strength is a direct function of current
(EL = 1

2
LI2). From this we may conclude the higher the oscilloscope’s trace climbs on the display,

the more energy is stored in that magnetic field. Energy, as we know, is the ability to set matter
into motion or to perform work, and we also know that energy must always be conserved. The act of
pulling the relay’s armature over a short distance against the restraint of the coil spring represents
a definite quantity of work. Thus, during the first experiment when the relay’s armature moved in
attraction to the coil’s magnetic field, the work exerted in that motion and force required energy
came from somewhere (because energy is conserved), and the only source of energy for doing that
work was the coil’s magnetic field. This work entailed a transfer of energy away from the magnetic
field to the mechanical spring, and so when the armature moved the magnetic field weakened, which
meant the current had to weaken as well, thus explaining the dip.

In the second oscilloscope screenshot where we manually actuated the relay armature, we
preemptively performed the work that would normally be done by the relay’s coil, and therefore
the energy invested in the coil had no outlet. Thus, the relay coil acted as a plain and simple
inductor, storing all the energy it received from the battery rather than doing any useful work with
that energy. This is why no “dip” appeared during the second experiment.

Another variation on this experiment is to reduce the DC power source voltage to a value below
the relay’s pick-up voltage. This means the power source will not output enough voltage to produce
a strong enough relay coil current to actually prompt armature motion inside the relay. With
this reduced voltage, the magnetic field produced by the energized relay coil will not generate an
attractive force strong enough to overcome the relay’s armature spring, and so the armature will
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remain in its “resting” position even with the coil energized.
Doing this will cause the current’s profile over time to increase in a smooth, inverse-exponential

fashion much like it did when we manually forced the armature into the energized position. The
reason for this is much the same: by configuring the experiment such that the armature will not
actually move, there will be no mechanical work done by the energized relay coil, which means all
the energy of the magnetic field resides with the coil and does not leave it.

This experiment serves as a fantastic illustration of the power of mastering foundational concepts.
If all one ever learned about inductors is that voltage and current trace inverse-exponential
trajectories over time, the “dip” phenomenon would be a complete mystery. However, understanding
the relationship of an inductor’s current to its magnetic field strength, and in turn the relationship
to energy (and its conservation), allows us to understand these “strange” effects. It also goes to
show just how universal the Law of Energy Conservation, which of course is a benefit because we
may apply this law to all physical phenomena and thereby gain understanding we might not obtain
otherwise.
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2.9 Example: custom inductor winding and testing

In this example we see a custom inductor made by winding 19 turns of 23-gauge enamel-coated copper
wire around a Micrometals T50-66C powdered iron toroidal core. This core’s datasheet specifies an
inductance factor (AL) of 51 nanoHenrys per turn-squared, so the inductor’s value should be:

L = ALN2

L = (51 × 10−9)(192) = 18.411 µH

Micrometal’s general catalog of core materials lists the type 66 as being “well-suited from 100
kHz to 500 kHz” and so a test was conducted using a NanoVNA vector network analyzer over that
same range of signal frequencies:

Analysis from the VNA shows the measured inductance to be quite close to the predicted value
of 18.411 microHenrys over the “swept” signal range of 100 kHz to 500 kHz:

Frequency Impedance Series L Deviation from predicted

100 kHz 0.148 + j11.3 Ω 17.974 µH −2.37%

300 kHz 1.11 + j33.5 Ω 17.782 µH −3.42%

500 kHz 2.76 + j56.1 Ω 17.849 µH −3.05%

The “real” portion of the complex impedance value represents series equivalent resistance in
Ohms, equal in this case to the resistance of the wire in the inductor’s coil as well as any connection
resistances between the inductor and the VNA. This value rises slightly with signal frequency due
to the skin effect, where electric current at very high frequency becomes excluded from traveling
in the wire’s center and therefore decreases the effective cross-sectional area of the conductor. The
“imaginary” portion of the complex impedance value is the inductive reactance (XL) in Ohms,
relating to inductance by the formula XL = 2πfL where f is the signal frequency in Hertz.



2.9. EXAMPLE: CUSTOM INDUCTOR WINDING AND TESTING 33

Like most vector network analyzers, the NanoVNA produces a Smith chart plot of complex
impedance (normalized to 50 Ohms). As expected for a nearly-pure inductance, the path traced
during the 100-500 kHz “sweep” closely follows the 0 Ohm resistive circle circumference while
intersecting various inductive reactance circles as frequency rises. Here the red marker signifies
100 kHz (just above the +j0.2 circle denoting +j10 Ohms), the green marker 300 kHz (between the
+j0.5 and +j1.0 circles), and the blue marker 500 kHz (just above the +j1.0 circle denoting +j50
Ohms):
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Next we see the results of winding 30 turns of 23-gauge wire around another T50-66C powdered
iron core with the same inductance factor of 51 nanoHenrys per turn-squared:

L = ALN2

L = (51 × 10−9)(302) = 45.900 µH

Analysis from the VNA shows the measured inductance to deviate more significantly from the
predicted value of 45.9 microHenrys over the “swept” signal range of 100 kHz to 500 kHz than it
did with the previous (19-turn) inductor:

Frequency Impedance Series L Deviation from predicted

100 kHz 0.827 + j26.8 Ω 42.665 µH −7.048%

300 kHz 3.86 + j80.6 Ω 42.771 µH −6.817%

500 kHz 6.29 + j135 Ω 42.941 µH −6.447%

A greater number of wire turns means an increase in two different parasitic properties: first, the
wire will have greater total resistance because there is simply more of it for current to pass through;
second, the greater number of turns packed onto the same size toroid means individual turns being
closer together to one another than before which will increase the amount of inter-turn capacitance2.

2Recall that capacitance between any two conductive surfaces is a direct function of the overlapping area of those
surfaces, and an inverse function of separation distance. Here, with 30 turns of wire being packed closer together on
the same toroid than 19 turns of wire, the inter-turn capacitance must be greater.
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Here again we see the NanoVNA’s Smith chart showing complex impedance normalized to 50
Ohms, this time for the 30-turn inductor:

As one would expect, the curve lies farther to the right due to the increased inductive reactance
of the larger inductance over the same frequency range. Increased resistance from the longer wire
drives the curve closer to the middle of the Smith chart rather than remain on the periphery as
before.
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Using an entirely different toroidal core, I performed an experiment where I tried different
numbers of turns of the same 23-gauge enameled wire and measured inductance using a different
VNA (a PicoVNA model 106) sweeping from 300 kHz to 400 kHz:

Turns 300 kHz 354 kHz 381 kHz 400 kHz

2 6.06 µH 6.31 µH 6.43 µH 6.52 µH

4 22.79 µH 23.70 µH 24.13 µH 24.45 µH

5 36.36 µH 37.82 µH 38.51 µH 38.93 µH

10 149.63 µH 156.85 µH 159.24 µH 160.16 µH

The following photograph shows this iron core with four turns of wire wrapped around it, the
bare iron core itself being wrapped in white electrical tape to prevent the enameled wire from chafing
against the bare metal and possibly creating a coil-to-core shorted fault:

If you take any two inductance values at the same test frequency but for a different number of
turns, the ratio of those two inductance values approximately equals the square of the ratio of the
turns. For example, 160.16 microHenrys and 38.93 microHenrys at 400 kHz for 10 turns and 5 turns,
respectively, makes an inductance ratio of nearly four to one (4.11405:1) for a turns ratio that is
two to one (2:1). This confirms the general principle that inductance is proportional to the square
of the number of wire turns wrapped around the core.
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Computing the average AL value at each test frequency based on the four measured inductance
values and turns values ( L

N2 ) yields the following:

Frequency Average AL

300 kHz 1.473 µH per turn2

354 kHz 1.535 µH per turn2

381 kHz 1.562 µH per turn2

400 kHz 1.579 µH per turn2

Averaging these four AL values yields an aggregate AL of 1.537 µH per turn-squared for this
particular toroidal iron core. This figure, of course, will be useful for creating custom inductors
based on this toroid as the core material.
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2.10 Example: measuring signal rates of change

Capacitors and inductors relate voltage to current by rates of change. For a capacitor, the amount
of current is proportional to how quickly voltage across that capacitor either rises or falls over time
(I = C dV

dt
). For an inductor, the amount of voltage is proportional to how quickly current through

that inductor rises or falls over time (V = LdI
dt

).

For example, a 330 microFarad capacitor experiencing a voltage increasing at a rate of 45 Volts
per second will pass 14.85 milliAmperes. If the voltage happens to decrease at an equivalent rate
(i.e. dV

dt
= −45 Volts per second) then the 14.85 milliAmpere current will reverse direction through

the capacitor compared to how it flowed with the increasing voltage.
Similarly, a 100 milliHenry inductor experiencing a current increasing at a rate of 5 Amperes per

second will induce a voltage of 500 milliVolts. If the current happens to decrease an an equivalent
rate (i.e. dI

dt
= −5 Amperes per second) then the 500 milliVolt voltage induced across the inductor

will reverse polarity from what it was during the period of increasing current.

Not only are rates-of-change important in determining how energy-storing devices such as
capacitors and inductors will respond in circuits, but rates-of-change are also important for
determining how parasitic capacitances and inductances will affect intended circuit behavior.
Parasitic capacitance exists between any two conducting surfaces separated by an electrically
insulating medium, and parasitic inductance exists along any length of conductor. This means
any rate-of-change of voltage over time between two separated conductors will cause some amount
of current to “pass” between them, and that any rate-of-change of current over time through any
single conductor will cause some amount of voltage to drop across its length. In many circuits these
parasitic effects are negligible, but in circuits experiencing extremely fast rates of change for voltage
and/or current the effects can be significant or even severe.

Oscilloscopes are ideal for performing empirical measurements of voltage rates-of-change, and of
current rates-of-change given the proper accessories3. Some skill is required to do this, though, and
here we will explore practical examples to show how it is done.

For any signal plotted in the time domain, where the horizontal axis of the plot is expressed in
units of seconds, milliseconds, microseconds, etc., the signal’s rate of change at any given point will
be the slope or pitch of the waveform, mathematically defined as its rise over run. A great aid to
discerning slope at any location on a waveform is to sketch a straight line visually matching the
wave’s slope at that point, then use locations along that straight line to more easily discern how far
it rises (or falls) over some “run” of time. We call this straight line a tangent line.

3For example, a current probe converting a sensed current into a voltage the oscilloscope may directly sense, or
a shunt resistor placed in the circuit developing an oscilloscope-measurable voltage drop for any current passing
through.
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Here we see an example of a waveform with sloping sections. In the first image we see a specific
location on the waveform where we wish to measure voltage rate-of-change (dV

dt
):

Slope at this point?

Next we see a tangent line drawn to match the slope of the waveform at the specified location,
with convenient points for fall/run measurements taken on that line against the oscilloscope grid’s
major divisions. In this example, the oscilloscope’s vertical sensitivity has been set for 0.5 Volts per
division, and the horizontal timebase for 0.2 milliseconds per division:

Run = 8 div * 0.2 ms/div
Run = 1.6 milliseconds

Fall = -2 div * 0.5 V/div
Fall = -1 Volt

Slope at this point = -625 Volts/second

As we can see, the tangent line falls 2 vertical divisions (−1 Volt) over a timespan of 8 horizontal
divisions (1.6 milliseconds), yielding a dV

dt
quotient of −625 Volts per second, which may also be

expressed as −0.625 Volts per millisecond. The negative sign is important, as it distinguishes this
particular rate-of-change as falling rather than rising over time.
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Such rate-of-change measurements are necessarily approximate, as they require us to visually
gauge where a tangent line may be overlaid on the waveform’s oscillograph, and also to visually assess
the slope of that tangent line using the grid provided on the instrument’s display screen. However,
in most applications extremely precise rate-of-changes are not necessary, and such techniques suffice
quite well.

Below is another example of a waveform with sloping sections, the oscilloscope configured for
500 milliVolts per division on the vertical axis and 5 milliseconds per division on the horizontal:

Approximating the slope for each rising section of this wave, we count one division of rise over
2.8 divisions of run, or 500 milliVolts rise over 14 milliseconds of run. This is a rate-of-rise of +35.7
Volts per second.

Approximating the slope for each falling section of this wave, we count one division of fall over
1.4 divisions of run, or −500 milliVolts fall over 7 milliseconds of run. This is a rate-of-fall of −71.4
Volts per second.

If these rates-of-change appear suspiciously large compared to the actual amplitude of the
waveform, which barely crests over +1 Volt on the oscillograph, bear in mind that we are calculating
rates of change for voltage and not absolute values of voltage itself. This is analogous to the
distinction between speed and distance: traveling at a rate of 30 kilometers per hour does not
necessarily mean you will travel 30 kilometers, as the actual distance traveled depends on how long
that speed is sustained. A voltage rising at a rate of 35.7 Volts per second would indeed rise 35.7
Volts if given a full second to do so, but since each rising/falling portion of this waveform is so short
in duration the actual amount of rise or fall in each case is only one-half of one Volt. It is therefore
perfectly appropriate to consider any dV

dt
value as being the speed at which a voltage increases or

decreases over time, distinct from the actual value of that voltage at any particular moment in time.
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Here we see another oscillograph, this one zoomed into the rising edge of a square wave. For this
measurement the oscilloscope was configured for 20 milliVolts per division of vertical sensitivity and
a timebase of 250 nanoseconds per division on the horizontal:

Rise

Run

The tangent line overlaid on this screenshot for the purpose of measuring the pulse edge’s rate-of-
change rises approximately 4 vertical divisions over a run of 1 division, which is 80 milliVolts of rise
over 250 nanoseconds of run. The pulse edge’s rate-of-change, therefore, is approximately +320,000
Volts per second, or +320 Volts per millisecond, or +0.32 Volts per microsecond (all equivalent
expressions of dV

dt
).
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Chapter 3

Tutorial

3.1 Magnetic fields and energy storage

A magnetic field is an invisible web of interaction between moving electrical charges, able to exert
forces against those charges when separated from each other over space. Magnetic fields differ from
electric fields in that they only influence moving charges and not stationary charges. Electric fields
influence electric charges regardless of velocity.

Any conductor passing an electric current exhibits an encircling magnetic field perpendicular to
the direction of that current. If the conductor is bent into the shape of a coil, these encircling fields
will link together to form a larger magnetic parallel to the coil’s centerline:

Wire coil

Magnetic field
Current source

wire

wirewire

Just as any moving mass possesses kinetic energy, moving electric charge carriers creating their
own magnetic field also possess electrical energy related to their motion. That is to say, the magnetic
field surrounding a current-carrying conductor causes those moving charge carriers to exhibit a kind
of inertia such that an investment of energy is necessary to speed up their drift and a divestment of
energy is necessary to make them slow down. This is the basis of inductance: the storing of energy
within a magnetic field. The amount of energy stored by any inductance is a function of current:
all other factors being equal, more current passing through a conductor means more energy stored
in the magnetic field.

43
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Electrical components called inductors1 exploit this phenomenon, constructed of a single
conductor coiled around some core, the core usually being made of alloy steel or some other
ferromagnetic substance. The amount of inductance exhibited by any inductor is directly
proportional to the cross-sectional area of the coil (in square meters), directly proportional to the
square of the number of turns of wire in the coil, directly proportional to the magnetic permeability2

(µ) of the core material, and inversely proportional to the axial length of the coil (in meters):

Area

air or
vacuum

(A)

Less L

Permeability
(µ)

Length

Turns
(N)

L =
µAN2

More L

iron or
steel

l

(l)

Energy stored in any inductance is a function of the inductance and the amount of current passing
through it as described below:

EL =
1

2
LI2

Where,
EL = energy in Joules (J)
L = inductance in Henrys (H)
I = current in Amperes (A)

Note the similarities between this equation and those describing potential energy stored within a
mechanical spring (Ep = 1

2
kx2) and kinetic energy stored within a moving mass (Ek = 1

2
mv2). Just

as kinetic energy varies with the square of the mass’s velocity (v), energy stored within an inductor
exhibits a kinetic character3 as it varies with the square of the current through it.

1Also referred to as reactors in high-power electrical circuits, and sometimes as chokes in electronic circuits.
2Permeability, simply defined, is a measure of how effective a substance is at magnetically storing energy for any

given amount of magnetomotive force (MMF). It may be measured in absolute terms, expressed in units of Henrys
per meter, or it may be expressed as a ratio relative to the permeability of a perfect vacuum.

3In most applications the actual kinetic energy of the moving charge carriers is inconsequentially small due to their
extremely slow drift velocity, but since the magnetic field and its stored energy only occurs with charge carrier motion

it is not inappropriate to regard the energy stored in the magnetic field of an inductance as being kinetic rather than
potential. The inductance’s charge carriers, once in motion, tend to remain in motion and will not speed up or slow
down without work being done.
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One way to make a variable inductor is to make the ferromagnetic core movable in relation to
the wire coil. In the example below we see a variable inductor with a screwdriver-adjustable core:

Another way to make a variable inductance is to alter the physical orientations of two or more
adjacent inductors wired in series and/or parallel with each other. Those individual coils’ magnetic
fields interfere either constructively or deconstructively based on their relative orientations, resulting
in a different total inductance value for each position.

A clever implementation of this concept is seen in the following photographs, where an AC
generator having both stationary and rotating coils is wired to form a single inductance, that
inductance value depending on the interconnections of the coils as well as the shaft’s angle. On
the left we see an explanatory schematic showing how the AC generator’s coils were re-wired to
serve as a variable inductor, and on the right we see a label affixed to the generator’s side showing
different series/parallel configurations with measured inductance values:
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Energy is always conserved, which means it must always be accounted for in any system and
cannot simply appear or vanish. Another way of stating this same fact is to say that the only way
for the amount of stored energy in any system to vary is if energy transfers to or from some other
place4. Since energy is a function of current for any inductance, the amount of current through a fixed
inductor’s coil cannot vary unless energy is added to or removed from that inductance. That energy
transfer occurs when voltage appears between the terminals of an inductor. In other words, given
that energy is always conserved and that stored energy within an inductor manifests
as current, it must be current that is conserved while voltage changes polarity based
on the accumulation or release of energy.

(acts as a
source)

(acts as a
load)

(acts as a

source)
(acts as a

load)

energy over timeenergy over time

remains constant within

absorbing nor releasing
energy over time

Inductor

Current decreasingCurrent steadyCurrent increasing

InductorInductor

Magnetic field strength

the inductor, neitherwithin the inductor, absorbing within the inductor, releasing

Increasing current means Decreasing current means
a strengthening magnetic field a weakening magnetic field

Thus, an inductance maintains a steady store of energy when its current is constant and its
voltage5 is zero. In this condition of steady current and zero voltage the inductance simply behaves
as a short. However, if current increases through an inductance it means its stored energy must also
increase, which in turn means the inductance must act as a load as it absorbs energy from some
external source. Conversely, if current decreases through an inductor it means its stored energy
must also decrease, which in turn means the inductance must act as a source as it releases energy
to some external load.

4A close analogy based on the Conservation of Mass is that of a container holding water. Since water has mass,
the only way for the amount of water in that container to vary is if water leaves it or enters it. A container’s water
mass cannot simply vary without any cause, because mass is a conserved quantity.

5A true zero-voltage condition with finite current is possible only when the inductor’s coil is made of
superconducting wire. Such inductors do indeed exist and have been used for practical energy-storage applications.
Non-superconducting inductors possess some non-zero resistance in their wire coils, and so will drop voltage in
accordance with Ohm’s Law (V = IR) in addition to voltage occurring as a result of the inductor absorbing or
releasing energy.
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3.2 Voltage, current, energy, and inductance

If we connect a DC voltage source to a pure6 inductor, we find that the current through the inductor
rises at a steady rate determined by the amount of inductance and the amount of voltage. Inductor
current must begin at zero because inductors store energy by means of magnetic fields, and since
current is a function of magnetic field strength this means a de-energized inductor is guaranteed
to have zero current. As energy gradually transfers from the voltage source to the inductor, its
magnetic field strength increases and along with that so must its current: :

Time

(load)

Source
activated

+
−Vsource VL

IL

L
VL

IL

Vsource

Since energy transfer in or out of an inductor requires voltage across the inductor’s terminals,
the amount of voltage impressed across the inductor dictates energy transfer rate and therefore how
rapidly inductor current varies. This may be expressed mathematically as follows:

V = L
dI

dt

Where,
V = voltage in Volts (V)
L = inductance in Henrys (H)
dI
dt

= rate-of-change of current in Amperes per second (A/s)

This formula may be thought of as “Ohm’s Law” for inductance. Unlike a resistor, where voltage
and current are always in direct and immediate proportion to each other, the speed of an inductor’s
current is directly proportional to its voltage. The presence of time in the characteristic equation
makes inductance behave quite different from resistance, and any circuit containing a substantial
amount of inductance must be analyzed with time as one of its variables.

6This would be an inductor possessing only inductance, with no wire resistance whatsoever. This is actually
possible to achieve, by using superconducting wire!



48 CHAPTER 3. TUTORIAL

If we were to repeat this experiment on the same size inductor, but using a voltage source with
only half as much voltage, we would find the current still rises linearly over time but at half the
rate. The decreased voltage means the rate of energy transfer to the inductor from the source is
less, and with that the rate of current rise must also be less because (once again) inductor energy
and inductor current are directly related to each other:

Time

(load)

Source
activated

+
−Vsource VL

IL

L
VL

IL

Vsource

Replacing the voltage source with a short (wire) at some point in time prior to the end of the
experiment results in the inductor holding its store of energy within its magnetic field and therefore
(ideally7) maintaining a constant current:

(load)

Source
activated

Source

Vsource L VL

IL

Vsource

VL

IL
+
−

replaced by short

Thinking in terms of energy storage is essential for proper reasoning regarding voltage and current
for any inductance. Inductance is defined as the storage of energy within a magnetic field, and
magnetic fields directly relate to current. Current cannot instantaneously jump from one value to
another for any inductance because in order for inductive current to vary at all there must be a
transfer of energy either to or from somewhere else, and this always requires time to occur. Voltage,
on the other hand, may very well immediately jump from one value to another for an inductance
because voltage merely dictates the rate at which energy transfers in or out rather than the absolute
amount of energy stored. Joule’s Law is helpful here, power being the product of voltage and current
(P = IV ): for any given amount of current, the rate of energy transfer (i.e. power) depends on how
much voltage there is.

7This will be true only if the circuit contains absolutely no resistance to dissipate energy as current continues to
flow. If resistance is present within the inductor, it will be unable to indefinitely store energy, and as a result its
energy store will dissipate and likewise its current will gradually decrease.
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3.3 Applications of inductance

Inductors find many applications in DC circuits. As we see from the previous experiments, we
may use an inductor to store energy in a manner similar to that of a secondary-cell (“rechargeable”)
battery. Connecting an inductor across the terminals of a DC current source will cause that inductor
to energize and absorb energy from that source. Subsequently short-circuiting that inductor results
in the inductor holding that stored energy (assuming no resistance exists either in the inductor or in
the shorting wire), and then when the inductor is connected to a load it delivers that stored energy
to the load.

Storing any substantial amount of energy in an inductor necessitates very large amounts of
inductance, requiring coils with many turns of wire. The problem with using high-turns coils is that
wire resistance will dissipate any stored energy rather rapidly. Therefore, the only practical way
to make an inductive energy storage device capable of holding large amounts of energy over usable
periods of time is to use superconducting wire coils having absolutely zero resistance. Such inductors
comprise the heart of Superconducting Magnetic Energy Storage systems, or SMES 8.

8Even using superconducting wire, current state-of-the-art SMES are relatively limited in applications. Some have
been applied as backup power sources for certain industrial applications which are intolerant of even momentary lapses
in utility power, where the SMES need only supply power for very brief outages.
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Another use of inductors is current stabilization, exploiting the principle that an inductance’s
current cannot vary unless energy transfer occurs. An inductor connected in series with some
other component will force that component’s current to be more stable than it might be otherwise,
the inductor acting as a load when current rises and acting as a source when current falls. This
is analogous to a flywheel9 acting to stabilize the rotating speed of a machine by serving as a
mechanical load as speed increases and serving as a mechanical source as speed decreases. The
following photograph shows a set of three line reactors used to stabilize current in high-voltage
power line conductors during fault events:

Short-circuit faults in electric power systems result in extremely high levels of current which can
be damaging to life, property, and the components of the power system. The purpose of the line
reactors (inductors) is to retard the rise of current at the start of a fault, so that protective devices
such as circuit breakers have more time to react to the fault and de-energize the faulted line(s) before
the current magnitude reaches unreasonably high levels.

9A “flywheel” is typically a heavy wheel coupled to a rotating shaft, the mass of that wheel serving to store kinetic
energy as it spins.
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Yet another use of inductors is creating time-delayed voltages and currents. Consider this example
circuit showing an inductor and resistor connected to a DC current source through a single-pole
double-throw (SPDT) switch:

R

Switch

Time

energize

de-energize

"energize"

(load)

Switch moves to

Isource

IL

VL

Isource

VL

IL

We know inductors store energy by means of magnetic fields, and that the strength of an
inductor’s magnetic field is directly related to current through it. If we assume the inductor begins
in a fully de-energized state, its current therefore must be zero when the switch initially moves to
the “energize” position. With zero IL, Kirchhoff’s Current Law demands the resistor conduct the
full source current, and from Ohm’s Law (V = IR) we can tell voltage must start at its maximum
value. A high voltage value results in a high rate-of-change for inductor current (V = LdI

dt
), and

so IL increases rapidly. As IL increases, less of the source’s current will go through the resistor in
accordance with Kirchhoff’s Current Law, and by Ohm’s Law this means less voltage drop. Less
voltage results in a slower rate-of-rise for current (V = LdI

dt
), and so IL increases not linearly but

rather it rises at a slower and slower pace until it finally levels off at the source current value. As IL

rises, IR falls, and so voltage must fall as well in accordance with Ohm’s Law, eventually settling at
zero but at a slower and slower speed over time.

Moving the SPDT switch to the “de-energize” position causes the inductor to behave as a source
now rather than as a load, delivering its stored energy to the resistor. As the inductor releases energy
its magnetic field weakens and its current decreases, causing voltage to decrease as well (Ohm’s Law,
V = IR), resulting in a slower and slower descent for both voltage and current over time:
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de-energize
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Isource

IL

VL
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VL
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"de-energize"
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3.4 Inverse exponential growth/decay

The voltage and current curves plotted in the previous section for circuits containing inductors
and resistors are actually common to a wide range of phenomena. For example, if we plot the
temperature of a hot object as it cools down to equal ambient air temperature, we will obtain a
graph having the same shape as the one showing a inductor de-energizing through a resistor. Another
example of similar mathematical behavior is found in radioactive materials, where atoms randomly
disintegrate to become other types of elements. An easily-comprehended way to quantify the decay
of a radioactive substance is by a measure called half-life, which is the amount of time required for
one-half of the remaining atoms to disintegrate:

Timet

100%

50%

25%

12.5%

Half-life Half-life Half-life Half-life Half-life

Radioactive decay

The proportion of original radioactive atoms remaining after each half-life period may be
calculated using reciprocated powers of two: after the first half-life period only 1

2
of the original

atoms are intact; after the second half-life period only 1

4
(or 1

22 ) of the original atoms are intact;
after the third half-life period only 1

8
(or 1

23 ) of the original atoms remain, etc. An alternative way
to express this mathematically is to use negative powers of two such as 2−2 to represent 1

4
and 2−3

to represent 1

8
.
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Simple powers of two work well to describe the proportion of original atoms remaining after
whole intervals of the half-life period, but if we wish to calculate the proportion at any arbitrary
time we will need a more sophisticated formula. Here we let t represent time and h represent the
half-life of the substance:

Proportion remaining = 2−
t

h

The fraction t
h

simply declares how many half-lives have elapsed, and the negative sign ensures
the power-of-two will have a fractional value between one and zero. For example, we know that the
radioactive gas Tritium has a half-life of 12.3 years. If we take a pure sample of Tritium and keep it
in a sealed vessel for exactly 4 years, we would expect 79.82 percent of the original Tritium atoms
to remain in that vessel after those 4 years, the decayed atoms having converted into Helium atoms:

Tritium proportion remaining = 2−
4

12.3

Tritium proportion remaining = 2−0.3252

Tritium proportion remaining = 0.7982 = 79.82%

We may modify this equation to tell us the proportion of Tritium atoms that have decayed into
Helium over time t as well, which is simply the mathematical complement of what remains:

Helium proportion = 1 − 2−
4

12.3

Helium proportion = 1 − 0.7982

Helium proportion = 0.2018 = 20.18%

If we could continue this test through the end of time, eventually the Tritium proportion would
reach zero and the Helium proportion would reach 100%.

Timet

100%

Half-life Half-life Half-life Half-life Half-life

2-(t/h)

1 - 2-(t/h)

Helium

Tritium
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When analyzing resistor-inductor networks we find that negative powers of e work better than
negative powers of two to model growth and decay, e being a mathematical constant approximately
equal to 2.718. Instead of working with half-life quantities we instead measure the growth/decay
in terms of time constant which is symbolized by the Greek letter “tau” (τ) and is simply equal to
inductance divided by resistance (τ = L

R
). Any decaying value in one of these networks follows the

proportion of e−
t

τ while any growing value follows 1 − e−
t

τ as shown in the following graphs:

Time
Initial

Final

t

Voltage
or

Current

Time
Final

t

Voltage
or

Current

Initial

Increasing variableDecreasing variable

e-t/τ 1 - e-t/τ

To illustrate how each of these formulae work, we will calculate the values of e−
t

τ and 1 − e−
t

τ

for several whole-numbered time constant periods beginning with zero representing the system at
its start time and progressing to increasingly negative values:

− t
τ

e−
t

τ 1 − e−
t

τ

0 1 0

−1 0.3679 0.6321

−2 0.1353 0.8647

−3 0.04979 0.9502

−4 0.01832 0.9817

−5 0.006738 0.9933

After one time constant (t = τ) the decaying variable will be at 36.79% of its original value while
the growing variable reaches 63.21% of its final value. After five time constants’ worth of time, all
values have settled to well within 1% of their final values.

It is important to realize that the formulae e−
t

τ and 1−e−
t

τ merely describe fractional proportions
of some initial or final quantity and not necessarily the quantity itself. For example, the current
through a resistor-inductor network losing energy over time will follow the e−

t

τ “decay” formula as
it goes from a value of 1 at the starting time (t = 0) and ends up at 0 after an infinite amount of time
has passed, but to calculate the actual amount of current in units of Amperes we must incorporate a
multiplier describing that initial current. For example, a resistor-inductor network initially energized
to a current of 5 Amperes with a time constant of 100 milliseconds would be most fully described
by the decay formula IL = 5e−

t

0.1 where IL is the inductor’s current and t is the discharge time
in seconds. Similarly, a resistor-inductor-source network starting at an inductor current of zero at
t = 0 and building up to a maximum of 270 milliAmperes with a time constant of 2 seconds would
be most fully described by the growth formula IL = 0.27(1 − e−

t

2 ).
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3.5 Inverse-exponential calculation examples

Suppose the inductor in the following circuit begins in a completely de-energized state, with the two
SPST10 switches in the positions shown:

+
−

Charge Discharge

270 Ω 330 Ω

5 H
2 V

Off On

What will happen if we flip the on/off switch to the “On” position while leaving the
charge/discharge switch open? To answer this question, we should first consider the inductor from
the perspective of energy storage: we know inductors store energy using magnetic fields, and that
magnetic field strength is proportional to current, therefore an inductor with no energy must exhibit
no current, and as it gains energy from the source its current must rise over time. Therefore, we
know we must use the inverse-exponential growth equation (1 − e−

t

τ ) to predict how the inductor’s
current will change over time.

The final value for current in this circuit is limited by source voltage and total resistance, which
in this case is 2 Volts and 600 Ohms, respectively, giving a final current value of 3.333 milliAmperes.
Incorporating this as a multiplier for the inverse-exponential growth equation gives us this form:

IL = (3.333 mA)(1 − e−
t

τ )

We also know the circuit’s time constant (symbolized by the Greek letter “tau” τ) will be equal
to the quotient of 5 Henrys and 600 Ohms, which is 8.333 milliseconds. If we evaluate this equation
at 10 milliseconds, 20 milliseconds, and 30 milliseconds we get inductor current values of 2.329
milliAmperes, 3.031 milliAmperes, and 3.242 milliAmperes, respectively.

10“SPST” refers to single-pole, single-throw.
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Multiple ways exist to calculate voltages in this circuit. One way is to take each of the calculated
inductor current values at specific times and use Ohm’s Law to compute the resistor voltage drops at
each of those times, then use those voltage values and Kirchhoff’s Voltage Law to calculate inductor
voltage. Being a series network, of course, the inductor’s current value at any given time will be the
same as current through all other component in the network.

Alternatively, we could select the appropriate inverse-exponential equation to directly calculate
inductor voltage at any time. Knowing that the inductor begins in a completely de-energized state
and gradually absorbs energy over time, we know its current must begin at zero and rise over time.
If inductor current begins at zero and rises over time, all resistors (sharing that same current in
series) will experience voltages beginning at zero and also rising over time. Kirchhoff’s Voltage Law
demands the inductor’s voltage must begin at the full source value of 2 Volts and decay to zero over
time, which we may predict using the inverse-exponential decay equation:

VL = (2 V)(e−
t

τ )

If we evaluate this equation at 10 milliseconds, 20 milliseconds, and 30 milliseconds we get
inductor voltage values of 0.6024 Volts, 0.1814 Volts, and 54.65 milliVolts, respectively. These
voltage values are identical to those calculated the other way, using inductor current values at the
same times along with Kirchhoff’s Voltage Law and Ohm’s Law.

What happens if we now close the “Charge/Discharge” switch after having let the inductor settle
to a maximum current value of 3.333 milliAmperes? Doing so will connect the energized inductor
directly to the 330 Ohm resistor where it will deliver its stored energy to that load over time. As the
inductor loses its store of energy, its magnetic field strength must decrease because that is the form
its stored energy takes. The decreasing magnetic field means inductor current must also decay to
zero, and from this we may know the inverse-exponential decay equation will describe the inductor’s
current at different points in time following the closure of the “Charge/Discharge” switch.

The 330 Ohm resistor is still in series with the inductor, which means those two component
currents must be the same at any given time. With the “Charge/Discharge” switch in the closed
position, that resistor is also in parallel with the inductor which means the two components will also
share the exact same voltage at any given time. The time constant (τ) will be different than before
with only 330 Ohms in series with the 5 Henry inductor, though:

τ =
5

330
= 15.15 milliseconds

IL = (3.33 mA)(e−
t

τ )

VR = VL = (3.33 mA)(330 Ω)(e−
t

τ )

Evaluating these equations at 10 milliseconds, 20 milliseconds, and 30 milliseconds yields results
of 0.5685 Volts at 1.723 milliAmperes, 0.2938 Volts at 0.8905 milliAmperes, and 151.9 milliVolts at
0.4602 milliAmperes, respectively.
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3.6 Inductor types and limitations

Inductors are broadly categorized by the type of core material used. Air, iron, steel, and ferrite are
among the different materials employed as core media within the wire coil. These core materials
vary in permeability (i.e. the degree to which they enhance magnetic fields) and magnetic hysteresis
(i.e. the degree to which they remain magnetized after exposure to the coil’s magnetic field). As
shown in the following equation, permeability directly relates to the inductance of a coil for any
given coil area, length, and number of wire turns:

L =
µAN2

l
Where,

L = Inductance in Henrys (H)
µ = Absolute11 permeability of the core material in Henrys per meter (H/m)
A = Cross-sectional area of the solenoid coil in square meters (m2)
N = Number of turns of wire in the solenoid coil (unitless)
l = Length of the solenoid coil in meters (m)

Air-core inductors exhibit much less inductance than inductors with ferromagnetic core materials
such as iron or steel or ferrite. Ferrous-core inductors may be symbolized in schematic diagrams by
a pair of lines drawn parallel to the coil’s axis:

NEMA symbolsIEC symbols

Air-core coil Ferrous-core coil Air-core coil Ferrous-core coil

A major advantage of air-core inductors is that they are immune to the effects of magnetic
saturation12, because empty space has no limit for magnetic flux. Ferromagnetic materials, by
contrast, reach a saturation point where all their magnetic domains are aligned, after which the
material is as magnetized as it can be and cannot further enhance the magnetic field. Beyond the
saturation point for a ferrous core any further energy storage for the inductor is on the basis of an
air-core, which is to say the inductance of an inductor dramatically decreases after saturation.

11Material permeability is often specified as relative to a vacuum, in which case µr is equal to 1 for a vacuum and
greater than 1 for all other substances. The permeability of free space (µ0 is approximately 1.25663706212 × 10−6

Henrys per meter) must be multiplied by any given relative permeability value in order to arrive at the absolute
permeability of the substance in question.

12The alignment of magnetic “domains” within a ferromagnetic material as it experiences an external magnetic field
has the effect of multiplying the effect of that magnetic field. However, this “multiplying” effect only occurs when
there are domains within the core material that are not yet aligned, but will align with further magnetization. As coil
current increases, more and more of the material’s domains align with the growing external field, leaving fewer and
fewer un-aligned domains ready to pivot, and this means diminishing returns for any further increases in magnetic
field. At some high value of coil current, all domains within the core material will be aligned with the coil’s field,
at which point the core can contribute no further “multiplication” effect. The field may be strengthened beyond this
saturation point by further increases in coil current, but these increases will occur at the same rate as for vacuum or
air rather than at the accelerated rate when the ferromagnetic material was unsaturated. In other words, once we
reach saturation the core ceases to be of further benefit.
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The most elementary ratings for an inductor are inductance and maximum current. Inductance is
expressed in Henrys, typically by means of a printed text label on the inductor body. The maximum
current rating for any inductor is limited by either the wire’s ampacity13 or the magnetic core’s
saturation, whichever is lower.

Other inductor ratings include winding resistance which is the total resistance of the wire coil in
Ohms (ideally zero) and parasitic capacitance14 between the insulated turns of wire.

For any given type of core material, the physical size of an inductor is proportional to its
inductance as well as to its current rating. An inductor having more inductance but the same
current rating must be made either with more turns of wire in the coil or more cross-sectional coil
area, and this makes it larger. An inductor having a higher current rating but the same inductance
must be made with thicker wire for greater ampacity and/or a core with greater cross-sectional area
to accommodate more lines of magnetic flux, and this again makes it larger.

13“Ampacity” is the term used to denote the maximum amount of current any conductor may continuously sustain
based on the amount of heat dissipated by the conductor’s resistance.

14Capacitance is the ability to store energy in an electric field between two insulated conductors. A “parasitic”
property is one that exists as an artifact of a component’s construction, and is not necessarily desired. For an inductor,
any stray capacitance is considered parasitic, as is any resistance.
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3.7 Series and parallel inductance

Like resistors, inductors may be connected together to form networks with different total inductance
than any single inductor. The relationship between series versus parallel connections and total
inductance is the same as it is for resistors: connecting inductors in series accumulates total
inductance, while connecting inductors in parallel diminishes total inductance:

1
+

1 1
+

1

L1 L2 L3

L1 L2 L3

Lparallel =

L1 L2 L3

Lseries = L1 + L2 + L3

A few simple thought experiments prove how inductance adds in series and diminishes in parallel.
Imagine a 3 Henry inductor carrying 2 Amperes of current, storing 6 Joules of energy as predicted
by EL = 1

2
LI2. Now imagine three of these same inductors connected in series so all of them share

the same 2 Ampere current. Total stored energy must be the sum of the three individual inductors’
energies and therefore is 18 Joules, three times that of the single inductor. Now imagine three of
these same inductors connected in parallel, splitting the 2 Ampere total current into thirds. Each
3-Henry inductor carrying 2

3
Ampere of current will store only 2

3
Joule of energy with the three

together storing only 2 Joules of energy in total, just one third that of the single inductor.

The series and parallel relationships shown above assume the inductors are entirely independent
of each other. If the magnetic fields of two or more inductors happen to link, the relationships become
much more complicated. If current through one inductor is able to induce voltage in an adjacent
inductor, the effect is called mutual inductance (M). We may perform a “thought experiment”
whereby two identical coils of wire are wrapped around a common ferromagnetic core so that they
completely share each others’ magnetic fields:

Series-aiding
mutual inductance mutual inductance

Series-opposing

In the series-aiding case, the two coils’ magnetic fields always point in the same directions, and
so enhance each other to make a stronger magnetic field than either coil would on its own. The
result will be a greater amount of total inductance, even greater than two independent (non-linked)
inductors wired in series. In the series-opposing case, the two coils’ magnetic fields are always
opposite each other and therefore completely cancel. The result here will be zero magnetic field,
and therefore zero energy storage and zero inductance.
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3.8 Making custom inductors

Inductors are the easiest of the basic electrical components to build yourself, since they simply consist
of a wire coil. The formula predicting the theoretical inductance of a wire coil where the length (l)
is much greater than its diameter is, or for a toroidal coil, is as follows:

(µ)

Inductance of a long solenoid

A

l

A
l

Inductance of a toroid

L =
µAN2

l

Where,
L = Inductance in Henrys (H)
µ = Absolute permeability of core material in Tesla-meters per Ampere (4π × 10−7 for empty

space T·m/A)
A = Cross-sectional area of the core in square meters (m2)
N = Number of turns of wire in the coil
l = Length of coil in meters (m)

Of these two inductor forms, toroidal is generally preferred because it is more compact and also
has the beneficial characteristic of better containment of its magnetic field. A small inductor using
an epoxy-coated powdered-iron toroidal core is shown below, with the wire coil wound properly so
that it covers most of the toroid’s diameter:
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It is not difficult to build your own inductor by wrapping enamel-insulated copper wire around
a toroidal powdered-iron or ferrite core. To simplify the inductance calculations, manufacturers of
toroidal magnetic cores typically advertise an inductance index or inductance factor for each core
based on physical dimensions and core material composition. This value is symbolized as AL and
is often expressed in units of microHenrys or nanoHenrys per turn-squared. What this factor does
is consolidate15 permeability (µ), core cross-sectional area (A), and magnetic path length (l) into a
single coefficient describing the magnetic characteristics of a particular toroidal core.

L =
µAN2

l
(original inductance formula)

L = ALN2 (simplified inductance formula)

Where,
L = Inductance in Henrys (H)
AL = Inductance factor in Henrys per turn-squared (H/turn2)
N = Number of turns of wire in the coil

For example, If we were to wrap 25 turns of wire around a toroidal core having an AL value of
16,000 nanoHenrys per turn-squared, the inductance would be:

L = (16000 × 10−9)(252) = 10 mH

A very important caveat for all inductance calculations using ferromagnetic core materials is that
the permeability of these materials is never constant. The more strongly magnetized a ferromagnetic
material is, the less permeability it exhibits. This, in fact, is why these materials exhibit B-H curves
rather than B-H lines, and why they also are susceptible to saturation. Magnetic core manufacturers
typically specify the initial permeability (µi) of the core material, which is its permeability at zero
magnetic flux and thus represents a maximum (ideal). Since the inductance of any inductor is directly
proportional to core permeability, if you happen to know what the permeability of the material will be
under typical operating conditions (µop), you may calculate the ratio of this operating permeability to
initial permeability and arrive at a “de-rating” factor which you may then apply to your inductance
calculation:

L =

(

µop

µi

)

ALN2

Air-core inductors (e.g. with wire wrapped around non-magnetic forms made of plastic) do not
suffer from variations in permeability or from magnetic saturation, but of course without the presence
of a ferromagnetic core the amount of inductance possible for any given coil size is very limited. We
typically encounter air-core inductors in applications where mere microHenrys or nanoHenrys of
inductance is sufficient. For the vast majority of inductor applications ferromagnetic cores are a
necessity.

15In other words, AL = µA
l
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Chapter 4

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.
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4.1 Early examples of inductors

Inductance is the ability to store energy within a magnetic field, and an inductor is a device built
expressly for that purpose. Any length of wire exhibits inductance simply due to the magnetic
field that necessarily forms around it when electrical charges pass through as a current, but most
inductors maximize this energy-storage effect by wrapping the conductor into a coil shape, and often
wrapped around a ferromagnetic core material to enhance the magnetic field.

The following photograph taken from the book Wireless Telegraphy and Telephony by Alfred
P. Morgan and published in 1920 shows a coil of wire wrapped around a wooden frame to form
what that author refers to as a helix, suitable for use in radio communication circuits of the day. In
modern parlance we would refer to this as an air-core inductor :

Coils form stronger magnetic fields than straight conductors because the close proximity of each
“turn” of the coil results in the circular magnetic fields around each turn reinforcing the fields around
adjacent turns, all the turns together acting to produce one large magnetic field with lines running
through the center and looping around the outside of the coil assembly.
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This next photograph comes from page 84 of Proceedings of The Institute of Radio Engineers
(Volume 2, Number 1) dated March 1914, showing a spiral inductor made from heavy metal strip
suitable for use in a high-power radio transmitter circuit:

As the caption indicates, this air-cored inductor is rated at 25 µH and may carry upwards of 200
Amperes of radio-frequency AC current.
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A set of spiral-wound air-core inductors for radio system use are seen in the following photograph:

The close proximity of these inductors means there will be some magnetic coupling between
them, such that they will function as a transformer linking different inductive circuits together.
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Early inductor technology also included variable inductors that worked on the principle of a
moving “slide” contact that would connect to the coil at different locations when moved along its
length. An example of a “dual-slide” inductor is illustrated in the 1920 Wireless Telegraphy and
Telephony book by Alfred P. Morgan:
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An ingenious design of variable inductor called the Variometer used two coils of wire, one
stationary and the other mounted on a pivot such that the angular relation of one coil to the
other could be varied by turning a knob. With the two coils connected in series with each other,
changing the relative angle between them would allow their respective magnetic fields to reinforce
or cancel one another to varying degrees, thereby adjusting the amount of total inductance offered
by the assembly.

The book The Wireless Experiments Manual written by Elmer E. Bucher and published in 1920
gives instructions on the construction and usage of a variometer. Below we see an illustration of a
Variometer using cardboard as forms to hold the wire coils:

A commercial Variometer of that era is shown in a photograph from the same book:
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Next we see a schematic diagram from Bucher’s manual showing a Variometer (labeled as VM )
connected in series with the antenna (A) of a radio receiver circuit, the two series-connected coils
clearly shown in the diagram:

In this receiver circuit the VC is a variable capacitor (or variable condenser as it was more
commonly known in 1920), FC is a fixed capacitor, D is a diode (or detector), and P was a pair
of audio headphones for listening to the demodulated radio signal. Together, the parallel-connected
variable inductor and variable capacitor formed a resonant tuning circuit that could be used to select
one radio frequency signal from other signals present at the antenna.
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Chapter 5

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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5.1 IEC standard component values

Components such as resistors, inductors, and capacitors are manufactured in several standard values,
described by IEC standard 60063. Rather than having a single series of standard values, the IEC
publishes lists called E series based on the number of unique values spanning a single decade (i.e. a
10:1 range).

The shortest of these series, called E3 contains just three values: 10, 22, and 47. The next series
is called E6 with six unique values: 10, 15, 22, 33, 47, and 68. These values represent significant
values for components, meaning the decimal point may be freely moved to create values spanning
multiple decades. For example, “33” simply means one can expect to find components manufactured
in values of 33, 3.3, 0.33, and 0.033 as well as 330, 3.3 k, 33 k, etc.

Although this may seem like a strange standard for component manufacturers to follow, there
is a compelling logic to it. The terms of each series are closer-spaced at the low end than at the
high end, and this allows for series and/or parallel combinations of components to achieve most any
desired value. For example, in the E6 series we only have values with the significant figures 10, 15,
22, 33, 47, and 68, but this doesn’t mean we are limited to total values with these significant figures.
For example, if we needed 80 Ohms of resistance we could connect a 33 Ohm and 47 Ohm resistor
together in series. 50 Ohms could be made from two 68 Ohm resistors in parallel (making 34 Ohms)
plus a 15 Ohm and 1 Ohm resistor in series.

On the next page is a table showing the four most common E-series specified by IEC standard
60063.
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E3 E6 E12 E24

10 10 10 10

11

12 12

13

15 15 15

16

18 18

20

22 22 22 22

24

27 27

30

33 33 33

36

39 39

43

47 47 47 47

51

56 56

62

68 68 68

75

82 82

91

E48, E96, and E192 series are also found in the IEC 60063 standard, used for components with
tighter tolerance ratings than typical.
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5.2 Inductor labeling

Inductors store electrical energy using magnetic fields, the amount of energy stored being
proportional to the square of the applied current. The ratio of stored energy to current (squared) is
called inductance (L), measured in the unit of the Henry (H), and it is the primary characterstic of
any inductor. Color codes used to be popular for denoting inductance value, following a very similar
pattern to resistors, but numerical labels are now the norm.

The color code used to mark inductors follows the same chromatic and numerical sequence
used for resistors1, with the first and second bands representing significant digits, the third band
representing a power-of-ten multiplier, and the fourth band representing tolerance. However, rather
than directly indicating inductance in Henrys, the implied metric prefix is micro.

Band color First digit value Second digit value Multiplier Tolerance

Black 0 0 100 ± 20%

Brown 1 1 101 ± 1%

Red 2 2 102 ± 2%

Orange 3 3 103 ± 3%

Yellow 4 4 104 ± 4%

Green 5 5 105

Blue 6 6 106

Violet 7 7 107

Grey 8 8 108

White 9 9 109

Gold 10−1 ± 5%

Silver 10−2 ± 10%

None ± 20%

For example, an inductor marked with colored bands Yellow, Violet, Orange, and Gold would
be 47 × 103 microHenrys, or 47 mH.

Inductors labeled with numerical markings follow the same digit-digit-multiplier pattern as the
color code: two significant digits followed by a power-of-ten multiplier, with an assumed base prefix
of micro. For example, 331 would represent 33 × 101 microHenrys, which is 330 µH or 0.33 mH.
If a decimal point is required for a numerically-labeled inductor, a capital letter “R” is used. For
example, instead of labeling a 0.01 µH inductor as 0.01, it would be shown as R01.

1A useful mnemonic for associating these colors with decimal digits 0 through 9 and the percentages 5-10-20% is
as follows: “Better Be Right Or Your Great Big Venture Goes Wrong. Get Started Now.”.
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Very small inductors are sometimes numerically labeled on the basis of nanoHenrys rather than
microHenrys. In such cases a capital letter “N” represents the decimal point for the nanoHenry
value: for example, 3N9 represents 3.9 nH and 27N represents 27 nH.

Inductor tolerance is another important parameter which is often printed on the body of the
inductor. For physically small inductors where not enough surface area exists to print percentage
figures, we must resort to other means for expressing tolerance. To this end, a system of letter-codes
has been developed, shown here in the following table:

Letter code Tolerance

B ± 0.15 nH

C ± 0.2 nH

S ± 0.3 nH

D ± 0.5 nH

F ± 1%

G ± 2%

H ± 3%

J ± 5%

K ± 10%

L ± 15%

M ± 20%

V ± 25%

N ± 30%

Note how the first four of these codes refer to absolute tolerances in nanoHenrys, while the rest
represent tolerances in percent. When printed on a inductor’s body, the tolerance code typically
follows the numerical inductance code. For example, an inductor with “821J” on its body would be
820 µH ± 5%.
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5.3 Inductor parameters and core types

Inductors come in many different types, the primary distinctions being the type of substance used for
the magnetic core and the physical shape of that core. Several important performance parameters
exist for inductors, listed below:

• Insulation resistance: the desirable ability of the wire insulation to oppose “breakdown”
resulting from high voltage applied across that insulation, either from the wire to the core
material, from one wire to another (e.g. primary-to-secondary in a transformer), or from one
turn of wire to an adjacent turn of wire

• DC resistance: Ohmic resistance of the wire used to make the winding(s) of the inductor,
generally undesirable because this constitutes a mechanism of energy dissipation within the
inductor

• Rated current: the maximum continuous DC current through the inductor based on wire
heating from I2R dissipation

• Saturation current: the amount of current at which point the core begins to magnetically
saturate2, and its inductance correspondingly decreases, usually based on a specified percentage
of inductance decrease compared to at zero current

• Distributed (parasitic) capacitance: wire insulation separating winding turns from each
other and the winding from the core material (if electrically conductive) constitute parasitic
capacitance in the inductor

• Self-resonance: the frequency at which an inductor will self-resonate based on its inductance
reacting with its own parasitic capacitance

• Leakage inductance: the amount of inductance inherent to magnetic flux escaping the core
(i.e. “leaking” flux), which may couple with adjacent conductors

• Stability: the degree to which an inductor’s value undesirably drifts over long periods of time

• Temperature coefficient: the degree to which an inductor’s value undesirably changes with
temperature

• Rated temperature: the maximum operating temperature at which an inductor will still
perform within specification, limited by insulation type, thermal expansion coefficients of the
wire and core materials, and the Curie temperature3 of the core material

2Ferromagnetic materials assist in the development of magnetic fields as their internal magnetic “domains” align
one-by-one with any externally-applied field such as that from an energized coil of wire. If we keep increasing the
external magnetic field, we will reach a point where all the ferromagnetic core material’s domains are fully aligned
with that field, at which point the core can offer no further assistance to increasing field strength. Here the core is
said to be magnetically saturated, like a sponge fully saturated with water. Any further increases in magnetic field
strength (e.g. increasing coil current beyond the saturation point) will proceed unaided by the core.

3The Curie temperature is that temperature beyond which a ferromagnetic material begins to lose its magnetic
properties.
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Multiple energy-dissipation mechanisms exist within inductors, and may be broadly divided
into two categories: “copper” (wire) losses and “iron” (core) losses. All wires made of non-
superconducting materials exhibit some electrical resistance, and this directly converts electrical
energy into thermal energy (P = I2R) where it will never return to the circuit. At very high
frequencies where the skin effect causes AC current to avoid the center of the conductor and only
travel near the surface (skin), the wire’s effective cross-sectional area decreases and this leads to
greater I2R losses. Ferromagnetic core materials experience molecular-level motion4 when the
magnetic field varies in intensity, and this represents another way for electrical energy to become
converted into heat and never return to the circuit. Magnetic materials dissipate energy in this way
proportional to the amount of hysteresis they exhibit: magnetically “soft” materials having narrow
B-H hysteresis curves are more energy-efficient as inductor and transformer cores than magnetically
“hard” materials having wide B-H hysteresis curves. Furthermore, if the core material happens to
be electrically conductive there will be some amount of electric current induced within the core itself
as inductor current varies, as a result of electromagnetic induction. These eddy currents encounter
electrical resistance in the core material, also resulting in I2R losses.

A variety of core shapes exist for different sizes and purposes of inductor:

Toroidal core
E-core U-core Bobbin

core

Toroidal cores are exceptionally good at confining the magnetic field to the inductor (i.e. very
low “leakage” flux) but are more expensive to manufacture.

Inductor core materials exist to enhance the amount of magnetic flux resulting from electric
current passing through the winding(s), as well as to “contain” the magnetic flux so that it remains
inside the inductor case and does not link with any conductors outside of the inductor. Some
inductors have no solid core material, and are called air-core inductors. These have very low
inductance values and suffer from unwanted “coupling” with adjacent conductors but enjoy immunity
from magnetic saturation. Most inductors use some form of ferromagnetic material such as iron or
iron alloy.

4This effect when viewed on a macroscopic scale is called magnetostriction, and accounts for why ferromagnetic
inductor and transformer cores may “hum” when their respective windings are energized by AC in the audio-frequency
range.
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Most inductor designs attempt to minimize energy losses in the magnetic core, one strategy
for this being to minimize magnetic hysteresis losses. Hysteresis losses occur when the magnetic
domains inside the material have a high degree of remanence, necessitating work to be done when
magnetizing, unmagnetizing, and re-magnetizing the core material as inductor current varies and/or
reverses direction. The amount of energy dissipated in this manner by a magnetic core is proportional
to the area enclosed by the B-H curve:

B

H

Remanence

RemanenceCoercivity

Coercivity

saturation

saturation

Choosing a magnetic material with a naturally narrow B-H curve helps minimize hysteresis losses.
So does “over-building” the core to have greater cross-sectional area than is absolutely necessary, in
an effort to spread out the magnetic flux over more material and therefore decrease flux density (B)
so the core remains as far from saturation as possible.

Another strategy for minimizing energy losses in the core focuses on the mechanism of eddy
currents which are electric currents induced in the core material by way of electromagnetic
induction. This is a problem when the core material happens to be electrically conductive as well as
ferromagnetic (e.g. iron is a good example of this), as these circulating electric currents do no useful
work yet still encounter electrical resistance in the core material causing heat dissipation which is
energy extracted from the circuit never to return to it. An effective mitigation is to build the core
in such a way that it electrically interrupts these currents by not providing a continuous pathway
for them to circulate. If the core material is iron, constructing the core as a stack of thin iron
sheets coated in (insulating) enamel accomplishes this goal, and we call this a laminated iron core.
Another strategy is to use powdered iron rather than solid iron. Yet another is to use a material
that is ferromagnetic but electrically insulating, for example ferrite which is a chemical oxide of iron
rather than being metallic iron.

For the end-user rather than the designer of manufactured inductors, an effective strategy for
minimizing energy losses is to simply over-rate the inductor in terms of current (i.e. select an
inductor with a much higher current rating than the expected current for your application). Using
an inductor with a much higher current rating than your expected design current means that inductor
will have larger-gauge wire windings, as well as an over-sized magnetic core capable of handling much
stronger magnetic fields than you will ever impress upon it. Over-sized windings minimize resistive
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energy losses, while the over-sized core effectively shortens and narrows the B-H curve which in turn
minimizes hysteresis losses.
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5.4 Inductor parasitics

5.4.1 Model of a real inductor

An ideal inductor exhibits only inductance, with no capacitance, resistance, or other characteristics
to interfere. Real inductors exhibit all these phenomena to varying degrees, and we collectively refer
to these undesirable traits as parasitic effects. The following diagram models some of the parasitic
effects observed in real inductors:

Rseries Lideal

Cparallel

Inductor model

Lmutual

In addition to the inductance the inductor is supposed to exhibit (Lideal), the inductor also
has parasitic resistance (Rseries, also known as Equivalent Series Resistance, or ESR), parasitic
capacitance (Cparallel), and mutual inductance (Lmutual) with nearby wires and components.

Some of these parasitic effects – such as equivalent series resistance – affect the inductor’s
performance in DC applications. Most of the other parasitic effects cause problems in AC and
pulsed applications. For example, the effective inductor-capacitor “tank circuit” formed by Lideal and
Cparallel will cause resonance to occur at a particular AC frequency, resulting in much more reactance
at that frequency than what would be predicted by the inductive reactance formula XL = 2πfL.

Next we will explore common mechanisms for each of these effects.
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5.4.2 Parasitic resistance in inductors

Wire resistance plays a dominant role in this parasitic effect due to the typically long lengths of wire
necessary to wind the coil that forms most inductors. Wire resistance is not the only dissipative
mechanism at work, though. Other losses include magnetic hysteresis of the iron core material as well
as eddy currents induced in the iron core. An “eddy” current is a circulating electric current induced
within the iron core of an inductor, made possible by the fact that iron is an electrically-conductive
material as well as being ferromagnetic. These circulating currents do no useful work, and dissipate
energy in the form of heating the iron. They may be minimized by forming the iron core from pieces
of iron that are electrically insulated from one another, e.g. forming the iron core from laminated
sheets or powdered particles of iron where each sheet or particle is electrically insulated from the
next by a layer of non-conductive material on its outer surface.

The series resistance of an inductor is always frequency-dependent. In DC conditions (i.e.
frequency of zero Hertz) there will be the basic wire resistance of the coil at play. As frequency
increases from zero, however, both the magnetic core losses from hysteresis and eddy currents also
increase which add to the DC resistance to form a larger ESR. At extremely high frequencies the
skin effect5 further adds to the inductor’s ESR.

5At high frequencies, electric current travels more toward the outer surface of a conductor rather than through the
conductor’s entire cross-section, effectively decreasing the conductor’s cross-sectional area (gauge) as frequency rises.
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5.4.3 Parasitic capacitance in inductors

Any time an electric field forms between two conductors, energy is stored in that electric field. We
call this electric-based energy-storing capability capacitance, and of course all inductors must have
some capacitance due to the insulating media between wire leads as well as between adjacent turns
of wire within the coil (and between the wire turns and the iron core).

Parasitic capacitance is a problem for inductors in AC applications because capacitive reactance
(XC) tends to cancel out inductive reactance (XL). If we plot the impedance of an inductor as
a function of frequency, we would expect an ideal inductor to manifest a straight-line ascent on
a logarithmic plot. However, what we see is that at a certain frequency the parallel parasitic
capacitance resonates with the inductance to create a nearly-infinite impedance, and then past that
frequency the capacitive effects overshadow the inductance:

f

Z

ESR

ZL(ideal)

ZL(real)

Precious little may be done to eliminate parasitic capacitance within any inductor, whereas
parasitic inductance is fairly easy to minimize within a capacitor. This explains why when faced with
an equivalent choice between a circuit design using capacitors and a circuit design using inductors,
capacitors nearly always win. Simply put, it is easier to make a nearly-ideal capacitor than it is to
make a nearly-ideal inductor.

This also explains why the self-resonant frequency of most inductors is much lower than the
self-resonant frequency of most capacitors: all other factors being equal, an inductor will have more
parasitic capacitance in it than an equivalent capacitor will have parasitic inductance within it,
making the LC product greater for the inductor than for the capacitor.

5.4.4 Other parasitic effects in inductors

Mutual inductance occurs whenever adjacent conductors’ magnetic fields link with one another,
which is difficult to avoid especially in physically dense circuit layouts. This parasitic effect may
be minimized by proper placement of inductive components (e.g. keeping them spaced as far apart
from each other as possible, orienting their axes perpendicular to each other rather than parallel)
as well as by core designs with strong magnetic field containment (e.g. toroidal cores contain their
magnetic fields better than rectangular cores).



5.5. MAGNETIC FIELD QUANTITIES 83

5.5 Magnetic field quantities

A useful definition of magnetic field (B) is in terms of the force (F , called the Lorentz force) exerted
on a moving electric charge (Q) influenced by that field:
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~F = Q~v × ~B

Where,
~F = Force exerted on the charge (Newtons)
Q = Charge quantity (Coulombs6)
~v = Velocity of moving charge (meters per second)
~B = Magnetic field (Tesla, Webers per square meter, or Newtons per Ampere-meter)

The small “arrow” symbols above the variables for force and velocity and magnetic field in the
equation denote those variables as vector quantities, having both magnitude and direction. Charge is
a scalar quantity having only magnitude but no direction, and as a scalar quantity when multiplied
by the velocity vector it simply magnifies the magnitude but does not alter the direction. The
“cross-product” (×) is a specific form of vector multiplication, and it results in a product at right
angles to the vector directions of both terms. Therefore, the force and velocity and electric field
vectors never all point in the same direction.

6One Coulomb of electric charge is equal to 6.2415 × 1018 electrons.
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Vector cross-products conveniently relate to the fingers of the right hand, which is where the
“right-hand rule” originates:

C = A × B

C A

B

for vector cross-products
General "right-hand rule"

B

"Right-hand rule" specific

F

F = Qv × B

v

to the Lorentz force

When holding the index finger, middle finger, and thumb of your right hand perpendicular to
each other, your index finger points in the direction of the velocity vector (~v), your middle finger in

the direction of the magnetic field vector ( ~B), and your thumb in the direction of the force vector

(~F ). A simple mnemonic I use to remember these relationships of fingers to vectors is that the
Index finger points in the direction of current7 (I), the Middle finger points in the direction of the
magnetic field (B), and the Thumb points in the direction of the thrust (i.e. force) acting upon
the moving charge.

The Lorentz force’s effect on electrically-charged particles in motion has many applications, from
redirecting the paths of charged-particle beams in particle accelerator machines, to bending the
trajectory of electron beams in a cathode-ray tube (CRT), to forcing electrons to travel in spiral or
circular trajectories inside of magnetron (microwave oscillator) tubes. An illustration of a positively-
charged particle curving perpendicular to a magnetic field appears here:

motion

Positively-charged
particle

Magnetic field
(arrow tail going

into the page)

Lorentz force

7Some textbooks speak of a “left-hand rule” which is intended to make sense of electric charge motion (current) in
terms of electron flow. As we know, electrons are the only real mobile charge carriers within metal conductors, and
so technically “electron flow” notation is most physically accurate when describing the motion of electric charges in
metallic circuits. However, the right-hand rule is a mathematical definition for vector cross products, the concept of
the cross product arising in the late 18th century when electrical science was still in its infancy. Early explorers of
electricity used the established mathematical tools of their time and applied it to their work with electric currents and
magnetism. At that time, charge carriers in metal wires were assumed to be “positive” and this is how the motion of
positively-charged carriers became associated with the first vector of the cross-product. As a result of this assumption
which was later proven false, we have two different conventions for denoting the motion of electricity: electron-flow
which is physically accurate (for metal wires, at least), and conventional flow which is mathematically accurate. This,
perhaps more than any other reason, is why educational programs designed for mathematically rigorous fields (e.g.
electrical engineering) exclusively use conventional flow notation rather than electron flow notation to denote the
direction of current.
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If the moving charge in question is not a single charged particle but rather part an electric
current passing through a conductor parallel to the first, both conductors will experience a mutually-
attracting force given by the following equation:
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~F = I~l × ~B

Where,
~F = Force exerted on both conductors (Newtons)
I = Current (Amperes)
~l = Length of wire (meters)
~B = Magnetic field (Tesla, or Webers per square meter, or Newtons per Ampere-meter)

The point-charge Lorentz force equation and the two-conductor Lorentz force equation are not
that different from one another. Dimensional analysis validates this: the Lorentz force on a moving
charge uses that charge quantity (Coulombs) multiplied by the point-charge’s velocity in meters per
second to give Coulomb-meters per second for the first term:

Q~v = [C]
[m

s

]

=

[

C · m
s

]

The Lorentz force on a current-carrying conductor uses the current (Amperes, which is Coulombs
per second) multiplied by length in meters, for the same composite units of Coulomb-meters per
second:

I~l =

[

C

s

]

[m] =

[

C · m
s

]

This dimensional equivalence makes conceptual sense as well: an electrically-charged particle
moving through empty space is an electric current in its own right, and an electric current flowing
through a conductor is just a collection of charged particles moving through space (just not empty
space). In either case, the basis for the Lorentz force remains the same: the moving charge(s) create
their own magnetic field, which reacts with the magnetic field of the original current-carrying wire
to produce forces acting on both.

If the two currents flow in the same direction, their mutual forces attract. If the two currents
flow in opposite directions, their mutual forces repel. This is the basis of electric motors: causing
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mechanical motion by electro-magnetic attraction and repulsion. It also represents an interesting
contrast with electric fields:

With electric fields, opposite charges attract and like charges repel.

With magnetic fields, opposite poles attract and like poles repel.

With parallel currents, opposite directions repel and like directions attract8.

Two parallel current-carrying conductors of length l and separated by a distance d will generate
a mutual force proportional to both their currents:

F = l
µI1I2

2πd
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8That is, assuming it’s like charges moving in these directions! If the charges in question are opposite each other –
for example electrons in one circuit and holes in another – then like directions will repel and opposite directions will
attract!
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The circular loops surrounding the current-carrying conductors in the previous illustrations
represent the magnetic lines of flux (ΦB) surrounding each of those conductors. The magnetic
field (B) is related to magnetic flux by area (A), the field being a measurement of how densely-
packed those flux lines are per unit area. For this reason, magnetic field (B) is more properly known
as magnetic flux density :

~B =
ΦB

~A

Where,
~B = Magnetic field or flux density (Tesla, Webers per square meter, or Newtons per Ampere-

meter)
ΦB = Magnetic flux (Webers)
~A = Area over which flux is distributed (square meters)

An older unit of measurement for magnetic flux density B is the Gauss which is much smaller
than a Tesla, with one Tesla equivalent to 10,000 Gauss. To put things into perspective, the Earth’s
natural magnetic field has a strength of approximately one-half of one Gauss9.

Magnetic field strength is an inverse function of distance from any current-carrying wire, and
also depends on the magnetic permeability of the space adjacent to the wire:

B =
µI

2πd

Where,
B = Magnetic field or flux density (Tesla, Webers per square meter, or Newtons per Ampere-

meter)
µ = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 4π × 10−7 for

empty space)
I = Current (Amperes)
d = Distance from conductor (meters)

9Using the online Magnetic Field Calculator application provided by NOAA (the National Oceanic and
Atmospheric Administration) at https://ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm, applying the
World Magnetic Model WMM modeling algorithm for years 2019-2024, the total magnetic field strength at my home
is 53,584.4 nano-Tesla (53,584.4 nT or 0.535844 Gauss), and presently (May 2020) decaying at a rate of −104.1 nT
per year.
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The relation of magnetic flux to current through a conductor follows a similar equation:

Φ =
µAI

2πd

Where,
Φ = Magnetic flux (Webers)
µ = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 4π × 10−7 for

empty space)
A = Area over which flux is distributed (square meters)
I = Current (Amperes)
d = Distance from conductor (meters)

As this equation makes clear, the amount of magnetic flux surrounding a current-carrying
conductor depends not only on the amount of current, but also on the sampled area, the distance from
the wire, and also the surrounding material. Most10 substances (gas, liquid, solid) have permeability
values greater than that of empty space, and so this means magnetic flux is usually enhanced by the
presence of matter around the current-carrying conductor.

The total magnetic flux enclosed by a circular wire loop follows a similar equation:

Φ =
πµIr

2

Where,
Φ = Magnetic flux (Webers)
µ = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 4π × 10−7 for

empty space)
I = Current (Amperes)
r = Radius of circular loop (meters)

10Interestingly, superconducting materials forbid magnetic fields inside of their bulk, and so the permeability value
of any superconductor must be zero!
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A common form of electromagnet known as a solenoid takes the form of a wire coil wrapped in
such a way as to form a long11 cylinder, often wrapped around a plastic frame, and often with a
ferromagnetic material such as iron in the center:

(µ)

A

l

Solenoid

The amount of magnetic flux, and the flux density, within the interior of a current-carrying
solenoid are given by the following formulae:

Φ =
µNAI

l
B =

µNI

l

Where,
Φ = Magnetic flux (Webers)
B = Magnetic field or flux density (Tesla, Webers per square meter, or Newtons per Ampere-

meter)
µ = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 4π × 10−7 for

empty space)
N = Number of turns of wire in the coil
A = Cross-sectional area of solenoid coil (square meters)
I = Current (Amperes)
l = Length of solenoid coil (meters)

These formulae have interesting implications for solenoid design. Note how a shorter (i.e. smaller
length l) solenoid identical in all other respects will generate a stronger magnetic field for a given
current. Note also how the flux density (B) remains constant with increasing cross-sectional area
(A) if all other factors are equal, and that this necessarily means a greater amount of total magnetic
flux (Φ) for a greater area A.

11These magnetic field formulae apply perfectly to a solenoid coil that is closely-packed (i.e. each turn adjacent to
the next) and infinitely long. Therefore, they only approximate real solenoid behavior. This fact may be understood
by performing a thought experiment where we decrease the solenoid coil’s length to zero, in which case the formulae
predict an infinite amount of magnetism for any amount of current at all, which of course cannot be true.
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Another common form of electromagnet known as a toroid is really just a solenoid bent in a
circle so that its two ends meet12 cylinder, often wrapped around a plastic frame, and often with a
ferromagnetic material such as iron in the center. Toroids have the unusual property of containing
their magnetic flux lines extremely well, unlike solenoids, wires, and simple coils which all radiate
magnetic fields. They find application as energy-storage devices, or as electromagnets suitable for
applying magnetic fields to specimens placed inside the toroid’s cross-section:

(µ)

A
l

Toroid

The amount of magnetic flux, and the flux density, within the interior of a current-carrying toroid
are identical to that within an otherwise identical otherwise identical solenoid having a length (l)
equal to the toroid’s circumference:

Φ =
µNAI

l
B =

µNI

l

Where,
Φ = Magnetic flux (Webers)
B = Magnetic field or flux density (Tesla, Webers per square meter, or Newtons per Ampere-

meter)
µ = Magnetic permeability of the surrounding space (Tesla-meters per Ampere, 4π × 10−7 for

empty space)
N = Number of turns of wire in the coil
A = Cross-sectional area of toroid (square meters)
I = Current (Amperes)
l = Circumference of toroid (meters)

If we wish to substitute toroid radius (r) for circumferential length (l), the formulae become the
following:

Φ =
µNAI

2πr
B =

µNI

2πr

12Again, the magnetic field formulae are only accurate for a toroidal coil that is closely-packed (i.e. each turn
adjacent to the next) and infinitely long, and therefore only approximate real toroid behavior. This fact may be
understood by performing an equivalent thought experiment as before where we decrease the toroid’s circumference
to zero and absurdly end up with infinite magnetism for a finite current.
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Many applications of electromagnetism involve conductive coils wrapped around some form of
ferromagnetic core material, the purpose of that core being to provide a higher-permeability pathway
for the magnetic flux than would exist otherwise through air, and the purpose of the wire coil being
to intensify the amount of magnetism developed by the electric current beyond what would be
possible with a straight current-carrying wire. These magnetic cores typically form a closed loop,
or magnetic circuit for the lines of magnetic flux to naturally form a closed path. A simple example
appears here:

II

iron core

wire coil

Φ

Φ

The amount of magnetic flux (Φ) present in the magnetic “circuit” formed by the iron core
depends on many factors. First and foremost is the amount of electric current (in Amperes) passing
through the wire coil and the number of turns that coil makes around the iron core. The product
of this current and the number of turns is called the magnetomotive force or mmf of the magnetic
circuit, analogous to “electromotive force” or “emf” often used as a synonym for voltage in an electric
circuit. Not surprisingly, the standard metric unit of measurement for magnetomotive force is the
Ampere-turn.

However, magnetomotive force alone does not fully describe the current’s effect on magnetism
within the iron core. The total length of the magnetic circuit is also an important factor, since
a longer path distributes that magnetomotive force over a greater distance. The quotient of
magnetomotive force and magnetic circuit length is called magnetic field intensity, symbolized by
the variable H and expressed in units of Ampere-turns per meter.

Magnetic permeability (µ) relates magnetic field intensity (H) to the magnetic flux density (B)
within the core material, such that a greater permeability will result in higher flux density for any
given amount of field intensity. Permeability is a property of the core material and not its geometry,
mathematically defined as the ratio of flux density to field intensity: µ = B

H

Magnetic reluctance (ℜ) relates magnetomotive force (mmf) to magnetic flux (Φ), and is related
not only to the core material’s permeability but also its geometry. It is mathematically defined as

the ratio of magnetomotive force to magnetic flux: ℜ = mmf
Φ
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If all this seems confusing, you are in good company. Not only are there many magnetic variables,
some related to physical geometry and others not, but there are two different sets of metric units
appropriate for expressing each! The older units were based on the centimeter-gram-second (CGS)
version of the metric system, while the newer units are based on the meter-kilogram-second or SI
(Système International) version of the metric system.

Quantity Symbol SI unit CGS unit

Magnetomotive force mmf Ampere-turn (A-t) Gilbert (Gb)

Flux Φ Weber (Wb) Maxwell (Mx)

Field intensity H Ampere-turns per meter (A-t/m) Oersted (Oe)

Flux density B Tesla (T) Gauss (G)

Permeability µ Tesla-meters per Gauss per

Ampere-turn (T-m/A-t) Oersted (G/Oe)

Reluctance ℜ Ampere-turns per Gilberts per

Weber (A-t/Wb) Maxwell (G/Mx)

Magnetomotive force (mmf) and magnetic flux (Φ) may be thought of as the “raw” measures
of magnetism, with Ampere-turns and Webers being their respective SI metric units. Reluctance
(ℜ) is the ratio of the two for any given magnetic circuit with known dimensions and core material.
Simply put, reluctance tells you how many Ampere-turns of magnetomotive force will be necessary
to create one Weber of magnetic flux in a given space.

Magnetic field intensity (H) and magnetic flux density (B) may be thought of as the “normalized”
measures of magnetism, with Ampere-turns per meter and Tesla being their respective SI metric
units. H and B relate to mmf and flux by the physical dimensions of the magnetic circuit (length
and cross-sectional area, respectively). Permeability is the ratio of the two for any given magnetic
core material. Simply put, permeability tells you how many Tesla of magnetic field (i.e. flux density,
or Webers of flux per square meter or cross-sectional core area) you will obtain for one Ampere-turn
per meter of magnetic field intensity applied to a given core material.

Conversion between the newer SI and the older CGS metric units are as follows:

Quantity Conversion equivalence

Magnetomotive force (mmf) 1 Ampere-turn = 4π
10

Gilberts

Magnetic flux (Φ) 1 Weber = 108 Maxwells

Magnetic field intensity (H) 1 Ampere-turn/meter = 4π
1000

Oersteds

Magnetic flux density (B) 1 Tesla = 104 Gauss

Permeability (µ) 1 Tesla-meter/Ampere-turn = 10
7

4π
Gauss/Oersteds

Reluctance (ℜ) 1 Ampere-turn/Weber = 4π
109 Gilberts/Maxwell
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5.6 Derivation of electron drift velocity

Electrons typically drift at a very slow velocity through an electrical conductor, even when the
current value is rather large. To illustrate, we will analyze a case where 200 Amperes of current
passes through a solid copper bar with a cross-sectional area of 1 square centimeter. We must
imagine this copper bar as being part of a larger circuit complete with a source, because an open-
ended metal bar obviously does not comprise a circuit for a continuous current to pass nor does it
provide any energy to motivate a current:

Solid copper bar

I = 200 Amperes

1 cm

1 cm

Our analysis will proceed as follows:

1. Calculate the number of charge carriers within one cubic centimeter of this bar (i.e. 1
centimeter of the bar’s length, given a 1 cm2 cross-sectional area)

2. Calculate the drift rate of the current (200 Amperes) in charge carriers per second

3. Divide the carrier drift rate (carriers/second) by the carrier density (carriers/cm3) to find the
volumetric drift rate in cubic centimeters per second

4. Divide the volumetric drift rate in (cm3/sec) by the cross-sectional area (1 cm3) to find the
drift velocity in linear centimeters per second

Note that most values will be shown rounded to two significant figures for the sake of brevity,
but the actual calculations will be performed with many more significant figures in order to avoid
unnecessary rounding errors.

First, calculating the number of charge carriers within 1 cm3 of solid copper. The density of
solid copper metal is 8900 kg per cubic meter, or 8,900,000 grams per cubic meter. Converting this
into grams per cubic centimeter by using the “unity fraction” method of unit cancellation:

(

8900000 g

m3

)(

1 m

100 cm

)3

=
8.9 g

cm3

The atomic weight of copper (found in a Periodic Table of the Elements) is 63.546 amu, or 63.546
grams per mole. We will use this figure to determine the number of moles of copper atoms within
our 1 cm3 volume of solid copper:

(

8.9 g

cm3

)(

1 mol

63.546 g

)

=
0.14 mol

cm3
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1 mole of anything is 6.022 × 1023 units, so we may calculate the number of individual copper
atoms in our 1 cm3 sample by multiplying 0.14 moles by this number:

(

0.14 mol

cm3

)(

6.022 × 1023 atoms

mol

)

=
8.4 × 1022 atoms

cm3

Each copper atom possesses one “free” electron in its valence shell, which means our 1 cm3

sample of the copper bar contains 8.4 × 1022 free charges (electrons).

One Ampere of electric current is equal to 6.2 × 1018 individual charges passing by per second
of time. 200 Amperes of current is therefore equal to:

(

200 A

1

)(

6.2 × 1018 electrons / sec

1 A

)

=
1.2 × 1021 electrons

sec

Dividing this electron flow rate by the volumetric density of electrons within copper will yield a
volumetric flow rate in cubic centimeters’ worth of electrons per second:

1.2 × 1021 electrons / sec

8.4 × 1022 electrons / cm
3

=
0.015 cm3

sec

Dividing this volumetric charge flow rate by the bar’s cross-sectional area yields the linear drift
velocity in centimeters per second:

0.015 cm3 / sec

1 cm2
=

0.015 cm

sec
Converting into centimeters per minute:

(

0.015 cm

sec

)(

60 sec

1 min

)

=
0.88 cm

min

As you can see, the average drift velocity of electrons through this copper bar is quite slow, even
for a relatively high13 amount of current. At this velocity, the electrons will take over a minute’s
worth of time to move just 1 centimeter along the bar’s length!

Solid copper bar

I = 200 Amperes

1 cm

1 cm

v = less than 1 centimeter per minute

13For reference, 200 Amperes is the maximum amount of current most North American households are rated to
consume in total.
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5.7 Time delay circuits and Thévenin’s/Norton’s Theorems

Circuits containing resistors along with capacitors or inductors typically result in voltage and current
values that vary over time. Determining starting and final values for these parameters, as well as
calculating the “time constant” (τ = RC = L

R
) can be challenging especially if the circuit in question

consists of more than just a single resistor, single source, and single reactive (C or L).

Take for example the following two RC circuits, each one containing one capacitor but two
resistors:

+
− R1

R2

V1
+
− R1

R2

V1C C

If the capacitor begins in a completely de-energized state with the switch in the open position,
capacitor voltage for each circuit is guaranteed to begin at 0 Volts because energy stored in any
capacitance always manifests as a voltage across that capacitance. When we close the switch, we
would expect the capacitor in both circuits to begin energizing as they absorb energy from the
voltage source V1, and this means their voltages will rise over time. However, what is not as clear
upon first inspection is what the final voltage will be for either capacitor after the switch has been
left in its closed state for a long time, as well as how we might calculate the time constant τ = RC

given the fact each circuit has two resistors and not just one.
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Obviously, an RC circuit containing just one resistor and one capacitor instead of two resistors and
one capacitor would be simpler to analyze, so why don’t we just apply either Thévenin’s Theorem or
Norton’s Theorem to each circuit in order to reduce it to just a single source and single resistance?
Choosing the capacitor to be the load, we will convert the rest of each circuit into its Thévenin
equivalent:

+
− R1

R2

V1
+
− R1

R2

V1

Convert to equivalent network

+
−VTh

RTh

+
−VTh

RTh

Equal to R2 Equal to R
1
 || R2

Equal to V1 
R1

R1 + R2

Recall that determining either the Thévenin or the Norton equivalent resistance of any complex
network consists of disabling all sources in the original circuit and determining resistance as measured
from load terminal to load terminal. In the left-hand circuit the disabled V1 is replaced by a short
which completely bypasses R1 and leaves only R2 remaining. In the right-hand circuit the disabled V1

(again, replaced by a short) causes R1 and R2 to be in parallel with each other from the perspective
of the two load terminals. Thus, the time constant for the left-hand circuit is simply τ = R2C while
the time constant for the right-hand circuit will be τ = C

1

R1
+ 1

R2

.

Recall that determining the Thévenin equivalent voltage of any complex network consists of
calculating voltage from one load terminal to the other with all original sources active. Here we see
that the left-hand circuit’s open-circuit load terminal voltage must simply be V1, while the right-
hand circuit’s open-circuit terminal voltage will be the result of V1 powering a two-resistor voltage
divider.

Re-attaching the capacitor C to the load terminals of the Thévenin equivalent networks results
in a pair of simpler circuits to analyze, where the time constant in each case is τ = RThC and the
final capacitor voltage after full energization is VTh.
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Norton’s Theorem, of course, works just as well as Thévenin’s Theorem for this purpose. To
illustrate, we will apply Norton’s Theorem to a pair of resistor-inductor circuits to determine how
multiple resistors affect the inductors’ energization:

+
− R1

R2

V1
+
−

R1

R2

V1 R3L L

Removing the inductor from each circuit and converting the remaining networks into Norton
equivalents:

+
− R1

R2

V1
+
−

R1

R2

V1

Convert to equivalent network

Equal to R2

R3

Equal to R3 || (R1 + R2)RN RN

Equal to
V1

R1 + R2

ININ

Equal to
V1

R2

The process for determining Norton equivalent resistance is exactly the same as it is for Thévenin
equivalent resistance: simply disable all original sources and determine what an ohmmeter would
register if connected between the two load terminals. In the left-hand circuit we see once again that
R1 is of no effect to the Norton equivalent value of RN , while in the right-hand circuit RN is a
series-parallel combination of the three original resistors.

Recall that determining the Norton equivalent current of any complex network consists of
calculating current passing through a shorting wire placed between the two load terminals with
all the original sources active. In the left-hand circuit we see that this short-circuit current is the
limited only by R2 and so IN = V1

R2

. In the right-hand circuit we see only R1 and R2 serving to

limit current, and so IN = V1

R1+R2

.
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Re-attaching the inductor L to the load terminals of the Norton equivalent networks results in
a pair of simpler circuits to analyze, where the time constant in each case is τ = L

RN
and the final

inductor current after full energization is IN .



Chapter 6

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

99
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6.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.
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Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x

or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.
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After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.
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learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.
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6.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.
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More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.
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Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC

6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.
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assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.
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If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.
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6.3 Modeling inverse exponential growth and decay using
C++

Many different types of physical systems, including capacitor and inductor circuits, often exhibit
a phenomenon known as inverse exponential growth and decay, where variables asymptotically7

approach final values over time. Consider the following two circuits, one capacitive and the other
inductive, both components receiving an input of energy from a source:
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Capacitors store energy as a function of voltage (manifest as an electric field), while inductors
store energy as a function of current (manifest as a magnetic field). In both circuits, the reactive
component receives energy from the source over time, which explains the capacitor’s rising voltage
and the inductor’s rising current. The other variable in each circuit (i.e. current for the capacitor
and voltage for the inductor) is a function of the rate at the energy-related variable grows, and so
these variables approach zero as the energy-related variables level off at some terminal value.

In each case, the decreasing variable is said to decay to zero over time, and its path has the same
shape as an inverse exponential function, e−t. As time progresses (i.e. t grows larger), the value of
e−t diminishes. The full formula for each circuit includes a term for the initial (peak) value as well
as the time constant (τ) of the circuit:

IC = I0e
− t

τ

VL = V0e
− t

τ

In each case, the increasing variable is said to experience inverse exponential growth, and its
shape appears to be a mirror-image of the decaying variable. Mathematically, the inverse growth
function is simply the complement of the decay function, 1− e−t. As time progresses (i.e. larger t),
the value of e−t approaches zero and the value of 1 − e−t approaches 1. The amount of time equal
to one time constant (τ) is the time required for the variable in question to go 63.2% (1 − e−1) of

7An asymptote is a mathematical concept, consisting of a fixed value which some other variable approaches closer
and closer but never fully attains.
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the way from its starting value to its final (asymptote) value. For any variable decaying to zero, this
is the time required to reach 36.8% (e−1) of its starting value.

These exponential functions are not limited to describing capacitor and inductor circuits, but
are actually useful for a wide range of physical systems. The decay of a hot object’s temperature8,
for example, follows the same e−t trajectory.

We may employ a simple computer program to repeatedly calculate percentage values for such
rising and decaying variables as time (t) progresses from zero to ten (measured in whole-multiples of
time constants). This is a very good application for a computer, as it relieves us of both the tedium
and the many opportunities for error faced with repeatedly calculating e−t and 1 − e−t.

The “source code” for this computer program, written in the C++ language, is shown here
containing all the instructions necessary to tell the computer how to perform these repeated
calculations and display the results on the console:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float initial, x, t;

initial = 100.0; // This sets the initial value to 100%

cout.precision(4);

cout.setf(ios::fixed, ios::floatfield);

cout << "Time \t\t" << "Falling \t" << "Rising" << endl;

for (t = 0.0; t <= 10 ; t = t + 1.0)

{

x = initial * exp(-t);

cout << t << " tau \t";

cout << x << "\% \t";

cout << 100.0 - x << "\%" << endl;

}

return 0;

}

8In fact, this is referred to as Newton’s Cooling Law.
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Let’s analyze the lines of code within this short C++ program, touching on the following
programming principles:

• Reading/execution order

• Preprocessor directives (#include) and namespace

• The main function

• Delimiter characters (e.g. { } ;)

• Variable declarations

• float and int data types and variable names

• Variable initialization and assignment (e.g. =)

• The cout instruction

• for loops

• Mathematical functions

• Return

As with most text-based programming languages, C and C++ alike are read by the compiler
software and executed in the same order one reads an English-language document: left to right
character by character, and top to bottom line by line.

The first three lines (#include and using namespace) direct the compiler software on how to
interpret much of what follows. The using line tells the compiler to use the “standard” namespace9

convention for C++, while the two previous lines (called preprocessor directives) request the contents
of the iostream and math header files to be included when compiling the code into an executable
file. For example, the cout instruction is defined within iostream while the exp function is defined
within math.

All C++ programs have a main function marking the starting point of execution. All of our
circuit-modeling code appears between the main function’s curly-brace ({ }) symbols, those symbols
denoting the boundaries of the main function. This particular main function is defined here as
returning an integer number value (int) when complete, and it requires no input of information
(void).

In C, C++, and some other languages such as Java, parentheses and “curly-brace” symbols
serve to group certain types of information together, much the same as parentheses and brackets
group terms together in mathematical formulae. Parentheses immediately following a function name
enclose arguments to that function: i.e. data that function must act upon. Curly-brace symbols
define the starting and ending points for lines of code to be executed within a given function.

9Namespaces are a concept found in C++ but not in its predecessor language C. Without getting too detailed,
namespaces allow advanced programmers to redefine the meaning of certain key instructions and functions within the
language for their own purposes. In this simple program we are doing no such thing, and so we instruct the compiler
to use the standard (std) namespace of C++.
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The line beginning with float reserves space in the computer’s memory for three floating-point
variables. “Floating-point” is a type of digital numeration useful for expressing non-integer values
both large and small. C++ permits variable names ranging from single letters (e.g. x) to entire
words (e.g. initial).

This declaration line ends with a semicolon delimiter (;) telling the compiler where the line ends,
which is important because neither C nor C++ takes heed of “whitespace” in the source file. You
might think of the C/C++ semicolon as being the programming-language equivalent of a period at
the end of an English sentence. If not for these semicolons, the compiler would treat all the lines as
being a single, continuous line in the same way you would read unterminated lines in a page of text
as part of a long sentence. You will notice most of the lines of code end with semicolons, exceptions
being main (because its curly-brace symbols serve the same purpose) and the #include directives
which are technically set-up instructions for the compiler and not executed at run-time.

Immediately following the declaration line is a line of code initializing one of those variables with
a numerical value, in this case setting the initial value to 100.0 which will represent 100% of source
voltage or current in a capacitive or inductive circuit. In C and C++, a single “equals” symbol (=)
signifies assignment rather than the conventional mathematical meaning of equality. Whenever you
see a single equals symbol in C or C++, think “set equal to”.

Several lines of code in this short program begin with cout which is the C++ instruction for
outputting text to the computer’s console display. When cout is accompanied by the “put to”
operator (<<) it means that instruction will output either verbatim text or text-control characters
(enclosed in quotation marks) or the numerical values of any variables referenced by cout. Text-
control characters include t (tab) instructing a horizontal shift in text and endl (end-line) signifying
the end of line line and the beginning of another as displayed on the computer’s console.

Those cout lines lacking “put to” (<<) operators instruct subsequent instances of cout how to
behave. For example, cout.precision(4) tells cout to display every numerical output at four
decimal places to the right of the decimal point. In the next line of code, cout.setf(ios::fixed,
ios::floatfield) instructs cout to used a fixed-point notation when displaying numbers. Both of
these formatting instructions will make the program’s displayed text look neater on the computer’s
console, but neither is strictly necessary if all we care about is function and not appearance.

All the interesting operations occur within the for loop, where time (t) is incremented from 0 to
10 in steps of 1, and the computer calculates e−t with the function exp(-t). In C and C++, a for

loop instructs the computer to repeat certain lines of code (enclosed in another set of curly-braces)
while a particular variable changes from one value to another. In this particular case the variable
in question is t, starting at a value of 0.0 and incrementing by 1.0 with each new iteration of the
for loop. The loop repeats so long as t is equal to or less than 10.0.

Three cout lines contained within the for loop work together to generate a single line of printed
text. The first cout prints the time variable (t), the next cout prints the value of the “falling”
variable x, and the last cout prints the value of the “rising” variable which is simply the complement
of x. A single endl control character is printed with that last cout instruction to terminate the line
and prepare for a new line of text with the next iteration of the for loop.

Finally, the last line of code in this program returns an integer value of zero as the main function
successfully completes. This is not strictly necessary, but is a good programming practice.
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When compiled and executed, this program prints the percentage values of the rising and falling
quantities over a timespan of zero to ten time constants (i.e. 0 to 10τ). It is instructive to compare
this text output to the lines of code previously shown, and to follow the execution path of the code
in your mind. For example, a careful examination of the code should reveal to you why we only see
one line reading Time Falling Rising but several lines of numbers:

Time Falling Rising

0.0000 tau 100.0000% 0.0000%

1.0000 tau 36.7879% 63.2121%

2.0000 tau 13.5335% 86.4665%

3.0000 tau 4.9787% 95.0213%

4.0000 tau 1.8316% 98.1684%

5.0000 tau 0.6738% 99.3262%

6.0000 tau 0.2479% 99.7521%

7.0000 tau 0.0912% 99.9088%

8.0000 tau 0.0335% 99.9665%

9.0000 tau 0.0123% 99.9877%

10.0000 tau 0.0045% 99.9955%

At the very start (t = 0) the falling variable is at its maximum value of 100% and the rising
variable is at zero. After one time constants’ worth of time (t = τ) the falling variable has fallen well
over half-way to a value of approximately 36.8% of its initial value. At that same time the rising
variable has risen well over half-way to just over 63.2%. After ten time constants’ worth of time
(t = 10τ) we can see both variables are a small fraction of a percent away from their final values.

The first point in time where we see the variables come within one percent of their final values
is at t = 5τ . This is why students are commonly taught that the variables have “settled” for all
practical purposes after five time constants. It is important to understand, however, that there is
nothing truly significant about 5τ . Five just happens to be the first whole-number multiple of τ

where the variables approach their final values to within the completely arbitrary threshold of 1%.
Just to be clear on this point: the rising and falling variables indeed settle to within 1% of their
final values after five time constants’ worth of time has passed, but their exact value at 5τ is not
1%, nor do they reach the 1% threshold after exactly 5τ , and they certainly are not fully settled
by then. The rest of this section is devoted to overturning these misconceptions by modeling the
inverse exponential functions in greater detail.
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We could alter our program to take smaller steps in time, incrementing t by steps of 0.4 instead
than by steps of 1, if we wished to take a closer look at exactly when these falling and rising variables
come within 1% of their final values. We need only alter one line of code to do this, the conditions
controlling execution of the for loop:

for (t = 0.0; t < 10 ; t = t + 0.4)

Now when we re-compile and run this program, we obtain a much more precise table of numbers:

Time Falling Rising

0.0000 tau 100.0000% 0.0000%

0.4000 tau 67.0320% 32.9680%

0.8000 tau 44.9329% 55.0671%

1.2000 tau 30.1194% 69.8806%

1.6000 tau 20.1897% 79.8103%

2.0000 tau 13.5335% 86.4665%

2.4000 tau 9.0718% 90.9282%

2.8000 tau 6.0810% 93.9190%

3.2000 tau 4.0762% 95.9238%

3.6000 tau 2.7324% 97.2676%

4.0000 tau 1.8316% 98.1684%

4.4000 tau 1.2277% 98.7723%

4.8000 tau 0.8230% 99.1770%

5.2000 tau 0.5517% 99.4483%

5.6000 tau 0.3698% 99.6302%

6.0000 tau 0.2479% 99.7521%

6.4000 tau 0.1662% 99.8338%

6.8000 tau 0.1114% 99.8886%

7.2000 tau 0.0747% 99.9253%

7.6000 tau 0.0500% 99.9500%

8.0000 tau 0.0335% 99.9665%

8.4000 tau 0.0225% 99.9775%

8.8000 tau 0.0151% 99.9849%

9.2000 tau 0.0101% 99.9899%

9.6000 tau 0.0068% 99.9932%

10.0000 tau 0.0045% 99.9955%

This simulation proves 5τ is not the true point at which we get within 1% of final value, since
we see the values come within 1% after only 4.8 time constants.



6.3. MODELING INVERSE EXPONENTIAL GROWTH AND DECAY USING C++ 115

We may focus our computer simulation even tighter by altering the for loop conditions once
again for finer resolution (and more limited range, so as to not generate an enormously long table
of values):

for (t = 4.55; t < 4.7 ; t = t + 0.01)

The result, when compiled and run again is as follows:

Time Falling Rising

4.5500 tau 1.0567% 98.9433%

4.5600 tau 1.0462% 98.9538%

4.5700 tau 1.0358% 98.9642%

4.5800 tau 1.0255% 98.9745%

4.5900 tau 1.0153% 98.9847%

4.6000 tau 1.0052% 98.9948%

4.6100 tau 0.9952% 99.0048%

4.6200 tau 0.9853% 99.0147%

4.6300 tau 0.9755% 99.0245%

4.6400 tau 0.9658% 99.0342%

4.6500 tau 0.9562% 99.0438%

4.6600 tau 0.9466% 99.0534%

4.6700 tau 0.9372% 99.0628%

4.6800 tau 0.9279% 99.0721%

4.6900 tau 0.9187% 99.0813%

With this closer view we see the values come within 1% of final closer to 4.61 time constants.
In other words, 5τ is a rather coarse rounding-off of the true time value for settling within 1%.

Of course, the best way to determine how long it takes for these variables to come within 1% of
their final values is to algebraically solve for t with the decay function set equal to 0.01 (i.e. 1%):

0.01 = e−t

ln 0.01 = −t

t = − ln 0.01

t = 4.605170186

It should be clear by now that the frequently-taught rule of “settled within five time constants”
is a rounded-off estimation based on an arbitrary threshold and should be regarded as such. In any
timing applications requiring precision, the rule of 5τ just isn’t good enough and you will need to
actually calculate t.
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6.4 Modeling inverse exponential growth and decay using
Python

This very simple Python script shows the value of the e−x and 1 − e−x functions, using an infinite
loop to obtain different values of x from the human user of the script:

from math import *

while True:

x = float(input("x = "))

print("e^(-x) =", exp(-x))

print("1 - e^(-x) =", 1 - exp(-x))

print(" ")

To execute this script on a computer with Python installed, save the script as a plain-text file
to some filename such as script.py and then from the command line interface type the command
python3 script.py to execute that script using version 3 of the Python language.

Here is an example showing the script’s output with user-entered values of 0, 1, 2, 3.5, and 6 for
x:

x = 0

e^(-x) = 1.0

1 - e^(-x) = 0.0

x = 1

e^(-x) = 0.36787944117144233

1 - e^(-x) = 0.6321205588285577

x = 2

e^(-x) = 0.1353352832366127

1 - e^(-x) = 0.8646647167633873

x = 3.5

e^(-x) = 0.0301973834223185

1 - e^(-x) = 0.9698026165776815

x = 6

e^(-x) = 0.0024787521766663585

1 - e^(-x) = 0.9975212478233336
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The mathematical instruction in Python for raising e to some exponent is the exponential function
exp(). Whatever value is inside the parentheses of this function is the exponent. Therefore, exp(-1)
instructs the computer to calculate e−1.
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6.5 Modeling an energizing inductor using C++

Here is an example C++ program intended to calculate voltage and current for an energizing
inductor:

#include <iostream>

#include <cmath>

using namespace std;

int main (void)

{

float v1, r1, l1, i, vr1, vl1, tau, t, incr;

t = 0.0;

incr = 20e-6;

v1 = 10.00;

r1 = 3.3e3;

l1 = 100e-3;

cout << "+---V1---R1---L1---+ " << endl;

cout << "| | " << endl;

cout << "+------------------+ " << endl;

cout << "V1 = " << v1 << " Volts" << endl;

cout << "R1 = " << r1 << " Ohms" << endl;

cout << "L1 = " << l1 << " Henrys" << endl;

tau = l1 / r1;

// This "FOR" loop repeats until the resistor’s

// voltage reaches 99% of the source voltage

for (t = 0.00 ; vr1 < (0.99 * v1) ; t = t + incr)

{

vl1 = v1 * exp(-t / tau);

vr1 = v1 - vl1;

i = vr1 / r1;

cout << endl;

cout << "Time = " << t << " Seconds" << endl;

cout << " I = " << i << " Amperes" << endl;

cout << " VR1 = " << vr1 << " Volts" << endl;

cout << " VL1 = " << vl1 << " Volts" << endl;

}
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return 0;

}

Note the use of a for “loop” in the code, commanding the computer to repeat a set of instructions
so long as some condition is met. In this case, the condition is that the resistor’s voltage is less
than 99% of the source voltage, as described within the text of the code by the comment lines
(those two lines of text preceded by double forward-slash characters). Note also the use of the

exponential function (exp) used to compute e
−t

τ , which requires an additional “include” statement
at the beginning of the code (#include <cmath>) which gives the compiler access to descriptions
of mathematical functions more advanced than those defined within iostream.

When compiled and executed, this program generates the following output:

+---V1---R1---L1---+

| |

+------------------+

V1 = 10 Volts

R1 = 3300 Ohms

L1 = 0.1 Henrys

Time = 0 Seconds

I = 0 Amperes

VR1 = 0 Volts

VL1 = 10 Volts

Time = 2e-05 Seconds

I = 0.00146409 Amperes

VR1 = 4.83149 Volts

VL1 = 5.16851 Volts

Time = 4e-05 Seconds

I = 0.0022208 Amperes

VR1 = 7.32865 Volts

VL1 = 2.67135 Volts

Time = 6e-05 Seconds

I = 0.00261191 Amperes

VR1 = 8.61931 Volts

VL1 = 1.38069 Volts

Time = 8e-05 Seconds

I = 0.00281406 Amperes

VR1 = 9.28639 Volts
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VL1 = 0.713613 Volts

Time = 1e-04 Seconds

I = 0.00291854 Amperes

VR1 = 9.63117 Volts

VL1 = 0.368832 Volts

Time = 0.00012 Seconds

I = 0.00297254 Amperes

VR1 = 9.80937 Volts

VL1 = 0.190631 Volts

Time = 0.00014 Seconds

I = 0.00300045 Amperes

VR1 = 9.90147 Volts

VL1 = 0.098528 Volts
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6.6 Solving RC and LR circuit differential equations using
C++

A differential equation is a mathematical equation containing both a variable and at least one of
its derivatives (i.e. its rate-of-change). Differential equations are extremely useful for describing
a wide range of physical phenomena including the energization and de-energization of energy-
storing components such as capacitors and inductors. While differential equations require calculus
techniques to solve analytically, their solutions may be approximated quite closely using repeated
calculations of simple arithmetic. Computers excel at doing such tasks, and so here we will view
multiple programs written in C++ to solve for voltages and currents in resistor-capacitor and
resistor-inductor networks.

Each of these programs outputs data in comma-separated variable (CSV) text format, suitable
for plotting using mathematical visualization software such as gnuplot or spreadsheets such as
Microsoft Excel.
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6.6.1 Differential equation solver for an RC circuit and voltage source

#include <iostream>

#include <cmath>

using namespace std;

/* Schematic:

+-----R-----+

| |

Vs C Ic = C dVc/dt

| |

+-----------+

*/

int main (void)

{

double Ic, C = 33e-6, R = 10e3, Vr, Vs = 0.0, Vc = 10.0, dVc, t, dt = 0.0001;

cout << "Time , Vc" << endl;

for (t = 0 ; t < 2.0 ; t = t + dt)

{

Vr = Vs - Vc; // Kirchhoff’s Voltage Law

Ic = Vr / R; // Ohm’s Law

dVc = dt * (Ic / C); // I = C dV/dt "Ohm’s Law" for capacitors

Vc = Vc + dVc; // Integrating capacitor voltage from small changes

cout << t << " , " << Vc << endl;

}

return 0;

}

With the initialized values shown in the double line of this program, it will compute capacitor
voltages at 0.1 millisecond intervals assuming an initial capacitor voltage of 10 Volts and discharging
toward zero volts (i.e. the voltage source value Vs is set to 0.0). Of course, any combination of Vs
and initial Vc values will work perfectly well, as this program will show the gradual progression from
initial to final voltage over time.
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6.6.2 Differential equation solver for an RC circuit and current source

#include <iostream>

#include <cmath>

using namespace std;

/* Schematic:

+-----+-----+

| | |

Is R C I = C dVc/dt

| | |

+-----+-----+

*/

int main (void)

{

double Ic, C = 33e-6, R = 10e3, Is = 1e-3, Ir, Vc = 0.0, dVc, t, dt = 0.0001;

cout << "Time , Vc" << endl;

for (t = 0 ; t < 2.0 ; t = t + dt)

{

Ir = Vc / R; // Ohm’s Law

Ic = Is - Ir; // Kirchhoff’s Current Law

dVc = dt * (Ic / C); // I = C dV/dt "Ohm’s Law" for capacitors

Vc = Vc + dVc; // Integrating capacitor voltage from small changes

cout << t << " , " << Vc << endl;

}

return 0;

}

With the initialized values shown in the double line of this program, it will compute capacitor
voltages at 0.1 millisecond intervals assuming an initial capacitor voltage of 0 Volts and charging
toward 10 Volts (i.e. the source current of 1 milliAmpere passing entirely through the 10 kΩ resistor
once the capacitor reaches full voltage). Of course, any combination of source current (Is) and
initial capacitor voltage Vc values will work perfectly well, as this program will show the gradual
progression from initial to final voltage over time.
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6.6.3 Differential equation solver for an LR circuit and voltage source

#include <iostream>

#include <cmath>

using namespace std;

/* Schematic:

+-----R-----+

| |

Vs L Vl = L dIl/dt

| |

+-----------+

*/

int main (void)

{

double Vl, L = 50.0, R = 100.0, Vs = 100.0, Vr, Il = 0.0, dIl, t, dt = 0.0001;

cout << "Time , Il" << endl;

for (t = 0 ; t < 2.0 ; t = t + dt)

{

Vr = Il * R; // Ohm’s Law

Vl = Vs - Vr; // Kirchhoff’s Voltage Law

dIl = dt * (Vl / L); // V = L dI/dt "Ohm’s Law" for capacitors

Il = Il + dIl; // Integrating inductor current from small changes

cout << t << " , " << Il << endl;

}

return 0;

}

With the initialized values shown in the double line of this program, it will compute inductor currents
at 0.1 millisecond intervals assuming zero initial inductor current and charging toward 1 Ampere
(i.e. the voltage source value Vs of 100 Volts divided by 100 Ohms). Of course, any combination of
Vs and initial Il values will work perfectly well, as this program will show the gradual progression
from initial to final current over time.
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6.6.4 Differential equation solver for an LR circuit and current source

#include <iostream>

#include <cmath>

using namespace std;

/* Schematic:

+-----+-----+

| | |

Is R L Vl = L dIl/dt

| | |

+-----+-----+

*/

int main (void)

{

double Vl, L = 50.0, R = 100.0, Is = 100e-3, Ir, Il = 0.0, dIl, t, dt = 0.0001;

cout << "Time , Il" << endl;

for (t = 0 ; t < 2.0 ; t = t + dt)

{

Ir = Is - Il; // Kirchhoff’s Current Law

Vl = Ir * R; // Ohm’s Law

dIl = dt * (Vl / L); // V = L dI/dt "Ohm’s Law" for capacitors

Il = Il + dIl; // Integrating inductor current from small changes

cout << t << " , " << Il << endl;

}

return 0;

}

With the initialized values shown in the double line of this program, it will compute inductor
currents at 0.1 millisecond intervals assuming zero initial inductor current and charging toward 100
milliAmperes. Of course, any combination of Is and initial Il values will work perfectly well, as
this program will show the gradual progression from initial to final current over time.
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Chapter 7

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

127
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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7.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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7.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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7.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Thought experiments as a problem-solving strategy

Magnetic field

Energy

Conservation of Energy

Inductance

Permeability

Inductor

Electrical source

Electrical load

“Ohm’s Law” for inductance

Current stabilization

Ohm’s Law



134 CHAPTER 7. QUESTIONS

Kirchhoff’s Current Law

Time constant

Magnetic hysteresis

Magnetic saturation

Inductor current limit

Parasitic capacitance

Inductor physical size

Series versus parallel inductances

Mutual inductance
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7.1.3 Magnetic flux lines

Draw the pattern of the magnetic field produced by electric current through a straight wire and
through a wire coil:

str
aig

ht
 w

ire

wire coil

Challenges

• Demonstrate how the “right hand rule” applies to these scenarios.

7.1.4 Wirewound resistor

One way to manufacture a precision resistor is to precisely cut a length of wire having a known
amount of resistance per unit length, and package that wire into a tightly-wound coil in order to
conserve space. However, wrapping a wire into a coil shape will create inductance, and in the case
of a precision resistor we only want resistance.

Devise a method for wrapping resistive wire in such a manner that it will exhibit negligible
inductance.

Suppose you needed to determine whether or not a wirewound resistor was non-inductive prior
to installing it in a precision circuit, but you had no part number or other reference with which to
research the design or specifications of this resistor. All you have is the resistor, a multimeter, and
basic electronic lab equipment (power supplies, breadboards, etc.). Devise a procedure for testing
the inductance (or non-inductance) of this resistor.

Challenges

• If you were tasked with forming a custom-made precision resistor in this manner, how would
you proceed? What information would you need to know, and what steps would you follow to
build the resistor?
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7.1.5 Impossibility of storing an energized inductor

Capacitors and inductors are both capable of storing energy, of acting as either electrical sources
or electrical loads. For example, it is possible to energize (“charge”) a capacitor, then place that
capacitor on a shelf for a long period of time, and later demonstrate that some energy is still retained
inside the capacitor.

Why is this practically impossible to do with an inductor: “charge” it up, place it on a shelf,
and some time later measure the presence of stored energy within that inductor?

Challenges

• Suppose finances and technology were not barriers. Could such an experiment be run to prove
the concept of storing energy within an inductor for some indefinite period of time?
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7.1.6 Inductor as source versus load

Suppose an inductor is connected directly to an adjustable-current source, and the current of that
source is steadily increased over time. We know that an increasing current through an inductor will
produce a magnetic field of increasing strength. Does this increase in magnetic field constitute an
accumulation of energy in the inductor, or a release of energy from the inductor? In this scenario,
does the inductor act as a load or as a source of electrical energy?

Current increasing

Now, suppose the adjustable current source is steadily decreased over time. We know this will
result in a magnetic field of decreasing strength in the inductor. Does this decrease in magnetic field
constitute an accumulation of energy in the inductor, or a release of energy from the inductor? In
this scenario, does the inductor act as a load or as a source of electrical energy?

Current decreasing

For each of these scenarios, label the direction of current in the circuit.

Challenges

• Identify factors influencing the voltage’s magnitude in each circuit.
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7.1.7 Inductor charging circuit

A practical strategy for quantitatively analyzing inductor circuits is to first qualitatively determine
the trajectories of energy, voltage, and current values over time based on first principles (e.g. Ohm’s
Law, Kirchhoff’s Laws, and the fact that inductive energy storage is a function of inductor current).
Once you have done this, you will better know which equation(s) to use for quantitative analysis.
A common mistake made in these types of problems is to plug numbers into equations without
first reasoning why those equations are appropriate, so the point of this exercise is to build sound
problem-solving habits!

Try qualitatively determining the following parameters in this simple resistor-inductor circuit at
three different times: (1) just before the switch closes, (2) at the instant the switch contacts touch,
and (3) after the switch has been closed for a long time. Assume that the inductor begins in a
completely de-energized state:

R R

switch closes:
Before the At the instant of

switch closure:

R

has closed:
Long after the switch

LLL

Express your answers qualitatively: “maximum,” “minimum,” or perhaps “zero” if you know
that to be the case.

Before the switch closes:
EL (energy stored in inductor) =
VL =
VR =
Vswitch =
I =

At the instant of switch closure:
EL (energy stored in inductor) =
VL =
VR =
Vswitch =
I =
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Long after the switch has closed:
EL (energy stored in inductor) =
VL =
VR =
Vswitch =
I =

Also sketch a qualitative graph showing VL and I in this circuit over time:

Switch flips

Time

V, I

Note: you may find the following equations conceptually useful:

EL =
1

2
LI2 V = L

dI

dt

Also, identify how the following foundational concepts apply to this circuit:

• How does the Conservation of Energy help explain the inductor’s current at the instant of
switch closure?

• How does Kirchhoff’s Voltage Law apply to the circuit before the switch closes?

• How does Kirchhoff’s Voltage Law apply to the circuit after the switch closes?

Challenges

• Explain how the Conservation of Energy relates to changes in voltage and current for an
inductor.
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• In this experiment, is the inductor absorbing energy or releasing energy? How can we tell?

• Explain what will happen in the circuit when the switch is re-opened after the switch has been
closed for a long period of time.

• Explain how drawing multiple versions of a circuit and annotating conditions before and after
switch actuation is a helpful problem-solving strategy for any time-delay circuit.
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7.1.8 A shocking experience

Many years ago, I decided to experiment with electromagnetism by making an electromagnet out
of a spool of wire. I placed a steel bolt through the center of the spool so as to have a core of
high permeability, and passed current from a battery through the wire to make a magnetic field.
Not having any “jumper” wires, I held the wire ends of the spool in contact with the 9-volt battery
terminals, one in each hand.

The electromagnet worked just fine, and I was able to move some steel paper clips with the
magnetic field generated by it. However, when I broke the circuit by releasing one of the wire
ends from the battery terminal it was touching, I received a small electric shock! Shown here is a
schematic diagram of me, in the circuit:

Break in circuit

At the time, I didn’t understand how inductance worked. I only understood how to make
magnetism with electricity, but I didn’t realize a coil of wire could generate (high voltage!) electricity
from its own magnetic field. I did know, however, that the 9 Volts output by the battery was much
too weak to shock me (yes, I touched the battery terminals directly to verify this fact), so something
in the circuit must have generated a voltage greater than 9 Volts.

If you had been there to explain what just happened to the younger version of me, what would
you say?

Challenges

• Describe a safer way to conduct this experiment.

• Do you suppose this experiment could have proven lethal under the right circumstances?
Explain why or why not.
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7.1.9 Delayed relay action

Electromechanical relays are extremely useful devices, but they have their idiosyncrasies. One of
them is a consequence of the fact that the relay’s coil acts as an inductor, storing energy in its
magnetic field.

In the following circuit, a relay is used to switch power to a large electric motor, while being
controlled by a light-duty pushbutton switch:

Relay

Mtr

The problem here is every time the pushbutton switch is released, the contacts arc significantly.
This happens because the inductor releases all of its stored energy as a high-voltage spark across
the opening contacts. Inductive kickback is the phrase commonly used to describe this effect, and
over time it will prematurely destroy the switch.

An electronics technician understands the nature of the problem and proposes a solution. By
connecting a light bulb in parallel with the relay coil, the coil’s energy now has a safer place to
dissipate whenever the pushbutton switch contacts open:

Relay

Mtr

Instead of that stored energy manifesting itself as a high-voltage arc at the switch, it powers the
light bulb for a brief time after the switch opens, dissipating in a non-destructive manner.

However, the addition of the light bulb introduces a new, unexpected problem to the circuit. Now,
when the pushbutton switch is released, the relay delays for a fraction of a second before disengaging.
This causes the motor to “overshoot” its position instead of stopping when it is supposed to.
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Explain why this happens, with reference to the LR time constant of this circuit before and after
the addition of the lamp.

Challenges

• ???.

• ???.

• ???.
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7.1.10 Explaining the meaning of calculations

An unfortunate tendency among beginning students in any quantitative discipline is to perform
calculations without regard for the real-world meanings of the values, and also to follow mathematical
formulae without considering the general principles embodied in each. To ignore concepts while
performing calculations is a serious error for a variety of reasons, not the least of which being an
increased likelihood of computing results that turn out to be nonsense.

In the spirit of honoring concepts, I present to you a quantitative problem where all the
calculations have been done for you, but all variable labels, units, and other identifying data have
been stripped away. Your task is to assign proper meaning to each of the numbers, identify the
correct unit of measurement in each case, apply any appropriate metric prefixes to those values,
explain the significance of each value by describing where it “fits” into the circuit being analyzed,
and identify the general principle employed at each step.

Here is the schematic diagram of the resistor-inductor circuit:

+
−

330 mH

18 V

1 kΩ

10 kΩ

Here are all the calculations performed in order from first to last. Conditions for these calculations
are that the switch began in the position shown and was left that way for a long time, after which it
was toggled to the opposite position at time t = 0 seconds ; all voltages and currents were calculated
at t = 20 microseconds after toggling:

1. 18

1000
= 18 × 10−3

2. 330×10
−3

1000+10000
= 3 × 10−5

3. (18 × 10−3) × (1000 + 10000) = 198.00

4. e
−20×10

−6

30×10−6 = 0.513417

5. 198 × 0.513417 = 101.657

6. (18 × 10−3) × 0.513417 = 9.24151 × 10−3

Explain what each value means in the circuit, identify its unit of measurement and appropriate
metric prefix, and identify the general principle used to compute it!

Challenges
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• How is it possible for the inductor to momentarily develop more voltage than the DC source
itself outputs?
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7.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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7.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 × 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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7.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx + c:

x =
−b ±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 + 5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2 +5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b ± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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7.2.3 Number of time constants

Determine the number of time constants (τ) that 7.5 seconds is equal to in each of the following
resistor-inductor circuits:

• R = 100 Ω, L = 50 mH ; 7.5 sec =

• R = 45 Ω, L = 2.2 H ; 7.5 sec =

• R = 1 kΩ, L = 725 mH ; 7.5 sec =

• R = 4.7 kΩ, L = 325 mH ; 7.5 sec =

• R = 6.2 Ω, L = 25 H ; 7.5 sec =

Challenges

• For each of these LR networks, calculate the percentage of decay for voltage or current in a
de-energizing condition following 7.5 seconds after disconnection of the source.
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7.2.4 Inverse exponential functions

The following two expressions are frequently used to calculate values of changing variables (voltage
and current) in RC and LR timing circuits:

e−
t

τ or 1 − e−
t

τ

One of these expressions describes the percentage that a changing value in an RC or LR circuit
has gone from the starting time. The other expression describes how far that same variable has left
to go before it reaches its ultimate value (at t = ∞).

The question is, which expression represents which quantity? This is often a point of confusion,
because students have a tendency to try to correlate these expressions to the quantities by rote
memorization. Does the expression e−

t

τ represent the amount a variable has changed, or how far it
has left to go until it stabilizes? What about the other expression 1− e−

t

τ ? More importantly, how
can we figure this out so we don’t have to rely on memory?

Time
Initial

Final

t

Voltage
or

Current
Percentage changed

from initial value

Percentage left to
change before reaching

final value

Time
Final

t

Voltage
or

Current

Percentage changed
from initial value

Percentage left to
change before reaching

final value

Initial

Increasing variable Decreasing variable

Challenges

• A useful mathematical problem-solving technique is to set the independent variable in this
case, t, to some simple value such as 0 or 1 to see what happens. What would setting t = 0
simulate in either of these functions?
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7.2.5 Inductor color codes

Small inductors often look like resistors, even to the extent that their values are designated by
colored bands. For example, an inductor sporting the colors Blu, Red, Brn, Gld would have a value
of 620 µH, ± 5%.

Determine the values of the following inductors (express the tolerance as a percentage), based
on their color codes:

• Red, Grn, Brn, Gld

• Wht, Org, Red, Sil

• Grn, Gry, Blk

• Vio, Blu, Org, Gld

Challenges

• Identify a significant difference between the standard resistor color code and the inductor color
code.

7.2.6 Voltage versus rate-of-current-change

A 5 H inductor is subjected to an electric current that changes at a rate of 4.5 Amperes per second.
How much voltage will be dropped by the inductor?

Now suppose two 5 H inductors connected in series are subjected to the same rate-of-change of
current. How much voltage will be dropped across the series combination?

Now suppose two 5 H inductors connected in parallel are subjected to the same rate-of-change
of current. How much voltage will be dropped across the parallel combination?

Challenges

• Based on the voltages calculated for each inductor network, prove that L adds in series and
diminishes in parallel.
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7.2.7 Inductance of three-inductor network

Calculate the total inductance in this collection of inductors, as measured between the two wires:

???

500 mH 330 mH 2 H

Ltotal

L1 L2

L3

Challenges

• If inductor L2 fails open, what is the effect on total inductance?

• If inductor L3 fails shorted, what is the effect on total inductance?
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7.2.8 Unknown inductor value

How large must inductor Lx be in order to provide a total inductance of 2.5 H in this network of
inductors?

Lx

Ltotal = 2.5 H

1.2 H

3.3 H

Challenges

• The physical proximity and orientation of these inductors to each other actually matters.
Explain why.

7.2.9 Resistance for specified time constant

Calculate the resistor value which when connected in series with a 75 mH inductor will provide a
time constant (τ) of 20 microseconds. Express your answer in the form of a five-band precision
resistor color code (with a tolerance of +/- 0.25%).

Challenges

• What advantage does a five-band resistor color code enjoy over a four-band?
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7.2.10 Cylindrical inductor wire turns

Calculate how many turns of wire must be wrapped around a hollow, non-magnetic (air) solenoid
core 2 cm in diameter and 10 cm in length in order to create an inductance of 22 mH. You may use
the permeability of free space (µ0) for the µ value of the air core.

Next, calculate the required number of turns to produce the same inductance with a solid iron
core of the same dimensions, assuming that the iron has a relative permeability (µr) of 4000 (i.e.
the magnetic permeability of iron is 4000 times greater than that of open space).

Challenges

• A common mistake is to calculate a value of 0.04184 turns for the iron-core inductor. Explain
how someone might make this mistake.

7.2.11 Toroidal inductor wire turns

Calculate how many turns of wire must be wrapped around a toroidal, iron-powder inductor core
to make it exhibit 2.5 µH of inductance. Assume the powdered-iron toroidal core is a Micrometals
part number T50-66 with an AL value of 29.0 nanoHenrys per turn-squared.

Challenges

• Identify sources of parasitic (or “stray”) resistance and capacitance in this inductor.
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7.2.12 SPDT inductor switching circuit

Calculate the final value of current through the inductor with the switch in the left-hand position
(assuming that many time constants’ worth of time have passed):

10 V

5 kΩ 91 kΩ

Now, assume that the switch is instantly moved to the right-hand position. How much voltage
will the inductor initially drop?

10 V

5 kΩ 91 kΩ

Explain why this voltage is so very different from the supply voltage. What practical uses might
a circuit such as this have?

Challenges

• Suppose this circuit were built and tested, and it was found that the voltage developed across
the inductor at the moment the switch moved to the right-hand position far exceeded the value
you calculated. Identify some possible problems in the circuit which could account for this
excessive voltage.
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7.2.13 Tabulating inductor charging

Determine the inductor voltage and inductor current at the specified times (time t = 0 microseconds
being the exact moment the switch contacts close):

Switch

20 V

R = 1.3 kΩ

L = 25 mH

• Time = 0 µs ; VL = ; IL =

• Time = 10 µs ; VL = ; IL =

• Time = 20 µs ; VL = ; IL =

• Time = 30 µs ; VL = ; IL =

• Time = 40 µs ; VL = ; IL =

• Time = 50 µs ; VL = ; IL =

Challenges

• Explain why it is a good problem-solving strategy to first sketch a graph showing the expected
trajectories of voltage and current over time before performing any calculations.

• How would the voltage and current values be affected if this circuit had two 25 mH inductors
in parallel with each other instead of just the one in the circuit?

• How would the voltage and current values be affected if this circuit had two 25 mH inductors
in series with each other instead of just the one in the circuit?
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7.2.14 Time required to reach specified currents

Calculate the amount of time it takes for the current through a 33 mH inductor to grow from 0
milliAmperes to 50 milliAmperes, if powered by a 12 Volt battery connected in series through a 200
Ω resistor.

Calculate the amount of time it takes for a 100 mH inductor to de-energize from 5 Amperes to
2 Amperes while connected to nothing but a 1.8 Ω resistor.

A 3.5 H inductor begins in an energized state of 75 milliAmperes, and de-energizes through a 1
kΩ resistor. How long will it take before the inductor’s voltage will fall to a relatively safe value (30
Volts or less)?

Determine the amount of time needed for the resistor voltage (VR) to rise to the specified
levels after the switch is thrown to the “energize” position, assuming an inductor with no internal
resistance:

Switch

L = 500 mH

R = 85 Ω

10 V

• 1 Volt =

• 2 Volts =

• 4 Volts =

• 6 Volts =

• 8 Volts =

Challenges

• What will happen to all of these time values if the resistor in each circuit is increased in value?
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7.2.15 Measuring inductance by time delay

An inductor of unknown inductance is measured with an ohmmeter and found to have a coil
resistance of 85 Ω. It is then connected in series with a 970 Ω resistor, energized by a 19-Volt
DC source, and then voltage across the 970 Ω resistor is measured and plotted over time:

time

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ms

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

V v(3)

Calculate the approximate size of the inductor in milliHenrys based on the information you see
here.

Challenges

• A common tendency among students new to electric circuit analysis is to first “think
mathematically” rather than first “think conceptually”. Before plugging any numbers into any
formulae, one should always identify electrical principles such as sources and loads, directions
of current, and voltage polarities, usually sketching a diagram of a circuit to see where all these
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concepts fit. Demonstrate how to “think conceptually” when solving this problem, rather than
immediately trying to compute values.

• Why are all the voltage values on this plot negative rather than positive?

• How would the plot of voltage over time change if the resistor were made smaller?

• What happened to the energy previously stored in the inductor?

7.2.16 Power line reactors

Volume 18, Number 1 issue of The Electric Journal (circa 1921) contains an article written by G. G.
Grissinger of the Westinghouse Electric and Manufacturing Company entitled “High-Speed Circuit
Breakers” in which we find the following quote on page 65:

It is the function of the high-speed circuit breaker shown in Fig. 1, to open an electric
circuit after a short-circuit occurs, so quickly, that the current will be unable to reach a
dangerously high value. To the eye the ordinary carbon circuit breaker opens a short-
circuit with great rapidity, yet the current is able to reach the maximum value before
the circuit breaker starts to open. Oscillograms show that the current on short-circuit,
starting from zero value, builds up at the rate of from one million to three million amperes
per second, depending upon the constants of the circuit. This means that a value of 10000
amperes would be reached in from 0.01 to 0.003 seconds.

Assuming a peak voltage of 44 kiloVolts, how large of an inductor connected in series with the
line would be required to limit the build-up rate of fault current to a mere 500,000 Amperes per
second?

Challenges

• Explain the meaning of the following phrase from this article: “depending upon the constants
of the circuit”.

• Power circuit breakers of that era used contacts made of carbon rather than metal. Explain
why.
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7.2.17 SPICE analysis of an energizing inductor

The following resistor-inductor circuit will be simulated by a computer program called SPICE. The
text-based “netlist” used to describe the circuit to SPICE is shown immediately to the right of the
schematic diagram. Numbered points on the diagram identify “nodes” used by SPICE to declare
how the components connect to one another:

+
− L1 33 mH

R1

5.1 kΩ
15 VV1

0

1 2

0

* SPICE circuit
v1 1 0 dc 15
r1 1 2 5100
l1 2 0 33e-3 ic=0
.tran 2e-6 30e-6 uic
.width out=80
.plot tran v(2)
.end

In this analysis, SPICE will plot inductor voltage (between node 2 and ground) over a timespan of
30 microseconds in increments of 2 microseconds each. The inductor begins (i.e. “initial condition”
ic=) with zero current through it, which means no stored energy. When run, the simulation results
are as follows:

Legend: + = v(2)

--------------------------------------------------------------------------

time v(2) 0.00e+00 1.00e+01 2.00e+01

----------------------|------------------------|------------------------|

0.000e+00 0.000e+00 + . .

2.000e-06 1.101e+01 . . + .

4.000e-06 8.087e+00 . + . .

6.000e-06 5.935e+00 . + . .

8.000e-06 4.358e+00 . + . .

1.000e-05 3.197e+00 . + . .

1.200e-05 2.347e+00 . + . .

1.400e-05 1.723e+00 . + . .

1.600e-05 1.264e+00 . + . .

1.800e-05 9.277e-01 . + . .

2.000e-05 6.812e-01 .+ . .

2.200e-05 4.998e-01 .+ . .

2.400e-05 3.668e-01 + . .

2.600e-05 2.693e-01 + . .

2.800e-05 1.976e-01 + . .

3.000e-05 1.449e-01 + . .

----------------------|------------------------|------------------------|

time v(2) 0.00e+00 1.00e+01 2.00e+01

Verify any of the simulated inductor voltage values using your own manual calculations.

Challenges
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• Explain how you may use a SPICE simulation such as this for your own practice, instead of
relying on questions and answers provided to you in a textbook.

• Explain how you could use this simulation to practice calculating inductor or resistor values
from the simulated results. In other words, imagine this was real data from a real inductor-
resistor circuit experiment, and you needed to compute either the resistor value or the inductor
value from all the other data.
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7.2.18 SPICE analysis of a de-energizing inductor

The following resistor-inductor circuit will be simulated by a computer program called SPICE. The
text-based “netlist” used to describe the circuit to SPICE is shown immediately to the right of the
schematic diagram. Numbered points on the diagram identify “nodes” used by SPICE to declare
how the components connect to one another:

+
− L1

R1

0

1 2

0

Vamm1 0 V

30 Ω
0.5 H

4 A

* SPICE circuit
vamm1 1 0 
r1 1 2 30
l1 0 2 0.5 ic=4
.tran 5e-3 75e-3 uic
.width out=80
.plot tran i(vamm1)
.end

In this analysis, SPICE will plot circuit current (measured using the “dummy” voltage source
Vamm1) over a timespan of 75 milliseconds in increments of 5 milliseconds each. The inductor begins
(i.e. “initial condition” ic=) with 4 Amperes of current through it, with no other energy source in
the circuit. When run, the simulation results are as follows:

Legend: + = vamm1#branch

--------------------------------------------------------------------------

time vamm1#br 0.00e+00 1.00e+00 2.00e+00 3.00e+00 4.00e+00

----------------------|-----------|-----------|-----------|-----------|

0.000e+00 0.000e+00 + . . . .

5.000e-03 2.963e+00 . . . +. .

1.000e-02 2.196e+00 . . . + . .

1.500e-02 1.626e+00 . . + . . .

2.000e-02 1.205e+00 . . + . . .

2.500e-02 8.923e-01 . + . . . .

3.000e-02 6.609e-01 . + . . . .

3.500e-02 4.897e-01 . + . . . .

4.000e-02 3.625e-01 . + . . . .

4.500e-02 2.685e-01 . + . . . .

5.000e-02 1.990e-01 . + . . . .

5.500e-02 1.473e-01 .+ . . . .

6.000e-02 1.091e-01 .+ . . . .

6.500e-02 8.085e-02 + . . . .

7.000e-02 5.986e-02 + . . . .

7.500e-02 4.431e-02 + . . . .

----------------------|-----------|-----------|-----------|-----------|

time vamm1#br 0.00e+00 1.00e+00 2.00e+00 3.00e+00 4.00e+00

Verify any of the simulated current values using your own manual calculations.

Challenges
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• Explain how you may use a SPICE simulation such as this for your own practice, instead of
relying on questions and answers provided to you in a textbook.

• Explain how you could use this simulation to practice calculating inductor or resistor values
from the simulated results. In other words, imagine this was real data from a real inductor-
resistor circuit experiment, and you needed to compute either the resistor value or the inductor
value from all the other data.
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7.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

7.3.1 Insulation breakdown

One mode of failure for an inductor is breakdown (degradation) of the insulation covering the wire
used in its windings. Identify how such a failure might affect the operation of an inductor, and how
it might be detected through appropriate testing.

Challenges

• Do you suppose this sort of inductor failure might be caused by excessive voltage or excessive
current?
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7.3.2 Incorrect voltage/current curves

Explain what is wrong with these voltage and current plots for an inductor energized by a constant-
voltage source through a series resistance:

Time

V

I

Furthermore, try to explain why someone might make this mistake when predicting voltage and
current.

Challenges

• Devise a “thought experiment” whereby this error would become obviously absurd (i.e. reductio
ad absurdum).

7.3.3 Inductor proximity

A practical consideration affecting inductors (but not capacitors) is physical proximity: how close
multiple inductors are located near each other in a circuit. Explain why inductors might affect each
other (and how!), whereas capacitors do not.

Challenges

• One interesting technique for combating this phenomenon is to orient nearby inductors
perpendicular to each other rather than parallel or in-line with each other. Explain why
this strategy works.
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7.3.4 Parasitic inductance on a PCB

Components soldered into printed circuit boards often possess “stray” inductance, also known as
parasitic inductance. Observe this resistor, soldered in to a circuit board:

Where does the parasitic inductance come from? What is it about a resistor, mounted to a
circuit board, that creates a (very) small amount of inductance? How is it possible to minimize this
inductance, in case it is detrimental to the circuit’s operation?

Challenges

• Fast-switching digital logic circuits, even though operating on very low levels of current,
nevertheless may experience extremely high rates of change due to the speed (frequency)
of the signal oscillations. It is not uncommon in modern digital systems to witness rates as
high as 500 A/ns (500 Amperes per nanosecond!). How much parasitic inductance would be
necessary to drop 1 Volt at this high rate of change?

7.3.5 Inductor saturation

What happens to the inductance of an inductor as its core becomes saturated? Does the inductance
value increase, decrease, or remain the same? Explain your answer.

Challenges

• What condition(s) might lead to inductor saturation?

• Are there any core materials immune from saturation?
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

26-27 March 2025 – added comments to the Introduction chapter urging instructors to have
students show their in-class work solving problems. Also added more examples to the “Example:
RC time-delay network values” Case Tutorial section.

20-21 March 2025 – added a new Case Tutorial section called “Example: LR time-delay network
values” with multiple circuit examples for student practice. Also added a new Conceptual Reasoning
question asking students to explain the conceptual meaning of all calculations done for an LR time-
delay circuit.

5 March 2025 – added another photograph to the “Early examples of inductors” Historical
Reference showing a spiral inductor.

3 March 2025 – corrected a grammatical error (“we will may”) courtesy of Caleb Wing.

10 January 2025 – added a new Case Tutorial section, this one on applying Norton’s Theorem
to networks containing multiple resistors in order to simplify to a single-resistor single-inductor LR
network.

14 November 2024 – added a new bullet-point to the list of challenging concepts in the
Introduction chapter, on proper graphing of trajectories.

8 November 2024 – added a new Programming Reference section on solving differential equations
using C++.

23-24 October 2024 – added a new Technical References section on applying Thévenin’s and
Norton’s Theorems to time-delay circuits. Also added a hint to the “Inductor charging circuit”
Conceptual Reasoning question.
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18 October 2024 – completely re-wrote the “Inverse exponential growth/decay” section of the
Tutorial to begin with a discussion of radioactive half-life.

17 October 2024 – edited the “Inductor charging circuit” Conceptual Reasoning question to
emphasize why this is a good pre-analysis strategy for any quantitative analysis.

16 September 2024 – edited the Introduction chapter to have a separate section for challenging
concepts.

21 July 2024 – created a new Historical References section on old inductor technology.

2 July 2024 – added an enumerated list of conceptual analysis steps to the “Example: current
source energizing an inductor” Case Tutorial section, showing students exactly how and why to
approach problems such as this.

1 July 2024 – minor edits to analogies used within the Tutorial. Also corrected mathematical
errors in the limit equations shown in that chapter.

26-28 June 2024 – divided the Introduction chapter into two sections, one for students and one
for instructors, and added content to the instructor section recommending learning outcomes and
measures. Also made minor edits to the Tutorial’s discussion on inductance acting as source, load,
or short. Also edited image 0455.

5 May 2024 – added a graphing requirement to the “Inductor charging circuit” Conceptual
Reasoning question.

12-13 March 2024 – corrected a typographical error in a table of inverse-exponential calculated
values, courtesy of Matthew Oleson. Corrected another error in a question where I specified a
starting time of 0 ms rather than 0µs.

10 March 2024 – added a list of challenging concepts to the Introduction chapter.

4 February 2024 – simplified explanations of how to determine what grows versus what decays
based on an analysis of stored energy. Also added some clarifying details to some of the Case Tutorial
examples.

14 November 2023 – added a new Case Tutorial section on empirically determining signal rates
of change.

24 October 2023 – added Challenge question to the “Inductor charging circuit” Conceptual
Reasoning question.

20 October 2023 – modified the “Inverse exponential growth/decay” section of the Tutorial chapter
to include a table of pre-calculated values for ex and 1 − ex showing these two formulae as the
exponential term x becomes increasingly negative.

25 July 2023 – added a footnote to the Tutorial discussing magnetic saturation in more detail.
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7 February 2023 – added caveats to Case Tutorial examples about the inductors being ideal (with
no winding resistance).

27 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

17-19 October 2022 – elaborated in the Tutorial on how to incorporate initial and/or final values
to the inverse-exponential formulae. Also added a Programming References section showing an
extremely simple Python3 script for modeling inverse-exponential functions. Also added a new
Tutorial section showing a worked example of an LR charging/discharging circuit.

22 July 2022 – minor edits to Tutorial giving a more thorough definition of a “time constant”.
Also expanded upon a question in the Introduction chapter, designed to prompt more reasoning
based on foundational concepts.

19 July 2022 – significant change made to image 6312 which is in the Case Tutorial section on
inductive energy storage.

13 July 2022 – moved text and images from the “interesting relay behavior” Case Tutorial section
into its own file for inclusion in other modules.

13 June 2022 – added a new Case Tutorial section showing energy storage calculations for series
versus parallel inductor networks.

23 April 2022 – added illustrations from a patent on a superconducting energy storage device
showing DC currents in a superconducting inductor while charging, discharging, and in an idle
state.

22 April 2022 – added photograph of a variable inductor.

31 March 2022 – added “Magnetic field quantities” to the Derivations and Technical References
chapter.

16 March 2022 – added some content to the Tutorial discussing the calculation of inductance
based on permeability, coil area, turns, and coil length. Also added some instructor notes.

28 December 2021 – added a Technical Reference section on inductor parasitics.

6-8 December 2021 – added Tutorial section on making your own inductors, and expanded
the Quantitative Reasoning question “Inductor wire turns” to include a problem using a toroidal
powdered-iron core with a specified AL value. Also added Case Tutorial section on testing custom-
wound inductors.

20-21 October 2021 – deleted the Projects and Experiments chapter. Also added some clarifying
text in the Tutorial about how the Conservation of Energy relates to voltage and current for these
devices.

26-27 July 2021 – added Case Tutorial section showing interesting current profile through the
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inductance of an electromechanical relay.

23 July 2021 – added foundational concept review to the “Inductor charging circuit” Conceptual
Reasoning question.

16 July 2021 – added footnote to the Tutorial explaining what permeability is.

9 July 2021 – replaced some TeX-style italicizing markup with LaTeX-style.

4 July 2021 – divided Tutorial chapter into sections and made some minor edits to the text for
clarity.

2 June 2021 – added a Case Tutorial chapter with sections showing how to store and release energy
from inductors.

8 May 2021 – commented out or deleted empty chapters.

18 April 2021 – changed all lower-case Greek letter “phi” symbols (φ) to upper-case (Φ).

13 April 2021 – added “energy” as a parameter for students to qualitatively assess in the “Inductor
charging circuit” Conceptual Reasoning question.

6 April 2021 – added some commentary to Tutorial on units of measurement for time constant
(τ).

5 April 2021 – added a new Technical Reference section on inductor parameters and core types.

18 March 2021 – corrected one instance of “volts” that should have been capitalized “Volts”.

9 February 2021 – added a Technical Reference section on inductor labeling.

26 October 2020 – added Quantitative questions, and also fixed error in “Measuring inductance
by time delay” where the graphical image showed an entirely incorrect plot for resistor voltage drop.

20 October 2020 – added footnote to Tutorial about inductor current remaining steady in a
zero-voltage condition only when there is no resistance in the circuit.

9 September 2020 – added more instructor notes in “Inductor wire turns” question.

4 September 2020 – incorporated the “Inverse exponential functions” question content into the
Tutorial, explaining the formulae for decaying and growing quantities in full detail.

29 August 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions. Also,
elaborated a bit more in the Tutorial on parasitic properties. Also, added some Case Tutorial
examples showing circuits energized by voltage and current sources, respectively.

17 August 2020 – minor edit to the Tutorial text in order to shorted a paragraph, for typesetting
purposes.
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17 April 2020 – added a Technical Reference section on IEC standard component values (file
techref IEC60063.latex).

6 April 2020 – minor typographical error corrections, courtesy of Ron Felix.

7 March 2020 – added a Quantitative Reasoning problem based on an article from The Electric
Journal circa 1921.

4 February 2020 – added some Quantitative Reasoning problems.

2 January 2020 – removed from from C++ code execution output, to clearly distinguish it from
the source code listing which is still framed.

1 January 2020 – added explanatory text for the C++ code in reference invexp decay.latex and
changed main () to main (void) in another C++ programming example.

10 December 2019 – added more questions. Also added units of measurement to the explanation
of the inductance formula.

2 November 2019 – added more questions.

26 August 2019 – added mention of difficult concepts to the Introduction.

14 April 2019 – added comment about “bifilar” winding in one of the Conceptual questions.

13 April 2019 – improved the explanation of what happens in LC circuits with inverse-exponential
trends of voltage and current. Also introduced the term “speed” to refer to rate-of-change for
inductor current (i.e. current “speed” = dI

dt
). Also corrected some copy-and-paste errors from the

mod capacitor module where the text read “capacitor” when it should have read “inductor”.

10 April 2019 – corrected an error identified by a student of mine (Danny Starnes). In the
“Measuring inductance by time delay” question, the sentence should read “connected in series”
rather than “connected in parallel”.

8 April 2019 – minor edit to wording within an illustration (replaced “creates” with “means” to
avoid the implication of a unidirectional causality).

24 March 2019 – added a Quantitative Reasoning questions.

13 March 2019 – added reference to inverse exponential functions in the Tutorial.

12 February 2019 – added a number of new entries to the Foundational Concepts subsection.

7 January 2019 – added illustrative examples to the Tutorial, showing what happens when an
inductor is energized by a constant voltage. Also added a Derivations and Technical References
chapter, with an exposition of exponential decay functions in it.

17 December 2018 – added an example C++ program showing calculations for an energizing
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resistor-inductor circuit.

November 2018 – minor edits to Simplified Tutorial. Added experiment to measure drop-out time
of electromechanical relay with varying voltage-suppressing load resistance.

October 2018 – clarified a number of details, with constructive criticism from Ron Felix.

August 2018 – wrote an Introduction where none existed before.

July 2018 – document first created.
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Air-core inductor, 77
Ampacity, 58
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Annotating diagrams, 169
Armature, 28
Asymptote, 109

B-H curve, 77
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Capacitance, 34, 58
Capacitor, 69
Cathode-ray tube, 84
CGS, 92
Checking for exceptions, 170
Checking your work, 170
Choke, 44
Code, computer, 177
Coercivity, 78
Color code, inductor, 74
Compiler, C++, 100
Complex number, 32
Component values, IEC standard, 72
Computer programming, 99, 110
Condenser, 69
Conservation of Energy, 31, 46
Conservation of Mass, 46
Conventional flow notation, 84
Core, 44
Core, magnetic, 64
Coulomb, 83
Cross product, 84
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CRT, 84
Curie temperature, 76
Current probe, 38

Decay, exponential, 109
Detector, 69
Dimensional analysis, 85, 169
Diode, 69
Distance versus speed, 40

Eddy current, 81
Edwards, Tim, 178
Electric field, 43, 109
Electromagnetic induction, 77, 78
Electromotive force, 91
Electron flow notation, 84
emf, 91
Energy, kinetic, 43, 44
Energy, potential, 44
Equivalent Series Resistance, 80
ESR, 80
Exponential decay, 109

Ferrite, 78
Ferromagnetic, 3
Ferromagnetic core, 64
Field intensity, magnetic, 91
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Reductio ad absurdum, 170–172
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Rise over run, 38
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Scientific method, 132
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Simplifying a system, 169
Skin effect, 32, 77
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Soft magnetic material, 77
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Speed versus distance, 40
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Superconducting Magnetic Energy Storage
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Thought experiment, 59, 89, 90, 169
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Visualizing a system, 169
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