
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

Modbus Networks

© 2019-2025 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 19 February 2025

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

1.1 Recommendations for students . 3

1.2 Challenging concepts related to Modbus . 5

1.3 Recommendations for instructors . 6

2 Case Tutorial 7

2.1 Example: Modbus ASCII “Write One Register” exchange 8

2.2 Example: Modbus ASCII “Read Register” exchange 10

3 Tutorial 13

3.1 Discrete motor control . 14

3.2 Networked motor controls . 15

3.3 Modbus history . 18

3.4 Serial Modbus data frames . 19

3.5 Modbus/TCP data frames . 20

3.6 Modbus function codes and addresses . 22

3.7 Modbus relative addressing . 24

3.8 Analyzing a Modbus/TCP message . 27

4 Historical References 31

4.1 Big-endians and Little-endians . 32

5 Derivations and Technical References 35

5.1 Modbus function command formats . 36

5.1.1 Function code 01 – Read Coil(s) . 36

5.1.2 Function code 02 – Read Contact(s) . 37

5.1.3 Function code 03 – Read Holding Register(s) 38

5.1.4 Function code 04 – Read Analog Input Register(s) 39

5.1.5 Function code 05 – Write (Force) Single Coil 40

5.1.6 Function code 06 – Write (Preset) Single Holding Register 40

5.1.7 Function code 15 – Write (Force) Multiple Coils 41

5.1.8 Function code 16 – Write (Preset) Multiple Holding Register 42

5.2 The OSI Reference Model . 43

iii

CONTENTS 1

6 Questions 45

6.1 Conceptual reasoning . 49
6.1.1 Reading outline and reflections . 50
6.1.2 Foundational concepts . 51
6.1.3 Display panel configuration . 53
6.1.4 Wireless gateway system . 54

6.2 Quantitative reasoning . 56
6.2.1 Miscellaneous physical constants . 57
6.2.2 Introduction to spreadsheets . 58
6.2.3 Interpreting an ASCII message frame . 61
6.2.4 Modbus ASCII message exchange . 62

6.3 Diagnostic reasoning . 63
6.3.1 SCADA system fault . 64

A Problem-Solving Strategies 67

B Instructional philosophy 69

C Tools used 75

D Creative Commons License 79

E References 87

F Version history 89

Index 90

2 CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

The first industrial programmable logic controller (PLC) was manufactured by the Modicon company
in the United States, and very soon after the development of this revolutionary control computer
that same manufacturer developed a digital communication network called Modbus designed to allow
multiple Modicon PLCs to communicate data between each other over simple two- or three-conductor
network cables. The development of Modbus happened in 1979, and for better or for worse this same
communication protocol is still in widespread use at the time of this writing (2019).

One factor instrumental in the wide adoption of Modbus throughout American industry was
that it was opened to other manufacturers. In other words, the data-formatting standard defining
Modbus as a communication protocol was published for anyone to study and use. The result of
opening this standard is that many manufacturers adopted it for use within their own products,
and fairly soon multiple manufacturers’ products became interoperable because they “spoke” the
same digital “language”. Now it is common to find Modbus “spoken” by not only industrial control
products but also personal computers (with the appropriate software libraries installed), commercial
heating and cooling control products, variable-frequency AC motor drives (VFDs), and laboratory
instrumentation, and even hobbyist-level electronic devices.

This module introduces the Modbus protocol along with practical applications for its use.

Important concepts related to Modbus include digital versus analog signaling, digital
memory reading versus writing, memory addresses, serial protocols, the OSI Reference

model, master versus slave network devices, data frames, error checking, encapsulation,
endianness, and digital codes.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to measure the latency (time lag)
within a Modbus control network? What hypothesis (i.e. prediction) might you pose for
that experiment, and what result(s) would either support or disprove that hypothesis?

• What is the purpose of a VFD?

3

4 CHAPTER 1. INTRODUCTION

• What is the purpose of a PLC?

• How is a PLC able to differentiate between different Modbus slave devices (e.g. VFDs)
connected to it?

• What are some advantages and also disadvantages to using Modbus rather than analog signals
for applications such as electric motor control?

• How does Modbus relate to various serial data protocols such as EIA/TIA-232?

• What are some of the limitations of Modbus inherent to its data frame format?

• How does ASCII differ from RTU in Modbus communications?

• How is encapsulation (sometimes) used in Modbus communications?

• How is it possible to communicate data longer than 16 bits (e.g. 32-bit floating-point values)
in Modbus?

• What does it mean to say that Modbus is a “layer-7” protocol?

• How are Modbus data registers addressed within the target device?

• What does it mean if data is encoded into binary in big-endian order versus little-endian order?

• What does it mean if data is byte-swapped? What does it mean if data is word-swapped?

1.2. CHALLENGING CONCEPTS RELATED TO MODBUS 5

1.2 Challenging concepts related to Modbus

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Encapsulation – the notion of one protocol’s data frame being contained as payload within
another’s is somewhat confusing, but is made clear by inspection of actual communications
using packet-sniffing software (e.g. Wireshark).

• Network arbitration – the same is true for channel arbitration techniques such as
CSMA/CD, master-slave, and others. It is helpful to imagine a set of devices all requiring
access to a common channel of communication, and stepping through each of the protocols
to see how they manage this access without having multiple devices “talk over” one another.
This, like so many other things, simply takes time to digest and cannot be rushed.

• Relative addressing – Modbus is a legacy protocol, and it definitely shows its age by features
such as decimal-oriented address ranges, absolute addresses starting with “1”, and relative
addresses starting with “0”.

6 CHAPTER 1. INTRODUCTION

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

• Outcome – Decode Modbus messages

Assessment – Interpret all aspects of a Modbus message given the message frame; e.g. pose
problems in the form of the “Interpreting an ASCII message frame” Quantitative Reasoning
question.

• Outcome – Independent research

Assessment – Locate Modbus-compatible device datasheets and properly interpret some
of the information contained in those documents including physical-layer communication
standard (e.g. serial, Ethernet, etc.), Modbus memory maps, etc.

Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

7

8 CHAPTER 2. CASE TUTORIAL

2.1 Example: Modbus ASCII “Write One Register”
exchange

In the following system an industrial computer sends a Modbus query to a programmable logic
controller (PLC), which in turn replies with a Modbus response. Both devices use Modbus ASCII
to communicate, which allows us to use a pair of portable laptop computers to display each message
in human-readable form:

TD

RD

Gnd

2

3

5

EIA/TIA-232 cable

DE-9 connector

Laptop PC

2

3

5

DE-9 connector

Programmable Logic Controller

Industrial computer

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

2

3

5

PLC

PC

(running terminal
emulator software)

TD

RD

Gnd

Laptop PC
(running terminal
emulator software) 2

3

5

TD

RD

Gnd

RD

TD

Gnd

Shows Modbus query sent
by the industrial computer

Shows Modbus response (reply)
from the PLC

ASCII message sent by the industrial computer = :050610010200E2

ASCII message sent in response by the PLC = :050610010200E2

2.1. EXAMPLE: MODBUS ASCII “WRITE ONE REGISTER” EXCHANGE 9

check
Data

Start
Function

code

Start Stop

End
Slave

address
address

Hi Lo Hi LoXX

Error

XX

Query/Response message (Function code 06)

06

Register Preset
data

Analysis of query : 05 06 1001 0200 E2

• : is the starting character

• 05 is the slave address of the PLC

• 06 is the function code (06 = “Write One Register”)

• 1001 is the register’s relative address (relative address 0x1001 = 4097 decimal = absolute
address 44098 decimal)

• 0200 is the data to be written to register 44098

• E2 is the message checksum (LRC)

The PLC’s response to this message is to simply echo it verbatim so that the industrial computer
will be able to verify its receipt.

10 CHAPTER 2. CASE TUTORIAL

2.2 Example: Modbus ASCII “Read Register” exchange

In the following system an industrial computer sends a Modbus query to a programmable logic
controller (PLC), which in turn replies with a Modbus response. Both devices use Modbus ASCII
to communicate, which allows us to use a pair of portable laptop computers to display each message
in human-readable form:

TD

RD

Gnd

2

3

5

EIA/TIA-232 cable

DE-9 connector

Laptop PC

2

3

5

DE-9 connector

Programmable Logic Controller

Industrial computer

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

2

3

5

PLC

PC

(running terminal
emulator software)

TD

RD

Gnd

Laptop PC
(running terminal
emulator software) 2

3

5

TD

RD

Gnd

RD

TD

Gnd

Shows Modbus query sent
by the industrial computer

Shows Modbus response (reply)
from the PLC

ASCII message sent by the industrial computer = :050310000002E6

ASCII message sent in response by the PLC = :050304FF0600648B

2.2. EXAMPLE: MODBUS ASCII “READ REGISTER” EXCHANGE 11

check
Data

Start
Function

code

Start Stop

End
Slave

address Starting
address

Hi Lo

Number

Hi LoXX

Error

XX

Query message (Function code 03)

03
of registers

Analysis of query : 05 03 1000 0002 E6

• : is the starting character

• 05 is the slave address of the PLC

• 03 is the function code (03 = “Read Register”)

• 1000 is the starting address (relative address 0x1000 = 4096 decimal = absolute address 44097
decimal)

• 0002 is the number of 16-bit registers to be read (two)

• E6 is the message checksum (LRC)

check
Data

Start
Function

code

Start Stop

End
Slave

address Number

XX

Error

XX
of bytes

Response message (Function code 03)

03 Hi Lo

First
register

Hi Lo

register

Hi Lo

register
Second Third

Analysis of response : 05 03 04 FF06 0064 8B

• : is the starting character

• 05 is the slave address of the PLC

• 03 is the function code (03 = “Read Register”)

• 04 is the number of bytes returned (four bytes = two 16-bit registers)

• FF06 is the value stored in register 44097

• 0064 is the value stored in register 44098

• 8B is the message checksum (LRC)

12 CHAPTER 2. CASE TUTORIAL

Chapter 3

Tutorial

Modbus is a very popular data communication protocol found in a variety of industrial and
commercial systems, often associated with electric motor controls. This Tutorial will explore the
basic concept of networked control for industrial devices, and then explore details of the Modbus
protocol itself.

One of the most common forms of computer used in industrial control is the Programmable Logic
Controller, or PLC. These devices are similar in function to microcontrollers, but designed to be
programmed using languages much simpler than assembly or C in order to allow technical personnel
with limited programming experience to configure these controllers to perform useful automation
tasks.

13

14 CHAPTER 3. TUTORIAL

3.1 Discrete motor control

We may begin our exploration of Modbus by first considering an example of a PLC-controlled motor
system that does not employ Modbus. Here, the PLC sends individually-wired Forward, Reverse,
and Stop, and speed-control command signals to a variable-frequency drive (VFD) which then sends
three-phase power of varying frequency to an AC induction motor to do some useful task:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

PLC

VFD

L1 L2 L3

T1 T2 T3

AC induction motor

Fwd

Rvs

Fwd jog

Com

Modbus
RS-485

Stop

To 480 VAC
3-phase

power source

Modbus
RS-485

Analog
speed
command

Analog
output

The discrete commands (e.g. Stop, Forward, Reverse) are nothing more than on/off contact
closures provided by the PLC’s output channels to the VFD’s input terminals. When the PLC
commands the VFD to run in the Reverse direction, it simply activates output channel O/1 which
closes a relay contact inside the PLC to connect the VFD’s “Rvs” terminal to the VFD’s “Com”
terminal. The VFD detects this electrical continuity, and responds by running the motor in its
reverse direction. Motor speed is commanded by an analog voltage signal (typically 0 to 10 Volts
DC) output by the PLC, with 0 Volts representing zero speed and 10 Volts representing full speed.
The VFD receives this analog voltage signal and responds to it by outputting the appropriate
frequency of three-phase AC power to the induction motor.

While this system is certainly functional, it does not represent the only way for the PLC to issue
commands to the VFD to control the motor. Instead of using discrete conductors for each motor
function, it is possible to connect the PLC and VFD together with a digital network cable and issue
commands as digital codes to do the same. One such digital network standard is Modbus, which we
will see applied in the next section.

3.2. NETWORKED MOTOR CONTROLS 15

3.2 Networked motor controls

Now consider this updated motor control system, where the only connecting wires between the PLC
and VFD is a single two-conductor cable between the Modbus/RS-485 terminals1 of both devices.
The PLC functions as a Modbus master device while the VFD functions as a Modbus slave:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

PLC

VFD

L1 L2 L3

T1 T2 T3

AC induction motor

Fwd

Rvs

Fwd jog

Com

Modbus
RS-485

Stop

To 480 VAC
3-phase

power source

Modbus
RS-485

Analog
speed
command

Analog
output

By using appropriate Modbus commands transmitted to the VFD, the PLC is able to issue all
the same commands (e.g. Stop, Forward, Reverse, speed control) as before but using far fewer wires.
For example Modbus command code 05 writes a single bit of data to the receiving device, allowing
the PLC to send discrete-signal commands to the VFD one at a time. When the PLC commands the
VFD to run in the Reverse direction, it issues a 05 command followed by a “1” data bit addressed
to the appropriate memory location inside the VFD reserved for the “Reverse” command bit. When
the PLC commands the VFD to change motor speed, it issues an 06 Modbus code (“write register”)
followed by a 16-bit number representing the desired motor speed and the appropriate address within
the VFD reserved for speed command.

Not only can the PLC issue all the same commands as before, but it may also read data from
the VFD which it could not do before. For example, if the VFD provides a memory location for
storing fault codes (e.g. motor overcurrent, bus undervoltage, etc.), the PLC may be programmed
to issue an 03 Modbus code to read a single register (16 bit binary number) from that memory
location within the VFD, and thereby monitor the status of the VFD to alert human technicians of
potential problems, and/or to modify its own supervisory control of the motor.

1RS-485 is one standard for serial data communication using Non-Return-to-Zero (NRZ) encoding of bits. Two
un-grounded conductors convey a pulsed voltage signal between the connected devices with one polarity of voltage
representing a “0” bit and the other polarity representing a “1” bit.

16 CHAPTER 3. TUTORIAL

Another advantage of the Modbus communication standard is that it is designed to address
multiple devices on the same network. This means our hypothetical PLC is not limited to controlling
and monitoring just one motor, but up to 247 separate Modbus slave devices on the same two-wire
communication cable! The following illustration shows how this might work for multiple motors:

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

PLC

VFD

L1 L2 L3

T1 T2 T3

AC induction motor

Fwd

Rvs

Fwd jog

Com

Modbus
RS-485

Stop

To 480 VAC
3-phase

power source

Modbus
RS-485

Analog
speed
command

Analog
output

VFD

L1 L2 L3

T1 T2 T3

AC induction motor

Fwd

Rvs

Fwd jog

Com

Modbus
RS-485

Stop

To 480 VAC
3-phase

power source

Analog
speed
command

#1

#2

Each VFD is given its own Modbus network slave address, so that the PLC is able to distinguish
between the two drives when communicating on the same wire pair. Every Modbus code transmitted
by the PLC contains this address as a single byte (8 bits) of data in order to make the receiving
VFD aware that the code applies to it and not to any other Modbus device on the network. In

3.2. NETWORKED MOTOR CONTROLS 17

this example, we may wish to address VFD #1 with Modbus address 1, and VFD #2 with Modbus
address 2. The Modbus standard provides a “broadcast address” of 0 which addresses all devices
on the network simultaneously. For example, if the PLC needed to start all motors in the same
direction at once, it could issue a Modbus code 05 (write a single bit) to the same address inside
each VFD representing the command bit for the correct direction of motor rotation. So long as the
VFDs are identically configured, the data will be received and interpreted by each VFD identically
which will cause them to both start up in the same direction.

The only disadvantages to using Modbus as opposed to dedicated wires for each sensing and
control function are speed and reliability. Modbus is necessarily slower than dedicated wire control
because the PLC cannot simultaneously issue different commands on the network. For example, if
the PLC needed to tell a VFD to begin turning its motor in the forward direction at 1050 RPM,
the Modbus-based system would need to issue two separate Modbus codes whereas the individually-
wired system could issue these commands all at once. This disadvantage, however, is hardly worth
considering if the Modbus network communicates at reasonably high speed (thousands of bits per
second). The disadvantage of reliability may be readily perceived if we consider how each system
would respond to a wire fault (e.g. one wire coming loose and disconnected from a screw terminal).
In the individually-wired system, one wire fault disables that one motor-control function but not
necessarily any of the other functions. In the Modbus-based system, one wire fault disables everything
because any Modbus communication requires full function of that two-conductor communication
cable. The problem is even larger when multiple devices are controlled by the same Modbus cable:
if a fault occurs between the controlling PLC and all the field devices, the PLC will lose control (and
monitoring) for every one of those field devices! This is a factor worth considering when deciding
whether or not to use any digital communication method for monitoring and control of multiple
devices.

Modbus, especially when implemented over simple serial networks such as EIA/TIA-2322 and
EIA/TIA-4853, is a rather primitive protocol. The seemingly arbitrary decimal codes used to issue
commands and specify addresses is antiquated by modern standards. For better or for worse,
though, a great many digital industrial devices “speak” Modbus, even if they are also capable
of communicating via other network protocols. Using Modbus to communicate with modern control
equipment is therefore an act of homage to 1970’s-era telecommunications: all participating devices
in a Modbus network essentially behave the same as a 1970’s vintage Modicon PLC for the sake
of exchanging information, even if their processing capabilities enable communications far more
sophisticated than the Modbus protocol. A Modbus device querying another Modbus device does
not “know” how modern or antiquated that other device is, because the basic Modbus standard has
remained fixed for all this time.

2EIA/TIA-232 is also known by its older title RS-232. It is a Non-Return-to-Zero (NRZ) serial data protocol using
ground-referenced voltage signals to represent “0” and “1” bits. These bits are transmitted one at a time at some
constant bit rate, and interpreted by the receiving device(s) before being assembled into whole digital words.

3Also known by its older title RS-485.

18 CHAPTER 3. TUTORIAL

3.3 Modbus history

Developed by the Modicon company (the original manufacturer of the Programmable Logic
Controller, or PLC) in 1979 for use in its industrial control products, Modbus is a protocol
designed specifically for exchanging process data between industrial control devices. The Modbus
standard does not specify any details of physical networking, and thus may be deployed on many
different types of physical networks. In other words, Modbus primarily falls within layer 7 of the
OSI Reference Model (the so-called “Application Layer”) and therefore is compatible4 with any
lower-level communication protocols including EIA/TIA-232, EIA/TIA-485, Ethernet (the latter
via TCP/IP), and a special token-passing network also developed by Modicon called Modbus Plus.
The Modbus standard primarily defines the meaning of various Modbus commands, the addressing
scheme used to place data within devices, and the formatting of the data.

Modbus consists of a set of standardized digital codes intended to read data from and write data
to industrial devices. A Modbus-compliant industrial device has been programmed to understand
these codes and respond to them appropriately when received. The simplest Modbus codes read
and write single bits of data in the device’s memory, for example the status of a PLC input channel,
PLC output channel, or status bit within a PLC program. Other Modbus codes operate on 16-bit
words of data, useful for reading and writing counter and timer accumulated values, operands for
mathematical instructions, converted analog signals, etc.

Early implementations of Modbus used EIA/TIA-485 as the network physical layer, which is
strictly a layer 1 protocol. This meant that Modbus needed to specify a channel arbitration scheme
in order to negotiate communications with multiple devices on a network. The arbitration chosen
was master/slave, where one PLC functioned as the master Modbus device and all other devices
functioned as Modbus slaves.

Interestingly, this vestige of master/slave arbitration survives to this day, even when Modbus
commands are communicated via networks with their own differing arbitration methods. For
example, Modbus commands communicated over Ethernet still reference “slave” addresses even
though the Ethernet network those messages are sent over uses CSMA/CD arbitration. In other
words, there is a hint of OSI layer 2 embedded within Modbus messages that still dictates which
Modbus devices may issue commands and which must obey commands.

4These Modbus data frames may be communicated directly in serial form, or “wrapped” in TCP segments and IP
packets and Ethernet frames, or otherwise contained in any form of packet-based protocol as needed to transport the
data from one device to another. Thus, Modbus does not “care” how the data is communicated, just what the data
means for the end-device.

3.4. SERIAL MODBUS DATA FRAMES 19

3.4 Serial Modbus data frames

The Modbus communication standard defines a set of commands for reading (receiving) and writing
(transmitting) data between a master device and one or more slave devices connected to the network.
Each of these commands is referenced by a numerical code, with addresses of the master and slave
devices’ internal registers (data sources and data destinations) specified along with the function code
in the Modbus frame.

Two different formats are specified in the Modbus standard for simple serial-based networks:
ASCII and RTU. The difference between these two modes is how addresses, function codes, data,
and error-checking bits are represented. In Modbus ASCII mode, all slave device addresses, function
codes, and data are represented in the form of ASCII characters (7 bits each), which may be read
directly by any terminal program (e.g. minicom, Hyperterminal, kermit, etc.) intercepting the
serial data stream. This makes troubleshooting easier: to be able to directly view the Modbus data
frames in human-readable form. In Modbus RTU mode, all slave device addresses, function codes,
and data are expressed in raw binary form. Different error-checking techniques are used for ASCII
and RTU modes as well. The following diagram compares data frames for the two Modbus modes:

checkData

8 bits

Stop

Start Function
code

8 bits

Start

(multiple of 8 bits)

CRC

16 bits

Modbus RTU message frame

checkDataStart Function
code

Start

Modbus ASCII message frame

(:)

1 character 2 characters 2 characters (multiple characters) 2 characters

LRC

(pause) (pause)
End

Stop

End

2 characters

(carriage return

linefeed)+
Slave

address

Slave
address

As you can see from a comparison of the two frames, ASCII frames require nearly twice5 the

5Recall that each ASCII character requires 7 bits to encode. This impacts nearly every portion of the Modbus data
frame. Slave address and function code portions, for example, require 14 bits each in ASCII but only 8 bits each in
RTU. The data portion of a Modbus ASCII frame requires one ASCII character (7 bits) to represent each hexadecimal
symbol that in turn represents just 4 bits of actual data. The data portion of a Modbus RTU frame, by contrast,
codes the data bits directly (i.e. 8 bits of data appear as 8 bits within that portion of the frame). Additionally, RTU
data frames use quiet periods (pauses) as delimiters, while ASCII data frames use three ASCII characters in total to
mark the start and stop of each frame, at a “cost” of 21 additional bits. These additional delimiting bits do serve a
practical purpose, though: they format each Modbus ASCII data frame as its own line on the screen of a terminal
program.

20 CHAPTER 3. TUTORIAL

number of bits as RTU frames, making Modbus ASCII slower than Modbus RTU for any given data
rate (bits per second).

The contents of the “Data” field vary greatly depending on which function is invoked, and
whether or not the frame is issued by the master device or from a slave device. More details on
Modbus “Data” field contents will appear in a later subsection. Also, you may consult section 5.1
beginning on page 36 which lists the data frame format for multiple Modbus function codes.

3.5 Modbus/TCP data frames

Since Modbus is strictly a “layer 7” protocol, these message frames may be embedded within
other data frames specified by lower-level protocols. Modbus/TCP is a popular example of this,
where individual Modbus data frames are encapsulated within TCP/IP segments/packets, which
are then (usually) encapsulated again as Ethernet frame data payloads to arrive at the destination
device. This “multi-layered” approach inherent to Modbus being such a high-level protocol may
seem cumbersome, but it offers great flexibility in that Modbus frames may be communicated over
nearly any kind of virtual and physical network type.

The following illustration shows how digital data is encapsulated within the Transmission Control
Protocol (TCP) by the prepending of a TCP “header” containing digital codes directing any
TCP-compliant networking device with instructions specific to TCP. Next, we see how that TCP
“segment” is further encapsulated into an IP “packet” by the prepending of more digital information,
this time instructing any IP-compliant device what to do with that packet. Lastly, this IP packet
is further encapsulated as the payload of an Ethernet frame by “wrapping” it with a header full
of addressing and other information necessary for Ethernet at the front and with a “frame check
sequence” at the end for error-checking:

Preamble
Destination
address

Source
address

Frame
check
sequenceData
(CRC)

S
F

D

Start Stop

Ethernet frame

DataHeaderIP packet

Ethernet data

IP data

Header DataTCP segment

TCP data

IP

TCP

Length/T
ype(OSI layers 1 & 2)

(OSI layer 3)

(OSI layer 4)

This process of repeated encapsulation of data-within-data is how any digital data must be
prepared for transmission across a network using TCP, IP, and Ethernet protocols.

3.5. MODBUS/TCP DATA FRAMES 21

In Modbus/TCP the Modbus message is itself encapsulated with a special header unique to
Modbus/TCP before becoming the payload (data) of a TCP segment. This header is called aModbus
Application Protocol or MBAP. Details of the MBAP header are shown in this next illustration
showing the encapsulation of an entire Modbus/TCP frame within a TCP segment:

Header DataTCP segment

TCP data

TCP

Length

P
rotocol ID

T
ransaction ID

S
lave address

F
unction code

Modbus message
data

MBAP Modbus message

Modbus/TCP frame

Transmission Control Protocol (TCP) requires that virtual ports be numerically specified on
both ends of the network connection for each segment, and for Modbus/TCP the standardized port
number is 502.

It should be noted that data fields contained within the MBAP such as the Transaction ID, the
Protocol ID, etc. are all encoded big-endian6 which means all their bits and bytes read directly in
the order received over time, from most-significant bit to least-significant bit. The same is true for
data fields within the serial-based Modbus frames (i.e. RTU and ASCII). However, it is important
to note that any data written to or read from a Modbus device via Modbus registers will follow
the “endianness” prescribed by the manufacturer of that device, which may be big-endian or little-
endian at the manufacturer’s discretion. It is even common to find some manufacturers ordering
their Modbus data registers to be byte-swapped7 or word-swapped8, so one must pay close attention
to the manufacturer’s technical documentation when programming Modbus-based communication
systems.

6The designators “big-endian” and “little-endian” refer to whether or not a digital word is transmitted in order
of MSB to LSB (i.e. the “big end” first) or LSB to MSB (“little end” first). For example, the number one hundred
seventy-five encoded as a single byte (8 binary bits) would be 0b10101111 if written in big-endian order. However,
that same number would be 0b11110101 if written in little-endian order.

7This is where the two bytes of data comprising a single 16-bit Modbus register are reversed in order even if the
bits within each of those bytes is big-endian. For example the 16-bit word 0x3BA9 in a system using byte-swapped
words will need to be interpreted as 0xA93B.

8This is where two consecutive 16-bit words representing a single 32-bit field of data swap the order of those 16-bit
words. For example, in a system using word-swapping but no byte swapping, the two consecutive words 0x57C1 and
0xD028 actually represent a 32-bit word 0xD02857C1. If the system uses word-swapping and byte-swapping, the proper
way to interpret those same two consecutive 16-bit registers would be 0x28D0C157. Confusing, no? The real fun begins
when the manufacturer fails to document any of this, leaving you to figure it out on your own.

22 CHAPTER 3. TUTORIAL

3.6 Modbus function codes and addresses

A listing of commonly-used Modbus function codes appears in the following table:

Modbus code Function

(decimal)

01 Read one or more PLC output “coils” (1 bit each)

02 Read one or more PLC input “contacts” (1 bit each)

03 Read one or more PLC “holding” registers (16 bits each)

04 Read one or more PLC analog input registers (16 bits each)

05 Write (force) a single PLC output “coil” (1 bit)

06 Write (preset) a single PLC “holding” register (16 bits)

15 Write (force) multiple PLC output “coils” (1 bit each)

16 Write (preset) multiple PLC “holding” registers (16 bits each)

Live data inside of any digital device is always located at some address within that device’s
random-access memory (RAM). The Modbus “984” addressing standard defines sets of fixed
numerical addresses where various types of data may be found in a PLC or other control device.
The absolute address ranges (according to the Modbus 984 scheme) are shown in this table, with
each address holding 16 bits of data:

Modbus codes Address range Purpose

01, 05, 15 00001 to 09999 Discrete outputs (“coils”), read/write

02 10001 to 19999 Discrete inputs (“contacts”), read-only

04 30001 to 39999 Analog input registers, read-only

03, 06, 16 40001 to 49999 “Holding” registers, read/write

Note how all the Modbus address ranges begin at the number one, not zero as is customary for so
many digital systems. For example, a PLC with sixteen analog input channels numbered 0 through
15 by the manufacturer may “map” those input registers to Modbus addresses 30001 through 30016,
respectively.

3.6. MODBUS FUNCTION CODES AND ADDRESSES 23

While this fixed addressing scheme was correct for the original PLCs developed by Modicon,
it almost never corresponds directly to the addresses within a modern Modbus master or slave
device. Manufacturer’s documentation for Modbus-compatible devices normally provide Modbus
“mapping” references so technicians and engineers alike may determine which Modbus addresses
refer to specific bit or word registers in the device. In some cases the configuration software for
a Modbus-compatible device provides a utility where you may assign specific device variables to
standard Modbus register numbers. An example of a Modbus variable mapping page appears in
this screenshot taken from the configuration utility for an Emerson Smart Wireless gateway, used to
“map” data from variables within WirelessHART radio-based industrial field instruments to Modbus
registers within the gateway device where other devices on a wired network may read that data:

As you can see here, the primary variable within temperature sensor TT-101 (TT-101.PV) has
been mapped to Modbus register 30001, where any Modbus master device on the wired network
will be able to read it. Likewise, the secondary variable within level switch LSL-78 (LSL-78.SV) has
been mapped to Modbus register 30041.

It is important to note that Modbus registers are 16 bits each, which may or may not exactly fit
the bit width of the device variable in question. If the device variable happens to be a 32-bit floating
point number, then two contiguous Modbus registers must be used to hold that variable, only the
first of which will likely appear on the Modbus mapping page (i.e. the Modbus map will only show
the first Modbus register of that pair). If the device variable happens to be a boolean (single bit),
then it is likely only one bit within the 16-bit Modbus register will be used, the other 15 bits being
“wasted” (unavailable) for other purposes. Details such as this may be documented in the manual
for the device performing the Modbus mapping (in this case the Emerson Smart Wireless Gateway),
or you may be forced to discover them by experimentation.

24 CHAPTER 3. TUTORIAL

3.7 Modbus relative addressing

An interesting idiosyncrasy of Modbus communication is that the address values specified within
Modbus data frames are relative rather than absolute. Since each Modbus read or write function
only operates on a limited range of register addresses, there is no need to specify the entire address
in the data frame. For example, Modbus function code 02 reads discrete input registers in the device
with an absolute address range of 10001 to 19999 (i.e. all the addresses beginning with the digit
“1”). Therefore, it is not necessary for the “read” command function 02 to specify the first digit of
the register address. Instead, the read command only needs to specify a four-digit “relative address”
specifying how far up from the beginning of the address range (in this case, from 10001) to go.

An analogy to aid your understanding of relative addressing is to envision a hotel building with
multiple floors. The first digit of every room number is the same as the floor number, so that the
first floor only contains rooms numbered in the 100’s, the second floor only contains rooms numbered
in the 200’s, etc. With this very orderly system of room numbers, it becomes possible to specify a
room’s location in more than one way. For example, you could give instructions to go to room 314
(an absolute room number), or alternatively you could specify that same room as “number 14 (a
relative room number) on the third floor”. To a hotel employee who only works on the third floor,
the shortened room number might be easier to remember.

In Modbus, relative addresses are just a little bit more complicated than this. Relative addresses
actually span a range beginning at zero, while absolute addresses begin with “1” as the least-
significant digit. This means there is an additional offset of 1 between a Modbus relative address
and its corresponding absolute address. Returning to the hotel analogy, imagine the very first room
on the third floor was room 301 (i.e. there was no room 300) and that the relative address represented
the number of rooms past that first room. In this unintuitive scheme, room 314 could be specified
as “the 13th room after the starting room on the third floor”. If this seems needlessly confusing,
you are not alone. Welcome to Hotel Modbus.

A few examples are given here for illustration:

• Read the content of contact register 12440: Modbus read function 02; relative address 2439

• Read the content of analog input register 30050: Modbus read function 04; relative address 49

• Read the content of holding register 41000: Modbus read function 03; relative address 999

• Write multiple output coils in register 00008: Modbus write function 15; relative address 7

In each case, the pattern is the same: the relative address gets added to the first address of
that range in order to arrive at the absolute address within the Modbus device. Referencing the
first example shown above: 2439 (relative address) + 10001 (first address of register range) = 12440
(absolute address).

Thankfully, the only time you are likely to contend with relative addressing is if you program
a computer using some low-level language such as assembly or C++. Most high-level industrial
programming languages such as Function Block or Ladder Diagram make it easy for the end-user
by allowing absolute addresses to be directly specified in the read and write commands. In a typical
PLC program, for example, you would read contact register 12440 by simply specifying the number
12440 within the address field of a “read 02” instruction.

3.7. MODBUS RELATIVE ADDRESSING 25

The following listing shows code (written in the C language) utilizing the open-source libmodbus
function library instructing a computer to access 16-bit integer data from four Modbus “holding”
registers (absolute addresses 49001 through 49004) via Modbus/TCP. The device’s IP address is
192.169.0.10 and port 502 is used for the TCP connection:

#include <stdio.h>

#include <modbus.h>

modbus_t *Device;

int main (void)

{

int read_count;

uint16_t inreg_word[4];

Device = modbus_new_tcp ("192.168.0.10", 502);

modbus_set_error_recovery (Device, MODBUS_ERROR_RECOVERY_LINK);

read_count = modbus_read_registers (Device, 9000, 4, inreg_word);

printf("Number of registers read = %i \n", read_count);

printf("Value of register 49001 = %i \n", inreg_word[0]);

printf("Value of register 49002 = %i \n", inreg_word[1]);

printf("Value of register 49003 = %i \n", inreg_word[2]);

printf("Value of register 49004 = %i \n", inreg_word[3]);

modbus_close (Device);

modbus_free (Device);

return read_count;

}

Note how the starting address passed to the read function is specified in relative form (9000),
when in fact the desired absolute starting address inside the device is 49001. The result of running
this code is shown here, the Modbus device in question being an Emerson Smart Wireless Gateway
at 4:00 PM (i.e. 16:00 military time) on March 22, 2016. These four registers (49001 through 49004)
happen to contain date and time information (year, month, day, and hour) stored in the device:

Number of registers read = 4

Value of register 49001 = 2016

Value of register 49002 = 3

Value of register 49003 = 22

Value of register 49004 = 16

26 CHAPTER 3. TUTORIAL

This next listing shows similar code (also written in the C language9) accessing 16-bit integer
data from three Modbus “analog input” registers (absolute addresses 30015 through 30017) via
Modbus/TCP from the same device as before:

#include <stdio.h>

#include <modbus.h>

modbus_t *Device;

int main (void)

{

int read_count;

uint16_t inreg_word[3];

Device = modbus_new_tcp ("192.168.0.10", 502);

modbus_set_error_recovery (Device, MODBUS_ERROR_RECOVERY_LINK);

read_count = modbus_read_input_registers (Device, 14, 3, inreg_word);

printf("Number of registers read = %i \n", read_count);

printf("Value of register 30015 = %i \n", inreg_word[0]);

printf("Value of register 30016 = %i \n", inreg_word[1]);

printf("Value of register 30017 = %i \n", inreg_word[2]);

modbus_close (Device);

modbus_free (Device);

return read_count;

}

Note once again how the relative starting address specified in the code (14) maps to the absolute
Modbus register address 30015, since analog input registers begin with the address 30001 and relative
addresses begin at 0.

9This C-language code is typed and saved as a plain-text file on the computer, and then a compiler program is
run to convert this “source” code into an “executable” file that the computer may then run. The compiler I use on
my Linux-based systems is gcc (the GNU C Compiler). If I save my Modbus program source code to a file named
tony modbus.c, then the command-line instruction I will need to issue to my computer instructing GCC to compile
this source code will be gcc tony modbus.c -lmodbus. The argument -lmodbus tells GCC to “link” my code to the
code of the pre-installed libmodbus library in order to compile a working executable file. By default, GCC outputs
the executable as a file named a.out. If I wish to rename the executable something more meaningful, I may either
do so manually after compilation, or invoke the “outfile” option of gcc and specify the desired executable filename:
(e.g. gcc -o tony.exe tony modbus -lmodbus). Once compiled, the executable file many be run and the results of
the Modbus query viewed on the computer’s display.

3.8. ANALYZING A MODBUS/TCP MESSAGE 27

When using the libmodbus C/C++ library, the distinction between reading “analog input”
registers (address range 30001 to 39999) and “holding” registers (address range 40001 to 49999) is
made by the particular libmodbus function called. To read “analog input” registers in the 3XXXX
address range, you use the modbus read input registers() function. To read “holding” registers
in the 4XXXX address range, you use the modbus read registers() function. This subtle difference
in function names is important. Refer back to the two previous code examples to verify for yourself
which function call is used in each of the register-reading applications.

3.8 Analyzing a Modbus/TCP message

In this section we will analyze a single Modbus message communicated over an Ethernet network
between a PLC and a Human-Machine Interface display unit also known as an HMI. These two
industrial computers are used to monitor DC voltage in a solar power system as well as display and
control the status of one of the circuit breakers within that power system:

Power
supply

L1

Gnd

L2/N

Processor Input
0
1
2
3

4
5
6
7

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

COM

COM

Output
0
1
2
3

4
5
6
7

COM

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

VDC IN 0+
IN 0-

IN 1+
IN 1-

IN 2+
IN 2-

IN 3+
IN 3-

Input

Analog

ANL COM

ANL COM

ANL COM

ANL COM

Inputs

Inputs

Outputs

PLC

HMI writes to PLC

HMI reads from PLC

HMI

Push
to

Push
to

Trip Close

DC Bus voltage

15.6996 Volts

From bus voltage divider

From breaker status contact

To breaker trip/close coils

IP = 169.254.1.1

IP = 169.254.207.75Ethernet cable

Each device has its own unique IP address: the PLC’s being 169.254.1.1 and the HMI’s being
169.254.207.75. Periodically the HMI sends data read requests to the PLC in order to poll for
updated DC voltage measurements and breaker status bits. The DC voltage is sensed by one analog
input channel on the PLC and scaled into units of Volts by the PLC, the result stored as a 32-bit
floating-point number following the ANSI/IEEE standard 754 floating-point format.

The data exchange we are about to analyze is the HMI responding to the PLC’s poll for measured
DC voltage. In this particular brand and model of PLC, scaled analog measurement values are stored
as two consecutive 16-bit “holding” registers, and so must be accessed by Modbus function code 03.
The read command requests two registers to be transmitted back to the PLC, and in this case that
response was captured using a network-monitoring application called Wireshark.

28 CHAPTER 3. TUTORIAL

Here is a hex dump of the entire data frame, consisting of the Modbus message prepended with
a MBAP header, encapsulated within a TCP segment, encapsulated within a single IP packet,
encapsulated within one Ethernet frame. Each of these encapsulating elements is shown by color-
highlighting:

0000 00 d0 7c 14 f6 d6 00 d0 7c 1a 41 09 08 00 45 00
0010 00 35 54 27 00 00 40 06 02 53 a9 fe 01 01 a9 fe
0020 cf 4b 01 f6 c0 06 d9 fb 34 2f 7a e2 ae 4e 50 18
0030 02 6c 0e 48 00 00 5e ec 00 00 00 07 01 03 04 31
0040 a2 41 7b

Ethernet header IP header

TCP header MBAP

Modbus message

Breaking down these portions byte-by-byte:

Ethernet header

• 00 d0 7c 14 f6 d6 is the destination device MAC address, with the first three bytes reserved
for Koyo Electric (the HMI manufacturer in this case)

• 00 d0 7c 1a 41 09 is the source device MAC address, again with the first three bytes reserved
for Koyo Electric (the PLC manufacturer in this case)

• 08 00 specifies the Ethernet payload type as IP version 4

IP header

• 45 specifies IP version 4 and a header length of 20 bytes (code 5)

• 00 declares the differentiated services field as “standard” (code 0)

• 00 35 specifies the total length of the IP packet

• 54 27 is the IP packet identification number

• 00 00 IP flags and fragment offset (zero since there is no fragmentation in this short packet)

• 40 specifies the time-to-live (64 seconds)

• 06 specifies the IP payload type as TCP (code 6)

3.8. ANALYZING A MODBUS/TCP MESSAGE 29

• 02 53 is the header checksum, for error-detection purposes

• a9 fe 01 01 is the source IP address (169.254.1.1 for the PLC)

• a9 fe cf 4b is the destination IP address (169.254.207.75 for the HMI)

TCP header

• 01 f6 specifies the source port number, in this case 502 which is reserved for Modbus/TCP

• c0 06 specifies the destination port number, in this case 49158

• d9 fb 34 2f is the sequence number for this TCP segment, which is important for lengthy
messages requiring segmenting into multiple TCP segments but is not necessary for this short
Modbus message

• 7a e2 ae 4e is the acknowledgment number for this TCP segment

• 5 specifies the total length of the TCP header

• 018 indicates PSH and ACK flag statuses

• 02 6c specifies the window number

• 0e 48 is the checksum, for error-detection purposes

• 00 00 points to the last byte of any “urgent” data, nonexistent in this example

MBAP

• 5e ec is the Transaction Identifier for this Modbus message

• 00 00 is the Protocol Identifier, 0 by default

• 00 07 specifies the length (in bytes) of all remaining data fields

• 01 is the Unit Identifier, equivalent to the traditional Modbus slave address number

Modbus message

• 03 specifies the Modbus function code, in this case 03 (read “holding” register)

• 04 is the byte count for the registers requested

• 31 a2 is the contents of Register 0 (the first one read back from the PLC)

• 41 7b is the contents of Register 1 (the second one read back from the PLC)

30 CHAPTER 3. TUTORIAL

In order to properly interpret the 32-bit floating-point value representing DC bus voltage in the
solar power system being monitored by the PLC, it helps to know that this particular brand and
model of PLC (Koyo Electric “CLICK”) happens to use word-swapped order for its floating-point
numbers. Thus, the register data shown in the hex dump as 0x31A2417B actually needs to be
interpreted as 0x417B31A2.

The ANSI/IEEE 754 floating-point number standard assigns the following meanings to the 32
bits:

Sign bit Exponent bits Mantissa bits
(1) (8) (23)

Single-precision IEEE floating-point number format

26 25 24 23 22 21 20

(E) (m)

27

Translating the word-swap-corrected 0x417B31A2 data word from the PLC into binary
numeration instead of hexadecimal:

Raw binary for 0x417B31A2:

0100 0001 0111 1011 0011 0001 1010 0010

Next, populating the ANSI/IEEE-754 template with these bits:

Sign Exponent Mantissa

0 1000 0010 1111 0110 0110 0011 0100 010

The sign bit of 0 tells us this is a positive and not a negative quantity. The 0b10000010 exponent
has a decimal value of 130, from which we must subtract the standard bias value of 127 to yield
3, which is the power-of-two we will apply to the number’s mantissa. In addition to the −127 bias
value specified in the ANSI/IEEE-754 standard, this standard also assumes a 1 prepended to the
23-bit mantissa field to give a 24-bit binary value. If we prepend that 1 bit to the mantissa shown,
we get:

1.1111 0110 0110 0011 0100 010

Lastly, we must apply the exponent value of 3, which means 23, or shifting the binary point three
places to the right. This is the DC voltage value represented in fixed-point binary format:

1111.1011 0011 0001 1010 0010

Converting this into decimal10, we get 15.699617385864258 Volts DC which was the DC bus
voltage at the time of this Modbus query.

10The four “1” bits to the left of the binary point simply represent 15 (8 + 4 + 2 + 1). Bits to the right of the
binary point have fractional place-weight values, the first bit representing one-half (2−1), the next bit one-quarter,
etc. I used Python as a manual calculator to convert this fixed-point binary value into decimal: >>> 15 + pow(2,-1)

+ pow(2,-3) + pow(2,-4) + pow(2,-7) + pow(2,-8) + pow(2,-12) + pow(2,-13) + pow(2,-15) + pow(2,-19)

Chapter 4

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.

31

32 CHAPTER 4. HISTORICAL REFERENCES

4.1 Big-endians and Little-endians

A fictional novel published in 1726 entitled Gulliver’s Travels Into Several Remote Nations of the
World contains a reference to a dispute between two nations, that of Lilliput and of Blefuscu. The
dispute is over the most trivial of matters, namely which end of an egg should be broken prior
to eating. Clearly a satire by Swift on the religious controversies of his day, the schism between
the “Big-endians” and “Little-endians” served as a convenient reference for computer scientists to
describe the differing ways in which digital data could be organized within a digital system.

Without further adieu, I present to you the passage from Swift’s famous book introducing the
term “Big-endian” into the English lexicon:

. . . our histories of six thousand moons make no mention of any other regions than
the two great empires of Lilliput and Blefuscu. Which two mighty powers have, as I
was going to tell you, been engaged in a most obstinate war for six-and-thirty moons
past. It began upon the following occasion. It is allowed on all hands, that the primitive
way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking it according
to the ancient practice, happened to cut one of his fingers. Whereupon the emperor his
father published an edict, commanding all his subjects, upon great penalties, to break
the smaller end of their eggs. The people so highly resented this law, that our histories
tell us, there have been six rebellions raised on that account; wherein one emperor lost
his life, and another his crown. These civil commotions were constantly fomented by the
monarchs of Blefuscu; and when they were quelled, the exiles always fled for refuge to that
empire. It is computed that eleven thousand persons have at several times suffered death,
rather than submit to break their eggs at the smaller end. Many hundred large volumes
have been published upon this controversy: but the books of the Big-endians have been
long forbidden, and the whole party rendered incapable by law of holding employments.
During the course of these troubles, the emperors of Blefusca did frequently expostulate
by their ambassadors, accusing us of making a schism in religion, by offending against
a fundamental doctrine of our great prophet Lustrog, in the fifty-fourth chapter of the
Blundecral (which is their Alcoran). This, however, is thought to be a mere strain upon
the text; for the words are these: “that all true believers break their eggs at the convenient
end.” And which is the convenient end, seems, in my humble opinion to be left to every
man’s conscience, or at least in the power of the chief magistrate to determine. Now,
the Big-endian exiles have found so much credit in the emperor of Blefuscu’s court, and
so much private assistance and encouragement from their party here at home, that a
bloody war has been carried on between the two empires for six-and-thirty moons, with
various success; during which time we have lost forty capital ships, and a much a greater
number of smaller vessels, together with thirty thousand of our best seamen and soldiers;
and the damage received by the enemy is reckoned to be somewhat greater than ours.
However, they have now equipped a numerous fleet, and are just preparing to make a
descent upon us; and his imperial majesty, placing great confidence in your valour and
strength, has commanded me to lay this account of his affairs before you.

One of those computer scientists referencing Jonathan Swift’s satirical novel was Danny Cohen, in
a document appropriately dated on April Fool’s Day (April 1), 1980. The tone of Cohen’s document

4.1. BIG-ENDIANS AND LITTLE-ENDIANS 33

is quite humorous, and definitely worth reading especially for those interested in the architectures
of early computing hardware such as the Motorola 68000 microprocessor IC; Digital Equipment
Corporation’s PDP10, PDP11/45, VAX computers; and the IBM model 360 computer. He makes
extensive reference of Swift’s story while describing the fundamental decision of how to organize and
communicate data words in a digital system.

Cohen’s document concludes neatly with the following three sentences, which I include for your
edification:

It may be interesting to notice that the point which Jonathan Swift tried to convey in
Gulliver’s Travels in exactly the opposite of the point of this note.

Swift’s point is that the difference between breaking the egg at the little-end and breaking
it at the big-end is trivial. Therefore, he suggests, that everyone does it in his own
preferred way.

We agree that the difference between sending eggs with the little- or the big-end first is
trivial, but we insist that everyone must do it in the same way, to avoid anarchy. Since
the difference is trivial we may choose either way, but a decision must be made.

At the time of this writing (2023), more than four decades after Cohen’s missive, the state
of digital anarchy he described remains alive and well, with little-endian and big-endian formats
commonly found coexisting across digital data networks. While the problem of which bit to send
first in a serial (i.e. one bit at a time) communication channel seems to be settled1 within each of
the various network standards (e.g. Ethernet, EIA/TIA-232, etc.), the problem of byte and word
order for large data segments remains. It is not uncommon, for example, to find manufacturers
of industrial data equipment arbitrarily using different 16-bit word orders for storing 32-bit binary
numbers, so that when a 32-bit binary number is received by a digital device of different manufacture,
swapping of word or byte orders may be necessary in order to preserve the meaning of that 32-bit
number. This is particularly common in Modbus-based communication systems where the Modbus
administrative data fields (e.g. address numbers, function codes, length descriptors, etc.) are all
ordered big-endian, but the hardware-specific data words may be big-endian, little-endian, byte-
swapped, word-swapped, or any combination thereof!

1For example, all manufacturers of EIA/TIA-232 serial data communication hardware have agreed to transmit the
LSB first followed by bits of increasing order. Thus, we do not encounter anarchy when connecting one manufacturer’s
232-compliant modem to another manufacturer’s 232-compliant modem. Ditto for the interoperability of all Ethernet
communication hardware. This is a Very Good Thing.

34 CHAPTER 4. HISTORICAL REFERENCES

Chapter 5

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

35

36 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.1 Modbus function command formats

Every Modbus data frame, whether ASCII or RTU mode, has a field designated for “data.” For
each Modbus function, the content of this “data” field follows a specific format. It is the purpose
of this subsection to document the data formats required for common Modbus functions, both the
“Query” message transmitted by the Modbus master device to a slave device, and the corresponding
“Response” message transmitted back to the master device by the queried slave device.

Since each Modbus data frame is packaged in multiples of 8 bits (RTU), they are usually
represented in text as individual bytes (two hexadecimal characters). For example, a 16-bit “word” of
Modbus data such as 1100100101011011 would typically be documented as C9 5B with a deliberate
space separating the “Hi” (C9) and “Lo” (5B) bytes. The fact that all Modbus words appear in this
order means that Modbus follows the “big-endian” standard.

5.1.1 Function code 01 – Read Coil(s)

This Modbus function reads the statuses of slave device discrete outputs (“coils”) within the slave
device, returning those statuses in blocks of eight (even if the “number of coils” specified in the query
is not a multiple of eight!). Relevant Modbus addresses for this function range from 00001 to 09999
(decimal) but the starting address is a hexadecimal number representing the (n− 1)th register from
the beginning of this range (e.g. absolute decimal address 00100 would be specified as hexadecimal
0x0063, as a high-order byte 00 immediately followed by a low-order byte 63).

check
Data

Start
Function

code

Start Stop

End
Slave

address

Query message (Function code 01)

Starting
address

Hi Lo

Number
of coils

Hi LoXX 01

Error

XX

check
Data

Start
Function

code

Start Stop

End
Slave

address Number

XX 01

Error

XX

Response message (Function code 01)

of bytes
First byte
(8 coils) (8 coils)

Second byte Third byte
(8 coils)

Note that the second and third bytes representing coil status are shown in grey, because their
existence assumes more than one byte worth of coils has been requested in the query.

5.1. MODBUS FUNCTION COMMAND FORMATS 37

5.1.2 Function code 02 – Read Contact(s)

This Modbus function reads the statuses of slave device discrete inputs (“contacts”) within the slave
device, returning those statuses in blocks of eight (even if the “number of contacts” specified in the
query is not a multiple of eight!). Relevant Modbus addresses for this function range from 10001
to 19999 (decimal), but the starting address is a hexadecimal number representing the (n − 1)th

register from the beginning of this range (e.g. absolute decimal address 10256 would be specified as
hexadecimal 0x00FF: the “Hi” byte being 00 and the “Lo” byte being FF).

check
Data

Start
Function

code

Start Stop

End
Slave

address Starting
address

Hi Lo

Number

Hi LoXX

Error

XX
of contacts

02

Query message (Function code 02)

check
Data

Start
Function

code

Start Stop

End
Slave

address Number

XX

Error

XX
of bytes

First byte Second byte Third byte

Response message (Function code 02)

02
(8 contacts) (8 contacts) (8 contacts)

38 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.1.3 Function code 03 – Read Holding Register(s)

This Modbus function reads the statuses of “holding” registers within the slave device, with the size
of each register assumed to be two bytes (16 bits). Relevant Modbus addresses for this function
range from 40001 to 49999 (decimal), but the starting address is a hexadecimal number representing
the (n − 1)th register from the beginning of this range (e.g. absolute decimal address 40980 would
be specified as hexadecimal 0x03D3, “Hi” byte 03 and “Lo” byte D3.).

check
Data

Start
Function

code

Start Stop

End
Slave

address Starting
address

Hi Lo

Number

Hi LoXX

Error

XX

Query message (Function code 03)

03
of registers

check
Data

Start
Function

code

Start Stop

End
Slave

address Number

XX

Error

XX
of bytes

Response message (Function code 03)

03 Hi Lo

First
register

Hi Lo

register

Hi Lo

register
Second Third

Note that since the query message specifies the number of registers (each register being two bytes
in size), and the response message replies with the number of bytes, the response message’s “number
of bytes” field will have a value twice that of the query message’s “number of registers” field. Note
also that the maximum number of registers which may be requested in the query message (65536)
with “Hi” and “Lo” byte values grossly exceeds the number of bytes the response message can report
(255) with its single byte value.

5.1. MODBUS FUNCTION COMMAND FORMATS 39

5.1.4 Function code 04 – Read Analog Input Register(s)

This Modbus function is virtually identical to 03 (Read Holding Registers) except that it reads
“input” registers instead: addresses 30001 through 39999 (decimal). As with all the Modbus relative
addresses, the starting address specified in both messages is a hexadecimal number representing the
(n − 1)th register from the beginning of this range (e.g. absolute decimal address 32893 would be
specified as hexadecimal 0x0B4C, “Hi” byte 0B followed by “Lo” byte 4C).

check
Data

Start
Function

code

Start Stop

End
Slave

address Starting
address

Hi Lo

Number

Hi LoXX

Error

XX
of registers

Query message (Function code 04)

04

check
Data

Start
Function

code

Start Stop

End
Slave

address Number

XX

Error

XX
of bytes

Hi Lo

First
register

Hi Lo

register

Hi Lo

register
Second Third

Response message (Function code 04)

04

Note that since the query message specifies the number of registers (each register being two bytes
in size), and the response message replies with the number of bytes, the response message’s “number
of bytes” field will have a value twice that of the query message’s “number of registers” field. Note
also that the maximum number of registers which may be requested in the query message (65536)
with “Hi” and “Lo” byte values grossly exceeds the number of bytes the response message can report
(255) with its single byte value.

40 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.1.5 Function code 05 – Write (Force) Single Coil

This Modbus function writes a single bit of data to a discrete output (“coil”) within the slave device.
Relevant Modbus addresses for this function range from 00001 to 09999 (decimal) but the starting
address is a hexadecimal number representing the (n−1)th register from the beginning of this range
(e.g. absolute decimal address 07200 would be specified as hexadecimal 0x1C1F, the “Hi” byte being
1C and the “Lo” byte being 1F).

check
Data

Start
Function

code

Start Stop

End
Slave

address
address

Hi Lo Hi LoXX

Error

XX

Query/Response message (Function code 05)

Coil Force data

05

The “force data” for a single coil consists of either 00 00 (force coil off) or FF 00 (force coil on).
No other data values will suffice – anything other than 00 00 or FF 00 will be ignored by the slave
device.

A normal response message will be a simple echo (verbatim repeat) of the query message.

5.1.6 Function code 06 – Write (Preset) Single Holding Register

This Modbus function writes data to a single “holding” register within the slave device. Relevant
Modbus addresses for this function range from 40001 to 49999 (decimal) but the starting address
is a hexadecimal number representing the (n − 1)th register from the beginning of this range (e.g.
absolute decimal address 40034 would be specified as hexadecimal 0x0021, “Hi” byte 00 followed by
“Lo” byte 21).

check
Data

Start
Function

code

Start Stop

End
Slave

address
address

Hi Lo Hi LoXX

Error

XX

Query/Response message (Function code 06)

06

Register Preset
data

A normal response message will be a simple echo (verbatim repeat) of the query message.

5.1. MODBUS FUNCTION COMMAND FORMATS 41

5.1.7 Function code 15 – Write (Force) Multiple Coils

This Modbus function writes multiple bits of data to a set of discrete outputs (“coils”) within the
slave device. Relevant Modbus addresses for this function range from 00001 to 09999 (decimal) but
the starting address is a hexadecimal number representing the (n− 1)th register from the beginning
of this range (e.g. absolute decimal address 03207 would be specified as hexadecimal 0x0C86, as a
“Hi” byte 0C and a “Lo” byte 86).

check
Data

Start
Function

code

Start Stop

End
Slave

address
address

Hi Lo Hi LoXX

Error

XX

Query message (Function code 15)

Starting Number of
coils

Number of
bytes

Hi Lo

Force data

0F
first word

Hi Lo

Force data
second word

check
Data

Start
Function

code

Start Stop

End
Slave

address
address

Hi Lo Hi LoXX

Error

XX

Starting Number of
coils

Response message (Function code 15)

0F

Note that the query message specifies both the number of coils (bits) and the number of bytes.

42 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

5.1.8 Function code 16 – Write (Preset) Multiple Holding Register

This Modbus function writes multiple words of data to a set of “holding” registers within the slave
device. Relevant Modbus addresses for this function range from 40001 to 49999 (decimal) but the
starting address is a hexadecimal number representing the (n − 1)th register from the beginning of
this range (e.g. absolute decimal address 47441 would be specified as hexadecimal 0x1D10, a “Hi”
byte of 1D followed by a “Lo” byte of 10).

check
Data

Start
Function

code

Start Stop

End
Slave

address
address

Hi Lo Hi LoXX

Error

XX

Starting Number of Number of
bytes

Hi Lo Hi Lo

Query message (Function code 16)

10
registers

Preset data
first register

Preset data
second register

check
Data

Start
Function

code

Start Stop

End
Slave

address
address

Hi Lo Hi LoXX

Error

XX

Starting Number of
registers

10

Response message (Function code 16)

Note that the query message specifies both the number of registers (16-bit words) and the number
of bytes, which is redundant (the number of bytes must always be twice the number of registers,
given that each register is two bytes1 in size). Note also that the maximum number of registers which
may be requested in the query message (65536) with “Hi” and “Lo” byte values grossly exceeds the
number of bytes the response message can report (255) with its single byte value.

1Even for devices where the register size is less than two bytes (e.g. Modicon M84 and 484 model controllers have
10 bits within each register), data is still addressed as two bytes’ worth per register, with the leading bits simply set
to zero to act as placeholders.

5.2. THE OSI REFERENCE MODEL 43

5.2 The OSI Reference Model

Layer 7

Application

Layer 6
Presentation

Layer 5

Session

Layer 4

Transport

Layer 3

Network

Layer 2

Data link

Layer 1

Physical

This is where digital data takes on practical meaning in the
context of some human or overall system function.

This is where data gets converted between different formats.

closed, and otherwise managed for reliable data flow.

This is where complete data transfer is handled, ensuring all data
gets put together and error-checked before use.

This is where the system determines network-wide addresses,
ensuring a means for data to get from one node to another.

This is where data bits are equated to electrical, optical, or other
signals. Other physical details such as cable and connector types

This is where "conversations" between digital devices are opened,

Examples: IP, ARP

Examples: CSMA/CD, Token passing, Master/Slave

Examples: ASCII, EBCDIC, MPEG, JPG, MP3

Examples: TCP, UDP

Examples: Sockets, NetBIOS

Examples: EIA/TIA-232, 422, 485, Bell 202
are also specified here.

This is where basic data transfer methods and sequences (frames)
are defined within the smallest segment(s) of a network.

Examples: HTTP, FTP, HART, Modbus

44 CHAPTER 5. DERIVATIONS AND TECHNICAL REFERENCES

Chapter 6

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

45

46 CHAPTER 6. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

47

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

48 CHAPTER 6. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

6.1. CONCEPTUAL REASONING 49

6.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

50 CHAPTER 6. QUESTIONS

6.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

6.1. CONCEPTUAL REASONING 51

6.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Programmable Logic Controller (PLC)

Variable Frequency Drive (VFD)

Analog signal

Discrete signal

Serial versus Parallel data

Master-slave arbitration

Data frame

OSI model

Memory address

Frame check sequence

ASCII

Encapsulation

52 CHAPTER 6. QUESTIONS

Ethernet

Internet Protocol (IP)

Transmission Control Protocol (TCP)

6.1. CONCEPTUAL REASONING 53

6.1.3 Display panel configuration

The following screen capture shows the configuration window for an industrial display panel called
an HMI (Human-Machine Interface). This particular configuration window sets communication
parameters for it to exchange data with a Modbus device:

Identify the purpose for the “Control RTS” and “Require CTS” parameters, both of which
happen to be de-activated (set to “No”).

Two options exist for Modbus Register Write function codes: 06 and 16. Likewise, two options
exist for Modbus Coil Write function codes: 05 and 15. Explain the difference between each option,
and why one setting might be more useful than the other.

Challenges

• Can we tell what type of physical-layer network this panel will use?

• Is the byte order little-endian or big-endian?

• Is the word order little-endian or big-endian?

54 CHAPTER 6. QUESTIONS

6.1.4 Wireless gateway system

An industrial radio protocol called WirelessHART exchanges digital data between wired and wireless
sensor devices using a gateway. This “gateway” acts as a radio transceiver and also a Modbus slave
device for any wired computers seeking data from it. The following diagram shows how two PLCs
and two laptop computers may connect to one of these gateways via Ethernet, which then allows
data to be exchanged between these devices and the radio-based sensors (each sensor having its own
unique “tag” name):

H L

H L

Tag: TT-14

Tag: PT-9

Gateway

IP address: 192.168.0.45

Tag: TT-1

Ethernet hub

Laptop PC

IP address: 192.168.0.12

Laptop PC

IP address: 192.168.0.3

Ethernet hub

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

PLC

IP address: 192.168.0.37

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

PLC

IP address: 192.168.0.24

Tag: LT-2

Suppose you are tasked with building an industrial measurement system using several
WirelessHART sensors. The central component of the wireless network, of course, is the gateway
device. Your particular network gateway provides Modbus access to the data received from all those
transmitters via an RS-485 (serial) network port.

The challenge is this: five programmable logic controllers (PLCs) require access to the
measurement variables of five different WirelessHART sensors. Each PLC has an RS-485 serial
port, meaning they may be all “daisy-chained” on one RS-485 wired network connecting also to the
wireless network gateway device. What is not so easy is figuring out how all five of the PLCs will
be able to read data from the gateway, since Modbus is fundamentally a master/slave protocol (one
“master” device sending data to and receiving data from multiple “slave” devices). In our system,
we need five different PLCs to get data from the one gateway, which itself is a “slave” device.

Explain how it is possible to configure a single PLC as the Modbus “master” device, and still
have the other four PLCs receive data from the wireless network gateway (“slave”) device.

6.1. CONCEPTUAL REASONING 55

Determine whether or not it is possible to configure all five of the PLCs as Modbus “master”
devices on the RS-485 network, yet avoid “bus contention” issues as they all attempt to query the
wireless gateway (“slave”) device. Explain why this proposed solution is (or is not!) possible!

Challenges

• Which of these devices may be queried using the ping utility, and which of these cannot?

56 CHAPTER 6. QUESTIONS

6.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

6.2. QUANTITATIVE REASONING 57

6.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

58 CHAPTER 6. QUESTIONS

6.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

6.2. QUANTITATIVE REASONING 59

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

60 CHAPTER 6. QUESTIONS

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

6.2. QUANTITATIVE REASONING 61

6.2.3 Interpreting an ASCII message frame

Using a serial terminal connected to an EIA/TIA-232 communication cable, you are able to intercept
Modbus ASCII messages and display them as text:

TD

RD

Gnd

2

3

5

EIA/TIA-232 cable

DE-9 connector

Laptop PC

2

3

5

DE-9 connector
Programmable Logic Controller

Industrial computer

Power

Run

Fault

Force

L1 L2/N
VAC
VDC O/0

VAC
VDC

VAC
VDC

VAC
VDCO/1 O/2 O/3

85-264 VAC

DC OUT

24V DC
COM

I/0 I/1 I/2 I/3 DC
COM

I/4 I/5

2

3

5

DE-9 connector

PLC

PC

(running terminal
emulator software)

TD

RD

Gnd

Suppose you receive the following message:

:05030A5D000889

Identify the slave address, function code, data, and LRC check portions of this Modbus ASCII
message.

Then, based on the function code, determine what the message is requesting from or sending to
the recipient.

Challenges

• Why is pin 3 of the laptop computer’s EIA/TIA-232 serial port left unconnected, while the
two Modbus devices use all three pins?

62 CHAPTER 6. QUESTIONS

6.2.4 Modbus ASCII message exchange

The following computer screenshot shows Modbus ASCII test software used to transmit a Modbus
ASCII message to a slave device11 and also show the received response from that slave device:

Explain the meanings of both the sent data and the received data.

Challenges

• Identify a practical use for this kind of test software.

11In this particular case, an Automation Direct SOLO model temperature controller.

6.3. DIAGNOSTIC REASONING 63

6.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

64 CHAPTER 6. QUESTIONS

6.3.1 SCADA system fault

Suppose the industrial SCADA (Supervisory Control And Data Acquisition) system shown below
develops a fault, preventing sensor data from the PLC from being viewed by internet display stations
(upper left portion of diagram). The sensor data appearing on these display stations is “frozen” at
old values and not updating over time as they should:

Personal computer Personal computer Personal computer

Wireless Access Point
(WAP)

ISDN router

ISDN network

Ethernet Ethernet Ethernet

802.11g

(802.3 10base-T) (802.3 10base-T) (802.3 10base-T)

232/485 converter

Programmable
Logic Controller

Proximity switches,
pushbuttons, and

other on/off sensors

802.11g
wireless
weather
station

HART modem

HART transmitter

HART transmitter

HART transmitter

HART transmitter

HART
multidrop
network

. . . to the world
wide web . . .

IP address 196.244.10.1 IP address 196.244.10.2 IP address 196.244.10.3

IP address 196.244.10.4

MAC address 5F-41-0E-7C-22-B3

HART address 1

HART address 2

HART address 3

HART address 4

MAC address 5F-41-0E-11-59-C4 MAC address 5E-39-82-7C-92-00

MAC address F1-36-68-20-CD-01

Computer
display
stations

Modbus

Modbus

DeviceNet

52
CT

PT

Circuit breaker

52
CT

PT

Circuit breaker

52
CT

PT

Circuit breaker

Protective
relay

Protective
relay

Protective
relay

DeviceNet address 4

DeviceNet address 18

DeviceNet address 7

EIA/TIA-232 EIA/TIA-232

EIA/TIA-485

Modbus slave
address 201

Modbus
master

HART
master

DeviceNet
address 22

Terminator

Terminator

DeviceNet
power supply

(PLC)

IP address 196.244.10.18

HART

Diagnosing this problem, you notice that both the Tx and Rx LEDs on the 232/485 converter
blink at regular intervals. Knowing this, identify possible fault locations preventing live sensor data
from being viewed on the display stations.

Also identify components within this system that you believe to be functioning properly.

Finally, identify diagnostic steps you could take to isolate the nature and/or location of the fault.

Challenges

6.3. DIAGNOSTIC REASONING 65

• Does the PLC communicate with Modbus serial or Modbus/TCP, or is this even possible to
discern?

• Does the PLC communicate with Modbus RTU or Modbus ASCII, or is this even possible to
discern?

• Would it be worthwhile to attempt to ping the PLC?

66 CHAPTER 6. QUESTIONS

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

67

68 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

69

70 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

71

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

72 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

73

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

74 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

75

76 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

77

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

78 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

79

80 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

81

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

82 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

83

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

84 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

85

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

86 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

“Modbus Application Protocol Specification”, version 1.1b, Modbus-IDA, Modbus Organization,
Inc., 2006.

“Modbus Messaging on TCP/IP Implementation Guide”, version 1.0b, Modbus-IDA, Modbus
Organization, Inc., 2006.

“Modicon Modbus Protocol Reference Guide”, (PI-MBUS-300) revision J, Modicon, Inc. Industrial
Automation Systems, North Andover, MA, 1996.

Park, John; Mackay, Steve; Wright, Edwin; Practical Data Communications for Instrumentation
and Control, IDC Technologies, published by Newnes (an imprint of Elsevier), Oxford, England,
2003.

87

88 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

19 February 2025 – minor edits to the “SCADA system fault” Diagnostic Reasoning question to
make it less confusing to readers.

24 September 2024 – edited some instructor notes, and minor edits to the Tutorial.

17 September 2024 – divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.

21 February 2024 – minor edits to the Tutorial, as well as added instructor notes to some of the
questions.

8 July 2023 – added a new Tutorial section analyzing the contents of a Modbus/TCP read register
response, and also added a Historical Reference chapter with an entry on digital data endianness.

29 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

10 May 2021 – commented out or deleted empty chapters.

18 March 2021 – corrected multiple instances of “volts” that should have been capitalized “Volts”.

22 February 2021 – added content to the Introduction, as well as minor edits to the Tutorial
chapter. Also corrected a copy-and-paste error in the Case Tutorial where the function code was
supposed to be 06 rather than 03.

28 September 2020 – added a Case Tutorial chapter showing examples of Modbus ASCII message
exchanges, and made minor edits to the Derivations and Technical References chapter to clarify the

89

90 APPENDIX F. VERSION HISTORY

meaning of “Hi” and “Lo” byte order. Also eliminated TEX-style tables for LATEX-style tables.

14 September 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

27 June 2020 – added more content.

26 June 2020 – consolidated the Simplified and Full Tutorials into a single Tutorial because their
content complemented each other so well.

14 April 2019 – document first created.

Index

Adding quantities to a qualitative problem, 68
Annotating diagrams, 67
April Fool’s Day, 33
ASCII Modbus frames, 19
Assembly language program, 13

Big-endian, 21, 32, 36
Byte-swap, 21, 33

C language program, 13
Checking for exceptions, 68
Checking your work, 68
Code, computer, 75
Cohen, Danny, 33

Dimensional analysis, 67

Edwards, Tim, 76
EIA/TIA-232 serial communication, 18
EIA/TIA-485 serial communication, 18
Emerson Smart Wireless Gateway, 23
Encapsulation, 20
Endianness, 21, 32, 36
Ethernet, 18, 20

Graph values to solve a problem, 68
Greenleaf, Cynthia, 45

HMI, 27
How to teach with these modules, 70
Human-Machine Interface, 27
Hwang, Andrew D., 77

Identify given data, 67
Identify relevant principles, 67
Instructions for projects and experiments, 71
Intermediate results, 67
Inverted instruction, 70

Knuth, Donald, 76

Lamport, Leslie, 76
Limiting cases, 68
Little-endian, 21, 32

Mapping, Modbus, 23
Maxwell, James Clerk, 31
Metacognition, 50
Modbus, 18
Modbus 984 addressing, 22
Modbus ASCII, 19
Modbus mapping, 23
Modbus Plus, 18
Modbus RTU, 19
Modbus/TCP, 20
Moolenaar, Bram, 75
Murphy, Lynn, 45

Open-source, 75

PLC, 3, 13, 14, 27
Problem-solving: annotate diagrams, 67
Problem-solving: check for exceptions, 68
Problem-solving: checking work, 68
Problem-solving: dimensional analysis, 67
Problem-solving: graph values, 68
Problem-solving: identify given data, 67
Problem-solving: identify relevant principles, 67
Problem-solving: interpret intermediate results,

67
Problem-solving: limiting cases, 68
Problem-solving: qualitative to quantitative, 68
Problem-solving: quantitative to qualitative, 68
Problem-solving: reductio ad absurdum, 68
Problem-solving: simplify the system, 67
Problem-solving: thought experiment, 67
Problem-solving: track units of measurement, 67

91

92 INDEX

Problem-solving: visually represent the system,
67

Problem-solving: work in reverse, 68
Programmable Logic Controller, 3, 13, 14, 27

Qualitatively approaching a quantitative
problem, 68

Reading Apprenticeship, 45
Reductio ad absurdum, 68–70
RS-232 serial communication, 18
RS-485 serial communication, 18
RTU Modbus frames, 19

SCADA, 64
Schoenbach, Ruth, 45
Scientific method, 50
Simplifying a system, 67
Smart Wireless Gateway, 23
Socrates, 69
Socratic dialogue, 70
SPICE, 45
Stallman, Richard, 75

Thought experiment, 67
Torvalds, Linus, 75

Units of measurement, 67

Variable-frequency drive, 3, 14
VFD, 3, 14
Visualizing a system, 67

WirelessHART, 23
Word-swap, 21, 33
Work in reverse to solve a problem, 68
WYSIWYG, 75, 76

	Introduction
	Recommendations for students
	Challenging concepts related to Modbus
	Recommendations for instructors

	Case Tutorial
	Example: Modbus ASCII ``Write One Register'' exchange
	Example: Modbus ASCII ``Read Register'' exchange

	Tutorial
	Discrete motor control
	Networked motor controls
	Modbus history
	Serial Modbus data frames
	Modbus/TCP data frames
	Modbus function codes and addresses
	Modbus relative addressing
	Analyzing a Modbus/TCP message

	Historical References
	Big-endians and Little-endians

	Derivations and Technical References
	Modbus function command formats
	Function code 01 – Read Coil(s)
	Function code 02 – Read Contact(s)
	Function code 03 – Read Holding Register(s)
	Function code 04 – Read Analog Input Register(s)
	Function code 05 – Write (Force) Single Coil
	Function code 06 – Write (Preset) Single Holding Register
	Function code 15 – Write (Force) Multiple Coils
	Function code 16 – Write (Preset) Multiple Holding Register

	The OSI Reference Model

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Display panel configuration
	Wireless gateway system

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Interpreting an ASCII message frame
	Modbus ASCII message exchange

	Diagnostic reasoning
	SCADA system fault

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

