
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

SPICE Modeling of Inductive and Capacitive Circuits

© 2019-2024 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 25 September 2024

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3
1.1 Recommendations for students . 3
1.2 Challenging concepts related to SPICE circuit simulation 5
1.3 Recommendations for instructors . 6

2 What is SPICE? 7

3 Using SPICE 9
3.1 Summary of steps . 11
3.2 Demonstration on Microsoft Windows . 12

3.2.1 Invoking a text editor . 12
3.2.2 Saving the deck . 13
3.2.3 Invoking SPICE . 15
3.2.4 Viewing the SPICE analysis . 16

3.3 Demonstration on Linux or CygWin . 17
3.3.1 Invoking a text editor . 17
3.3.2 Saving the deck . 18
3.3.3 Invoking SPICE . 19
3.3.4 Viewing the SPICE analysis . 20

3.4 Demonstration of NGSPICE interactive mode . 21
3.4.1 Creating the netlist . 22
3.4.2 Starting NGSPICE . 22
3.4.3 Verifying the loaded netlist . 23
3.4.4 Running the analysis . 23
3.4.5 Printing a voltage . 24
3.4.6 Plotting graphs using NGSPICE . 25
3.4.7 Issuing multiple commands in a single line . 26

3.5 Idiosyncrasies of SPICE . 27
3.5.1 Beginning and ending cards . 27
3.5.2 Node zero . 27
3.5.3 Current measurement . 27
3.5.4 Open and short circuits . 28
3.5.5 Multiple sources . 29
3.5.6 Multiple inductors/capacitors . 30

iii

iv CONTENTS

4 SPICE component descriptions 31

4.1 Independent voltage sources . 32

4.1.1 Example: DC source . 32

4.1.2 Example: “Dummy” source . 32

4.1.3 Example: AC source . 33

4.1.4 Example: Sinusoidal source . 35

4.1.5 Example: Pulse source . 36

4.2 Independent current sources . 37

4.2.1 Example: DC source . 37

4.2.2 Example: AC source . 37

4.3 Resistors . 38

4.3.1 Example . 38

4.4 Capacitors . 39

4.4.1 Example: Capacitor with initial charge . 39

4.4.2 Example: Uncharged capacitor . 39

4.5 Inductors . 40

4.5.1 Example: Inductor with initial charge . 40

4.5.2 Example: Uncharged inductor . 40

4.6 Transformers . 41

4.6.1 Example: 2:1 ratio step-down transformer . 41

4.7 Transmission lines . 42

4.7.1 Example: 50-Ohm transmission line with 10 nanosecond delay 42

4.7.2 Example: half-wavelength (at 35 MHz) 300-Ohm transmission line 42

4.8 Linear dependent sources . 43

4.8.1 Example: voltage-controlled voltage source 44

4.8.2 Example: voltage-controlled current source 44

4.9 Nonlinear dependent sources . 45

4.9.1 Example: multiplier . 45

4.10 Diodes . 46

4.10.1 Example: Generic diode . 46

4.10.2 Example: 1N4001 . 47

4.11 Bipolar Junction Transistors (BJTs) . 48

4.11.1 Example: Generic NPN transistor . 49

4.11.2 Example: 2N2907 . 49

4.12 Junction Field-Effect Transistors (JFETs) . 50

4.12.1 Example: Generic N-channel JFET . 51

4.13 Metal-Oxide Field-Effect Transistors (MOSFETs) . 52

4.13.1 Example: Generic N-channel depletion-type MOSFET 53

4.13.2 Example: Generic N-channel enhancement-type MOSFET 53

4.13.3 Example: Generic P-channel depletion-type MOSFET 54

4.13.4 Example: Generic P-channel enhancement-type MOSFET 54

4.14 Subcircuits . 55

4.14.1 Example: resistor subnetwork . 56

4.14.2 Example: solar cell array . 57

CONTENTS v

5 SPICE analysis descriptions 59
5.1 DC voltage/current“sweep” analysis . 60

5.1.1 Example: sweep of voltage source . 60
5.1.2 Example: sweep of voltage and current sources 60

5.2 AC frequency “sweep” analysis . 61
5.2.1 Example: linear frequency sweep . 61
5.2.2 Example: decade logarithmic frequency sweep 61
5.2.3 Example: octave logarithmic frequency sweep 61

5.3 Transient analysis . 62
5.3.1 Example: using initial conditions, beginning at time t = 0 62
5.3.2 Example: using initial conditions, beginning at non-zero time 62

5.4 Fourier analysis . 63
5.4.1 Example: analysis of 60 Hz waveform . 63

5.5 Display option: print . 64
5.5.1 Example: printing a DC analysis . 64
5.5.2 Example: printing an AC analysis . 64

5.6 Display option: plot . 65
5.6.1 Example: plotting a DC analysis . 65
5.6.2 Example: plotting an AC analysis . 65
5.6.3 Example: plotting a transient analysis . 66
5.6.4 Example: plotting parametric functions . 66

5.7 Display option: width . 67
5.7.1 Example . 67

6 Primitive circuit examples 69
6.1 DC voltage source with .op analysis . 70
6.2 DC voltage source with single-point .dc sweep analysis 74
6.3 DC current source with single-point .dc sweep analysis 77
6.4 DC voltage source with multi-point .dc sweep analysis 78
6.5 AC voltage source with single-point .ac sweep analysis 81
6.6 AC voltage source with multi-point .ac sweep analysis 82
6.7 Additive AC voltage sources with single-point .ac sweep analysis 86
6.8 Transient analysis of discharging RC circuit . 88
6.9 Transient analysis of a steady sinusoidal voltage source 93
6.10 Transient analysis of a sinusoidal capacitive circuit 96
6.11 Transient analysis of a damped, offset sinusoidal voltage source 99
6.12 Additive AC voltage sources with transient analysis 102
6.13 Solar cell array simulation . 104
6.14 Solar panel array simulation . 107

7 Gallery 113
7.1 Using gallery examples for practice . 114
7.2 Resistor-capacitor DC circuits . 115

7.2.1 One capacitor energizing from a DC voltage source 116
7.2.2 One capacitor de-energizing through a resistor 121
7.2.3 One capacitor energizing from a DC current source 124

CONTENTS 1

7.2.4 Two capacitors energizing in series . 127
7.2.5 Pre-charged capacitor energizing to a greater voltage 131
7.2.6 Pre-charged capacitor de-energizing to a non-zero voltage 133
7.2.7 One capacitor energizing from a voltage divider 135

7.3 555 timer circuits . 138
7.3.1 Introduction to the 555 timer IC . 138
7.3.2 Basic astable operation . 140
7.3.3 555 timer in classic astable operation . 143

7.4 Resistor-inductor DC circuits . 146
7.4.1 One inductor energizing from a DC voltage source 147
7.4.2 One inductor de-energizing through a resistor 150
7.4.3 Another inductor energizing from a DC voltage source 153
7.4.4 Two inductors energizing in series . 157
7.4.5 Resistor-inductor energized by a square wave 160

7.5 Transformer circuits . 164
7.5.1 Basic step-down power transformer . 165
7.5.2 Basic step-up power transformer . 168

A Problem-Solving Strategies 171

B Instructional philosophy 173
B.1 First principles of learning . 174
B.2 Proven strategies for instructors . 175
B.3 Proven strategies for students . 177
B.4 Design of these learning modules . 178

C Tools used 181

D Creative Commons License 185

E References 193

F Version history 195

Index 196

2 CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

Many computer-based circuit simulation software applications exist today, most of these based on
graphical “schematic capture” where one describes the circuit to the computer by drawing a diagram
of it. SPICE, however, is a throwback to a much earlier era of computing when people interacted
with the machine through text (and in some cases, punched paper cards!). This means SPICE is a
type of programming language where you describe the circuit to be simulated by written rather than
graphic means. The fact that even the most modern circuit simulation packages often use SPICE-
compliant or SPICE-like instructions “behind the scenes” to specify details of circuit analysis is one
reason to learn SPICE in the 21st century, but another reason is that it is a relatively simple form
of coding, and all students of electronics are well-served by learning to code in multiple languages.
More specifically, SPICE is what may be called a concurrent programming language whereby the
instructions you write using plain-text characters are not executed in sequential order but rather
serve to describe entities of a circuit and therefore may appear in any order! In this way SPICE
actually shares more in common with hardware-oriented languages like Verilog or VHDL than with
classic procedural languages such as assembly or C.

Important concepts related to SPICE include netlists, text editing, cards, decks, nodes,
dependent sources versus independent sources, passive sign convention, component
models, subcircuits, , , , , , and .

One of the beautiful aspects of learning a programming language is the natural means by which
you have to learn by experimentation. All you need is access to a computer with the proper software
installed, and you can not only run example programs offered to you, but also modify those programs
and/or even create your own to test your own growing understanding of how to “speak” the language.
It is akin to learning to speak a human language and then being able to immediately apply it in
conversation with someone else fluent in it as a way to test and hone your knowledge. Therefore, no
reader of this module should be satisfied by merely reading what is written in these pages – instead
try running SPICE on your own to see firsthand how it functions!

3

4 CHAPTER 1. INTRODUCTION

Here are some good questions to ask of yourself while studying this subject:

• How does a SPICE netlist instruct the computer to know which component terminals connect
to which?

• How could you identify series versus parallel component connections by inspection of a netlist?

• What are some essential elements of any SPICE netlist?

• How may open-circuit conditions be simulated in SPICE without creating errors?

• How may short-circuit conditions be simulated in SPICE without creating errors?

• Where must we be careful when inserting multiple voltage sources into a netlist?

• Where must we be careful when inserting multiple current sources into a netlist?

• Where must we be careful when inserting multiple inductors into a netlist?

• Where must we be careful when inserting multiple capacitors into a netlist?

• Which node is always Ground in a netlist?

• How are voltage measurement points specified in a SPICE analysis?

• What are some different ways in which we may measure (or infer) current in a SPICE circuit
simulation?

• What is a SPICE subcircuit and where might one be useful?

• How might you alter one of the example simulations shown in the text, and then determine
the behavior of that altered circuit?

• Devise your own question based on the text, suitable for posing to someone encountering this
subject for the first time.

The following active-reading strategies are advised for this module’s tutorial(s);

• Limiting cases – seeing opens and shorts as being limiting cases of resistance provides a
means of simulating the same in a SPICE netlist, extremely large resistances simulating opens
and extremely small resistances simulating shorts.

• Experiment using simulations – SPICE is a programming language, and learning to
program a computer is never a spectator sport. Run SPICE for yourself to see how it works!

1.2. CHALLENGING CONCEPTS RELATED TO SPICE CIRCUIT SIMULATION 5

1.2 Challenging concepts related to SPICE circuit simulation

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Voltage as a relative quantity – this is arguably one of the most difficult concepts students
first encounter when studying electricity: understanding that voltage is a difference in energy
levels between two locations, and not something that can exist at any single point. In this
respect, voltage is similar to distance which is always something existing between two specified
points.

• Voltage versus Current – these are two completely distinct things, each capable of existing
without the other. Voltage is the amount of potential energy lost or gained by electric charge
carriers as they move from one place to another, whereas current is the actual motion of
electric charge carriers.

• Test sweeps – SPICE excels at performing “sweep” analyses, which refers to the incrementing
or decrementing of some circuit parameter, re-running the entire analysis with each new value
of this parameter. Sweeping is essential for building up a graph or table of values showing
trends related to that parameter.

The Gallery chapter contains many example SPICE netlists complete with analyses, which are
excellent both for becoming familiar with operating SPICE (i.e. copying and pasting those given
netlists in your text editor and running the simulations yourself) as well as starting points (i.e.
templates) for creating your own circuit simulations.

6 CHAPTER 1. INTRODUCTION

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters (e.g.
What is SPICE?, Using SPICE, Primitive circuit examples, Gallery, etc.) ideally as an entry to
a larger Journal document chronicling their learning. These outlines should exhibit good-faith
effort at summarizing major concepts explained in the text.

Assessment – Students show how quantitative results were obtained by SPICE in the
given examples, performing some of those analyses manually to compare your results with the
simulations’.

• Outcome – Design a circuit, analyze it, and write a corresponding SPICE netlist

Assessment – Sketch a schematic diagram of a circuit and analyze all circuit parameters
using the principles and equations you have learned so far.

Assessment – Write and run a netlist for that circuit to compare your hand-calculated
results against the computer’s.

• Outcome – Independent research

Assessment – Identify some circuit simulators based on schematic capture rather than
typed code. Some simulators are even web-based which means you may use them by navigating
an internet browser application to the appropriate website (e.g. EveryCircuit).

Chapter 2

What is SPICE?

SPICE is a general-purpose computer simulator for electronic circuits, with several “freeware”
versions available for academic use. Although its text-based user interface may seem clumsy and
archaic at first, it is quite powerful, and also neatly side-steps the many problems students tend to
experience with graphic-entry (“WYSIWYG”)1 circuit simulators.

Circuits are described to SPICE in the form of a netlist, which is a text-based code listing of
each component within the circuit, the “nodes” connecting them to each other, and the types of
analyses requested of SPICE to perform on that circuit. A simple three-resistor DC circuit is shown
in schematic form below, along with the netlist you would write and input to SPICE instructing it
to analyze this circuit for a single source voltage value of 15 Volts and displaying the voltage drop
across each resistor as well as the current through the voltage source:

+
−

R1

R2

R3

V
1

15 Volts

1 kΩ

3.3 kΩ

790 Ω

1

2

0

3

* SPICE netlist for a series DC circuit
v1 1 0 dc 15
r1 1 2 1000
r2 2 3 3300
r3 3 0 790
.dc v1 15 15 1
.print dc v(1,2) v(2,3) v(3) i(v1)
.end

The purpose of this document is to give a general introduction to the use of SPICE, and also to
showcase a “gallery” of examples where SPICE is used to perform analyses on circuits containing
semiconductor components. This gallery will not only help new users of SPICE learn how to format
netlists and interpret analyses, but they also serve as an extensive bank of practice problems for new
students of electricity and electronics to use as they build and sharpen their circuit analysis skills.

This last point deserves some elaboration. The study of electricity and electronics, like all
scientific studies, is aided by the solution of practice problems. Problem-solving is a skill like any

1“WYSIWYG” is an acronym meaning What You See Is What You Get.

7

8 CHAPTER 2. WHAT IS SPICE?

other, and practice helps to build an arsenal of tools useful to any new problems you may encounter.
Having answers provided for these problems allows students to check their work and to self-identify
any misconceptions or bad problem-solving habits.

Traditional textbooks provide banks of practice problems for students to solve, and while these are
useful, the availability of computer simulation software take this concept one enormous step further.
Not only may the sample simulations given in this learning module serve as practice problems for
students, but they will also serve as templates for creating one’s own practice problems, so you will
never be wanting for more practice opportunities. Like all computer simulations, SPICE rigorously
applies known laws and principles of physics to predict how specific systems will behave, and as such
it never makes mistakes2.

SPICE has played a pivotal role in my own self-education on the topic of circuits, being an
excellent tool to check my own analytical skills and to explore the properties of certain devices (e.g.
transistors, transmission lines, transformers) with relative ease. The ultimate goal of any scientific
education is to equip the student with mental tools to solve problems and to continue their own
learning. SPICE is a software tool that can aid in the development of these mental tools, and should
be used as such.

2Some simulations can and do miss certain details if they are not set up properly, but this is not the same kind
of error as a human is prone to committing, and it is precisely this difference between computers and humans that
makes computer simulations useful learning tools. Simply put, the computer will not repeat your mistakes.

Chapter 3

Using SPICE

SPICE is computer software designed to simulate the behavior of electric circuits. It was developed
in the early days of digital computing when the dominant user interface was the command prompt,
and the most common user file format was plain “ASCII” text. Graphic, mouse- or touchscreen-
driven interfaces simply did not exist at that time except for prototype systems or highly specialized
applications. Most general-purpose computing of that era occurred through the use of a keyboard
and a monochrome text-based monitor, or worse yet in the form of punched paper cards and teletyped
output.

This is why SPICE usage seems to resemble text-based code programming. The user (that means
you) enters a description of the circuit to be analyzed and the analysis/display methods preferred
by means of typed text, then the SPICE program is run and the output is viewed again in text form.

This may all seem terribly anachronistic in the 21st century, but there are some decided
advantages to using SPICE with this legacy interface:

• These legacy versions of SPICE are free to use. No license fees, nothing.

• The relatively small (by modern standards) SPICE software runs very fast on modern
computers.

• Circuits that are challenging to graphically draw are easy to “code”

• Errors resulting from the computer’s incorrect interpretation1 of a diagram are eliminated

• Learning to use SPICE in this manner is an excellent orientation to simple programming

The first step in setting up SPICE to analyze a circuit is to describe that circuit using SPICE’s
own language, and to type this description into a plain-text file on your computer. This file is often
referred to as a deck, with each line of text in that file called a card. Taken together, those lines of
text (a.k.a. cards) comprise a netlist describing the circuit and the intended analysis for SPICE. The

1I have struggled multiple times to get a WYSIWYG circuit analyzer program to simply analyze what I have
drawn, due to “hidden” wire connections, or intended wire connections that don’t exist – all “bugs” in the software
stemming from the non-trivial challenge of getting a computer to recognize and correctly interpret a hand-made
diagram. SPICE, with its “netlist” input and clear node-labeling protocol, neatly eliminates this whole problem.

9

10 CHAPTER 3. USING SPICE

anachronistic terms “card” and “deck” harken back to the days of punched-card input for computer
systems, where each separate instruction for SPICE was a series of punched holes on its own paper
card, the collection of cards representing one circuit being a “deck of cards” that would be fed into
the card reader one at a time2.

Once you have typed the netlist and saved it as a text file (a.k.a. deck) to your computer, you
are ready to run a SPICE analysis on it. This is done by typing the word spice on a command-line
interface3 followed by a less-than symbol (<) and then followed by the name of the text file “deck”,
and finally terminated by pressing the Enter key. Here is an example, showing a screenshot of a
SPICE analysis about to happen on a “deck” file named test.cir just prior to pressing the Enter
key:

After entering this command, SPICE performs its analysis and by default dumps a report as
plain text to the same command-line terminal. If you desire to save SPICE’s text output to another
plain-text file for posterity, or to be able to paste that analysis into another document, you may
“redirect” SPICE to send its plain-text analysis to another file of your choosing by using the greater-
than symbol (>) in the command. Here is an example showing how to instruct SPICE to read the
contents of test.cir and place all the analysis text into another file named test.out:

spice < test.cir > test.out

2Interestingly, legacy versions of SPICE do not care what order these “cards” appear in the “deck” with the
exception of the first line (the Title) and the last line (the .end) statement.

3Microsoft Windows operating systems provide a general-purpose command line interface terminal named cmd.
Unix-based systems such as Apple’s OS X and Linux typically offer a variety of terminal programs suitable for this
purpose.

3.1. SUMMARY OF STEPS 11

3.1 Summary of steps

To summarize, using SPICE in this legacy format requires the use of a text editor program (such
as “Notepad” on Microsoft Windows operating systems) to write the netlist, and a command-line
interface on your computer to invoke SPICE to perform its analysis. The sequence of steps may be
listed:

1. Invoke a text editor program and type the netlist (instructions) describing the circuit and the
type of analysis you wish SPICE to perform

2. Save this netlist as a plain-text file to your computer

3. Type spice < deck filename on the command-line interface and then press Enter

4. View the analysis in the command-line interface

Most of SPICE’s “learning curve” is in becoming familiar with the syntax of the netlist: exactly
which letters, numbers, and sequences must be entered in order to properly describe the circuit
and the type(s) of analysis desired. A few cardinal rules must be obeyed when creating or editing
netlists:

• The first line (card) of the netlist is the Title. It cannot be omitted.

• The last line (card) of the netlist is the .end command. It cannot be omitted.

• Each and every unique connection point in the circuit must be assigned a number called a node.
This is how you describe the “shape” of the circuit to SPICE: by describing which nodes each
component connects to. Components sharing common node numbers are electrically common
to each other; components with differing node numbers are electrically distinct from each other.
There must be a node 0, and this is the “Ground” node of the circuit.

12 CHAPTER 3. USING SPICE

3.2 Demonstration on Microsoft Windows

Here I will demonstrate this four-step process as a series of screenshots from a computer running
SPICE version 2G6 on the Microsoft Windows version 7 operating system.

3.2.1 Invoking a text editor

Here, the screenshot shows an empty file, ready for me to type text. Text editors are similar to
word processors except they lack provision for neatly formatting the text (e.g. no font selections, no
paragraph formatting, etc.). Their sole purpose is to facilitate the creation and editing of plain-text
files.

Text editors are the go-to application for practically all text-based computer programming. Many
different text editors exist, each with their own features, and computer programmers tend to develop
a fondness for one particular editor that best suits their programming needs. A “stock” text editor
comes with every version of Microsoft Windows called notepad, but this editor is extremely limited
in its capabilities, and I do not recommend it. The editor shown here (notepad++) is vastly superior
and highly recommended.

3.2. DEMONSTRATION ON MICROSOFT WINDOWS 13

3.2.2 Saving the deck

Here, I have chosen the filename mycircuit.cir for the deck. Note that you do not have to end
every deck filename with the suffix “.cir” – this is simply my personal choice. Any filename
consistent with the naming conventions of your computer’s filesystem and containing no space
characters is permissible. We avoid space characters because command-line interfaces typically
interpret spaces as delimiting characters designed to separate commands and filenames from each
other. If you must have a “space” in your filename, use an underscore character or a dash (or -).
For example, my-circuit is acceptable, but my circuit is not.

Here is a line-by-line (a.k.a. card-by-card) interpretation of the netlist:

* SPICE circuit title card This is the arbitrary “title” line
v1 1 0 dc 12 Defines a 12 Volt DC voltage source named “v1” between nodes 1 and 0
r1 1 0 2200 Defines a 2200 Ohm resistor between nodes 1 and 0
.dc v1 12 12 1 Requests a DC “sweep” analysis from 12 Volts to 12 Volts on source “v1”
.print dc v(1) i(v1) Measures the voltage at node 1 and current through source “v1”
.end Tells SPICE to stop

Note how components are “connected” to each other in the netlist by common node (connection-
point) numbers. This is how SPICE is able to “picture” circuits without the use of graphical images.
Each electrically distinct point in a circuit is given a unique number, and different components
specified by the points they’re connected to.

14 CHAPTER 3. USING SPICE

An idiosyncrasy of SPICE version 2G6 is that it must receive its “deck” file in Unix text format
rather than Windows text format. Thankfully, notepad++ provides a means to select which text
format the deck file will be written in, as shown in this screenshot of the “Preferences” dialog window:

3.2. DEMONSTRATION ON MICROSOFT WINDOWS 15

3.2.3 Invoking SPICE

This screenshot shows the command-line interface terminal (not the text editor), with the
command ready to enter. This terminal may be access on any Windows operating system by invoking
the cmd command.

Note that the exact command being entered here is spice.exe < mycircuit.cir because the
SPICE executable file installed on this computer is named spice.exe rather than just spice.

16 CHAPTER 3. USING SPICE

3.2.4 Viewing the SPICE analysis

As you can see, SPICE is a very “chatty” program that displays a fair amount of extraneous
text on the screen following an analysis. Ignoring all the headings and labels, you can see in this
display a reiteration of the original netlist (deck) followed by the requested measurements of v(1)
(i.e. voltage between node 1 and ground, which is node 0) and i(v1) (current through source v1).

This concludes a very brief orientation on using SPICE. For more information, I refer you to
the following sections on SPICE component descriptions and analysis descriptions, as well as to the
“Gallery” chapter which shows you tested SPICE netlists and output results so you may learn by
example.

3.3. DEMONSTRATION ON LINUX OR CYGWIN 17

3.3 Demonstration on Linux or CygWin

Now, I will show you this same four-step process using SPICE version 2G6 running under the Linux
operating system. The steps shown here are virtually identical within the “CygWin” emulator which
adds a Unix-like command line environment to any Microsoft Windows operating system.

3.3.1 Invoking a text editor

Here, the screenshot shows an empty file, ready for me to type text. Text editors are similar to
word processors except they lack provision for neatly formatting the text (e.g. no font selections, no
paragraph formatting, etc.). Their sole purpose is to facilitate the creation and editing of plain-text
files.

Text editors are the go-to application for practically all text-based computer programming. Many
different text editors exist, each with their own features, and computer programmers tend to develop
a fondness for one particular editor that best suits their programming needs. I personally prefer
gvim (or vim in the CygWin emulator) and loathe Microsoft notepad, but text editors tend to be a
highly personal choice.

18 CHAPTER 3. USING SPICE

3.3.2 Saving the deck

Here, I have chosen the filename mycircuit.cir for the deck. Note that you do not have to end
every deck filename with the suffix “.cir” – this is simply my personal choice. Any filename
consistent with the naming conventions of your computer’s filesystem and containing no space
characters is permissible. We avoid space characters because command-line interfaces typically
interpret spaces as delimiting characters designed to separate commands and filenames from each
other. If you must have a “space” in your filename, use an underscore character or a dash (or -).
For example, my-circuit is acceptable, but my circuit is not.

Here is a line-by-line (a.k.a. card -by-card) interpretation of the netlist:

* SPICE circuit title card This is the arbitrary “title” line
v1 1 0 dc 12 Defines a 12 Volt DC voltage source named “v1” between nodes 1 and 0
r1 1 0 2200 Defines a 2200 Ohm resistor between nodes 1 and 0
.dc v1 12 12 1 Requests a DC “sweep” analysis from 12 Volts to 12 Volts on source “v1”
.print dc v(1) i(v1) Measures the voltage at node 1 and current through source “v1”
.end Tells SPICE to stop

Note how components are “connected” to each other in the netlist by common node (connection-
point) numbers. This is how SPICE is able to “picture” circuits with no graphics. Each and every
electrically distinct point in a circuit is given a unique number, component placement being specified
by these numbered connection points.

3.3. DEMONSTRATION ON LINUX OR CYGWIN 19

3.3.3 Invoking SPICE

This screenshot shows the command-line interface terminal (not the text editor), with the
command ready to enter.

20 CHAPTER 3. USING SPICE

3.3.4 Viewing the SPICE analysis

As you can see, SPICE is a very “chatty” program that displays a fair amount of extraneous
text on the screen following an analysis. Ignoring all the headings and labels, you can see in this
display a reiteration of the original netlist (deck) followed by the requested measurements of v(1)
(i.e. voltage between node 1 and ground, which is node 0) and i(v1) (current through source v1).

This concludes a very brief orientation on using SPICE. For more information, I refer you to
the following sections on SPICE component descriptions and analysis descriptions, as well as to the
“Gallery” chapter which shows you tested SPICE netlists and output results so you may learn by
example.

3.4. DEMONSTRATION OF NGSPICE INTERACTIVE MODE 21

3.4 Demonstration of NGSPICE interactive mode

A more modern (yet still free) version of SPICE is NGSPICE which provides all the old command-
line functionality of legacy SPICE versions, plus a window-based interactive mode where you may
call for certain analyses of a circuit without editing the netlist (deck file). This interactive display
window contains a command-entry field as well as a display showing the results of those commands.
The procedure for doing this, which I have tested on NGSPICE version 26 on a computer running
the Microsoft Windows 7 operating system, is as follows:

1. Create the netlist using your favorite text editor and save it under a convenient filename in a
convenient location. I will arbitrarily choose the filename test.cir for this demonstration.

2. Start the interactive version of NGSPICE and then enter the command source test.cir

to instruct it to read the contents of that netlist file. Alternatively, instruct the Windows
operating system to associate all *.cir files with NGSPICE by right-clicking on the file’s icon
and choosing the “Open with...” option, selecting ngspice.exe as the application you always
wish to use for opening any .cir files. From then on, all netlist files ending in .cir will
appear as icons bearing the NGSPICE logo, and double-clicking on it will start NGSPICE and
automatically run the source instruction. You should be able to skip this filename-association
step for all future uses of NGSPICE.

3. (Optional) – Type listing and press Enter to execute the “listing” command. NGSPICE
will print the netlist in its display window, letting you verify that NGSPICE has loaded your
intended netlist.

4. Enter the run command.

5. Enter various display commands such as print and plot. If you choose to plot results using
the plot command, for example if you are testing a circuit’s response over a range of time, or
of source values swept over a specified interval, NGSPICE will open up an additional graphic
window showing the results in color. When in doubt, print all and plot all are good
display commands to try.

If you decide to alter the circuit after having run an analysis, simply close down NGSPICE, edit
the netlist file using your text editor (re-saving that file), and then re-open NGSPICE by double-
clicking on the netlist file icon again. Then, just issue the run command followed by any display
commands you wish.

A very nice feature of this interactive mode is the ability to recall past commands without
the need to re-type them. Simply press the “up” and down “arrow” keys to recall all past typed
commands from history buffer, then press Enter to re-issue that command. This will save you much
time and potential for keystroke errors!

22 CHAPTER 3. USING SPICE

3.4.1 Creating the netlist

To begin our demonstration, we will first create a netlist using a text editor. In this case, the editor
happens to be notepad++ which is much more capable than the stock notepad that comes with
Microsoft Windows. After writing the netlist, it will be saved under the filename test.cir:

3.4.2 Starting NGSPICE

When NGSPICE is started with no command-line arguments (or simply started by double-clicking on
the ngspice.exe filename), you will see this interactive window appear on your computer’s screen.
Commands are typed into the rectangular field at the bottom of the window, and after pressing
Enter you will see the results of that command displayed in the upper portion of the window:

Please note that if you take the time to associate .cir files with NGSPICE in Microsoft Windows,
this step (as well as the “Loading the netlist” step and “Verifying the loaded netlist” step) will be
performed automatically for you whenever you double-click on the netlist file icon. You will know
you have been successful in setting up this association if all files with filenames ending in .cir

appear with the NGSPICE logo in their Windows icons.

3.4. DEMONSTRATION OF NGSPICE INTERACTIVE MODE 23

3.4.3 Verifying the loaded netlist

Now we will verify the successful loading of our netlist by issuing the listing command. Our netlist
now appears in the display window:

This step is optional, but is a good habit. If you approach SPICE as a learning tool, using it
to run simulated experiments on virtual circuits to help you master certain electrical concepts, you
will find yourself making many changes to your netlists and re-running analyses on those revised
circuits. The listing step gives you opportunity to verify each time that your edited netlist has
been loaded into NGSPICE and is ready for analysis. It also shows, as in this case, if NGSPICE
inserted any statements of its own (e.g. .global gnd).

3.4.4 Running the analysis

Before we may request any displayed results from NGSPICE, we must issue the run command:

An interesting feature of NGSPICE is that it ignores the print command within the netlist.
Running the simulation merely performs the calculations, but provides no automatic output of
results. In the “interactive” version of NGSPICE, it waits for you to enter specific commands
before actually displaying any results to the screen. Even with .print or .plot instructions (cards)
contained in the netlist, NGSPICE’s interactive mode demands you type the display command
yourself after it has “run” the simulation. To print the voltage between nodes 1 and 2, for example,
you would enter the command print v(1,2). NGSPICE relies on the analysis option in the netlist
to discern whether this is a DC or AC analysis.

24 CHAPTER 3. USING SPICE

3.4.5 Printing a voltage

Now we are ready to make print or plot requests of NGSPICE. Here we request NGSPICE to print
the voltage between nodes 2 and 3 with the print v(2,3) command:

Please note how NGSPICE does not require a preceding period symbol with the print command
when it is typed at the interactive command line, nor does it require we specify dc analysis as part
of the print command! In fact we could have omitted the entire .print card in the netlist, as
NGSPICE’s interactive mode only follows output instructions typed at the command line.

Note also how NGSPICE defaults to scientific notation, in this case the voltage displayed as
2.062500e+001 which means 2.062500× 101 Volts, or 20.62500 Volts.

If we issue the print command with the node numbers swapped, NGSPICE displays the DC
voltage as though measuring with a DC voltmeter with the red test lead on node 3 and black test
lead on node 2, showing a negative value instead of positive:

If we wish to see more than one voltage reported, we may specify this at the interactive command
line in exactly the same manner as we would have specified within the netlist. For example, issuing
the command print v(1,2) v(2) i(v1) would result in NGSPICE printing the voltage between
nodes 1 and 2, followed by the voltage between nodes 2 and 0, followed by the current through voltage
source v1. Alternatively, we can type print all in the NGSPICE command line and receive a report
of all voltages (with reference to node 0 which is ground) rather than just the voltage(s) we specify.

3.4. DEMONSTRATION OF NGSPICE INTERACTIVE MODE 25

3.4.6 Plotting graphs using NGSPICE

Now we will explore the graphic plotting capabilities of NGSPICE. This is much more advanced
than the text-based plots of legacy SPICE versions such as 2G6. Let’s begin our example with the
following netlist:

SPICE title card

c1 1 0 47e-6 ic=24

r1 1 0 2200

.tran 10m 500m uic

.plot tran v(1)

.end

This particular netlist defines a simple capacitor-resistor circuit with the 47 µF capacitor pre-
charged to 24 Volts. The .tran card calls for a time-domain analysis from t = 0 to t = 500
milliseconds, in 10 millisecond steps, using the initial condition specified in the capacitor’s card.

Once having loaded this netlist into NGSPICE and issuing the run command, we may type plot
v(1) and get the following output in its own window. As with the previous (DC) analysis, there
is no need to specify the analysis type in the plot instruction (i.e. plot v(1) rather than plot

tran v(1)) because NGSPICE takes its analysis cue from the .tran card in the netlist. In fact,
the .plot tran v(1) card in the netlist is entirely ignored (and could have been omitted!) when
using NGSPICE in interactive mode:

As with the print command, we may issue a plot all instruction at the command line which

26 CHAPTER 3. USING SPICE

will prompt NGSPICE to plot all variables in the simulation. This may make for a cluttered result
when done with complex circuits containing many nodes, but in simple cases such as this example it
may be more convenient to simply enter plot all rather than specify each of the desired variables
one by one.

3.4.7 Issuing multiple commands in a single line

A very convenient feature of NGSPICE’s interactive command line is its support for multiple
commands in a single typed line. This is useful if you wish to edit the netlist and re-run the
simulation without re-starting NGSPICE. Instead of typing in source test.cir followed by run

followed by any specific analysis commands such as print and/or plot commands, it is possible to
type all these commands on a single line in the interactive window (separated by semicolons), after
which the entire string of commands may be repeated by pressing the “up” arrow key followed by
the “Enter” key.

Consider for example the following sequence of commands, typically entered one command at a
time in the NGSPICE interactive environment to read, execute, and finally plot data from a netlist
file named test.cir:

source test.cir

run

plot v(2) v(4,3)

These three commands may alternatively be entered at once on a single line, then recalled
with a single press of the “up” arrow key, thus conserving many keystrokes and shortening the
test/development cycle:

source test.cir ; run ; plot v(2) v(4,3)

3.5. IDIOSYNCRASIES OF SPICE 27

3.5 Idiosyncrasies of SPICE

SPICE, particularly early versions such as 2G6, is intolerant of certain omissions and circuit
topologies. Some of them are listed here.

3.5.1 Beginning and ending cards

Every SPICE deck must begin with a “title” line of plain text. I typically insert a comment (a line
beginning with a * character) in the first line, but a comment is not strictly necessary. The deck
cannot begin with a component or analysis description.

Similarly, every SPICE deck must finish with an .end card to instruct the program to stop its
analysis. There should be no lines past the .end card, not even blank lines! Similarly, the .end line
should not be terminated with either a linefeed nor a carriage return character; i.e. do not press the
Enter key when typing in this last line! SPICE version 2G6 will still process the deck properly with
a terminated .end card, but it generates an annoying missing .end card statement anyway.

3.5.2 Node zero

Every SPICE deck must contain reference to node zero (0). Node zero is not just the default
“ground” reference point in a circuit, it is a necessary point of reference in order for SPICE to
perform its mathematical analyses of the circuit. Furthermore, every other node in the circuit must
have some DC path to node 0 (ground) or else SPICE will refuse to analyze the circuit, even if the
specified analysis is not DC.

3.5.3 Current measurement

Early versions of SPICE lacked the ability to print or plot values for current through any component
but a voltage source. Therefore, if you need to display the calculated current at any point in a circuit
being analyzed by a legacy version of SPICE, you must insert special “dummy” voltage sources (set
to zero volts each) in the circuit, and then instruct the .print or .plot analysis statements to
display the current through those “dummy” sources.

Alternatively, you may insert low-valued “shunt” resistors in series with the point of interest
through which you wish to measure current, and then have SPICE measure the voltage(s) across the
resistor(s), just the same as you might do for any real circuit where you lack an ammeter suitable
for measuring current. So long as these shunt resistor values are considerably less than the other
resistances through which you need to measure current, their impact on the circuit will be negligible.
Shunt resistor values of 1 Ω are common for many practical current-measurement applications in
the milliAmpere range. For greater currents, shunt resistances of 1 mΩ or even 1 µΩ may be used.

Interestingly, the mathematical sign of the calculated current is negative when the voltage source
in question is actually functioning as a source (i.e. conventional current flow out the + terminal
and in the − terminal). In order to display a positive current value, current must be entering the
voltage source’s + terminal and exiting the − terminal, like a load.

28 CHAPTER 3. USING SPICE

3.5.4 Open and short circuits

The fundamental problem with open or shorted circuits is that either condition creates an undefined
mathematical quantity that SPICE cannot compute. Opens create a condition of infinite (undefined)
resistance. Shorts create a condition of zero resistance, which leads to infinite (undefined) current.

Since the insertion of a “short” or an “open” condition may be very useful for simulating a failed
component, a common strategy in SPICE modeling is to use a resistor having a very low resistance
(short) or a very high resistance (open). For example, a resistance with a value of 1e-9 Ohms is a
short for all practical purposes. Similarly, a resistance with a value of 1e9 Ohms is tantamount to
an open for most applications.

3.5. IDIOSYNCRASIES OF SPICE 29

3.5.5 Multiple sources

Multiple voltage and/or current sources are permitted in SPICE, but only in certain configurations.
Connecting multiple voltage sources in parallel creates a voltage source loop error which will cause
the analysis to abort, and connecting multiple current sources in series creates a no dc path to ground
error that is similarly fatal, regardless of source values.

The problem may be understood by considering the internal impedance of each source, and how
that impedance “appears” from the perspective of any other source(s). Ideal voltage sources have
zero internal impedance, which is why SPICE balks at parallel-connected voltage sources: from
the perspective of one voltage source, any other paralleled voltage source appears to be a direct
short-circuit. Ideal current sources have infinite internal impedance, which is why SPICE balks at
series-connected current sources: from the perspective of one current source, any others connected
in series appear to create an open-circuit condition.

It is permissible, however, to connect multiple voltage sources in series with each other. Likewise,
multiple current sources connected in parallel are also permissible.

If paralleled voltage sources and/or series-connected current sources are necessary for your circuit
design, you may “break up” the offending configuration by inserting buffer components. For example,
inserting resistors of extremely low value in series with each voltage source before paralleling them
will allow the analysis to proceed. A resistor of extremely high value inserted in parallel with a
current source will provide the dc path around the other current source that SPICE is looking for,
similarly allowing the analysis to proceed.

+
−

+
−

v1
5 V

v2
5 V

1

2

+
−

v3
5 V

5

6

7

i1
15 mA

i2
15 mA

v1 1 2 dc 5
v2 1 2 dc 5
v3 1 2 dc 5
*
i1 6 5 dc 15e-3
i2 7 6 dc 15e-3

Impermissible source connections

+
−

+
−

v1
5 V

v2
5 V

1

2

+
−

v3
5 V

5

6

7

i1
15 mA

i2
15 mA

rbuf1 rbuf2 rbuf3
1 µΩ 1 µΩ 1 µΩ

rbuf4
1 GΩ

1 GΩ
rbuf5

8 9 10

Permissible source connections

v1 8 2 dc 5
v2 9 2 dc 5
v3 10 2 dc 5
rbuf1 1 8 1e-6
rbuf2 1 9 1e-6
rbuf3 1 10 1e-6
*
i1 6 5 dc 15e-3
i2 7 6 dc 15e-3
rbuf4 5 6 1e9
rbuf5 6 7 1e9

30 CHAPTER 3. USING SPICE

3.5.6 Multiple inductors/capacitors

Similar problems arise when connecting multiple inductors directly in parallel with each other, or
multiple capacitors directly in series with each other. SPICE views an inductor as being a short
(zero resistance) under DC conditions, and a capacitor as being an open (infinite resistance) under
DC conditions. As with multiple sources, the problem may be understood by considering the DC
resistance of each component as seen from the other components. Parallel-connected inductors are
problematic because any attempt to analyze the behavior of one inductor is thwarted by the apparent
short-circuit formed by the other inductor(s); series-connected capacitors are problematic because
any attempt to analyze the behavior of one capacitor is thwarted by the apparent open-circuit formed
by the other capacitor(s).

Likewise, SPICE cannot tolerate any voltage source being connected in parallel with any inductor,
nor any current source being connected in series with any capacitor.

If any of these offending configurations are necessary for your circuit design, you may skirt the
problem by inserting buffer components as previously described:

1

2

5

6

7

1

2

5

6

7

rbuf1 rbuf2 rbuf3
1 µΩ 1 µΩ 1 µΩ

rbuf4
1 GΩ

1 GΩ
rbuf5

8 9 10

Impermissible inductor/capacitor connections Permissible inductor/capacitor connections

l1
22 mH

l2
47 mH

l3
100 mH

l1
22 mH

l2
47 mH

l3
100 mH

c1

c2

1 µF

3.3 µF

c1
1 µF

3.3 µF
c2

l1 1 2 22e-3
l2 1 2 47e-3
l3 1 2 100e-3
*
c1 5 6 1e-6
c2 6 7 3.3e-6

l1 8 2 22e-3
l2 9 2 47e-3
l3 10 2 100e-3
rbuf1 1 8 1e-6
rbuf2 1 9 1e-6
rbuf3 1 10 1e-6
*
c1 5 6 1e-6
c2 6 7 3.3e-6
rbuf4 5 6 1e9
rbuf5 6 7 1e9

Chapter 4

SPICE component descriptions

To review, here are some of the “cardinal rules” for writing SPICE netlists:

• The first line (card) of the netlist is the Title. It cannot be omitted.

• The last line (card) of the netlist is the .end command. It cannot be omitted.

• Each and every unique connection point in the circuit must be assigned a number called a
node. This is how you describe the “shape” of the circuit to SPICE: by describing which nodes
each component connects to. Components sharing common node numbers are connected to
each other. There must be a node 0, and this is the “Ground” node of the circuit.

• Comment lines (cards) must begin with an asterisk symbol (*). These are lines of text inserted
into the netlist strictly for the benefit of human readers. SPICE skips over them.

Note that SPICE is case-insensitive. Any instances of capitalization in the following SPICE
examples are included solely for clarity and readability, and do not matter when entered into a
SPICE netlist.

31

32 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.1 Independent voltage sources

General format for DC and AC analyses:

[Vname] [+node ID] [−node ID] [DC/AC voltage] [AC voltage phaseangle]

The first node specified is always the positive (+) terminal of the voltage source, while the second
node is always the negative (−) terminal.

4.1.1 Example: DC source

• Name = supply

• Polarity = + on node 5 and − on node 2

• Value = 15 Volts DC

SPICE element description Schematic representation

+ −5 2

Vsupply

15 V

Vsupply 5 2 dc 15

4.1.2 Example: “Dummy” source

• Name = meter

• Polarity = + on node 2 and − on node 1

• Value = 0 Volts

SPICE element description Schematic representation

+ −2 1

0 V

Vmeter

Vmeter 2 1 0

“Dummy” voltage sources are useful in SPICE netlists, to serve as points of measurement for
current. Legacy versions of SPICE could not display a calculated current value for any element
other than a voltage source, so a “dummy” voltage source with a value of 0 Volts served the purpose
quite well.

4.1. INDEPENDENT VOLTAGE SOURCES 33

4.1.3 Example: AC source

• Name = gen

• Polarity = + on node 3 and − on node 0

• Value = 120 Volts 6 30 degrees

3

SPICE element description Schematic representation

0

120 V ∠ 30o

Vgen

Vgen 3 0 ac 120 30

AC sources specified in this manner are assumed to be sinusoidal in waveform with a constant
magnitude and phase shift, and the analysis performed by SPICE will be in the frequency domain.

34 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

In addition to steady-state DC and AC sources, SPICE also supports multiple types of time-
dependent sources, useful for simulating waveforms and pulse trains in the time domain.

General format for time-domain analyses:

[Vname] [+node ID] [−node ID] [waveform type] ([option1 option2] [option3 · · ·])

The first node specified is always the positive (+) terminal of the voltage source, while the second
node is always the negative (−) terminal. Five different waveform types are supported, each with
their own options. The waveform types are Sinusoidal (sin), Pulse (pulse), Exponential (exp),
Piecewise Linear (pwl), and Frequency-Modulated Sinusoidal (sffm).

No provision for phase angle exists for AC time-domain sources. Instead, one must make creative
use of the start delay time option. A positive start delay time means that the waveform’s start
becomes delayed, representing a negative phase shift angle. Conversely, a negative start delay time
means the waveform has an “early” start, or a positive phase shift angle. Unfortunately, SPICE
version 2G6 does not support negative start delay time values.

4.1. INDEPENDENT VOLTAGE SOURCES 35

4.1.4 Example: Sinusoidal source

• Name = signal

• Polarity = + on node 6 and − on node 2

• Wave type = sinusoidal

• DC offset = 10 Volts

• Peak amplitude = 120 Volts

• Frequency = 60 Hz

• Start delay = 8 milliseconds

• Damping factor = 0 seconds−1 (i.e. an undamped waveform)

SPICE element description Schematic representation

Vsignal

6 2

120 V 60 Hz

8 ms

120 V

120 V

Waveform

10 V

Vsignal 6 2 sin(10 120 60 8m 0)

As opposed to a simple AC voltage sources which is assumed to be sinusoidal in waveform and
constant in magnitude (i.e. no growth or decay over time), this source is explicitly sinusoidal, and
the analysis performed by SPICE will be in the time domain.

Note that the damping factor assumes a decaying signal with a positive value. In order to
generate an exponentially growing waveform you will need to use a negative value for the damping
factor. In other words, the damping factor is equal to −σ.

36 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.1.5 Example: Pulse source

• Name = signal

• Polarity = + on node 3 and − on node 1

• Wave type = pulse

• Initial value = −5 Volts

• Pulsed value = 5 Volts

• Start delay = 3 milliseconds

• Rise time = 1 millisecond

• Fall time = 2 millisecond

• Pulse width = 5 milliseconds

• Period = 10 milliseconds

SPICE element description Schematic representation

Waveform

3 1

5 V

5 V

3 ms

5 ms

10 ms
1 ms

2 ms

Vsignal 3 1 pulse (-5 5 3m 1m 2m 5m 10m)

Vsignal

±5 V 100 Hz

Like other time-dependent sources, a pulse source requires analysis in the time domain using
the .tran analysis option.

4.2. INDEPENDENT CURRENT SOURCES 37

4.2 Independent current sources

General format for DC and AC analyses:

[Iname] [sink node ID] [source node ID] [DC/AC current] [AC current phaseangle]

The first node specified is always the terminal where current (conventional flow) enters the current
source, while the second node is always the terminal where current exits the source.

4.2.1 Example: DC source

• Name = 9

• Polarity = current enters node 3 and exits node 7

• Value = 10 milliAmperes

I9

3 7

10 mA

SPICE element description Schematic representation

I9 3 7 dc 10e-3

4.2.2 Example: AC source

• Name = in

• Polarity = current enters node 2 and exits node 5

• Value = 8 milliAmperes 6 -20 degrees

SPICE element description Schematic representation

Iin

2 5

8 mA ∠ -20o

Iin 2 5 ac 8m -20

38 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.3 Resistors

General format:

[Rname] [node ID] [node ID] [value]

As with all SPICE elements, resistor values may be specified using plain decimal notation, power-
of-ten notation, or metric-prefix notation as alternatively shown in the example.

4.3.1 Example

• Name = limit

• Nodes = connected between nodes 2 and 8

• Value = 33 kilo-Ohms Ω

SPICE element description Schematic representation

33 kΩ

Rlimit

2 8
Rlimit 2 8 33e3

Rlimit 2 8 33000

Rlimit 2 8 33k

(or)

(or)

4.4. CAPACITORS 39

4.4 Capacitors

General format:

[Cname] [+node ID] [−node ID] [value] [IC= initial voltage]

An important caveat when using capacitors in a SPICE netlist is that SPICE cannot tolerate
multiple capacitors connected directly in series. If your circuit design requires this configuration, you
will need to insert a “buffer” component (e.g. a resistor with an extremely high resistance value) in
parallel with one or more of the capacitors so that the offending components are no longer directly
in series with each other.

4.4.1 Example: Capacitor with initial charge

• Name = 2

• Polarity = + on node 9 and − on node 3, initially charged to 3.5 Volts

• Value = 22 micro-Farads

SPICE element description Schematic representation

C2

9 3

22 µF

C2 9 3 22e-6 ic=3.5

4.4.2 Example: Uncharged capacitor

• Name = filter

• Nodes = connected between nodes 1 and 4, no initial voltage

• Value = 4700 micro-Farads

SPICE element description Schematic representation

1 4

4700 µF

Cfilter

Cfilter 1 4 4700e-6

40 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.5 Inductors

General format:

[Lname] [sink node ID] [source node ID] [value] [IC= initial current]

An important caveat when using inductors in a SPICE netlist is that SPICE cannot tolerate
multiple inductors connected directly in parallel, nor can it abide any voltage source connected
directly in parallel with an inductor. If your circuit design requires either of these configurations,
you will need to insert a “buffer” component (e.g. a resistor with a negligible resistance value)
between the inductors or inductor/voltage source so that the offending components are no longer
directly in parallel with each other.

4.5.1 Example: Inductor with initial charge

• Name = 5

• Polarity = current enters node 2 and exits node 6, initially carrying 25 milliAmperes

• Value = 100 milliHenrys

SPICE element description Schematic representation

L5

2 6

100 mH

L5 2 6 100e-3 ic=25e-3

4.5.2 Example: Uncharged inductor

• Name = filter

• Nodes = connected between nodes 8 and 1, no initial current

• Value = 0.75 Henrys

SPICE element description Schematic representation

0.75 H

Lfilter

Lfilter 8 1 0.75 8 1

4.6. TRANSFORMERS 41

4.6 Transformers

Transformers do not exist as independent entities in SPICE. Instead, one must specify the windings
of a transformer as separate inductors, then specify a coupling factor k magnetically linking those
inductors. The relationship between mutual inductance (M), k, and the two inductor values (L1

and L2) are given by the formula M = k
√
L1L2.

General format:

[Kname] [Lname 1] [Lname 2] [value]

4.6.1 Example: 2:1 ratio step-down transformer

• Name = xfmr1

• Nodes = primary inductor L1 connected between nodes 1 and 2, secondary inductor L2
connected between nodes 3 and 4

• Value = 0.9999

5 H

1

2

3

k = 0.9999

4

20 H

SPICE element description Schematic representation

L1 L2

L1 1 2 20
L2 3 4 5
Kxfmr1 L1 L2 0.9999

Note how the ratio of primary to secondary inductance is equal to the square of the turns ratio,
because inductance is proportional to the square of the winding turns. Thus, in order to achieve a
2:1 turns ratio, we need a 4:1 inductance ratio.

42 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.7 Transmission lines

Transmission lines are four-terminal devices, much like dependent sources. Rather than specifying a
physical length for the transmission line, we may either specify delay time (i.e. the time it takes for
the signal to propagate along the entire length of the line) or the signal frequency and corresponding
electrical length of the line (in units of wavelengths). These two methods of specifying line length
are exclusive to each other. If using the frequency option, the electrical line length defaults to 0.25
(λ
4
) unless specified otherwise.

General format:

[Tname] [node ID] [node ID] [node ID] [node ID] [Z0= characteristic impedance] [TD= delay
time] [F= frequency and NL= electrical length]

4.7.1 Example: 50-Ohm transmission line with 10 nanosecond delay

• Name = cable

• Nodes = one end of cable has nodes 1 and 2, other end of cable has nodes 3 and 4

• Delay = 10e-9 seconds

1

2

3

4

SPICE element description Schematic representation

Z0 = 50 ΩTcable 1 2 3 4 z0=50 td=10e-9

4.7.2 Example: half-wavelength (at 35 MHz) 300-Ohm transmission line

• Name = feedline

• Nodes = one end of cable has nodes 3 and 0, other end of cable has nodes 4 and 0

• Frequency = 35 MHz

• Electrical length = 0.5 wavelengths

3 4

SPICE element description Schematic representation

Tcable 3 0 4 0 z0=300 f=35e6 nl=0.5
00

Z0 = 300 Ω

4.8. LINEAR DEPENDENT SOURCES 43

4.8 Linear dependent sources

While independent sources output a prescribed voltage or current, dependent sources output a
voltage or current as a function of some other voltage or current signal in the circuit. While there
is no real-world equivalent component for a dependent source, dependent sources are useful for
modeling a variety of phenomena and are often used as portions of a SPICE model for some real-
world component.

SPICE offers dependent sources in four different types:

• Voltage-controlled voltage source (E)

• Voltage-controlled current source (G)

• Current-controlled voltage source (H)

• Current-controlled current source (F)

Voltage-controlled sources (types E and G) have four nodes specified in their SPICE card: two
nodes for the input terminals of the controlling voltage, and two nodes for the output terminals.
Current-controlled sources (types H and F) only specify the two output terminal nodes, the controlling
current being specified by the name of some independent voltage source used as a current sensor.

General formats:

[Ename] [+output node ID] [−output node ID] [+input node ID] [−input node ID] [gain]

[Gname] [sink node ID] [source node ID] [+input node ID] [−input node ID] [gain]

[Hname] [+output node ID] [−output node ID] [Vname] [gain]

[Fname] [sink node ID] [source node ID] [Vname] [gain]

In each case, the gain value is the ratio of output to input, regardless of units (e.g. Volts output
per Volt input for a type E source; Amperes output per Volt input for a type G source, etc.).

44 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.8.1 Example: voltage-controlled voltage source

• Name = 3

• Polarity = input on nodes 3 (+) and 4 (−) ; output on nodes 1 (+) and 2 (−)

• Gain = 0.5 Volts output per Volt input

3

4

1

2

E3 1 2 3 4 0.5

Spice element description Schematic representation

E3

Vout = (0.5)(Vin)

4.8.2 Example: voltage-controlled current source

• Name = 1

• Polarity = input on nodes 4 (+) and 8 (−) ; output current enters node 5 and exits node 6

• Gain = 2.3 Amperes output per Volt input

4

Spice element description Schematic representation

G1

Iout = (2.3)(Vin)

G1 5 6 4 8 2.3

8

6

5

4.9. NONLINEAR DEPENDENT SOURCES 45

4.9 Nonlinear dependent sources

While independent sources output a prescribed voltage or current, dependent sources output a
voltage or current as a function of some other voltage or current signal in the circuit. A nonlinear
source is able to implement a mathematical function relating one or more inputs to its output. While
there is no real-world equivalent component for a dependent source, dependent sources are useful
for modeling a variety of phenomena and are often used as portions of a SPICE model for some
real-world component.

Note: these sources are not available in legacy versions of SPICE, but are supported in NGSPICE.

General format:

[Bname] [+output node ID] [−output node ID] [i= expression] [v= expression]

Supported mathematical functions include the arithmetic basic operations of addition (+),
subtraction (-), multiplication (*), division (/), and powers (^) as well as many other functions.
Exponential (exp) and logarithmic (both ln and log), trigonometric , hyperbolic, and other functions
are supported too.

4.9.1 Example: multiplier

• Name = 2

• Polarity = output on nodes 4 (+) and 3 (−)

• Function = voltage v(1) times voltage v(2)

3

4

Spice element description Schematic representation

B2V1 , V2

Vout = (V1)(V2)

B2 4 3 v=(v(1)*v(2))

46 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.10 Diodes

Semiconductor diodes, like other semiconductor components in SPICE, must be accompanied by a
.model card somewhere in the netlist specifying the model name and parameters.

General format:

[Dname] [anode node ID] [cathode node ID] [model name] [IC= initial voltage]
[.MODEL] [model name] [D] [Parameter1= value] [Parameter2= value] [· · ·]

The following is a list of parameters, any of which may be included in the .model card:

• IS = Reverse saturation current (default = 1 × 10−14 Amperes)

• N = Emission coefficient (default = 1)

• RS = Ohmic resistance (default = 0 Ohms)

• TT = Transit time (default = 0 seconds)

• CJO = Zero-bias junction capacitance (default = 0 Farads)

• VJ = Junction potential (default = 1 Volt)

• M = Grading coefficient (default = 0.5)

• EG = Activation energy (default = 1.11 electron-Volts, representing Silicon)

• BV = Breakdown voltage (default = infinite Volts)

• IBV = Current at breakdown voltage (default = 1 × 10−3 Amperes)

4.10.1 Example: Generic diode

• Name = 2

• Polarity = anode on node 5 and cathode on node 8

• Model = acme, generic diode

SPICE element description Schematic representation

D2 5 8 acme D2

5 8.MODEL acme d

4.10. DIODES 47

4.10.2 Example: 1N4001

• Name = 4

• Polarity = anode on node 1 and cathode on node 0

• Model = 1N4001 rectifying diode

SPICE element description Schematic representation

D4 1 0 1N4001
.MODEL 1N4001 d 1 0

D4

+ IS=1.2e-8 RS=0.04
+ N=1.83 EG=0.6
+ BV=50 IBV=5e-8

+ M=0.5 TT=1e-9
+ CJO=1e-11 VJ=0.65

48 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.11 Bipolar Junction Transistors (BJTs)

BJTs, like other semiconductor components in SPICE, must be accompanied by a .model card
somewhere in the netlist specifying the model name and parameters. This is where the type of BJT
(NPN or PNP) is specified.

General format:

[Qname] [collector node ID] [base node ID] [emitter node ID] [model name]
[.MODEL] [model name] [NPN or PNP] [Parameter1= value] [Parameter2= value] [· · ·]

The following is a list of parameters, any of which may be included in the .model card:

• IS = Reverse saturation current (default = 1 × 10−14 Amperes)

• BF = Forward current gain (default = 100)

• BR = Reverse current gain (default = 1)

• NF = Forward emission coefficient (default = 1)

• NR = Reverse emission coefficient (default = 1)

• VAF = Forward Early voltage (default = infinite Volts)

• VAR = Reverse Early voltage (default = infinite Volts)

• RC = Collector ohmic resistance (default = 0 Ohms)

• RB = Base ohmic resistance (default = 0 Ohms)

• RE = Emitter ohmic resistance (default = 0 Ohms)

• TF = Forward transit time (default = 0 seconds)

• TR = Reverse transit time (default = 0 seconds)

• CJE = Zero-bias B-E junction capacitance (default = 0 Farads)

• CJC = Zero-bias B-C junction capacitance (default = 0 Farads)

• VJE = B-E junction potential (default = 0.75 Volt)

• VJC = B-C junction potential (default = 0.75 Volt)

• MJE = B-E grading coefficient (default = 0.33)

• MJC = B-C grading coefficient (default = 0.33)

4.11. BIPOLAR JUNCTION TRANSISTORS (BJTS) 49

4.11.1 Example: Generic NPN transistor

• Name = 3

• Terminals = collector on node 2 and base on node 7 and emitter on node 4

• Model = mynpn, generic NPN

SPICE element description Schematic representation

Q3

2

7

4

Q3 2 7 4 mynpn
.MODEL mynpn npn

4.11.2 Example: 2N2907

• Name = 8

• Terminals = collector on node 5 and base on node 2 and emitter on node 3

• Model = 2N2907 small-signal PNP

SPICE element description Schematic representation
2

5 3

Q8 5 2 3 2N2907
.MODEL 2N2907 pnp

Q8

+ NF=1.15 VAF=42
+ VJE=0.69 VJC=0.41

+ IS=3e-12 BF=395

50 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.12 Junction Field-Effect Transistors (JFETs)

JFETs, like other semiconductor components in SPICE, must be accompanied by a .model card
somewhere in the netlist specifying the model name and parameters. The channel type is specified
in the .model card: NJF for N-channel and PJF for P-channel.

General format:

[Jname] [drain node ID] [gate node ID] [source node ID] [model name]
[.MODEL] [model name] [NJF or PJF] [Parameter1= value] [Parameter2= value] [· · ·]

The following is a list of parameters, any of which may be included in the .model card:

• VTO = Threshold pinch-off voltage (default = −2.0 Volts)

• BETA = Transconductance (default = 10−4 A/V2)

• LAMBDA = Channel length modulation (default = 0 V−1)

• RD = Drain ohmic resistance (default = 0 Ohms)

• RS = Source ohmic resistance (default = 0 Ohms)

• CGS = Zero-bias G-S junction capacitance (default = 0 Farads)

• CGD = Zero-bias G-D junction capacitance (default = 0 Farads)

• IS = Gate junction saturation current (default = 1 × 10−14 Amperes)

• PB = Gate junction potential (default = 1.0 Volt)

The mathematical sign of the threshold pinch-off voltage (VTO) is important. Since JFETs are
normally-on devices, and the gate-channel PN junction must be reverse-biased in order to turn
the transistor off, the value for VTO is negative. Interestingly, this negative sign is true regardless of
channel type (i.e. N-channel or P-channel) although the actual polarity necessary for reverse-biasing
that junction is different for the two channel types.

4.12. JUNCTION FIELD-EFFECT TRANSISTORS (JFETS) 51

4.12.1 Example: Generic N-channel JFET

• Name = 6

• Terminals = drain on node 4 and gate on node 2 and source on node 5

• Model = nchannel, generic NJF

SPICE element description Schematic representation
2

4

Q6

5

J6 4 2 5 nchannel
.MODEL nchannel njf

52 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.13 Metal-Oxide Field-Effect Transistors (MOSFETs)

MOSFETs, like other semiconductor components in SPICE, must be accompanied by a .model card
somewhere in the netlist specifying the model name and parameters. The channel type is specified
in the .model card: NMOS for N-channel and PMOS for P-channel.

General format:

[Mname] [drain node ID] [gate node ID] [source node ID] [bulk node ID] [model name]

[.MODEL] [model name] [NMOS or PMOS] [Parameter1= value] [Parameter2= value]
[· · ·]

Note: the “bulk” terminal describes the semiconductor substrate upon which the MOSFET is
built, and is optional. The following is a list of parameters, any of which may be included in the
.model card:

• VTO = Threshold pinch-off voltage (default = 0 Volts)

• KP = Transconductance (default = 2 × 10−5 A/V2)

• GAMMA = Bulk threshold (default = 0 V
1

2)

• LAMBDA = Channel length modulation (default = 0 V−1)

• RD = Drain ohmic resistance (default = 0 Ohms)

• RS = Source ohmic resistance (default = 0 Ohms)

• RSH = Drain and source diffusion sheet resistance (default = 0 Ohms)

• CBD = Zero-bias B-D junction capacitance (default = 0 Farads)

• CBS = Zero-bias B-S junction capacitance (default = 0 Farads)

• CJ = Zero-bias bulk junction bottom capacitance (default = 0 Farads)

• MJ = Bulk junction grading coefficient (default = 0.5)

• CJSW = Zero-bias bulk junction sidewall capacitance (default = 0 Farads)

• MJSW = Bulk junction sidewall grading coefficient (default = 0.33)

• IS = Bulk junction saturation current (default = 1 × 10−14 Amperes)

• PB = Bulk junction potential (default = 1.0 Volt)

• CGDO = G-D overlap capacitance per unit channel width (default = 0 Farads/meter)

• CGSO = G-S overlap capacitance per unit channel width (default = 0 Farads/meter)

4.13. METAL-OXIDE FIELD-EFFECT TRANSISTORS (MOSFETS) 53

• CGBO = G-B overlap capacitance per unit channel width (default = 0 Farads/meter)

• TOX = Oxide thickness (default = infinite meters)

• LD = Lateral diffusion (default = 0 meters)

The same device card is used for enhancement-mode as well as depletion-mode MOSFETs, the
only difference being the value assigned to the threshold pinch-off voltage (VTO). Enhancement-mode
MOSFETs are normally-off devices and thus are “pinched off” at zero gate voltage, requiring VTO

to be a positive value for NMOS devices and a negative value for PMOS devices. Depletion-mode
MOSFETs are normally-on devices and need a “reverse-bias” gate voltage to turn off, requiring VTO

to be a negative value for NMOS devices and a positive value for PMOS devices.

4.13.1 Example: Generic N-channel depletion-type MOSFET

• Name = 7

• Terminals = drain on node 2 and gate on node 1 and source on node 4 (bulk connected to
source)

• Model = ndmos, generic depletion-type NMOS

SPICE element description Schematic representation

24

Q7

1
M7 2 1 4 4 ndmos
.MODEL ndmos VTO=-3

4.13.2 Example: Generic N-channel enhancement-type MOSFET

• Name = 7

• Terminals = drain on node 2 and gate on node 1 and source on node 4 (bulk connected to
source)

• Model = nemos, generic enhancement-type NMOS

SPICE element description Schematic representation

24

Q7

1

.MODEL nemos VTO=2
M7 2 1 4 4 nemos

54 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.13.3 Example: Generic P-channel depletion-type MOSFET

• Name = 7

• Terminals = drain on node 2 and gate on node 1 and source on node 4 (bulk connected to
source)

• Model = pdmos, generic depletion-type PMOS

SPICE element description Schematic representation

24

Q7

1
M7 2 1 4 4 pdmos
.MODEL pdmos VTO=3

4.13.4 Example: Generic P-channel enhancement-type MOSFET

• Name = 7

• Terminals = drain on node 2 and gate on node 1 and source on node 4 (bulk connected to
source)

• Model = pemos, generic enhancement-type PMOS

SPICE element description Schematic representation

24

Q7

1

.MODEL pemos VTO=-2
M7 2 1 4 4 pemos

4.14. SUBCIRCUITS 55

4.14 Subcircuits

Computer programming languages provide the means to perform subroutines, which consist of
collections of code (instructions) separate from the main body of the program, but which may
be “called” from the main program as many times as needed. This is used in applications where
a particular algorithm or set of instructions must be repeatedly executed: rather than have those
instructions appear repeated throughout the program, they are entered as a subroutine and that
subroutine is called by name as many times as necessary.

SPICE has the ability to do the equivalent when simulating electric circuits. A collection of
components that would otherwise need to be repeatedly entered in the netlist can be defined once
as a subcircuit, and then that subcircuit may be called by name as often as desired elsewhere in the
netlist. Subcircuits are useful when the overall circuit is comprised of multiple identical sub-networks,
because it makes the netlist shorter and easier to understand to a human reader.

[X] [subcircuit name] [node 1] [node 2] [· · ·]

[.SUBCKTname] [node 1] [node 2] · · ·]

All node numbers with the exception of node 0 used within the .SUBCKT card are “local” to that
card and may be re-used for other purposes elsewhere in the netlist.

56 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

4.14.1 Example: resistor subnetwork

• Name = rnet

• Terminals = first node is upper, second is lower

Schematic representation
1

SPICE subcircuit description

.ENDS rnet

.SUBCKT rnet 1 4
R1 1 2 2200
R2 2 3 2200
R3 2 4 2200
R4 3 4 2200

SPICE subcircuit usage Schematic representation

2
3

R1

R2 R3

R4

4

(all resistors 2.2k)

X1 1 2 rnet
X2 2 3 rnet
X3 3 0 rnet

rnet

rnet

rnet

1

2

3

rnet

0

4.14. SUBCIRCUITS 57

4.14.2 Example: solar cell array

The simulation of a solar cell array is an excellent use of both subcircuits and semiconductor models
in SPICE. Each individual solar cell outputs about the same amount of voltage as the forward drop of
a silicon rectifying diode, because a solar cell is a silicon PN junction. The larger the cell’s junction
contact area, the greater its short-circuit current capacity. We may simulate each cell’s short-circuit
(maximum) current using a current source (Isc) and its PN-junction characteristics using a diode
element (D1) with added resistors representing substrate and inter-cell connection resistances:

• Name = pvcell

• Terminals = first node is positive, second is negative

Schematic representation
1

SPICE subcircuit description

SPICE subcircuit usage Schematic representation

3

1

2 3

0

pvcell

2

pvcell

pvcell

pvcell

pvcell

X1 1 2 pvcell
X2 2 0 pvcell
X3 1 3 pvcell
X4 3 0 pvcell

X1

X2

X3

X4

.SUBCKT pvcell 1 3

.ENDS pvcell

Rp

Rs

1.5 A
D1

D1 2 3 pnjunc

.MODEL pnjunc d

ISC 3 2 1.5

Isc

RS 1 2 0.01
0.01 Ω

RP 2 3 5 5 Ω

58 CHAPTER 4. SPICE COMPONENT DESCRIPTIONS

Chapter 5

SPICE analysis descriptions

To review, here are some of the “cardinal rules” for writing SPICE netlists:

• The first line (card) of the netlist is the Title. It cannot be omitted.

• The last line (card) of the netlist is the .end command. It cannot be omitted.

• Each and every unique connection point in the circuit must be assigned a number called a
node. This is how you describe the “shape” of the circuit to SPICE: by describing which
nodes each component connect to. Component terminals sharing common node numbers are
electrically common (i.e. directly connected to each other). There must be a node 0, and this
is the “Ground” node of the circuit.

• Comment lines (cards) must begin with an asterisk symbol (*). These are lines of text inserted
into the netlist strictly for the benefit of human readers. SPICE skips over them.

Note that SPICE is case-insensitive. Any instances of capital letters in the following SPICE
analysis descriptions are included solely for clarity and readability.

59

60 CHAPTER 5. SPICE ANALYSIS DESCRIPTIONS

5.1 DC voltage/current“sweep” analysis

General format:

[.dc] [source name] [start value] [end value] [increment]

The starting and ending values for the sweep will override any static values specified in the
source’s line (card).

5.1.1 Example: sweep of voltage source

• Source = voltage source “v1”

• Starting value = 2 Volts

• Ending value = 12 Volts

• Increment value = 5 Volts

SPICE analysis description: .dc v1 2 12 5

5.1.2 Example: sweep of voltage and current sources

• Source1 = voltage source “vce”

Starting value = 0 Volts

Ending value = 20 Volts

Increment value = 0.5 Volt

• Source2 = current source “ib”

Starting value = 0 milliAmperes

Ending value = 0.6 milliAmperes

Increment value = 0.1 milliAmperes

SPICE analysis description: .dc vce 0 20 0.5 ib 0 0.6e-3 0.1e-3

Multi-source sweeps are useful when plotting “families” of characteristic curves for semiconductor
devices, where each curve plotted is at a different controlling signal value. In the example shown,
VCE is swept from 0 to 20 Volts at an IB value of 0 milliAmperes, then swept again from 0 to 20
Volts at IB = 0.1 mA, then swept again from 0 to 20 Volts at IB = 0.2 mA, etc.

5.2. AC FREQUENCY “SWEEP” ANALYSIS 61

5.2 AC frequency “sweep” analysis

General format:

[.ac] [linearity] [points] [start frequency] [end frequency]

5.2.1 Example: linear frequency sweep

• Linearity type = linear

• Number of points = 100

• Starting frequency = 400 Hz

• Ending frequency = 900 Hz

SPICE analysis description: .ac lin 100 400 900

5.2.2 Example: decade logarithmic frequency sweep

• Linearity type = decade

• Number of points = 5 per decade

• Starting frequency = 1 kHz

• Ending frequency = 100 kHz

SPICE analysis description: .ac dec 5 1k 100k

5.2.3 Example: octave logarithmic frequency sweep

• Linearity type = octave

• Number of points = 12 per octave

• Starting frequency = 440 Hz

• Ending frequency = 3.52 kHz

SPICE analysis description: .ac oct 12 440 3.52e3

Note: this particular analysis covers four octaves of the frequencies of the equal-tempered Western
musical scale, beginning with 440 Hz (concert tuning pitch “A”).

62 CHAPTER 5. SPICE ANALYSIS DESCRIPTIONS

5.3 Transient analysis

General format:

[.tran] [interval time] [end time] [start time] [uic] [end frequency]

This instructs SPICE to perform a time-domain analysis of the circuit, from time t = 0 to the
specified end time, over intervals of specified length. The starting time is used only for analyses where
the printed or plotted results do not begin at t = 0; if unspecified it is assumed that the starting
time is zero. The UIC parameter is optional, instructing SPICE to honor any initial conditions (IC=)
specified in the component descriptions.

5.3.1 Example: using initial conditions, beginning at time t = 0

• Time interval = 10 milliseconds

• Ending time = 500 milliseconds

SPICE analysis description: .tran 10m 500m uic

5.3.2 Example: using initial conditions, beginning at non-zero time

• Time interval = 30 microseconds

• Ending time = 200 microseconds

• Print/plot starting time = 100 microseconds

SPICE analysis description: .tran 30u 200u 100u uic

5.4. FOURIER ANALYSIS 63

5.4 Fourier analysis

General format:

[.four] [fundamental frequency] [variable] [variable] [variable · · ·]

Fourier analysis provides a printed-text summary of the first ten harmonic frequencies of the
specified variable(s). This analysis must always be used in conjunction with a transient (.tran)
analysis in the same netlist, since the Fourier transform takes a time-domain function (i.e. transient
data in SPICE) and converts it into a frequency-domain function.

5.4.1 Example: analysis of 60 Hz waveform

• Fundamental frequency = 60 Hz

• Variable = Voltage between nodes 3 and 1

SPICE analysis description: .four 60 v(3,1)

64 CHAPTER 5. SPICE ANALYSIS DESCRIPTIONS

5.5 Display option: print

General format:

[.print] [analysis type] [variable] [variable] [variable · · ·]

In order for this display option to function, the netlist (deck) must also contain an analysis line
(card).

5.5.1 Example: printing a DC analysis

• Analysis type = DC (netlist must contain a .dc analysis line)

• First variable = Voltage between node 4 and Ground

• Second variable = Voltage between nodes 6 and 3

• Third variable = Current through voltage source “vsupply”

SPICE analysis description: .print dc v(4) v(6,3) i(vsupply)

5.5.2 Example: printing an AC analysis

• Analysis type = AC (netlist must contain an .ac analysis line)

• First variable = Voltage magnitude between node 4 and Ground

• Second variable = Voltage phase angle between node 4 and Ground

• Third variable = Current magnitude through voltage source “vsupply”

• Fourth variable = Current phase angle through voltage source “vsupply”

SPICE analysis description: .print ac vm(4) vp(4) im(vsupply) ip(vsupply)

Note that SPICE version 2 defaults to degrees as the unit for phase angles, while SPICE version
3 defaults to radians. If degrees are desired while running newer versions of SPICE, you may include
the following cards in the netlist deck to control units:

.control

set units=degrees

.endc

5.6. DISPLAY OPTION: PLOT 65

5.6 Display option: plot

General format:

[.plot] [analysis type] [variable] [variable] [variable · · ·]

The .plot display accepts all the same parameters as the .print display, but instead of merely
printing a list of numbers it plots a graph of the variables over the domain of the analysis type. In
order for this display option to function, the netlist (deck) must also contain an analysis line (card).

Since the purpose of the .plot display is to produce a graph, the analysis line really needs to
“sweep” over multiple points.

5.6.1 Example: plotting a DC analysis

• Analysis type = DC (netlist must contain a .dc analysis line)

• First variable = Voltage between nodes 4 and 1

SPICE analysis description: .plot dc v(4,1)

5.6.2 Example: plotting an AC analysis

• Analysis type = AC (netlist must contain an .ac analysis line)

• First variable = Voltage magnitude between nodes 4 and 1

• Second variable = Voltage phase angle between nodes 4 and 1

SPICE analysis description: .plot ac vm(4,1) vp(4,1)

Note that SPICE version 2 defaults to degrees as the unit for phase angles, while SPICE version
3 defaults to radians. If degrees are desired while running newer versions of SPICE, you may include
the following cards in the netlist deck to control units:

.control

set units=degrees

.endc

It is important to note that an AC plot is in the frequency domain; that is to say, the x axis of
the plot will represent frequency while the y axis will represent the variable(s) specified in the .plot
line. This is useful for generating Bode plots. An AC analysis will not plot waveforms as a function
of time. That feature is delivered by plot only when the netlist specifies a transient analysis rather
than an AC analysis.

66 CHAPTER 5. SPICE ANALYSIS DESCRIPTIONS

5.6.3 Example: plotting a transient analysis

• Analysis type = transient (netlist must contain a .tran analysis line)

• First variable = Voltage between nodes 7 and 3

SPICE analysis description: .plot tran v(7,3)

This plot will show the waveform as a function of time, with the plot’s x axis expressed in units
of time.

5.6.4 Example: plotting parametric functions

• Analysis type = transient (netlist must contain a .tran analysis line)

• First variable = Voltage between nodes 1 and 0

• First variable = Voltage between nodes 5 and 8

SPICE analysis description: .plot tran v(1) vs v(5,8)

Not all versions of SPICE support the “versus” option, but in those that do, this is useful for
plotting one circuit parameter against another, rather than plot circuit parameter(s) over time. Use
this option to create Lissajous figures, plotting one sinusoidal voltage against another at different
frequencies and/or phase shifts.

5.7. DISPLAY OPTION: WIDTH 67

5.7 Display option: width

General format:

[.width] [out= characters]

When SPICE outputs plain-text to the computer terminal, it assumes a 120-character display
width, which is fitting for legacy teletype machines, but actually exceeds the standard electronic
terminal display width of 80 characters. For this reason, especially when using the .plot output
option, it is advisable to also use the .width option set to 80 characters to limit the width of the
text display.

5.7.1 Example

• Display width = 80 characters

SPICE analysis description: .width out=80

68 CHAPTER 5. SPICE ANALYSIS DESCRIPTIONS

Chapter 6

Primitive circuit examples

“Primitive” circuits consist of the minimum number of components to demonstrate a concept. In
most cases they consist of one source and one load directly connected together. They are presented
here as a form of “Hello World” example to show how SPICE netlists and analyses are formatted.

69

70 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

6.1 DC voltage source with .op analysis

Circuit schematic diagram (with node numbers listed). Note how the voltage source and the
resistor are connected between the same pair of nodes: 1 and 0. This tells SPICE they are parallel
to each other, because the upper terminals of each component are electrically common (node 1) and
the lower terminals of each component are also electrically common (node 0). Note also how ground
is defined in SPICE as node number zero, which must be included in every netlist:

+
−

1

0 0

1

12 V 2.2 kΩV1 R1

SPICE netlist:

* SPICE circuit

v1 1 0 dc 12

r1 1 0 2200

.op

.end

SPICE version 2G6 analysis (edited for brevity):

node voltage

(1) 12.0000

voltage source currents

name current

v1 -5.455E-03

total power dissipation 6.55E-02 watts

6.1. DC VOLTAGE SOURCE WITH .OP ANALYSIS 71

Just to show you what the raw output of SPICE version 2G6 looks like for this analysis, here
it is in all its unedited glory (note that I had to shorten some of the lines that exceeded the page
width):

1*******09/02/16 ******** spice 2g.6 3/15/83 ********12:04:38*****

0* spice circuit

0**** input listing temperature = 27.000 deg c

0***

v1 1 0 dc 12

r1 1 0 2200

.op

.end

1******09/02/16 ********* spice 2g.6 3/15/83 ********12:04:38**********

0* spice circuit

0**** small signal bias solution temperature = 27.000 deg c

0***

node voltage

(1) 12.0000

voltage source currents

name current

v1 -5.455E-03

total power dissipation 6.55E-02 watts

0

job concluded

0 total job time 0.00

72 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

NGSPICE version 26 is more verbose than the legacy SPICE version 2G6 running the “Operating
Point” (.op) analysis, requiring more than a page to display:

Circuit: * spice circuit

Doing analysis at TEMP = 27.000000 and TNOM = 27.000000

No. of Data Rows : 1

Node Voltage

---- -------

V(1) 1.200000e+01

Source Current

v1#branch -5.45455e-03

Resistor models (Simple linear resistor)

model R

rsh 0

narrow 0

short 0

tc1 0

tc2 0

defw 1e-05

l 1e-05

kf 0

af 0

r 0

bv_max 1e+99

Resistor: Simple linear resistor

device r1

model R

resistance 2200

ac 2200

dtemp 0

bv_max 1e+99

noisy 1

i 0.00545455

p 0.0654545

Vsource: Independent voltage source

6.1. DC VOLTAGE SOURCE WITH .OP ANALYSIS 73

device v1

dc 12

acmag 0

pulse -

sine -

sin -

exp -

pwl -

sffm -

am -

trnoise -

trrandom -

i -0.00545455

p 0.0654545

CPU time since last call: 0.032 seconds.

Total CPU time: 0.032 seconds.

Total DRAM available = 489.546875 MB.

DRAM currently available = 152.234375 MB.

Total ngspice program size = 2.191406 MB.

Resident set size = 593.000 kB.

Shared ngspice pages = 464.000 kB.

Text (code) pages = 1.087891 MB.

Stack = 0 bytes.

Library pages = 164.000 kB.

74 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

6.2 DC voltage source with single-point .dc sweep analysis

Circuit schematic diagram (with node numbers listed). Note how ground is defined in SPICE
as node number zero. In this example we will maintain the voltage source at a constant value of 12
Volts DC. The “sweep” analysis is intended to cover a specified range of voltage values, but we are
exploiting that analysis option here to perform an analysis at only a single voltage value:

+
−

1

0 0

1

12 V 2.2 kΩV1 R1

SPICE netlist:

* SPICE circuit

v1 1 0 dc 12

r1 1 0 2200

.dc v1 12 12 1

.print dc v(1) i(v1)

.end

SPICE version 2G6 analysis (edited for brevity):

v1 v(1) i(v1)

1.200E+01 1.200E+01 -5.455E-03

6.2. DC VOLTAGE SOURCE WITH SINGLE-POINT .DC SWEEP ANALYSIS 75

SPICE version 2G6 is slightly less verbose when performing the .dc analysis than when
performing the .op analysis. Here is the “raw” output of SPICE version 2G6 for your perusal:

1*******09/02/16 ******** spice 2g.6 3/15/83 ********12:22:56*****

0* spice circuit

0**** input listing temperature = 27.000 deg c

0***

v1 1 0 dc 12

r1 1 0 2200

.dc v1 12 12 1

.print dc v(1) i(v1)

.end

1******09/02/16 ********* spice 2g.6 3/15/83 *********12:22:56********

0* spice circuit

0**** dc transfer curves temperature = 27.000 deg c

0***

v1 v(1) i(v1)

x

1.200E+01 1.200E+01 -5.455E-03

y

0

job concluded

0 total job time 0.00

76 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

NGSPICE version 26 is substantially less verbose when performing the .dc analysis. Here is the
“raw” output of NGSPICE version 26 for your perusal:

Circuit: * spice circuit

Doing analysis at TEMP = 27.000000 and TNOM = 27.000000

No. of Data Rows : 1

* spice circuit

DC transfer characteristic Fri Sep 2 12:28:41 2016

--

Index v-sweep v(1) v1#branch

--

0 1.200000e+01 1.200000e+01 -5.45455e-03

CPU time since last call: 0.032 seconds.

Total CPU time: 0.032 seconds.

Total DRAM available = 489.546875 MB.

DRAM currently available = 152.128906 MB.

Total ngspice program size = 2.191406 MB.

Resident set size = 595.000 kB.

Shared ngspice pages = 466.000 kB.

Text (code) pages = 1.087891 MB.

Stack = 0 bytes.

Library pages = 164.000 kB.

6.3. DC CURRENT SOURCE WITH SINGLE-POINT .DC SWEEP ANALYSIS 77

6.3 DC current source with single-point .dc sweep analysis

Circuit schematic diagram (with node numbers listed). Note how ground is defined in SPICE
as node number zero. In this example we will maintain the current source at a constant value of 4
milliAmperes DC. The “sweep” analysis is intended to cover a specified range of current values, but
we are exploiting that analysis option here to perform an analysis at only a single current value:

1

0 0

1

2.2 kΩR1I14 mA

SPICE netlist:

* SPICE circuit

i1 0 1 dc 4e-3

r1 1 0 2200

.dc i1 4e-3 4e-3 1

.print dc v(1)

.end

SPICE version 2G6 analysis (edited for brevity):

i1 v(1)

4.000E-03 8.800E+00

78 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

6.4 DC voltage source with multi-point .dc sweep analysis

Circuit schematic diagram (with node numbers listed). Note how ground is defined in SPICE
as node number zero. In this example we will “sweep” the voltage source from 2 to 12 Volts DC in
increments of 1 Volt:

+
−

1

0 0

1

12 V 2.2 kΩV1 R1

First, showing the “printed” output option:

SPICE netlist:

* SPICE circuit

v1 1 0 dc 12

r1 1 0 2200

.dc v1 2 12 1

.print dc v(1) i(v1)

.end

SPICE version 2G6 analysis (edited for brevity):

v1 v(1) i(v1)

2.000E+00 2.000E+00 -9.091E-04

3.000E+00 3.000E+00 -1.364E-03

4.000E+00 4.000E+00 -1.818E-03

5.000E+00 5.000E+00 -2.273E-03

6.000E+00 6.000E+00 -2.727E-03

7.000E+00 7.000E+00 -3.182E-03

8.000E+00 8.000E+00 -3.636E-03

9.000E+00 9.000E+00 -4.091E-03

1.000E+01 1.000E+01 -4.545E-03

1.100E+01 1.100E+01 -5.000E-03

1.200E+01 1.200E+01 -5.455E-03

6.4. DC VOLTAGE SOURCE WITH MULTI-POINT .DC SWEEP ANALYSIS 79

Next, showing the “plotted” output option1:

SPICE netlist:

* SPICE circuit

v1 1 0 dc 12

r1 1 0 2200

.dc v1 2 12 1

.plot dc v(1) i(v1)

.width out=80

.end

SPICE version 2G6 analysis (edited for brevity):

legend:

*: v(1)

+: i(v1)

v1 v(1)

(*)------------ 0.000E+00 5.000E+00 1.000E+01 1.500E+01 2.000E+01

- -

(+)------------ -6.000E-03 -4.000E-03 -2.000E-03 0.000E+00 2.000E-03

- -

2.000E+00 2.000E+00 . * . . + . .

3.000E+00 3.000E+00 . * . . + . .

4.000E+00 4.000E+00 . * . .+ . .

5.000E+00 5.000E+00 . * + . . .

6.000E+00 6.000E+00 . . * + . . .

7.000E+00 7.000E+00 . . x . . .

8.000E+00 8.000E+00 . . + * . . .

9.000E+00 9.000E+00 . +. * . . .

1.000E+01 1.000E+01 . + . * . .

1.100E+01 1.100E+01 . + . . * . .

1.200E+01 1.200E+01 . + . . * . .

- -

1SPICE assumes a 120-character width display, and so to fit the text output on a standard terminal the .width

option must be invoked to set the display width at 80 characters

80 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

v-sweep

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

V

-0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Units v(1)i(v1)

6.5. AC VOLTAGE SOURCE WITH SINGLE-POINT .AC SWEEP ANALYSIS 81

6.5 AC voltage source with single-point .ac sweep analysis

Circuit schematic diagram (with node numbers listed). Note how the series connection between
the “dummy” resistor and the inductor is specified by three nodes: 1, 2, and 0. The resistor connects
between nodes 1 and 2, while the inductor connects between nodes 2 and 0. The one node common
to both components (node 2) makes those two components share a common connection. Note as
always how ground is defined in SPICE as node number zero. In this example we will “sweep” the
source frequency from 1 kHz to 1 kHz with just one interval. The “dummy” resistance of 1 milli-Ohm
is necessary in order to avoid a direct “loop” between the voltage source and the inductor, which
SPICE cannot abide:

1

0 0

V1 L1
24 V
1 kHz

Rdummy

1 mΩ
200 mH

2

SPICE netlist:

* SPICE circuit

v1 1 0 ac 24

rdummy 1 2 1m

l1 2 0 200m

.ac lin 1 1k 1k

.print ac vm(1) vp(1) im(v1) ip(v1)

.end

SPICE version 2G6 analysis (edited for brevity):

freq vm(1) vp(1) im(v1) ip(v1)

1.000E+03 2.400E+01 0.000E+00 1.910E-02 9.000E+01

82 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

Early versions of SPICE such as 2G6 assumed phase angle unit of degrees, but many later versions
assume radians when displaying phase angles. In order to specifically instruct modern versions of
SPICE to display angles in degrees, the following “control” cards must be added to the netlist:

.control

set units=degrees

.endc

These cards may be added to the netlist “deck” anywhere between the first line (* SPICE

circuit) and the last (.end).

6.6 AC voltage source with multi-point .ac sweep analysis

Circuit schematic diagram (with node numbers listed). Note how ground is defined in SPICE
as node number zero. In this example we will “sweep” the source frequency from 60 Hz to 6 kHz on
a decade logarithmic scale with 5 points per decade:

1

0 0

1

V1120 V C1 4.7 µF

First, showing the “printed” output option:

SPICE netlist:

* SPICE circuit

v1 1 0 ac 120

c1 1 0 4.7u

.ac dec 5 60 6k

.print ac vm(1) vp(1) im(v1) ip(v1)

.end

SPICE version 2G6 analysis (edited for brevity):

6.6. AC VOLTAGE SOURCE WITH MULTI-POINT .AC SWEEP ANALYSIS 83

freq vm(1) vp(1) im(v1) ip(v1)

6.000E+01 1.200E+02 0.000E+00 2.126E-01 -9.000E+01

9.509E+01 1.200E+02 0.000E+00 3.370E-01 -9.000E+01

1.507E+02 1.200E+02 0.000E+00 5.341E-01 -9.000E+01

2.389E+02 1.200E+02 0.000E+00 8.465E-01 -9.000E+01

3.786E+02 1.200E+02 0.000E+00 1.342E+00 -9.000E+01

6.000E+02 1.200E+02 0.000E+00 2.126E+00 -9.000E+01

9.509E+02 1.200E+02 0.000E+00 3.370E+00 -9.000E+01

1.507E+03 1.200E+02 0.000E+00 5.341E+00 -9.000E+01

2.389E+03 1.200E+02 0.000E+00 8.465E+00 -9.000E+01

3.786E+03 1.200E+02 0.000E+00 1.342E+01 -9.000E+01

6.000E+03 1.200E+02 0.000E+00 2.126E+01 -9.000E+01

Next, showing the “plotted” output option2:

SPICE netlist:

* SPICE circuit

v1 1 0 ac 120

c1 1 0 4.7u

.ac dec 5 60 6k

.plot ac vm(1) vp(1) im(v1) ip(v1)

.width out=80

.end

2SPICE assumes a 120-character width display, and so to fit the text output on a standard terminal the .width

option must be invoked to set the display width at 80 characters

84 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

SPICE version 2G6 analysis (edited for brevity):

legend:

*: vm(1)

+: vp(1)

=: im(v1)

$: ip(v1)

freq vm(1)

(*)------------ 1.000E+01 1.000E+02 1.000E+03 1.000E+04 1.000E+05

- -

(+)------------ -1.000E-12 -5.000E-13 0.000E+00 5.000E-13 1.000E-12

- -

(=)------------ 1.000E-01 1.000E+00 1.000E+01 1.000E+02 1.000E+03

- -

($)------------ -1.500E+02 -1.000E+02 -5.000E+01 0.000E+00 5.000E+01

- -

6.000E+01 1.200E+02 . = .* $ + . .

9.509E+01 1.200E+02 . = .* $ + . .

1.507E+02 1.200E+02 . = .* $ + . .

2.389E+02 1.200E+02 . =.* $ + . .

3.786E+02 1.200E+02 . .*=$ + . .

6.000E+02 1.200E+02 . .* $ = + . .

9.509E+02 1.200E+02 . .* $ = + . .

1.507E+03 1.200E+02 . .* $ = + . .

2.389E+03 1.200E+02 . .* $ =+ . .

3.786E+03 1.200E+02 . .* $ + = . .

6.000E+03 1.200E+02 . .* $ + = . .

- -

6.6. AC VOLTAGE SOURCE WITH MULTI-POINT .AC SWEEP ANALYSIS 85

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

frequency

10 100 10^3 10^4

Hz

0.0

1.0

2.0

3.0

4.0

5.0

6.0

kUnits V(1)frequency
v1#branch

It should be noted that early versions of SPICE such as 2G6 assumed phase angle unit of degrees,
but many later versions assume radians when displaying phase angles. In order to specifically instruct
modern versions of SPICE to display angles in degrees, the following “control” cards must be added
to the netlist:

.control

set units=degrees

.endc

These cards may be added to the netlist “deck” anywhere between the first line (* SPICE

circuit) and the last (.end).

86 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

6.7 Additive AC voltage sources with single-point .ac sweep
analysis

Circuit schematic diagram (with node numbers listed). Note the use of node numbers to
specify the circuit’s shape. Node 0 is the ground point, while nodes shared between different
components specify direct connections between those components (i.e. all identically-numbered
nodes are electrically common to each other). Nodes with different numbers are electrically distinct
from each other:

0

1

2 3

0

1

4

V1

V2

4 VAC
60 Hz
0o phase shift

3 VAC
60 Hz
180o phase shift

3 VAC
60 Hz
0o phase shift

3 VAC
60 Hz
90o phase shift

R1 R2 R31 kΩ 1 kΩ 1 kΩ
000

1

SPICE netlist:

* SPICE circuit

v1 1 0 ac 4 0

v2 2 1 ac 3 0

v3 3 1 ac 3 180

v4 4 1 ac 3 90

r1 2 0 1k

r2 3 0 1k

r3 4 0 1k

.ac lin 1 60 60

.print ac vm(2) vm(3) vm(4)

.print ac vp(2) vp(3) vp(4)

.end

6.7. ADDITIVE AC VOLTAGE SOURCES WITH SINGLE-POINT .AC SWEEP ANALYSIS 87

SPICE version 2G6 analysis (edited for brevity):

freq vm(2) vm(3) vm(4)

6.000E+01 7.000E+00 1.000E+00 5.000E+00

freq vp(2) vp(3) vp(4)

6.000E+01 0.000E+00 2.105E-14 3.687E+01

The voltage at node 2 (with respect to ground, 0) is the simple sum of 4 Volts and 3 Volts because
V1 and V2 are perfectly in sync with each other, analogous to a pair of DC voltage sources connected
in series with polarities additive. This also explains the zero phase shift of node 2’s voltage: the
sum of those two sources is in-phase with our reference source V1 (at 0 degrees phase angle).

The voltage at node 3 is only 1 Volt (the difference between 4 Volts and 3 Volts) because V1

and V3 are perfectly opposed to one another, analogous to a pair of DC voltage sources connected in
series with polarities subtractive. The phase shift of this voltage is practically zero, the only reason
for the miniscule non-zero phase result being imperfections in SPICE’s AC analysis.

The voltage at node 4 has no DC analogue because here the two sources V1 and V4 are neither
directly in sync with each other nor perfectly opposed to each other – instead, these two sources
are 90 degrees out of phase with each other. Their phasor sum is 5 Volts for the same reason that
a right triangle with opposite and adjacent side lengths of 4 and 3 will have a hypotenuse length of
5. Note that the phase angle of this voltage is neither 0 degrees nor 90 degrees, but instead is 36.87
degrees: the same angle one would expect between the 4-length and 5-length sides of a right triangle
(i.e. cos−1

(

4

5

)

= 36.87o).

It should be noted that early versions of SPICE such as 2G6 assumed phase angle unit of degrees,
but many later versions assume radians when displaying phase angles. In order to specifically instruct
modern versions of SPICE to display angles in degrees, the following “control” cards must be added
to the netlist:

.control

set units=degrees

.endc

These cards may be added to the netlist “deck” anywhere between the first line (* SPICE

circuit) and the last (.end).

88 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

6.8 Transient analysis of discharging RC circuit

Circuit schematic diagram (with node numbers listed). Note how ground is defined in SPICE
as node number zero. In this example we will pre-charge the capacitor to 5 Volts and analyze
its discharge over time. The time-span for analysis is from t = 0 to t = 250 milliseconds, in 10
millisecond intervals:

1

0 0

1

C1 4.7 µFR1 1 kΩ
Initial charge = 5 Volts

First, showing the “printed” output option:

SPICE netlist:

* SPICE circuit

r1 1 0 1k

c1 1 0 47u ic=5

.tran 10m 250m uic

.print tran v(1)

.end

6.8. TRANSIENT ANALYSIS OF DISCHARGING RC CIRCUIT 89

SPICE version 2G6 analysis (edited for brevity):

time v(1)

0.000E+00 5.000E+00

1.000E-02 4.046E+00

2.000E-02 3.270E+00

3.000E-02 2.643E+00

4.000E-02 2.136E+00

5.000E-02 1.726E+00

6.000E-02 1.395E+00

7.000E-02 1.127E+00

8.000E-02 9.112E-01

9.000E-02 7.364E-01

1.000E-01 5.951E-01

1.100E-01 4.810E-01

1.200E-01 3.887E-01

1.300E-01 3.142E-01

1.400E-01 2.539E-01

1.500E-01 2.052E-01

1.600E-01 1.658E-01

1.700E-01 1.340E-01

1.800E-01 1.083E-01

1.900E-01 8.754E-02

2.000E-01 7.075E-02

2.100E-01 5.718E-02

2.200E-01 4.621E-02

2.300E-01 3.735E-02

2.400E-01 3.018E-02

2.500E-01 2.437E-02

90 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

Next, showing the “plotted” output option3:

SPICE netlist:

* SPICE circuit

r1 1 0 1k

c1 1 0 47u ic=5

.tran 10m 250m uic

.plot tran v(1)

.width out=80

.end

3SPICE assumes a 120-character width display, and so to fit the text output on a standard terminal the .width

option must be invoked to set the display width at 80 characters

6.8. TRANSIENT ANALYSIS OF DISCHARGING RC CIRCUIT 91

SPICE version 2G6 analysis (edited for brevity):

time v(1)

0.000E+00 2.000E+00 4.000E+00 6.000E+00 8.000E+00

- -

0.000E+00 5.000E+00 . . . * . .

1.000E-02 4.046E+00 . . * . .

2.000E-02 3.270E+00 . . * . . .

3.000E-02 2.643E+00 . . * . . .

4.000E-02 2.136E+00 . .* . . .

5.000E-02 1.726E+00 . *

6.000E-02 1.395E+00 . *

7.000E-02 1.127E+00 . *

8.000E-02 9.112E-01 . *

9.000E-02 7.364E-01 . *

1.000E-01 5.951E-01 . *

1.100E-01 4.810E-01 . *

1.200E-01 3.887E-01 . *

1.300E-01 3.142E-01 . *

1.400E-01 2.539E-01 . *

1.500E-01 2.052E-01 .*

1.600E-01 1.658E-01 .*

1.700E-01 1.340E-01 .*

1.800E-01 1.083E-01 .*

1.900E-01 8.754E-02 .*

2.000E-01 7.075E-02 *

2.100E-01 5.718E-02 *

2.200E-01 4.621E-02 *

2.300E-01 3.735E-02 *

2.400E-01 3.018E-02 *

2.500E-01 2.437E-02 *

- -

92 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 50.0 100.0 150.0 200.0 250.0

ms

0.0

1.0

2.0

3.0

4.0

5.0

V v(1)

6.9. TRANSIENT ANALYSIS OF A STEADY SINUSOIDAL VOLTAGE SOURCE 93

6.9 Transient analysis of a steady sinusoidal voltage source

Circuit schematic diagram (with node numbers listed). Note how ground is defined in SPICE
as node number zero. In this example we will define a voltage source with a sinusoidal waveform, no
DC offset, 120 Volt peak amplitude, 60 Hz frequency, no start delay, and no decay (i.e. an undamped
waveform). The time-span for analysis is from t = 0 to t = 34 milliseconds, in 1 millisecond intervals:

1

0 0

1

V1 R1120 V 10 kΩ

SPICE netlist:

* SPICE circuit

v1 1 0 sin (0 120 60 0 0)

r1 1 0 10e3

.tran 1m 34m

.plot tran v(1)

.width out=80

.end

94 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

SPICE version 2G6 analysis (edited for brevity):

time v(1)

-2.000E+02 -1.000E+02 0.000E+00 1.000E+02 2.000E+02

- -

0.000E+00 0.000E+00 . . * . .

1.000E-03 4.387E+01 . . . * . .

2.000E-03 8.104E+01 . . . * . .

3.000E-03 1.071E+02* .

4.000E-03 1.181E+02 * .

5.000E-03 1.125E+02 * .

6.000E-03 9.108E+01 . . . *. .

7.000E-03 5.690E+01 . . . * . .

8.000E-03 1.473E+01 . . . * . .

9.000E-03 -2.951E+01 . . * . . .

1.000E-02 -6.961E+01 . . * . . .

1.100E-02 -9.993E+01 . * . . .

1.200E-02 -1.162E+02 . *

1.300E-02 -1.162E+02 . *

1.400E-02 -9.982E+01 . * . . .

1.500E-02 -6.945E+01 . . * . . .

1.600E-02 -2.933E+01 . . * . . .

1.700E-02 1.492E+01 . . . * . .

1.800E-02 5.707E+01 . . . * . .

1.900E-02 9.120E+01 . . . *. .

2.000E-02 1.125E+02 * .

2.100E-02 1.180E+02 * .

2.200E-02 1.070E+02* .

2.300E-02 8.091E+01 . . . * . .

2.400E-02 4.346E+01 . . . * . .

2.500E-02 -9.465E-02 . . * . .

2.600E-02 -4.363E+01 . . * . . .

2.700E-02 -8.104E+01 . . * . . .

2.800E-02 -1.071E+02 . *. . . .

2.900E-02 -1.181E+02 . *

3.000E-02 -1.125E+02 . *

3.100E-02 -9.108E+01 . .* . . .

3.200E-02 -5.690E+01 . . * . . .

3.300E-02 -1.473E+01 . . * . . .

3.400E-02 2.951E+01 . . . * . .

- -

6.9. TRANSIENT ANALYSIS OF A STEADY SINUSOIDAL VOLTAGE SOURCE 95

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

ms

-150.0

-100.0

-50.0

0.0

50.0

100.0

150.0

V v(1)

96 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

6.10 Transient analysis of a sinusoidal capacitive circuit

Circuit schematic diagram (with node numbers listed). Note how ground is defined in SPICE
as node number zero. In this example we will define a voltage source with a sinusoidal waveform, no
DC offset, 120 Volt peak amplitude, 60 Hz frequency, no start delay, and no decay (i.e. an undamped
waveform). The time-span for analysis is from t = 0 to t = 30 milliseconds, in 1 millisecond intervals:

1

0 0

V1120 V 1500 µFC1

+ −

Vamm

0 V
2

SPICE netlist:

* SPICE circuit

v1 1 0 sin (0 120 60 0 0)

c1 2 0 1500u

vamm 1 2 0

.tran 1m 30m

.plot tran v(1) i(vamm)

.width out=80

.end

6.10. TRANSIENT ANALYSIS OF A SINUSOIDAL CAPACITIVE CIRCUIT 97

SPICE version 2G6 analysis (edited for brevity):

legend:

*: v(1)

+: i(vamm)

time v(1)

(*)------------ -2.000E+02 -1.000E+02 0.000E+00 1.000E+02 2.000E+02

- -

(+)------------ -1.000E+02 -5.000E+01 0.000E+00 5.000E+01 1.000E+02

- -

0.000E+00 0.000E+00 . . x . .

1.000E-03 4.390E+01 . . . * . + .

2.000E-03 8.203E+01 . . . * + .

3.000E-03 1.080E+02 . . . + .* .

4.000E-03 1.190E+02 . . .+ . * .

5.000E-03 1.140E+02 . . + . . * .

6.000E-03 9.197E+01 . . + . *. .

7.000E-03 5.747E+01 . + . . * . .

8.000E-03 1.503E+01 . + . . * . .

9.000E-03 -2.971E+01 . + . * . . .

1.000E-02 -7.010E+01 . +. * . . .

1.100E-02 -1.012E+02 . * + . . .

1.200E-02 -1.173E+02 . * . + . . .

1.300E-02 -1.172E+02 . * . . + . .

1.400E-02 -1.012E+02 . * . + . .

1.500E-02 -7.015E+01 . . * . .+ .

1.600E-02 -2.967E+01 . . * . . + .

1.700E-02 1.501E+01 . . . * . + .

1.800E-02 5.753E+01 . . . * . + .

1.900E-02 9.189E+01 . . . +*. .

2.000E-02 1.140E+02 . . . + . * .

2.100E-02 1.191E+02 . . +. . * .

2.200E-02 1.079E+02 . . + . .* .

2.300E-02 8.205E+01 . + . * . .

2.400E-02 4.393E+01 . + . . * . .

2.500E-02 1.243E-02 . + . * . .

2.600E-02 -4.411E+01 . + . * . . .

2.700E-02 -8.174E+01 . + * . . .

2.800E-02 -1.079E+02 . *. + . . .

2.900E-02 -1.196E+02 . * . +. . .

3.000E-02 -1.141E+02 . * . . + . .

- -

98 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

ms

-150.0

-100.0

-50.0

0.0

50.0

100.0

150.0

Units v(2)i(vamm)

6.11. TRANSIENT ANALYSIS OF A DAMPED, OFFSET SINUSOIDAL VOLTAGE SOURCE99

6.11 Transient analysis of a damped, offset sinusoidal voltage
source

Circuit schematic diagram (with node numbers listed). Note how ground is defined in SPICE
as node number zero. In this example we will define a voltage source with a sinusoidal waveform, an
80 Volt DC offset, 120 Volt peak amplitude, 60 Hz frequency, no start delay, and a damping factor
of 40 s−1. The time-span for analysis is from t = 0 to t = 34 milliseconds, in 1 millisecond intervals:

1

0 0

1

V1 R1120 V 10 kΩ

SPICE netlist:

* SPICE circuit

v1 1 0 sin (80 120 60 0 40)

r1 1 0 10e3

.tran 1m 34m

.plot tran v(1)

.width out=80

.end

100 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

SPICE version 2G6 analysis (edited for brevity):

time v(1)

0.000E+00 5.000E+01 1.000E+02 1.500E+02 2.000E+02

- -

0.000E+00 8.000E+01 . . * . . .

1.000E-03 1.221E+02 . . . * . .

2.000E-03 1.552E+02* .

3.000E-03 1.759E+02 * .

4.000E-03 1.812E+02 * .

5.000E-03 1.733E+02 * .

6.000E-03 1.522E+02* .

7.000E-03 1.237E+02 . . . * . .

8.000E-03 9.098E+01 . . * . . .

9.000E-03 5.922E+01 . . * . . .

1.000E-02 3.321E+01 . *

1.100E-02 1.497E+01 . *

1.200E-02 7.632E+00 . *

1.300E-02 1.023E+01 . *

1.400E-02 2.246E+01 . *

1.500E-02 4.146E+01 . *

1.600E-02 6.426E+01 . . * . . .

1.700E-02 8.750E+01 . . * . . .

1.800E-02 1.079E+02 . . . * . .

1.900E-02 1.229E+02 . . . * . .

2.000E-02 1.311E+02 . . . * . .

2.100E-02 1.313E+02 . . . * . .

2.200E-02 1.250E+02 . . . * . .

2.300E-02 1.125E+02 . . . * . .

2.400E-02 9.691E+01 . . *. . .

2.500E-02 8.008E+01 . . * . . .

2.600E-02 6.442E+01 . . * . . .

2.700E-02 5.238E+01 . .* . . .

2.800E-02 4.469E+01 . *. . . .

2.900E-02 4.274E+01 . *

3.000E-02 4.577E+01 . *. . . .

3.100E-02 5.339E+01 . .* . . .

3.200E-02 6.399E+01 . . * . . .

3.300E-02 7.596E+01 . . * . . .

3.400E-02 8.766E+01 . . * . . .

- -

6.11. TRANSIENT ANALYSIS OF A DAMPED, OFFSET SINUSOIDAL VOLTAGE SOURCE101

NGSPICE version 26 analysis (using window-based interactive mode on Microsoft Windows 7):

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

ms

0.0

50.0

100.0

150.0

200.0

V v(1)

102 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

6.12 Additive AC voltage sources with transient analysis

Circuit schematic diagram (with node numbers listed):

0

1

2 3

0

1

4

V1

V2

4 VAC

0o phase shift

3 VAC

180o phase shift

3 VAC

0o phase shift

3 VAC

90o phase shift

R1 R2 R31 kΩ 1 kΩ 1 kΩ

1 kHz 1 kHz 1 kHz

1 kHz

000

1

SPICE netlist:

* SPICE circuit

v1 1 0 sin (0 4 1k 0 0)

v2 2 1 sin (0 3 1k 0 0)

v3 3 1 sin (0 3 1k -0.5m 0)

v4 4 1 sin (0 3 1k -0.25m 0)

r1 2 0 1k

r2 3 0 1k

r3 4 0 1k

.tran 0.05m 4m

.plot tran v(1) v(2,1) v(3,1) v(4,1)

.plot tran v(2) v(3) v(4)

.end

Here, the phase shift of each sinusoidal voltage source must be specified in terms of start delay
time. A 1000 Hertz waveform has a period of 1 millisecond, and therefore 180 degrees of phase shift
is equivalent to a start delay of 0.5 milliseconds (i.e. one-half of the 360o period) and 90 degrees of
phase shift is equivalent to a start delay of 0.25 milliseconds (i.e. one-quarter of the 360o period).
The start delay times are shown here as negative quantities because we want the phase shifts to be
leading (e.g. the V3 sinusoidal source with a start delay of −0.5 milliseconds is already at its 180
degree mark by the time our reference source V1 begins at 0 degrees.).

An important note here is that SPICE version 2G6 does not handle negative start delay time
values, but NGSPICE version 26 does. For this reason, a SPICE version 2G6 analysis is omitted.

6.12. ADDITIVE AC VOLTAGE SOURCES WITH TRANSIENT ANALYSIS 103

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ms

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

V v(2)v(3)
v(4)

The voltage at node 2 (with respect to ground, 0) is the simple sum of 4 Volts and 3 Volts
because V1 and V2 are perfectly in sync with each other, analogous to a pair of DC voltage sources
connected in series with polarities additive. The voltage at node 3 is only 1 Volt (the difference
between 4 Volts and 3 Volts) because V1 and V3 are perfectly opposed to one another, analogous to
a pair of DC voltage sources connected in series with polarities subtractive.

The voltage at node 4 has no DC analogue because here the two sources V1 and V4 are neither
directly in sync with each other nor perfectly opposed to each other – instead, these two sources are
90 degrees out of phase with each other. Their phasor sum is 5 Volts for the same reason that a
right triangle with opposite and adjacent side lengths of 4 and 3 will have a hypotenuse length of 5.

Note how the voltage at node 4 does not peak at the same times as the voltages at nodes 2 or 3
because its phase shift is not 0 degrees as with the others.

104 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

6.13 Solar cell array simulation

This simulation uses both subcircuits and semiconductor models to represent a solar (photovoltaic)
panel comprised of four individual cells. Each cell is modeled by the pvcell subcircuit, while
the four-cell series-parallel array calls on that subcircuit four times. In order to plot the array’s
voltage-current characteristic curve, we use an external current source as a controlled load (Iload)
and “sweep” the load current from zero to the full short-circuit rating of the array. In this case, with
four cells connected in series-parallel fashion we would expect an open-circuit voltage approximately
equal to two diode forward voltage drops and a short-circuit current approximately equal to two
cells’ parallel-total current:

1

3

1

2 3

0

pvcell

2 pvcell

pvcell

pvcell

pvcell

X1

X2

X3

X4

Rp

Rs

1.5 A
D1

Isc

0.01 Ω

5 Ω

Subcircuit

Iload

Four-cell array with test load

SPICE netlist:4

* SPICE circuit

x1 1 2 pvcell

x2 2 0 pvcell

x3 1 3 pvcell

x4 3 0 pvcell

iload 1 0

.subckt pvcell 1 3

rs 1 2 0.01

isc 3 2 1.5

d1 2 3 pnjunc

rp 2 3 5

.model pnjunc d is=1e-9 vj=0.65

.ends pvcell

.dc iload 0 3 0.01

.plot dc v(1)

4.plot dc statement intended to display the array’s voltage as a function of load current.

6.13. SOLAR CELL ARRAY SIMULATION 105

.end

106 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

i-sweep

0.0 0.5 1.0 1.5 2.0 2.5 3.0

V

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V v(1)

In this analysis we see the open-circuit condition represented at the far left of the graph
(maximum voltage, zero current) and the short-circuit condition represented at the far right (zero
voltage5, maximum current).

The amount of open-circuit voltage for each cell is primarily a function of the cell subcircuit’s
diode model (vj parameter defining its nominal forward-voltage drop, and is parameter defining
its saturation current). The amount of short-circuit current for each cell is primarily a function of
the cell’s current source (Isc). The slope of the voltage-current curve toward the right-hand side is
primarily a function of the cell’s internal parallel resistance (Rp).

5We actually see the voltage dip slightly below zero at a load current of 3 Amperes, because at this point Iload

is actually behaving as a source rather than a load. This demonstrates that the array’s short-circuit capability is
actually slightly less than 3 Amperes.

6.14. SOLAR PANEL ARRAY SIMULATION 107

6.14 Solar panel array simulation

This simulation uses nested subcircuits, the lowest-level subcircuit representing a single solar
(photovoltaic) cell and the next-level subcircuit representing a single panel comprised of 30 of those
cells. The top-level simulation uses five of those panels in parallel to power a test load.

1

3

pvcell

2

Rp

Rs

1.5 A
D1

Isc

0.01 Ω

5 Ω

Cell subcircuit Panel subcircuit

2

3

pvcell

pvcell

pvcell

pvcell

X1

X2

X3

X4

pvcell

pvcell

X5

X6

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

pvcell

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

pvpanel

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

1

1

pvpanelX1

1

pvpanel

1

pvpanel

1

pvpanel

1

pvpanel Iload
X2 X3 X4 X5

0 0 0 0 0

108 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

SPICE netlist:6

* SPICE circuit

x1 1 0 pvpanel

x2 1 0 pvpanel

x3 1 0 pvpanel

x4 1 0 pvpanel

x5 1 0 pvpanel

iload 1 0

*

* Panel subcircuit

.subckt pvpanel 1 31

x1 1 2 pvcell

x2 2 3 pvcell

x3 3 4 pvcell

x4 4 5 pvcell

x5 5 6 pvcell

x6 6 7 pvcell

x7 7 8 pvcell

x8 8 9 pvcell

x9 9 10 pvcell

x10 10 11 pvcell

x11 11 12 pvcell

x12 12 13 pvcell

x13 13 14 pvcell

x14 14 15 pvcell

x15 15 16 pvcell

x16 16 17 pvcell

x17 17 18 pvcell

x18 18 19 pvcell

x19 19 20 pvcell

x20 20 21 pvcell

x21 21 22 pvcell

x22 22 23 pvcell

x23 23 24 pvcell

x24 24 25 pvcell

x25 25 26 pvcell

x26 26 27 pvcell

x27 27 28 pvcell

x28 28 29 pvcell

x29 29 30 pvcell

6.plot dc statement intended to display the array’s voltage as a function of load current. Also note the addition
comments (*) inserted to visually separate and clearly label the subcircuits, so as to distinguish them from the rest
of the netlist code.

6.14. SOLAR PANEL ARRAY SIMULATION 109

x30 30 31 pvcell

.ends pvpanel

*

* Cell subcircuit

.subckt pvcell 1 3

rs 1 2 0.01

Isc 3 2 1.5

d1 2 3 pnjunc

rp 2 3 5

.model pnjunc d is=1e-9 vj=0.65

.ends pvcell

*

.dc iload 0 7.5 0.01

.plot dc v(1)

.end

110 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

i-sweep

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

V

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

V v(1)

In this analysis we see the open-circuit condition represented at the far left of the graph
(maximum voltage, zero current) and the short-circuit condition represented at the far right (zero
voltage7, maximum current).

The amount of open-circuit voltage for each cell is primarily a function of the cell subcircuit’s
diode model (vj parameter defining its nominal forward-voltage drop, and is parameter defining
its saturation current). The amount of short-circuit current for each cell is primarily a function of
the cell’s current source (Isc). The slope of the voltage-current curve toward the right-hand side is
primarily a function of the cell’s internal parallel resistance (Rp).

One of the tremendous advantages of using subcircuits in SPICE netlists is also seen when using

7We actually see the voltage dip slightly below zero at a load current of 7.5 Amperes, because at this point Iload

is actually behaving as a source rather than a load. This demonstrates that the array’s short-circuit capability is
actually slightly less than 7.5 Amperes.

6.14. SOLAR PANEL ARRAY SIMULATION 111

subroutines in a computer programming language: by relegating the specific details of each solar
cell to its own sub-set of the code, we may very easily make adjustments to that sub-set and watch
the effects of those adjustments on the larger system. Imagine if we had to build a SPICE netlist
without subcircuits, representing all 150 current sources, 150 diodes, 150 series resistors, and 150
parallel resistors! Not only would the netlist be enormous, but it would also be extremely tedious
to alter any parameter(s) common to every cell.

112 CHAPTER 6. PRIMITIVE CIRCUIT EXAMPLES

Chapter 7

Gallery

All SPICE netlists showcased in this “Gallery” have been tested on two different versions of SPICE:
SPICE version 2G6, and a modern variant of SPICE called NGSPICE (version 26 or newer). In
most cases only one of these SPICE versions is used to generate the output.

When an analysis has been noted as “edited for brevity” it means that I have deleted unnecessary
blank lines, unnecessary spaces, unnecessary characters, and all the statistical information typically
output by SPICE in order to maximize the readability of the SPICE text output. This editing is
especially important for those who wish to use the Gallery examples as practice problems (with
answers provided by SPICE) for developing manual circuit analysis skills and do not care about the
particulars of SPICE.

113

114 CHAPTER 7. GALLERY

7.1 Using gallery examples for practice

Perhaps the most obvious use of the example netlists and analyses presented in this “Gallery” chapter
is to learn how to write well-formed netlists for SPICE, and how to interpret the output generated
by SPICE simulations. In other words, you may use these examples to help you learn how to use
SPICE as a circuit simulation tool specific types of circuits.

However, this is not the only use of these examples. Students in quantitative fields of study
such as electricity and electronics benefit from having sets of worked example problems to hone and
test their burgeoning analytical skills. Textbooks commonly contain practice problems, followed by
answers (at least for some of these problems!) located in an appendix against which students may
self-check their own results. The SPICE example analyses presented in this “Gallery” chapter may
serve as the same: sample problems complete with their own answer keys. Even more, once the basic
syntax and netlist format of SPICE is mastered, students may use SPICE to generate answer keys
for circuit problems of their own making, thus freeing them from the limitations of their textbooks’
problem sets.

Here are some suggestions for using the Gallery examples as practice problems:

1. Take the given information presented in the circuit schematic diagrams (also in the
corresponding SPICE netlists) and use your analytical skills to calculate those same voltages
and/or currents that SPICE is tasked with computing. When you think you have a complete
analysis, turn to the SPICE analysis to check if your answers match.

2. Take the circuit schematic diagram and the results of the SPICE analysis as given parameters,
and then use your analytical skills to “work backwards” to one or more of the specified
component values in the SPICE netlist. For example, taking the schematic diagram and
component voltage drops, and then calculating source voltage/current from that.

3. Modify component values within a SPICE netlist and re-run the analysis to make a new
quantitative problem with different given conditions.

4. Use SPICE to predict the effects of qualitative changes by either increasing or decreasing
any one component’s value and re-running the simulation, challenging yourself beforehand to
predict all the effects of that qualitative change before letting SPICE tell you what will happen.

5. Use SPICE to predict the effects of component faults (e.g. opens and shorts) by altering
resistance values to become very large (open) or very small (short), or by inserting high
resistances in series with a component to simulate an “open” fault and low resistances in
parallel to simulate a “short” fault. As with qualitative component value changes, you will
challenging yourself beforehand to predict all the effects of that fault before letting SPICE tell
you what will happen.

7.2. RESISTOR-CAPACITOR DC CIRCUITS 115

7.2 Resistor-capacitor DC circuits

The following example analyses show resistor-capacitor (RC) circuits either energized by a DC source
or de-energizing after having been “charged” by some source. The .tran statement is used in each
SPICE netlist to perform a “transient” analysis over time, the results either being shown in a table
of numbers, an ASCII-art graph, or an actual graphic image file.

116 CHAPTER 7. GALLERY

7.2.1 One capacitor energizing from a DC voltage source

The capacitor in this circuit is set to an initial condition of zero voltage (ic=0) in order to simulate
energization from a zero-energy initial state.

Circuit schematic diagram (with node numbers listed):

1

0

R1

2

+
− V1 C1

0

79 kΩ

470 µF24 V

SPICE netlist:1

* SPICE circuit

v1 1 0 dc 24

r1 1 2 79e3

c1 2 0 470e-6 ic=0

.tran 8 150 uic

.width out=80

.plot tran v(2) i(v1)

.end

1The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 150 seconds in
8 second intervals, respecting all initial conditions set for reactive components. The .plot tran statement commands
SPICE to graph the capacitor’s voltage and the voltage source’s current over time, while the .width statement sets the
maximum width of the text display, expressed in number of text characters, from the default setting of 120 characters
wide to 80 characters wide.

7.2. RESISTOR-CAPACITOR DC CIRCUITS 117

The following is the classic “ASCII-art” graphic image style output by the .plot command in
legacy versions of SPICE such as version 2G6, intended for an era when computer terminals used
paper teletype machines for output rather than a luminescent screen with pixel-based graphical
capabilities.

SPICE version 2G6 analysis (edited for brevity):

legend:

*: v(2)

+: i(v1)

time v(2)

(*)------------ 0.000E+00 1.000E+01 2.000E+01 3.000E+01 4.000E+01

- -

(+)------------ -4.000E-04 -3.000E-04 -2.000E-04 -1.000E-04 0.000E+00

- -

0.000E+00 1.564E-05 * +. . . .

8.000E+00 4.638E+00 . * . + . . .

1.600E+01 8.403E+00 . * . + . .

2.400E+01 1.142E+01 . . * . + . .

3.200E+01 1.386E+01 . . * . + . .

4.000E+01 1.583E+01 . . * . + .

4.800E+01 1.741E+01 . . * . . + .

5.600E+01 1.869E+01 . . * . . + .

6.400E+01 1.972E+01 . . * . + .

7.200E+01 2.055E+01 . . .* . + .

8.000E+01 2.122E+01 . . . * . + .

8.800E+01 2.176E+01 . . . * . + .

9.600E+01 2.219E+01 . . . * . + .

1.040E+02 2.254E+01 . . . * . + .

1.120E+02 2.283E+01 . . . * . + .

1.200E+02 2.305E+01 . . . * . + .

1.280E+02 2.324E+01 . . . * . +.

1.360E+02 2.339E+01 . . . * . +.

1.440E+02 2.350E+01 . . . * . +.

- -

Note the two different scales used to represent these plots: one scale from 0 to 40 Volts and the
other from −0.4 milliAmperes to 0 milliAmperes. The two number columns represent time and the
first argument in the .tran statement (v(2) in this particular simulation). All current values in
this simulation are negative only because of how SPICE assumes “passive sign convention2” with

2This is a convention of assigning numerical sign to current values based on their directions in relation to voltage

118 CHAPTER 7. GALLERY

respect to DC voltage sources – this is completely normal for SPICE, and simply tells us that v1 is
operating as a source rather than as a load.

A more modern version of SPICE (here, using NGSPICE version 26) does not require the use of a
.width statement to define how wide the character field will be, since it is able to output directly to
a true graphical format file rather than print ASCII characters to a screen (or a teletype machine).

Alternative (NGSPICE only) netlist:

* NGSPICE circuit

v1 1 0 dc 24

r1 1 2 79e3

c1 2 0 470e-6 ic=0

.tran 8 150 uic

.plot tran v(2) i(v1)

.end

polarity. In passive sign convention, current is a positive value when flowing into the positive terminal and out of the
negative terminal of any component, and negative when flowing the other way. This convention defines current as
positive for loads and negative for sources.

7.2. RESISTOR-CAPACITOR DC CIRCUITS 119

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

s

-0.0

5.0

10.0

15.0

20.0

25.0

Units v(2)i(v1)

This plot was created by entering plot v(2) i(v1) at the command-line interface in NGSPICE’s
interactive mode, after loading and running the netlist with the source (filename) and run

commands in that order. Unfortunately, though, we cannot see the current plot on this graph
because the vertical range of 0 to 25.0 is too large.

120 CHAPTER 7. GALLERY

In order to show current over time, we must command NGSPICE to perform two separate plots,
one for node 2’s voltage (plot v(2)) and the other for source current (plot i(v1)).

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

s

0.0

5.0

10.0

15.0

20.0

25.0

V v(2)

time

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

s

-350.0

-300.0

-250.0

-200.0

-150.0

-100.0

-50.0

0.0

uA i(v1)

As with legacy SPICE versions such as 2G6, DC source current values are all negative following
“passive sign convention”.

7.2. RESISTOR-CAPACITOR DC CIRCUITS 121

7.2.2 One capacitor de-energizing through a resistor

The capacitor in this circuit is set to an initial condition of twelve Volts (ic=12) in order to simulate
de-energization with no other source in the circuit.

Circuit schematic diagram (with node numbers listed):

1

0

R1 C1

0

1

330 µF81 kΩ

SPICE netlist:3

* SPICE circuit

r1 1 0 81e3

c1 1 0 330e-6 ic=12

.tran 5 100 uic

.width out=80

.plot tran v(1)

.end

3The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 100 seconds in
5 second intervals, respecting all initial conditions set for reactive components. The .plot tran statement commands
SPICE to graph the capacitor’s voltage and the voltage source’s current over time, while the .width statement sets the
maximum width of the text display, expressed in number of text characters, from the default setting of 120 characters
wide to 80 characters wide.

122 CHAPTER 7. GALLERY

The following is the classic “ASCII-art” graphic image style output by the .plot command in
legacy versions of SPICE such as version 2G6, intended for an era when computer terminals used
paper teletype machines for output rather than a luminescent screen with pixel-based graphical
capabilities.

SPICE version 2G6 analysis (edited for brevity):

time v(1)

0.000E+00 5.000E+00 1.000E+01 1.500E+01 2.000E+01

- -

0.000E+00 1.200E+01 . . . * . .

5.000E+00 9.957E+00 . . * . .

1.000E+01 8.258E+00 . . * . . .

1.500E+01 6.848E+00 . . * . . .

2.000E+01 5.680E+00 . . * . . .

2.500E+01 4.710E+00 . *. . . .

3.000E+01 3.907E+00 . *

3.500E+01 3.239E+00 . *

4.000E+01 2.687E+00 . *

4.500E+01 2.228E+00 . *

5.000E+01 1.848E+00 . *

5.500E+01 1.532E+00 . *

6.000E+01 1.271E+00 . *

6.500E+01 1.054E+00 . *

7.000E+01 8.742E-01 . *

7.500E+01 7.249E-01 . *

8.000E+01 6.012E-01 . *

8.500E+01 4.986E-01 .*

9.000E+01 4.135E-01 .*

9.500E+01 3.429E-01 .*

1.000E+02 2.842E-01 .*

- -

The two number columns represent time and the voltage argument in the .tran statement (v(1)).

7.2. RESISTOR-CAPACITOR DC CIRCUITS 123

A more modern version of SPICE (here, using NGSPICE version 26) has the ability to output
graphs in true graphical file format which means we no longer have to use a .width statement to
define how wide the character field will be.

Alternative (NGSPICE only) netlist:

* NGSPICE circuit

r1 1 0 81e3

c1 1 0 330e-6 ic=12

.tran 5 100 uic

.plot tran v(1)

.end

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 20.0 40.0 60.0 80.0 100.0

s

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V v(1)

This plot was created by entering plot v(1) at the command-line interface in NGSPICE’s
interactive mode, after loading and running the netlist with the source (filename) and run

commands in that order.

124 CHAPTER 7. GALLERY

7.2.3 One capacitor energizing from a DC current source

The capacitor in this circuit is set to an initial condition of zero voltage (ic=0) in order to simulate
energization from a zero-energy initial state. Simulating series-connected capacitors and current
sources requires the insertion of an extra resistor in parallel to satisfy an idiosyncrasy of legacy
SPICE versions, namely that all current sources have a complete DC circuit path. Since SPICE
views capacitors as “opens” in DC analysis, the insertion of an extra resistor is necessary for the
source to see a complete DC circuit. This extra resistor (Rbogus) is set to a very large value so as to
have an insignificant effect on the transient analysis.

Circuit schematic diagram (with node numbers listed):

1

0

C1

0

I15 mA

1

Rbogus 999GΩ220 µF

SPICE netlist:4

* SPICE circuit

i1 0 1 dc 1.76e-3

c1 1 0 220e-6 ic=0

rbogus 1 0 999e9

.tran 0.1 2 uic

.width out=80

.plot tran v(1)

.end

4The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 2 seconds in 0.1
second intervals, respecting all initial conditions set for reactive components. The .plot tran statement commands
SPICE to graph the capacitor’s voltage and the voltage source’s current over time, while the .width statement sets the
maximum width of the text display, expressed in number of text characters, from the default setting of 120 characters
wide to 80 characters wide.

7.2. RESISTOR-CAPACITOR DC CIRCUITS 125

The following is an “ASCII-art” graphic image style output by the .plot command NGSPICE
“batch” analysis, similar to legacy versions of SPICE.

NGSPICE version 26 analysis (using batch mode, edited for brevity):

time v(1) 0.00e+00 1.00e+01 2.00e+01

----------------------|------------------------|------------------------|

0.000e+00 0.000e+00 + . .

1.000e-01 8.000e-01 .+ . .

2.000e-01 1.600e+00 . + . .

3.000e-01 2.400e+00 . + . .

4.000e-01 3.200e+00 . + . .

5.000e-01 4.000e+00 . + . .

6.000e-01 4.800e+00 . + . .

7.000e-01 5.600e+00 . + . .

8.000e-01 6.400e+00 . + . .

9.000e-01 7.200e+00 . + . .

1.000e+00 8.000e+00 . + . .

1.100e+00 8.800e+00 . + . .

1.200e+00 9.600e+00 . + . .

1.300e+00 1.040e+01 . + .

1.400e+00 1.120e+01 . . + .

1.500e+00 1.200e+01 . . + .

1.600e+00 1.280e+01 . . + .

1.700e+00 1.360e+01 . . + .

1.800e+00 1.440e+01 . . + .

1.900e+00 1.520e+01 . . + .

2.000e+00 1.600e+01 . . + .

----------------------|------------------------|------------------------|

The current source and capacitor values were chosen for this analysis to yield a linear rate of
voltage change of 8 Volts per second, according to the “Ohm’s Law” formula for a capacitor:

I = C
dV

dt

dV

dt
=

I

C
=

1.76 mA

220 µF
= 8 V/s

126 CHAPTER 7. GALLERY

Running this same5 netlist through NGSPICE in interactive mode allows us to generate a true
graphic plot of capacitor voltage over time by entering plot v(1) at the command prompt:

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

s

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

V v(1)

Again, we can clearly see the 8 Volt-per-second rate of change in this plot as in the last: 4 Volts
at 0.5 second, 8 Volts at 1 second, 16 Volts at 2 seconds, etc.

5We could omit the .width card when running this simulation in NGSPICE’s interactive mode, since the graph
will no longer be based on ASCII characters, but there is no harm in including it.

7.2. RESISTOR-CAPACITOR DC CIRCUITS 127

7.2.4 Two capacitors energizing in series

Simulating a pair of series-connected capacitors requires the insertion of an extra resistor in parallel
with one of those capacitors, to satisfy an idiosyncrasy of legacy SPICE versions, namely that all
capacitors must have a complete DC circuit path. This extra resistor (Rbogus) is set to a very large
value so as to have an insignificant effect over the timespan of the transient analysis.

Both capacitors are set to initial conditions of zero voltage (ic=0) in order to simulate energization
from a zero-energy initial state.

Circuit schematic diagram (with node numbers listed):

1

0

R1

2

3

+
− V115 V

1.5 kΩ

C1 33 µF
C2

22 µF

Rbogus

999GΩ

SPICE netlist:6

* SPICE circuit

v1 1 0 dc 15

r1 1 2 1.5e3

c1 2 3 33e-6 ic=0

c2 3 0 22e-6 ic=0

rbogus 3 0 999e9

.tran 5m 100m uic

.width out=80

.plot tran v(3) v(2,3)

.end

6The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 100 milliseconds
in 5 millisecond intervals, respecting all initial conditions set for reactive components. The two arguments within the
.plot tran statement commands SPICE to graph each of the two capacitors’ voltages over time, while the .width

statement sets the maximum width of the text display, expressed in number of text characters, from the default setting
of 120 characters wide to 80 characters wide.

128 CHAPTER 7. GALLERY

The following is the classic “ASCII-art” graphic image style output by the .plot command in
legacy versions of SPICE such as version 2G6, intended for an era when computer terminals used
paper teletype machines for output rather than a luminescent screen with pixel-based graphical
capabilities.

SPICE version 2G6 analysis (edited for brevity):

legend:

*: v(3)

+: v(2,3)

time v(3)

(*)------------ -5.000E+00 0.000E+00 5.000E+00 1.000E+01 1.500E+01

- -

(+)------------ 0.000E+00 2.000E+00 4.000E+00 6.000E+00 8.000E+00

- -

0.000E+00 9.164E-06 + * . . .

5.000E-03 2.003E+00 . + . * . . .

1.000E-02 3.565E+00 . . + * . . .

1.500E-02 4.780E+00 . . + *. . .

2.000E-02 5.721E+00 . . +. * . .

2.500E-02 6.454E+00 . . . + * . .

3.000E-02 7.022E+00 . . . +* . .

3.500E-02 7.464E+00 . . . x . .

4.000E-02 7.807E+00 . . . x . .

4.500E-02 8.074E+00 . . . *+ . .

5.000E-02 8.280E+00 . . . * + . .

5.500E-02 8.441E+00 . . . *+ . .

6.000E-02 8.566E+00 . . . * + . .

6.500E-02 8.663E+00 . . . * + . .

7.000E-02 8.738E+00 . . . * +. .

7.500E-02 8.797E+00 . . . * +. .

8.000E-02 8.842E+00 . . . * +. .

8.500E-02 8.877E+00 . . . * +. .

9.000E-02 8.905E+00 . . . * + .

9.500E-02 8.926E+00 . . . * + .

1.000E-01 8.943E+00 . . . * + .

- -

Note the two different voltage scales used to represent these capacitors’ voltages: one scale from
0 to 8 Volts and the other from −5 to 15 Volts. The two number columns represent time and the
first voltage argument in the .tran statement (v(3) in this particular simulation).

7.2. RESISTOR-CAPACITOR DC CIRCUITS 129

A more modern version of SPICE (here, using NGSPICE version 26) does not require the extra
“bogus” resistor to avoid simulation errors, and also has the ability to output graphs in true graphical
file format which means we no longer have to use a .width statement to define how wide the character
field will be.

Alternative (NGSPICE only) netlist:

* NGSPICE circuit

v1 1 0 dc 15

r1 1 2 1.5e3

c1 2 3 33e-6 ic=0

c2 3 0 22e-6 ic=0

.tran 5m 100m uic

.plot tran v(3) v(2,3)

.end

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 20.0 40.0 60.0 80.0 100.0

ms

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Units v(2,3)v(3)

This plot was created by entering plot v(3) v(2,3) at the command-line interface in

130 CHAPTER 7. GALLERY

NGSPICE’s interactive mode, after loading and running the netlist with the source (filename)
and run commands in that order.

7.2. RESISTOR-CAPACITOR DC CIRCUITS 131

7.2.5 Pre-charged capacitor energizing to a greater voltage

Here we will see what happens when we take a capacitor that is already energized up to a certain
amount of voltage, and connect it to a higher-valued source so that the capacitor charges up even
more. We will use the initial condition (ic) parameter to specify the capacitor’s pre-charged voltage
level.

Circuit schematic diagram (with node numbers listed):

1

0

R1

2

+
− V1 C1

0

Initial voltage = 7 V

22 µF

2.7 kΩ

18 V

SPICE netlist:7

* SPICE circuit

v1 1 0 dc 18

r1 1 2 2.7e3

c1 2 0 22e-6 ic=7

.tran 5m 150m uic

.width out=80

.plot tran v(2)

.end

7The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 150 milliseconds
in 5 millisecond intervals, respecting all initial conditions set for reactive components. The argument within the .plot
tran statement commands SPICE to graph the capacitor’s voltage over time, while the .width statement sets the
maximum width of the text display, expressed in number of text characters, from the default setting of 120 characters
wide to 80 characters wide.

132 CHAPTER 7. GALLERY

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

ms

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

V v(2)

This plot was created by entering plot v(2) at the command-line interface in NGSPICE’s
interactive mode, after loading and running the netlist with the source (filename) and run

commands in that order.

If you try to hand-calculate the capacitor’s voltage at any specific time using the following inverse-
exponential growth formula, it will fail because it does not account for the 7 Volt initial condition
at time zero:

VC 6= 18(1− e−
t

τ)

It is important to realize that the 1−e−
t

τ term expresses how far the capacitor voltage will climb
in time t as a proportion of the difference between where the capacitor voltage started and where it
will (eventually) end. The proper setup of this formula is as follows:

VC = (18− 7)(1− e−
t

τ) + 7

The (18−7)(1−e−
t

τ) term properly calculates how much of the 11 Volts the capacitor has gained
at time t, to which we must add the starting voltage of 7 Volts to arrive at the actual capacitor
voltage at time t.

7.2. RESISTOR-CAPACITOR DC CIRCUITS 133

7.2.6 Pre-charged capacitor de-energizing to a non-zero voltage

Here we will see what happens when we take a capacitor that is energized a level of voltage greater
than a constant source, and then connect it to that source. The capacitor’s voltage will decrease
over time, of course, but not all the way to zero.

Circuit schematic diagram (with node numbers listed):

1

0

R1

2

+
− V1 C1

0

Initial voltage = 7 V

22 µF

2.7 kΩ

3 V

SPICE netlist:8

* SPICE circuit

v1 1 0 dc 3

r1 1 2 2.7e3

c1 2 0 22e-6 ic=7

.tran 5m 150m uic

.width out=80

.plot tran v(2)

.end

8The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 150 milliseconds
in 5 millisecond intervals, respecting all initial conditions set for reactive components. The argument within the .plot
tran statement commands SPICE to graph the capacitor’s voltage over time, while the .width statement sets the
maximum width of the text display, expressed in number of text characters, from the default setting of 120 characters
wide to 80 characters wide.

134 CHAPTER 7. GALLERY

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

ms

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

V v(2)

This plot was created by entering plot v(2) at the command-line interface in NGSPICE’s
interactive mode, after loading and running the netlist with the source (filename) and run

commands in that order.

If you try to hand-calculate the capacitor’s voltage at any specific time using the following inverse-
exponential growth formula, it will fail because it does not account for the 3 Volt final voltage after
infinite time:

VC 6= 7e−
t

τ

It is important to realize that the e−
t

τ term expresses how far the capacitor voltage will fall in
time t as a proportion of the difference between where the capacitor voltage started and where it
will (eventually) end. The proper setup of this formula is as follows:

VC = (7− 3)(e−
t

τ) + 3

The (7−3)(1− e−
t

τ) term properly calculates how much of the 4 Volts (above the source voltage
value) the capacitor has retained at time t, to which we must add the final voltage of 3 Volts to
arrive at the actual capacitor voltage at time t.

7.2. RESISTOR-CAPACITOR DC CIRCUITS 135

7.2.7 One capacitor energizing from a voltage divider

The capacitor in this circuit is set to an initial condition of zero voltage (ic=0) in order to simulate
energization from a zero-energy initial state.

Circuit schematic diagram (with node numbers listed):

1

0

R1

2+
−V1

C1

0

R2

2

150 µF

5 kΩ

5 kΩ

12 V

SPICE netlist:9

* SPICE circuit

v1 1 0 dc 12

r1 1 2 5k

r2 2 0 5k

c1 2 0 150u ic=0

.tran 0.01 1 uic

.width out=80

.plot tran v(2)

.end

9The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 1 second in 0.01
second intervals, respecting all initial conditions set for reactive components. The .plot tran statement commands
SPICE to graph the capacitor’s voltage and the voltage source’s current over time, while the .width statement sets the
maximum width of the text display, expressed in number of text characters, from the default setting of 120 characters
wide to 80 characters wide.

136 CHAPTER 7. GALLERY

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

s

0.0

1.0

2.0

3.0

4.0

5.0

6.0

V v(2)

7.2. RESISTOR-CAPACITOR DC CIRCUITS 137

This circuit may be analyzed using Thévenin’s Theorem, substituting a 6 Volt source and 2.5 kΩ
series resistor for the 12 Volt source and dual 5 kΩ resistor network:

1

0

R1

+
−V1 C1

0

2

150 µF6 V
2.5 kΩ

* SPICE circuit

v1 1 0 dc 6

r1 1 2 2.5k

c1 2 0 150u ic=0

.tran 0.01 1 uic

.width out=80

.plot tran v(2)

.end

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

s

0.0

1.0

2.0

3.0

4.0

5.0

6.0

V v(2)

As you can see, the results are identical.

138 CHAPTER 7. GALLERY

7.3 555 timer circuits

7.3.1 Introduction to the 555 timer IC

The model 555 timer is a very popular semiconductor integrated circuit (IC) used for a wide range
of purposes, including oscillator and one-shot circuits. It functions on the basis of an internal latch
that switches state based on analog input voltages, the switching threshold values being 1

3
Vsupply

and 2

3
Vsupply. Specifically, the latching logic switches to the “Charge” state whenever the Trigger

terminal senses a voltage less than 1

3
Vsupply and switches to the “Discharge” state whenever the

Threshold terminal senses a voltage greater than 2

3
Vsupply. An internal transistor switch connected

between the Discharge terminal and Ground offers a path to de-energize an energized (external)
capacitor.

1 2 3 4

5678

Dual-Inline Package
(DIP)

Ground

Out

VCC

Discharge

Trigger

Threshold

Control

Reset

555

1

2

3

4

5

6

7

8

Logic

All the circuitry internal to a 555 timer IC is useful for building simple resistor-capacitor timing
circuits with a minimum of external components. The 555’s internal logic circuitry does all the
voltage-comparison and state-latching necessary for determining whether the connected capacitor
needs to discharge or needs to charge, while the internal “Discharge” transistor acts as an on/off
switch for actually discharging the capacitor we connect to it. An Output terminal provides a signal
representing these “Charge” and “Discharge” states, the two internal transistors connected to the
Output terminal turning on and off (always opposite of one another) to either source current to
an external load (in the “Charge” state) or sink current from an external load (in the “Discharge”
state).

7.3. 555 TIMER CIRCUITS 139

Most students of electronics, when first exploring the functionality of the 555 timer IC, initially
use it to repeatedly turn an LED on and off. This is called the astable mode of the timer, since this
circuit is neither stable in its “Charge” mode nor in its “Discharge” mode. An example schematic
for such an astable circuit is shown below:

Ground

Out

VCC

Discharge

Trigger

Threshold

Control

Reset

555

Logic

+
−VCC

R1

R2

R3

C1
LED

Classic "astable" 555 timer circuit

(blinks on and off!)

Alternatively, a 555 timer may be re-configured via connection of external components to become
a monostable timing circuit, which means it will temporarily assume one mode of operation (i.e.
Charging) but then revert back to its other mode (Discharging) and remain in that state until
prompted to switch states again by an external signal.

555 timer ICs are rather compact devices, one shown in the photograph below (encased as a “DIP”
style IC package) soldered into a printed circuit board (PCB) next to an electrolytic capacitor:

It should be clear from this photograph alone the major advantage of “integrating” a large number
of transistors and other components onto a single wafer of silicon material, and then encapsulating
that material in a plastic body with metal pins for connecting to external components. Such
integrated circuits (ICs) make construction of complex electronic systems much simpler and more
reliable than if we had to construct them entirely from individual (“discrete”) components.

140 CHAPTER 7. GALLERY

7.3.2 Basic astable operation

In the next two diagrams we see a 555 timer functioning as a simple relaxation oscillator, with all
the necessary external components and connections. A graph showing the capacitor’s “sawtooth”
voltage waveform over time, with time markers (t) for each state of the 555 timer circuit, demonstrate
the operation of this oscillator:

Ground

Out

VCC

Discharge

Trigger

Threshold

Control

Reset

555

Logic

+
−

R

C

VCC

Time

VCC

Vthresh

Vtrig

t

ON

VC increasing

Ground

Out

VCC

Discharge

Trigger

Threshold

Control

Reset

555

Logic

+
−

R

C

VCC

Time

VCC

Vthresh

Vtrig

t

ONVC decreasing ON

Note how the 555 timer’s Output terminal gets connected to the positive pole of the DC source
by the “ON” transistor during the time period when the capacitor absorbs energy and its voltage
increases, and how that same Output terminal gets connected to the negative pole of the source by
the other “ON” transistor when the capacitor releases energy and its voltage decreases.

7.3. 555 TIMER CIRCUITS 141

Modern versions of SPICE offer a voltage-controlled switch element which may be used to simulate
the “discharge” transistor and latching logic of a 555 timer. The following equivalent schematic
diagram and netlist show how this may be done:

Ground

Discharge

Trigger

Threshold

+
−

1

0 0

2

R1

C1

V1 12 V

4.7 kΩ

2200 µF
Voltage-controlled

switchS1

555 timer

* 555 timer (crude astable) simulation

V1 1 0 dc 12

r1 1 2 4.7k

c1 2 0 2200u ic=0

s1 2 0 2 0 switch off

.tran 0.01 40 uic

.model switch sw ron=10 roff=999e6 vt=6 vh=2

.plot tran v(2)

.end

Switches are a class of components within SPICE which must be modeled. A separate .model

card specifies operating characteristics of the switch, and if our netlist contained multiple switches
of the type switch they would all obey the same rules defined in that model. This example netlist
shows a voltage-controlled switch connected between nodes 2 and 0, controlled by voltage between
terminals 2 and 0, starting in the “off” state, and following all the parameters of the switch model:
an “on” resistance of 10 Ω, an “off” resistance of 999 MΩ, a threshold voltage of 6 Volts, and a
hysteresis10 of 2 Volts.

10Hysteresis refers to a range over which no action takes place. In this case, a threshold voltage of 6 Volts with a
hysteresis of 2 Volts means the turn-on and turn-off voltage values for this voltage-controlled switch are 6 Volts ± 2
Volts, which is 8 Volts to turn “on” and 4 Volts to turn “off”. These values were chosen to correspond to 1

3
and 2

3
of

this circuit’s 12 Volt power supply.

142 CHAPTER 7. GALLERY

Running this simulation in NGSPICE version 26 produces the following result:

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

s

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

V v(2)

The extremely steep descent taken by the capacitor voltage from 8 Volts down to 4 Volts is due
to the low “on” resistance of the switch forming a negligibly short time constant value:

τ = RC = (10 Ω)(2200 µF) = 0.022 seconds

7.3. 555 TIMER CIRCUITS 143

7.3.3 555 timer in classic astable operation

This circuit utilizes two resistors, two to energize the capacitor and one to de-energize it. As usual,
the capacitor is set to an initial condition of zero voltage (ic=0) and the switch is set to initially be
“off”.

Circuit schematic diagram (with node numbers listed):

Ground

Discharge

Trigger

Threshold

+
−

1

0 0

2

R1

C1

V1 12 V

Voltage-controlled
switchS1

R2 2.2 kΩ

3.3 kΩ

1000 µF

3

555 timer

SPICE netlist:11

* 555 timer (astable) simulation

V1 1 0 dc 12

r1 1 2 3.3k

r2 2 3 2.2k

c1 3 0 1000u ic=0

s1 2 0 3 0 switch off

.tran 0.1 20 uic

.model switch sw ron=10 roff=999e6 vt=6 vh=2

.plot tran v(2)

.end

11The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 20 seconds in 0.1
second intervals, respecting all initial conditions set for reactive components. The .plot tran statement commands
SPICE to graph the capacitor’s voltage over time.

144 CHAPTER 7. GALLERY

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

s

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

V v(3)

When configured this way, the 555 timer exhibits charge and discharge times described by the
following formulae. Note how the “charge” time is longer than the “discharge” time because the
capacitor’s charging current is limited by two series resistors while its discharging current is only
limited by one:

tcharge = 0.693(R1 +R2)C tdischarge = 0.693R2C

In order to understand why these formulae are true, it is important to remember that the 555
timer switches between its “charge” and “discharge” modes at 2

3
and 1

3
supply voltage (e.g. 8 Volts

and 4 Volts in this example where the supply voltage is 12 Volts). A decrease in capacitor voltage
from 8 Volts down to 4 Volts is exactly half-way (50%) of its initial voltage value compared to zero
which is how low the capacitor’s voltage would fall if not interrupted by the 555 timer, and if you
take the inverse-exponential formula and solve for the amount of time it takes for a value to go
half-way from its initial value to its ultimate (final) value the answer will always be 0.693τ .

7.3. 555 TIMER CIRCUITS 145

Total time for each complete cycle of the capacitor’s voltage is called the period of the signal,
and is equal to the sum of charge and discharge times:

tperiod = 0.693(R1 +R2)C + 0.693R2C = 0.693(R1 + 2R2)C

Frequency is the reciprocal of any oscillating signal’s period, being the number of complete
charge/discharge cycles per second, “cycles per second” being expressed in the unit of Hertz :

f =
1.44

(R1 + 2R2)C

146 CHAPTER 7. GALLERY

7.4 Resistor-inductor DC circuits

The following example analyses show resistor-inductor (RL) circuits either energized by a DC source
or de-energizing after having been “charged” by some source. The .tran statement is used in each
SPICE netlist to perform a “transient” analysis over time, the results either being shown in a table
of numbers, an ASCII-art graph, or an actual graphic image file.

7.4. RESISTOR-INDUCTOR DC CIRCUITS 147

7.4.1 One inductor energizing from a DC voltage source

The inductor in this circuit is set to an initial condition of zero current (ic=0) in order to simulate
energization from a zero-energy initial state.

Circuit schematic diagram (with node numbers listed):

1

0 0

+
− L1

2

V15 V

1.5 kΩ

R1

250 mH

SPICE netlist:12

* SPICE circuit

v1 1 0 dc 5

r1 1 2 1.5e3

l1 2 0 250e-3 ic=0

.tran 0.02e-3 0.5e-3 uic

.width out=80

.plot tran v(2)

.end

12The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 0.5 milliseconds
in 0.02 millisecond intervals, respecting all initial conditions set for reactive components. The .plot tran statement
commands SPICE to graph the inductor’s voltage over time, while the .width statement sets the maximum width
of the text display, expressed in number of text characters, from the default setting of 120 characters wide to 80
characters wide.

148 CHAPTER 7. GALLERY

The following is an “ASCII-art” graphic image style output by the .plot command NGSPICE
“batch” analysis, similar to legacy versions of SPICE.

NGSPICE version 26 analysis (using batch mode, edited for brevity):

time v(2) 0.00e+00 1.00e+00 2.00e+00 3.00e+00 4.00e+00 5.00e+00

----------------------|---------|---------|---------|---------|---------|

0.000e+00 0.000e+00 +

2.000e-05 4.435e+00 + .

4.000e-05 3.935e+00 +. .

6.000e-05 3.490e+00 + . .

8.000e-05 3.095e+00 . . . + . .

1.000e-04 2.745e+00 . . . + . . .

1.200e-04 2.434e+00 . . . + . . .

1.400e-04 2.159e+00 . . .+ . . .

1.600e-04 1.915e+00 . . +. . . .

1.800e-04 1.698e+00 . . +

2.000e-04 1.506e+00 . . +

2.200e-04 1.336e+00 . . +

2.400e-04 1.185e+00 . .+

2.600e-04 1.051e+00 . +

2.800e-04 9.319e-01 . +.

3.000e-04 8.265e-01 . +

3.200e-04 7.330e-01 . +

3.400e-04 6.501e-01 . +

3.600e-04 5.765e-01 . +

3.800e-04 5.113e-01 . +

4.000e-04 4.535e-01 . +

4.200e-04 4.022e-01 . +

4.400e-04 3.567e-01 . +

4.600e-04 3.164e-01 . +

4.800e-04 2.806e-01 . +

5.000e-04 2.487e-01 . +

----------------------|---------|---------|---------|---------|---------|

As we would expect, the inductor begins with the source’s full 5 Volts dropped across it as
the initial current value of zero allows no voltage across the resistor. In other words, the inductor
initially acts as an “open circuit”. However, as time goes on, current increases and the inductor’s
magnetic field grows in strength.

7.4. RESISTOR-INDUCTOR DC CIRCUITS 149

Running this same13 netlist through NGSPICE in interactive mode allows us to generate a true
graphic plot of inductor voltage over time by entering plot v(2) at the command prompt:

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 100.0 200.0 300.0 400.0 500.0

us

0.0

1.0

2.0

3.0

4.0

5.0

V v(2)

13We could omit the .width card when running this simulation in NGSPICE’s interactive mode, since the graph
will no longer be based on ASCII characters, but there is no harm in including it.

150 CHAPTER 7. GALLERY

7.4.2 One inductor de-energizing through a resistor

The inductor in this circuit is set to an initial condition of 35 milliAmperes (ic=35e-3) in order to
simulate de-energization with no other source in the circuit.

Circuit schematic diagram (with node numbers listed):

1

0 0

L1R1

1

0.75 H2.2 kΩ

SPICE netlist:14

* SPICE circuit

r1 1 0 2.2e3

l1 1 0 0.75 ic=35e-3

.tran 0.05m 1m uic

.width out=80

.plot tran v(1)

.end

14The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 1 millisecond
in 0.05 millisecond intervals, respecting all initial conditions set for reactive components. The .plot tran statement
commands SPICE to graph the inductor’s voltage over time, while the .width statement sets the maximum width
of the text display, expressed in number of text characters, from the default setting of 120 characters wide to 80
characters wide.

7.4. RESISTOR-INDUCTOR DC CIRCUITS 151

The following is an “ASCII-art” graphic image style output by the .plot command NGSPICE
“batch” analysis, similar to legacy versions of SPICE.

NGSPICE version 26 analysis (using batch mode, edited for brevity):

time v(1) -8.00e+01 -6.00e+01 -4.00e+01 -2.00e+01 0.00e+00

----------------------|-----------|-----------|-----------|-----------|

0.000e+00 0.000e+00 +

5.000e-05 -6.649e+01 . +

1.000e-04 -5.742e+01 . .+ . . .

1.500e-04 -4.961e+01 . . + . . .

2.000e-04 -4.282e+01 . . + . . .

2.500e-04 -3.699e+01 . . .+ . .

3.000e-04 -3.193e+01 . . . + . .

3.500e-04 -2.759e+01 . . . + . .

4.000e-04 -2.381e+01 . . . + . .

4.500e-04 -2.057e+01 . . . +. .

5.000e-04 -1.776e+01+ .

5.500e-04 -1.534e+01 + .

6.000e-04 -1.324e+01 + .

6.500e-04 -1.144e+01 + .

7.000e-04 -9.874e+00 + .

7.500e-04 -8.531e+00 + .

8.000e-04 -7.363e+00 + .

8.500e-04 -6.361e+00 + .

9.000e-04 -5.491e+00 + .

9.500e-04 -4.744e+00 + .

1.000e-03 -4.095e+00 + .

----------------------|-----------|-----------|-----------|-----------|

At the first analysis interval we see the inductor output a strong negative voltage as it forces
its initial current value through the resistor. Theory would predict an initial drop of −77 Volts
(V = IR = (35 mA)(2.2 kΩ)), but by the time the first 0.05 millisecond interval has passed the
voltage has already decayed a bit. As time progresses and the resistor dissipates the inductor’s
stored energy, the voltage decreases asymptotically toward zero. The reason for the negative voltage
is rooted in how SPICE assumes initial current direction, down from node 1 to node 0 through the
inductor, which incidentally is how current would flow had we initially energized the inductor from a
source with positive on node 1 and negative on node 0: as soon as the energizing source is removed,
the inductor switches from load to source and its voltage polarity switches as well. What would have
registered as a positive voltage (with the external source connected to the inductor) now displays as
negative once the inductor transitions from functioning as a load to functioning as a source.

152 CHAPTER 7. GALLERY

Running this same15 netlist through NGSPICE in interactive mode allows us to generate a true
graphic plot of inductor voltage over time by entering plot v(1) at the command prompt:

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ms

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

V v(1)

Here we see a distinct advantage of the true graphic plot over the ASCII-art version, in allowing
us to see more clearly the initial voltage dropped across the inductor near time zero. This last graph
is not limited to the increments specified in the .tran card, and so we see the voltage begins around
−77 Volts as predicted by theory, not −66.49 Volts as shown at the 0.05 millisecond mark in the
ASCII-style graph.

15We could omit the .width card when running this simulation in NGSPICE’s interactive mode, since the graph
will no longer be based on ASCII characters, but there is no harm in including it.

7.4. RESISTOR-INDUCTOR DC CIRCUITS 153

7.4.3 Another inductor energizing from a DC voltage source

The inductor in this circuit is set to an initial condition of zero current (ic=0) in order to simulate
energization from a zero-energy initial state. Simulating parallel-connected inductors and voltage
sources requires the insertion of an extra resistor in series to satisfy an idiosyncrasy of legacy SPICE
versions, namely that no voltage source be subjected to a short circuit. Since SPICE views inductors
as “shorts” in DC analysis, the insertion of an extra resistor is necessary to avoid short-circuiting the
voltage source. This extra resistor (Rbogus) is set to a very small value so as to have an insignificant
effect on the transient analysis.

Circuit schematic diagram (with node numbers listed):

1

0 0

Rbogus

+
− V1 L1

2
1 mΩ

5 H15 V

SPICE netlist:16

* SPICE circuit

v1 1 0 dc 15

rbogus 1 2 1m

l1 2 0 5

.tran 0.1 2 uic

.width out=80

.plot tran i(v1)

.end

16The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 2 seconds in 0.1
second intervals, respecting all initial conditions set for reactive components. The .plot tran statement commands
SPICE to graph the voltage source’s current over time, while the .width statement sets the maximum width of the
text display, expressed in number of text characters, from the default setting of 120 characters wide to 80 characters
wide. The reason we chose to plot voltage source current rather than inductor current is for compatibility with
legacy versions of SPICE, which could only display current through voltage sources and not through any other type
of component.

154 CHAPTER 7. GALLERY

The following is an “ASCII-art” graphic image style output by the .plot command NGSPICE
“batch” analysis, similar to legacy versions of SPICE.

NGSPICE version 26 analysis (using batch mode, edited for brevity):

time v1#branc-6.00e+0-5.00e+0-4.00e+0-3.00e+0-2.00e+0-1.00e+000.00e+00

----------------------|-------|-------|-------|-------|-------|-------|

0.000e+00 0.000e+00 +

1.000e-01 -3.000e-01 + .

2.000e-01 -6.000e-01 + .

3.000e-01 -9.000e-01 + .

4.000e-01 -1.200e+00 + . .

5.000e-01 -1.500e+00 + . .

6.000e-01 -1.800e+00+ . .

7.000e-01 -2.100e+00 +. . .

8.000e-01 -2.400e+00 + . . .

9.000e-01 -2.700e+00 + . . .

1.000e+00 -3.000e+00 . . . + . . .

1.100e+00 -3.300e+00 . . . +

1.200e+00 -3.600e+00 . . . +

1.300e+00 -3.899e+00 . . +

1.400e+00 -4.199e+00 . . +

1.500e+00 -4.499e+00 . . +

1.600e+00 -4.799e+00 . .+

1.700e+00 -5.099e+00 . +.

1.800e+00 -5.399e+00 . +

1.900e+00 -5.699e+00 . +

2.000e+00 -5.999e+00 +

----------------------|-------|-------|-------|-------|-------|-------|

The voltage source and inductor values were chosen for this analysis to yield a linear rate of
current rise of 3 Amperes per second, according to the “Ohm’s Law” formula for an inductor:

V = L
dI

dt

dI

dt
=

V

L
=

15 V

5 H
= 3 A/s

7.4. RESISTOR-INDUCTOR DC CIRCUITS 155

Running this same17 netlist through NGSPICE in interactive mode allows us to generate a true
graphic plot of source current over time by entering plot i(v1) at the command prompt:

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

s

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

A i(v1)

Again, we can clearly see the 3 Ampere-per-second rate of change in this plot as in the last:
−1.5 Amperes at 0.5 second, −3 Amperes at 1 second, −6 Amperes at 2 seconds, etc. The reason
these current values are negative is because SPICE assumes passive sign convention for current
flowing through all voltage sources. The voltage source here is actually behaving as a source
(to the inductor’s load), and this means SPICE assigns to its current a negative value because
loads (“passive” components) are assumed to have positive current values while sources (“active”
components) are assumed to have negative current values.

17We could omit the .width card when running this simulation in NGSPICE’s interactive mode, since the graph
will no longer be based on ASCII characters, but there is no harm in including it.

156 CHAPTER 7. GALLERY

Modern versions of SPICE such as NGSPICE v26 permit the printing and plotting of current
through more than just voltage sources. By issuing the command plot i(l1) at the interactive
prompt, we may instruct NGSPICE to show us the current through the inductor itself:

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

s

0.0

1.0

2.0

3.0

4.0

5.0

6.0

A i(l1)

Following passive sign convention, this current appears as a positive value because the inductor
is functioning as a load (i.e. a “passive” component).

7.4. RESISTOR-INDUCTOR DC CIRCUITS 157

7.4.4 Two inductors energizing in series

Both inductors are set to initial conditions of zero current (ic=0) in order to simulate energization
from a zero-energy initial state.

Circuit schematic diagram (with node numbers listed):

1

0

R1

2

3

+
− V1 L1

L2

50 mH

75 mH

470 Ω

3 V

SPICE netlist:18

* SPICE circuit

v1 1 0 3

r1 1 2 470

l1 2 3 50m ic=0

l2 3 0 75m ic=0

.tran 0.05m 1m uic

.width out=80

.plot tran v(2,3) v(3)

.end

18The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 1 millisecond
in 0.05 millisecond intervals, respecting all initial conditions set for reactive components. The two arguments within
the .plot tran statement commands SPICE to graph each of the two inductors’ voltages over time, while the .width

statement sets the maximum width of the text display, expressed in number of text characters, from the default setting
of 120 characters wide to 80 characters wide.

158 CHAPTER 7. GALLERY

The following is the classic “ASCII-art” graphic image style output by the .plot command in
legacy versions of SPICE such as version 2G6, intended for an era when computer terminals used
paper teletype machines for output rather than a luminescent screen with pixel-based graphical
capabilities.

SPICE version 2G6 analysis (edited for brevity):

*: v(2,3)

+: v(3)

time v(2,3)

(*+)---------- 0.000E+00 5.000E-01 1.000E+00 1.500E+00 2.000E+00

- -

0.000E+00 1.200E+00 . . . * . + .

5.000E-05 9.948E-01 . . * + .

1.000E-04 8.243E-01 . . * . + . .

1.500E-04 6.829E-01 . . * .+ . .

2.000E-04 5.659E-01 . . * + . . .

2.500E-04 4.688E-01 . *. + . . .

3.000E-04 3.884E-01 . * . + . . .

3.500E-04 3.218E-01 . * + . . .

4.000E-04 2.667E-01 . * +

4.500E-04 2.209E-01 . * +

5.000E-04 1.831E-01 . * +

5.500E-04 1.517E-01 . * +

6.000E-04 1.257E-01 . *+

6.500E-04 1.041E-01 . *+

7.000E-04 8.627E-02 . * +

7.500E-04 7.147E-02 . *+

8.000E-04 5.922E-02 . x

8.500E-04 4.906E-02 .*+

9.000E-04 4.065E-02 .*+

9.500E-04 3.368E-02 .x

1.000E-03 2.789E-02 .x

- -

In this analysis both inductor voltages map well to a common scale of 0 to 2 Volts. The two
number columns represent time and the first voltage argument in the .tran statement (v(2,3) in
this particular simulation). Note how SPICE uses “x” characters where the two plots overlap.

7.4. RESISTOR-INDUCTOR DC CIRCUITS 159

A more modern version of SPICE (here, using NGSPICE version 26) has the ability to output
graphs in true graphical file format:

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ms

0.0

0.5

1.0

1.5

2.0

Units v(2,3)v(3)

This plot was created by entering plot v(2,3) v(3) at the command-line interface in
NGSPICE’s interactive mode, after loading and running the netlist with the source (filename)
and run commands in that order.

Not surprisingly, we see the larger inductor drop more voltage than the smaller inductor, as both
inductors’ voltages asymptotically approach zero over time. This makes sense if we consider the
“Ohm’s Law” formula for an inductor:

V = L
dI

dt

These two inductors are connected in series with each other, which means they must experience
the exact same current (I). If their currents are identical, then so must be the rate of current change
over time (dI

dt
), and therefore we would expect the voltage dropped across each inductor at any

particular moment in time to be proportional to the inductance (L).

160 CHAPTER 7. GALLERY

7.4.5 Resistor-inductor energized by a square wave

The inductor is set to an initial condition of zero current (ic=0) in order to simulate energization
from a zero-energy initial state. The “pulse” waveform is a square wave19 oscillating between 0 and
5 Volts with a period of 10 milliseconds, having negligible rise and fall times of 1 microsecond each:

Circuit schematic diagram (with node numbers listed):

1

0

R1

2

V1 L1

0

2 H

270 Ω

100 Hz
5 V

SPICE netlist:20

* SPICE circuit

V1 1 0 pulse(0 5 0 1u 1u 5m 10m)

r1 1 2 270

l1 2 0 2 ic=0

.tran 0.5m 30m uic

.plot tran v(2)

.end

19The fact that this pulse waveform is square is defined by the fact it has a 5 millisecond pulse duration and a 10
millisecond period, which means half the time it’s 5 Volts and the other half of the time it’s 0 Volts.

20The .tran (“transient” analysis) statement instructs SPICE to analyze this circuit over a span of 30 milliseconds
in 0.5 millisecond intervals, respecting all initial conditions set for reactive components. The argument within the
.plot tran statement commands SPICE to graph the inductor’s voltage over time.

7.4. RESISTOR-INDUCTOR DC CIRCUITS 161

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

time

0.0 5.0 10.0 15.0 20.0 25.0 30.0

ms

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

V v(2)

This plot was created by entering plot v(2) at the command-line interface in NGSPICE’s
interactive mode, after loading and running the netlist with the source (filename) and run

commands in that order.
The initial rising edge of the pulse voltage source applies a full 5 Volts across the fully de-energized

inductor as expected, and over the course of the next 5 milliseconds the inductor’s voltage decays
toward zero. However, this decay is cut short by the pulse source returning to zero Volts. Given this

circuit’s time constant (τ = L
R

= 2 H
270 Ω

= 7.407 ms), the 5 millisecond time duration of the pulse
only allows the voltage to decay to just under 51% of its initial value:

V = V0e
− t

τ = 5 Ve−
5

7.407 = 2.546 V

At the start of the 5 millisecond mark, the inductor drops 2.546 Volts and the resistor drops the
remainder (2.454 Volts). When the pulse source switches to 0 Volts at the end of the 5 millisecond
mark, the inductor’s stored energy momentarily maintains the same current in the circuit, which
maintains the same 2.454 Volt drop across the resistor, which means the inductor’s voltage must
suddenly switch to −2.454 Volts in order to satisfy Kirchhoff’s Voltage Law.

During the next 5 milliseconds, the inductor’s voltage once again decays toward zero (starting
from −2.454 Volts), but it only reaches −1.296 Volts when the pulse source switches again and cuts
the decay short. At the start of the 10 millisecond mark, the inductor drops −1.296 Volts while

162 CHAPTER 7. GALLERY

the resistor drops 1.296 Volts. When the pulse source switches again to output 5 Volts at the end
of the 10 millisecond mark, the inductor momentarily maintains the old current value, which keeps
the resistor’s voltage at 1.296 Volts, which means the inductor’s voltage must suddenly jump up to
3.703 Volts to make up the difference once again in accordance with Kirchhoff’s Voltage Law.

7.4. RESISTOR-INDUCTOR DC CIRCUITS 163

During the next 5 milliseconds, the inductor’s voltage decays toward zero once again, reaching
1.886 at the start of the 15 millisecond mark. At this point the trend should become clear: each
successive “down” cycle of the pulse drives the inductor’s peak voltage further negative, and each
successive “up” cycle drives the inductor’s peak voltage less positive, until there will be a point
where the two peaks are symmetrical. Revising the netlist to run a longer simulation shows this to
be true:

* SPICE circuit

V1 1 0 pulse(0 5 0 1u 1u 5m 10m)

r1 1 2 270

l1 2 0 2 ic=0

.tran 0.5m 70m uic

.plot tran v(2)

.end

time

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

ms

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

V v(2)

164 CHAPTER 7. GALLERY

7.5 Transformer circuits

Transformers in SPICE are simulated by sets of inductors coupled together by a “K” factor, where
K = 1 is perfect21 magnetic coupling. Since each winding is specified as its own inductor rather
than the transformer specified as one component, turns ratios must be established by setting the
inductance ratios between inductors, with inductance ratio equal to the square of the turns ratio
(since inductance is proportional to the square of the number of turns in a coil, all other factors
being equal).

Also, you will need to insert some amount of resistance in series between any voltage source and
any inductor, because SPICE cannot tolerate a voltage source/inductor loop since it performs DC
analysis with the assumption that inductors act as shorts, and this would lead to a voltage source
being shorted.

21SPICE cannot model perfect coupling, and so we usually set K at some value arbitrarily close to unity, such as
0.999.

7.5. TRANSFORMER CIRCUITS 165

7.5.1 Basic step-down power transformer

Circuit schematic diagram (with node numbers listed):

480 VAC

4:1 turns ratio

32 H 2 H 50 Ω

+ − + −

Vamm1 Vamm2

0

1
3 42

5

L1 L2
V1 Rload

60 Hz

0

Rdummy

0.01 Ω

SPICE netlist:22

* SPICE circuit

v1 1 0 ac 480

rdummy 1 2 0.01

vamm1 2 3 0

vamm2 4 5 0

l1 3 0 32

l2 4 0 2

k1 l1 l2 0.999

rload 5 0 50

.ac lin 1 60 60

.print ac v(5) i(vamm1) i(vamm2)

.end

22The 4:1 transformer turns ratio is achieved by making the inductance ratio 16:1 (i.e. the square of 4:1).

166 CHAPTER 7. GALLERY

NGSPICE version 26 analysis (using batch mode, edited for brevity):

--

Index frequency v(5)

--

0 6.000000e+01 1.197697e+02, -3.61022e+00

--

Index frequency vamm1#branch

--

0 6.000000e+01 5.982496e-01, -5.78213e-02

--

Index frequency vamm2#branch

--

0 6.000000e+01 2.395394e+00, -7.22044e-02

Note how NGSPICE defaults to displaying each voltage and each current as a complex number in
rectangular form. For example, load voltage (v(5)) is 197.697 −j3.61022 Volts AC and the current
through ammeter vamm1 is 0.5982496 −j0.0578213 Amperes AC. If we don’t care about viewing
these as phasor quantities, we may edit the .print card within our netlist to call for voltage23

magnitude instead. The following is a one-line edit to the netlist, followed by another batch run of
NGSPICE:

.print ac vm(5)

--

Index frequency vm(5)

--

0 6.000000e+01 1.198241e+02

Now we see the load voltage as 119.8241 Volts AC, just as a voltmeter would register if connected
in parallel with the load.

23The version of NGSPICE used here (version 26) does not yet support magnitude-only display of current, just
voltage.

7.5. TRANSFORMER CIRCUITS 167

This plot was created by entering print all at the command-line interface in NGSPICE’s
interactive mode, after loading and running the netlist with the source (filename) and run

commands in that order:

NGSPICE version 26 analysis (using window-based interactive mode on Linux/X-Windows):

v(1) = 4.800000e+02,0.000000e+00

v(2) = 4.799940e+02,5.782128e-04

v(3) = 4.799940e+02,5.782128e-04

v(4) = 1.197697e+02,-3.61022e+00

v(5) = 1.197697e+02,-3.61022e+00

frequency = 6.000000e+01,0.000000e+00

l1#branch = 5.982496e-01,-5.78213e-02

l2#branch = -2.39539e+00,7.220436e-02

v1#branch = -5.98250e-01,5.782128e-02

vamm1#branch = 5.982496e-01,-5.78213e-02

vamm2#branch = 2.395394e+00,-7.22044e-02

Note how once again NGSPICE displays each voltage and each current as a complex number in
rectangular form. For example, load voltage (v(5)) is 197.697 −j3.61022 Volts AC.

168 CHAPTER 7. GALLERY

7.5.2 Basic step-up power transformer

Circuit schematic diagram (with node numbers listed):

0

1

4

2

L1 L2
V1 Rload

60 Hz

Rdummy

0.01 Ω
3

Risol

99MΩ

3 H

5:1 turns ratio

75 H
120 VAC

10 kΩ

SPICE netlist:24

* SPICE circuit

v1 1 0 ac 120

rdummy 1 2 0.01

risol 4 0 99e6

l1 2 0 3

l2 3 4 75

k1 l1 l2 0.999

rload 3 4 10e3

.ac lin 1 60 60

.print ac vm(3,4)

.end

24The 5:1 transformer turns ratio is achieved by making the inductance ratio 25:1 (i.e. the square of 5:1). This
transformer has its primary and secondary windings separated by a 99 MΩ resistance, which is electrically isolated for
all practical purposes. Note that SPICE requires a DC current path to ground (node 0) from all other nodes, which
is why some finite value of isolation resistance is necessary. The simulation would fail if there was no path from the
secondary circuit to node 0.

7.5. TRANSFORMER CIRCUITS 169

NGSPICE version 26 analysis (using batch mode, edited for brevity):

--

Index frequency mag(v(3)-v(4))

--

0 6.000000e+01 5.993755e+02

The load voltage magnitude is shown as 599.3755 Volts AC, just as a voltmeter would register if
connected in parallel with the load.

170 CHAPTER 7. GALLERY

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

171

172 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

173

174 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.1 First principles of learning

• Anyone can learn anything given appropriate time, effort, resources, challenges,
encouragement, and expectations. Dedicating time and investing effort are the student’s
responsibility; providing resources, challenges, and encouragement are the teacher’s
responsibility; high expectations are a responsibility shared by both student and teacher.

• Transfer is not automatic. The human mind has a natural tendency to compartmentalize
information, which means the process of taking knowledge learned in one context and applying
it to another usually does not come easy and therefore should never be taken for granted.

• Learning is iterative. The human mind rarely learns anything perfectly on the first attempt.
Anticipate mistakes and plan for multiple tries to achieve full understanding, using the lessons
of those mistakes as feedback to guide future attempts.

• Information is absorbed, but understanding is created. Facts and procedures may be
memorized easily enough by repeated exposure, but the ability to reliably apply principles
to novel scenarios only comes through intense personal effort. This effort is fundamentally
creative in nature: explaining new concepts in one’s own words, running experiments to test
understanding, building projects, and teaching others are just a few ways to creatively apply
new knowledge. These acts of making knowledge “one’s own” need not be perfect in order to
be effective, as the value lies in the activity and not necessarily the finished product.

• Education trumps training. There is no such thing as an entirely isolated subject, as all
fields of knowledge are connected. Training is narrowly-focused and task-oriented. Education
is broad-based and principle-oriented. When preparing for a life-long career, education beats
training every time.

• Character matters. Poor habits are more destructive than deficits of knowledge or skill.
This is especially true in collective endeavors, where a team’s ability to function depends on
trust between its members. Simply put, no one wants an untrustworthy person on their team.
An essential component of education then, is character development.

• People learn to be responsible by bearing responsibility. An irresponsible person is
someone who has never had to be responsible for anything that mattered enough to them.
Just as anyone can learn anything, anyone can become responsible if the personal cost of
irresponsibility becomes high enough.

• What gets measured, gets done. Accurate and relevant assessment of learning is key to
ensuring all students learn. Therefore, it is imperative to measure what matters.

• Failure is nothing to fear. Every human being fails, and fails in multiple ways at multiple
times. Eventual success only happens when we don’t stop trying.

B.2. PROVEN STRATEGIES FOR INSTRUCTORS 175

B.2 Proven strategies for instructors

• Assume every student is capable of learning anything they desire given the proper conditions.
Treat them as capable adults by granting real responsibility and avoiding artificial incentives
such as merit or demerit points.

• Create a consistent culture of high expectations across the entire program of study.
Demonstrate and encourage patience, persistence, and a healthy sense of self-skepticism.
Anticipate and de-stigmatize error. Teach respect for the capabilities of others as well as
respect for one’s own fallibility.

• Replace lecture with “inverted” instruction, where students first encounter new concepts
through reading and then spend class time in Socratic dialogue with the instructor exploring
those concepts and solving problems individually. There is a world of difference between
observing someone solve a problem versus actually solving a problem yourself, and so the
point of this form of instruction is to place students in a position where they cannot passively
observe.

• Require students to read extensively, write about what they learn, and dialogue with you and
their peers to sharpen their understanding. Apply Francis Bacon’s advice that “reading maketh
a full man; conference a ready man; and writing an exact man”. These are complementary
activities helping students expand their confidence and abilities.

• Use artificial intelligence (AI) to challenge student understanding rather than merely provide
information. Find productive ways for AI to critique students’ clarity of thought and of
expression, for example by employing AI as a Socratic-style interlocutor or as a reviewer of
students’ journals. Properly applied, AI has the ability to expand student access to critical
review well outside the bounds of their instructor’s reach.

• Build frequent and rapid feedback into the learning process so that students know at all times
how well they are learning, to identify problems early and fix them before they grow. Model the
intellectual habit of self-assessing and self-correcting your own understanding (i.e. a cognitive
feedback loop), encouraging students to do the same.

• Use “mastery” as the standard for every assessment, which means the exam or experiment or
project must be done with 100% competence in order to pass. Provide students with multiple
opportunity for re-tries (different versions of the assessment every time).

• Require students to devise their own hypotheses and procedures on all experiments, so that the
process is truly a scientific one. Have students assess their proposed experimental procedures
for risk and devise mitigations for those risks. Let nothing be pre-designed about students’
experiments other than a stated task (i.e. what principle the experiment shall test) at the
start and a set of demonstrable knowledge and skill objectives at the end.

• Have students build as much of their lab equipment as possible: building power sources,
building test assemblies1, and building complete working systems (no kits!). In order to provide

1In the program I teach, every student builds their own “Development Board” consisting of a metal chassis with
DIN rail, terminal blocks, and an AC-DC power supply of their own making which functions as a portable lab
environment they can use at school as well as take home.

176 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

this same “ground-up” experience for every new student, this means either previous students
take their creations with them, or the systems get disassembled in preparation for the new
students, or the systems grow and evolve with each new student group.

• Incorporate external accountability for you and for your students, continuously improving the
curriculum and your instructional methods based on proven results. Have students regularly
network with active professionals through participation in advisory committee meetings,
service projects, tours, jobshadows, internships, etc. Practical suggestions include requiring
students to design and build projects for external clients (e.g. community groups, businesses,
different departments within the institution), and also requiring students attend all technical
advisory committee meetings and dialogue with the industry representatives attending.

• Repeatedly explore difficult-to-learn concepts across multiple courses, so that students have
multiple opportunities to build their understanding.

• Relate all new concepts, whenever possible, to previous concepts and to relevant physical laws.
Challenge each and every student, every day, to reason from concept to concept and to explain
the logical connections between. Challenge students to verify their conclusions by multiple
approaches (e.g. double-checking their work using different methods). Ask “Why?” often.

• Maintain detailed records on each student’s performance and share these records privately with
them. These records should include academic performance as well as professionally relevant
behavioral tendencies.

• Address problems while they are small, before they grow larger. This is equally true when
helping students overcome confusion as it is when helping students build professional habits.

• Build rigorous quality control into the curriculum to ensure every student masters every
important concept, and that the mastery is retained over time. This includes (1) review
questions added to every exam to re-assess knowledge taught in previous terms, (2) cumulative
exams at the end of every term to re-assess all important concepts back to the very beginning of
the program, and (3) review assessments in practical (hands-on) coursework to ensure critically-
important skills were indeed taught and are still retained. What you will find by doing this is
that it actually boosts retention of students by ensuring that important knowledge gets taught
and is retained over long spans of time. In the absence of such quality control, student learning
and retention tends to be spotty and this contributes to drop-out and failure rates later in
their education.

• Finally, never rush learning. Education is not a race. Give your students ample time to digest
complex ideas, as you continually remind yourself of just how long it took you to achieve
mastery! Long-term retention and the consistently correct application of concepts are always
the result of focused effort over long periods of time which means there are no shortcuts to
learning.

B.3. PROVEN STRATEGIES FOR STUDENTS 177

B.3 Proven strategies for students

The single most important piece of advice I have for any student of any subject is to take
responsibility for your own development in all areas of life including mental development. Expecting
others in your life to entirely guide your own development is a recipe for disappointment. This is
just as true for students enrolled in formal learning institutions as it is for auto-didacts pursuing
learning entirely on their own. Learning to think in new ways is key to being able to gainfully use
information, to make informed decisions about your life, and to best serve those you care about.
With this in mind, I offer the following advice to students:

• Approach all learning as valuable. No matter what course you take, no matter who you
learn from, no matter the subject, there is something useful in every learning experience. If
you don’t see the value of every new experience, you are not looking closely enough!

• Continually challenge yourself. Let other people take shortcuts and find easy answers to
easy problems. The purpose of education is to stretch your mind, in order to shape it into a
more powerful tool. This doesn’t come by taking the path of least resistance. An excellent
analogy for an empowering education is productive physical exercise: becoming stronger, more
flexible, and more persistent only comes through intense personal effort.

• Master the use of language. This includes reading extensively, writing every day, listening
closely, and speaking articulately. To a great extent language channels and empowers thought,
so the better you are at wielding language the better you will be at grasping abstract concepts
and articulating them not only for your benefit but for others as well.

• Do not limit yourself to the resources given to you. Read books that are not on the
reading list. Run experiments that aren’t assigned to you. Form study groups outside of class.
Take an entrepreneurial approach to your own education, as though it were a business you
were building for your future benefit.

• Express and share what you learn. Take every opportunity to teach what you have learned
to others, as this will not only help them but will also strengthen your own understanding2.

• Realize that no one can give you understanding, just as no one can give you physical
fitness. These both must be built.

• Above all, recognize that learning is hard work, and that a certain level of
frustration is unavoidable. There are times when you will struggle to grasp some of these
concepts, and that struggle is a natural thing. Take heart that it will yield with persistent and
varied3 effort, and never give up! That concepts don’t immediately come to you is not a sign
of something wrong, but rather of something right: that you have found a worthy challenge!

2On a personal note, I was surprised to learn just how much my own understanding of electronics and related
subjects was strengthened by becoming a teacher. When you are tasked every day with helping other people grasp
complex topics, it catalyzes your own learning by giving you powerful incentives to study, to articulate your thoughts,
and to reflect deeply on the process of learning.

3As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

178 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.4 Design of these learning modules

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits. Every effort has been made to embed the following instructional and
assessment philosophies within:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

B.4. DESIGN OF THESE LEARNING MODULES 179

These learning modules were expressly designed to be used in an “inverted” teaching
environment4 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic5 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity6 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

4In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

5Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

6This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

180 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

To high standards of education,

Tony R. Kuphaldt

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

181

182 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

183

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

184 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

185

186 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

187

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

188 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

189

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

190 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

191

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

192 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

Vladimirescu, Andrei, The Spice Book, John Wiley & Sons, New York, 1994.

193

194 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

25 September 2024 – added an Introduction chapter.

6 September 2024 – re-named the “Introduction” chapter to be called “What is SPICE?”, so that
later I may add an “Introduction” chapter more aligned with other modules’ Introduction chapters.

14 March 2024 – corrected a capacitor labeling error in image 1347 (courtesy of Daniel Renshaw)
where it was shown as 470 µF when in fact the actual SPICE simulation used 220 µF.

23 October 2023 – added “555” label to a couple of schematic diagram images, added a photograph
of a real 555 timer IC, and also added more explanatory text and illustrations concerning the purpose
of 555 timer ICs and how they are used. Also added several index entries.

17 March 2022 – corrected a typographical error in schematic diagram image 5757, where I showed
a Thévenin resistance of 5 kΩ instead of 2.5 kΩ. The text was correct, but the resistor label in the
schematic diagram was not. Also, re-named a section that happened to be identically-named to
another (“One inductor energizing from a DC voltage source”).

27 November 2021 – added more explanatory text to the section on 555 timers, and also added
more simulation examples to the Gallery.

18 March 2021 – corrected multiple instances of “volts” that should have been capitalized “Volts”.

3 September 2020 – added zero voltage values to all the “vamm” dummy voltage sources, as
NGSPICE complains about voltage sources having no specified value, while SPICE 2G6 accepts this
just fine.

7 April 2019 – added introductory section to the Gallery chapter discussing the use of SPICE as

195

196 APPENDIX F. VERSION HISTORY

a tool for generating answers for practice problem sets.

28 March 2019 – added a Transformers section to the Gallery chapter.

26 March 2019 – added more example circuits to the Gallery chapter, as well as created a new
section for 555 timer circuits.

25 March 2019 – document first created.

Index

.end, 31, 59
555 timer, astable, 139

Adding quantities to a qualitative problem, 172
Annotating diagrams, 171
Astable 555 timer, 139

Bode plot, 65
Buffer components, 29

Card, 31, 59
Checking for exceptions, 172
Checking your work, 172
Code, computer, 181
Comments, 31, 59
Components, buffer, 29
Cycles per second, 145

Dimensional analysis, 171

Edwards, Tim, 182
Electrically common points, 11, 59, 70, 86
Electrically distinct points, 11, 13, 18, 86

Frequency, 145
Frequency-domain plot, 65

Graph values to solve a problem, 172
Ground, 27, 31, 59

Hertz, 145
How to teach with these modules, 179
Hwang, Andrew D., 183

IC, 138, 139
Identify given data, 171
Identify relevant principles, 171
Integrated circuit, 138, 139

Intermediate results, 171
Inverted instruction, 179

Kirchhoff’s Voltage Law, 161
Knuth, Donald, 182

Lamport, Leslie, 182
Limiting cases, 4, 172
Lissajous figure, 66
Load, 27

Moolenaar, Bram, 181

Netlist, 31, 59
Node, 31, 59

Open, 28
Open-source, 181

Parametric plot, 66
Passive sign convention, 118, 120, 155, 156
Period, 145
Problem-solving: annotate diagrams, 171
Problem-solving: check for exceptions, 172
Problem-solving: checking work, 172
Problem-solving: dimensional analysis, 171
Problem-solving: graph values, 172
Problem-solving: identify given data, 171
Problem-solving: identify relevant principles, 171
Problem-solving: interpret intermediate results,

171
Problem-solving: limiting cases, 4, 172
Problem-solving: qualitative to quantitative, 172
Problem-solving: quantitative to qualitative, 172
Problem-solving: reductio ad absurdum, 172
Problem-solving: simplify the system, 171
Problem-solving: thought experiment, 171

197

198 INDEX

Problem-solving: track units of measurement,
171

Problem-solving: visually represent the system,
171

Problem-solving: work in reverse, 172

Qualitatively approaching a quantitative
problem, 172

Reductio ad absurdum, 172, 178, 179

Short, 28
Simplifying a system, 171
Socrates, 178
Socratic dialogue, 179
Source, 27
SPICE, 7
Stallman, Richard, 181

Thought experiment, 171
Time-domain plot, 66
Title, 31, 59
Torvalds, Linus, 181

Units of measurement, 171

Visualizing a system, 171

Work in reverse to solve a problem, 172
WYSIWYG, 7, 9, 181, 182

	Introduction
	Recommendations for students
	Challenging concepts related to SPICE circuit simulation
	Recommendations for instructors

	What is SPICE?
	Using SPICE
	Summary of steps
	Demonstration on Microsoft Windows
	Invoking a text editor
	Saving the deck
	Invoking SPICE
	Viewing the SPICE analysis

	Demonstration on Linux or CygWin
	Invoking a text editor
	Saving the deck
	Invoking SPICE
	Viewing the SPICE analysis

	Demonstration of NGSPICE interactive mode
	Creating the netlist
	Starting NGSPICE
	Verifying the loaded netlist
	Running the analysis
	Printing a voltage
	Plotting graphs using NGSPICE
	Issuing multiple commands in a single line

	Idiosyncrasies of SPICE
	Beginning and ending cards
	Node zero
	Current measurement
	Open and short circuits
	Multiple sources
	Multiple inductors/capacitors

	SPICE component descriptions
	Independent voltage sources
	Example: DC source
	Example: ``Dummy'' source
	Example: AC source
	Example: Sinusoidal source
	Example: Pulse source

	Independent current sources
	Example: DC source
	Example: AC source

	Resistors
	Example

	Capacitors
	Example: Capacitor with initial charge
	Example: Uncharged capacitor

	Inductors
	Example: Inductor with initial charge
	Example: Uncharged inductor

	Transformers
	Example: 2:1 ratio step-down transformer

	Transmission lines
	Example: 50-Ohm transmission line with 10 nanosecond delay
	Example: half-wavelength (at 35 MHz) 300-Ohm transmission line

	Linear dependent sources
	Example: voltage-controlled voltage source
	Example: voltage-controlled current source

	Nonlinear dependent sources
	Example: multiplier

	Diodes
	Example: Generic diode
	Example: 1N4001

	Bipolar Junction Transistors (BJTs)
	Example: Generic NPN transistor
	Example: 2N2907

	Junction Field-Effect Transistors (JFETs)
	Example: Generic N-channel JFET

	Metal-Oxide Field-Effect Transistors (MOSFETs)
	Example: Generic N-channel depletion-type MOSFET
	Example: Generic N-channel enhancement-type MOSFET
	Example: Generic P-channel depletion-type MOSFET
	Example: Generic P-channel enhancement-type MOSFET

	Subcircuits
	Example: resistor subnetwork
	Example: solar cell array

	SPICE analysis descriptions
	DC voltage/current``sweep'' analysis
	Example: sweep of voltage source
	Example: sweep of voltage and current sources

	AC frequency ``sweep'' analysis
	Example: linear frequency sweep
	Example: decade logarithmic frequency sweep
	Example: octave logarithmic frequency sweep

	Transient analysis
	Example: using initial conditions, beginning at time t=0
	Example: using initial conditions, beginning at non-zero time

	Fourier analysis
	Example: analysis of 60 Hz waveform

	Display option: print
	Example: printing a DC analysis
	Example: printing an AC analysis

	Display option: plot
	Example: plotting a DC analysis
	Example: plotting an AC analysis
	Example: plotting a transient analysis
	Example: plotting parametric functions

	Display option: width
	Example

	Primitive circuit examples
	DC voltage source with .op analysis
	DC voltage source with single-point .dc sweep analysis
	DC current source with single-point .dc sweep analysis
	DC voltage source with multi-point .dc sweep analysis
	AC voltage source with single-point .ac sweep analysis
	AC voltage source with multi-point .ac sweep analysis
	Additive AC voltage sources with single-point .ac sweep analysis
	Transient analysis of discharging RC circuit
	Transient analysis of a steady sinusoidal voltage source
	Transient analysis of a sinusoidal capacitive circuit
	Transient analysis of a damped, offset sinusoidal voltage source
	Additive AC voltage sources with transient analysis
	Solar cell array simulation
	Solar panel array simulation

	Gallery
	Using gallery examples for practice
	Resistor-capacitor DC circuits
	One capacitor energizing from a DC voltage source
	One capacitor de-energizing through a resistor
	One capacitor energizing from a DC current source
	Two capacitors energizing in series
	Pre-charged capacitor energizing to a greater voltage
	Pre-charged capacitor de-energizing to a non-zero voltage
	One capacitor energizing from a voltage divider

	555 timer circuits
	Introduction to the 555 timer IC
	Basic astable operation
	555 timer in classic astable operation

	Resistor-inductor DC circuits
	One inductor energizing from a DC voltage source
	One inductor de-energizing through a resistor
	Another inductor energizing from a DC voltage source
	Two inductors energizing in series
	Resistor-inductor energized by a square wave

	Transformer circuits
	Basic step-down power transformer
	Basic step-up power transformer

	Problem-Solving Strategies
	Instructional philosophy
	First principles of learning
	Proven strategies for instructors
	Proven strategies for students
	Design of these learning modules

	Tools used
	Creative Commons License
	References
	Version history
	Index

