LinuxFocus article number 282
http://linuxfocus.org

External attacks

by Eric Detoisien
<valgasu(at)club-internet.fr>

About the author:

Eric Detoisienisan expert ~ Abstract:

in computer security. Very

fond of everythingrelated This article wasfirst published in a Linux Magazine France specia issue

to security, heisone of the focusing on security. The editor, the authors and the trangl ators kindly

experts of the rstack group - allowed LinuxFocus to publish every article from this special issue.

www.rstack.org - Accordingly, LinuxFocus will bring them to you as soon asthey are
tranglated to English. Thanksto all the people involved in thiswork.
This abstract will be reproduced for each article having the same origin.

Trandated to English by: This article presents the different types of external attacks that a cracker

Georges Tarbouriech can use against the machines within a network. We will take up the main
<gt(at)linuxfocus.org> network attack, some attacks through applications and denial of service
type attacks.

Network attacks

The network attacks rely on vulnerabilities directly related to protocols or to their implementation. There
are many of them. However, most of these are variants of the five well known networks attacks.

Fragment attacks

This attack goes beyond the protection of 1P filtering equipment. To implement it, the crackers use two
different methods: Tiny Fragments and Fragment Overlapping. These attacks are somewhat historical,

accordingly today’ s firewalls have been managing them for along time.
Tiny Fragments

According to RFC (Request For Comment) 791 (1P), al Internet nodes (routers) must be able to transfer
68 bytes packets without fragmenting them. The minimum size of the header of an IP packet is 20 bytes
without options. When options are present, the maximum size of the header is 60 bytes. The IHL
(Internet Header Length) field holds the header length in 32 bit words. Thisfield uses 4 bit, so the
number of possible valuesis 2”4 - 1 = 15 (it cannot take the value 0000). So, the maximum size of the
header isreally 15*4 = 60 bytes. Last, the Fragment Offset field indicating the offset of the first byte of
the fragment in relation to the full datagram iswritten in 8 bytes blocks. Thus a data fragment at |east
holds 8 bytes. Thisreally makes 68 bytes.

The attack consists of requesting a TCP connection fragmented into two |P packets. Thefirst IP packet
of 68 bytes only holds the 8 first bytes of the TCP header (source and destination ports and sequence
number). The data in the second |P packet then holds the TCP connection request (SYN flag is 1 and
ACK flagisO).

However, IP filters apply the same rule to al the fragmentsin a packet. The filter of the first fragment
(Fragment Offset = 0) defines the rule, accordingly it appliesto the other fragments (Fragment Offset =
1) without any other type of control. So, when defragmenting at 1P level on the target machine, the
connection request packet is rebuilt and passed to the TCP layer. The connection is established despite
the IP filter in between which should have prevented it.

Pictures 1 and 2 show both fragments and picture 3 shows the defragmented packet on the target
machine:

Pic.1l: Fragment 1

Y [Vesion] THL [TO: Total Length 4
Tdentificahion Flazs | Frazment Offet=0
TIL | Protocal Header Checkmm
Sonmwe Address
P Dies ivation & ddress
1 B2 cotets
1
¥ i
Tep I Sonwe Port | Dres ination Port
Sequence Munber ¥

Pic.2: Fragment 2

4 Ve:sion| THL | oS Total Length
Tdentificahion Flazs | Frazment Offet=1
TIL | Ptoral Header Checknum
Ip Sonwe Addrass
Diestiration A ddress
! i
i Ophons i
!
Arkrorledzerrert Hunber
Tep Data B 1 MAFERSF
Offet | ™= lalolnjofi]o
Checksum Trzert Pointer
Cphons :
Pic.3: Defragmented packet
4 ?e:sion| THL | TS Total Length
Tdertificahon Flags | Fragment Oifiet
TIL | Piotoral Header Checknum
P Sowe Address
Dies ination A ddress
! i
i Options i
!
4 Sorce Port | Diesiration Poet
Sequernce Hunb er
Aeknorledzemert Mund er
TCE Diata B i MAFIRISF
Offiet | *™ |njojniohlo
Checlksum Trzert Poanter
¥ Oph.n:ms |

Fragment Overlapping

Still according to RFC 791 (1P), if two I P fragments overlap, the second one overwrites the first one.
The attack consists of dividing an IP packet into two fragments. The IP filter accepts the first one
holding 68 bytes (see Tiny Fragments) since it does not request a TCP connection (SYN flag = 0 and
ACK flag = 0). Again, thisrule applies to the other fragments of the packet. The second one (with a
Fragment Offset = 1) holding the real connection data is then accepted by the IP filter because it does
not see that a connection is opened here. Thus, when defragmenting, the data of the second fragment
overwrites the datain the first one, starting after the 8th byte (since the fragment offset = 1). The
reassembled packet is then a valid connection request for the target machine. The connection is
established depite the I P filter in between.

Pictures 1 and 2 show both fragments and picture 3 shows the defragmented packet on the target
machine:

Pic.4: Fragment 1

4 [Wewion| THL [TOS Total Length 4
Idemtification Flazs | Fragment Offiet=10
TIL | Pmtoeal Header Checkmum
IP Sonmwe Address
Dies ination & ddress
! Options i
r ! 1
]‘ Somwe Port | Dres ination Poxt 88 cotets
Sequenca Nunber
Aeknoarledzemert Hund er
TCP Data HREEAR
ofet | Feer=d 1)l
Checksam Urgerd Pointer
v Cpticms P

Pic.5: Fragment 2

t [Fewion| IHL [TS Total Length
Identification Flags | Fragmem Offfet=1
TIL | Protoeol Header Checksum
P Soure Address
Dies ivation Address
i Optices i
r ! 1
Ackroarledzerert Murnher
Tiata LPTEIETE
TCF iRt | FReserved dlolalolilo Windoar
Checkmam Urgzent Printer
Oiptions :

Pic.6: Defragmented packet

+ Ve:sicml THL | TS Total Length
TIdertification Flags | FragmentOffiet
TTL | Pmtocal Header Checknim
IF Sowe Address
Dies ination A ddress
i Options i
]r ! 1
I Soarce Port | Dies ination Port
Sequence Hunber
Lickrnoarladzamerd Mund o
TCP Diata TAFEEF
Offet Eesermd dalalalila Windoar

Checksam Trgent Poanter

L J Opticns i

| P Spoofing

The goa of this attack is to usurp the IP address of a machine. This allows the cracker either to hide the
origin of his attack (used in Denia of Service attacks) or to benefit from atrusted relationship between
two machines. Here, we will explain this second use of 1P Spoofing.

The basic principle of this attack consists, for the cracker, in forging his own IP packets (with programs

such as hpi ng2 or nenesi s) in which he will change, among other things, the source IP address. |P
Spoofing is often called Blind Spoofing. Since the answers to the false packets cannot go to the

cracker’ s machine since the source has been altered. So, they go to the spoofed machine. However, there
are two methods to get the answers back:

1. Source Routing: the IP protocol has an option called Source Routing which alows you to define
the route the I P packets should take. Thisroute is a series of router |P addresses that the packets
will have to follow. Enough for the cracker to provide aroute for the packets to arouter he
controls. Nowadays, most of the TCP/IP stack implementations reject the packets using this
option;

2. Re-routing: router tables using the RIP protocol can be changed sending them RIP packets with
new routing information. Thisis done to reroute the packets to a router that the cracker manages.

These techniques are hardly usable: the attack is carried out without knowing the packets coming from
the target server.

Blind Spoofing is used against services such as rlogin or rsh. Their authentication mechanism only relies
on the source IP address of the client machine. This relatively well known attack (Kevin Mitnick used it
against Tsutomu Shimomura s machine in 1994) requires various steps:

@ finding the IP address of the trusted machine using, for instance shownount - e which indicates
where the file systems are exported, or r pci nf o which provides more information;
® taking the trusted host out of service using a SYN Flooding, for instance (more on Denial of
Service later on). Thisis compulsory to prevent the machine from answering the packets sent by
the target server. Otherwise, it would send TCP RST packets which would stop the connection
attempt;
® prediction of TCP sequence numbers: every TCP packet is associated to an initial sequence
number. The OS TCP/IP stack generatesit in alinear way, depending on the time, random or
pseudo-random, according to the systems. The cracker only can attack systems generating
predictable sequence numbers (linear generation or dependent on time);
® the attack consists of opening a TCP connection on the desired port (rsh for example). For better
understanding, we will remind you how the opening mechanism of a TCP connection works. It is
donein three steps (TCP Three Way Handshake):
1. the caller sends a packet holding the TCP SY N flag and a x sequence number is sent to the
target machine;
2. thetarget answers with a packet in which the TCP SYN flag and the ACK flag (withax+1
acknowledgement number) are activated. Its sequence number isy;
3. thecaller sends a packet containing the TCP ACK flag (with ay+ 1 acknowledgement
number) back to the target machine.

During the attack, the cracker does not receive the SYN-ACK sent by the target. For the connection to
establish, he predicts the y sequence number in order to send a packet with the right ACK number (y+1).
The connection is then established through the 1P address authentication. The cracker can now send a
command to the rsh service, such asecho ++ >> /. rhost s to get higher accessrights. To do this, he
forges a packet with the TCP PSH flag (Push): the received dataisimmediately sent to the upper layer
(here the rsh service). He can then connect to the machine through a service such as rlogin or rsh without
I P Spoofing.

Picture 7 shows the different steps of 1P Spoofing:
Pic.7: P Spoofing applied to the rsh service

B0 _— SYM o x —— p Cihle
SYM oy ’

C - ACK %+ 1 Cible

AT ————— ACK iy +1 ——— = Cikle

A ———— P=H —p Cihle

The cracker uses the A machine while C represents the trusted machine. The A (C)statement means that
the packet is sent from A with the C spoofed IP address. Note: there is a program called mendax which
implements those | P Spoofing mechanisms.

TCP Session Hijacking

TCP Session Hijacking allows the cracker to redirect a TCP flow. Then, a cracker can overstep a
password protection (like in telnet or ftp). The need for listening (sniffing) restricts this attack to the
physical network of the target. Before detailing this attack, let us explain some basic principles of the
TCP protocol.

Here we will not unveil the mystery of the TCP protocol, but we will concentrate on the main points
required to understand the attack. The TCP header holds various fields:

® the source port and the destination port, identifying the connection between two machines;
® the sequence number identifying every byte sent;
® the acknowledgement number corresponding to the last byte received;
® theinteresting flags are:
O SY N which synchronizes the sequence numbers when a connection is established;
O ACK, the acknowledgement flag of a TCP segment;
O PSH which tells the receiver to send the data to the application.

Picture 8 shows how to establish a TCP connection (Three Way Handshake):
Pic.8: Three Way Handshake

R SYM o x R — B
SYM oy
. ACK % +1 B

A — ATK:Iy+l ———— B

Here, the A machine initiated a TCP connection on the B machine.
Picture 9 shows atransfer of TCP data:

L — Sed x PSHIACK: v (B0) E—— B
A o Seq wPSHACK x+E0 (200 ————— B
& ——————— Seq B0 PSHACK: y+20 (30) ————— B

The sequence numbers will change according to the number of data bytes sent. The sequence number is
represented by Seq, the acknowledgement number is found after the PSH and ACK flags and the number
of data bytes sent is found between brackets.

This attack creates a desynchronization state on both side of the TCP connection, allowing the session
hijack. A connection is desynchronized when the sequence number of the next byte sent by the A
machineis different from the sequence number of the next byte to be received by B. And the other way
round too.

In the example of picture 9, at the end of the first step when B receives its packet, A waits for a packet
with an acknowledgement number of x+60. If the next packet sent by B does not have this
acknowledgement number, then A and B are considered as desynchronized.

So, a cracker with a C machine wants to hijack an established Telnet session between A and B

machines. First, the C machine sniffs the Telnet traffic (TCP port 23) between A and B. Once the
cracker thinks A had time to authenticate to the Telnet service on the B machine, he desynchronizes the
A machine against B. To do this, he forges a packet having the source | P address of the A machine and
the TCP acknowledgement number expected by B. Of course, the B machine accepts the packet. Besides
desynchronizing the TCP connection, this packet allows the cracker to inject acommand through the
Telnet session previously established by A. Asamatter of fact, this packet is able to carry data (PSH

flag = 1).

Picture 10 shows this attack:

Pic.10: TCP Session Hijacking
A — Seq x PSHIACK: v (B0 R B
& M— Seq yPSHIACK x+B0 200 — B
A ———— Seq B0 PSHIACK: w+20 (30) — B
& M—— Seq y+20PSHIACK: x+90 (200 —— B

T[] ———————— Seq w90 PSHIACK: w+40 (30) ——— B

A M——— Seq ywd0 PSHIACK: x#120 (200 —————— B

The B machine accepts the command sent by C, it acknowledges this packet sending a packet to A with
the ACK flag. In the meantime, if A sent a packet to B, it has been rejected since the sequence number is
not the one expected by B.

A problem then appears: the Ack Storm. A lot of ACK are generated. This happens when A sendsa TCP
packet with an invalid sequence number (since A is desynchronized), B rejectsit and sendsto A an

ACK with the sequence number it expects. A receives this ACK, and since the sequence number does
not match the expected one, it also sendsan ACK to B and B does it again...

This Ack Storm problem can be solved if the cracker uses the ARP Spoofing. In that case, the C
machine will poison the ARP cache of the B machinetelling it the A IP address is now associated to the
C MAC address. These techniques are implemented by the hunt program.

ARP Spoofing

This attack, also called ARP Redirect, redirects the network traffic from one or more machines to the
cracker’s machine. It is done on the physical network of the victims. Let us remind you what the ARP
protocol isand how it works.

The ARP protocol (Address Resolution Protocol) implements the resolution mechanism from an IP
address to an Ethernet MAC address. Network equipment communicates by exchanging Ethernet frames
(obvioudly in an Ethernet network), at the data link layer. To be able to share thisinformation, it is
required for the network cards to have a unique Ethernet address: it isthe MAC address (MAC=Media
Access Control).

When sending an IP packet, the sender machine needs to know the MAC address of the receiver. To get
it, abroadcast ARP request is sent to every machine in the local network. This request asks: "What is the
MAC address associated to this P address ?'. The machine having this IP address answers through an
ARP packet, providing the sender machine with the requested MAC address. From there, the source
machine knows the MA C address corresponding to the | P address where to send the packets. This match
will be kept for awhilein a cache (to avoid making a new request each time an IP packet is sent).

This attack poisons the cache of the target machine. The cracker sends ARP answers to the target
machine telling it that the new MAC address is one corresponding to a gateway (for instance) | P address
isthe crackers address. The cracker’s machine will then receive the whole traffic sent to the gateway.

So, enough for him to listen to the traffic (and/or to modify it). After that, he will route the packetsto the
real destination so that nobody notices the change.

ARP Spoofing is useful when alocal network uses switches. These redirect the Ethernet frames to
different ports (cables) according to the MAC address. Then a sniffer can hardly capture frames beyond
its own physical wire. Thus, ARP Spoofing alows to listen to the traffic between machines situated on
different switch ports.

To implement an ARP Spoofing attack, the cracker will use an ARP packet generator such as ARPSpoof
or nenesi s. Example: the "victim" machine 10. 0. 0. 171, its default gateway 10. 0. 0. 1 and the
cracker’smachine 10. 0. 0. 227. Before the attack, the result of atracerouteis:

[root@ible -> ~]$ traceroute 10.0.0.1
traceroute to 10.0.0.1 (10.0.0.1), 30 hops nax, 40 byte packets
1 10.0.0.1 (10.0.0.1) 1.218 ns 1.061 ns 0.849 ns

And the ARP cache of the target machineis:

[root@ible -> ~]$ arp

Addr ess HW ype HWAddress Fl ags Mask |[face
10.0.0.1 et her 00: b0: c2: 88: de: 65 C et hO
10. 0. 0. 227 ether 00: 00: 86: 35: c9: 3f C et hO

The cracker then runs ARPSpoof :

[root @irate -> ~]$ arpspoof -t 10.0.0.171 10.0.0.1

0: 0:86: 35:¢c9: 3f 0:60:8:de:64:f0 0806 42: arp reply 10.0.0.1 is-at 0:0:86: 35:¢c9: 3f
0: 0: 86:35:¢9: 3f 0:60:8:de:64:f0 0806 42: arp reply 10.0.0.1 is-at 0:0:86:35:c9: 3f
0: 0: 86:35:¢c9: 3f 0:60:8:de:64:f0 0806 42: arp reply 10.0.0.1 is-at 0:0:86:35:c9: 3f
0: 0:86: 35: ¢c9: 3f 0:60:8:de:64:f0 0806 42: arp reply 10.0.0.1 is-at 0:0:86: 35:c9: 3f
0: 0:86: 35:¢c9: 3f 0:60:8:de:64:f0 0806 42: arp reply 10.0.0.1 is-at 0:0:86: 35:c9: 3f
0: 0: 86:35:¢c9: 3f 0:60:8:de:64:f0 0806 42: arp reply 10.0.0.1 is-at 0:0:86:35:c9: 3f
0: 0: 86:35:¢c9: 3f 0:60:8:de:64:f0 0806 42: arp reply 10.0.0.1 is-at 0:0:86:35:c9: 3f

The packets sent are ARP packets poisoning the ARP cache of the 10. 0. 0. 171 machine, with ARP
Reply saying that the MAC address associated to 10. 0. 0. 1 now iS00: 00: 86: 35: ¢9: 3f .

The ARP cache of the 10. 0. 0. 171 machine becomes :

[root@ible -> ~]$ arp

Addr ess HW ype HWAddress Fl ags Mask [face
10.0.0.1 et her 00: 00: 86: 35: c9: 3f C et hO
10. 0. 0.227 ether 00: 00: 86: 35: c9: 3f C et hO

To check that the traffic now goes through the 10. 0. 0. 227 machine, enough to run a new traceroute to
the 10. 0. 0. 1 gateway:

[root @ible -> ~]$ traceroute 10.0.0.1

traceroute to 10.0.0.1 (10.0.0.1), 30 hops max, 40 byte packets
1 10.0.0.227 (10.0.0.227) 1.712 ms 1.465 ms 1.501 s

2 10.0.0.1 (10.0.0.1) 2.238 ns 2.121 nms 2.169 ns

Now the cracker can sniff the traffic between the 10. 0. 0. 171 and 10. 0. 0. 1 machines. He must not
forget to activate | P routing on his10. 0. 0. 227 machine.

DNS Spoofing

The DNS protocol (Domain Name System) converts a domain name (for example www.test.com) into its
|P address (for example 192. 168. 0. 1) and vice versa. This attack uses false answers to the DNS

requests sent by a"victim". This attack relies on two main methods.

DNS ID Spoofing

The header of the DNS protocol holds an identification field to match answers and requests. The goal of
the DNS ID Spoofing isto send back awrong answer to a DNS request before the real DNS server can
answer. To do this, the ID of the request hasto be predicted. Locally, it is simple to predict just by
sniffing the network. However, it becomes a bit more tricky remotely. There are various methods:

® testing every possibility in the ID field. Not very realistic since there are 65535 possibilities (this
field is 16 bit);

® sending afew hundred DNS requests in the right order. Obviously, this method is not quite
reliable;

@ finding aserver generating predictable IDs (for example, ID incremented by 1). This sort of
vulnerability can be found in some Bind versions or on Windows 9x machines.

In any case, it isrequired to answer before the real DNS server. This can be done for instance by
crashing it with adenial of service attack.

To succeed, the attacker must control a DNS server (ns. at t aquant . com) having authority over the
domain at t aquant . com Thetarget DNS server (ns. ci bl e. com) iS supposed to have predictable
sequence numbers (incrementing by 1 at each request).

The attack requires four steps:

1. the attacker sends a DNS request for the name www. at t aquant . comto the DNS server of the
ci bl e. comdomain, as seen in picture 11;

Pic.11: DNSrequest sent tons. ci bl e. com
Aftacuant —— wwwvattagquant.com 7101 ————— - nscible.com

nz.attagquart.com - oy gttagquant.com 7 1D:100 ————— na.cible.com

2. thetarget DNS server relayed the request to the DNS of at t aquant . comdomain;

3. the attacker is able to sniff the request to get its ID (in our example the ID is 100);

4. the attack alters the IP address associated to a machine name, here the "victim" machineis
ww. spoof ed. comwhich should have 192. 168. 0. 1 asits |P address. The cracker sendsa DNS
request for resolving the name www. spoof ed. comto ns. ci bl e. com Immediately afterwards, he
sends a bunch of altered DNS answers (giving as | P address the one of the attacker’s site
10. 0. 0. 1) to this same request having spoofed the source I P address with the one of the DNS
server of the spoof ed. comdomain. The ID of each answer will be incremented by 1 starting from
the one received during the second step (1D = 100) to improve the chance of getting the right ID

number. Thisis, just in casens. ci bl e. comshould have answered other requests and thus
incremented its DNS ID. Picture 12 shows these steps.

Pic.12: DNSID Spoofing

Aftacuant — wwwyspoofed.com ¥ O ID1 ————— = nscible.com
nz.spoofed.com -4 weany spoofed com 710101 ——— nzdble.com
Atacuant 10004 (D0 — » nsdblecom

(ne . spoofed.com)

Aftacuant

(s apooted com) 10001 D102 — P nzcblecom

Aftacuant

(ns.spoofed cam) 10001 D103 — ® nzchleoom

The cache of the target DNS server is then poisoned and the next machine asking for aresolution of the
wwv. spoof ed. comname will get the | P address of the attacker’ s machine and will be redirected to his
site. Thislast can be a"copy" of thereal siteto fool the internet users and steal confidential information.

DNS Cache Poisoning

DNS servers use a cache, to locally keep the answers to previous requests data for awhile. Thisisto
avoid spending time in always asking the name server having authority over the requested domain. This
second type of DNS Spoofing will consist of poisoning this cache with false information. Hereis an
example:

We keep the parameters of the previous example. Here are the different steps of the attack:

® send a DNS request to resolve the www. at t aquant . comname to the DNS server of theci bl e. com
domain;

® thetarget DNS server sends areguest to resolve the www. at t aquant . comname to the attacker’s
DNS server;

® the attacker’s DNS server sends an answer with altered records allowing it to assign a machine
name to an | P address belonging to the attacker. For example, the ww. ci bl e. comsite could have
an altered DNS record sending back the IP address of ww. at t aquant . cominstead of the right
one.

Applications attacks

Applications attacks rely on specific vulnerabilities found in some applications. However, some of them
can be classified by type.

The configuration problem

One of the first security problems found in applications comes from configuration mistakes. There are
two types of mistakes: default installation and wrong configuration.

Software, such as web servers, with default install files often provides example sites that can be used by
crackersto access confidential information. For example, they can provide scripts to get the source data
viafaulty dynamic pages. Furthermore, such an installation may provide a remote administration
interface with a default login/password (found in the application administration guide). The cracker is
then able to change what he wants on the site.

The main vulnerabilities generated by a bad configuration are access lists with wrong parameters. So the
cracker can access private pages or private databases.

As aclassic example of misconfiguration, the mistakes in Lotus Domino web server parameters are
frequent. When installing this server, Lotus configuration databases do not have any access control list.
Clearly, if the names.nsf Lotus database can be accessed with a web browser without authentication, it is
possible to get alot of information such as every Lotus username.

Bugs

Bad software programming always leads to bugs. These are the most important vulnerabilities. When
they are discovered, they allow to execute unauthorized commands, to get the source code of dynamic
pages, to make a service unusable, to take control of the machine, etc. The most known of these bugs
and the most interesting in term of exploit is the buffer overflow.

Buffer overflow

The buffer overflow is avulnerability caused by bad programming. It appears when avariable passed as
an argument to afunction is copied into a buffer without checking its size. If the variable has a bigger
size than the memory space reserved for this buffer, it is enough for the buffer overflow to happen. It
will be exploited passing to the variable a program fragment. If a cracker succeeds in this attack he will
get the ability to remotely execute commands on the target machine with the rights of the attacked
application. More on thisin the article series about secure programming:

® Avoiding security holes when developing an application - Part 1

® Avoiding security holes when developing an application - Part 2: memory, stack and functions,
shellcode

® Avoiding security holes when developing an application - Part 3: buffer overflows

® Avoiding security holes when developing an application - Part 4: format strings

® Avoiding security holes when developing an application - Part 5: race conditions
® Avoiding security holes when developing an application - Part 6: CGI scripts

Scripts

Bad script programming often affects the security of a system. There are means of exploiting
vulnerabilities found in Perl scripts which will alow to read files out of the web root or to execute
unauthorized commands. These programming problems are presented in CGI security articles above (the
Part 6).

Man in the Middle

The main goal of this attack is to divert the traffic between two machines. Thisisto intercept, modify or
destroy the data circulating during the communication. This attack is more a concept than areal attack.
There are various attacks implementing the Man in the middle principle, such asthe DNS Man in the
Middle which uses DNS Spoofing to divert the traffic between aweb server and aweb client. A recent
application has been created to divert SSH traffic.

Denial of service

This attack iswell named since it will lead to the unavailability of a service (specific application) or of a
target machine. We will distinguish two types of denial of service: on the one hand, the ones exploiting
an application bug and on the other hand the ones related to the bad implementation of a protocol or to
the weaknesses of a protocol.

Application denial of service

If the vulnerabilities of an application can lead to the ability of taking the control over a machine (buffer
overflow example), they can aso lead to adenial of service. The application will become unavailable
either by lack of allocated resources or by a crash.

Network denial of service

There are different types of denial of service using the protocols features of the TCP/IP stack.

SYN Flooding

We aready saw that a TCP connection is established in three stages (TCP Three Way Handshake). SYN
Flooding exploits this mechanism. The three stages are sending a SYN, receiving a SYN-ACK and
sending an ACK. Theideaisto leave on the target machine a big number of TCP connections waiting.
To do this, the cracker sends alot of connection requests (SYN flag = 1), the target machine sends the
SYN-ACK back to answer the received SYN. The cracker will not answer with an ACK, thus for each
received SY N, the target machine will have a pending TCP connection. Since these half-open
connections use memory resources, after awhile, the machine is saturated and cannot accept any other
connection. Thistype of denial of service only affects the target machine.

The cracker uses a SYN Flooder such as synk4, indicating the target TCP port and using random source
| P addresses to prevent the attacker machine from being identified.

UDP Flooding

This denial of service exploits the unconnected mode of the UDP protocol. It creates an UDP Packet
Storm (bunch of UDP packets) either to a single machine or between two machines. Such an attack
between two machines leads to a network congestion and to a resource saturation on both hosts. The
congestion is more important since UDP traffic has priority over TCP traffic. The TCP protocol has a
mechanism to control congestion, in case the acknowledgement of a packet arrives after along time: this
mechanism adapts the frequency in sending TCP packets, then the rate decreases. The UDP protocol
does not have this mechanism: after awhile the UDP traffic uses the whole bandwith, leaving a very
small part of it to the TCP traffic.

The most known example of UDP Flooding is the Chargen Denial of Service Attack. The
implementation of this attack is simple: It is enough to establish a communication between the char gen
service of amachine and the echo service of another one. The char gen service generates characters
while echo resends the data it receives. The cracker then sends UDP packets to the port 19 (char gen) to
one of the "victims" spoofing the | P address and the source port from the other one. In that case, the
source port isthe UDP port 7 (echo). The UDP Flooding leads to a bandwith saturation between both
machines. A whole network can then be the "victim" of an UDP Flooding.

Packet Fragment

The denial of service of Packet Fragment type uses weaknesses of some TCP/IP stacks concerning |P
defragmentation (reassembling I P fragments).

A known attack using this, is Teardrop. The fragmentation offset of the second segment is smaller than
the size of the first one and so for the offset added to the size of the second one. This means that the first
fragment contains the second one (overlapping). At defragmentation time, afew systems do not manage
this exception and this leads to adenial of service. There are variants of this attack: bonk, boink and

newtear for example. The Ping of Death denial of service exploits a bad management of ICMP
defragmentation, sending more data than the maximum size of an IP packet. These different types of
denial of service lead to a crash of the target machine.

Smurfing

This attack uses the ICMP protocol. When a ping (ICMP ECHO message) is sent to a broadcast address
(for instance 10.255.255.255), thislast is reduced and sent to every machine in the network. The
principle of the attack isto spoof the ICMP ECHO REQUEST packets sent using the target as source |P
address. The cracker sends a continous ping flow to the network broadcast address and al the machines
answer the target with an ICMP ECHO REPLY message. The flow is then multiplied by the number of
hosts in the network. In that case, the whol e target network will be affected by the denial of service,
since the big traffic generated with this attack leads to a network congestion.

Distributed denial of service

The distributed denial of service saturates the attacked network. The ideais to use various sources
(daemons) for the attack and masters to control them. The most known DDoS (Distributed Denial of
Service) tools are Tribal Flood Network (TFN), TFN2K, Trinoo and Stacheldraht. Picture 13 shows a
typica DDoS network:

Pic.13: DDoS network

Pirate

Mlaster Il aster Mlaster

Daetn on Draem on Diaetm on Diaetn on Draem on Diaetm on

The cracker uses masters to easily control the sources. Obviously, he needs to connect (TCP) to the
masters to configure and prepare the attack. The masters only send commands to the sources via UDP.
Without the masters, the cracker should have to connect to each source. The origin of the attack would
be detected in a much easier way and its implementation would last much longer.

Every daemon and master talks to each other exchanging specific messages depending on the tool used.
These communications can also be encrypted and/or authenticated. To install the daemons and the
masters, the cracker uses known vulnerabilities (buffer overflow on services such as RPC, FTP, etc).
The attack itself isa SYN Flooding or a Smurf Attack. The result of such adenial of serviceisto make a

network unreachable.

Conclusion

Today, the security against remote attacks is getting stronger but unfortunately this is not true ft
internal security. This "poor relation" of protection against crackers still leaves nice perspectives
attacks such as TCP Session Hijacking, ARP Spoofing and DNS Spoofing. Furthermore, the pr
of sequence numbers (heart of IP Spoofing) and the Fragment Attack variants appear just beca
bugs found in the network equipment’s OS. Concerning applications attacks, they still have goo
ahead because of the growing complexity of the web related applications and of the shorter dee
to developers and administrators. The denial of service attack will stay fearsome in its distribute
as long as every user fails to realize the need for protecting his machine.

Links

RFC 1858 - Security Considerations for IP Fragment Filtegngsite.dk/RFC/rfc/rfc1858.html
IP Spoofing Demystified - Phrack 48ww.phrack.org/

Simple Active Attack Against TCP - Laurent Joncherayw.insecure.org/stf/iphijack.txt
DNS ID Hacking - ADM Crew:
packetstorm.securify.com/groups/ADM/ADM-DNS-SPOOF/ADMID.txt

The DoS Project’s "trinoo" - David Dittrictstaff.washington.edu/dittrich/misc/trinoo.analysis
The Strange Tale of the DENIAL OF SERVICE Attacks against GRC.Cgddlcom
hping2:www.kyuzz.org/antirez/hping.html
nemesiswww.packetfactory.net/Projects/nemesis/
mendaxpacketstorm.securify.com/Exploit_Code_Archive/mendax_linux.tgz
hunt:lin.fsid.cvut.cz/~kra/index.html

dsniff: www.monkey.org/~dugsong/dsniff/
fragrouter:packetstorm.securify.com/UNIX/IDS/fragrouter-1.6.tar.gz

Webpages maintained by the LinuxFocus Ed|tor

"some rights reserved" séeuxfocus.org/licensey fr --> en: Georges Tarbouriech <gt(at)linuxfocus.org>

team Translation information:
© Eric Detoisien fr --> -- : Eric Detoisierxvalgasu(at)club-internet.fr>

http://www.LinuxFocus.org

2005-01-14, generated by Ifparser_pdf version 2.51

