
LinuxFocus article number 289
http://linuxfocus.org

by Vincent Renardias
<vincent(at)renardias.com>

About the author:

GNU/Linux user since
1993, Vincent Renardias
started to get involved in its
development in 1996:
Debian developer, French
translator of The GIMP and
GNOME desktop, founder
of the Linux User Group in
Marseille (PLUG)... Now
R&D manager for the EFB2
company, he keeps
contributing to GNU/Linux.

Translated to English by:
Georges Tarbouriech
<gt(at)linuxfocus.org>

Packet filtering with Linux

Abstract:

This article was first published in a Linux Magazine France special issue
focusing on security. The editor, the authors and the translators kindly
allowed LinuxFocus to publish every article from this special issue.
Accordingly, LinuxFocus will bring them to you as soon as they are
translated to English. Thanks to all the people involved in this work.
This abstract will be reproduced for each article having the same origin.

One of the good ways to prevent intrusion attempts is to filter what is
useless in the network. This task is usually attributed to a machine used
as a firewall.
In this article we will present the required basics for implementing and
configuring such a system.

_________________ _________________ _________________

Gateway, Proxy-Arp or Ethernet Bridge ?

The filtering mechanism can be considered as a net which will stop some unwanted packets. The most
important thing is to find the right size of the mesh and the right place to install it.

Firewall location in the network

To be able to properly filter the packets, the filtering mechanism must be physically inserted between
the network it protects and the "rest of the world". Practically this is done with a machine holding two
network interfaces (usually Ethernet), one connected to the internal network and the other to the router
allowing the access to the outside. This way, communications will have to go through the firewall which
will block them or not according to their content.
The machine holding the filtering mechanism can be configured in 3 different ways:

- "simple" gateway: this is the most common configuration. The machine is used as a gateway between
two networks or subnetworks. The computers in the local network shall be configured to use the firewall
instead of the router as their default route.

- "Proxy-ARP" gateway: the previous configuration implies the division of the network into two
subnetworks, what makes half the available IP addresses being lost. This is a bit annoying. In the
example of a 16 addresses subnetwork (with a 28 bit netmask), only 14 are available, since the network
and the broadcast addresses are in use. Adding 1 bit to the subnetmask, we decrease from 14 to only 6
available addresses (8 IPs minus the network and broadcast ones). When you cannot afford to lose half
the available IPs, you can use this technique which is explained a bit later in this article. Furthermore,
this technique does not require any changes in the network configuration of the existing machines
neither the router nor the protected computers.

- Ethernet bridge: installing an Ethernet gateway (not an IP gateway), makes the filtering mechanism
invisible from other machines. Such a configuration can be done without assigning IP addresses to the
Ethernet interfaces. The machine then becomes undetectable with ping, traceroute, etc. Let us note that a
packet filtering implementation in such a configuration requires a 2.2.x kernel since the port of this
feature on 2.4.x kernels is not yet finished.

Basic rules of filtering

Now that we know where to install our filter, we must define what it will have to block or what it will
have to accept.

There are two ways to configure such a filter:

- The good one: no packet is allowed but the ones a rule accepts.
- The bad one: (unfortunately, often used) the explicitely forbidden packets are stopped, all the others
are accepted.

It is simple to explain: in the first case, forgetting a rule results in a service not working properly or not
working at all. Usually, this is noticed rather quickly and then it is enough to add the proper rule to make
things work again.
In the second case, forgetting a rule creates a potential vulnerability which may be hard to find... if we
find it.

Netfilter

The most used packet filtering software with Linux 2.4 is Netfilter; it nicely replaces ’ipchains’ used in
Linux kernel 2.2. Netfilter is made of two parts: the kernel support which has to be compiled in your
kernel and the ’iptables’ command that should be available in your system.

Example of setup

A commented example being better than a long speech, next we will describe how to install and setup a
filtering mechanism. First, the machine will be configured as a gateway using Proxy-ARP to limit the
number of IP addresses and we will setup the filtering system.

The author has a preference for the Debian distribution to setup such a system, but any other distribution
will do.

First, check that your kernel has Netfilter support. If this is true, the boot message should contain:

ip_conntrack (4095 buckets, 32760 max)
ip_tables: (c)2000 Netfilter core team

Otherwise, you will have to recompile the kernel after having activated Netfilter support. The
corresponding options are found in the "Network Packet Filtering" submenu of the "Networking
Options" menu. From the "Netfilter Configuration" section, select the options you need. When in
doubt, you can select all of them. Furthermore, it is better to include Netfilter into the kernel and not use
modules. If for some reason or other one of the Netfilter modules was missing or not loaded, filtering
would not work and we better don’t talk about the risks that this would imply.

You also should install the ’iproute2’ package (this last is not compulsory but our example will use it
since it allows us to make the configuration script simpler). With Debian, it is enough to type the
’apt-get install iproute’ command.
With other distributions, get the corresponding package. The usual way or install the software from
source code that you can download from the following address:

ftp://ftp.inr.ac.ru/ip-routing/

Now the 2 Ethernet cards have to be configured. We must note that the Linux kernel, when
autodetecting the hardware stops the search of network cards as soon as it found one. Accordingly, only
the first one is detected.
An easy solution to this problem consists in adding the following line to the lilo.conf file:
append="ether=0,0,eth1"

Now, we must configure the Ethernet interfaces. The method we choose allows to use the same IP
address for both cards thus saving one address.
Let us assume that we have a 10.1.2.96/28 subnetwork, that is addresses starting from 10.1.2.96 to
10.1.2.111 included. The router will have the 10.1.2.97 address and our filtering machine the 10.1.2.98.
The eth0 interface will be connected to the router through a cross-connect RJ45 cable if both cards are
directly connected without using a hub or a switch; the eth1 interface will be connected to the
hub/switch and from there to the local network machines.

Accordingly both interfaces will be configured with the following parameters:

address : 10.1.2.98
netmask : 255.255.255.240
network : 10.1.2.96
broadcast: 10.1.2.111
gateway : 10.1.2.97

Next, we use the following script which must be run after the initial configuration of the network cards
to finish the setup.

net.vars: configuration variables

PREFIX=10.1.2
DMZ_ADDR=$PREFIX.96/28
Interface definitions
BAD_IFACE=eth0
DMZ_IFACE=eth1
ROUTER=$PREFIX.97

net-config.sh: network configuration script

#!/bin/sh
Comment out the next line to display the commands at execution time
set -x
We read the variables defined in the previous file
source /etc/init.d/net.vars
We remove the present routes from the local network
ip route del $PREFIX.96/28 dev $BAD_IFACE
ip route del $PREFIX.96/28 dev $DMZ_IFACE
We define that the local network can be reached through eth1
and the router through eth0.
ip route add $ROUTER dev $BAD_IFACE
ip route add $PREFIX.96/28 dev $DMZ_IFACE
We activate Proxy-ARP for both interfaces
echo 1 > /proc/sys/net/ipv4/conf/eth0/proxy_arp
echo 1 > /proc/sys/net/ipv4/conf/eth1/proxy_arp
We activate the IP forwarding to allow the packets coming to one card
to be routed to the other one.
echo 1 > /proc/sys/net/ipv4/ip_forward

Let us go back to the Proxy-ARP mechanism required for our configuration.
When a machine talks to another one in the same network, it needs to know the Ethernet address (or
MAC address or hardware address) corresponding to its IP address. Then the source machine broadcasts
the question "what is the MAC address of the interface having the IP address 1.2.3.4 ?", and the
destination machine must answer.

Here is an example of such a "talk" seen using tcpdump:
- the request: the machine 172.16.6.72 asks the MAC address corresponding to the IP address IP
172.16.6.10.
19:46:15.702516 arp who-has 172.16.6.10 tell 172.16.6.72
- the answer: the machine 172.16.6.10 provides its card number.
19:46:15.702747 arp reply 172.16.6.10 is-at 0:a0:4b:7:43:71

This leads us to the end of this short explanation: the ARP requests are done by broadcast, thus being
limited to only one physical network. Accordingly the request from a protected machine to find the
MAC address of the router should be blocked by the filtering machine. Activating the Proxy-ARP
feature allows to solve this problem, since it will transfer the ARP requests.

At this stage, you should have a working network with a machine managing the whole traffic between
the local network and the outside.

Now, we must setup the filtering using Netfilter.
Netfilter allows to act directly on the packet flow. In the basic configuration, the packets are managed by
3 rule chains:
- INPUT: for the packets incoming through an interface,
- FORWARD: for all the packets transmitted from an interface to another one,
- OUTPUT: for the packets outgoing through an interface.

The ’iptables’ command allows to add, change or remove rules in each of these chains to modify the
filtering behavior.
Furthermore, each chain has a default policy, that is, it knows what to do when no rule in the chain
matches a packet.

The four most current options are:
- ACCEPT: the packet is allowed to go through,
- REJECT: the packet is rejected and the associated error packet is sent (ICMP Port Unreachable, TCP
RESET, depending on the case),
- LOG: writes a packet note in syslog,
- DROP: the packet is ignored and no answer is sent.

Packets flow through standard chains

Here are the main options of iptables allowing to manipulate entire chains. We will detail them later on:

-N: creates a new chain.
-X: removes an empty chain.
-P: changes the default policy of a chain.
-L: lists the rules in a chain.
-F: flushes all the rules in a chain.
-Z: clears the bytes and packets counters having gone through the chain.

To modify a chain, the following commands are available:
-A: appends a rule to the end of a chain.
-I: inserts a new rule at a given position in a chain.
-R: replaces a given rule in a chain.
-D: deletes a rule in a chain, either using its number or describing the rule.

Let us see a small practical example: we will block the PING answers (that is the ’echo-reply’ type
ICMP packets) coming from a given machine.
First, let us check that we can "ping" the given machine:

ping -c 1 172.16.6.74
PING 172.16.6.74 (172.16.6.74): 56 data bytes
64 bytes from 172.16.6.74: icmp_seq=0 ttl=255 time=0.6 ms

--- 172.16.6.74 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.6/0.6/0.6 ms

Now, we add a rule into the INPUT chain which will intercept the ICMP-Reply (’-p icmp --icmp-type
echo-reply’) packets coming from the machine 172.16.6.74 (’-s 172.16.6.74’). These packets will be
ignored (’-j DROP’).

iptables -A INPUT -s 172.16.6.74 -p icmp --icmp-type echo-reply -j DROP

Now, let us PING this machine again:

ping -c 3 172.16.6.74
PING 172.16.6.74 (172.16.6.74): 56 data bytes

--- 172.16.6.74 ping statistics ---

3 packets transmitted, 0 packets received, 100% packet loss

As we could expect, the answers do not pass. We can check that the 3 answers have been blocked (3
packets for 252 bytes):

iptables -L INPUT -v
Chain INPUT (policy ACCEPT 604K packets, 482M bytes)
 pkts bytes target prot opt in out source destination
 3 252 DROP icmp -- any any 172.16.6.74 anywhere

To go back to the initial situation, we just have to remove the first rule from the INPUT chain:

iptables -D INPUT 1

Now, PING should work again:

ping -c 1 172.16.6.74
PING 172.16.6.74 (172.16.6.74): 56 data bytes
64 bytes from 172.16.6.74: icmp_seq=0 ttl=255 time=0.6 ms

--- 172.16.6.74 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.6/0.6/0.6 ms
#

It works !

You can add other chains to the 3 pre-existing ones (that you cannot remove anyway) and make some
traffic go through them. This can be useful, for instance, to avoid duplicating rules in various chains.

Now, let us setup the required rules for a minimal firewall. It will allow ssh, domain (DNS), http and
smtp services and nothing else.
To simplify, the setup commands are written in a shell script to make configuration easier. The script
starts flushing out the present configuration before setting up the new one. This small trick allows the
script to be run when the configuration is active without the risk of duplicated rules.

rc.firewall

#!/bin/sh

Flushing out the rules
iptables -F
iptables -F INPUT
iptables -F OUTPUT
iptables -F FORWARD

The chain is built according to the direction.
bad = eth0 (outside)
dmz = eth1 (inside)
iptables -X bad-dmz
iptables -N bad-dmz
iptables -X dmz-bad
iptables -N dmz-bad
iptables -X icmp-acc
iptables -N icmp-acc
iptables -X log-and-drop
iptables -N log-and-drop

Specific chain used for logging packets before blocking them
iptables -A log-and-drop -j LOG --log-prefix "drop "
iptables -A log-and-drop -j DROP

The packets having the TCP flags activated are dropped
and so for the ones with no flag at all (often used with Nmap scans)
iptables -A FORWARD -p tcp --tcp-flags ALL ALL -j log-and-drop
iptables -A FORWARD -p tcp --tcp-flags ALL NONE -j log-and-drop

The packets coming from reserved addresses classes are dropped
and so for multicast
iptables -A FORWARD -i eth+ -s 224.0.0.0/4 -j log-and-drop
iptables -A FORWARD -i eth+ -s 192.168.0.0/16 -j log-and-drop
iptables -A FORWARD -i eth+ -s 172.16.0.0/12 -j log-and-drop
iptables -A FORWARD -i eth+ -s 10.0.0.0/8 -j log-and-drop

The packets belonging to an already established connexion are accepted
iptables -A FORWARD -m state --state INVALID -j log-and-drop
iptables -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT
The corresponding chain is sent according to the packet origin
iptables -A FORWARD -s $DMZ_ADDR -i $DMZ_IFACE -o $BAD_IFACE -j dmz-bad
iptables -A FORWARD -o $DMZ_IFACE -j bad-dmz
All the rest is ignored
iptables -A FORWARD -j log-and-drop

Accepted ICMPs
iptables -A icmp-acc -p icmp --icmp-type destination-unreachable -j ACCEPT
iptables -A icmp-acc -p icmp --icmp-type source-quench -j ACCEPT
iptables -A icmp-acc -p icmp --icmp-type time-exceeded -j ACCEPT
iptables -A icmp-acc -p icmp --icmp-type echo-request -j ACCEPT
iptables -A icmp-acc -p icmp --icmp-type echo-reply -j ACCEPT
iptables -A icmp-acc -j log-and-drop

Outside -> Inside chain
mail, DNS, http(s) and SSH are accepted
iptables -A bad-dmz -p tcp --dport smtp -j ACCEPT
iptables -A bad-dmz -p udp --dport domain -j ACCEPT
iptables -A bad-dmz -p tcp --dport domain -j ACCEPT
iptables -A bad-dmz -p tcp --dport www -j ACCEPT
iptables -A bad-dmz -p tcp --dport https -j ACCEPT
iptables -A bad-dmz -p tcp --dport ssh -j ACCEPT
iptables -A bad-dmz -p icmp -j icmp-acc
iptables -A bad-dmz -j log-and-drop

Inside -> Outside chain
mail, DNS, http(s) and telnet are accepted
iptables -A dmz-bad -p tcp --dport smtp -j ACCEPT
iptables -A dmz-bad -p tcp --sport smtp -j ACCEPT
iptables -A dmz-bad -p udp --dport domain -j ACCEPT

iptables -A dmz-bad -p tcp --dport domain -j ACCEPT
iptables -A dmz-bad -p tcp --dport www -j ACCEPT
iptables -A dmz-bad -p tcp --dport https -j ACCEPT
iptables -A dmz-bad -p tcp --dport telnet -j ACCEPT
iptables -A dmz-bad -p icmp -j icmp-acc
iptables -A dmz-bad -j log-and-drop

Chains for the machine itself
iptables -N bad-if
iptables -N dmz-if
iptables -A INPUT -i $BAD_IFACE -j bad-if
iptables -A INPUT -i $DMZ_IFACE -j dmz-if

External interface
SSH only accepted on this machine
iptables -A bad-if -p icmp -j icmp-acc
iptables -A bad-if -p tcp --dport ssh -j ACCEPT
iptables -A bad-if -p tcp --sport ssh -j ACCEPT
ipchains -A bad-if -j log-and-drop

Internal interface
iptables -A dmz-if -p icmp -j icmp-acc
iptables -A dmz-if -j ACCEPT

A few words on the quality of service. Linux can modify the ToS ("Type of Service") field and change
its value to give the packet a different priority. For instance, the following command changes the
outgoing SSH packets to improve the connecion response.

iptables -A OUTPUT -t mangle -p tcp --dport ssh -j TOS --set-tos Minimize-Delay

In the same way, for FTP connecions you could use the ’--set-tos Maximize-Throughput’ option,
to improve the transfer rate to the detriment of the session interactivity.

That’s it. Now, you know the basics to setup an efficient packet filtering system. However, keep in mind
that a firewall is not the panacea when security is a concern. It only is another precaution. Setting up a
firewall does not prevent you from using strong passwords, latest security patches, intrusion detection
system, etc.

References

Proxy-ARP Mini-HOWTO:
http://www.linuxdoc.org/HOWTO/mini/Proxy-ARP-Subnet/index.html
Netfilter: http://netfilter.samba.org/

Webpages maintained by the LinuxFocus Editor
team

© Vincent Renardias
"some rights reserved" see linuxfocus.org/license/

http://www.LinuxFocus.org

Translation information:
fr --> -- : Vincent Renardias <vincent(at)renardias.com>

fr --> en: Georges Tarbouriech <gt(at)linuxfocus.org>

2005-01-14, generated by lfparser_pdf version 2.51

