LinuxFocus article number 329
http://linuxfocus.org

by Jonas Alvarez
<jalvarez(at)eitb.com>

About the author:

Jonas Alvarez has worked

as aplication developer in

UNI)F<) and Windowsp Abstract:
environments for several
years. Among other things,
he has given several O.S.,
Networks and Developmen
Courses.

Gambas is one of the currently available Basics for Linux. In this ari
we’ll develop an example where we can see how simple and power
gambas for daily tasks is.

Trandated to English by:
Miguel Alfageme Sanchez,
Samuel Landete Benavente.
<mas20(at)tid.es>

| ntr oduction

One of the most extended and easiest programming languages, mainly for the newbies, is Basi
now the most common environment for Basic application development was the Microsoft Visual
IDE. Lately the use of the Linux is spreading towards the user desktop. From being limited to se
and being used by gurus, it is becoming an OS for the client computers, giving an answer to ne
as reading electronic mail, surfing the web and text editing. Following this trend several BASIC
development environments are now available. Gambas is the one we’ll see in this article, a graj
environment for Basic development. With a programming style similar to the Visual Basic’s, as \
see later, it has idifferencedoo. The version | will use is 0.64a, included in my SuSE 9.0 distribu
While writting these lines, we can see onphgiect page of gambdlisat the last version is 0.81, but t
should not affect this article.

Who will beinteressted in Gambas?

Asadeveloper of Visual Basic applications for atime, | didn’t need much more than just start to work
to develop this example. Besides, it’sthe first time | touch Gambas, what proves that for anyone who
has ever used Visual Basic can useit. For the rest, it can be an example of how simple Basic can be
useful for many things.

The example

Because | like learning by doing, we will start with an example. It isavery simple application which has
a stopwatch with a countdown on the screen. We can change the time, stop it and start it when we wish
to do so.

Just after starting Gambas we' [l meet its assistant:

Welcome to Gambas ! =

version 0.64a

se hitp://gambas.sourceforge.net for more details...

[Open project...
[> Recent projects ==

(Z) open example >>

Quit

We choose New Project. In the next window we are asked for the Project Name. Our project will be
called CountDown. On the Second Dialog we must choose the project directory. We select our

working directory, and in the text box on the bottom, we write the directory name that we are going to
create.

' Create a new project

1+ Choose a project name

* ‘chntDawn
2 - Choose the project directory
Look in LlfhumefjunasfF’m]ects |*] £
& =N m Projects Name w | Size |T|_.rpe |
— (e .. Directory
@ @ CuentaAtras (CJe2t Directory
+-[(JEducation @ CuentaAtras Gambas pr... -
é""sKm” [)CuentaAtras.targz 2K File [
+-[Jkron2 [CJEducation Directory
+-(Jpublic_html @ Kron Gambas pr... '
+- v [Jkron2 Directory
+-[Jlib
+ -COmedia
+-CImnt
R Y | TN
Directory CountDown
Cancel
y

If it isthefirst time we start Gambas or if we haven't deactivated the option, we'll see the Tip of the
day. We read what interests us and we close the window. We aready are in the environment, ready to
work. We can see several windows on our desktop. If we are in an environment such as KDE, with
several desktops, we might be interested in dedicating one of them to Gambas, thus having al its
windows under control. Personally one of the first options | usually activate in KDE is that each desktop
only shows its own icons.

We are going to create the main form of the application. For this, we do aright click in any part of the
project window and create a new form.

Eile Project View Tools 7

DE@meLE A HE
--@ CountDown
= Classes

[€] Class...
[=] Icon...
L [Textfile...
[(1 Directory...

Welcome to GAMBAS |

In the dialog we indicate the form name, in this case FCountDown, with al the values | eft on their
default.

MNew Existing

1 » Choose the form name

n'|
A

Cus= ‘FG::untDcwn|

2 » Choose the form options

[®| Startup class

(| Default dialog management
(| Constructor

(| Destructor

(| Static constructor

(| Static destructor

! QK | Cancel U

We dready have our first form, which is empty for the time being.

" cuenaAatorn posiosdo) s [=1E)

Here we will include the controls our stopwatch will have. We click on the toolbar el ements we'll
include in our form. We can see its name if we pass the mouse above each control. With adouble click
the control will be placed in the top left part of the form. With asingle click we'll placeit, changing its
size, in the part of the form we want. For our program we are goint to need a Label, a TextBox, a Timer,
two Buttons and a ToggleButton.

abc M [
v | (&]

abc A

]

Once all the controls are in place, we must have something similar to this (more or less, each one can put
what he wants):

Once we have the controls in our form, we change their names to something that has a meaning for us.
For this, we edit the Name property on the Property sheet. If we can’t see the Properties sheet on the
screen we can activate it from the project window with the property button. To search it we can move
the mouse above the buttons in order to locate the one we want.

| name the Label1 control as IblContador: | click the control and next | can change its name in the
Property Sheet. For this, | edit the Name property and assign IblContador asits value. After this|
change its font type to bigger one . For this, in the button ... initsfont property | choose the Courier
Bold 72 font type and Accept (OK). In the same way, | change the ToggleButtonl name to
tglFuncionando. TextBox1 control becomes txtSegundos, Timer1 control becomes clkMiRel oj, Buttonl
becomes cmdPoner Segundos and at last | rename Button2 to cmdSalir. Besides | change the Alignment
of txtSegundosto Right.

And we start with the Basic code. It’ s very simple and not very strict with the sintax. What we'll do first
is change the texts we see in the form to more real values. Although many of the options are being
changed from Basic, we could have done it in each of the control’s property sheet, with any of both
options we would get the same resullt.

As soon as the form opens we fill the titles we want each control to have. When we say as soon as the
form opens we are talking about managing an event: the opening of the form. For this we double click in
apart of our form that hasn’t any control. An edit window opens and the cursor islocated inside a new
procedure: Public Sub Form_Open() (if we have programmed before in Visual Basic, we would use
the Form_L oad event). We are going to make the IblContador control to present the remaining seconds
of the countdown. Thefirst lines of code of the from class |ook as follows:

Ganbas class file
CONST f SegundosPor Def ect o AS Fl oat =120. 0
f Segundos AS Fl oat

PRI VATE SUB Ver Val or es()
DI M nM nut os AS I nteger

nM nutos = Int(Int(fSegundos) / 60)
| bl Contador. Caption = nMnutos & ":" & Format (fSegundos -

nM nutos * 60, "00.0")
END

PRI VATE SUB Ver Act i var Desacti var ()
| F t gl Funci onando. Val ue THEN
t gl Funci onando. Text = (" &Det ener")
ELSE
t gl Funci onando. Text = (" &Arrancar")
ENDI F
END

PUBLI C SUB For m Open()
f Segundos = f SegundosPor Def ecto
Ver Val or es
t gl Funci onando. Val ue = FALSE
Ver Acti var Desacti var
t xt Segundos. Text = f Segundos
cndPoner Segundos. Text = ("&Reiniciar")
cmdSalir. Text = ("&Salir")
END

We have added just after the comment Gambas had generated, * Gambas class file, a constant that holds
the number of seconds by default for the countdown, fSegundosPor Defecto, with a value of 120 seconds
(two minutes), and avariable, fSegundos which is going to hold the countdown. We have created two
procedures too: VerValores, which visualizes the countdown values and Ver Activar Desactivar, which
changes the text of the Start/Stop button.

At this moment we already have aform that works. It doesn’t do anything useful, apart from makeing us
understand what we have done until now, so it’s worth atry. We save the changes from the main
window of the project, Project CountDown, and launch the application with F5, or with the Execute
button of the button bar of the same window. This is what we should see:

IIIII!::.EhnI-III-III-II-Iq!!q
0:10.0
L Start J

10 | B Exit

If this doesn’t appear or we receive any error, we must review what we have done until now. Even
though we push Start, Reset or Exit nothing happens. Thiswill be our next task: assign events to this
buttons in such away that, when the user pushes any of them, this moves. Before continuing let’s play
whith our application and discover al that it contains. To close it we can push the X on the top right
part. I'min KDE, with the SuSe theme, as you could see in the forms, and it’s possible that you have to

close your window in another way.

Let’sgo for the most ssimple of the buttons: What must happen when the user pushes Exit? We must
close the application. To introduce the Basic code that will be executed when the user pushes this
button, we double click in the button with the text Exit (cmbEXxit). We see that Gambas generates some
lines of code and that the cursor is set between them. Here is where the code must be introduced. This
procedure will be executed when the user clicks on this button. To close the application we must execute
Me.Close, so the code of this event will be:

PUBLI C SUB cndSalir_dick()
ME. Ol ose

END

The next button we'll control isthe Reset. In the same way: we double click on the button and in the
code window that Gambas shows we must insert:

PUBLI C SUB cndPoner Segundos_Cl i ck()
f Segundos = t xt Segundos. Text
Ver Val or es

END

To the point, it still seems that nothing happens. Our applicaction must be given some action. We are
going to activate the Timer object located in the form from the beginning. To do so we have to set the
interval to receive clock events. Either we do that from the code, in the previous event Form_Open, or
we put in the form. Now we will do it in thisway. In the form we click on the object Timer and in its
property sheet we change its Delay value from 1000ms, to 100, to receive one event each tenth of
second, which is going to be the precision of our stopwatch.

We till don’t have the code that will be executed each time the clock wakes, and the way to activate it.
To generate the code of the clock, nothing more simple, as aways, than double clicking on the clock
form. It will take us to the code window at the right position. After inserting our code it must look like:

PUBLI C SUB cl kM Rel o] _Ti mer ()
| F f Segundos < 0.1 THEN
t gl Funci onando. Val ue = FALSE
t gl Funci onando_d i ck
ELSE
f Segundos = fSegundos - 0.1
Ver Val or es
END | F
END

And finally we activate at user’ s will the stopwatch with the toggle button, which is the one we still
didn’t manage. With adouble click on the button we can insert the code for its event:

PUBLI C SUB t gl Funci onando_d i ck()
cl kM Rel oj . Enabl ed = t gl Funci onando. Val ue

Ver Act i var Desact i var
END

And we can aready test our work.

And thefinishing touch: Gambasis multilingual, asit must be

Another Gambas' feature is the support for multiple languages. If you have been looking at the code you
will notice that the strings are enclosed by brackets. Thisisto notify Gambas that they are going to be
trandated. The text of the form controls doesn’'t need these brackets. Our project has turned into
something very useful, and people asks for the dialogs to appear in their language. Nothing more simple.
We go to the Project / Properties menu of the project window.

W Propiedades del proyecio - CuentaAtras J—-ﬂ

[General | Componentes ‘ Opciones Avanzadas]

i CuentaAtras

fhome/jonas/Projects

—Propiedades

Titulo |Cuenta Atras

Version ‘] ‘ 0 ‘ 1

|¥| El proyecto es traducible

—Informacian
Modulos 0
Clases 0
Formularios 1
Lineas g8
Ejecutable 0K
Tamafio del proyecto 11 K

i’ Cancelar |

Herewe set a Titleto our project and activate the Project istranslatable option which will allow to
trand ate the dialogs. Now we have a new option active in the menus: Project / Trandate. If we open the
dialog, we can see that the trandation is now very intuitive:

R

Idioma de traduccian | Inghés (U.S.A) - |

= Wi = = R i

Sin traducir « Ingles (U.S.A.)

BArrancar &5tan

Buttoni -

Button2 -

EDsatenar Sklop

Label -

ERainiciar &Resat

BSalir &Exit

TextBoxl

ToggleBullon

Cadena sin traducir

SAmancar

Traduccion j‘ + X
s 5tan

9 cadenas (0 no traducidas) Carrar j

First we select the target language in the upper part. When we want to translate a string, we select it and
fill the bottom part. Once al the strings are translated, we can test it launching the application from a
terminal if before we set the LANG variable with the language of the trandlation. If | want to see how
looks the trandation to english, | close gambas and execute

$ LANG=en_US; ganbas

To go back to the previous situation, | launch gambas from the KDE menu, just because here the
environment variable isn’t defined, it only livesin its console.

Conclusion

Although it is an interpreted language and we need to have all of Gambas installed, it is a good option to
start to development of applications for the Linux desktop. Aswe have seen it is very simple and the
development isvery fast. It is enough for many day to day applications.

The onscreen help is quite complete, besides the avail able examples from the File/Open example menu.
We can go to the project web too, in the links section there are many Basic projects that can be
interesting. Thisis only the beginnig of a project that | foresee avery good future.

Webpages maintained by the LinuxFocus Ed
team
© Jonas Alvarez
"some rights reserved" séeuxfocus.org/licens
http://www.LinuxFocus.org

nslation information:
es --> -- : Jonas Alvaregalvarez(at)eitb.com>

es --> en: Miguel Alfageme Sanchez, Samuel Landet§
Benavente. <mas20(at)tid.es>

2005-01-14, generated by Ifparser_pdf version 2.51

