LinuxFocus article number 343
http://linuxfocus.org

Why does this not work!? How to find and fix
faultsin Linux applications.

B \ o 1 - ‘~.
by Guido Socher (homepage)

About the author: Abstract:

Guido likes the possibilities Everybody claimsthat it is easy to find and fix bugs in programs written
that an open source system under Linux. Unfortunately it is very hard to find documents explaining
like Linux offersto how to do that. In this article you will learn how to find and fix faults
investigate Problems, You ~ Without first learning how an application internally works.

can redly find the root
cause given that you are
motivated to invest time.

| ntroduction

From a user perspective there is hardly any difference between closed and open source systems as long
as everything runs without faults and as expected. The situation changes however when things do not
work and sooner or later every computer user will come to the point where things do not work.

In a closed source system you have usually only two option:

® Report the fault and pay for the fix

® Re-install and pray that it works now
Under Linux you have these options too but you can also start and investigate the cause of the problem.
One of the main obstaclesis usualy that you are not the author of the failing program and that you have
really no clue how it worksinternally.

Despite those obstacles there are afew things you can do without reading all the code and without
learning how the program works internaly.

L ogs

The most obvious and simplest thing you can doisto look at filein /var/log/... What you find in those
files and what the names of those logs files are is configurable. /var/log/messages is usually the file you
want to look at. Bigger applications may have their own log directories (/var/log/httpd/ /var/log/exim ...).

Most distributions use syslog as system logger and its behavior is controlled viathe configuration file
/etc/syslog.conf The syntax of thisfile is documented in "man syslog.conf".

Logging works such that the designer of an program can add a syslog line to his code. Thisis much like
aprintf except that it writes to the system log. In this statement you specify a priority and afacility to
classify the message:

#i ncl ude <sysl og. h>

voi d openl og(const char *ident, int option, int facility);
void syslog(int priority, const char *format, ...);
voi d cl osel og(void);

facility classifies the type of application sending the nessage.
priority determnes the inportance of the nmessage. Possible
val ues in order of inportance are:

LOG_EMERG
LOG_ALERT
LOG CRI T
LOG_ERR
LOG_WARNI NG
LOG_NOTI CE
LOG_I NFO
LOG_DEBUG

With this C-interface any application written in C can write to the system log. Other languages do have
similar APIs. Even shell scripts can write to the log with the command:

logger -p err "this text goes to /var/l og/ messages"

A standard syslog configuration (file /etc/syslog.conf) should have among others aline that looks like
this:

Log anything (except mail) of level info or higher
Don’t log private authentication nessages.
*_ info;mail.none;authpriv. none /var/| og/ messages

The"*.info" will log anything with priority level LOG_INFO or higher. To see more information in
Ivar/log/messages you can change thisto "*.debug" and restart syslog (/etc/init.d/syslog restart).

The procedure to "debug" an application would therefore be as follows.

1) run tail -f /var/log/ messages and then start the application which
fails froma different shell. Maybe you get already sone hints
of what is going wong.

2) If step 1) is not enough then edit /etc/syslog.conf and
change *.info to *.debug. Run "/etc/init.d/syslog restart" and
repeat step 1).

The problem with this method is that it depends entirely on what the developer has done in his code. If
he/she did not add syslog statements at key points then you may not see anything at all. In other words
you can find only problems where the developer did already foresee that this could go wrong.

strace

An application running under Linux can execute 3 type of function:

1. Functions somewherein its own code
2. Library functions
3. Systemcalls

Library functions are similar to the application’s own functions except that they are provided in a
different package. System calls are those functions where your program talks to the kernel. Programs
need to talk to the kernel if they need to access you computer’s hardware. That is: write to the screen,
read afile from disk, read keyboard input, send a message over the network etc...

These system calls can be intercepted and you can therefore follow the communication between
application and the kernel.

A common problem is that an application does not work as expected because it can’t find a
configuration file or does not have sufficient permissions to write to a directory. These problems can
easily be detected with strace. The relevant system call in this case would be called "open”.

You use strace like this:
strace your_application
Hereisan example:

strace /usr/sbhin/uucico

execve("/usr/sbin/uucico", ["/usr/sbin/uucico", "-S", "uucpssh", "-X', "11"],
[/* 36 vars */]) =0

uname({sys="Li nux", node="brain", ...}) =0

br k(0) = 0x8085e34

mmap2(NULL, 4096, PROT_READ| PROT_WRI TE,
MAP_PRI VATE| MAP_ANCNYMOUS, -1, 0) = 0x40014000

open("/etc/ld.so.preload", O RDONLY) = -1 ENCENT (No such file or directory)
open("/etc/ld. so.cache” 0) RDONLY) =3
fstat64(3, {st_node=S IFREq 0644, st _size=70865, ...}) =0
nmap2(NULL, 70865, PROT_READ, NAP_ PRIVATE 3, O) = 0x40015000
close(3) O
open(" /I|b/||bnsl so. 1", O _RDONLY) =
read(3, \177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\300 \0"..., 1024)
= 1024
fstat64(3, {st_node=S | FREE 0755, st_size=89509, ...}) =0

)
mmap2(NULL, 84768, PROT _READ| PROT_EXEC, MAP PRI VATE, 3, 0) = 0x40027000
mpr ot ect (0x40039000, 11040, PROT_NONE) = O
mmap2(0x40039000, 4096, PROT_READ| PROT_WRI TE, MAP_PRI VATE| MAP_FI XED, 3, 0x11)
0x40039000
map2(0x4003a000, 6944, PROT READ| PROT_WRI TE,
MAP_PRI VATE| MAP_FI XED| MAP_ANONYMOUS, -1, 0) =

0x4003a000
close(3) =0
open(" /I|b/||bc s0. 6", O _RDONLY) =3
read(3, "\ 177ELF\ 1\ 1\ 1\ 0\ 0\ 0\ O\ O\ O\ O\ O\ O\ 3 3\0\3\ 0\ 1\ 0\ O\ O X\ 1\ 000". .., 1024)

= 1024
fstat64(3, {st_node=S | FREE 0755, st _size=1465426, ...}) =0

map2(NULL, 1230884, PROT_READ| PROT_EXEC, MAP_PRI VATE, 3, 0) = 0x4003c000
npr ot ect (0x40163000, 22564, PROT_NONE) =0
nmap2(0x40163000, 12288, PROT_READ| PROT_WRI TE,
MAP_PRI VATE| MAP_FI XED, 3, 0x126) = 0x40163000
map2(0x40166000, 10276, PROT READ|PRCW WRI TE,
MAP_PRI VATE| MAP_ FIXEDlMAP ANONYMOUS, -1, 0) = 0x40166000
cl ose(3) 0

munmap(0x40015000, 70865) =0

br k(0) = 0x8085e34
br k(0x8086e34) = 0x8086e34
br k(0) = 0x8086e34
brk(0x8087000) = 0x8087000

open("/usr/conf/uucp/config", O RDONLY) -1 ENCENT (No such file or directory)
rt_sigaction(SIANT, NULL, {SIGDFL}, 8 =0
rt_sigaction(SI A NT, {0x806a700, [],

SA_RESTCRER|SA_INTERRUPT, 0x40064d58}, NULL, 8) =0
rt_sigaction(SIGHUP, NULL, {SIG DFL}, 8) =0
rt_sigaction(Sl GHUP, {0x806a700, [],

SA_RESTORER| SA_| NTERRUPT, 0x40064d58}, NULL, 8) = 0
rt_sigaction(SIGQU T, NULL, {SIGDFL}, 8) =0
rt_sigaction(SIGQU T, {0x806a700, [],

SA_RESTORER| SA_| NTERRUPT, 0x40064d58}, NULL, 8) =0
rt_sigaction(SI GTERM NULL, {SI G DFL}, 8) =0
rt_sigaction(SI GTERM {0x806a700, [],

SA RESTORER| SA | NTERRUPT, 0x40064d58}, NULL, 8) =0
rt_sigaction(SIGPIPE, NULL, {SIGDFL}, 8 =0
rt_sigaction(SlIGPl PE, {0x806a700, [],

SA_RESTCRER|SA_INTERRUPT, 0x40064d58}, NULL, 8) =0

get pi d() = 1605

getrlimt(RLIMT_NOFILE, {rlimcur=1024, rlimnax=1024}) =0

cl ose(3) = -1 EBADF (Bad file descriptor)
cl ose(4) = -1 EBADF (Bad file descriptor)
cl ose(5) = -1 EBADF (Bad file descriptor)
cl ose(6) = -1 EBADF (Bad file descriptor)
cl ose(7) = -1 EBADF (Bad file descriptor)
cl ose(8) = -1 EBADF (Bad file descriptor)
cl ose(9) = -1 EBADF (Bad file descriptor)
fcntl 64(0, F_CGETFD) =0

fcentl 64(1, F_GETFD) =0

fcntl 64(2, F_GETFD) =0

uname({sys="Li nux", node="brain", ...}) =0

urmask(0) = 022

socket (PF_UNI X, SOCK_STREAM 0) =3

connect (3, {sa_fam | y=AF_UN X,

pat h="/var/run/.nscd_socket"}, 110) -1 ENCENT (No such file or directory)

close(3) =0
open("/etc/nsswitch.conf", O RDONLY) =3

fstat 64(3, {st_node=S IFREG 0644, st_size=499, ...}) =0
mmap2(NULL, 4096, PROT_READ| PROT_WRI TE,

MAP PRIVATElMAP ANONYMOUS, -1, 0) = 0x40015000
read(3, "# /etc/nsswitch.conf:\n# $Fbader: ., 4096) = 499
read(3, "", 4096) =0
cl ose(3) =0
munmap(0x40015000, 4096) =0
open("/etc/ld.so.cache", O RDONLY) =3

fstat64(3, {st_node=S | FREF 0644, st_size=70865, ...}) =0

nmmap2(NULL, 70865, PROT_READ, NAP_ PRIVATE 3, O) = 0x40015000

close(3) 0

open(" /I|b/||bnss _compat.so.2", O RDCNLY) =3

read(3, \177ELF\1\1\1\O\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\300\25"..., 1024)
= 1024

fstat64(3, {st_mpde=S_| FREG 0755, st_size=50250, ...})
map2(NULL, 46120, PROT_READ| PROT_EXEC, MAP_PRI VATE, 3
npr ot ect (0x40174000, 1064, PROT_NONE) =0

map2(0x40174000, 4096, PROT_READ| PROT_WRI TE,
MAP_PRI VATE| MAP_FI XED, 3, Oxa) = 0x40174000

0
0) = 0x40169000

cl ose(3) =0

nmunmap(0x40015000, 70865) =0

uname({sys="Li nux", node="brain", ...}) =0

br k(0) = 0x8087000

br k(0x8088000) = 0x8088000

open("/etc/passwd", O RDONLY) =3

fcntl 64(3, F_GETFD) =0

fcntl 64(3, F_SETFD, FD_CLOEXEC) =0

fstat64(3, {st_node=S | FREF 0644, st _size=1864, ...}) =0

mrap2(NULL, 4096, PROT_READ| PROT_WRI TE,
MAP_PRI VATE| MAP_ANONYMOUS, -1, 0) = 0x40015000

_I'lseek(3, 0, [0], SEEK CUR) =0

read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1864

cl ose(3) =0

munmap(0x40015000, 4096) =0

get ui d32() = 10

get eui d32() = 10

chdir("/var/spool /uucp") =0

open("/usr/conf/uucp/sys", O RDONLY) -1 ENCENT (No such file or directory)
open("/var/ | og/uucp/ Debug", O WRONLY| O APPEND| O CREAT| O_NOCTTY, 0600) = 3
fcntl 64(3, F_CGETFD) =0
fcntl 64(3, F_SETFD, FD_CLOEXEQ) 0
fentl64(3, F_GETFL) 0x401 (flags O VWRONLY| O _APPEND)
fstat64(3, {st_npde=S_ | FREG 0600, st_size=296, ...}) =0
mmap2(NULL, 4096, PROT_READ| PROT_WRI TE,
MAP_PRI VATE| MAP_ANONYMOUS, -1, 0) = 0x40015000
_lIlseek(3, 0, [0], SEEK CUR =0
open("/var/l og/uucp/ Log", O WRONLY| O APPEND| O CREAT| O_NOCTTY, 0644) = 4
fcntl 64(4, F_GETFD) =0
fcntl64(4, F_SETFD, FD CLOEXEQ)
fcntl 64(4, F_GETFL)

0
0x401 (flags O WRONLY| O APPEND)

What do we see here? Let’slook e.g look at the following lines:

open("/etc/ld.so.preload", O RDONLY)
open("/etc/ld.so.cache", O RDONLY)

-1 ENOCENT (No such file or directory)
3

The program tries to read /etc/ld.so.preload and fails then it carries on and reads /etc/ld.so.cache. Here it
succeeds and gets file descriptor 3 allocated. Now the failure to read /etc/Id.so.preload may not be a
problem at all because the program may just try to read thisand use it if possible. In other wordsit is not
necessarily a problem if the program failsto read afile. It all depends on the design of the program.
Let’slook at all the open callsin the printout from strace:

open("/usr/conf/uucp/config", O RDONLY)
open("/etc/nsswitch.conf", O RDONLY)
open("/etc/ld.so.cache", O RDONLY)
open("/lib/libnss_conpat.so.2", O RDONL
open("/etc/passwd”, O RDONLY)
open("/usr/conf/uucp/sys", O RDONLY) -1 ENOCENT (No such file or directory)
open("/var/ | og/ uucp/ Debug", O WRONLY| O APPEND| O CREAT| O NOCTTY, 0600) = 3
open("/var/log/uucp/Log", O WRONLY| O APPEND| O CREAT| O NOCTTY, 0644) = 4
open("/etc/ld.so.preload", O RDONLY) -1 ENCENT (No such file or directory)
open("/etc/ld.so.cache”, O RDONLY) 3

1 ENCENT (No such file or directory)

3
3

=3
3

1 II:SII 1

The program tries now to read /usr/conf/uucp/config. Oh! Thisis strange | have the config file in
/etc/uucp/config ! ... and there is no line where the program attempts to open /etc/uucp/config. Thisis
the fault. Obviously the program was configured at compile time for the wrong location of the
configuration file.

Asyou see strace can be very useful. The problem isthat it requires some experience with
C-programming to really understand the full output of strace but normally you don’t need to go that far.

gdb and corefiles

Sometimes it happens that a program just dies out of the blue with the message " Segmentation fault
(core dumped)”. This means that the program tries (due to a programming error) to write beyond the
area of memory it has allocated. Especially in cases where the program writes just afew bytesto much it
can be that only you see this problem and it happens only once in awhile. Thisis because memory is
allocated in chunks and sometimes there is accidently still room left for the extra bytes.

When this " Segmentation fault" happens a core file is left behind in the current working directory of the
program (normally your home directory). This corefileisjust adump of the memory at the time when
the fault happened. Some shells provide facilities for controlling whether core files are written. Under
bash, for example, the default behavior is not to write core files at al. In order to enable corefiles, you
should use the command:

ulimt -c unlimted

./lshref -i index.htm,index. htmtest.htn
Segnment ation fault (core dunped)
Exit 139

The core file can now be used with the gdb debugger to find out what was going wrong. Before you start
gdb you can check that you are really looking at the right corefile:

file core. 16897
core.16897: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style,
from’|shref’

OK, Ishref isthe program that was crashing so let’sload it into gdb. To invoke gdb for use with a core
file, you must specify not only the core filename but also the name of the executable that goes along
with that corefile.

gdb ./l shref core. 23061

G\U gdb Linux (5.2.1-4)

Copyri ght 2002 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
Core was generated by ‘./Ishref -i index.htm ,index.htmtest.htm’ .
Programtermi nated with signal 11, Segnmentation fault.

Readi ng synbols from/lib/libc.so.6...done.

Loaded synmbols for /lib/libc.so.6

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Loaded synmbols for /lib/ld-1inux.so.2

#0 0x40095e9d in strcpy () from/lib/libc.so.6

(gdb)

Now we know that the program is crashing while it tries to do a strcpy. The problem is that there might
be many places in the code where strcpy is used.

In general there will now be 2 possibilities to find out where exactly in the code it goes wrong.

1. Recompile the code with debug information (gcc option -g)
2. Do stack trace in gdb

The problem in our case isthat strcpy isalibrary function and even if we would re-compile absolutely
al code (including libc) it would still tell usthat it failsat agiven linein the C library.

What we need is a stack trace which will tell us which function was called before strcpy was executed.
The command to do such a stack tracein gdb is called "backtrace". It does however not work with only
the core file. Y ou have to re-run the command in gdb (reproduce the fault):

gdb ./l shref core. 23061

G\U gdb Linux (5.2.1-4)

Copyri ght 2002 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
Core was generated by ‘./Ishref -i index.htm ,index.htmtest.htm’ .
Programterm nated with signal 11, Segnentation fault.

Readi ng synbols from/lib/libc.so.6...done.

Loaded synmbols for /lib/libc.so.6

Readi ng synbols from/lib/ld-Iinux.so.2...done.

Loaded synbols for /lib/ld-1inux.so.2

#0 0x40095e9d in strcpy () from/lib/libc.so.6

(gdb) backtrace

#0 0x40095e€9d in strcpy () from/lib/libc.so.6

Cannot access nenory at address Oxbfffeb38

(gdb) run ./lshref -i index.htm ,index.htmtest.htn

Starting program /hone/guido/lshref ./lIshref -i index.htnl,index.htmtest.htn

Program recei ved signal Sl GSEGY, Segnentation fault.
0x40095e9d in strcpy () from/lib/libc.so.6

(gdb) backtrace

#0 0x40095e€9d in strcpy () from/lib/libc.so.6

#1 0x08048d09 in string to_ list ()

#2 0x080494c8 in main ()

#3 0x400374ed in __libc _start _main () from/lib/libc.so.6

(gdb)

Now we can see that function main() called string_to _list() and from string_to _list strcpy() iscalled. We
go to string_to_list() and look at the code:

char **string _to_list(char *string){
char *dat;
char *chptr;
char **array;
int i=0;

dat =(char *)nall oc(strlen(string))+5000;
array=(char **)mal | oc(si zeof (char *)*51);
strcpy(dat, string);

This malloc line looks like atypo. Probably it should have been:

dat =(char *)nall oc(strlen(string)+5000);

We change it, re-compileand ... hurra.... it works.

Let’slook at a second example where the fault is not detected inside alibrary but in application code. In
such a case the application can be compiled with the "gcc -g" flag and gdb will be able to show the exact
line where the fault is detected.

Hereisasimple example.

#i ncl ude
#i ncl ude

int add(int *p,int a,int b)

* p=a+b;
return(*p);

}

i nt mai n(voi d)

r
int i;
int *p = 0; /* a null pointer */
printf("result is %\n", add(p,2,3));
return(0);

}

We compileit:

gcc -Vall -g -0 exnmp exnp.c
Runit...

./exnp
Segrmentation fault (core dunped)
Exit 139

gdb exmp core. 5302

G\U gdb Linux (5.2.1-4)

Copyri ght 2002 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
Core was generated by ‘./exmp’.

Programterm nated with signal 11, Segnentation fault.

Readi ng synbols from/lib/libc.so.6...done.

Loaded synmbols for /lib/libc.so.6

Readi ng synbols from/lib/lId-Iinux.so.2...done.

Loaded synbols for /lib/ld-1inux.so.2

#0 0x08048334 in add (p=Cannot access nenory at address Oxbfffe020
) at exnp.c:6
6 *p=a+b;

gdb tells us now that the fault was detected at line 6 and that pointer "p" pointed to memory whi
not be accessed.

We look at the above code and it is of course a simple made-up example where p is a null poin
you can not store any data in a null pointer. Easy to fix...

Conclusion

We have seen cases where you can really find the cause of a fault without knowing too much a
inner workings of a program.

| have on purpose excluded functional faults, e.g a button in a GUI is in the wrong position but i
In those cases you will have to learn about the inner workings of the program. This will generall
much more time and there is no recipe on how to do that.

However the simple fault finding techniques shown here can still be be applied in many situatiol

Happy troubleshooting!

Webpages maintained by the LinuxFocus Ed|tor
team
© Guido Socher
"some rights reserved" sésuxfocus.org/licens
http://www.LinuxFocus.org

Translation information:
en --> -- : Guido Sochehdmepagp

2005-01-14, generated by Ifparser_pdf version 2.51

