
LinuxFocus article number 377
http://linuxfocus.org

by Gerrit Renker
<gerrit.renker(at)gmx.de>

About the author:
Gerrit didn't like any
computers at all until he tried
C and Linux.

Cruising with the snavigator

Abstract:

This article presents the snavigator, a powerful code analysis,
cross−referencing and re−engineering tool which is indispensable for
tackling the complexity of maintaining larger pieces of software and
packages in an effective manner.

_________________ _________________ _________________

Motivation
An old proverb says that a book should not be judged by its cover. A similar thing happens with open source
code. However, open source does not equal open documentation, and the reading process becomes
increasingly difficult the more and the longer the source files are. I recently had to program with a piece of
software which had half a html page of documentation, in contrast to over 348,000 lines of Java open source
code spread over more than 2060 files (see figure). In light of such dimensions, electronic orienteering,
reverse engineering and analysis tools become indispensable, such as the Red Hat source code navigator
presented in this article.
The tool automates many of the tasks one would normally do using (c)tags, grep, search and replace, but
much more accurately and more conveniently, wrapped in an easy to use graphical interface. See screenshots
below.

Installing under debian

Under debian you can get the whole lot via the one−liner

apt−get install sourcenav sourcenav−doc

This at the same time takes care of the documentation as well. The source navigator then resides in
/usr/lib/sourcenav/, you can call the main program via
/usr/lib/sourcenav/bin/snavigator (see tip about symlinks below). Documentation can be
found in /usr/share/doc/sourcenav/html/.

Installation from source

The URL for the homepage of source navigator is http://sourcenav.sourceforge.net/, actual downloads are

1/7

http://sourcenav.sourceforge.net/

from here (sourceforge.net/project/showfiles.php?group_id=51180). Obtain the latest tarball
sourcenav−xx.xx.tar.gz. While downloading, try to do something else meanwhile − the sources
amount to 55 Megabytes. This does have a positive background, the whole package is largely self−sufficient.
Although it makes wide use of other libraries such as Tcl/Tk, Tix and Berkeley DB, the correct versions of
these packages are all included. To avoid clashes with other versions of Tcl/Tk etc on your system, it is a
good idea to place the installation into a separate directory, e.g. /opt/sourcenav. The instructions further
suggest using a separate build directory, this works as follows. After unzipping, in the directory which
contains the unpacked sources issue the following commands:

mkdir snbuild; cd snbuild
../sourcenav−*/configure −−prefix=/opt/sourcenav
make ## takes a while ...
make install ## might have to become root first

The −−prefix option is there to specify the installation directory. While configure runs, one already gets an
idea about the many languages that snavigator can handle. It is also possible to add in further parsers for
languages of your choice or making. Once the installation is finished via make install, the snavigator is
ready to work and can be invoked as /opt/sourcenav/bin/snavigator. Instead of extending the
PATH shell environment I suggest to use a symlink, e.g. to /usr/local/bin, instead.

ln −s /opt/sourcenav/bin/snavigator /usr/local/bin

The main executable is a shell script which needs to know its directory. Thus it gets confused if called via a
symlink. This can be remedied by changing the following lines in /opt/sourcenav/bin/snavigator;
instead of

snbindir=`dirname $0

use

prog=`readlink −f $0`
snbindir=`dirname $prog`

The −f option to readlink(1) creates a canonical pathname representation, this means it even works if the file
is accessed via a very long chain of nested symlinks.

Using snavigator
The first time
snavigator is
invoked, it asks
for directories
containing
source files, as
the following
screenshot
shows.
Languages which
are supported
include, but are
not limited to,
Java, C, C++,
Tcl, Fortran,

2/7

http://sourceforge.net/project/showfiles.php?group_id=51180

COBOL, and
assembly
programs. Once
given the details
of source code
locations, it
independently
builds a project
database which
includes
referencing
information,
class hierarchies,
file
inter−dependencies
... and much
more. Depending
on the size of
your project, it
takes a short
while to build.
Once done, the
database can be
queried and
additional
information be
asked about the
code. The
following just
highlights some
of the features, to
give you an idea.
An illustrated
user guide, as
well as a
reference
manual, is
included in the
html directory
of the
installation.

3/7

Project management

Part of the suite is an editor with syntax highlighting, this can also be used for pretty−printing files. The
following screenshot depicts the main editor window. It is almost like a development environment, comes
with such things as a debugging facility, project build commands, version control and the like.

In particular, the big green arrows on the menu work just as in a web browser. The project editor allows one to
control the database information, e.g. if a file has just been updated; to add or delete files from the list and
other management tasks. All files are treated as one big project. So if changes are committed to, you can
update the database information via Refresh Project or Reparse Project.
When in the editor window, highlight something, e.g. the name of a function such that the highlighted region
appears in yellow. Then right−click with the mouse − there is a choice to find either (a) the declaration of
what you just have highlighted (e.g. a header file) or (b) the implementation of the highlighted symbol (e.g. a
.cpp file), plus a few more useful options.

4/7

Symbol browser

This is the first window that opens up after populating the project database. Usually it contains filenames, but
it can also display class methods, function symbols and the like. When a filename is clicked upon, the editor
will be opened with that file.

The grep window

This does what the name says, it provides a convenient gui
for grepping through all involved source code files.
Matching entries are highlighted and hyper−linked, the
source code can thus be browsed as if it were a bunch of web
pages. As the screenshot shows, the respective file and
location can be selected and by simply clicking that entry
you have the editor opened at the right position. (This
particular search term gives positive results in many Java
files :)

Xref window

Here we have a cross−reference list of all the symbols, in particular one can see which methods read (r), write
(w), ... on which data and see the relationships among symbols, depicted in a hierarchical manner. The entries

5/7

http://linuxfocus.org/English/../common/images2/article377/snavigator1.jpg
http://linuxfocus.org/English/../common/images2/article377/grepper.jpg

are clickable.

Class window

This interface aggregates all useful information one wishes to know about classes in an object−oriented
language. In particular, super− and subclasses are shown, as well as attribute and method names along with
their parameters. For a change, the window below shows a C++ ClientSocket class which inherits from
Socket and has quite a few methods. Again, by clicking any of the entries you can open an editor window at
the appropriate position.

6/7

Other alternatives
cscope is an interactive, console−screen based C source code browser (it can do C++, too). It has some of
the functionality of snavigator, a screenshot is here. In fact, it is much older and has been used in many and
very big projects. Its homepage is http://cscope.sourceforge.net/. But you need not even go there − it is built
into vim and can be used in much the way (g)vim is used in combination with tags. Simply type in

:help cscope

in your vim session to check the available options. There are a few derivatives of cscope. Freescope is a
cscope clone which has some added functionality such as symbol completion. There is now also a KDE
GUI frontend to cscope called kscope, it can be found on http://kscope.sourceforge.net/.

Conclusions
For anyone involved in at least partly re−engineering or integrating source code, snavigator is a very useful
and powerful tool. I once had an older Qt application which unfortunately did not work with the current
version of the Qt library. By looking at the error messages and cruising a little with the snavigator, I had soon
found out that only the parameter list of one function needed to be changed. Using the click−and−locate
functionality, it was possible to bring the entire software package up to date in just a few minutes.

Webpages maintained by the LinuxFocus Editor team
© Gerrit Renker

"some rights reserved" see linuxfocus.org/license/
http://www.LinuxFocus.org

Translation information:
en −−> −− : Gerrit Renker <gerrit.renker(at)gmx.de>

2005−05−28, generated by lfparser_pdf version 2.51

7/7

http://linuxfocus.org/English/../common/images2/article377/cscope_function.jpg
http://cscope.sourceforge.net/
http://freescope.sourceforge.net
http://kscope.sourceforge.net/
http://linuxfocus.org/common/lfteam.html
http://linuxfocus.org/common/copy.html
http://linuxfocus.org/license/
http://www.linuxfocus.org

	lf377, SoftwareDevelopment: Cruising with the snavigator

