

The Linux Network Administrators' Guide

Copyright c 1992-1994 Olaf Kirch

For Britta

Legal Notice

UNIX is a trademark of Univel.

Linux is not a trademark, and has no connection to UNIXTM or Univel.

Copyright c 1994 Olaf Kirch

Kattreinstr. 38, 64295 Darmstadt, Germany

okir@monad.swb.de

\The Linux Network Administrators' Guide" may be reproduced and distributed in whole

or in part, subject to the following conditions:

0. The copyright notice above and this permission notice must be preserved complete

on all complete or partial copies.

1. Any translation or derivative work of \The Linux Network Administrators' Guide"

must be approved by the author in writing before distribution.

2. If you distribute \The Linux Network Administrators' Guide" in part, instructions

for obtaining the complete version of \The Linux Network Administrators' Guide"

must be included, and a means for obtaining a complete version provided.

3. Small portions may be reproduced as illustrations for reviews or quotes in other

works without this permission notice if proper citation is given.

4. If you print and distribute \The Linux Network Administrators' Guide", you may

not refer to it as the \O�cial Printed Version".

5. The GNU General Public License referenced below may be reproduced under the

conditions given within it.

6. Several sections of this document are held under separate copyright. When these

sections are covered by a di�erent copyright, the seperate copyright is noted. If

you distribute \The Linux Network Administrators' Guide" in part, and

that part is, in whole, covered under a seperate, noted copyright, the

conditions of that copyright apply.

Exceptions to these rules may be granted for academic purposes: Write to Olaf Kirch at

the above address, or email okir@monad.swb.de, and ask. These restrictions are here to

protect us as authors, not to restrict you as educators and learners.

All source code in \The Linux Network Administrators' Guide" is placed under the GNU

General Public License. See appendix C for a copy of the GNU \GPL."

The author is not liable for any damages, direct or indirect, resulting from the use of

information provided in this document.

Contents

Preface 5

Documentation on Linux : 6

About This Book : 7

The O�cial Printed Version : 7

More Information : 8

On the Authors : 9

Thanks : 10

Typographical Conventions : 11

The Linux Documentation Project : 12

Filesystem Standards : 13

1 Introduction to Networking 14

1.1 History : 14

1.2 UUCP Networks : 15

1.2.1 How to Use UUCP : 15

1.3 TCP/IP Networks : 17

1.3.1 Introduction to TCP/IP-Networks : : : : : : : : : : : : : : : : : : : 18

1.3.2 Ethernets : 19

1.3.3 Other Types of Hardware : 20

1.3.4 The Internet Protocol : 21

1.3.5 IP over Serial Lines : 23

1.3.6 The Transmission Control Protocol : : : : : : : : : : : : : : : : : : : 23

1.3.7 The User Datagram Protocol : 24

1.3.8 More on Ports : 24

1.3.9 The Socket Library : 25

3

CONTENTS 4

1.4 Linux Networking : 26

1.4.1 Di�erent Streaks of Development : 26

1.4.2 Where to Get the Code : 27

1.5 Maintaining Your System : 27

1.5.1 System Security : 28

1.6 Outlook on the Following Chapters : 30

2 Issues of TCP/IP Networking 32

2.1 Networking Interfaces : 32

2.2 IP Addresses : 33

2.3 Address Resolution : 34

2.4 IP Routing : 35

2.4.1 IP Networks : 35

2.4.2 Subnetworks : 36

2.4.3 Gateways : 37

2.4.4 The Routing Table : 39

2.4.5 Metric Values : 40

2.5 The Internet Control Message Protocol : 40

2.6 The Domain Name System : 41

2.6.1 Hostname Resolution : 41

2.6.2 Enter DNS : 42

2.6.3 Name Lookups with DNS : 45

2.6.4 Domain Name Servers : 46

2.6.5 The DNS Database : 46

2.6.6 Reverse Lookups : 48

3 Con�guring the Networking Hardware 51

3.1 Devices, Drivers, and all that : 51

3.2 Kernel Con�guration : 53

3.2.1 Kernel Options in Linux 1.0 and Higher : : : : : : : : : : : : : : : : 54

3.2.2 Kernel Options in Linux 1.1.14 and Higher : : : : : : : : : : : : : : 55

3.3 A Tour of Linux Network Devices : 58

3.4 Ethernet Installation : 59

CONTENTS 5

3.4.1 Ethernet Cabling : 59

3.4.2 Supported Boards : 59

3.4.3 Ethernet Autoprobing : 60

3.5 The PLIP Driver : 62

3.6 The SLIP and PPP Drivers : 63

4 Setting up the Serial Hardware 64

4.1 Communication Software for Modem Links : : : : : : : : : : : : : : : : : : 64

4.2 Introduction to Serial Devices : 65

4.3 Accessing Serial Devices : 66

4.4 Serial Hardware : 67

5 Con�guring TCP/IP Networking 70

5.1 Setting up the proc Filesystem : 71

5.2 Installing the Binaries : 71

5.3 Another Example : 72

5.4 Setting the Hostname : 72

5.5 Assigning IP Addresses : 73

5.6 Writing hosts and networks Files : 74

5.7 Interface Con�guration for IP : 76

5.7.1 The Loopback Interface : 77

5.7.2 Ethernet Interfaces : 79

5.7.3 Routing through a Gateway : 81

5.7.4 Con�guring a Gateway : 82

5.7.5 The PLIP Interface : 82

5.7.6 The SLIP and PPP Interface : 83

5.7.7 The Dummy Interface : 84

5.8 All About ifcon�g : 84

5.9 Checking with netstat : 87

5.9.1 Displaying the Routing Table : 87

5.9.2 Displaying Interface Statistics : 88

5.9.3 Displaying Connections : 89

5.10 Checking the ARP Tables : 90

CONTENTS 6

5.11 The Future : 91

6 Name Service and Resolver Con�guraton 93

6.1 The Resolver Library : 94

6.1.1 The host.conf File : 94

6.1.2 Resolver Environment Variables : 95

6.1.3 Con�guring Name Server Lookups | resolv.conf : : : : : : : : : : : 96

6.1.4 Resolver Robustness : 97

6.2 Running named : 97

6.2.1 The named.boot File : 98

6.2.2 The DNS Database Files : 100

6.2.3 Writing the Master Files : 103

6.2.4 Verifying the Name Server Setup : 104

6.2.5 Other Useful Tools : 109

7 Serial Line IP 110

7.1 General Requirements : 110

7.2 SLIP Operation : 111

7.3 Using dip : 113

7.3.1 A Sample Script : 113

7.3.2 A dip Reference : 115

7.4 Running in Server Mode : 119

8 The Point-to-Point Protocol 121

8.1 Untangling the P's : 121

8.2 PPP on Linux : 122

8.3 Running pppd : 123

8.4 Using Options Files : 124

8.5 Dialing out with chat : 125

8.6 Debugging Your PPP Setup : 127

8.7 IP Con�guration Options : 127

8.7.1 Choosing IP Addresses : 128

8.7.2 Routing Through a PPP Link : 129

8.8 Link Control Options : 130

CONTENTS 7

8.9 General Security Considerations : 131

8.10 Authentication with PPP : 132

8.10.1 CHAP versus PAP : 132

8.10.2 The CHAP Secrets File : 133

8.10.3 The PAP Secrets File : 135

8.11 Con�guring a PPP Server : 136

9 Various Network Applications 138

9.1 The inetd Super-Server : 138

9.2 The tcpd access control facility : 141

9.3 The services and protocols Files : 142

9.4 Remote Procedure Call : 144

9.5 Con�guring the r Commands : 146

10 The Network Information System 148

10.1 Getting Acquainted with NIS : 149

10.2 NIS versus NIS+ : 152

10.3 The Client Side of NIS : 152

10.4 Running a NIS Server : 153

10.5 Setting up a NIS Client with NYS : 154

10.6 Choosing the Right Maps : 155

10.7 Using the passwd and group Maps : 157

10.8 Using NIS with Shadow Support : 159

10.9 Using the Traditional NIS Code : 160

11 The Network File System 161

11.1 Preparing NFS : 163

11.2 Mounting an NFS Volume : 163

11.3 The NFS Daemons : 165

11.4 The exports File : 166

11.5 The Linux Automounter : 168

12 Managing Taylor UUCP 169

12.1 History : 169

CONTENTS 8

12.1.1 More Information on UUCP : 170

12.2 Introduction : 171

12.2.1 Layout of UUCP Transfers and Remote Execution : : : : : : : : : : 171

12.2.2 The Inner Workings of uucico : 172

12.2.3 uucico Command Line Options : 173

12.3 UUCP Con�guration Files : 174

12.3.1 A Gentle Introduction to Taylor UUCP : : : : : : : : : : : : : : : : 174

12.3.2 What UUCP Needs to Know : 177

12.3.3 Site Naming : 178

12.3.4 Taylor Con�guration Files : 178

12.3.5 General Con�guration Options { the con�g File : : : : : : : : : : : : 179

12.3.6 How to Tell UUCP about other Systems { the sys File : : : : : : : : 180

12.3.7 What Devices there are { the port File : : : : : : : : : : : : : : : : : 184

12.3.8 How to Dial a Number { the dial File : : : : : : : : : : : : : : : : : 186

12.3.9 UUCP Over TCP : 187

12.3.10Using a Direct Connection : 188

12.4 The Do's and Dont's of UUCP { Tuning Permissions : : : : : : : : : : : : : 188

12.4.1 Command Execution : 188

12.4.2 File Transfers : 189

12.4.3 Forwarding : 190

12.5 Setting up your System for Dialing in : 191

12.5.1 Setting up getty : 191

12.5.2 Providing UUCP Accounts : 191

12.5.3 Protecting Yourself Against Swindlers : : : : : : : : : : : : : : : : : 193

12.5.4 Be Paranoid { Call Sequence Checks : : : : : : : : : : : : : : : : : : 193

12.5.5 Anonymous UUCP : 194

12.6 UUCP Low-Level Protocols : 195

12.6.1 Protocol Overview : 195

12.6.2 Tuning the Transmission Protocol : : : : : : : : : : : : : : : : : : : 197

12.6.3 Selecting Speci�c Protocols : 197

12.7 Troubleshooting : 198

12.8 Log Files : 200

CONTENTS 9

13 Electronic Mail 202

13.1 What is a Mail Message? : 203

13.2 How is Mail Delivered? : 206

13.3 Email Addresses : 207

13.4 How does Mail Routing Work? : 208

13.4.1 Mail Routing on the Internet : 208

13.4.2 Mail Routing in the UUCP World : : : : : : : : : : : : : : : : : : : 209

13.4.3 Mixing UUCP and RFC 822 : 211

13.5 Pathalias and Map File Format : 212

13.6 Con�guring elm : 214

13.6.1 Global elm Options : 215

13.6.2 National Character Sets : 215

14 Getting smail Up and Running 217

14.1 UUCP Setup : 218

14.2 Setup for a LAN : 219

14.2.1 Writing the Con�guration Files : 220

14.2.2 Running smail : 221

14.3 If You Don't Get Through: 222

14.3.1 Compiling smail : 224

14.4 Mail Delivery Modes : 224

14.5 Miscellaneous con�g Options : 225

14.6 Message Routing and Delivery : 226

14.7 Routing Messages : 227

14.7.1 The paths database : 229

14.8 Delivering Messages to Local Addresses : 229

14.8.1 Local Users : 230

14.8.2 Forwarding : 230

14.8.3 Alias Files : 231

14.8.4 Mailing Lists : 232

14.9 UUCP-based Transports : 232

14.10SMTP-based Transports : 233

14.11Hostname Quali�cation : 234

CONTENTS 10

15 Sendmail+IDA 235

15.1 Introduction to Sendmail+IDA : 235

15.2 Con�guration Files | Overview : 236

15.3 The sendmail.cf File : 236

15.3.1 An Example sendmail.m4 File : 237

15.3.2 Typically Used sendmail.m4 Parameters : : : : : : : : : : : : : : : : 237

15.4 A Tour of Sendmail+IDA Tables : 243

15.4.1 mailertable : 243

15.4.2 uucpxtable : 245

15.4.3 pathtable : 245

15.4.4 domaintable : 246

15.4.5 aliases : 247

15.4.6 Rarely Used Tables : 248

15.5 Installing sendmail : 248

15.5.1 Extracting the binary distribution : : : : : : : : : : : : : : : : : : : 249

15.5.2 Building sendmail.cf : 249

15.5.3 Testing the sendmail.cf �le : 250

15.5.4 Putting it all together - Integration Testing sendmail.cf and the tables253

15.6 Administrivia and Stupid Mail Tricks : 255

15.6.1 Forwarding Mail to a Relay Host : 255

15.6.2 Forcing Mail into Miscon�gured Remote Sites : : : : : : : : : : : : : 255

15.6.3 Forcing Mail to be Transferred via UUCP : : : : : : : : : : : : : : : 256

15.6.4 Preventing Mail from Being Delivered via UUCP : : : : : : : : : : : 257

15.6.5 Running the Sendmail Queue on Demand : : : : : : : : : : : : : : : 257

15.6.6 Reporting Mail Statistics : 257

15.7 Mixing and Matching Binary Distributions : : : : : : : : : : : : : : : : : : 258

15.8 Where to Get More Information : 259

16 Netnews 260

16.1 Usenet History : 260

16.2 What is Usenet, Anyway? : 261

16.3 How Does Usenet Handle News? : 263

CONTENTS 11

17 C News 265

17.1 Delivering News : 265

17.2 Installation : 267

17.3 The sys �le : 269

17.4 The active �le : 272

17.5 Article Batching : 274

17.6 Expiring News : 276

17.7 Miscellaneous Files : 279

17.8 Control Messages : 280

17.8.1 The cancel Message : 281

17.8.2 newgroup and rmgroup : 281

17.8.3 The checkgroups Message : 281

17.8.4 sendsys, version, and senduuname : : : : : : : : : : : : : : : : : : : 283

17.9 C News in an NFS Environment : 283

17.10Maintenance Tools and Tasks : 284

18 A Description of NNTP 286

18.1 Introduction : 286

18.2 Installing the NNTP server : 288

18.3 Restricting NNTP Access : 288

18.4 NNTP Authorization : 290

18.5 nntpd Interaction with C News : 290

19 Newsreader Con�guration 292

19.1 tin Con�guration : 293

19.2 trn Con�guration : 294

19.3 nn Con�guration : 295

A A Null Printer Cable for PLIP 297

B Sample smail Con�guration Files 298

C The GNU General Public License 306

C.1 Preamble : 306

C.2 Terms and Conditions : 307

CONTENTS 12

C.3 How to Apply These Terms : 311

Glossary 313

Annotated Bibliography 319

Books : 319

General Books on the Internet : 319

Administration Issues : 319

The Background : 321

HOWTOs : 322

What are Linux HOWTOs? : 322

Where to get Linux HOWTOs : 322

HOWTO Index : 323

Miscellaneous and Legalese : 324

RFCs : 324

List of Figures

1.1 The three steps of sending a datagram from erdos to quark. : : : : : : : 22

2.1 Subnetting a class B network : 36

2.2 A part of the net topology at Groucho Marx Univ. : : : : : : : : : : : : : 38

2.3 A part of the domain name space : 43

2.4 An excerpt from the named.hosts �le for the Physics Department. : : : : : 47

2.5 An excerpt from the named.hosts �le for GMU. : : : : : : : : : : : : : : : 48

2.6 An excerpt from the named.rev �le for subnet 12. : : : : : : : : : : : : : : 49

2.7 An excerpt from the named.rev �le for network 149.76. : : : : : : : : : : : 50

3.1 The relationship between drivers, interfaces, and the hardware. : : : : : : 52

5.1 Virtual Brewery and Virtual Winery { the two subnets. : : : : : : : : : : : 74

6.1 The named.boot �le for vlager. : 98

6.2 The named.ca �le. : 104

6.3 The named.hosts �le. : 105

6.4 The named.local �le. : 106

6.5 The named.rev �le. : 106

7.1 A sample dip script : 114

9.1 A sample /etc/inetd.conf �le. : 140

9.2 A sample /etc/rpc �le. : 145

10.1 Sample nsswitch.conf �le. : 157

12.1 Interaction of Taylor UUCP Con�guration Files. : : : : : : : : : : : : : : : 175

13

LIST OF FIGURES 14

15.1 sendmail Support Files. : 236

15.2 A sample sendmail.m4 �le for vstout. : 238

16.1 Usenet news ow through Groucho Marx University. : : : : : : : : : : : : 262

17.1 News ow through relaynews. : 267

Preface

With the Internet much of a buzzword recently, and otherwise serious people joyriding

along the \Informational Superhighway," computer networking seems to be moving toward

the status of TV sets and microwave ovens. The Internet is recently getting an unusually

high media coverage, and social science majors are descending on Usenet newsgroups to

conduct researches on the \Internet Culture." Carrier companies are working to introduce

new transmission techniques like ATM that o�er many times the bandwidth the average

network link of today has.

Of course, networking has been around for a long time. Connecting computers to form

local area networks has been common practice even at small installations, and so have been

long-haul links using public telephone lines. A rapidly growing conglomerate of world-wide

networks has, however, made joining the global village a viable option even for small non-

pro�t organizations of private computer users. Setting up an Internet host with mail and

news capabilities o�ering dial-up access has become a�ordable, and the advent of ISDN will

doubtlessly accelerate this trend.

Talking of computer networks quite frequently means talking about UNIX. Of course,

UNIX is neither the only operating system with network capabilities, nor will it remain a

front-runner forever, but it has been in the networking business for a long time, and will

surely continue to do so for some time to come.

What makes it particularly interesting to private users is that there has been much

activity to bring free UNIXoid operating systems to the PC, being 386BSD, FreeBSD| and

Linux. However, Linux is not UNIX. That is a registered trademark of whoever currently

holds the rights to it (Univel, while I'm typing this), while Linux is an operating system

that strives to o�er all functionality the POSIX standards require for UNIX-like operating

15

Documentation on Linux 16

systems, but is a complete reimplementation.

The Linux kernel was written largely by Linus Torvalds, who started it as a project to

get to know the Intel i386, and to \make MINIX better." MINIX was then another popular

PC operating system o�ering vital ingredients of un?x functionality, and was written by

Prof. Andrew S. Tanenbaum.

Linux is covered by the GNU General Public License (GPL), which allows free distribu-

tion of the code (please read the GPL in appendix C for a de�nition of what \free software"

means). Outgrowing its child's diseases, and drawing from a large and ever-growing base

of free application programs, it is quickly becoming the oprating system of choice for many

PC owners. The kernel and C library have become that good that most standard software

may be compiled with no more e�ort than is required on any other mainstream un?xish

system, and a broad assortment of packaged Linux distributions allows you to almost drop

it onto your hard disk and start playing.

Documentation on Linux

One of the complaints that are frequently levelled at Linux (and free software in general)

is the sorry state or complete lack of documentation. In the early days it was not unusual

for a package to come with a handful of READMEs and installation notes. They gave the

moderately experienced un?x wizard enough information to successfully install and run it,

but left the average newbie out in the cold.

Back in late 1992, Lars Wirzenius and Michael K. Johnson suggested to form the Linux

Documentation Project, or LDP, which aims at providing a coherent set of manuals. Stop-

ping short of answering questions like \How?", or \Why?", or \What's the meaning of life,

universe, and all the rest?", these manuals attempt to cover most aspects of running and

using a Linux system users without requiring a prior degree in un?x.

Among the achievements of the LDP are the Installation and Getting Started Guide,

written by MattWelsh, theKernel Hacker's Guide by Michael K. Johnson, and the manpage

project coordinated by Rik Faith, which so far supplied a set of roughly 450 manual pages

for most system and C library calls. The System Administrators' Guide, written by Lars

Wirzenius, is still at the Alpha stage. A User's Guide is being prepared.

This book, the Linux Network Administrators' Guide, is part of the LDP series, too.

As such, it may be copied and distributed freely under the LDP copying license which is

reproduced on the second page.

However, the LDP books are not the only source of information on Linux. At the mo-

ment, there are more than a dozen HOWTOs that are posted to comp.os.linux.announce

regularly and archived at various FTP sites. HOWTOs are short documents of a few pages

that give you a brief introduction into topics such as Ethernet support under Linux, or

About This Book 17

the con�guration of Usenet news software, and answer frequently asked questions. They

usually provide the most accurate and up-to-date information avaliable on the topic. A list

of available HOWTOs is produced in the \Annotated Bibliography" toward the end of this

book.

About This Book

When I joined the Linux Documentation Project in 1992, I wrote two small chapters on

UUCP and smail, which I meant to contribute to the System Administrator's Guide. Devel-

opment of TCP/IP networking was just beginning, and when those \small chapters" started

to grow, I wondered aloud if it wouldn't be nice to have a Networking Guide. \Great", ev-

eryone said, \I'd say, go for it!" So I went for it, and wrote a �rst version of the Networking

Guide, which I released in September 1993.

The new Networking Guide you are reading right now is a complete rewrite that features

several new applications that have become available to Linux users since the �rst release.

The book is organized roughly in the sequence of steps you have to take to con�gure your

system for networking. It starts by discussing basic concepts of networks, and TCP/IP-

based networks in particular. We then slowly work our way up from con�guring TCP/IP at

the device level to the setup of common applications such as rlogin and friends, the Network

File System, and the Network Information System. This is followed by a chapter on how

to set up your machine as a UUCP node. The remainder of the book is dedicated to two

major applications that run on top of both TCP/IP and UUCP: electronic mail and news.

The email part features an introduction of the more intimate parts of mail transport and

routing, and the myriads of addressing schemes you may be confronted with. It describes

the con�guration and management of smail, a mail transport agent commonly used on

smaller mail hubs, and sendmail, which is for people who have to do more complicated

routing, or have to handle a large volume of mail. The sendmail chapter has been written

and contributed by Vince Skahan.

The news part attempts to give you an overview of how Usenet news works, covers

C news, the most widely used news transport software at the moment, and the use of

NNTP to provide newsreading access to a local network. The book closes with a short

chapter on the care and feeding of the most popular newsreaders on Linux.

The O�cial Printed Version

In autumn 1993, Andy Oram, who has been around the LDP mailing list from almost

the very beginning, asked me about publishing my book at O'Reilly and Associates. I

was excited about this; I had never imagined my book being that successful. We �nally

More Information 18

agreed that O'Reilly would produce an enhanced O�cial Printed Version of the Networking

Guide with me, while I retained the original copyright so that the source of the book

could be freely distributed.1 This means that you can choose freely: you can get the

LATEXsource distributed on the network (or the preformatted DVI or PostScript versions,

for that matter), and print it out. Or you can purchase the o�cial printed version from

O'Reilly, which will be available some time later this year.

Then, why would you want to pay money for something you can get for free? Is Tim

O'Reilly out of his mind for publishing something everyone can print and even sell herself?2

Or is there any di�erence between these versions?

The answers are \it depends," \no, de�nitely not," and \yes and no." O'Reilly and

Associates do take a risk in publishing the Networking Guide, but I hope it will �nally

pay o� for them. If it does, I believe this project can serve as an example how the free

software world and companies can cooperate to produce something both bene�t from. In

my view, the great service O'Reilly is doing to the Linux community (apart from the book

being readily available in your local bookstore) is that it may help Linux being recognized

as something to be taken seriously: a viable and useful alternative to commercial PC UNIX

operating systems.

So what about the di�erences between the printed version and the online one? Andy

Oram has made great e�orts at transforming my early ramblings into something actually

worth printing. (He has also been reviewing the other books put out by the Linux Doc-

umentation Project, trying to contribute whatever professional skills he can to the Linux

community.)

Since Andy started reviewing the Networking Guide and editing the copies I sent him,

the book has improved vastly over what it was half a year ago. It would be nowhere close

to where it is now without his contributions. All his edits have been fed back into online

version, as will any changes that will be made to the Networking Guide during the copy-

editing phase at O'Reilly. So there will be no di�erence in content. Still, the O'Reilly version

will be di�erent: On one hand, people at O'Reilly are putting a lot of work into the look

and feel, producing a much more pleasant layout than you could ever get out of standard

LATEX. On the other hand, it will feature a couple of enhancements like an improved index,

and better and more �gures.

More Information

If you follow the instructions in this book, and something does not work nevertheless, please

be patient. Some of your problems may be due to stupid mistakes on my part, but may

1The copyright notice is reproduced on the page immediately following the title page.
2Note that while you are allowed to print out the online version, you may not run the O'Reilly book

through a photocopier, and much less sell any of those (hypothetical) copies.

On the Authors 19

also be caused by changes in the networking software. Therefore, you should probably ask

on comp.os.linux.help �rst. There's a good chance that you are not alone with your

problems, so that a �x or at least a proposed workaround is likely to be known. If you have

the opportunity, you should also try to get the latest kernel and network release from one

of the Linux FTP sites, or a BBS near you. Many problems are caused by software from

di�erent stages of development, which fail to work together properly. After all, Linux is

\work in progress".

Another good place to inform yourself about current development is the Networking

HOWTO. It is maintained by Terry Dawson3. It is posted to comp.os.linux.announce

once a month, and contains the most up-to-date information. The current version can also

be obtained (among others) from tsx-11.mit.edu, in /pub/linux/doc. For problems you

can't solve in any other way, you may also contact the author of this book at the address

given in the preface. However, please, refrain from asking developers for help. They are

already devoting a major part of their spare time to Linux anyway, and occasionally even

have a life beyond the net:-)

On the Authors

Olaf has been a UNIX user and part-time administrator for a couple of years while he was

studying mathematics. At the moment, he's working as a UNIX programmer and is writing

a book. One of his favorite sports is doing things with sed that other people would reach

for their perl interpreter for. He has about as much fun with this as with mountain hiking

with a backpack and a tent.

Vince Skahan has been administering large numbers of UNIX systems since 1987 and

currently runs sendmail+IDA on approximately 300 UNIX workstations for over 2000 users.

He admits to losing considerable sleep from editing quite a few sendmail.cf �les `the hard

way' before discovering sendmail+IDA in 1990. He also admits to anxiously awaiting the

delivery of the �rst perl-based version of sendmail for even more obscure fun4: : :

Olaf can be reached at the following address:

Olaf Kirch

Kattreinstr. 38

64295 Darmstadt

Germany

okir@monad.swb.de

Vince can be reached at:

3Terry Dawson can be reached at terryd@extro.ucc.su.oz.au.
4Don't you think we could do it with sed, Vince?

Thanks 20

Vince Skahan

vince@victrola.wa.com

We are open to your questions, comments, postcards, etc. However, we ask you not to

telephone us unless it's really important.

Thanks

Olaf says: This book owes very much to the numerous people who took the time to proofread

it and helped iron out many mistakes, both technical and grammatical (never knew that

there's such a thing as a dangling participle). The most vigorous among them was Andy

Oram at O'Reilly and Associates.

I am greatly indebted to Andres Sep�ulveda, Wolfgang Michaelis, Michael K. Johnson,

and all developers who spared the time to check the information provided in the Networking

Guide. I also wish to thank all those who read the �rst version of the Networking Guide

and sent me corrections and suggestions. You can �nd hopefully complete list of contrib-

utors in the �le Thanks in the online distribution. Finally, this book would not have been

possible without the support of Holger Grothe, who provided me with the critical Internet

connectivity.

I would also like to thank the following groups and companies who printed the �rst

edition of the Networking Guide and have donated money either to me, or to the Linux

Documentation Project as a whole.

� Linux Support Team, Erlangen, Germany

� S.u.S.E. GmbH, Fuerth, Germany

� Linux System Labs, Inc., United States

Vince says: Thanks go to Neil Rickert and Paul Pomes for lots of help over the years

regarding the care and feeding of sendmail+IDA and to Rich Braun for doing the initial

port of sendmail+IDA to Linux. The biggest thanks by far go to my wife Susan for all the

support on this and other projects.

Typographical Conventions 21

Typographical Conventions

In writing this book, a number of typographical conventions were employed to mark shell

commands, variable arguments, etc. They are explained below.

Bold Font Used to mark hostnames and mail addresses, as well as new concepts and

warnings.

Italics Font Used to mark �le names, UNIX commands, and keywords in con�guration

�les. Also used for emphasis in text.

Typewriter Font

Used to represent screen interaction, such as user interaction when running

a program.

Also used for code examples, whether it is a con�guration �le, a shell script,

or something else.

Typewriter Slanted Font

Used to mark meta-variables in the text, especially in representations of the

command line. For example,

$ ls -l foo

where foo would \stand for" a �lename, such as /tmp.

Key Represents a key to press. You will often see it in this form:

Press return to continue.

3 A diamond in the margin, like a black diamond on a ski hill, marks \danger"

or \caution." Read paragraphs marked this way carefully.

$ and # When preceding a shell command to be typed, these denote the shell prompt.

The `$' symbol is used when the command may be executed as a normal user;

`#' means that the command requires super user privilieges.

The Linux Documentation Project 22

The Linux Documentation Project

The Linux Documentation Project, or LDP, is a loose team of writers, proofreaders, and

editors who are working together to provide complete documentation for the Linux operating

system. The overall coordinator of the project is Matt Welsh, who is heavily aided by Lars

Wirzenius and Michael K. Johnson.

This manual is one in a set of several being distributed by the LDP, including

a Linux Users' Guide, System Administrators' Guide, Network Administrators' Guide,

and Kernel Hackers' Guide. These manuals are all available in LATEX source format,

.dvi format, and postscript output by anonymous FTP from nic.funet.fi, in the di-

rectory /pub/OS/Linux/doc/doc-project, and from tsx-11.mit.edu, in the directory

/pub/linux/docs/guides.

We encourage anyone with a penchant for writing or editing to join us in improving

Linux documentation. If you have Internet e-mail access, you can join the DOC channel of

the Linux-Activists mailing list by sending mail to

linux-activists-request@niksula.hut.fi

with the line

X-Mn-Admin: join DOC

in the header or as the �rst line of the message body. An empty mail without the additional

header line will make the mail-server return a help message. To leave the channel, send a

message to the same address, including the line

X-Mn-Admin: leave DOC

Filesystem Standards 23

Filesystem Standards

Throughout the past, one of the problems that a�icted Linux distributions as well as

separate packages was that there was no single accepted �le system layout. This resulted in

incompatibilities between di�erent packages, and confronted users and administrators alike

with the task to locate various �les and programs.

To improve this situation, in August 1993, several people formed the Linux File Sys-

tem Standard Group, or FSSTND Group for short, coordinated by Daniel Quinlan. After

six months of discussion, the group presented a draft that presents a coherent �le sytem

structure and de�nes the location of most essential programs and con�guration �les.

This standard is supposed to be implemented by most major Linux distributions and

packages. Throughout this book, we will therefore assume that any �les discussed reside

in the location speci�ed by the standard; only where there is a long tradition that conicts

with this speci�cation will alternative locations be mentioned.

The Linux File System Standard can be obtained from all major Linux FTP sites and

their mirrors; for instance, you can �nd it on sunsite.unc.edu below /pub/linux/docs.

Daniel Quinlan, the coordinator of the FSSTND group can be reached at quin-

lan@bucknell.edu.

Chapter 1

Introduction to Networking

1.1 History

The idea of networking is probably as old as telecommunications itself. Consider people

living in the stone age, where drums may have been used to transmit messages between

individuals. Suppose caveman A wants to invite caveman B for a game of hurling rocks at

each other, but they live too far apart for B to hear A banging his drum. So what are A's

options? He could 1) walk over to B's place, 2) get a bigger drum, or 3) ask C, who lives

halfway between them, to forward the message. The last is called networking.

Of course, we have come a long way from the primitive pursuits and devices of our

forebears. Nowadays, we have computers talk to each other over vast assemblages of wires,

�ber optics, microwaves, and the like, to make an appointment for saturday's soccer match.1

In the following, we will deal with the means and ways by which this is accomplished, but

leave out the wires, as well as the soccer part.

We will describe two types of networks in this guide: those based on UUCP, and those

based on TCP/IP. These are protocol suites and software packages that supply means to

transport data between two computers. In this chapter, we will look at both types of

networks, and discuss their underlying principles.

We de�ne a network as a collection of hosts that are able to communicate with each

other, often by relying on the services of a number of dedicated hosts that relay data

between the participants. Hosts are very often computers, but need not be; one can also

think of X-terminals or intelligent printers as hosts. Small agglomerations of hosts are also

called sites.

1The original spirit of which (see above) still shows on some occasions in Europe.

24

1.2. UUCP Networks 25

Communication is impossible without some sort of language or code. In computer net-

works, these languages are collectively referred to as protocols. However, you shouldn't

think of written protocols here, but rather of the highly formalized code of behavior ob-

served when heads of state meet, for instance. In a very similar fashion, the protocols used

in computer networks are nothing but very strict rules for the exchange of messages between

two or more hosts.

1.2 UUCP Networks

UUCP is an abbreviation for Unix-to-Unix Copy. It started out as a package of programs

to transfer �les over serial lines, schedule those transfers, and initiate execution of programs

on remote sites. It has undergone major changes since its �rst implementation in the late

seventies, but is still rather spartan in the services it o�ers. Its main application is still in

wide-area networks based on dial-up telephone links.

UUCP was �rst developed by Bell Laboratories in 1977 for communication between their

Unix-development sites. In mid-1978, this network already connected over 80 sites. It was

running email as an application, as well as remote printing. However, the system's central

use was in distributing new software and bug�xes.2 Today, UUCP is not con�ned to the

un?x environment anymore. There are both free and commercial ports available for a

variety of platforms, including AmigaOS, DOS, Atari's TOS, etc.

One of the main disadvantages of UUCP networks is their low bandwidth. On one hand,

telephone equipment places a tight limit on the maximum transfer rate. On the other hand,

UUCP links are rarely permanent connections; instead, hosts rather dial up each other at

regular intervals. Hence, most of the time it takes a mail message to travel a UUCP network

it sits idly on some host's disk, awaiting the next time a connection is established.

Despite these limitations, there are still many UUCP networks operating all over the

world, run mainly by hobbyists, which o�er private users network access at reasonable

prices. The main reason for the popularity of UUCP is that it is dirt cheap compared

to having your computer connected to The Big Internet Cable. To make your computer

a UUCP node, all you need is a modem, a working UUCP implementation, and another

UUCP node that is willing to feed you mail and news.

1.2.1 How to Use UUCP

The idea behind UUCP is rather simple: as its name indicates, it basically copies �les from

one host to another, but it also allows certain actions to be performed on the remote host.

2Not that the times had changed that much: : :

1.2. UUCP Networks 26

Suppose your machine is allowed to access a hypothetical host named swim, and have

it execute the lpr print command for you. Then you could type the following on your

command line to have this book printed on swim:3

$ uux -r swim!lpr !netguide.dvi

This makes uux, a command from the UUCP suite, schedule a job for swim. This job

consists of the input �le, netguide.dvi, and the request to feed this �le to lpr. The -r ag

tells uux not to call the remote system immediately, but to rather store the job away until

a connection is established at a later occasion. This is called spooling.

Another property of UUCP is that it allows to forward jobs and �les through several

hosts, provided they cooperate. Assume that swim from the above examples has a UUCP

link with groucho, which maintains a large archive of un?x applications. To download the

�le tripwire-1.0.tar.gz to your site, you might issue

$ uucp -mr swim!groucho!~/security/tripwire-1.0.tar.gz trip.tgz

The job created will request swim to fetch the �le from groucho, and send it to your

site, where UUCP will store it in trip.tgz and notify you via mail of the �le's arrival. This

will be done in three steps. First, your site sends the job to swim. When swim establishes

contact with groucho the next time, it downloads the �le. The �nal step is the actual

transfer from swim to your host.

The most important services provided by UUCP networks these days are electronic mail

and news. We will come back to these later, so we will give only a brief introduction here.

Electronic mail { email for short { allows you to exchange messages with users on remote

hosts without actually having to know how to access these hosts. The task of directing a

message from your site to the destination site is performed entirely by the mail handling

system. In a UUCP environment, mail is usually transported by executing the rmail com-

mand on a neighboring host, passing it the recipient address and the mail message. rmail

will then forward the message to another host, and so on, until it reaches the destination

host. We will look at this in detail in chapter 13.

News may best be described as sort of a distributed bulletin board system. Most often,

this term refers to Usenet News, which is by far the most widely known news exchange

network with an estimated number of 120,000 participating sites. The origins of Usenet

date back to 1979, when, after the release of UUCP with the new Unix V7, three graduate

students had the idea of a general information exchange within the Unix community. They

3When using bash, the GNU Bourne Again Shell, you might have to escape the exclamation mark, because

it uses it as its history character.

1.3. TCP/IP Networks 27

put together some scripts, which became the �rst netnews system. In 1980, this network

connected duke, unc, and phs, at two Universities in North Carolina. Out of this, Usenet

eventually grew. Although it originated as a UUCP-based network, it is no longer con�ned

to one single type of network.

The basic unit of information is the article, which may be posted to a hierarchy of

newsgroups dedicated to speci�c topics. Most sites receive only a selection of all newsgroups,

which carry an average of 60MB worth of articles a day.

In the UUCP world, news is generally sent across a UUCP link by collecting all articles

from the groups requested, and packing them up in a number of batches. These are sent

to the receiving site, where they are fed to the rnews command for unpacking and further

processing.

Finally, UUCP is also the medium of choice for many dial-up archive sites which o�er

public access. You can usually access them by dialing them up with UUCP, logging in as a

guest user, and download �les from a publicly accessible archive area. These guest accounts

often have a login name and password of uucp/nuucp or something similar.

1.3 TCP/IP Networks

Although UUCP may be a reasonable choice for low-cost dial-up network links, there are

many situations in which its store-and-forward technique proves too inexible, for example

in Local Area Networks (LANs). These are usually made up of a small number of machines

located in the same building, or even on the same oor, that are interconnected to provide a

homogeneous working environment. Typically, you would want to share �les between these

hosts, or run distributed applications on di�erent machines.

These tasks require a completely di�erent approach to networking. Instead of forwarding

entire �les along with a job description, all data is broken up in smaller chunks (packets),

which are forwarded immediately to the destination host, where they are reassembled. This

type of network is called a packet-switched network. Among other things, this allows to run

interactive applications over the network. The cost of this is, of course, a greatly increased

complexity in software.

The solution that un?x system | and many non-un?x sites | have adopted is known

as TCP/IP. In this section, we will have a look at its underlying concepts.

1.3. TCP/IP Networks 28

1.3.1 Introduction to TCP/IP-Networks

TCP/IP traces its origins to a research project funded by the United States DARPA (De-

fense Advanced Research Projects Agency) in 1969. This was an experimental network, the

ARPANET, which was converted into an operational one in 1975, after it had proven to be

a success.

In 1983, the new protocol suite TCP/IP was adopted as a standard, and all hosts on

the network were required to use it. When ARPANET �nally grew into the Internet (with

ARPANET itself passing out of existence in 1990), the use of TCP/IP had spread to net-

works beyond the Internet itself. Most notable are un?x local area networks, but in the

advent of fast digital telephone equipment, such as ISDN, it also has a promising future as

a transport for dial-up networks.

For something concrete to look at as we discuss TCP/IP throughout the following sec-

tions, we will consider Groucho Marx University (GMU), situated somewhere in Fredland,

as an example. Most departments run their own local area networks, while some share one,

and others run several of them. They are all interconnected, and are hooked to the Internet

through a single high-speed link.

Suppose your Linux box is connected to a LAN of un?x hosts at the Mathematics

Department, and its name is erdos. To access a host at the Physics Department, say

quark, you enter the following command:

$ rlogin quark.physics

Welcome to the Physics Department at GMU

(ttyq2) login:

At the prompt, you enter your login name, say andres, and your password. You are

then given a shell on quark, to which you can type as if you were sitting at the system's

console. After you exit the shell, you are returned to your own machine's prompt. You have

just used one of the instantaneous, interactive applications that TCP/IP provides: remote

login.

While being logged into quark, you might also want to run an X11-based application,

like a function plotting program, or a PostScript previewer. To tell this application that

you want to have its windows displayed on your host's screen, you have to set the DISPLAY

environment variable:

$ export DISPLAY=erdos.maths:0.0

If you now start your application, it will contact your X server instead of quark's, and

display all its windows on your screen. Of course, this requires that you have X11 runnning

1.3. TCP/IP Networks 29

on erdos. The point here is that TCP/IP allows quark and erdos to send X11 packets

back and forth to give you the illusion that you're on a single system. The network is almost

transparent here.

Another very important application in TCP/IP networks is NFS, which stands for Net-

work File System. It is another form of making the network transparent, because it basically

allows you to mount directory hierarchies from other hosts, so that they appear like local

�le systems. For example, all users' home directories can be on a central server machine,

from which all other hosts on the LAN mount the directory. The e�ect of this is that users

can log into any machine, and �nd themselves in the same home directory. Similarly, it is

possible to install applications that require large amounts of disk space (such as TEX) on

only one machine, and export these directories to other machines. We will come back to

NFS in chapter 11.

Of course, these are only examples of what you can do over TCP/IP networks. The

possibilities are almost limitless.

We will now have a closer look at the way TCP/IP works. You will need this to under-

stand how and why you have to con�gure your machine. We will start by examining the

hardware, and slowly work our way up.

1.3.2 Ethernets

The type of hardware most widely used throughout LANs is what is commonly known as

Ethernet. It consists of a single cable with hosts being attached to it through connectors,

taps or transceivers. Simple Ethernets are quite inexpensive to install, which, together with

a net transfer rate of 10 Megabits per second accounts for much of its popularity.

Ethernets come in three avors, called thick and thin, respectively, and twisted pair.

Thin and thick Ethernet each use a coaxial cable, di�ering in width and the way you may

attach a host to this cable. Thin Ethernet uses a T-shaped \BNC" connector, which you

insert into the cable, and twist onto a plug on the back of your computer. Thick Ethernet

requires that you drill a small hole into the cable, and attach a transceiver using a \vampire

tap". One or more hosts can then be connected to the transceiver. Thin and thick Ethernet

cable may run for a maximum of 200 and 500 meters, respectively, and are therefore also

called 10base-2 and 10base-5. Twisted pair uses a cable made of two copper wires which is

also found in ordinary telephone installations, but usually requires additional hardware. It

is also known as 10base-T.

Although adding a host to a thick Ethernet is a little hairy, it does not bring down the

network. To add a host to a thinnet installation, you have to disrupt network service for at

least a few minutes because you have to cut the cable to insert the connector.

1.3. TCP/IP Networks 30

Most people prefer thin Ethernet, because it is very cheap: PC cards come for as little

as US$ 50, and cable is in the range of a few cent per meter. However, for large-scale

installations, thick Ethernet is more appropriate. For example, the Ethernet at GMU's

Mathematics Department uses thick Ethernet, so tra�c will not be disrupted each time a

host is added to the network.

One of the drawbacks of Ethernet technology is its limited cable length, which precludes

any use of it other than for LANs. However, several Ethernet segments may be linked to

each other using repeaters, bridges or routers. Repeaters simply copy the signals between

two or more segments, so that all segments together will act as if it was one Ethernet. timing

requirements, there may not be more than four repeaters any two hosts on the network.

Bridges and Routers are more sophisticated. They analyze incoming data and forward it

only when the recipient host is not on the local Ethernet.

Ethernet works like a bus system, where a host may send packets (or frames) of up to

1500 bytes to another host on the same Ethernet. A host is addressed by a six-byte address

hardcoded into the �rmware of its Ethernet board. These addresses are usually written as

a sequence of two-digit hex numbers separated by colons, as in aa:bb:cc:dd:ee:�.

A frame sent by one station is seen by all attached stations, but only the destination

host actually picks it up and processes it. If two stations try to send at the same time, a

collision occurs, which is resolved by the two stations aborting the send, and reattempting

it a few moments later.

1.3.3 Other Types of Hardware

In larger installations, such as Groucho Marx University, Ethernet is usually not the only

type of equipment used. At Groucho Marx University, each department's LAN is linked to

the campus backbone, which is a �ber optics cable running FDDI (Fiber Distributed Data

Interface). FDDI uses an entirely di�erent approach to transmitting data, which basically

involves sending around a number of tokens, with a station only being allowed to send a

frame if it captures a token. The main advantage of FDDI is a speed of up to 100 Mbps,

and a maximum cable length of up to 200 km.

For long-distance network links, a di�erent type of equipment is frequently used, which

is based on a standard named X.25. Many so-called Public Data Networks, like Tymnet in

the U.S., or Datex-P in Germany, o�er this service. X.25 requires special hardware, namely

a Packet Assembler/Disassembler or PAD. X.25 de�nes a set of networking protocols of its

own right, but is nevertheless frequently used to connect networks running TCP/IP and

other protocols. Since IP packets cannot simply be mapped onto X.25 (and vice versa),

they are simply encapsulated in X.25 packets and sent over the network.

1.3. TCP/IP Networks 31

Frequently, radio amateurs use their equipment to network their computers; this is called

packet radio or ham radio. The protocol used by ham radios is called AX.25, which was

derived from X.25.

Other techniques involve using slow but cheap serial lines for dial-up access. These

require yet another protocol for transmission of packets, such as SLIP or PPP, which will

be described below.

1.3.4 The Internet Protocol

Of course, you wouldn't want your networking to be limited to one Ethernet. Ideally, you

would want to be able to use a network regardless of what hardware it runs on and how

many subunits it is made up of. For example, in larger installations such as Groucho Marx

University, you usually have a number of separate Ethernets that have to be connected

in some way. At GMU, the maths department runs two Ethernets: one network of fast

machines for professors and graduates, and another one with slow machines for students.

Both are linked to the FDDI campus backbone.

This connection is handled by a dedicated host, a so-called gateway, which handles

incoming and outgoing packets by copying them between the two Ethernets and the �ber

optics cable. For example, if you are at the Maths Department, and want to access quark

on the Physics Deparment's LAN from your Linux box, the networking software cannot

send packets to quark directly, because it is not on the same Ethernet. Therefore, it has

to rely on the gateway to act as a forwarder. The gateway (name it sophus) then forwards

these packets to its peer gateway niels at the Physics Department, using the backbone,

with niels delivering it to the destination machine. Data ow between erdos and quark

is shown in �gure 1.1 (With apologies to Guy L. Steele).

1.3. TCP/IP Networks 32

FDDI Campus Backbone

quark

niels

3

2

1
Physics Ethernet Mathematics Ethernet

sophus

erdos

Figure 1.1: The three steps of sending a datagram from erdos to quark.

This scheme of directing data to a remote host is called routing, and packets are often

referred to as datagrams in this context. To facilitate things, datagram exchange is governed

by a single protocol that is independent of the hardware used: IP, or Internet Protocol. In

chapter 2, we will cover IP and the issues of routing in greater detail.

The main bene�t of IP is that it turns physically dissimilar networks into one apparently

homogeneous network. This is called internetworking, and the resulting \meta-network" is

called an internet. Note the subtle di�erence between an internet and the Internet here.

The latter is the o�cial name of one particular global internet.

Of course, IP also requires a hardware-independent addressing scheme. This is achieved

by assigning each host a unique 32-bit number, called the IP address. An IP address is

usually written as four decimal numbers, one for each 8-bit portion, separated by dots. For

example, quark might have an IP address of 0x954C0C04, which would be written as

149.76.12.4. This format is also called dotted quad notation.

You will notice that we now have three di�erent types of addresses: �rst there is the host's

name, like quark, then there are IP addresses, and �nally, there are hardware addresses,

like the 6-byte Ethernet address. All these somehow have to match, so that when you

1.3. TCP/IP Networks 33

type rlogin quark, the networking software can be given quark's IP address; and when IP

delivers any data to the Physics Department's Ethernet, it somehow has to �nd out what

Ethernet address corresponds to the IP address. Which is rather confusing.

We will not go into this here, and deal with it in chapter 2 instead. For now, it's

enough to remember that these steps of �nding addresses are called hostname resolution,

for mapping host names onto IP addresses, and address resolution, for mapping the latter

to hardware addresses.

1.3.5 IP over Serial Lines

On serial lines, a \de facto" standard known as SLIP or Serial Line IP is frequently used.

A modi�cation of SLIP is known as CSLIP, or compressed SLIP, and performs compression

of IP headers to make better use of the relatively low bandwidth provided by serial links.4

A di�erent serial protocol is PPP, or Point-to-Point Protocol. PPP has many more features

than SLIP, including a link negotiation phase. Its main advantage over SLIP is, however,

that it isn't limited to transporting IP datagrams, but that it was designed to allow for any

type of datagrams to be transmitted.

1.3.6 The Transmission Control Protocol

Now, of course, sending datagrams from one host to another is not the whole story. If

you log into quark, you want to have a reliable connection between your rlogin process on

erdos and the shell process on quark. Thus, the information sent to and fro must be split

up into packets by the sender, and reassembled into a character stream by the receiver.

Trivial as it seems, this involves a number of hairy tasks.

A very important thing to know about IP is that, by intent, it is not reliable. Assume

that ten people on your Ethernet started downloading the latest release of XFree86 from

GMU's FTP server. The amount of tra�c generated by this might be too much for the

gateway to handle, because it's too slow, and it's tight on memory. Now if you happen

to send a packet to quark, sophus might just be out of bu�er space for a moment and

therefore unable to forward it. IP solves this problem by simply discarding it. The packet

is irrevocably lost. It is therefore the responsibility of the communicating hosts to check

the integrity and completeness of the data, and retransmit it in case of an error.

This is performed by yet another protocol, TCP, or Transmission Control Protocol, which

builds a reliable service on top of IP. The essential property of TCP is that it uses IP to

give you the illusion of a simple connection between the two processes on your host and

4SLIP is described in RFC 1055. The header compression CSLIP is based in is described in RFC 1144.

1.3. TCP/IP Networks 34

the remote machine, so that you don't have to care about how and along which route your

data actually travels. A TCP connection works essentially like a two-way pipe that both

processes may write to and read from. Think of it as a telephone conversation.

TCP identi�es the end points of such a connection by the IP addresses of the two

hosts involved, and the number of a so-called port on each host. Ports may be viewed as

attachment points for network connections. If we are to strain the telephone example a

little more, one might compare IP addresses to area codes (numbers map to cities), and

port numbers to local codes (numbers map to individual people's telephones).

In the rlogin example, the client application (rlogin) opens a port on erdos, and connects

to port 513 on quark, which the rlogind server is known to listen to. This establishes a

TCP connection. Using this connection, rlogind performs the authorization procedure, and

then spawns the shell. The shell's standard input and output are redirected to the TCP

connection, so that anything you type to rlogin on your machine will be passed through the

TCP stream and be given to the shell as standard input.

1.3.7 The User Datagram Protocol

Of course, TCP isn't the only user protocol in TCP/IP networking. Although suitable

for applications like rlogin, the overhead involved is prohibitve for applications like NFS.

Instead, it uses a sibling protocol of TCP called UDP, or User Datagram Protocol. Just like

TCP, UDP also allows an application to contact a service on a certain port on the remote

machine, but it doesn't establish a connection for this. Instead, you may use it to send

single packets to the destination service { hence its name.

Assume you have mounted the TEX directory hierarchy from the department's central

NFS server, galois, and you want to view a document describing how to use LATEX. You start

your editor, who �rst reads in the entire �le. However, it would take too long to establish a

TCP connection with galois, send the �le, and release it again. Instead, a request is made

to galois, who sends the �le in a couple of UDP packets, which is much faster. However,

UDP was not made to deal with packet loss or corruption. It is up to the application {

NFS in this case { to take care of this.

1.3.8 More on Ports

Ports may be viewed as attachment points for network connections. If an application wants

to o�er a certain service, it attaches itself to a port and waits for clients (this is also called

listening on the port). A client that wants to use this service allocates a port on its local

host, and connects to the server's port on the remote host.

1.3. TCP/IP Networks 35

An important property of ports is that once a connection has been established between

the client and the server, another copy of the server may attach to the server port and

listen for more clients. This permits, for instance, several concurrent remote logins to the

same host, all using the same port 513. TCP is able to tell these connections from each

other, because they all come from di�erent ports or hosts. For example, if you twice log

into quark from erdos, then the �rst rlogin client will use the local port 1023, and the

second one will use port 1022. Both however, will connect to the same port 513 on quark.

This example shows the use of ports as rendezvous points, where a client contacts a

speci�c port to obtain a speci�c service. In order for a client to know the proper port num-

ber, an agreement has to be reached between the administrators of both systems on the

assignment of these numbers. For services that are widely used, such as rlogin, these num-

bers have to be administered centrally. This is done by the IETF (or Internet Engineering

Task Force), which regularly releases an RFC titled Assigned Numbers. It describes, among

other things, the port numbers assigned to well-known services. Linux uses a �le mapping

service names to numbers, called /etc/services. It is described in section The services and

protocols Files.

It is worth noting that although both TCP and UDP connections rely on ports, these

numbers do not conict. This means that TCP port 513, for example, is di�erent from

UDP port 513. In fact, these ports serve as access points for two di�erent services, namely

rlogin (TCP) and rwho (UDP).

1.3.9 The Socket Library

In un?x operating systems, the software performing all the tasks and protocols described

above is usually part of the kernel, and so it is in Linux. The programming interface most

common in the un?x world is the Berkeley Socket Library. Its name derives from a popular

analogy that views ports as sockets, and connecting to a port as plugging in. It provides

the (bind(2)) call to speci�y a remote host, a transport protocol, and a service which a

program can connect or listen to (using connect(2), listen(2), and accept(2)). The socket

library is however somewhat more general, in that it provides not only a class of TCP/IP-

based sockets (the AF INET sockets), but also a class that handles connections local to

the machine (the AF UNIX class). Some implementations can also handle other classes as

well, like the XNS (Xerox Networking System) protocol, or X.25.

In Linux, the socket library is part of the standard libc C library. Currently, it only

supports AF INET and AF UNIX sockets, but e�orts are made to incorporate support for

Novell's networking protocols, so that eventually one or more socket classes for these would

be added.

1.4. Linux Networking 36

1.4 Linux Networking

Being the result of a concerted e�ort of programmers around the world, Linux wouldn't have

been possible without the global network. So it's not surprising that already in early stages

of development, several people started to work on providing it with network capabilities. A

UUCP implementation was running on Linux almost from the very beginning, and work on

TCP/IP-based networking started around autumn 1992, when Ross Biro and others created

what now has become known as Net-1.

After Ross quit active development in May 1993, Fred van Kempen began to work on

a new implementation, rewriting major parts of the code. This ongoing e�ort is known as

Net-2. A �rst public release, Net-2d, was made in Summer 1992 (as part of the 0.99.10

kernel), and has since been maintained and expanded by several people, most notably Alan

Cox, as Net-2Debugged. After heavy debugging and numerous improvements to the code,

he changed its name to Net-3 after Linux 1.0 was released. This is the version of the

networking code currently included in the o�cial kernel releases.

Net-3 o�ers device drivers for a wide variety of Ethernet boards, as well as SLIP (for

sending network tra�c over serial lines), and PLIP (for parallel lines). With Net-3, Linux

has a TCP/IP implementation that behaves very well in a local area network environment,

showing uptimes that beat some of the commercial PC Unices. Development currently

moves toward the necessary stability to reliably run it on Internet hosts.

Beside these facilities, there are several projects going on that will enhance the versatility

of Linux. A driver for PPP (the point-to-point protocol, another way to send network tra�c

over serial lines), is at Beta stage currently, and an AX.25 driver for ham radio is at Alpha

stage. Alan Cox has also implemented a driver for Novell's IPX protocol, but the e�ort for

a complete networking suite compatible with Novell's has been put on hold for the moment,

because of Novell's unwillingness to provide the necessary documentation. Another very

promising undertaking is samba, a free NetBIOS server for Unices, written by Andrew

Tridgell.5

1.4.1 Di�erent Streaks of Development

In the meanwhile, Fred continued development, going on to Net-2e, which features a much

revised design of the networking layer. At the time of writing, Net-2e is still Beta software.

Most notable about Net-2e is the incorporation of DDI, the Device Driver Interface. DDI

o�ers a uniform access and con�guration method to all networking devices and protocols.

5NetBIOS is the protocol on which applications like lanmanager and Windows for Workgroups are based.

1.5. Maintaining Your System 37

Yet another implemtation of TCP/IP networking comes from Matthias Urlichs, who

wrote an ISDN driver for Linux and FreeBSD. For this, he integrated some of the BSD

networking code in the Linux kernel.

For the foreseeable future, however, Net-3 seems to be here to stay. Alan currently works

on an implementation of the AX.25 protocol used by ham radio amateurs. Doubtlessly, the

yet to be developed \module" code for the kernel will also bring new impulses to the

networking code. Modules allow you to add drivers to the kernel at run time.

Although these di�erent network implementations all strive to provide the same service,

there are major di�erences between them at the kernel and device level. Therefore, you

will not be able to con�gure a system running a Net-2e kernel with utilities from Net-2d

or Net-3, and vice versa. This only applies to commands that deal with kernel internals

rather closely; applications and common networking commands such as rlogin or telnet run

on either of them.

Nevertheless, all these di�erent network version should not worry you. Unless you are

participating in active development, you will not have to worry about which version of the

TCP/IP code you run. The o�cial kernel releases will always be accompanied by a set of

networking tools that are compatible with the networking code present in the kernel.

1.4.2 Where to Get the Code

The latest version of the Linux network code can be obtained by anonymous FTP from

various sites. The o�cial FTP site for Net-3 is sunacm.swan.ac.uk, mirrored by sun-

site.unc.edu below system/Network/sunacm. The latest Net-2e patch kit and binaries are

available from ftp.aris.com. Matthias Urlichs' BSD-derived networking code can be gotten

from ftp.ira.uka.de in /pub/system/linux/netbsd.

The latest kernels can be found on nic.funet.� in /pub/OS/Linux/PEOPLE/Linus;

sunsite and tsx-11.mit.edu mirror this directory.

1.5 Maintaining Your System

Throughout this book, we will mainly deal with installation and con�guration issues. Ad-

ministration is, however, much more than that | after setting up a service, you have to

keep it running, too. For most of them, only little attendance will be necessary, while some,

like mail and news, require that you perform routine tasks to keep your system up-to-date.

We will discuss these tasks in later chapters.

The absolute minimum in maintenance is to check system and per-application log �les

1.5. Maintaining Your System 38

regularly for error conditions and unusual events. Commonly, you will want to do this by

writing a couple of administrative shell scripts and run them from cron periodically. The

source distribution of some major applications, like smail or C News, contain such scripts.

You only have to tailor them to suit your needs and preferences.

The output from any of your cron jobs should be mailed to an administrative account.

By default, many applications will send error reports, usage statistics, or log�le summaries

to the root account. This only makes sense if you log in as root frequently; a much better

idea is to forward root's mail to your personal account setting up a mail alias as described

in chapter 14.

However carefully you have con�gured your site, Murphy's law guarantees that some

problem will surface eventually. Therefore, maintaining a system also means being available

for complaints. Usually, people expect that the system administrator can at least be reached

via email as root, but there are also other addresses that are commonly used to reach the

person responsible for a speci�c aspect of maintenence. For instance, complaints about

a malfunctioning mail con�guration will usually be addressed postmaster; and problems

with the news system may be reported to newsmaster or usenet. Mail to hostmaster

should be redirected to the person in charge of the host's basic network services, and the

DNS name service if you run a name server.

1.5.1 System Security

Another very important aspect of system administration in a network environment is pro-

tecting your system and users from intruders. Carelessly managed systems o�er malicious

people many targets: attacks range from password guessing to Ethernet snooping, and the

damage caused may range from faked mail messages to data loss or violation of your users'

privacy. We will mention some particular problems when discussing the context they may

occur in, and some common defenses against them.

This section will discuss a few examples and basic techniques in dealing with system

security. Of course, the topics covered can not treat all security issues you may be faced

with exhaustively; they merely serve to illustrate the problems that may arise. Therefore,

reading a good book on security is an absolute must, especially in a networked system.

Simon Gar�nkel's \Practical UNIX Security" (see [Spaf93]) is highly recommendable.

System security starts with good system administration. This includes checking the

ownership and permissions of all vital �les and directories, monitoring use of privileged

accounts, etc. The COPS program, for instance, will check your �le system and common

con�guration �les for unusual permissions or other anomalies. It is also wise to use a

password suite that enforces certain rules on the users' passwords that make them hard to

guess. The shadow password suite, for instance, requires a password to have at least �ve

1.5. Maintaining Your System 39

letters, and contain both upper and lower case numbers and digits.

When making a service accessible to the network, make sure to give it \least privilege,"

meaning that you don't permit it to do things that aren't required for it to work as designed.

For example, you should make programs setuid to root or some other privileged account

only when they really need this. Also, if you want to use a service for only a very limited

application, don't hesitate to con�gure it as restrictively as your special application allows.

For instance, if you want to allow diskless hosts to boot from your machine, you must provide

the TFTP (trivial �le transfer service) so that they can download basic con�guration �les

from the /boot directory. However, when used unrestricted, TFTP allows any user anywhere

in the world to download any world-readable �le from your system. If this is not what you

want, why not restrict TFTP service to the /boot directory?6

Along the same line of thought, you might want to restrict certain services to users from

certain hosts, say from your local network. In chapter 9, we introduce tcpd which does this

for a variety of network applications.

Another important point is to avoid \dangerous" software. Of course, any software you

use can be dangerous, because software may have bugs that clever people might exploit to

gain access to your system. Things like these happen, and there's no complete protection

against this. This problem a�ects free software and commercial products alike.7 However,

programs that require special privilege are inherently more dangerous than others, because

any loophole can have drastic consequences.8 If you install a setuid program for network

purposes be doubly careful that you don't miss anything from the documentation, so that

you don't create a security breach by accident.

You can never rule out that your precautions might fail, regardless how careful you have

been. You should therefore make sure you detect intruders early. Checking the system

log �les is a good starting point, but the intruder is probably as clever, and will delete

any obvious traces he or she left. However, there are tools like tripwire9 that allow you to

check vital system �les to see if their contents or permissions have been changed. tripwire

computes various strong checksums over these �les and stores them in a database. During

subsequent runs, the checksums are re-computed and compared to the stored ones to detect

any modi�cations.

6We will come back to this in chapter 9.
7There have been commercial Unices you have to pay lots of money for that came with a setuid-root

shell script which allowed users to gain root privilege using a simple standard trick.
8In 1988, the RTM worm brought much of the Internet to a grinding halt, partly by exploiting a gaping

hole in some sendmail programs. This hole has long been �xed since.
9Written by Gene Kim and Gene Spa�ord.

1.6. Outlook on the Following Chapters 40

1.6 Outlook on the Following Chapters

The next few chapters will deal with con�guring Linux for TCP/IP networking, and with

running some major applications. Before getting our hands dirty with �le editing and the

like, we will examine IP a little closer in chapter 2. If you already know about the way

IP routing works, and how address resolution is performed, you might want to skip this

chapter.

Chapter 3 deals with the very basic con�guration issues, such as building a kernel and

setting up your Ethernet board. The con�guration of your serial ports is covered in a

separate chapter, because the discussion does not apply to TCP/IP networking only, but is

also relevant for UUCP.

Chapter 5 helps you to set up your machine for TCP/IP networking. It contains instal-

lation hints for standalone hosts with only loopback enabled, and hosts connected to an

Ethernet. It will also introduce you to a few useful tools you can use to test and debug

your setup. The next chapter discusses how to con�gure hostname resolution, and explains

how to set up a name server.

This is followed by two chapters featuring the con�guration and use of SLIP and PPP,

respectively. Chapter 7 explains how to establish SLIP connections, and gives a detailed

reference of dip, a tool that allows you to automate most of the necessary steps. Chapter 8

covers PPP and pppd, the PPP daemon you need for this.

Chapter 9 gives a short introduction to setting up some of the most important network

applications, such as rlogin, rcp, etc, in chapter 9. This also covers how services are managed

by the inetd super, and how you may restrict certain security-relevant services to a set of

trusted hosts.

The next two chapters discuss NIS, the Network Information System, and NFS, the

Network File System. NIS is a useful tool to distribute administative information such as

user passwords in a local area network. NFS allows you to share �le systems between several

hosts in your network.

Chapter 12 gives you an extensive introduction to the administration of Taylor UUCP,

a free implementation of the UUCP suite.

The remainder of the book is taken up by a detailed tour of electronic mail and Usenet

News. Chapter 13 introduces you to the central concepts of electronic mail, like what a

mail address looks like, and how the mail handling system manages to get your message to

the recipient.

Chapters 14 and 15 each cover the setup of smail and sendmail, two mail transport

agents you can use for Linux. This book explains both of them, because smail is easier to

1.6. Outlook on the Following Chapters 41

install for the beginner, while sendmail is more exible.

Chapters 16 and 17 explain the way news are managed in Usenet, and how you install

and use C news, a popular software package for managing Usenet news. Chapter 18 briey

covers how to set up an NNTP daemon to provide news reading access for your local

network. Chapter 19 �nally shows you how to con�gure and maintain various newsreaders.

Chapter 2

Issues of TCP/IP Networking

We will now turn to the details you'll come in touch with when connecting your Linux ma-

chine to a TCP/IP network including dealing with IP addresses, host names, and sometimes

routing issues. This chapter gives you the background you need in order to understand what

your setup requires, while the next chapters will cover the tools to deal with these.

2.1 Networking Interfaces

To hide the diversity of equipment that may be used in a networking environment, TCP/IP

de�nes an abstract interface through which the hardware is accessed. This interface o�ers

a set of operations which is the same for all types of hardware and basically deals with

sending and receiving packets.

For each periphereal device you want to use for networking, a corresponding interface

has to be present in the kernel. For example, Ethernet interfaces in Linux are called eth0

and eth1, and SLIP interfaces come as sl0, sl1, etc. These interface names are used for

con�guration purposes when you want to name a particular physical device to the kernel.

They have no meaning beyond that.

To be useable for TCP/IP networking, an interface must be assigned an IP address which

serves as its identifcation when communicating with the rest of the world. This address

is di�erent from the interface name mentioned above; if you compare an interface to door,

then the address is like the name-plate pinned on it.

Of course, there are other device parameters that may be set; one of these is the maximum

size of datagrams that can be processed by that particular piece of hardware, also called

Maximum Transfer Unit, or MTU. Other attributes will be introduced later.

42

2.2. IP Addresses 43

2.2 IP Addresses

As mentioned in the previous chapter, the addresses understood by the IP networking

protocol are 32-bit numbers. Every machine must be assigned a number unique to the net-

working environment. If you are running a local network that does not have TCP/IP tra�c

with other networks, you may assign these numbers according to your personal preferences.

However, for sites on the Internet, numbers are assigned by a central authority, the Network

Information Center, or NIC.1

For easier reading, IP addresses are split up into four 8 bit numbers called octets. For ex-

ample, quark.physics.groucho.edu has an IP address of 0x954C0C04, which is written

as 149.76.12.4. This format is often referred to as the dotted quad notation.

Another reason for this notation is that IP addresses are split into a network number,

which is contained in the leading octets, and a host number, which is the remainder. When

applying to the NIC for IP addresses, you are not assigned an address for each single host

you plan to use. Instead, you are given a network number, and are allowed to assign all

valid IP addresses within this range to hosts on your network according to your preferences.

Depending on the size of the network, the host part may need to be smaller or larger.

To accomodate di�erent needs, there are several classes of networks, de�ning di�erent splits

of IP addresses.

Class A Class A comprises networks 1.0.0.0 through 127.0.0.0. The network num-

ber is contained in the �rst octet. This provides for a 24 bit host part,

allowing roughly 1.6 million hosts.

Class B Class B contains networks 128.0.0.0 through 191.255.0.0; the network

number is in the �rst two octets. This allows for 16320 nets with 65024

hosts each.

Class C Class C networks range from 192.0.0.0 through 223.255.255.0, with the

network number being contained in the �rst three octets. This allows for

nearly 2 million networks with up to 254 hosts.

Classes D, E, and F

Addresses falling into the range of 224.0.0.0 through 254.0.0.0 are either

experimental, or are reserved for future use and don't specify any network.

If we go back to the example in the previous chapter, we �nd that 149.76.12.4, the

1Frequently, IP addresses will be assigned to you by the provider you buy your IP connectivity from.

However, you may also apply to NIC directly for an IP address for your network by sending a mail to

hostmaster@internic.net.

2.3. Address Resolution 44

address of quark, refers to host 12.4 on the class B network 149.76.0.0.

You may have noticed that in the above list not all possible values were allowed for each

octet in the host part. This is because host numbers with octets all 0 or all 255 are reserved

for special purposes. An address where all host part bits are zero refers to the network, and

one where all bits of the host part are 1 is called a broadcast address. This refers to all

hosts on the speci�ed network simultaneously. Thus, 149.76.255.255 is not a valid host

address, but refers to all hosts on network 149.76.0.0.

There are also two network addresses that are reserved, 0.0.0.0 and 127.0.0.0. The �rst

is called the default route, the latter the loopback address. The default route has something

to do with the way IP routes datagrams, which will be dealt with below.

Network 127.0.0.0 is reserved for IP tra�c local to your host. Usually, address

127.0.0.1 will be assigned to a special interface on your host, the so-called loopback in-

terface, which acts like a closed circuit. Any IP packet handed to it from TCP or UDP

will be returned to them as if it had just arrived from some network. This allows you to

develop and test networking software without ever using a \real" network. Another useful

application is when you want to use networking software on a standalone host. This may

not be as uncommon as it sounds; for instance, many UUCP sites don't have IP connectivity

at all, but still want to run the INN news system nevertheless. For proper operation on

Linux, INN requires the loopback interface.

2.3 Address Resolution

Now that you've seen how IP addresses are made up, you may be wondering how they are

used on an Ethernet to address di�erent hosts. After all, the Ethernet protocol identi�es

hosts by a six-octet number that has absolutely nothing in common with an IP address,

doesn't it?

Right. That's why a mechanism is needed to map IP addresses onto Ethernet addresses.

This is the so-called Address Resolution Protocol, or ARP. In fact, ARP is not con�ned to

Ethernets at all, but is used on other types networks such as ham radio as well. The idea

underlying ARP is exactly what most people do when they have to �nd Mr. X. Ample in

a throng of 150 people: they go round, calling out his name, con�dent that he will respond

if he's there.

When ARP wants to �nd out the Ethernet address corresponding to a given IP address,

it uses a feature of Ethernet known as \broadcasting," where a datagram is addressed to all

stations on the network simultaneously. The broadcast datagram sent by ARP contains a

query for the IP address. Each receiving host compares this to its own IP address, and if it

2.4. IP Routing 45

matches, returns an ARP reply to the inquiring host. The inquiring host can now extract

the sender's Ethernet address from the reply.

Of course you might wonder how a host may know on which of the zillions of Ethernets

throughout the world it is to �nd the desired host, and why this should even be an Ethernet.

These questions all involve what is called routing, namely �nding out the physical location

of a host in a network. This will be the topic of the following section.

For a moment, let's talk about ARP a little longer. Once a host has discovered an

Ethernet address, it stores it in its ARP cache, so that it doesn't have to query for it the

next time it wants to send a datagram to the host in question. However, it is unwise to

keep this information forever; for instance, the remote host's Ethernet card may be replaced

because of technical problems, so the ARP entry becomes invalid. To force another query

for the IP address, entries in the ARP cache are therefore discarded after some time.

Sometimes, it is also necessary to �nd out the IP address associated with a given Ethernet

address. This happens when a diskless machine wants to boot from a server on the network,

which is quite a common situation on local area networks. A diskless client, however, has

virtually no information about itself { except for its Ethernet address! So what it basically

does is broadcast a message containing a plea for boot servers to tell it its IP address.

There's another protocol for this, named Reverse Address Resolution Protocol, or RARP.

Along with the BOOTP protocol, it serves to de�ne a procedure for bootstrapping diskless

clients over the network.

2.4 IP Routing

2.4.1 IP Networks

When you write a letter to someone, you usually put a complete address on the envelope,3

specifying the country, state, zip code, etc. After you put it into the letter box, the postal

service will deliver it to its destination: it will be sent to the country indicated, whose

national service will dispatch it to the proper state and region, etc. The advantage of this

hierarchical scheme is rather obvious: Wherever you post the letter, the local postmaster

will know roughly the direction to forward the letter to, but doesn't have to care which way

the letter will travel by within the destination country.

IP networks are structured in a similar way. The whole Internet consists of a number

of proper networks, called autonomous systems. Each such system performs any routing

between its member hosts internally, so that the task of delivering a datagram is reduced

to �nding a path to the destination host's network. This means, as soon as the datagram is

handed to any host that is on that particular network, further processing is done exclusively

2.4. IP Routing 46

by the network itself.

2.4.2 Subnetworks

This structure is reected by splitting IP addresses into a host and network part, as ex-

plained above. By default, the destination network is derived from the network part of the

IP address. Thus, hosts with identical IP network numbers should be found within the

same network, and vice versa.2

It makes sense to o�er a similar scheme inside the network, too, since it may consist of

a collection of hundreds of smaller networks itself, with the smallest units being physical

networks like Ethernets. Therefore, IP allows you to subdivide an IP network into several

subnets.

A subnet takes over responsibility for delivering datagrams to a certain range of IP ad-

dresses from the IP network it is part of. As with classes A, B, or C, it is identi�ed by the

network part of the IP addresses. However, the network part is now extended to include

some bits from the host part. The number of bits that are interpreted as the subnet num-

ber is given by the so-called subnet mask, or netmask. This is a 32 bit number, too, which

speci�es the bit mask for the network part of the IP address.

149 76 12 4

Host PartNetwork Part

149 76 12 4

Network Part Host Part

Figure 2.1: Subnetting a class B network

The campus network of Groucho Marx University is an example of such a network. It

has a class B network number of 149.76.0.0, and its netmask is therefore 255.255.0.0.

Internally, GMU's campus network consists of several smaller networks, such as the

LANs of various departments. So the range of IP addresses is broken up into 254 subnets,

149.76.1.0 through 149.76.254.0. For example, the Department of Theoretical Physics

has been assigned 149.76.12.0. The campus backbone is a network by its own right, and is

2Autonomous systems are slightly more general, however. They may comprise more than one IP network.

2.4. IP Routing 47

given 149.76.1.0. These subnets share the same IP network number, while the third octet

is used to distinguish between them. Thus they will use a subnet mask of 255.255.255.0.

Figure 2.1 shows how 149.76.12.4, the address of quark, is interpreted di�erently when

the address is taken as an ordinary class B network, and when used with subnetting.

It is worth noting that subnetting (as the technique of generating subnets is called) is

only an internal division of the network. Subnets are generated by the network owner (or

the administrators). Frequently, subnets are created to reect existing boundaries, be they

physical (between two Ethernets), administrative (between two departments), or geograph-

ical, and authority over these subnets is delegated to some contact person. However, this

structure a�ects only the network's internal behavior, and is completely invisible to the

outside world.

2.4.3 Gateways

Subnetting is not only an organizational bene�t, it is frequently a natural consequence of

hardware boundaries. The viewpoint of a host on a given physical network, such as an

Ethernet, is a very limited one: the only hosts it is able to talk to directly are those of

the network it is on. All other hosts can be accessed only through so-called gateways. A

gateway is a host that is connected to two or more physical networks simultaneously and is

con�gured to switch packets between them.

For IP to be able to easily recognize if a host is on a local physical network, di�erent

physical networks have to belong to di�erent IP networks. For example the network number

149.76.4.0 is reserved for hosts on the mathematics LAN. When sending a datagram to

quark, the network software on erdos immediately sees from the IP address, 149.76.12.4,

that the destination host is on a di�erent physical network, and therefore can be reached

only through a gateway (sophus by default).

sophus itself is connected to two distinct subnets: the Mathematics Department, and the

campus backbone. It accesses each through a di�erent interface, eth0 and fddi0, respectively.

Now, what IP address do we assign it? Should we give it one on subnet 149.76.1.0, or on

149.76.4.0?

The answer is: both. When talking to a host on the Maths LAN, sophus should use

an IP address of 149.76.4.1, and when talking to a host on the backbone, it should use

149.76.1.4.

Thus, a gateway is assigned one IP address per network it is on. These addresses |

along with the corresponding netmask | are tied to the interface the subnet is accessed

through. Thus, the mapping of interfaces and addresses for sophus would look like this:

2.4. IP Routing 48

iface address netmask

eth0 149.76.4.1 255.255.255.0

fddi0 149.76.1.4 255.255.255.0

lo 127.0.0.1 255.0.0.0

The last entry describes the loopback interface lo, which was introduced above.

Figure 2.2 shows a part of the network topology at Groucho Marx University (GMU).

Hosts that are on two subnets at the same time are shown with both addresses.

sophus niels

quarkerdos

12.44.17

gauss

4.1 12.1

1.4 1.12

4.0 12.0

4.23

Campus Backbone gcc11.1

2.1

1.0

Groucho Computing Centre

Theoretical Physics DepartmentMathematics Department

Figure 2.2: A part of the net topology at Groucho Marx Univ.

Generally, you can ignore the subtle di�erence between attaching an address to a host or

its interface. For hosts that are on one network only, like erdos, you would generally refer

of the host as having this-and-that IP address although strictly speaking, it's the Ethernet

interface that has this IP address. However, this distinction is only really important when

you refer to a gateway.

2.4. IP Routing 49

2.4.4 The Routing Table

We are now focusing our attention on how IP chooses a gateway to use when delivering a

datagram to a remote network.

We have seen before that erdos, when given a datagram for quark, checks the desti-

nation address and �nds it is not on the local network. It therefore sends it to the default

gateway, sophus, which is now basically faced with the same task. sophus recognizes that

quark is not on any of the networks it is connected to directly, so it has to �nd yet an-

other gateway to forward it through. The correct choice would be niels, the gateway to the

Physics Department. sophus therefore needs some information to associate a destination

network with a suitable gateway.

The routing information IP uses for this is basically a table linking networks to gateways

that reach them. A catch-all entry (the default route) must generally be supplied, too; this

is the gateway associated with network 0.0.0.0. All packets to an unknown network are

sent through the default route. On sophus, this table might look like this:

Network Gateway Interface

149.76.1.0 - fddi0

149.76.2.0 149.76.1.2 fddi0

149.76.3.0 149.76.1.3 fddi0

149.76.4.0 - eth0

149.76.5.0 149.76.1.5 fddi0

: : : : : : : : :

0.0.0.0 149.76.1.2 fddi0

Routes to a network that sophus is directly connected to don't require a gateway;

therefore they show a gateway entry of \-".

Routing tables may be built by various means. For small LANs, it is usually most

e�cient to construct them by hand and feed them to IP using the route command at boot

time (see chapter 5). For larger networks, they are built and adjusted at run-time by routing

daemons; these run on central hosts of the network and exchange routing information to

compute \optimal" routes between the member networks.

Depending on the size of the network, di�erent routing protocols will be used. For

routing inside autonomous systems (such as Groucho Marx campus), the internal routing

protocols are used. The most prominent one is RIP, the Routing Information Protocol, which

is implemented by the BSD routed daemon. For routing between autonomous systems,

external routing protocols like EGP (External Gateway Protocol), or BGP (Border Gateway

Protocol) have to be used; these (as well as RIP) have been implemented in the University

2.5. The Internet Control Message Protocol 50

of Cornell's gated daemon.3

2.4.5 Metric Values

Dynamic routing based on RIP chooses the best route to some destination host or network

based on the number of \hops", that is, the gateways a datagram has to pass before reaching

it. The shorter a route is, the better RIP rates it. Very long routes with 16 or more hops

are regarded as unusable, and are discarded.

To use RIP to manage routing information internal to your local network, you have to

run gated on all hosts. At boot time, gated checks for all active network interfaces. If there

is more than one active interface (not counting the loopback interface), it assumes the host

is switching packets between several networks, and will actively exchange and broadcast

routing information. Otherwise, it will only passively receive any RIP updates and update

the local routing table.

When broadcasting the information from the local routing table, gated computes the

length of the route from the so-called metric value associated with the routing table entry.

This metric value is set by the system administrator when con�guring the route and should

reect the actual cost of using this route. Therefore, the metric of a route to a subnet

the host is directly connected to should always be zero, while a route going through two

gateways should have a metric of two. However, note that you don't have to bother about

metrics when you don't use RIP or gated.

2.5 The Internet Control Message Protocol

IP has a companion protocol that we haven't talked about yet. This is the Internet Control

Message Protocol (ICMP) and is used by the kernel networking code to communicate error

messages and the like to other hosts. For instance, assume that you are on erdos again and

want to telnet to port 12345 on quark, but there's no process listening on that port. When

the �rst TCP packet for this port arrives on quark, the networking layer will recognize this

and immediately return an ICMP message to erdos stating \Port Unreachable".

There are quite a number of messages ICMP understands, many of which deal with error

conditions. However, there is one very interesting message called the Redirect message. It

is generated by the routing module when it detects that another host is using it as a

gateway, although there is a much shorter route. For example, after booting the routing

table of sophus may be incomplete, containing the routes to the Mathematics network, to

3routed is considered broken by many people. Since gated supports RIP as well, it is better to use that

instead.

2.6. The Domain Name System 51

the FDDI backbone, and the default route pointing at the Groucho Computing Center's

gateway (gcc1). Therefore, any packets for quark would be sent to gcc1 rather than to

niels, the gateway to the Physics Department. When receiving such a datagram, gcc1 will

notice that this is a poor choice of route, and will forward the packet to niels, at the same

time returning an ICMP Redirect message to sophus telling it of the superior route.

Now, this seems a very clever way to avoid having to set up any but the most basic routes

manually. However be warned that relying on dynamic routing schemes, be it RIP or ICMP

Redirect messages, is not always a good idea. ICMP Redirect and RIP o�er you little or no

choice in verifying that some routing information is indeed authentic. This allows malicious

good-for-nothings to disrupt your entire network tra�c, or do even worse things. For this

reason, there are some versions of the Linux networking code that treat Redirect messages

that a�ect network routes, as if they were only Redirects for host routes.

2.6 The Domain Name System

2.6.1 Hostname Resolution

As described above, addressing in TCP/IP networking revolves around 32 bit numbers.3

However, you will have a hard time remembering more than a few of these. Therefore,

hosts are generally known by \ordinary" names such as gauss or strange. It is then the

application's duty to �nd the IP address corresponding to this name. This process is called

host name resolution.

An application that wants to �nd the IP address of a given host name does not have

to provide its own routines for looking up a hosts and IP adresses. Instead, it relies on

number of library functions that do this transparently, called gethostbyname(3) and geth-

ostbyaddr(3). Traditionally, these and a number of related procedures were grouped in a

separate library called the resolver library; on Linux, these are part of the standard libc.

Colloquially, this collection of functions are therefore referred to as \the resolver".

Now, on a small network like an Ethernet, or even a cluster of them, it is not very di�cult

to maintain tables mapping host names to addresses. This information is usually kept in

a �le named /etc/hosts. When adding or removing hosts, or reassigning addresses, all you

have to do is update the hosts on all hosts. Quite obviously, this will become burdensome

with networks than comprise more than a handful of machines.

One solution to this problem is NIS, the Network Information System developed by Sun

Microsystems, colloquially called YP, or Yellow Pages. NIS stores the hosts �le (and other

information) in a database on a master host, from which clients may retrieve it as needed.

Still, this approach is only suitable for medium-sized networks such as LANs, because it

2.6. The Domain Name System 52

involves maintaining the entire hosts database centrally, and distributing it to all servers.

On the Internet, address information was initially stored in a single HOSTS.TXT

database, too. This �le was maintained at the Network Information Center, or NIC, and

had to be downloaded and installed by all participating sites. When the network grew,

several problems with this scheme arose. Beside the administrative overhead involved in

installing HOSTS.TXT regularly, the load on the servers that distributed it became too

high. Even more severe was the problem that all names had to be registered with the NIC,

which had to make sure that no name was issued twice.

This is why, in 1984, a new name resolution scheme has been adopted, the Domain Name

System. DNS was designed by Paul Mockapetris, and addresses both problems simultane-

ously.

2.6.2 Enter DNS

DNS organizes host names in a hierarchy of domains. A domain is a collection of sites that

are related in some sense | be it because they form a proper network (e.g. all machines

on a campus, or all hosts on BITNET), because they all belong to a certain organization

(like the U.S. government), or because they're simply geographically close. For instance,

universities are grouped in the edu domain, with each University or College using a separate

subdomain below which their hosts are subsumed. Groucho Marx University might be given

the groucho.edu domain, with the LAN of the Mathematics Department being assigned

maths.groucho.edu. Hosts on the departmental network would have this domain name

tacked onto their host name; so erdos would be known as erdos.maths.groucho.edu.

This is called the fully quali�ed domain name, or FQDN, which uniquely identi�es this host

world-wide.

2.6. The Domain Name System 53

.

com

collider

physics

gauss

up

theory

niels

maths

sophuserdos

down strangeottoquark

edu

groucho

net

Figure 2.3: A part of the domain name space

Figure 2.3 shows a section of the name space. The entry at the root of this tree, which is

denoted by a single dot, is quite appropriately called the root domain, and encompasses all

other domains. To indicate that a host name is a fully quali�ed domain name, rather than

a name relative to some (implicit) local domain, it is sometimes written with a trailing dot.

This signi�es that the name's last component is the root domain.

Depending on its location in the name hierarchy, a domain may be called top-level,

second-level, or third-level. More levels of subdivision occur, but are rare. These are a

couple of top-level domains you may see frequently:

edu (Mostly US) educational institutions like universities, etc.

com Commercial organizations, companies.

org Non-commercial organizations. Often private UUCP networks are in this

domain.

net Gateways and other administrative host on a network.

mil US military institutions.

gov US government institutions.

uucp O�cially, all site names formerly used as UUCP names without domain,

have been moved to this domain.

2.6. The Domain Name System 54

Technically, the �rst four of these belong to the US part of the Internet, but you may

also see non-US sites in these domains. This is especially true of the net domain. However,

mil and gov are used exclusively in the US.

Outside the US, each country generally uses a top-level domain of its own named after

the two-letter country code de�ned in ISO-3166. Finland, for instance, uses the � domain,

fr is used by France, de by Germany, or au by Australia etc. Below this top-level domain,

each country's NIC is free to organize host names in whatever way they want. Australia,

for example, has second-level domain similar to the international top-level domains, named

com.au, edu.au, and so on. Others, like Germany, don't use this extra level, but rather

have slightly longish names that refer directly to the organizations running a particular

domain. For example, it's not uncommon to see host names like ftp.informatik.uni-

erlangen.de. Chalk that up to German e�ciency.

Of course, these national domains do not imply that a host below that domain is actually

located in that country; it only signals that the host has been registered with that country's

NIC. A Swedish manufacturer might have a branch in Australia, and still have all its hosts

registered with the se top-level domain.

Now, organizing the name space in a hierarchy of domain names nicely solves the problem

of name uniqueness; with DNS, a host name has to be unique only within its domain to

give it a name di�erent from all other hosts world-wide. Furthermore, fully quali�ed names

are quite easy to remember. Taken by themselves, these are already very good resaons to

split up a large domain into several subdomains.

But DNS does even more for you than than this: it allows you to delegate authority over

a subdomain to its administrators. For example, the maintainers at the Groucho Computing

Center might create a subdomain for each department; we already encountered the maths

and physics subdomains above. When they �nd the network at the Physics Department

too large and chaotic to manage from outside (after all, physicists are known to be an unruly

bunch of people), they may simply pass control over the physics.groucho.edu domain to

the administrators of this network. These are then free to use whatever host names they

like, and assign them IP addresses from their network in whatever fashion the like, without

outside interference.

To this end, the name space is split up into zones, each rooted at a domain. Note the

subtle di�erence between a zone and a domain: the domain groucho.edu encompasses all

hosts at the Groucho Marx University, while the zone groucho.edu includes only the hosts

that are managed by the Computing Center directly, for example those at the Mathematics

Department. The hosts at the Physics Department belong to a di�erent zone, namely

physics.groucho.edu. In �gure 2.3, the start of a zone is marked by a small circle to the

right of the domain name.

2.6. The Domain Name System 55

2.6.3 Name Lookups with DNS

At �rst glance, all this domain and zone fuss seems to make name resolution an awfully

complicated business. After all, if no central authority controls what names are assigned to

which hosts, then how is a humble application supposed to know?!

Now comes the really ingenuous part about DNS. If you want to �nd out the IP address

of erdos, then, DNS says, go ask the people that manage it, and they will tell you.

In fact, DNS is a giant distributed database. It is implemented by means of so-called

name servers that supply information on a given domain or set of domains. For each zone,

there are at least two, at most a few, name servers that hold all authoritative information

on hosts in that zone. To obtain the IP address of erdos, all you have to do is contact the

name server for the groucho.edu zone, which will then return the desired data.

Easier said than done, you might think. So how do I know how to reach the name

server at Groucho Marx University? In case your computer isn't equipped with an address-

resolving oracle, DNS provides for this, too. When your application wants to look up

information on erdos, it contacts a local name server, which conducts a so-called iterative

query for it. It starts o� by sending a query to a name server for the root domain, asking

for the address of erdos.maths.groucho.edu. The root name server recognizes that this

name does not belong to its zone of authority, but rather to one below the edu domain.

Thus, it tells you to contact an edu zone name server for more information, and encloses

a list of all edu name servers along with their addresses. Your local name server will then

go on and query one of those, for instance a.isi.edu. In a manner similar to the root name

server, a.isi.edu knows that the groucho.edu people run a zone of their own, and point

you to their servers. The local name server will then present its query for erdos to one

of these, which will �nally recognize the name as belonging to its zone, and return the

corresponding IP address.

Now, this looks like a lot of tra�c being generated for looking up a measly IP address, but

it's really only miniscule compared to the amount of data that would have to be transferred

if we were still stuck with HOSTS.TXT. But there's still room for improvement with this

scheme.

To improve response time during future queries, the name server will store the informa-

tion obtained in its local cache. So the next time anyone on your local network wants to

look up the address of a host in the groucho.edu domain, your name server will not have

to go through the whole process again, but will rather go to the groucho.edu name server

directly.4

4If it didn't, then DNS would be about as bad as any other method, because each query would involve

the root name servers.

2.6. The Domain Name System 56

Of course, the name server will not keep this information forever, but rather discard it

after some period. This expiry interval is called the time to live, or TTL. Each datum in

the DNS database is assigned such a TTL by administrators of the responsible zone.

2.6.4 Domain Name Servers

Name servers that hold all information on hosts within a zone are called authoritative for

this zone, and are sometimes referred to as master name servers. Any query for a host

within this zone will �nally wind down at one of these master name servers.

To provide a coherent picture of a zone, its master servers must be fairly well synchro-

nized. This is achieved by making one of them the primary server, which loads its zone

information from data �les, and making the others secondary servers who transfer the zone

data from the primary server at regular intervals.

One reason to have several name servers is to distribute work load, another is redundance.

When one name server machine fails in a benign way, like crashing or losing its network

connection, all queries will fall back to the other servers. Of course, this scheme doesn't

protect you from server malfunctions that produce wrong replies to all DNS requests, e.g.

from software bugs in the server program itself.

Of course, you can also think of running a name server that is not authoritative for any

domain.5 This type of server is useful nevertheless, as it is still able to conduct DNS queries

for the applications running on the local network, and cache the information. It is therefore

called a caching-only server.

2.6.5 The DNS Database

We have seen above that DNS does not only deal with IP addresses of hosts, but also

exchanges information on name servers. There are in fact a whole bunch of di�erent types

of entries the DNS database may have.

A single piece of information from the DNS database is called a resource record, or RR

for short. Each record has a type associated with it, describing the sort of data it represents,

and a class specifying the type of network it applies to. The latter accomodates the needs

of di�erent addressing schemes, like IP addresses (the IN class), or addresses of Hesiod

networks (used at MIT), and a few more. The prototypical resource record type is the A

record which associates a fully quali�ed domain name with an IP address.

5Well, almost. A name server at least has to provide name service for localhost and reverse lookups of

127.0.0.1.

2.6. The Domain Name System 57

Of course, a host may have more than one name. However, one of these names must

be identi�ed as the o�cial, or canonical host name, while the others are simply aliases

referring to the former. The di�erence is that the canocical host name is the one with an

A record associated, while the others only have a record of type CNAME which points to

the canonical host name.

We will not go through all record types here, but save them for a later chapter, but

rather give you a brief example here. Figure 2.4 shows a part of the domain database that

is loaded into the name servers for the physics.groucho.edu zone.

;

; Authoritative Information on physics.groucho.edu

@ IN SOA {

niels.physics.groucho.edu.

hostmaster.niels.physics.groucho.edu.

1034 ; serial no

360000 ; refresh

3600 ; retry

3600000 ; expire

3600 ; default ttl

}

;

; Name servers

IN NS niels

IN NS gauss.maths.groucho.edu.

gauss.maths.groucho.edu. IN A 149.76.4.23

;

; Theoretical Physics (subnet 12)

niels IN A 149.76.12.1

IN A 149.76.1.12

nameserver IN CNAME niels

otto IN A 149.76.12.2

quark IN A 149.76.12.4

down IN A 149.76.12.5

strange IN A 149.76.12.6

...

; Collider Lab. (subnet 14)

boson IN A 149.76.14.1

muon IN A 149.76.14.7

bogon IN A 149.76.14.12

...

Figure 2.4: An excerpt from the named.hosts �le for the Physics Department.

Apart from A and CNAME records, you can see a special record at the top of the �le,

2.6. The Domain Name System 58

stretching several lines. This is the SOA resource record, signalling the Start of Authority,

which holds general information on the zone the server is authoritative for. This comprises,

for instance, the default time-to-live for all records.

Note that all names in the sample �le that do not end with a dot should be interpreted

relative to the groucho.edu domain. The special name \@" used in the SOA record refers

to the domain name by itself.

We have seen above that the name servers for the groucho.edu domain somehow have

to know about the physics zone so that they can point queries to their name servers.

This is usually achieved by a pair of records: the NS record that gives the server's FQDN,

and an A record associating an address with that name. Since these records are what

holds the name space together, they are frequently called the glue records. They are the

only instances of records where a parent zone actually holds information on hosts in the

subordinate zone. The glue records pointing to the name servers for physics.groucho.edu

are shown in �gure 2.5.

;

; Zone data for the groucho.edu zone.

@ IN SOA {

vax12.gcc.groucho.edu.

hostmaster.vax12.gcc.groucho.edu.

233 ; serial no

360000 ; refresh

3600 ; retry

3600000 ; expire

3600 ; default ttl

}

....

;

; Glue records for the physics.groucho.edu zone

physics IN NS niels.physics.groucho.edu.

IN NS gauss.maths.groucho.edu.

niels.physics IN A 149.76.12.1

gauss.maths IN A 149.76.4.23

...

Figure 2.5: An excerpt from the named.hosts �le for GMU.

2.6.6 Reverse Lookups

Beside looking up the IP address belonging to a host, it is sometimes desirable to �nd out

the canonical host name corresponding to an address. This is called reverse mapping and

2.6. The Domain Name System 59

is used by several network services to verify a client's identity. When using a single hosts

�le, reverse lookups simply involve searching the �le for a host that owns the IP address

in question. With DNS, an exhaustive search of the name space is out of the question,

of course. Instead, a special domain, in-addr.arpa, has been created which contains the

IP addresses of all hosts in a reverted dotted-quad notation. For instance, an IP address

of 149.76.12.4 corresponds to the name 4.12.76.149.in-addr.arpa. The resource record

type linking these names to their canonical host names is PTR.

Creating a zone of authority usually means that its administrators are given full control

over how they assign addresses to names. Since they usually have one or more IP networks or

subnets at their hands, there's a one-to-many mapping between DNS zones and IP networks.

The Physics Department, for instance, comprises the subnets 149.76.8.0, 149.76.12.0, and

149.76.14.0.

As a consequence, new zones in the in-addr.arpa domain have to be created along

with the physics zone and delegated to the network administrators at the department:

8.76.149.in-addr.arpa, 12.76.149.in-addr.arpa, and 14.76.149.in-addr.arpa. Other-

wise, installing a new host at the Collider Lab would require them to contact their parent

domain to have the new address entered into their in-addr.arpa zone �le.

The zone database for subnet 12 is shown in �gure 2.6. The corresponding glue records

in the database of their parent zone is shown in �gure 2.7.

;

; the 12.76.149.in-addr.arpa domain.

@ IN SOA {

niels.physics.groucho.edu.

hostmaster.niels.physics.groucho.edu.

233 360000 3600 3600000 3600

}

2 IN PTR otto.physics.groucho.edu.

4 IN PTR quark.physics.groucho.edu.

5 IN PTR down.physics.groucho.edu.

6 IN PTR strange.physics.groucho.edu.

Figure 2.6: An excerpt from the named.rev �le for subnet 12.

One important consequence of this is that zones can only be created as supersets of

IP networks, and, even more severe, that these network's netmasks have to be on byte

boundaries. All subnets at Groucho Marx University have a netmask of 255.255.255.0,

whence an in-addr.arpa zone could be created for each subnet. However, if the netmask

was 255.255.255.128 instead, creating zones for the subnet 149.76.12.128 would be im-

possible, because there's no way to tell DNS that the 12.76.149.in-addr.arpa domain has

2.6. The Domain Name System 60

;

; the 76.149.in-addr.arpa domain.

@ IN SOA {

vax12.gcc.groucho.edu.

hostmaster.vax12.gcc.groucho.edu.

233 360000 3600 3600000 3600

}

...

; subnet 4: Mathematics Dept.

1.4 IN PTR sophus.maths.groucho.edu.

17.4 IN PTR erdos.maths.groucho.edu.

23.4 IN PTR gauss.maths.groucho.edu.

...

; subnet 12: Physics Dept, separate zone

12 IN NS niels.physics.groucho.edu.

IN NS gauss.maths.groucho.edu.

niels.physics.groucho.edu. IN A 149.76.12.1

gauss.maths.groucho.edu. IN A 149.76.4.23

...

Figure 2.7: An excerpt from the named.rev �le for network 149.76.

been split in two zones of authority, with host names ranging from 1 through 127, and 128

through 255, respectively.

Chapter 3

Con�guring the Networking

Hardware

3.1 Devices, Drivers, and all that

Up to now, we've been talking quite a bit about network interfaces and general TCP/IP

issues, but didn't really cover exactly what happens when \the networking code" in the

kernel accesses a piece of hardware. For this, we have to talk a little about the concept of

interfaces and drivers.

First, of course, there's the hardware itself, for example an Ethernet board: this is a

slice of Epoxy, cluttered with lots of tiny chips with silly numbers on them, sitting in a slot

of your PC. This is what we generally call a device.

For you to be able to use the Ethernet board, special functions have to be present in

your Linux kernel that understand the particular way this device is accessed. These are

the so-called device drivers. For example, Linux has device drivers for several brands of

Ethernet boards that are very similar in function. They are known as the \Becker Series

Drivers", named after their author, Donald Becker. A di�erent example is the D-Link driver

that handles a D-Link pocket adaptor attached to a parallel port.

But, what do we mean when we say a driver \handles" a device? Let's go back to that

Ethernet board we examined above. The driver has to be able to communicate with the

peripheral's on-board logic somehow: it has to send commands and data to the board, while

the board should deliver any data received to the driver.

In PCs, this communication takes place through an area of I/O memory that is mapped

to on-board registers and the like. All commands and data the kernel sends to the board

have to go through these registers. I/O memory is generally described by giving its starting

61

3.1. Devices, Drivers, and all that 62

Network
eth2eth0 eth1 eth3

Driver
Device

Interface

Hardware

3Com DriverSMC Driver

Kernel Networking Code

Figure 3.1: The relationship between drivers, interfaces, and the hardware.

or base address. Typical base addresses for Ethernet boards are 0x300, or 0x360.

Usually, you don't have to worry about any hardware issues such as the base address,

because the kernel makes an attempt at boot time to detect a board's location. This

is called autoprobing, which means that the kernel reads several memory locations and

compares the data read with what it should see if a certain Ethernet board was installed.

However, there may be Ethernet boards it cannot detect automatically; this is sometimes

the case with cheap Ethernet cards that are not-quite clones of standard boards from other

manufacturers. Also, the kernel will attempt to detect only one Ethernet device when

booting. If you're using more than one board, you have to tell the kernel about this board

explicitly.

Another such parameter that you might have to tell the kernel about is the interrupt

request channel. Hardware components usually interrupt the kernel when they need care

taken of them, e.g. when data has arrived, or a special condition occurs. In a PC, interrupts

may occur on one of 15 interrupt channels numbered 0, 1, and 3 through 15. The interrupt

number assigned to a hardware component is called its interrupt request number, or IRQ.1

As described in chapter 2, the kernel accesses a device through a so-called interface.

Interfaces o�er an abstract set of functions that is the same across all types of hardware,

1IRQs 2 and 9 are the same because the PC has two cascaded interrupt processors with eight IRQs each;

the secondary processor is connected to IRQ 2 of the primary one.

3.2. Kernel Con�guration 63

such as sending or receiving a datagram.

Interfaces are identi�ed by means of names. These are names de�ned internally in the

kernel, and are not device �les in the /dev directory. Typical names are eth0, eth1, etc, for

Ethernet interfaces. The assignment of interfaces to devices usually depends on the order

in which devices are con�gured; for instance the �rst Ethernet board installed will become

eth0, the next will be eth1, and so on. One exception from this rule are SLIP interfaces,

which are assigned dynamically; that is, whenever a SLIP connection is established, an

interface is assigned to the serial port.

The picture given in �gure 3.1 tries to show the relationship between the hardware,

device drivers and interfaces.

When booting, the kernel displays what devices it detects, and what interfaces it installs.

The following is an excerpt of a typical boot screen:

.

.

This processor honours the WP bit even when in supervisor mode. Good.

Floppy drive(s): fd0 is 1.44M

Swansea University Computer Society NET3.010

IP Protocols: ICMP, UDP, TCP

PPP: version 0.2.1 (4 channels) OPTIMIZE_FLAGS

TCP compression code copyright 1989 Regents of the University of California

PPP line discipline registered.

SLIP: version 0.7.5 (4 channels)

CSLIP: code copyright 1989 Regents of the University of California

dl0: D-Link DE-600 pocket adapter, Ethernet Address: 00:80:C8:71:76:95

Checking 386/387 coupling... Ok, fpu using exception 16 error reporting.

Linux version 1.1.11 (okir@monad) #3 Sat May 7 14:57:18 MET DST 1994

This shows that the kernel has been compiled with TCP/IP enabled, and drivers for SLIP,

CSLIP, and PPP included. The third line from below says that a D-Link pocket adaptor

was detected, and installed as interface dl0. If you have a di�erent type of Ethernet card,

the kernel will usually print a line starting with eth0, followed by the type of card detected.

If you have an Ethernet card installed but don't see any such message, this means that the

kernel is unable to detect your board properly. This is dealt with in a later section.

3.2 Kernel Con�guration

Most Linux distributions come along with boot disks that work for all common types of

PC hardware. This means that the kernel on those disks has all sorts of drivers con�gured

3.2. Kernel Con�guration 64

in that you will never need, but which waste precious system memory because parts of the

kernel cannot be swapped out. Therefore, you will generally roll your own kernel, including

only those drivers you actually need or want.

When running a Linux system, you should be familiar with building a kernel. The basics

of this are explained in Matt Welsh's \Installation and Getting Started" Guide, which is

also part of the Linux Documentation Project's series. In this section, we will therefore

discuss only those con�guration options that a�ect networking.

When running make config, you will �rst be asked general con�gurations, for instance

whether you want kernel math emulation or not, etc. One of these asks you whether you

want TCP/IP networking support. You must answer this with y to get a kernel capable of

networking.

3.2.1 Kernel Options in Linux 1.0 and Higher

After the general option part is complete, the con�guration will go on to ask you for various

features such as SCSI drivers, etc. The subsequent list questions deal with networking

support. The exact set of con�guration options is in constant ux because of the ongoing

development. A typical list of options o�ered by most kernel versions around 1.0 and 1.1

looks like this (comments are given in italics):

*

* Network device support

*

Network device support? (CONFIG_ETHERCARDS) [y]

Despite the macro name displayed in brackets, you must answer this question with y if

you want to use any type of networking devices, regardless of whether this is Ethernet, SLIP,

or PPP. When answering this question with y, support for Ethernet-type devices is enabled

automatically. Support for other types of network drivers must be enabled separately:

SLIP (serial line) support? (CONFIG_SLIP) [y]

SLIP compressed headers (SL_COMPRESSED) [y]

PPP (point-to-point) support (CONFIG_PPP) [y]

PLIP (parallel port) support (CONFIG_PLIP) [n]

These questions concern the various link layer protocols supported by Linux. SLIP allows

you to transport IP datagrams across serial lines. The compressed header option provides

support for CSLIP, a technique that compresses TCP/IP headers to as little as three bytes.

Note that this kernel option does not turn on CSLIP automatically, it merely provides the

necessary kernel functions for it.

3.2. Kernel Con�guration 65

PPP is another protocol to send network tra�c across serial lines. It is much more exible

than SLIP, and is not limited to IP, but will also support IPX once it is implemented. As

PPP support has been completed only lately, this option may not be present in your kernel.

PLIP provides for a way to send IP datagrams across a parallel port connection. It is

mostly used to communicate with PCs running DOS.

The following questions deal with Ethernet boards from various vendors. As more drivers

are being developed, you are likely to see questions added to this section. If you want to

build a kernel you can use on a number of di�erent machines, you can enable more than

one driver.

NE2000/NE1000 support (CONFIG_NE2000) [y]

WD80*3 support (CONFIG_WD80x3) [n]

SMC Ultra support (CONFIG_ULTRA) [n]

3c501 support (CONFIG_EL1) [n]

3c503 support (CONFIG_EL2) [n]

3c509/3c579 support (CONFIG_EL3) [n]

HP PCLAN support (CONFIG_HPLAN) [n]

AT1500 and NE2100 (LANCE and PCnet-ISA) support (CONFIG_LANCE) [n]

AT1700 support (CONFIG_AT1700) [n]

DEPCA support (CONFIG_DEPCA) [n]

D-Link DE600 pocket adaptor support (CONFIG_DE600) [y]

AT-LAN-TEC/RealTek pocket adaptor support (CONFIG_ATP) [n]

*

* CD-ROM drivers

*

...

Finally, in the �lesystem section, the con�guration script will ask you whether you want

support for NFS, the networking �lesystem. NFS lets you export �lesystems to several

hosts, which makes the �les appear as if they were on an ordinary hard disk attached to

the host.

NFS filesystem support (CONFIG_NFS_FS) [y]

3.2.2 Kernel Options in Linux 1.1.14 and Higher

Starting with Linux 1.1.14, which added alpha support for IPX, the con�guration proce-

dure changed slightly. The general options section now asks whether you want networking

support in general. It is immediately followed by a couple of question on miscellaneous

networking options.

3.2. Kernel Con�guration 66

*

* Networking options

*

TCP/IP networking (CONFIG_INET) [y]

To use TCP/IP networking, you must answer this question with y. If you answer with

n, however, you will still be able to compile the kernel with IPX support.

IP forwarding/gatewaying (CONFIG_IP_FORWARD) [n]

You have to enable this option if your system acts as a gateway between two Ethernets,

or between and Ethernet and a SLIP link, etc. Although it doesn't hurt to enable this by

default, you may want to disable this to con�gure a host as a so-called �rewall. Firewalls

are hosts that are connected to two or more networks, but don't route tra�c between them.

They are commonly used to provide users from a company network with Internet access at

a minimal risk to the internal network. Users will be allowed to log into the �rewall and

use Internet services, but the company's machines will be protected from outside attacks

because any incoming connections can't cross the �rewall.

*

* (it is safe to leave these untouched)

*

PC/TCP compatibility mode (CONFIG_INET_PCTCP) [n]

This option works around an incompatibility with some versions of PC/TCP, a commer-

cial TCP/IP implementation for DOS-based PCs. If you enable this option, you will still

be able to communicate with normal un?x machines, but performance may be hurt over

slow links.

Reverse ARP (CONFIG_INET_RARP) [n]

This function enables RARP, the Reverse Address Resolution Protocol. RARP is used

by diskless clients and X terminals to inquire their IP address when booting. You should

enable RARP only when you plan to serve this sort of clients. The latest package of network

utilities (net-0.32d) contains a small utility named rarp that allows you to add systems to

the RARP cache.

Assume subnets are local (CONFIG_INET_SNARL) [y]

When sending data over TCP, the kernel has to break up the stream into several packets

before giving it to IP. For hosts that can be reached over a local network such as an Ethernet,

3.2. Kernel Con�guration 67

larger packets will be used than for hosts where data has to go through long-distance links.2

If you don't enable SNARL, the kernel will assume only those networks are local that it

actually has an interface to. However, if you look at the class B network at Groucho Marx

University, the whole class B network is local, but most hosts interface to only one or two

subnets. If you enable SNARL, the kernel will assume all subnets are local and use large

packets when talking to all hosts on campus.

If you do want to use smaller packet sizes for data sent to speci�c hosts (because, for

instance, the data goes through a SLIP link), you can do so using the mtu option of route,

which is briey discussed at the end of this chapter.

Disable NAGLE algorithm (normally enabled) (CONFIG_TCP_NAGLE_OFF) [n]

Nagle's rule is a heuristic to avoid sending particularly small IP packets, also called

tinygrams. Tinygrams are usually created by interactive networking tools that transmit

single keystrokes, such as telnet or rsh. Tinygrams can become particularly wasteful on

low-bandwidth links like SLIP. The Nagle algorithm attempts to avoid them by holding

back transmission of TCP data briey under some circumstances. You might only want to

disable Nalge's algorithm if you have severe problems with packets getting dropped.

The IPX protocol (CONFIG_IPX) [n]

This enables support for IPX, the transport protocol used by Novell Networking. It is

still under development, and isn't really useful yet. One bene�t of this will be that you

can exchange data with IPX-based DOS utilities one day, and route tra�c between your

Novell-based networks through a PPP link. Support for the high-level protocols of Novell

networking is however not in sight, as the speci�cations for these are available only at

horrendous cost and under a non-disclosure agreement.

Starting in the 1.1.16 kernel, Linux supports another driver type, the dummy driver.

The following question appears toward the start of the device driver section.

Dummy net driver support (CONFIG_DUMMY) [y]

The dummy driver doesn't really do much, but is quite useful on standalone or SLIP

hosts. It is basically a masqueraded loopback interface. The reason to have this sort of

interface is that on hosts that do SLIP but have no Ethernet, you want to have an interface

that bears your IP address all the time. This is discussed in a little more detail in section The

Dummy Interface in chapter 5.

2This is to avoid fragmentation by links that have a very small maximum packet size.

3.3. A Tour of Linux Network Devices 68

3.3 A Tour of Linux Network Devices

The Linux kernel supports a number of hardware drivers for various types of equipment.

This section gives a short overview of the driver families available, and the interface names

used for them.

There are a number of standard names for interfaces in Linux, which are listed below.

Most drivers support more than one interface, in which case the interfaces are numbered,

as in eth0, eth1, etc.

lo The local loopback interface. It is used for testing purposes, as well as

a couple of network applications. It works like a closed circuit in that any

datagram written to it will be immediately returned to the host's networking

layer. There's always one loopback device present in the kernel, and there's

little sense in having fewer or more.

ethn The n -th Ethernet card. This is the generic interface name for most Ethernet

boards.

dln These interfaces access a D-Link DE-600 pocket adapter, another Ethernet

device. It is a little special in that the DE-600 is driven through a parallel

port.

sln The n -th SLIP interface. SLIP interfaces are associated with serial lines in

the order in which they are allocated for SLIP; i.e., the �rst serial line being

con�gured for SLIP becomes sl0, etc. The kernel supports up to four SLIP

interfaces.

pppn The n -th PPP interface. Just like SLIP interfaces, a PPP interface is asso-

ciated with a serial line once it is converted to PPP mode. At the moment,

up to four interfaces are supported.

plipn The n -th PLIP interface. PLIP transports IP datagrams over parallel lines.

Up to three PLIP interfaces are supported. They are allocated by the PLIP

driver at system boot time, and are mapped onto parallel ports.

For other interface drivers that may be added in the future, like ISDN, or AX.25, other

names will be introduced. Drivers for IPX (Novell's networking protocol), and AX.25 (used

by ham radio amateurs) are under development, but are at alpha stage still.

During the following sections, we will discuss the details of using the drivers described

above.

3.4. Ethernet Installation 69

3.4 Ethernet Installation

The current Linux network code supports various brands of Ethernet cards. Most drivers

were written by Donald Becker (becker@cesdis.gsfc.nasa.gov), who authored a family of

drivers for cards based on the National Semiconductor 8390 chip; these have become known

as the Becker Series Drivers. There are also drivers for a couple of products from D-Link,

among them the D-Link pocket adaptor that allows you to access an Ethernet through a

parallel port. The driver for this was written by Bj�rn Ekwall (bj0rn@blox.se). The

DEPCA driver was written by David C. Davies (davies@wanton.lkg.dec.com).

3.4.1 Ethernet Cabling

If you're installing an Ethernet for the �rst time in your life, a few words about the cabling

may be in order here. Ethernet is very picky about proper cabling. The cable must be

terminated on both ends with a 50 Ohm resistor, and you must not have any branches (i.e.

three cables connected in a star-shape). If you are using a thin coax cable with T-shaped

BNC junctions, these junctions must be twisted on the board's connector directly; you

should not insert a cable segment.

If you connect to a thicknet installation, you have to attach your host through a

transceiver (sometimes called Ethernet Attachment Unit). You can plug the transceiver

into the 15-pin AUI port on your board directly, but may also use a shielded cable.

3.4.2 Supported Boards

A complete list of supported boards is available in the Ethernet HOWTOs posted monthly

to comp.os.linux.announce by Paul Gortmaker.3

Here's a list of the more widely-known boards supported by Linux. The actual list in

the HOWTO is about three times longer. However, even if you �nd your board in this

list, check the HOWTO �rst; there are sometimes important details about operating these

cards. A case in point is the case of some DMA-based Ethernet boards that use the same

DMA channel as the Adaptec 1542 SCSI controller by default. Unless you move either of

them to a di�erent DMA channel, you will wind up with the Ethernet board writing packet

data to arbitrary locations on your hard disk.

3Com EtherLink

Both 3c503 and 3c503/16 are supported, as are 3c507 and 3c509. The 3c501

is supported, too, but is too slow to be worth buying.

3Paul can be reached at gpg109@rsphysse.anu.edu.au.

3.4. Ethernet Installation 70

Novell Eagle NE1000 and NE2000, and a variety of clones. NE1500 and NE2100 are

supported, too.

Western Digital/SMC

WD8003 and WD8013 (same as SMC Elite and SMC Elite Plus) are sup-

ported, and also the newer SMC Elite 16 Ultra.

Hewlett Packard

HP 27252, HP 27247B, and HP J2405A.

D-Link DE-600 pocket adaptor, DE-100, DE-200, and DE-220-T. There's also a

patch kit for the DE-650-T, which is a PCMCIA card.4

DEC DE200 (32K/64K), DE202, DE100, and DEPCA rev E.

Allied Teliesis

AT1500 and AT1700.

To use one of these cards with Linux, you may use a precompiled kernel from one of

the major Linux distributions. These generally have drivers for all of them built in. In the

long term, however, it's better to roll your own kernel and compile in only those drivers you

actually need.

3.4.3 Ethernet Autoprobing

At boot time, the Ethernet code will try to locate your board and determine its type. Cards

are probed for at the following addresses and in the following order:

Board Addresses probed for

WD/SMC 0x300, 0x280, 0x380, 0x240

SMC 16 Ultra 0x300, 0x280

3c501 0x280

3c503 0x300, 0x310, 0x330, 0x350, 0x250,

0x280, 0x2a0, 0x2e0

NEx000 0x300, 0x280, 0x320, 0x340, 0x360

HP 0x300, 0x320, 0x340, 0x280, 0x2C0,

0x200, 0x240

DEPCA 0x300, 0x320, 0x340, 0x360

There are two limitations to the autoprobing code. For one, it may not recognize all

boards properly. This is especially true for some of the cheaper clones of common boards,

4It can be gotten { along with other Laptop-related stu� { from tsx-11.mit.edu in packages/laptops.

3.4. Ethernet Installation 71

but also for some WD80x3 boards. The second problem is that the kernel will not auto-

probe for more than one board at the moment. This is a feature, because it is assumed you

want to have control about which board is assigned which interface.

If you are using more than one board, or if the autoprobe should fail to detect your

board, you have to tell the kernel explicitly about the card's base address and name.

In Net-3, you have can use two di�erent schemes to accomplish this. One way is to

change or add information in the drivers/net/Space.c �le in the kernel source code that

contains all information about drivers. This is recommended only if you are familiar with

the networking code. A much better way is to provide the kernel with this information

at boot time. If you use lilo to boot your system, you can pass parameters to the kernel

by specifying them through the append option in lilo.conf. To inform the kernel about an

Ethernet device, you can pass the following parameter:

ether=irq,base addr,param1,param2,name

The �rst four parameters are numerical, while the last is the device name. All numerical

values are optional; if they are omitted or set to zero, the kernel will try to detect the value

by probing for it, or use a default value.

The �rst parameter sets the IRQ assigned to the device. By default, the kernel will try

to auto-detect the device's IRQ channel. The 3c503 driver has a special feature that selects

a free IRQ from the list 5, 9, 3, 4, and con�gures the board to use this line.

The base addr parameter gives the I/O base address of the board; a value of zero tells

the kernel to probe the addresses listed above.

The remaining two parameters may be used di�erently by di�erent drivers. For shared-

memory boards such as the WD80x3, they specify start and end addresses of the shared

memory area. Other cards commonly use param1 to set the level of debugging information

that is being displayed. Values of 1 through 7 denote increasing levels of verbosity, while

8 turns them o� altogether; 0 denotes the default. The 3c503 driver uses param2 to select

the internal transceiver (default) or an external transceiver (a value of 1). The former uses

the board's BNC connector; the latter uses its AUI port.

If you have two Ethernet boards, you can have Linux autodetect one board, and pass

the second board's parameters with lilo. However, you must make sure the driver doesn't

accidentally �nd the second board �rst, else the other one won't be registered at all. You

do this by passing lilo a reserve option, which explicitly tells the kernel to avoid probing

the I/O space taken up by the second board.

For instance, to make Linux install a second Ethernet board at 0x300 as eth1, you would

pass the following parameters to the kernel:

3.5. The PLIP Driver 72

reserve=0x300,32 ether=0,0x300,eth1

The reserve option makes sure no driver accesses the board's I/O space when probing

for some device. You may also use the kernel parameters to override autoprobing for eth0:

reserve=0x340,32 ether=0,0x340,eth0

To turn o� autoprobing altogether, you can specify a base addr argument of -1:

ether=0,-1,eth0

3.5 The PLIP Driver

PLIP stands for Parallel Line IP and is a cheap way to network when you want to connect

only two machines. It uses a parallel port and a special cable, achieving speeds of 10kBps

to 20kBps.

PLIP was originally developed by Crynwr, Inc. Its design is rather ingenuous (or, if you

prefer, hackish): for a long time, the parallel ports on PCs used to be only uni-directional

printer ports; that is, the eight data lines could only be used to send from the PC to the

peripheral device, but not the other way round. PLIP works around this by using the port's

�ve status line for input, which limits it to transferring all data as nibbles (half bytes) only.

This mode of operation is called mode zero PLIP. Today, these uni-directional ports don't

seem to be used much anymore. Therefore, there is also a PLIP extension called mode 1

that uses the full 8 bit interface.

Currently, Linux only supports mode 0. Unlike earlier versions of the PLIP code, it

now attempts to be compatible with the PLIP implementations from Crynwr, as well as

the PLIP driver in NCSA telnet.5 To connect two machines using PLIP, you need a special

cable sold at some shops as \Null Printer" or \Turbo Laplink" cable. You can, however,

make one yourself fairly easily. Appendix A shows you how.

The PLIP driver for Linux is the work of almost countless persons. It is currently

maintained by Niibe Yutaka. If compiled into the kernel, it sets up a network interface

for each of the possible printer ports, with plip0 corresponding to parallel port lp0, plip1

corresponding to lp1, etc. The mapping of interface to ports is currently this:

5NCSA telnet is a popular program for DOS that runs TCP/IP over Ethernet or PLIP, and supports

telnet and FTP.

3.6. The SLIP and PPP Drivers 73

Interface I/O Port IRQ

plip0 0x3BC 7

plip1 0x378 7

plip2 0x278 5

If you have con�gured your printer port in a di�erent way, you have to change these

values in drivers/net/Space.c in the Linux kernel source, and build a new kernel.

This mapping does not mean, however, that you cannot use these parallel ports as usual.

They are accessed by the PLIP driver only when the corresponding interface is con�gured

up.

3.6 The SLIP and PPP Drivers

SLIP (Serial Line IP), and PPP (Point-to-Point Protocol) are a widely used protocol for

sending IP packets over a serial link. A number of institutions o�er dialup SLIP and

PPP access to machines that are on the Internet, thus providing IP connectivity to private

persons (something that's otherwise hardly a�ordable).

To run SLIP or PPP, no hardware modi�cations are necessary; you can use any serial

port. Since serial port con�guration is not speci�c to TCP/IP networking, a separate

chapter has been devoted to this. Please refer to chapter 4 for more information.

Chapter 4

Setting up the Serial Hardware

There are rumors that there are some people out there in netland who only own one PC

and don't have the money to spend on a T1 Internet link. To get their daily dose of news

and mail nevertheless, they are said to rely on SLIP links, UUCP networks, and bulletin

board systems (BBS's) that utilize public telephone networks.

This chapter is intended to help all those people who rely on modems to maintain their

link. However, there are many details that this chapter cannot go into, for instance how to

con�gure your modem for dialin. All these topics will be covered in the upcoming Serial

HOWTO by Greg Hankins,1 to be posted to comp.os.linux.announce on a regular basis.

4.1 Communication Software for Modem Links

There are a number of communication packages available for Linux. Many of them are ter-

minal programs which allow a user to dial into another computer as if she was sitting in front

of a simple terminal. The traditional terminal program for Unices is kermit. It is, however,

somewhat Spartan. There are more comfortable programs available that support a dictio-

nary of telephone numers, script languages for calling and logging into remote computer

systems, etc. One of them is minicom, which is close to some terminal programs former

DOS users might be accustomed to. There are also X-based communications packages, e.g.

seyon.

Also, a number of Linux-based BBS packages are available for people that want to run

a bulletin board system. Some of these packages can be found at sunsite.unc.edu in

/pub/Linux/system/Network.

1To be reached at gregh@cc.gatech.edu.

74

4.2. Introduction to Serial Devices 75

Apart from terminal programs, there is also software that uses a serial link non-

interactively to transport data to or from your computer. The advantage of this technique

is that it takes much less time to download a few dozen kilobytes automatically, than it

might take you to read your mail on-line in some mailbox and browse a bulletin board for

interesting articles. On the other hand, this requires more disk storage because of the loads

of useless information you usually get.

The epitome of this sort of communications software is UUCP. It is a program suite

that copies �les from one host to another, executes programs on a remote host, etc. It

is frequently used to transport mail or news in private networks. Ian Taylor's UUCP

package, which also runs under Linux, is described in the following chapter. Other non-

interactive communication software is, for example, used throughout Fidonet. Ports of

Fidonet applications like ifmail are also available.

SLIP, the serial line Internet protocol, is somewhat inbetween, allowing both interactive

and non-interactive use. Many people use SLIP to dial up their campus network or some

other sort of public SLIP server to run FTP sessions, etc. SLIP may however also be used

over permanent or semi-permanent connections for LAN-to-LAN coupling, although this is

really only interesting with ISDN.

4.2 Introduction to Serial Devices

The devices a un?x kernel provides for accessing serial devices are typically called ttys.

This is an abbreviation for TeletypeTM, which used to be one of the major manufacturers

of terminals in the early days of Unix. The term is used nowadays for any character-based

data terminal. Throughout this chapter, we will use the term exclusively to refer to kernel

devices.

Linux distinguishes three classes of ttys: (virtual) consoles, pseudo-terminals (similar to

a two-way pipe, used by application such as X11), and serial devices. The latter are also

counted as ttys, because they permit interactive sessions over a serial connection; be it from

a hard-wired terminal or a remote computer over a telephone line.

Ttys have a number of con�gurable parameters which can be set using the ioctl(2) system

call. Many of them apply only to serial devices, since they need a great deal more exibility

to handle varying types of connections.

Among the most prominent line parameters are the line speed and parity. But there are

also ags for the conversion between upper and lower case characters, of carriage return

into line feed, etc. The tty driver may also support various line disciplines which make

the device driver behave completely di�erent. For example, the SLIP driver for Linux is

4.3. Accessing Serial Devices 76

implemented by means of a special line discipline.

There is a bit of ambiguity about how to measure a line's speed. The correct the term is

Bit rate, which is related to the line's transfer speed measured in bits per second (or bps for

short). Sometimes, you hear people refer to it as the Baud rate, which is not quite correct.

These two terms are, however, not interchangeable. The Baud rate refers to a physical

characteristic of some serial device, namely the clock rate at which pulses are transmitted.

The bit rate rather denotes a current state of an existing serial connection between two

points, namely the average number of bits transferred per second. It is important to know

that these two values are usually di�erent, as most devices encode more than one bit per

electrical pulse.

4.3 Accessing Serial Devices

Like all devices in a un?x system, serial ports are accessed through device special �les,

located in the /dev directory. There are two varieties of device �les related to serial drivers,

and for each port, there is one device �le from each of them. Depending on the �le it is

accessed by, the device will behave di�erently.

The �rst variety is used whenever the port is used for dialing in; it has a major number

of 4, and the �les are named ttyS0, ttyS1, etc. The second variety is used when dialing out

through a port; the �les are called cua0, etc, and have a major number of 5.

Minor numbers are identical for both types. If you have your modem on one of the

ports COM1 through COM4, its minor number will be the COM port number plus 63. If

your setup is di�erent from that, for example when using a board supporting multiple serial

lines, please refer to the Serial Howto.

Assume your modem is on COM2. Thus its minor number will be 65, and its major

number will be 5 for dialing out. There should be a device cua1 which has these numbers.

List the serial ttys in the /dev directory. Columns 5 and 6 should show major and minor

numbers, respectively:

$ ls -l /dev/cua*

crw-rw-rw- 1 root root 5, 64 Nov 30 19:31 /dev/cua0

crw-rw-rw- 1 root root 5, 65 Nov 30 22:08 /dev/cua1

crw-rw-rw- 1 root root 5, 66 Oct 28 11:56 /dev/cua2

crw-rw-rw- 1 root root 5, 67 Mar 19 1992 /dev/cua3

If there is no such device, you will have to create one: become super-user and type

4.4. Serial Hardware 77

mknod -m 666 /dev/cua1 c 5 65

chown root.root /dev/cua1

Some people suggest making /dev/modem a symbolic link to your modem device, so

that casual users don't have to remember the somewhat unintuitive cua1. However, you

cannot use modem in one program, and the real device �le name in another. This is because

these programs use so-called lock �les to signal that the device is used. By convention, the

lock �le name for cua1, for instance, is LCK..cua1. Using di�erent device �les for the same

port means that programs will fail to recognize each other's lock �les, and will both use the

device at the same time. As a result, both applications will not work at all.

4.4 Serial Hardware

Linux currently supports a wide variety of serial boards which use the RS-232 standard. RS-

232 is currently the most common standard for serial communcications in the PC world.

It uses a number of circuits for transmitting single bits as well as for synchronization.

Additional lines may be used for signaling the presence of a carrier (used by modems), and

handshake.

Although hardware handshake is optional, it is very useful. It allows either of the two

stations to signal whether it is ready to receive more data, or if the other station should

pause until the receiver is done processing the incoming data. The lines used for this are

called \Clear to Send" (CTS) and \Ready to Send" (RTS), respectively, which accounts for

the colloquial name of hardware handshake, namely \RTS/CTS".

In PCs, the RS-232 interface is usually driven by a UART chip derived from the National

Semiconductor 16450 chip, or a newer version thereof, the NSC 16550A2. Some brands (most

notably internal modems equipped with the Rockwell chipset) also use completely di�erent

chips that have been programmed to behave as if they were 16550's.

The main di�erence between 16450's and 16550's that the latter have a FIFO bu�er of

16 Bytes, while the former only have a 1-Byte bu�er. This makes 16450's suitable for speeds

up to 9600 Baud, while higher speeds require a 16550-compatible chip. Besides these chips,

Linux also supports the 8250 chip, which was the original UART for the PC-AT.

In the default con�guration, the kernel checks the four standard serial ports COM1

through COM4. These will be assigned device minor numbers 64 through 67, as described

above.

If you want to con�gure your serial ports properly, you should install Ted Tso's setserial

2There was also a NSC 16550, but it's FIFO never really worked.

4.4. Serial Hardware 78

command along with the rc.serial script. This script should be invoked from /etc/rc at

system boot time. It uses setserial to con�gure the kernel serial devices. A typical rc.serial

script looks like this:

/etc/rc.serial - serial line configuration script.

#

Do wild interrupt detection

/sbin/setserial -W /dev/cua*

Configure serial devices

/sbin/setserial /dev/cua0 auto_irq skip_test autoconfig

/sbin/setserial /dev/cua1 auto_irq skip_test autoconfig

/sbin/setserial /dev/cua2 auto_irq skip_test autoconfig

/sbin/setserial /dev/cua3 auto_irq skip_test autoconfig

Display serial device configuration

/sbin/setserial -bg /dev/cua*

Please refer to the documentation that comes along with setserial for an explanation of the

parameters.

If your serial card is not detected, or the setserial -bg command shows an incorrect

setting, you will have to force the con�guration by explicitly supplying the correct values.

Users with internal modems equipped with the Rockwell chipset are reported to experience

this problem. If, for example, the UART chip is reported to be a NSC 16450, while in fact it

is NSC 16550-compatible, you have to change the con�guration command for the o�ending

port to

/sbin/setserial /dev/cua1 auto irq skip test autoconfig uart 16550

Similar options exist to force COM port, base address, and IRQ setting. Please refer to

the setserial(8) manual page.

If your modem supports hardware handshake, you should make sure to enable it. Sur-

prising as it is, most communication programs do not attempt to enable this by default;

you have to set it manually instead. This is best performed in the rc.serial script, using

the stty command:

$ stty crtscts < /dev/cua1

To check if hardware handshake is in e�ect, use

$ stty -a < /dev/cua1

4.4. Serial Hardware 79

This gives you the status of all ags for that device; a ag shown with a preceding minus

as in -crtscts means that the ag has been turned o�.

Chapter 5

Con�guring TCP/IP Networking

In this chapter, we will go through all the steps necessary to setting up TCP/IP networking

on your machine. Starting with the assignment of IP addresses, we will slowly work our

way through the con�guration of TCP/IP network interfaces, and introduce a few tools

that come quite handy when hunting down problems with your network installation.

Most of the tasks covered in this chapter you will generally have to do only once. Af-

terwards, you have to touch most con�guration �les only when adding a new system to

your network, or when you recon�gure your system entirely. Some of the commands used

to con�gure TCP/IP, however, have to be executed each time the system is booted. This

is usually done by invoking them from the system /etc/rc scripts.

Commonly, the network-speci�c part of this procedure is contained in a script called

rc.net or rc.inet. Sometimes, you will also see two scripts named rc.inet1 and rc.inet2,

where the former initializes the kernel part of networking, while the latter starts basic

networking services and applications. Throughout the following, I will adhere to the latter

concept.

Below, I will discuss the actions performed by rc.inet1, while applications will be covered

in later chapters. After �nishing this chapter, you should have established a sequence of

commands that properly con�gure TCP/IP networking on your computer. You should

then replace any sample commands in rc.inet1 with your commands, make sure rc.inet1 is

executed at startup time, and reboot your machine. The networking rc scripts that come

along with your favorite Linux distribution should give you a good example.

80

5.1. Setting up the proc Filesystem 81

5.1 Setting up the proc Filesystem

Some of the con�guration tools of the Net-2 release rely on the proc �lesystem for com-

municating with the kernel. This is an interface that permits access to kernel run-time

information through a �lesystem-like mechanism. When mounted, you can list its �les like

any other �lesystem, or display their contents. Typical items include the loadavg �le that

contains the system load average, or meminfo, which shows current core memory and swap

usage.

To this, the networking code adds the net directory. It contains a number of �les that

show things like the kernel ARP tables, the state of TCP connections, and the routing

tables. Most network administration tools get their information from these �les.

The proc �lesystem (or procfs as it is also known) is usually mounted on /proc at system

boot time. The best method is to add the following line to /etc/fstab:

procfs mont point:

none /proc proc defaults

and execute \mount /proc" from your /etc/rc script.

The procfs is nowadays con�gured into most kernels by default. If the procfs is not

in your kernel, you will get a message like \mount: fs type procfs not supported by

kernel". You will then have to recompile the kernel and answer \yes" when asked for procfs

support.

5.2 Installing the Binaries

If you are using one of the pre-packaged Linux distributions, it will most probably contain

the major networking applications and utilities along with a coherent set of sample �les.

The only case where you might have to obtain and install new utilities is when you install a

new kernel release. As they occasionally involve changes in the kernel networking layer, you

will need to update the basic con�guration tools. This at least involves recompiling, but

sometimes you may also be required to obtain the latest set of binaries. These are usually

distributed along with the kernel, packaged in an archive called net-XXX.tar.gz, where XXX

is the version number. The release matching Linux 1.0 is 0.32b, the latest kernel as of this

writing (1.1.12 and later) require 0.32d.

If you want to compile and install the standard TCP/IP network applications yourself,

you can obtain the sources from most Linux FTP servers. These are more or less heavily

patched versions of programs from Net-BSD or other sources. Other applications, such as

5.3. Another Example 82

Xmosaic, xarchie, or Gopher and IRC clients must be obtained separately. Most of them

compile out of the box if you follow the instructions.

The o�cial FTP site for Net-3 is sunacm.swan.ac.uk, mirrored by sunsite.unc.edu

below system/Network/sunacm. The latest Net-2e patch kit and binaries are available

from ftp.aris.com. Matthias Urlichs' BSD-derived networking code can be gotten from

ftp.ira.uka.de in /pub/system/linux/netbsd.

5.3 Another Example

For the remainder of this book, let me introduce a new example that is less complex than

Groucho Marx University, and may be closer to the tasks you will actually encounter.

Consider the Virtual Brewery, a small company that brews, as the name indicates, virtual

beer. To manage their business more e�ciently, the virtual brewers want to network their

computers, which all happen to be PCs running a bright and shiny Linux 1.0.

On the same oor, just across the hall, there's the Virtual Winery, who work closely

with the brewery. They run an Ethernet of their own. Quite naturally, the two companies

want to link their networks once they are operational. As a �rst step, they want to set up

a gateway host that forwards datagrams between the two subnets. Later, they also want to

have a UUCP link to the outside world, through which they exchange mail and news. In the

long run, the also want to set up a SLIP connection to connect to the Internet occasionally.

5.4 Setting the Hostname

Most, if not all, network applications rely on the local host's name having been set to some

reasonable value. This is usually done during the boot procedure by executing the hostname

command. To set the hostname to name , it is invoked as

hostname name

It is common practice to use the unquali�ed hostname without any domain name

for this. For instance, hosts at the Virtual Brewery might be called vale.vbrew.com,

vlager.vbrew.com, etc. These are their o�cial, fully quali�ed domain names. Their local

hostnames would be only the �rst component of the name, such as vale. However, as the

local hostname is frequently used to look up the host's IP address, you have to make sure

that the resolver library is able to look up the host's IP address. This usually means that

you have to enter the name in /etc/hosts (see below).

5.5. Assigning IP Addresses 83

Some people suggest to use the domainname command to set the kernel's idea of a

domain name to the remaining part of the FQDN. In this way you could combine the

output from hostname and domainname to get the FQDN again. However, this is at best

only half correct. domainname is generally used to set the host's NIS domain, which may be

entirely di�erent from the DNS domain your host belongs to. NIS is covered in chapter 10.

5.5 Assigning IP Addresses

If you con�gure the networking software on your host for standalone operation (for instance,

to be able to run the INN netnews software), you can safely skip this section, because you

will need an IP address just for the loopback interface, which is always 127.0.0.1.

Things are a little more complicated with real networks like Ethernets. If you want to

connect your host to an existing network, you have to ask its administrators to give you

an IP address on this network. When setting up the network all by yourself, you have to

assign IP addresses yourself as described below.

Hosts within a local network should usually share addresses from the same logical IP net-

work. Hence you have to assign an IP network address. If you have several physical net-

works, you either have to assign them di�erent network numbers, or use subnetting to split

your IP address range into several subnetworks.

If your network is not connected to the Internet, you are free to choose any (legal)

network address. You only have to make sure to choose one from classes A, B, or C, else

things will most likely not work properly. However, if you intend to get on the Internet in

the near future, you should obtain an o�cial IP address now. The best way to proceed is

to ask your network service provider to help you. If you want to obtain a network number

just in case you might get on the Internet someday, request a Network Address Application

Form from hostmaster@internic.net.

To operate several Ethernets (or other networks, once a driver is available), you have

to split your network into subnets. Note that subnetting is required only if you have more

than one broadcast network; point-to-point links don't count. For instance, if you have one

Ethernet, and one or more SLIP links to the outside world, you don't need to subnet your

network. The reason for this will be explained in chapter 7.

As an example, the brewery's network manager applies to the NIC for a class B network

number, and is given 191.72.0.0. To accomodate the two Ethernets, she decides to use

eight bits of the host part as additional subnet bits. This leaves another eight bits for the

host part, allowing for 254 hosts on each of the subnets. She then assigns subnet number

1 to the brewery, and gives the winery number 2. Their respective network addresses are

5.6. Writing hosts and networks Files 84

0 072191

072191 0721911 2

Brewery Subnet Winery SubnetGateway

Figure 5.1: Virtual Brewery and Virtual Winery { the two subnets.

thus 191.72.1.0 and 191.72.2.0. The subnet mask is 255.255.255.0.

vlager, which is the gateway between the two networks, is assigned a host number of 1

on both of them, which gives it the IP addresses 191.72.1.1 and 191.72.2.1, respectively.

Figure 5.1 shows the two subnets, and the gateway.

Note that in this example I am using a class B network to keep things simple; a class C

network would be more realistic. With the new networking code, subnetting is not limited to

byte boundaries, so even a class C network may be split into several subnets. For instance,

you could use 2 bits of the host part for the netmask, giving you four possible subnets with

64 hosts on each.1

5.6 Writing hosts and networks Files

After you have subnetted your network, you should prepare for some simple sort of hostname

resolution using the /etc/hosts �le. If you are not going to use DNS or NIS for address

resolution, you have to put all hosts in the hosts �le.

Even if you want to run DNS or NIS during normal operation, you want to have some

subset of all hostnames in /etc/hosts nevertheless. For one, you want to have some sort of

name resolution even when no network interfaces are running, for example during boot time.

This is not only a matter of convenience, but also allows you to use symbolic hostnames in

1The last number on each subnet is reserved as the broadcast address, so it's in fact 63 hosts per subnet.

5.6. Writing hosts and networks Files 85

your rc.inet scripts. Thus, when changing IP addresses, you only have to copy an updated

hosts �le to all machines and reboot, rather than having to edit a large number of rc �les

separately. Usually, you will put all local hostnames and addresses in hosts, adding those

of any gateways and NIS servers if used.2

Also, during intial testing, you should make sure your resolver only uses information from

the hosts �le. Your DNS or NIS software may come with sample �les that may produce

strange results when being used. To make all applications use /etc/hosts exclusively when

looking up the IP address of a host, you have to edit the /etc/host.conf �le. Comment out

any lines that begin with the keyword order by preceding them with a hash sign, and insert

the line

order hosts

The con�guration of the resolver library will be covered in detail in chapter 6.

The hosts �le contains one entry per line, consisting of an IP address, a hostname, and

an optional list of aliases for the hostname. The �elds are separated by spaces or tabs, and

the address �eld must begin in column one. Anything following a hash sign (#) is regarded

as a comment and is ignored.

Hostnames can be either fully quali�ed, or relative to the local domain. For vale, you

would usually enter the the fully quali�ed name, vale.vbrew.com, and vale by itself in

the hosts �le, so that it is known by both its o�cial name and the shorter local name.

This is an example how a hosts �le at the Virtual Brewery might look. Two special

names are included, vlager-if1 and vlager-if2 that give the addresses for both interfaces

used on vlager.

#

Hosts file for Virtual Brewery/Virtual Winery

#

IP local fully qualified domain name

#

127.0.0.1 localhost

#

191.72.1.1 vlager vlager.vbrew.com

191.72.1.1 vlager-if1

191.72.1.2 vstout vstout.vbrew.com

191.72.1.3 vale vale.vbrew.com

#

2You will need the address of any NIS servers only if you use Peter Eriksson's NYS. Other NIS imple-

mentations locate their servers at run-time only by using ypbind.

5.7. Interface Con�guration for IP 86

191.72.2.1 vlager-if2

191.72.2.2 vbeaujolais vbeaujolais.vbrew.com

191.72.2.3 vbardolino vbardolino.vbrew.com

191.72.2.4 vchianti vchianti.vbrew.com

Just as with a host's IP address, you sometimes would like to use a symbolic name for

network numbers, too. Therefore, the hosts �le has a companion called /etc/networks that

maps network names to network numbers and vice versa. At the Virtual Brewery, we might

install a networks �le like this:3

/etc/networks for the Virtual Brewery

brew-net 191.72.1.0

wine-net 191.72.2.0

5.7 Interface Con�guration for IP

After setting up your hardware as explained in the previous chapter, you have to make

these devices known to the kernel networking software. A couple of commands are used to

con�gure the network interfaces, and initialize the routing table. These tasks are usually

performed from the rc.inet1 script each time the system is booted. The basic tools for this

are called ifcon�g (where \if" stands for interface), and route.

ifcon�g is used to make an interface accessible to the kernel networking layer. This

involves the assignment of an IP address and other parameters, and activating the interface,

also known as \taking up." Being active here means that the kernel will send and receive

IP datagrams through the interface. The simplest way to invoking it is

ifconfig interface ip-address

which assigns ip-address to interface and activates it. All other parameters are set to

default values. For instance, the default subnet mask is derived from the network class of

the IP address, such as 255.255.0.0 for a class B address. ifcon�g is described in detail at

the end of this chapter.

route allows you to add or remove routes from the kernel routing table. It can be invoked

as

route [add|del] target

where the add and del arguments determine whether to add or delete the route to target .

3Note that names in networks must not collide with hostnames from the hosts �le, else some programs

may produce strange results.

5.7. Interface Con�guration for IP 87

5.7.1 The Loopback Interface

The very �rst interface to be activated is the loopback interface:

ifconfig lo 127.0.0.1

Occasionally, you will also see the dummy hostname localhost being used instead of the

IP address. ifcon�g will look up the name in the hosts �le where an entry should declare it

as the hostname for 127.0.0.1:

Sample /etc/hosts entry for localhost

localhost 127.0.0.1

To view the con�guration of an interface, you invoke ifcon�g giving it the interface name

as argument:

$ ifconfig lo

lo Link encap Local Loopback

inet addr 127.0.0.1 Bcast [NONE SET] Mask 255.0.0.0

UP BROADCAST LOOPBACK RUNNING MTU 2000 Metric 1

RX packets 0 errors 0 dropped 0 overrun 0

TX packets 0 errors 0 dropped 0 overrun 0

As you can see, the loopback interface has been assigned a netmask of 255.0.0.0, since

127.0.0.1 is a class A address. As you can see, the interface doesn't have a broadcast

address set, which isn't normally very useful for the loopback anyway. However, if you

run the rwhod daemon on your host, you may have to set the loopback device's broadcast

address in order for rwho to function properly. Setting the broadcast is explained in section

\All about ifcon�g" below.

Now, you can almost start playing with your mini-\network." What is still missing is an

entry in the routing table that tells IP that it may use this interface as route to destination

127.0.0.1. This is accomplished by typing

route add 127.0.0.1

Again, you can use localhost instead of the IP address.

Next, you should check that everything works �ne, for example by using ping. ping is

the networking equivalent of a sonar device4 and is used to verify that a given address is

4Anyone remember Pink Floyd's \Echoes"?

5.7. Interface Con�guration for IP 88

actually reachable, and to measure the delay that occurs when sending a datagram to it

and back again. The time required for this is often referred to as the round-trip time.

ping localhost

PING localhost (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: icmp_seq=0 ttl=32 time=1 ms

64 bytes from 127.0.0.1: icmp_seq=1 ttl=32 time=0 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=32 time=0 ms

^C

--- localhost ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0/0/1 ms

When invoking ping as shown here, it will go on emitting packets forever unless inter-

rupted by the user. The ^C above marks the place where we pressed Ctrl-C.

The above example shows that packets for 127.0.0.1 are properly delivered and a reply

is returned to ping almost instantaneously. This shows you have succeeded in setting up

your �rst network interface.

If the output you get from ping does not resemble that shown above, you are in trouble.

Check any error if they indicate some �le hasn't been installed properly. Check that the

ifcon�g and route binaries you use are compatible with the kernel release you run, and,

above all, that the kernel has been compiled with networking enabled (you see this from

the presence of the /proc/net directory). If you get an error message saying \Network

unreachable," then you probably have got the route command wrong. Make sure you use

the same address as you gave to ifcon�g.

The steps described above are enough to use networking applications on a standalone

host. After adding the above lines to rc.inet1 and making sure both rc.inet scripts are

executed from /etc/rc, you may reboot your machine and try out various applications. For

instance, \telnet localhost" should establish a telnet connection to your host, giving you a

login prompt.

However, the loopback interface is useful not only as an example in networking books, or

as a testbed during development, but is actually used by some applications during normal

operation.5 Therefore, you always have to con�gure it, regardless of whether your machine

is attached to a network or not.

5For instance, all applications based on RPC use the loopback interface to register themselves with the

portmapper daemon at startup.

5.7. Interface Con�guration for IP 89

5.7.2 Ethernet Interfaces

Con�guring an Ethernet interface goes pretty much the same as with the loopback interface,

it just requires a few more parameters when you are using subnetting.

At the Virtual Brewery, we have subnetted the IP network, which was originally a

class B network, into class C subnetworks. To make the interface recognize this, the ifcon�g

incantation would look like this:

ifconfig eth0 vstout netmask 255.255.255.0

This assigns the eth0 interface the IP address of vstout (191.72.1.2). If we had omitted

the netmask, ifcon�g would have deduced the the netmask from the IP network class, which

would have resulted in a netmask of 255.255.0.0. Now a quick check shows:

ifconfig eth0

eth0 Link encap 10Mps Ethernet HWaddr 00:00:C0:90:B3:42

inet addr 191.72.1.2 Bcast 191.72.1.255 Mask 255.255.255.0

UP BROADCAST RUNNING MTU 1500 Metric 1

RX packets 0 errors 0 dropped 0 overrun 0

TX packets 0 errors 0 dropped 0 overrun 0

You can see that ifcon�g automatically set the broadcast address (the Bcast �eld above)

to the usual value, which is the hosts network number with the host bits all set. Also, the

message transfer unit (the maximum size of Ethernet frames the kernel will generate for

this interface) has been set to the maximum value of 1500 bytes. All these values can be

overidden with special options that will be described later.

Quite similar to the loopback case, you now have to install a routing entry that informs

the kernel about the network that can be reached through eth0. For the Virtual Brewery,

you would invoke route as

route add -net 191.72.1.0

At �rst, this looks a little like magic, because it's not really clear how route detects which

interface to route through. However, the trick is rather simple: the kernel checks all inter-

faces that have been con�gured so far and compares the destination address (191.72.1.0

in this case) to the network part of the interface address (that is, the bitwise and of the

interface address and the netmask). The only interface that matches is eth0.

Now, what's that -net option for? This is used because route can handle both routes to

networks and routes to single hosts (as you have seen above with localhost). When being

5.7. Interface Con�guration for IP 90

given an address in dotted quad notation, it attempts to guess whether it is a network or a

hostname by looking at the host part bits. If the address' host part is zero, route assumes

it denotes a network, otherwise it takes it as a host address. Therefore, route would think

that 191.72.1.0 is a host address rather than a network number, because it cannot know

that we use subnetting. We therefore have to tell it explicitly that it denotes a network,

giving it the -net ag.

Of course, the above route command is a little tedious to type, and it's prone to spelling

mistakes. A more convenient approach is to use the network names we have de�ned in

/etc/networks above. This makes the command much more readable; even the -net ag

can now be omitted, because route now knows that 191.72.1.0 denotes a network.

route add brew-net

Now that you've �nished the basic con�guration steps, we want to make sure your

Ethernet interface is indeed running happily. Choose a host from your Ethernet, for instance

vlager, and type

ping vlager

PING vlager: 64 byte packets

64 bytes from 191.72.1.1: icmp_seq=0. time=11. ms

64 bytes from 191.72.1.1: icmp_seq=1. time=7. ms

64 bytes from 191.72.1.1: icmp_seq=2. time=12. ms

64 bytes from 191.72.1.1: icmp_seq=3. time=3. ms

^C

----vstout.vbrew.com PING Statistics----

4 packets transmitted, 4 packets received, 0% packet loss

round-trip (ms) min/avg/max = 3/8/12

If you don't see any output similar to this, then something is broken, obviously. If

you encounter unusual packet loss rates, this hints at a hardware problem, like bad or

missing terminators, etc. If you don't receive any packets at all, you should check the

interface con�guration with netstat. The packet statistics displayed by ifcon�g should tell

you whether any packets have been sent out on the interface at all. If you have access to

the remote host, too, you should go over to that machine and check the interface statistics,

too. In this way, you can determine exactly where the packets got dropped. In addition,

you should display the routing information with route to see if both hosts have the correct

routing entry. route prints out the complete kernel routing table when invoked without any

arguments (the -n option only makes it print addresses as dotted quad instead of using the

hostname):

5.7. Interface Con�guration for IP 91

route -n

Kernel routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

127.0.0.1 * 255.255.255.255 UH 1 0 112 lo

191.72.1.0 * 255.255.255.0 U 1 0 10 eth0

The detailed meaning of these �elds is explained below in section Checking with netstat .

The Flag column contains a list of ags set for each interface. U is always set for active

interfaces, and H says the destination address denotes a host. If the H ag is set for a route

that you meant to be a network route, then you have to specify the -net option with the

route command. To check whether a route you have entered is used at all, check if the Use

�eld in the second to last column increases between two invocations of ping.

5.7.3 Routing through a Gateway

In the previous section, I covered only the case of setting up a host on a single Ethernet.

Quite frequently, however, one encounters networks connected to one another by gateways.

These gateways may simply link two or more Ethernets, but may provide a link to the

outside world, the Internet, as well. In order to use the service of a gateway, you have to

provide additional routing information to the networking layer.

For instance, the Ethernets of the Virtual Brewery and the Virtual Winery are linked

through such a gateway, namely the host vlager. Assuming that vlager has already been

con�gured, we only have to add another entry to vstout's routing table that tells the kernel

it can reach all hosts on the Winery's network through vlager. The appropriate incantation

of route is shown below; the gw keyword tells it that the next argument denotes a gateway.

route add wine-net gw vlager

Of course, any host on the Winery network you wish to talk to must have a corresponding

routing entry for the Brewery's network, otherwise you would only be able to send data

from vstout to vbardolino, but any response returned by the latter would go into the

great bit bucket.

This example describes only a gateway that switches packets between two isolated Eth-

ernets. Now assume that vlager also has a connection to the Internet (say, through an

additional SLIP link). Then we would want datagrams to any destination network other

than the Brewery to be handed to vlager. This can be accomplished by making it the

default gateway for vstout:

route add default gw vlager

5.7. Interface Con�guration for IP 92

The network name default is a shorthand for 0.0.0.0, which denotes the default route.

You do not have to add this name to /etc/networks, because it is built into route.

When you see high packet loss rates when ping ing a host behind one or more gateways,

this may hint at a very congested network. Packet loss is not so much due to technical

de�ciencies as due to temporary excess loads on forwarding hosts, which makes them delay

or even drop incoming datagrams.

5.7.4 Con�guring a Gateway

Con�guring a machine to switch packets between two Ethernets is pretty straightforward.

Assume we're back at vlager, which is equipped with two Ethernet boards, each being

connected to one of the two networks. All you have to do is con�gure both interfaces

separately, giving them their respective IP address, and that's it.

It is quite useful to add information on the two interfaces to the hosts �le in the way

shown below, so we have handy names for them, too:

191.72.1.1 vlager vlager.vbrew.com

191.72.1.1 vlager-if1

191.72.2.1 vlager-if2

The sequence of commands to set up the two interfaces is then:

ifconfig eth0 vlager-if1

ifconfig eth1 vlager-if2

route add brew-net

route add wine-net

5.7.5 The PLIP Interface

When using a PLIP link to connect two machines, things are a little di�erent from what you

have to do when using an Ethernet. The former are so-called point-to-point links, because

they involve ony two hosts (\points"), as opposed to broadcast networks.

As an example, we consider the laptop computer of some employee at the Virtual Brewery

that is connected to vlager via PLIP. The laptop itself is called vlite, and has only one

parallel port. At boot time, this port will be registered as plip1. To activate the link, you

have to con�gure the plip1 interface using the following commands:6

6Note that pointopoint is not a typo. It's really spelt like this.

5.7. Interface Con�guration for IP 93

ifconfig plip1 vlite pointopoint vlager

route add default gw vlager

The �rst command con�gures the interface, telling the kernel that this is a point-to-point

link, with the remote side having the address of vlager. The second installs the default

route, using vlager as gateway. On vlager, a similar ifcon�g command is necessary to

activate the link (a route invocation is not needed):

ifconfig plip1 vlager pointopoint vlite

The interesting point is that the plip1 interface on vlager does not have to have a

separate IP address, but may also be given the address 191.72.1.1.7

Now, we have con�gured routing from the laptop to the Brewery's network; what's

still missing is a way to route from any of the Brewery's hosts to vlite. One particularly

cumbersome way is to add a speci�c route to every host's routing table that names vlager

as a gateway to vlite:

route add vlite gw vlager

A much better option when faced with temporary routes is to use dynamic routing. One

way to do so is to use gated, a routing daemon, which you would have to install on each

host in the network in order to distribute routing information dynamically. The easiest way,

however, is to use proxy ARP. With proxy ARP, vlager will respond to any ARP query for

vlite by sending its own Ethernet address. The e�ect of this is that all packets for vlite

will wind up at vlager, which then forwards them to the laptop. We will come back to

proxy ARP in section Checking the ARP Tables below.

Future Net-3 releases will contain a tool called plipcon�g which will allow you to set the

IRQ of the printer port to use. Later, this may even be replaced by a more general ifcon�g

command.

5.7.6 The SLIP and PPP Interface

Although SLIP and PPP links are only simple point-to-point links like PLIP connections,

there is much more to be said about them. Usually, establishing a SLIP connection involves

dialing up a remote site through your modem, and setting the serial line to SLIP mode.

PPP is used in a similar fashion. The tools required for setting up a SLIP or PPP link will

be described in chapters 7 and 8.

7Just as a matter of caution, you should however con�gure a PLIP or SLIP link only after you have

completely set up the routing table entries for your Ethernets. With some older kernels, your network route

might otherwise end up pointing at the point-to-point link.

5.8. All About ifcon�g 94

5.7.7 The Dummy Interface

The dummy interface is really a little exotic, but rather useful nevertheless. Its main bene�t

is with standalone hosts, and machines whose only IP network connection is a dial-up link.

In fact, the latter are standalone hosts most of the time, too.

The dilemma with standalone hosts is that they only have a single network device active,

the loopback device, which is usually assigned the address 127.0.0.1. On some occasions,

however, you need to send data to the `o�cial' IP address of the local host. For instance,

consider the laptop vlite, that has been disconnected from any network for the duration

of this example. An application on vlite may now want to send some data to another

application on the same host. Looking up vlite in /etc/hosts yields an IP address of

191.72.1.65, so the application tries to send to this address. As the loopback interface is

currently the only active interface on the machine, the kernel has no idea that this address

actually refers to itself! As a consequence, the kernel discards the datagram, and returns

an error to the application.

This is where the dummy device steps in. It solves the dilemma by simply serving as

the alter ego of the loopback interface. In the case of vlite, you would simply give it the

address 191.72.1.65 and add a host route pointing to it. Every datagram for 191.72.1.65

would then be delivered locally. The proper invocation is:

ifconfig dummy vlite

route add vlite

5.8 All About ifcon�g

There are a lot more parameters to ifcon�g than we have described above. Its normal

invocation is this:

ifconfig interface [[-net|-host] address [parameters]]

interface is the interface name, and address is the IP address to be assigned to the

interface. This may either be an IP address in dotted quad notation, or a name ifcon�g

will look up in /etc/hosts and /etc/networks. The -net and -host options force ifcon�g to

treat the address as network number or host address, respectively.

If ifcon�g is invoked with only the interface name, it displays that interface's con�gu-

ration. When invoked without any parameters, it displays all interfaces you con�gured so

far; an option of -a forces it to show the inactive ones as well. A sample invocation for the

Ethernet interface eth0 may look like this:

5.8. All About ifcon�g 95

ifconfig eth0

eth0 Link encap 10Mbps Ethernet HWaddr 00:00:C0:90:B3:42

inet addr 191.72.1.2 Bcast 191.72.1.255 Mask 255.255.255.0

UP BROADCAST RUNNING MTU 1500 Metric 0

RX packets 3136 errors 217 dropped 7 overrun 26

TX packets 1752 errors 25 dropped 0 overrun 0

The MTU and Metric �elds show the current MTU and metric value for that interface.

The metric value is traditionally used by some operating systems to compute the cost of a

route. Linux doesn't use this value yet, but de�nes it for compatibility nevertheless.

The RX and TX lines show how many packets have been received or transmitted error

free, how many errors occurred, how many packets were dropped, probably because of low

memory, and how many were lost because of an overrun. Receiver overruns usually happen

when packets come in faster than the kernel can service the last interrupt. The ag values

printed by ifcon�g correspond more or less to the names of its command line options; they

will be explained below.

The following is a list of parameters recognized by ifcon�g with the corresponding ag

names are given in brackets. Options that simply turn on a feature also allow it to be

turned o� again by preceding the option name by a dash (-).

up This marks an interface \up", i.e. accessible to the IP layer. This option

is implied when an address is given on the command line. It may also be

used to re-eenable an interface that has been taken down temporarily using

the down option.

(This option corresponds to the ags UP RUNNING.)

down This marks an interface \down", i.e. inaccessible to the IP layer. This

e�ectively disables any IP tra�c through the interface. Note that this does

not delete all routing entries that use this interface automatically. If you take

the interface down permanently, you should to delete these routing entries

and supply alternative routes if possible.

netmask mask

This assigns a subnet mask to be used by the interface. It may be given as

either a 32-bit hexadecimal number preceded by 0x, or as a dotted quad of

decimal numbers.

pointopoint address

This option is used for point-to-point IP links that involve only two hosts.

This option is needed to con�gure, for example, SLIP or PLIP interfaces.

5.8. All About ifcon�g 96

(If a point-to-point address has been set, ifcon�g displays the POINTOPOINT

ag.)

broadcast address

The broadcast address is usually made up from the network number by

setting all bits of the host part. Some IP implementations use a di�erent

scheme; this option is there to adapt to these strange environments.

(If a broadcast address has been set, ifcon�g displays the BROADCAST ag.)

metric number

This option may be used to assign a metric value to the routing table entry

created for the interface. This metric is used by the Routing Information

Protocol (RIP) to build routing tables for the network.8 The default metric

used by ifcon�g is a value of zero. If you don't run a RIP daemon, you don't

need this option at all; if you do, you will rarely need to change the metric

value.

mtu bytes This sets the Maximum Transmission Unit, which is the maximum number

of octets the interface is able to handle in one transaction. For Ethernets,

the MTU defaults to 1500; for SLIP interfaces, this is 296.

arp This is an option speci�c to broadcast networks such as Ethernets or packet

radio. It enables the use of ARP, the Address Resolution Protocol, to de-

tect the physical addresses of hosts attached to the network. For broadcast

networks, is on by default.

(If ARP is disabled, ifcon�g displays the ag NOARP.)

-arp Disables the use of ARP on this interface.

promisc Puts the interface in promiscuous mode. On a broadcast network, this makes

the interface receive all packets, regardless of whether they were destined

for another host or not. This allows an analysis of network tra�c using

packet �lters and such, also called Ethernet snooping. Usually, this is a

good technique of hunting down network problems that are otherwise hard

to come by.

On the other hand, this allows attackers to skim the tra�c of your network

for passwords and do other nasty things. One protection against this type

of attack is not to let anyone just plug in their computers in your Ethernet.

Another option is to use secure authentication protocols, such as Kerberos,

8 RIP chooses the optimal route to a given host based on the \length" of the path. It is computed by

summing up the individual metric values of each host-to-host link. By default, a hop has length 1, but this

may be any positive integer less than 16. (A route length of 16 is equal to in�nity. Such routes are considered

unusable.) The metric parameter sets this hop cost, which is then broadcast by the routing daemon.

5.9. Checking with netstat 97

or the SRA login suite.9

(This option corresponds to the ag PROMISC.)

-promisc Turns o� promiscuous mode.

allmulti Multicast addresses are some sort of broadcast to a group of hosts who don't

necessarily have to be on the same subnet. Multicast addresses are not yet

supported by the kernel.

(This option corresponds to the ag ALLMULTI.)

-allmulti Turns o� multicast addresses.

5.9 Checking with netstat

Next, I will turn to a useful tool for checking your network con�guration and activity. It is

called netstat and is, in fact, rather a collection of several tools lumped together. We will

discuss each of its functions in the following sections.

5.9.1 Displaying the Routing Table

When invoking netstat with the -r ag, it displays the kernel routing table in the way we've

been doing this with route above. On vstout, it produces:

netstat -nr

Kernel routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

127.0.0.1 * 255.255.255.255 UH 1 0 50 lo

191.72.1.0 * 255.255.255.0 U 1 0 478 eth0

191.72.2.0 191.72.1.1 255.255.255.0 UGN 1 0 250 eth0

The -n option makes netstat print addresses as dotted quad IP numbers rather than the

symbolic host and network names. This is especially useful when you want to avoid address

lookups over the network (e.g. to a DNS or NIS server).

The second column of netstat 's output shows the gateway the routing entry points to.

If no gateway is used, an asterisk is printed instead. Column three shows the \generality"

of the route. When given an IP address to �nd a suitable route for, the kernel goes through

all routing table entries, taking the bitwise AND of the address and the genmask before

comparing it to the target of the route.

9SRA can be obtained from ftp.tamu.edu in /pub/sec/TAMU.

5.9. Checking with netstat 98

The fourth column displays various ags that describe the route:

G The route uses a gateway.

U The interface to be used is up.

H Only a single host can be reached through the route. For example, this is

the case for the loopback entry 127.0.0.1.

D This is set if the table entry has been generated by an ICMP redirect message

(see section 2.5).

M This is set if the table entry was modi�ed by an ICMP redirect message.

The Ref column of netstat 's output shows the number of references to this route, that is,

how many other routes (e.g. through gateways) rely on the presence of this route. The last

two columns show the number of times the routing entry has been used, and the interface

that datagrams are passed to for delivery.

5.9.2 Displaying Interface Statistics

When invoked with the -i ag, netstat will display statistics for the network interfaces

currently con�gured. If, in addition, the -a option is given, it will print all interfaces

present in the kernel, not only those that have been con�gured currently. On vstaout, the

output from netstat will look like this:

$ netstat -i

Kernel Interface table

Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flags

lo 0 0 3185 0 0 0 3185 0 0 0 BLRU

eth0 1500 0 972633 17 20 120 628711 217 0 0 BRU

The MTU and Met �elds show the current MTU and metric value for that interface.

The RX and TX columns show how many packets have been received or transmitted er-

ror free (RX-OK/TX-OK), damaged (RX-ERR/TX-ERR), how many were dropped (RX-

DRP/TX-DRP), and how many were lost because of an overrun (RX-OVR/TX-OVR).

The last column shows the ags that have been set for this interface. These are one-

character versions of the long ag names the are printed when you display the interface

con�guration with ifcon�g.

B A broadcast address has been set.

5.9. Checking with netstat 99

L This interface is a loopback device

M All packets are received (promiscuous mode).

N Trailers are avoided.

O ARP is turned o� for this interface.

P This is a point-to-point connection.

R Interface is running.

U Interface is up.

5.9.3 Displaying Connections

netstat supports a set of options to display active or passive sockets. The options -t, -u,

-w, and -x show active TCP, UDP, RAW, or UNIX socket connections. If you provide the

-a ag in addition, sockets that are waiting for a connection (i.e. listening) are displayed

as well. This will give you a list of all servers that are currently running on your system.

Invoking netstat -ta on vlager produces

$ netstat -ta

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (State)

tcp 0 0 *:domain *:* LISTEN

tcp 0 0 *:time *:* LISTEN

tcp 0 0 *:smtp *:* LISTEN

tcp 0 0 vlager:smtp vstout:1040 ESTABLISHED

tcp 0 0 *:telnet *:* LISTEN

tcp 0 0 localhost:1046 vbardolino:telnet ESTABLISHED

tcp 0 0 *:chargen *:* LISTEN

tcp 0 0 *:daytime *:* LISTEN

tcp 0 0 *:discard *:* LISTEN

tcp 0 0 *:echo *:* LISTEN

tcp 0 0 *:shell *:* LISTEN

tcp 0 0 *:login *:* LISTEN

This shows most servers simply waiting for an incoming connection. However, the fourth

line shows an incoming SMTP connection from vstout, and the sixth line tells you there

is an outgoing telnet connection to vbardolino.10

10You can tell whether a connection is outgoing or not from the port numbers involved. The port number

shown for the calling host will always be a simple integer, while on the host being called, a well-known

service port will be in use, for which netstat uses the symbolic name found in /etc/services.

5.10. Checking the ARP Tables 100

Using the -a ag all by itself will display all sockets from all families.

5.10 Checking the ARP Tables

On some occasions, it is useful to view or even alter the contents of the kernel's ARP tables,

for example when you suspect a duplicate Internet address is the cause for some intermittent

network problem. The arp tool was made for things like these. Its command line options

are

arp [-v] [-t hwtype] -a [hostname]

arp [-v] [-t hwtype] -s hostname hwaddr

arp [-v] -d hostname [hostname : : :]

All hostname arguments may be either symbolic host names or IP addresses in dotted

quad notation.

The �rst invocation displays the ARP entry for the IP address or host speci�ed, or all

hosts known if no hostname is given. For example, invoking arp on vlager may yield

arp -a

IP address HW type HW address

191.72.1.3 10Mbps Ethernet 00:00:C0:5A:42:C1

191.72.1.2 10Mbps Ethernet 00:00:C0:90:B3:42

191.72.2.4 10Mbps Ethernet 00:00:C0:04:69:AA

which shows the Ethernet addresses of vlager, vstout and vale.

Using the -t option you can limit the display to the hardware type speci�ed. This may

be ether, ax25, or pronet, standing for 10Mbps Ethernet, AMPR AX.25, and IEEE 802.5

token ring equipment, respectively.

The -s option is used to permanently add hostname 's Ethernet address to the ARP

tables. The hwaddr argument speci�es the hardware address, which is by default expected

to be an Ethernet address, speci�ed as six hexadecimal bytes separated by colons. You may

also set the hardware address for other types of hardware, too, using the -t option.

One problem which may require you to manually add an IP address to the ARP table

is when for some reasons ARP queries for the remote host fail, for instance when its ARP

driver is buggy or there is another host in the network that erroneously identi�es itself with

that host's IP address. Hard-wiring IP addresses in the ARP table is also a (very drastic)

measure to protect yourself from hosts on your Ethernet that pose as someone else.

5.11. The Future 101

Invoking arp using the -d switch deletes all ARP entries relating to the given host. This

may be used to force the interface to re-attempt to obtain the Ethernet address for the

IP address in question. This is useful when a miscon�gured system has broadcast wrong

ARP information (of course, you have to recon�gure the broken host before).

The -s option may also be used to implement proxy ARP. This is a special technique

where a host, say gate, acts as a gateway to another host named fnord, by pretending

that both addresses refer to the same host, namely gate. It does so by publishing an ARP

entry for fnord that points to its own Ethernet interface. Now when a host sends out

an ARP query for fnord, gate will return a reply containing its own Ethernet address.

The querying host will then send all datagrams to gate, which dutyfully forwards them to

fnord.

These contortions may be necessary, for instance, when you want to access fnord from

a DOS machine with a broken TCP implementation that doesn't understand routing too

well. When you use proxy ARP, it will appear to the DOS machine as if fnord was on the

local subnet, so it doesn't have to know about how to route through a gateway.

Another very useful application of proxy ARP is when one of your hosts acts as a

gateway to some other host only temporarily, for instance through a dial-up link. In a

previous example, we already encountered the laptop vlite which was connected to vlager

through a PLIP link only from time to time. Of course, this will work only if the address

of the host you want to provide proxy ARP for is on the same IP subnet as your gateway.

For instance, vstout could proxy ARP for any host on the Brewery subnet (191.72.1.0),

but never for a host on the Winery subnet (191.72.2.0).

The proper invocation to provide proxy ARP for fnord is given below; of course, the

Ethernet address given must be that of gate.

arp -s fnord 00:00:c0:a1:42:e0 pub

The proxy ARP entry may be removed again by invoking:

arp -d fnord

5.11 The Future

Linux networking is still evolving. Major changes at the kernel layer will bring a very

exible con�guration scheme that will allow you to con�gure the network devices at run

time. For instance, the ifcon�g command will take arguments that set the IRQ line and

DMA channel.

5.11. The Future 102

Another change to come soon is the additional mtu ag to the route command which

will set the Maximum Transmission Unit for a particular route. This route-speci�c MTU

overrides the MTU speci�ed for the interface. You will typically use this option for routes

through a gateway, where the link between the gateway and the destination host requires a

very low MTU. For instance, assume hostwanderer is connected to vlager through a SLIP

link. When sending data from vstout to wanderer, the networking layer on wanderer

would would use packets of up to 1500 bytes, because packets are sent across the Ethernet.

The SLIP link, on the other hand, is operated with an MTU of 296, so the network layer

on vlager would have to break up the IP packets into smaller fragments that �t into 296

bytes. If instead, you would have con�gured the route on vstout to use a MTU of 296 right

from the start, this relatively expensive fragmentation could be avoided:

route add wanderer gw vlager mtu 296

Note that the mtu option also allows you to selectively undo the e�ects of the `Subnets

Are Local' Policy (SNARL). This policy is a kernel con�guration option and is described

in chapter 3.

Chapter 6

Name Service and Resolver

Con�guraton

As discussed in chapter 2, TCP/IP networking may rely on di�erent schemes to convert

names into addresses. The simplest way, which takes no advantage of the way the name

space has been split up into zones is a host table stored in /etc/hosts. This is useful only for

small LANs that are run by one single administrator, and otherwise have no IP tra�c with

the outside world. The format of the hosts �le has already been described in chapter 5.

Alternatively, you may use BIND { the Berkeley Internet Name Domain Service { for

resolving host names to IP addresses. Con�guring BIND may be a real chore, but once

you've done it, changes in the network topology are easily made. On Linux, as on many

other un?xish systems, name service is provided through a program called named. At

startup, it loads a set of master �les into its cache, and waits for queries from remote or

local user processes. There are di�erent ways to set up BIND, and not all require you to

run a name server on every host.

This chapter can do little more but give a rough sketch of how to operate a name server.

If you plan to use BIND in an enviroment with more than just a small LAN and probably

an Internet uplink, you should get a good book on BIND, for instance Cricket Liu's \DNS

and BIND" (see [AlbitzLiu92]). For current information, you may also want to check the

release notes contained in the BIND sources. There's also a newsgroup for DNS questions

called comp.protocols.tcp-ip.domains.

103

6.1. The Resolver Library 104

6.1 The Resolver Library

When talking of \the resolver", we do not mean any special application, but rather refer to

the resolver library, a collection of functions that can be found in the standard C library.

The central routines are gethostbyname(2) and gethostbyaddr(2) which look up all IP ad-

dresses belonging to a host, and vice versa. They may be con�gured to simply look up the

information in hosts, query a number of name servers, or use the hosts database of NIS

(Network Information Service). Other applications, like smail, may include di�erent drivers

for any of these, and need special care.

6.1.1 The host.conf File

The central �le that controls your resolver setup is host.conf. It resides in /etc and tells the

resolver which services to use, and in what order.

Options in host.conf must occur on separate lines. Fields may be separated by white

space (spaces or tabs). A hash sign (#) introduces a comment that extends to the next

newline.

The following options are available:

order This determines the order in which the resolving services are tried. Valid op-

tions are bind for querying the name server, hosts for lookups in /etc/hosts,

and nis for NIS lookups. Any or all of them may be speci�ed. The order in

which they appear on the line detemines the order in which the respective

services are tried.

multi Takes on or o� as options. This detemines if a host in /etc/hosts is allowed

to have several IP addresses, which is usually referred to as being \multi-

homed". This ag has no e�ect on DNS or NIS queries.

nospoof As explained in the previous chapter, DNS allows you to �nd the hostname

belonging to an IP address by using the in-addr.arpa domain. Attempts

by name servers to supply a false hostname are called \spoo�ng". To guard

against this, the resolver may be con�gured to check if the original IP address

is in fact associated with the hostname obtained. If not, the name is rejected

and an error returned. This behavior is turned on by setting nospoof on.

alert This option takes on or o� as arguments. If it is turned on, any spoof

attempts (see above) will cause the resolver to log a message to the syslog

facility.

6.1. The Resolver Library 105

trim This option takes a domain name as an argument, which will be removed

from hostnames before lookup. This is useful for hosts entries, where you

might only want to specify hostnames without local domain. A lookup of

a host with the local domain name appended will have this removed, thus

allowing the lookup in /etc/hosts to succeed.

trim options accumulate, making it possible to consider your host as being

local to several domains.

A sample �le for vlager is shown below:

/etc/host.conf

We have named running, but no NIS (yet)

order bind hosts

Allow multiple addrs

multi on

Guard against spoof attempts

nospoof on

Trim local domain (not really necessary).

trim vbrew.com.

6.1.2 Resolver Environment Variables

The settings from host.conf may be overridden using a number of environment variables.

These are

RESOLV HOST CONF

This speci�es a �le to be read instead of /etc/host.conf.

RESOLV SERV ORDER

Overrides the order option given in host.conf. Services are given as hosts,

bind, and nis, separated by a space, comma, colon, or semicolon.

RESOLV SPOOF CHECK

Determines the measures taken against spoo�ng. It is completely disabled by

o�. The values warn and warn o� enable spoof checking, but turn logging

on and o�, respectively. A value of * turns on spoof checks, but leaves the

logging facility as de�ned in host.conf.

RESOLV MULTI A value of on or o� may be used to override the multi options from tt

host.conf.

RESOLV OVERRIDE TRIM DOMAINS

This environment speci�es a list of trim domains which override those given

in host.conf.

6.1. The Resolver Library 106

RESOLV ADD TRIM DOMAINS

This environment speci�es a list of trim domains which are added to those

given in host.conf.

6.1.3 Con�guring Name Server Lookups | resolv.conf

When con�guring the resolver library to use the BIND name service for host lookups, you

also have to tell it which name servers to use. There is a separate �le for this, called

resolv.conf. If this �le does not exist or is empty, the resolver assumes the name server is

on your local host.

If you run a name server on your local host, you have to set it up separately, as will be

explained in the following section. If your are on a local network and have the opportunity

to use an existing nameserver, this should always be preferred.

The most important option in resolv.conf is nameserver, which gives the IP address of

a name server to use. If you speci�y several name servers by giving the nameserver option

several times, they are tried in the order given. You should therefore put the most reliable

server �rst. Currently, up to three name servers are supported.

If no nameserver option is given, the resolver attempts to connect to the name server

on the local host.

Two other options, domain and search deal with default domains that are tacked onto a

hostname if BIND fails to resolve it with the �rst query. The search option speci�es a list

of domain names to be tried. The list items are separated by spaces or tabs.

If no search option is given, a default search list is constructed from the local domain

name by using the domain name itself, plus all parent domains up to the root. The local

domain name may be given using the domain statement; if none is given, the resolver

obtains it through the getdomainname(2) system call.

If this sounds confusing to you, consider this sample resolv.conf �le for the Virtual Brewery:

/etc/resolv.conf

Our domain

domain vbrew.com

#

We use vlager as central nameserver:

nameserver 191.72.1.1

When resolving the name vale, the resolver would look up vale, and failing this,

vale.vbrew.com, and vale.com.

6.2. Running named 107

6.1.4 Resolver Robustness

If you are running a LAN inside a larger network, you de�nitely should use central name

servers if they are available. The advantage of this is that these will develop rich caches,

since all queries are forwarded to them. This scheme, however has a drawback: when a �re

recently destroyed the backbone cable at our university, no more work was possible on our

department's LAN, because the resolver couldn't reach any of the name servers anymore.

There was no logging in on X terminals anymore, no printing, etc.

Although it is not very common for campus backbones to go down in ames, one might

want to take precautions against cases like these.

One option is to set up a local name server that resolves hostnames from your local

domain, and forwards all queries for other hostnames to the main servers. Of course, this

is applicable only if you are running your own domain.

Alternatively, you can maintain a backup host table for your domain or LAN in

/etc/hosts. In /etc/host.conf you would then include \order bind hosts" to make the re-

solver fall back to the hosts �le if the central name server is down.

6.2 Running named

The program that provides domain name service on most un?x machines is usually called

named (pronounced name-dee). This is a server program originally developed for BSD

providing name service to clients, and possibly to other name servers. The version currently

used on most Linux installations seems to be BIND-4.8.3. The new version, BIND-4.9.3, is

being Beta-tested at the moment, and should be available on Linux soon.

This section requires some understanding of the way the Domain Name System works.

If the following discussion is all Greek to you, you may want to re-read chapter 2, which

has some more information on the basics of DNS.

named is usually started at system boot time, and runs until the machine goes down

again. It takes its information from a con�guration �le called /etc/named.boot, and various

�les that contain data mapping domain names to addresses and the like. The latter are

called zone �les. The formats and semantics of these �les will be explained in the following

section.

To run named, simply enter

/usr/sbin/named

6.2. Running named 108

at the prompt. named will come up, read the named.boot �le and any zone �les speci�ed

therein. It writes its process id to /var/run/named.pid in ASCII, downloads any zone �les

from primary servers, if necessary, and starts listening on port 53 for DNS queries.1

6.2.1 The named.boot File

The named.boot �le is generally very small and contains little else but pointers to master

�les containing zone information, and pointers to other name servers. Comments in the

boot �le start with a semicolon and extend to the next newline. Before we discuss the

format of named.boot in more detail, we will take a look at the sample �le for vlager given

in �gure 6.1.2

;

; /etc/named.boot file for vlager.vbrew.com

;

directory /var/named

;

; domain file

;---

cache . named.ca

primary vbrew.com named.hosts

primary 0.0.127.in-addr.arpa named.local

primary 72.191.in-addr.arpa named.rev

Figure 6.1: The named.boot �le for vlager.

The cache and primary commands shown in this example load information into named.

This information is taken from the master �les speci�ed in the second argument. They

contain textual representations of DNS resource records, which we will look at below.

In this example, we con�gured named as the primary name server for three domains,

as indicated by the primary statements at the end of the �le. The �rst of these lines, for

instance, instructs named to act as a primary server for vbrew.com, taking the zone data

from the �le named.hosts. The directory keyword tells it that all zone �les are located in

/var/named.

The cache entry is very special and should be present on virtually all machines running

a name server. Its function is two-fold: it instructs named to enable its cache, and to load

1There are various named binaries oating around Linux FTP sites, each con�gured a little di�erently.

Some have their pid �le in /etc, some store it in /tmp or /var/tmp.
2Note that the domain names in this example are given without trailing dot. Earlier versions of named

seem to treat trailing dots in named.boot as an error, and silently discards the line. BIND-4.9.3 is said to

�x this.

6.2. Running named 109

the root name server hints from the cache �le speci�ed (named.ca in our example). We will

come back to the name server hints below.

Here's a list of the most important options you can use in named.boot:

directory This speci�es a directory in which zone �les reside. Names of �les may

be given relative to this directory. Several directories may be speci�ed by

repeatedly using directory. According to the Linux �lesystem standard, this

should be /var/named.

primary This takes a domain name and a file name as an argument, declaring the

local server authoritative for the named domain. As a primary server, named

loads the zone information from the given master �le.

Generally, there will always be at least one primary entry in every boot

�le, namely for reverse mapping of network 127.0.0.0, which is the local

loopback network.

secondary This statement takes a domain name , an address list , and a file name

as an argument. It declares the local server a secondary master server for

the domain speci�ed.

A secondary server holds authoritative data on the domain, too, but it

doesn't gather it from �les, but tries to download it from the primary server.

The IP address of at least one primary server must thus be given to named

in the address list. The local server will contact each of them in turn until it

successfully transfers the zone database, which is then stored in the backup

�le given as the third argument. If none of the primary servers responds,

the zone data is retrieved from the backup �le instead.

named will then attempt to refresh the zone data at regular intervals. This

is explained below along in connection with the SOA resource record type.

cache This takes a domain and a file name as arguments. This �le contains

the root server hints, that is a list of records pointing to the root name

servers. Only NS and A records will be recognized. The domain argument

is generally the root domain name \.".

This information is absolutely crucial to named: if the cache statement does

not occur in the boot �le, named will not develop a local cache at all. This

will severely degrade performance and increase network load if the next

server queried is not on the local net. Moreover, named will not be able to

reach any root name servers, and thus it won't resolve any addresses except

those it is authoritative for. An exception from this rule is when using

forwarding servers (cf. the forwarders option below).

6.2. Running named 110

forwarders This statement takes an address list as an argument. The IP addresses

in this list specify a list of name servers that named may query if it fails

to resolve a query from its local cache. They are tried in order until one of

them responds to the query.

slave This statement makes the name server a slave server. That is, it will never

perform recursive queries itself, but only forwards them to servers speci�ed

with the forwarders statement.

There are two options which we will not describe here, being sortlist and domain. Addi-

tionally, there are two directives that may be used inside the zone database �les. These are

$INCLUDE and $ORIGIN. Since they are rarely needed, we will not describe them here,

either.

6.2.2 The DNS Database Files

Master �les included by named, like named.hosts, always have a domain associated with

them, which is called the origin. This is the domain name speci�ed with the cache and

primary commands. Within a master �le, you are allowed to specify domain and host

names relative to this domain. A name given in a con�guration �le is considered absolute

if it ends in a single dot, otherwise it is considered relative to the origin. The origin all by

itself may be referred to using \@".

All data contained in a master �le is split up in resource records, or RRs for short. They

make up the smallest unit of information available through DNS. Each resource record has

a type. A records, for instance, map a hostname to an IP address, and a CNAME record

associates an alias for a host with its o�cial hostname. As an example, take a look at

�gure 6.3 on page 115, which shows the named.hosts master �le for the virtual brewery.

Resource record representations in master �les share a common format, which is

[domain] [ttl] [class] type rdata

Fields are separated by spaces or tabs. An entry may be continued across several lines

if an opening brace occurs before the �rst newline, and the last �eld is followed by a closing

brace. Anything between a semicolon and a newline is ignored.

domain This is the domain name to which the entry applies. If no domain name is

given, the RR is assumed to apply to the domain of the previous RR.

ttl In order to force resolvers to discard information after a certain time, each

RR is associated a \time to live", or ttl for short. The ttl �eld speci�es the

6.2. Running named 111

time in seconds the information is valid after it has been retrieved from the

server. It is a decimal number with at most eight digits.

If no ttl value is given, it defaults to the value of the minimum �eld of the

preceding SOA record.

class This is an address class, like IN for IP addresses, or HS for objects in the

Hesiod class. For TCP/IP networking, you have to make this IN.

If no class �eld is given, the class of the preceding RR is assumed.

type This describes the type of the RR. The most common types are A, SOA,

PTR, and NS. The following sections describe the various types of RR's.

rdata This holds the data associated with the RR. The format of this �eld depends

on the type of the RR. Below, it will be described for each RR separately.

The following is an incomplete list of RRs to be used in DNS master �les. There are a

couple more of them, which we will not explain. They are experimental, and of little use

generally.

SOA This describes a zone of authority (SOA means \Start of Authority"). It

signals that the records following the SOA RR contain authoritative infor-

mation for the domain. Every master �le included by a primary statement

must contain an SOA record for this zone. The resource data contains the

following �elds:

origin This is the canonical hostname of the primary name server

for this domain. It is usually given as an absolute name.

contact This is the email address of the person responsible for main-

taining the domain, with the `@ ' character replaced by a dot.

For instance, if the responsible person at the Virtual Brewery

is janet, then this �eld would contain janet.vbrew.com.

serial This is the version number of the zone �le, expressed as a

single decimal number. Whenever data is changed in the

zone �le, this number should be incremented.

The serial number is used by secondary name servers to recog-

nize when zone information has changed. To stay up to date,

secondary servers request the primary server's SOA record

at certain intervals, and compare the serial number to that

of the cached SOA record. If the number has changed, the

6.2. Running named 112

secondary servers transfers the whole zone database from the

primary server.

refresh This speci�es the interval in seconds that the secondary

servers should wait between checking the SOA record of the

primary server. Again, this is a decimal number with at most

eight digits.

Generally, the network topology doesn't change too often, so

that this number should specify an interval of roughly a day

for larger networks, and even more for smaller ones.

retry This number determines the intervals at which a secondary

server should retry contacting the primary server if a request

or a zone refresh fails. It must not be too low, or else a

temporary failure of the server or a network problem may

cause the secondary server to waste network resources. One

hour, or perhaps one half hour, might be a good choice.

expire This speci�es the time in seconds after which the server

should �nally discard all zone data if it hasn't been able to

contact the primary server. It should normally be very large.

Craig Hunt ([Hunt92]) recommends 42 days.

minimum This is the default ttl value for resource records that do not

explicitly specify one. This requires other name servers to

discard the RR after a certain amount of time. It has however

nothing to do with the time after which a secondary server

tries to update the zone information.

minimum should be a large value, especially for LANs where

the network topology almost never changes. A value of

around a week or a month is probably a good choice. In

the case that single RRs may change more frequently, you

can still assign them di�erent ttl's.

A This associates an IP address with a hostname. The resource data �eld

contains the address in dotted quad notation.

For each host, there must be only one A record. The hostname used in

this A record is considered the o�cial or canonical hostname. All other

hostnames are aliases and must be mapped onto the canonical hostname

using a CNAME record.

NS This points to a master name server of a subordinate zone. For an expla-

6.2. Running named 113

nation why one has to have NS records, see section 2.6. The resource data

�eld contains the hostname of the name server. To resolve the hostname,

an additional A record is needed, the so-called glue record which gives the

name server's IP address.

CNAME This associates an alias for a host with its canonical hostname. The canonical

hostname is the one the master �le provides an A record for; aliases are

simply linked to that name by a CNAME record, but don't have any other

records of their own.

PTR This type of record is used to associate names in the in-addr.arpa do-

main with hostnames. This is used for reverse mapping of IP addresses to

hostnames. The hostname given must be the canonical hostname.

MX This RR announces a mail exchanger for a domain. The reasons to have

mail exchangers are discussed in section Mail Routing on the Internet in

chapter 13. The syntax of an MX record is

[domain] [ttl] [class] MX preference host

host names the mail exchanger for domain . Every mail exchanger has an

integer preference associated with it. A mail transport agent who desires

to deliver mail to domain will try all hosts who have an MX record for this

domain until it succeeds. The one with the lowest preference value is tried

�rst, then the others in order of increasing preference value.

HINFO This record provides information on the system's hardware and software. Its

syntax is

[domain] [ttl] [class] HINFO hardware software

The hardware �eld identi�es the hardware used by this host. There are

special conventions to specify this. A list of valid names is given in the

\Assigned Numbers" (RFC 1340). If the �eld contains any blanks, it must

be enclosed in double quotes. The software �eld names the operating

system software used by the system. Again, a valid name from the \Assigned

Numbers" RFC should be chosen.

6.2.3 Writing the Master Files

Figures 6.2, 6.3, 6.4, and 6.5 give sample �les for a name server at the brewery, located on

vlager. Owing to the nature of the network discussed (a single LAN), the example is pretty

6.2. Running named 114

straightforward. If your requirements are more complex, and you can't get named going,

get \DNS and BIND" by Cricket Liu and Paul Albitz ([AlbitzLiu92]).

The named.ca cache �le shown in �gure 6.2 shows sample hint records for a root name

server. A typical cache �le usually describes about a dozen name servers, or so. You can

obtain the current list of name servers for the root domain using the nslookup tool described

toward the end of this chapter.3

;

; /var/named/named.ca Cache file for the brewery.

; We're not on the Internet, so we don't need

; any root servers. To activate these

; records, remove the semicolons.

;

; . 99999999 IN NS NS.NIC.DDN.MIL

; NS.NIC.DDN.MIL 99999999 IN A 26.3.0.103

; . 99999999 IN NS NS.NASA.GOV

; NS.NASA.GOV 99999999 IN A 128.102.16.10

Figure 6.2: The named.ca �le.

6.2.4 Verifying the Name Server Setup

There's a �ne tool for checking the operation of your name server setup. It is called nslookup,

and may be used both interactively and from the command line. In the latter case, you

simply invoke it as

nslookup hostname

and it will query the name server speci�ed in resolv.conf for hostname . (If this �le names

more than one server, nslookup will choose one at random).

The interactive mode, however, is much more exciting. Besides looking up individual

hosts, you may query for any type of DNS record, and transfer the entire zone information

for a domain.

When invoked without argument, nslookup will display the name server it uses, and

enter interactive mode. At the `>' prompt, you may type any domain name it should query

3Note that you can't query your name server for the root servers if you don't have any root server hints

installed: Catch 22! To escape this dilemma, you can either make nslookup use a di�erent name server, or

you can use the sample �le in �gure 6.2 as a starting point, and then obtain the full list of valid servers.

6.2. Running named 115

;

; /var/named/named.hosts Local hosts at the brewery

; Origin is vbrew.com

;

@ IN SOA vlager.vbrew.com. (

janet.vbrew.com.

16 ; serial

86400 ; refresh: once per day

3600 ; retry: one hour

3600000 ; expire: 42 days

604800 ; minimum: 1 week

)

IN NS vlager.vbrew.com.

;

; local mail is distributed on vlager

IN MX 10 vlager

;

; loopback address

localhost. IN A 127.0.0.1

; brewery Ethernet

vlager IN A 191.72.1.1

vlager-if1 IN CNAME vlager

; vlager is also news server

news IN CNAME vlager

vstout IN A 191.72.1.2

vale IN A 191.72.1.3

; winery Ethernet

vlager-if2 IN A 191.72.2.1

vbardolino IN A 191.72.2.2

vchianti IN A 191.72.2.3

vbeaujolais IN A 191.72.2.4

Figure 6.3: The named.hosts �le.

6.2. Running named 116

;

; /var/named/named.local Reverse mapping of 127.0.0

; Origin is 0.0.127.in-addr.arpa.

;

@ IN SOA vlager.vbrew.com. (

joe.vbrew.com.

1 ; serial

360000 ; refresh: 100 hrs

3600 ; retry: one hour

3600000 ; expire: 42 days

360000 ; minimum: 100 hrs

)

IN NS vlager.vbrew.com.

1 IN PTR localhost.

Figure 6.4: The named.local �le.

;

; /var/named/named.rev Reverse mapping of our IP addresses

; Origin is 72.191.in-addr.arpa.

;

@ IN SOA vlager.vbrew.com. (

joe.vbrew.com.

16 ; serial

86400 ; refresh: once per day

3600 ; retry: one hour

3600000 ; expire: 42 days

604800 ; minimum: 1 week

)

IN NS vlager.vbrew.com.

; brewery

1.1 IN PTR vlager.vbrew.com.

2.1 IN PTR vstout.vbrew.com.

3.1 IN PTR vale.vbrew.com.

; winery

1.2 IN PTR vlager-if1.vbrew.com.

2.2 IN PTR vbardolino.vbrew.com.

3.2 IN PTR vchianti.vbrew.com.

4.2 IN PTR vbeaujolais.vbrew.com.

Figure 6.5: The named.rev �le.

6.2. Running named 117

for. By default, it asks for class A records, those containing the IP address relating to the

domain name.

You may change this type by issuing \set type=type", where type is one of the resource

record names described above in section 6.2, or ANY.

For example, you might have the following dialogue with it:

$ nslookup

Default Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

> sunsite.unc.edu

Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

Non-authoritative answer:

Name: sunsite.unc.edu

Address: 152.2.22.81

If you try to query for a name that has no IP address associated, but other records were

found in the DNS database, nslookup will come back with an error message saying \No

type A records found". However, you can make it query for records other than type A

by issuing the \set type" command. For example, to get the SOA record of unc.edu, you

would issue:

> unc.edu

*** No address (A) records available for unc.edu

Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

> set type=SOA

> unc.edu

Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

Non-authoritative answer:

unc.edu

origin = ns.unc.edu

mail addr = shava.ns.unc.edu

serial = 930408

refresh = 28800 (8 hours)

retry = 3600 (1 hour)

expire = 1209600 (14 days)

minimum ttl = 86400 (1 day)

6.2. Running named 118

Authoritative answers can be found from:

UNC.EDU nameserver = SAMBA.ACS.UNC.EDU

SAMBA.ACS.UNC.EDU internet address = 128.109.157.30

In a similar fashion you can query for MX records, etc. Using a type of ANY returns all

resource records associated with a given name.

> set type=MX

> unc.edu

Non-authoritative answer:

unc.edu preference = 10, mail exchanger = lambada.oit.unc.edu

lambada.oit.unc.edu internet address = 152.2.22.80

Authoritative answers can be found from:

UNC.EDU nameserver = SAMBA.ACS.UNC.EDU

SAMBA.ACS.UNC.EDU internet address = 128.109.157.30

A practical application of nslookup beside debugging is to obtain the current list of root

name servers for the named.ca �le. You can do this by querying for all type NS records

associated with the root domain:

> set typ=NS

> .

Name Server: fb0430.mathematik.th-darmstadt.de

Address: 130.83.2.30

Non-authoritative answer:

(root) nameserver = NS.INTERNIC.NET

(root) nameserver = AOS.ARL.ARMY.MIL

(root) nameserver = C.NYSER.NET

(root) nameserver = TERP.UMD.EDU

(root) nameserver = NS.NASA.GOV

(root) nameserver = NIC.NORDU.NET

(root) nameserver = NS.NIC.DDN.MIL

Authoritative answers can be found from:

(root) nameserver = NS.INTERNIC.NET

(root) nameserver = AOS.ARL.ARMY.MIL

(root) nameserver = C.NYSER.NET

(root) nameserver = TERP.UMD.EDU

(root) nameserver = NS.NASA.GOV

(root) nameserver = NIC.NORDU.NET

(root) nameserver = NS.NIC.DDN.MIL

6.2. Running named 119

NS.INTERNIC.NET internet address = 198.41.0.4

AOS.ARL.ARMY.MIL internet address = 128.63.4.82

AOS.ARL.ARMY.MIL internet address = 192.5.25.82

AOS.ARL.ARMY.MIL internet address = 26.3.0.29

C.NYSER.NET internet address = 192.33.4.12

TERP.UMD.EDU internet address = 128.8.10.90

NS.NASA.GOV internet address = 128.102.16.10

NS.NASA.GOV internet address = 192.52.195.10

NS.NASA.GOV internet address = 45.13.10.121

NIC.NORDU.NET internet address = 192.36.148.17

NS.NIC.DDN.MIL internet address = 192.112.36.4

The complete set of commands available with nslookup may be obtained by the help

command from within nslookup.

6.2.5 Other Useful Tools

There are a few tools that can help you with your tasks as a BIND administrator. I will

briey describe two of them here. Please refer to the documentation that comes with these

tools for information on how to use them.

hostcvt is a tool that helps you with your initial BIND con�guration by converting your

/etc/hosts �le into master �les for named. It generates both the forward (A) and reverse

mapping (PTR) entries, and takes care of aliases and the like. Of course, it won't do the

whole job for you, as you may still want to tune the timeout values in the SOA record, for

instance, or add MX records and the like. Still, it may help you save a few aspirins. hostcvt

is part of the BIND source, but can also be found as a standalone package on a few Linux

FTP servers.

After setting up your name server, you may want to test your con�guration. The ideal

(and, to my knowledge) only tool for this is dnswalk, a perl -based package that walks

your DNS database, looking for common mistakes and verifying that the information is

consistent. dnswalk has been released on comp.sources.misc recently, and should be

available on all FTP sites that archive this group (ftp.uu.net should be a safe bet if you

don't know of any such site near you).

Chapter 7

Serial Line IP

The serial line protocols, SLIP and PPP, provide the Internet connectivity for the poor.

Apart from a modem and a serial board equipped with a FIFO bu�er, no hardware is

needed. Using it is not much more complicated than a mailbox, and an increasing number

of private organizations o�er dial-up IP at an a�ordable cost to everyone.

There are both SLIP and PPP drivers available for Linux. SLIP has been there for quite

a while, and works fairly reliable. A PPP driver has been developed recently by Michael

Callahan and Al Longyear. It will be described in the next chapter.

7.1 General Requirements

To use SLIP or PPP, you have to con�gure some basic networking features as described in

the previous chapters, of course. At the least, you have to set up the looback interface, and

provide for name resolution. When connecting to the Internet, you will of course want to

use DNS. The simplest option is to put the address of some name server into your resolv.conf

�le; this server will be queried as soon as the SLIP link is activated. The closer this name

server is to the point where you dial in, the better.

However, this solution is not optimal, because all name lookups will still go through your

SLIP/PPP link. If you worry about the bandwidth this consumes, you can also set up a

caching-only name server. It doesn't really serve a domain, but only acts as a relay for all

DNS queries produced on your host. The advantage of this scheme is that it builds up a

cache, so that most queries have to be sent over the serial line only once. A named.boot �le

for a caching-only server looks like this:

; named.boot file for caching-only server

directory /var/named

120

7.2. SLIP Operation 121

primary 0.0.127.in-addr.arpa db.127.0.0 ; loopback net

cache . db.cache ; root servers

In addition to this name.boot �le, you also have to set up the db.cache �le with a valid

list of root name servers. This is described toward the end of the Resolver Con�guration

chapter.

7.2 SLIP Operation

Dial-up IP servers frequently o�er SLIP service through special user accounts. After logging

into such an account, you are not dropped into the common shell; instead a program or shell

script is executed that enables the server's SLIP driver for the serial line and con�gures the

appropriate network interface. Then you have to do the same at your end of the link.

On some operating systems, the SLIP driver is a user-space program; under Linux, it is

part of the kernel, which makes it a lot faster. This requires, however, that the serial line

be converted to SLIP mode explicitly. This is done by means of a special tty line discipline,

SLIPDISC. While the tty is in normal line discipline (DISC0), it will exchange data only

with user processes, using the normal read(2) and write(2) calls, and the SLIP driver is

unable to write to or read from the tty. In SLIPDISC, the roles are reversed: now any

user-space processes are blocked from writing to or reading from the tty, while all data

coming in on the serial port will be passed directly to the SLIP driver.

The SLIP driver itself understands a number of variations on the SLIP protocol. Apart

from ordinary SLIP, it also understands CSLIP, which performs the so-called Van Jacobson

header compression on outgoing IP packets.1 This improves throughput for interactive

sessions noticeably. Additionally, there are six-bit versions for each of these protocols.

A simple way to convert a serial line to SLIP mode is by using the slattach tool. Assume

you have your modem on /dev/cua3, and have logged into the SLIP server successfully. You

will then execute:

slattach /dev/cua3 &

This will switch the line discipline of cua3 to SLIPDISC, and attach it to one of the

SLIP network interfaces. If this is your �rst active SLIP link, the line will be attached to

sl0; the second would be attached to sl1, and so on. The current kernels support up to eight

simultaneous SLIP links.

1Van Jacobson header compression is described in RFC 1441.

7.2. SLIP Operation 122

The default encapsulation chosen by slattach is CSLIP. You may choose any other mode

using the -p switch. To use normal SLIP (no compression), you would use

slattach -p slip /dev/cua3 &

Other modes are cslip, slip6, cslip6 (for the six-bit version of SLIP), and adaptive

for adaptive SLIP. The latter leaves it to the kernel to �nd out which type of SLIP encap-

sulation the remote end uses.

Note that you must use the same encapsulation as your peer does. For example, if

cowslip uses CSLIP, you have to do so, too. The symptoms of a mismatch will be that

a ping to the remote host will not receive any packets back. If the other host pings you,

you may also see messages like \Can't build ICMP header" on your console. One way to

avoid these di�culties is to use adaptive SLIP.

In fact, slattach does not only allow you to enable SLIP, but other protocols that use

the serial line as well, like PPP or KISS (another protocol used by ham radio people). For

details, please refer to the slattach(8) manual page.

After turning over the line to the SLIP driver, you have to con�gure the network interface.

Again, we do this using the standard ifcon�g and route commands. Assume that from

vlager, we have dialed up a server named cowslip. You would then execute

ifconfig sl0 vlager pointopoint cowslip

route add cowslip

route add default gw cowslip

The �rst command con�gures the interface as a point-to-point link to cowslip, while

the second and third add the route to cowslip and the default route using cowslip as a

gateway.

When taking down the SLIP link, you �rst have to remove all routes through cowslip

using route with the del option, take the interface down, and send slattach the hangup

signal. Afterwards you have to hang up the modem using your terminal program again:

route del default

route del cowslip

ifconfig sl0 down

kill -HUP 516

7.3. Using dip 123

7.3 Using dip

Now, that was rather simple. Nevertheless, you might want to automate the above steps so

that you only have to invoke a simple command that performs all steps shown above. This is

what dip is for.2 The current release as of this writing is version 3.3.7. It has been patched

very heavily by a number of people, so that you can't speak of the dip program anymore.

These di�erent strains of development will hopefully be merged in a future release.

dip provides an interpreter for a simple scripting language that can handle the modem for

you, convert the line to SLIP mode, and con�gure the interfaces. This is rather primitive

and restrictive, but su�cient for most cases. A new release of dip may feature a more

versatile language one day.

To be able to con�gure the SLIP interface, dip requires root privilege. It would now be

tempting to make dip setuid to root, so that all users can dial up some SLIP server without

having to give them root access. This is very dangerous, because setting up bogus interfaces

and default routes with dip may disrupt routing on your network badly. Even worse, this

will give your users the power to connect to any SLIP server, and launch dangerous attacks

on your network. So if you want to allow your users to �re up a SLIP connection, write

small wrapper programs for each prospective SLIP server, and have these wrappers invoke

dip with the speci�c script that establishes the connection. These programs can then safely

be made setuid root.3

7.3.1 A Sample Script

A sample script is produced in �gure 7.1. It can be used to connect to cowslip by

invoking dip with the script name as argument:

dip cowslip.dip

DIP: Dialup IP Protocol Driver version 3.3.7 (12/13/93)

Written by Fred N. van Kempen, MicroWalt Corporation.

connected to cowslip.moo.com with addr 193.174.7.129

#

After connecting to cowslip and enabling SLIP, dip will detach from the terminal and

go to the background. You can then start using the normal networking services on the

SLIP link. To terminate the connection, simply invoke dip with the -k option. This sends

a hangup signal to dip process, using the process id dip records in /etc/dip.pid:4

2dip means Dialup IP. It was written by Fred van Kempen.
3diplogin can (and must) be run setuid, too. See the section at the end of this chapter.
4See the newsgroup alt.tla for more palindromic fun with three-letter acronyms.

7.3. Using dip 124

Sample dip script for dialing up cowslip

Set local and remote name and address

get $local vlager

get $remote cowslip

port cua3 # choose a serial port

speed 38400 # set speed to max

modem HAYES # set modem type

reset # reset modem and tty

flush # flush out modem response

Prepare for dialing.

send ATQ0V1E1X1\r

wait OK 2

if $errlvl != 0 goto error

dial 41988

if $errlvl != 0 goto error

wait CONNECT 60

if $errlvl != 0 goto error

Okay, we're connected now

sleep 3

send \r\n\r\n

wait ogin: 10

if $errlvl != 0 goto error

send Svlager\n

wait ssword: 5

if $errlvl != 0 goto error

send hey-jude\n

wait running 30

if $errlvl != 0 goto error

We have logged in, and the remote side is firing up SLIP.

print Connected to $remote with address $rmtip

default # Make this link our default route

mode SLIP # We go to SLIP mode, too

fall through in case of error

error:

print SLIP to $remote failed.

Figure 7.1: A sample dip script

7.3. Using dip 125

kill -k

In dip's scripting language, keywords pre�xed with a dollar symbol denote variable

names. dip has a prede�ned set of variables which will be listed below. $remote and $local,

for instance, contain the hostnames of the local and remote host involved in the SLIP link.

The �rst two statements in the sample script are get commands, which is dip's way

to set a variable. Here, the local and remote hostname are set to vlager and cowslip,

respectively.

The next �ve statements set up the terminal line and the modem. The reset sends a

reset string to the modem; for Hayes-compatible modems, this is the ATZ command. The

next statement ushes out the modem response, so that the login chat in the next few lines

will work properly. This chat is pretty straight-forward: it simply dials 41988, the phone

number of cowslip, and logs into the account Svlager using the password hey-jude. The

wait command makes dip wait for the string given as its �rst argument; the number given

as second argument make the wait time out after that many seconds if no such string is

received. The if commands interspersed in the login procedure check that no error has

occurred while executing the command.

The �nal commands executed after logging in are default, which makes the SLIP link the

default route to all hosts, and mode, which enables SLIP mode on the line and con�gures

the interface and routing table for you.

7.3.2 A dip Reference

Although widely used, dip hasn't been very well documented yet. In this section, we will

therefore give a reference for most of dip's commands. You can get an overview of all

commands it provides by invoking dip in test mode, and entering the help command. To

�nd out about the syntax of a command, you may enter it without any arguments; of course

this does not work with commands that take no arguments.

$ dip -t

DIP: Dialup IP Protocol Driver version 3.3.7 (12/13/93)

Written by Fred N. van Kempen, MicroWalt Corporation.

DIP> help

DIP knows about the following commands:

databits default dial echo flush

get goto help if init

mode modem parity print port

7.3. Using dip 126

reset send sleep speed stopbits

term wait

DIP> echo

Usage: echo on|off

DIP> _

Throughout the following, examples that display the DIP> prompt show how to enter a

command in test mode, and what output it produces. Examples lacking this prompt should

be taken as script excerpts.

The Modem Commands

There is a number of commands dip provides to con�gure your serial line and modem. Some

of these are obvious, such as port, which selects a serial port, and speed, databits, stopbits,

and parity, which set the common line parameters.

The modem command selects a modem type. Currently, the only type supported is

HAYES (capitalization required). You have to provide dip with a modem type, else it will

refuse to execute the dial and reset commands. The reset command sends a reset string to

the modem; the string used depends on the modem type selected. For Hayes-compatible

modems, this is ATZ.

The ush code can be used to ush out all responses the modem has sent so far. Other-

wise a chat script following the reset might be confused, because it reads the OK responses

from earlier commands.

The init command selects an initialization string to be passed to the modem before

dialling. The default for Hayes modems is \ATE0 Q0 V1 X1", which turns on echoing of

commands and long result codes, and selects blind dialing (no checking of dial tone).

The dial command �nally sends the initialization string to the modem and dials up the

remote system. The default dial command for Hayes modems is ATD.

echo and term

The echo command serves as a debugging aid, in that using echo on makes dip echo to the

console everything sends to the serial device. This can be turned o� again by calling echo

o�.

dip also allows you to leave script mode temporarily and enter terminal mode. In this

mode, you can use dip just like any ordinary terminal program, writing to the serial line

7.3. Using dip 127

and reading from it. To leave this mode, enter Ctrl-] .

The get Command

The get command is dip's way of setting a variable. The simplest form is to set a variable

to a constant, as used throughout the above example. You may, however, also prompt the

user for input by specifying the keyword ask instead of a value:

DIP> get $local ask

Enter the value for $local: _

A third method is to try to obtain the value from the remote host. Bizarre as it seems

�rst, this is very useful in some cases: Some SLIP servers will not allow you to use your

own IP address on the SLIP link, but will rather assign you one from a pool of addresses

whenever you dial in, printing some message that informs you about the address you have

been assigned. If the message looks something like this \Your address: 193.174.7.202",

then the following piece of dip code would let you pick up the address:

... login chat

wait address: 10

get $locip remote

The print Command

This is the command to echo text to the console dip was started from. Any of dip's variables

may be used in print commands, such as

DIP> print Using port $port at speed $speed

Using port cua3 at speed 38400

Variable Names

dip only understands a prede�ned set of variables. A variable name always begins with a

dollar symbol and must be written in lower-case letters.

The $local and $locip variables contain the local host's name and IP address. Setting

the hostname makes dip store the canonical hostname in $local, at the same time assigning

$locip the corresponding IP address. The analogous thing happens when setting the $locip.

The $remote and $rmtip variables do the same for the remote host's name and address.

$mtu contains the MTU value for the connection.

7.3. Using dip 128

These �ve variables are the only ones that may be assigned values directly using the get

command. A host of other variables can only be set through corresponding commands, but

may be used print statements; these are $modem, $port, and $speed.

$errlvl is the variable through which you can access the result of the last command

executed. An error level of 0 indicates success, while a non-zero value denotes an error.

The if and goto Commands

The if command is rather a conditional branch than what one usually calls an if. Its syntax

is

if var op number goto label

where the expression must be a simple comparison between one of the variables $errlvl,

$locip, and $rmtip. The second operand must be an integer number; the operator op may

be one of ==, !=, <, >, <=, and >=.

The goto command makes the execution of the script continue at the line following that

bearing the label. A label must occur as the very �rst token on the line, and must be

followed immediately by a colon.

send, wait and sleep

These commands help implement simple chat scripts in dip. send outputs its arguments to

the serial line. It does not support variables, but understands all C-style backslash character

sequences such as \n and \b. The tilde character (~) is used as an abbreviation for carriage

return/newline.

wait takes a word as an argument, and scans all input on the serial line until it recognizes

this word. The word itself may not contain any blanks. Optionally, you may give wait a

timeout value as second argument; if the expected word is not received within that many

seconds, the command will return with an $errlvl value of one.

The sleep statement may be used to wait for a certain amount of time, for instance to

patiently wait for any login sequence to complete. Again, the interval is speci�ed in seconds.

mode and default

These commands are used to ip the serial line to SLIP mode and con�gure the interface.

7.4. Running in Server Mode 129

The mode command is the last command executed by dip before gong into daemon

mode. Unless an error occurs, the command does not return.

mode takes a protocol name as argument. dip currently recognizes SLIP and CSLIP as

valid names. The current version of dip does not understand adaptive SLIP, however.

After enabling SLIP mode on the serial line, dip executes ifcon�g to con�gure the inter-

face as a point-to-point link, and invokes route to set the route to the remote host.

If, in addition, the script executes the default command before mode, dip will also make

the default route point to the SLIP link.

7.4 Running in Server Mode

Setting up your SLIP client was the hard part. Doing the opposite, namely con�guring

your host to act as a SLIP server, is much easier.

One way to do this is to to use dip in server mode, which can be achieved by invoking it

as diplogin. Its main con�guration �le is /etc/diphosts, which associates login names with

the address this host is assigned. Alternatively, you can also use sliplogin, a BSD-derived

tool that features a more exible con�guration scheme that lets you execute shell scripts

whenever a host connects and disconnects. It is currently at Beta.

Both programs require that you set up one login account per SLIP client. For instance,

assume you provide SLIP service to Arthur Dent at dent.beta.com, you might create an

account named dent by adding the following line to your passwd �le:

dent:*:501:60:Arthur Dent's SLIP account:/tmp:/usr/sbin/diplogin

Afterwards, you would set dent's password using the passwd utility.

Now, when dent logs in, dip will start up as a server. To �nd out if he is indeed

permitted to use SLIP, it will look up the user name in /etc/diphosts. This �le details the

access rights and connection parameter for each SLIP user. A sample entry for dent could

look like this:

dent::dent.beta.com:Arthur Dent:SLIP,296

The �rst of the colon-separated �elds is the name the user must log in as. The second �eld

may contain an additional password (see below). The third is the hostname or IP address of

the calling host. Next comes an informational �eld without any special meaning (yet). The

7.4. Running in Server Mode 130

last �eld describes the connection parameters. This is a comma-separated list specifying

the protocol (currently one of SLIP or CSLIP), followed by the MTU.

When dent logs in, diplogin extracts the information on him from the diphosts �le, and,

if the second �eld is not empty, prompts for an \external security password". The string

entered by the user is compared to the (unencrypted) password from diphosts. If they do

not match, the login attempt is rejected.

Otherwise, diplogin proceeds by ipping the serial line to CSLIP or SLIP mode, and sets

up the interface and route. This connection remains established until the user disconnects

and the modem drops the line. diplogin will then return the line to normal line discipline,

and exit.

diplogin requires super-user privilege. If you don't have dip running setuid root, you

should make diplogin a separate copy of dip instead of a simple link. diplogin can then

safely be made setuid, without a�ecting the status of dip itself.

Chapter 8

The Point-to-Point Protocol

8.1 Untangling the P's

Just like SLIP, PPP is a protocol to send datagrams across a serial connection, but addresses

a couple of de�ciencies of the former. It lets the communicating sides negotiate options such

as the IP address and the maximum datagram size at startup time, and provides for client

authorization. For each of these capabilities, PPP has a separate protocol. Below, we will

briey cover these basic building blocks of PPP. This discussion is far from complete; if you

want to know more about PPP, you are urged to read its speci�cation in RFC 1548, as well

as the dozen or so companion RFCs.1

At the very bottom of PPP is the High-Level Data Link Control Protocol, abbreviated

HDLC,2 which de�nes the boundaries around the individual PPP frames, and provides a

16 bit checksum. As opposed to the more primitive SLIP encapsulation, a PPP frame is

capable of holding packets from other protocols than IP, such as Novell's IPX, or Appletalk.

PPP achieves this by adding a protocol �eld to the basic HDLC frame that identi�es the

type of packet is carried by the frame.

LCP, the Link Control Protocol, is used on top of HDLC to negotiate options pertaining

to the data link, such as the Maximum Receive Unit (MRU) that states the maximum

datagram size one side of the link agrees to receive.

An important step at the con�guration stage of a PPP link is client authorization.

Although it is not mandatory, it is really a must for dial-up lines. Usually, the called

host (the server) asks the client to authorize itself by proving it knows some secret key.

1The relevant RFCs are listed in the Annoted Bibiliography at the end of this book.
2In fact, HDLC is a much more general protocol devised by the International Standards Organization

(ISO).

131

8.2. PPP on Linux 132

If the caller fails to produce the correct secret, the connection is terminated. With PPP,

authorization works both ways; that is, the caller may also ask the server to authenticate

itself. These authentication procedures are totally independent of each other. There are

two protocols for di�erent types of authorization, which we will discuss further below.

They are named Password Authentication Protocol, or PAP, and Challenge Handshake

Authentication Protocol, or CHAP.

Each network protocol that is routed across the data link, like IP, AppleTalk, etc, is con-

�gured dynamically using a corresponding Network Control Protocol (NCP). For instance,

to send IP datagrams across the link, both PPPs must �rst negotiate which IP address

each of them uses. The control protocol used for this is IPCP, the Internet Protocol Con-

trol Protocol.

Beside sending standard IP datagrams across the link, PPP also supports Van Jacobson

header compression of IP datagrams. This is a technique to shrink the headers of TCP

packets to as little as three bytes. It is also used in CSLIP, and is more colloquially referred

to as VJ header compression. The use of compression may be negotiated at startup time

through IPCP as well.

8.2 PPP on Linux

On Linux, PPP functionality is split up in two parts, a low-level HDLC driver located in

the kernel, and the user space pppd daemon that handles the various control protocols. The

current release of PPP for Linux is linux-ppp-1.0.0, and contains the kernel PPP module,

pppd, and a program named chat used to dial up the remote system.

The PPP kernel driver was written by Michael Callahan. pppd was derived from a free

PPP implementation for Sun and 386BSD machines, which was written by Drew Perkins

and others, and is maintained by Paul Mackerras. It was ported to Linux by Al Longyear.3

chat was written by Karl Fox.4

Just like SLIP, PPP is implemented by means of a special line discipline. To use some

serial line as a PPP link, you �rst establish the connection over your modem as usual, and

subsequently convert the line to PPP mode. In this mode, all incoming data is passed to the

PPP driver, which checks the incoming HDLC frames for validity (each HDLC frame carries

a 16 bit checksum), and unwraps and dispatches them. Currently, it is able to handle IP

datagrams, optionally using Van Jacobson header compression. As soon as Linux supports

IPX, the PPP driver will be extended to handle IPX packets, too.

3Both authors have said they will be very busy for some time to come. If you have any questions on PPP

in general, you'd best ask the people on the NET channel of the Linux activists mailing list.
4karl@morningstar.com.

8.3. Running pppd 133

The kernel driver is aided by pppd, the PPP daemon, which performs the entire ini-

tialization and authentication phase that is necessary before actual network tra�c can be

sent across the link. pppd 's behavior may be �ne-tuned using a number of options. As

PPP is rather complex, it is impossible to explain all of them in a single chapter. This

book therefore cannot cover all aspects of pppd, but only give you an introduction. For

more information, refer to the manual pages and READMEs in the pppd source distribu-

tion, which should help you sort out most questions this chapter fails to discuss. If your

problems persist even after reading all documentation, you should turn to the newsgroup

comp.protocols.ppp for help, which is the place where you will reach most of the people

involved in the development of pppd.

8.3 Running pppd

When you want to connect to the Internet through a PPP link, you have to set up basic

networking capabilities such as the loopback device, and the resolver. Both have been

covered in the previous chapters. There are some things to be said about using DNS over

a serial link; please refer to the SLIP chapter for a discussion of this.

As an introductory example of how to establish a PPP connection with pppd, assume you

are at vlager again. You have already dialed up the PPP server, c3po, and logged into the

ppp account. c3po has already �red up its PPP driver. After exiting the communications

program you used for dialing, you execute the following command:

pppd /dev/cua3 38400 crtscts defaultroute

This will ip the serial line cua3 to PPP mode and establish an IP link to c3po. The

transfer speed used on the serial port will be 38400bps. The crtscts option turns on hardware

handshake on the port, which is an absolute must at speeds above 9600 bps.

The �rst thing pppd does after starting up is to negotiate several link characteristics

with the remote end, using LCP. Usually, the default set of options pppd tries to negotiate

will work, so we won't go into this here. We will return to LCP in more detail in some later

section.

For the time being, we also assume that c3po doesn't require any authentication from

us, so that the con�guration phase is completed successfully.

pppd will then negotiate the IP parameters with its peer using IPCP, the IP control

protocol. Since we didn't specify any particular IP address to pppd above, it will try to

use the address obtained by having the resolver look up the local hostname. Both will then

announce their address to each other.

8.4. Using Options Files 134

Usually, there's nothing wrong with these defaults. Even if your machine is on an

Ethernet, you can use the same IP address for both the Ethernet and the PPP interface.

Nevertheless, pppd allows you to use a di�erent address, or even to ask your peer to use

some speci�c address. These options are discussed in a later section.

After going through the IPCP setup phase, pppd will prepare your host's networking

layer to use the PPP link. It �rst con�gures the PPP network interface as a point-to-point

link, using ppp0 for the �rst PPP link that is active, ppp1 for the second, and so on. Next,

it will set up a routing table entry that points to the host at the other end of the link. In

the example shown above, pppd will make the default network route point to c3po, because

we gave it the defaultroute option.5 This causes all datagrams to hosts not on your local

network to be sent to c3po. There are a number of di�erent routing schemes pppd supports,

which we will cover in detail later in this chapter.

8.4 Using Options Files

Before pppd parses its command line arguments, it scans several �les for default options.

These �les may contain any valid command line arguments, spread out across an arbitrary

number of lines. comments are introduced by has signs.

The �rst options �le is /etc/ppp/options, which is always scanned when pppd starts up.

Using it to set some global defaults is a good idea, because it allows you to keep your

users from doing several things that may compromise security. For instance, to make pppd

require some kind of authentication (either PAP or CHAP) from the peer, you would add

the auth option to this �le. This option cannot be overridden by the user, so that it becomes

impossible to establish a PPP connection with any system that is not in our authentication

databases.

The other option �le, which is read after /etc/ppp/options, is .ppprc in the user's home

directory. It allows each user to specify her own set of default options.

A sample /etc/ppp/options �le might look like this:

Global options for pppd running on vlager.vbrew.com

auth # require authentication

usehostname # use local hostname for CHAP

lock # use UUCP-style device locking

domain vbrew.com # our domain name

The �rst two of these options apply to authentication and will be explained below. The

lock keyword makes pppd comply to the standard UUCP method of device locking. With

5The default network route is only installed if none is present yet.

8.5. Dialing out with chat 135

this convention, each process that accesses a serial device, say /dev/cua3, creates a lock �le

named LCK..cua3 in the UUCP spool directory to signal that the device is in use. This

is necessary to prevent any other programs such as minicom or uucico to open the serial

device while used by PPP.

The reason to provide these options in the global con�guration �le is that options such

as those shown above cannot be overridden, and so provide for a reasonable level of security.

Note however, that some options can be overridden later; one such an example is the connect

string.

8.5 Dialing out with chat

One of the things that may have struck you as inconvenient in the above example is that

you had to establish the connection manually before you could �re up pppd. Unlike dip,

pppd does not have its own scripting language for dialing the remote system and logging in,

but rather relies on some external program or shell script to do this. The command to be

executed can be given to pppd with the connect command line option. pppd will redirect

the command's standard input and output to the serial line. One useful program for this

is expect, written by Don Libes. It has a very powerful language based on Tcl, and was

designed exactly for this sort of application.

The pppd package comes along with a similar program called chat, which lets you specify

a UUCP-style chat script. Basically, a chat script consists of an alternating sequence of

strings that we expect to receive from the remote system, and the answers we are to send.

We will call the expect and send strings, respectively. This is a typical excerpt from a chat

script;

ogin: b1ff ssword: s3kr3t

This tells chat to wait for the remote system to send the login prompt, and return the

login name b1�. We only wait for ogin: so that it doesn't matter if the login prompt

starts with an uppercase or lowercase l, or if it arrives garbled. The following string is an

expect-string again that makes chat wait for the password prompt, and send our password

in response.

This is basically all that chat scripts are about. A complete script to dial up a PPP

server would, of course, also have to include the appropriate modem commands. Assume

your modem understands the Hayes command set, and the server's telephone number was

318714. The complete chat invocation to establish a connection with c3po would then be

$ chat -v '' ATZ OK ATDT318714 CONNECT '' ogin: ppp word: GaGariN

8.5. Dialing out with chat 136

By de�nition, the �rst string must be an expect string, but as the modem won't say

anything before we have kicked it, we make chat skip the �rst expect by specifying an

empty string. We go on and send ATZ, the reset command for Hayes-compatible modems,

and wait for its response (OK). The next string sends the dial command along with the

phone number to chat, and expects the CONNECT message in response. This is followed by

an empty string again, because we don't want to send anything now, but rather wait for

the login prompt. The remainder of the chat script works exactly as described above.

The -v option makes chat log all activities to the syslog daemon's local2 facility.6

Specifying the chat script on the command line bears a certain risk, because users can

view a process' command line with the ps command. You can avoid this by putting the

chat script in a �le, say dial-c3po. You make chat read the script from the �le instead of

the command line by giving it the -f option, followed by the �le name. The complete pppd

incantation would now look like this:

pppd connect "chat -f dial-c3po" /dev/cua3 38400 -detach \

crtscts modem defaultroute

Beside the connect option that speci�es the dial-up script, we have added two more

options to the command line: -detach, which tells pppd not to detach from the console and

become a background process. The modem keyword makes it perform some modem-speci�c

actions on the serial device, like hanging up the line before and after the call. If you don't

use this keyword, pppd will not monitor the port's DCD line, and will therefore not detect

if the remote end hangs up unexpectedly.

The examples shown above were rather simple; chat allows for much more complex chat

scripts. One very useful feature is the ability to specify strings on which to abort the chat

with an error. Typical abort strings are messages like BUSY, or NO CARRIER, that your

modem usually generates when the called number is busy, or doesn't pick up the phone.

To make chat recognize these immediately, rather than timing out, you can specify them

at the beginning of the script using the ABORT keyword:

$ chat -v ABORT BUSY ABORT 'NO CARRIER' '' ATZ OK ...

In a similar fashion, you may change the timeout value for parts of the chat scripts by

inserting TIMEOUT options. For details, please check the chat(8) manual page.

Sometimes, you'd also want to have some sort of conditional execution of parts of the

chat script. For instance, when you don't receive the remote end's login prompt, you might

6If you edit syslog.conf to redirect these log messages to a �le, make sure this �le isn't world readable,

as chat also logs the entire chat script by default { including passwords and all.

8.6. Debugging Your PPP Setup 137

want to send a BREAK, or a carriage return. You can achieve this by appending a sub-

script to an expect string. It consists of a sequence of send- and expect-strings, just like the

overall script itself, which are separated by hyphens. The sub-script is executed whenever

the expected string they are appended to is not received in time. In the example above, we

would modify the chat script as follows:

ogin:-BREAK-ogin: ppp ssword: GaGariN

Now, when chat doesn't see the remote system send the login prompt, the sub-script

is executed by �rst sending a BREAK, and then waiting for the login prompt again. If

the prompt now appears, the script continues as usual, otherwise it will terminate with an

error.

8.6 Debugging Your PPP Setup

By default, pppd will log any warnings and error messages to syslog 's daemon facility.

You have to add an entry to syslog.conf that redirects this to a �le, or even the console,

otherwise syslog simply discards these messages. The following entry sends all messages to

/var/log/ppp-log:

daemon.* /var/log/ppp-log

If your PPP setup doesn't work at once, looking into this log �le should give you a �rst

hint of what goes wrong. If this doesn't help, you can also turn on extra debugging output

using the debug option. This makes pppd log the contents of all control packets sent or

received to syslog. All messages will go to the daemon facility.

Finally, the most drastic feature is to enable kernel-level debugging by invoking pppd

with the kdebug option. It is followed by a numeric argument that is the bitwise OR of the

following values: 1 for general debug messages, 2 for printing the contents of all incoming

HDLC frames, and 4 to make the driver print all outgoing HDLC frames. To capture kernel

debugging messages, you must either run a syslogd daemon that reads the /proc/kmsg �le,

or the klogd daemon. Either of them directs kernel debugging to syslog 's kernel facility.

8.7 IP Con�guration Options

IPCP is used to negotiate a couple of IP parameters at link con�guration time. Usually,

each peer may send an IPCP Con�guration Request packet, indicating which values it wants

8.7. IP Con�guration Options 138

to change from the defaults, and to what value. Upon receipt, the remote end inspects each

option in turn, and either acknowledges or rejects it.

pppd gives you a lot of control about which IPCP options it will try to negotiate. You

can tune this through various command line options we will discuss below.

8.7.1 Choosing IP Addresses

In the example above, we had pppd dial up c3po and establish an IP link. No provisions

were taken to choose a particular IP address on either end of the link. Instead, we picked

vlager's address as the local IP address, and let c3po provide its own. Sometimes, however,

it is useful to have control over what address is used on one or the other end of the link.

pppd supports several variations of this.

To ask for particular addresses, you generally provide pppd with the following option:

local addr:remote addr

where local addr and remote addr may be speci�ed either in dotted quad notation, or

as hostnames.7 This makes pppd attempt to use the �rst address as its own IP address,

and the second as the peer's. If the peer rejects either of them during IPCP negotiation,

no IP link will be established.8

If you want to set only the local address, but accept any address the peer uses, you

simply leave out the remote addr part. For instance, to make vlager use the IP address

130.83.4.27 instead of its own, you would give it 130.83.4.27: on the command line.

Similarly, to set the remote address only, you would leave the local addr �eld blank. By

default, pppd will then use the address associated with your hostname.

Some PPP servers that handle a lot of client sites assign addresses dynamically: addresses

are assigned to systems only when calling in, and are claimed after they have logged o�

again. When dialing up such a server, you must make sure that pppd doesn't request any

particular IP address from the server, but rather accept the address the server asks you to

use. This means that you mustn't specify a local addr argument. In addition, you have to

use the noipdefault option, which makes pppd wait for the peer to provide the IP address

instead of using the local host's address.

7Using hostnames in this option has consequences on CHAP authentication. Please refer to the section

on CHAP below.
8You can allow the peer PPP to override your ideas of IP addresses by giving pppd the ipcp-accept-local

and ipcp-accept-remote options. Please refer to the manual page for details.

8.7. IP Con�guration Options 139

8.7.2 Routing Through a PPP Link

After setting up the network interface, pppd will usually set up a host route to its peer only.

If the remote host is on a LAN, you certainly want to be able to connect to hosts \behind"

your peer as well; that is, a network route must be set up.

We have already seen above that pppd can be asked to set the default route using the

defaultroute option. This option is very useful if the PPP server you dialed up will act

as your Internet gateway.

The reverse case, where your system acts as a gateway for a single host, is also relatively

easy to accomplish. For example, take some employee at the Virtual Brewery whose home

machine is called loner. When connecting to vlager through PPP, he uses an address on

the Brewery's subnet. At vlager, we can now give pppd the proxyarp option, which will

install a proxy ARP entry for loner. This will automatically make loner accessible from

all hosts at the Brewery and the Winery.

However, things aren't always as easy as that, for instance when linking two local area

networks. This usually requires adding a speci�c network route, because these networks

may have their own default routes. Besides, having both peers use the PPP link as the

default route would generate a loop, where packets to unknown destinations would ping-

pong between the peers until their time-to-live expired.

As an example, suppose the Virtual Brewery opens a branch in some other city. The

subsidiary runs an Ethernet of their own using the IP network number 191.72.3.0, which

is subnet 3 of the Brewery's class B network. They want to connect to the Brewery's main

Ethernet via PPP to update customer databases, etc. Again, vlager acts as the gateway;

its peer is called sub-etha and has an IP address of 191.72.3.1..

When sub-etha connects to vlager, it will make the default route point to vlager as

usual. On vlager, however, we will have to install a network route for subnet 3 that goes

through sub-etha. For this, we use a feature of pppd not discussed so far { the ip-up

command. This is a shell script or program located in /etc/ppp that is executed after

the PPP interface has been con�gured. When present, it is invoked with the following

parameters:

ip-up iface device speed local addr remote addr

where iface names the network interface used, device is the pathname of the serial device

�le used (/dev/tty if stdin/stdout are used), and speed is the device's speed. local addr

and remote addr give the IP addresses used at both ends of the link in dotted quad notation.

In our case, the ip-up script may contain the following code fragment:

8.8. Link Control Options 140

#!/bin/sh

case $5 in

191.72.3.1) # this is sub-etha

route add -net 191.72.3.0 gw 191.72.3.1;;

...

esac

exit 0

In a similar fashion, /etc/ppp/ip-down is used to undo all actions of ip-up after the PPP

link has been taken down again.

However, the routing scheme is not yet complete. We have set up routing table entries

on both PPP hosts, but so far, all other hosts on both networks don't know anything about

the PPP link. This is not a big problem if all hosts at the subsidiary have their default

route pointing at sub-etha, and all Brewery hosts route to vlager by default. If this is

not the case, your only option will usually be to use a routing daemon like gated. After

creating the network route on vlager, the routing daemon would broadcast the new route

to all hosts on the attached subnets.

8.8 Link Control Options

Above, we already encountered LCP, the Link Control Protocol, which is used to negotiate

link characteristics, and to test the link.

The two most important options that may be negotiated by LCP are the maximum

receive unit, and the Asynchronous Control Character Map. There are a number of other

LCP con�guration options, but they are far too specialized to discuss here. Please refer to

RFC 1548 for a description of those.

The Asynchronous Control Character Map, colloquially called the async map, is used

on asynchronous links such as telephone lines to identify control characters that must be

escaped (replaced by a speci�c two-character sequence). For instance, you may want to avoid

the XON and XOFF characters used for software handshake, because some miscon�gured

modem might choke upon receipt of an XOFF. Other candidates include Ctrl-] (the telnet

escape character). PPP allows you to escape any of the characters with ASCII codes 0

through 31 by specifying them in the async map.

The async map is a bitmap 32 bits wide, with the least signi�cant bit corresponding to

the ASCII NUL character, and the most signi�cant bit corrsponding to ASCII 31. If a bit

is set, it signals that the corresponding character must be escaped before sending it across

the link. Initially, the async map is set to 0x����, that is, all control characters will be

esaped.

8.9. General Security Considerations 141

To tell your peer that it doesn't have to escape all control characters but only a few of

them, you can specify a new asyncmap to pppd using the asyncmap option. For instance, if

only ^S and ^Q (ASCII 17 and 19, commonly used for XON and XOFF) must be escaped,

use the following option:

asyncmap 0x000A0000

The Maximum Receive Unit, or MRU, signals to the peer the maximum size of HDLC

frames we want to receive. Although this may remind you of the MTU value (Maximum

Transfer Unit), these two have little in common. The MTU is a parameter of the kernel

networking device, and describes the maximum frame size the interface is able to handle.

The MRU is more of an advice to the remote end not to generate any frames larger than

the MRU; the interface must nevertheless be able to receive frames of up to 1500 bytes.

Choosing an MRU is therefore not so much a question of what the link is capable of

transferring, but of what gives you the best throughput. If you intend to run interactive

applications over the link, setting the MRU to values as low as 296 is a good idea, so that

an occasional larger packet (say, from an FTP session) doesn't make your cursor \jump".

To tell pppd to request an MRU of 296, you would give it the option mru 296. Small MRUs,

however, only make sense if you don't have VJ header compression disabled (it is enabled

by default).

pppd understands also a couple of LCP options that con�gure the overall behavior of

the negotiation process, such as the maximum number of con�guration requests that may

be exchanged before the link is terminated. Unless you kow exactly what you are doing,

you should leave these alone.

Finally, there are two options that apply to LCP echo messages. PPP de�nes two

messages, Echo Request and Echo Response. pppd uses this feature to check if a link is still

operating. You can enable this by using the lcp-echo-interval option together with a

time in seconds. If no frames are received from the remote host within this interval, pppd

generates an Echo Request, and expects the peer to return an Echo Response. If the peer

does not produce a response, the link is terminated after a certain number of requests sent.

This number can be set using the lcp-echo-failure option. By default, this feature is

disabled altogether.

8.9 General Security Considerations

A miscon�gured PPP daemon can be a devastating security breach. It can be as bad as

letting anyone plug in their machine into your Ethernet (and that is very bad). In this

section, we will discuss a few measures that should make your PPP con�guration safe.

8.10. Authentication with PPP 142

One problem with pppd is that to con�gure the network device and the routing table,

it requires root privilege. You will usually solve this by running it setuid root. However,

pppd allows users to set various security-relevant options. To protect against any attacks a

user may launch by manipulating these options, it is suggested you set a couple of default

values in the global /etc/ppp/options �le, like those shown in the sample �le in section Using

Options Files. Some of them, such as the authentication options, cannot be overridden by

the user, and so provide a reasonable protection against manipulations.

Of course, you have to protect yourself from the systems you speak PPP with, too. To

fend o� hosts posing as someone else, you should always some sort of authentication from

your peer. Additionally, you should not allow foreign hosts to use any IP address they

choose, but restrict them to at least a few. The following section will deal with these topics.

8.10 Authentication with PPP

8.10.1 CHAP versus PAP

With PPP, each system may require its peer to authenticate itself using one of two au-

thentication protocols. These are the Password Authentication Protocol (PAP), and the

Challenge Handshake Authentication Protocol (CHAP). When a connection is established,

each end can request the other to authenticate itself, regardless of whether it is the caller

or the callee. Below I will loosely talk of `client' and `server' when I want to distinguish

between the authenticating system and the authenticator. A PPP daemon can ask its peer

for authentication by sending yet another LCP con�guration request identifying the desired

authentication protocol.

PAP works basically the same way as the normal login procedure. The client authenti-

cates itself by sending a user name and an (optionally encrypted) password to the server,

which the server compares to its secrets database. This technique is vulnerable to eaves-

droppers who may try to obtain the password by listening in on the serial line, and to

repeated trial and error attacks.

CHAP does not have these de�ciencies. With CHAP, the authenticator (i.e. the server)

sends a randomly generated \challenge" string to the client, along with its hostname. The

client uses the hostname to look up the appropriate secret, combines it with the challenge,

and encrypts the string using a one-way hashing function. The result is returned to the

server along with the client's hostname. The server now performs the same computation,

and acknowledges the client if it arrives at the same result.

Another feature of CHAP is that it doesn't only require the client to authenticate itself

at startup time, but sends challenges at regular intervals to make sure the client hasn't been

8.10. Authentication with PPP 143

replaced by an intruder, for instance by just switching phone lines.

pppd keeps the secret keys for CHAP and PAP in two separate �les, called /etc/ppp/chap-

secrets and pap-secrets, respectively. By entering a remote host in one or the other �le, you

have a �ne control over whether CHAP or PAP is used to authenticate ourselves with our

peer, and vice versa.

By default, pppd doesn't require authentication from the remote, but will agree to au-

thenticate itself when requested by the remote. As CHAP is so much stronger than PAP,

pppd tries to use the former whenever possible. If the peer does not support it, or if pppd

can't �nd a CHAP secret for the remote system in its chap-secrets �le, it reverts to PAP.

If it doesn't have a PAP secret for its peer either, it will refuse to authenticate altogether.

As a consequence, the connection is closed down.

This behavior can be modi�ed in several ways. For instance, when given the auth

keyword, pppd will require the peer to authenticate itself. pppd will agree to use either

CHAP or PAP for this, as long as it has a secret for the peer in its CHAP or PAP database,

respectively. There are other options to turn a particular authentication protocol on or o�,

but I won't describe them here. Please refer to the pppd(8) manual page for details.

If all systems you talk PPP with agree to authenticate themselves with you, you should

put the auth option in the global /etc/ppp/options �le and de�ne passwords for each system

in the chap-secrets �le. If a system doesn't support CHAP, add an entry for it to the pap-

secrets �le. In this way, you can make sure no unauthenticated system connects to your

host.

The next two sections discuss the two PPP secrets �les, pap-secrets and chap-secrets.

They are located in /etc/ppp and contain triples of clients, servers and passwords, optionally

followed by a list of IP addresses. The interpretation of the client and server �elds is di�erent

for CHAP and PAP, and also depends on whether we authenticate ourselves with the peer,

or whether we require the server to authenticate itself with us.

8.10.2 The CHAP Secrets File

When it has to authenticate itself with some server using CHAP, pppd searches the pap-

secrets �le for an entry with the client �eld equal to the local hostname, and the server �eld

equal to the remote hostname sent in the CHAP Challenge. When requiring the peer to

authenticate itself, the roles are simply reversed: pppd will then look for an entry with the

client �eld equal to the remote hostname (sent in the client's CHAP Response), and the

server �eld equal to the local hostname.

8.10. Authentication with PPP 144

The following is a sample chap-secrets �le for vlager:9

CHAP secrets for vlager.vbrew.com

#

client server secret addrs

#--

vlager.vbrew.com c3po.lucas.com "Use The Source Luke" vlager.vbrew.com

c3po.lucas.com vlager.vbrew.com "riverrun, pasteve" c3po.lucas.com

* vlager.vbrew.com "VeryStupidPassword" pub.vbrew.com

When establishing a PPP connection with c3po, c3po asks vlager to authenticate itself

using CHAP by sending a CHAP challenge. pppd then scans chap-secrets for an entry with

the client �eld equal to vlager.vbrew.com and the server �eld equal to c3po.lucas.com,10

and �nds the �rst line shown above. It then produces the CHAP Response from the

challenge string and the secret (Use The Source Luke), and sends it o� to c3po.

At the same time, pppd composes a CHAP challenge for c3po, containing a unique

challenge string, and its fully quali�ed hostname vlager.vbrew.com. c3po constructs a

CHAP Response in the manner we just discussed, and returns it to vlager. pppd now

extracts the client hostname (c3po.vbrew.com) from the Response, and searches the

chap-secrets �le for a line matching c3po as a client, and vlager as the server. The second

line does this, so pppd combines the CHAP challenge and the secret riverrun, pasteve,

encrypts them, and compares the result to c3po's CHAP respnose.

The optional fourth �eld lists the IP addresses that are acceptable for the clients named

in the �rst �eld. The addresses may be given in dotted quad notation or as hostnames that

are looked up with the resolver. For instance, if c3po requests to use an IP address during

IPCP negotiation that is not in this list, the request will be rejected, and IPCP will be shut

down. In the sample �le shown above, c3po is therefore limited to using its own IP address.

If the address �eld is empty, any addresses will be allowed; a value of - prevents the use of

IP with that client altogether.

The third line of the sample chap-secrets �le allows any host to establish a PPP link with

vlager because a client or server �eld of * matches any hostname. The only requirement is

that it knows the secret, and uses the address of pub.vbrew.com. Entries with wildcard

hostnames may appear anywhere in the secrets �le, since pppd will always use the most

speci�c entry that applies to a server/client pair.

There are some words to be said about the way pppd arrives at the hostnames it looks

up in the secrets �le. As explained before, the remote hostname is always provided by the

9The double quotes are not part of the password, they merely serve to protect the white space within

the password.
10This hostname is taken from the CHAP challenge.

8.10. Authentication with PPP 145

peer in the CHAP Challenge or Response packet. The local hostname will be derived by

calling the gethostname(2) function by default. If you have set the system name to your

unquali�ed hostname, such you have to provide pppd with the domain name in addition

using the domain option:

pppd : : :domain vbrew.com

This will append the Brewery's domain name to vlager for all authentication-

related activities. Other options that modify progpppd's idea of the local hostname are

usehostname and name. When you give the local IP address on the command line using

\local:varremote", and local is a name instead of a dotted quad, pppd will use this as

the local hostname. For details, please refer to the pppd(8) manual page.

8.10.3 The PAP Secrets File

The PAP secrets �le is very similar to that used by CHAP. The �rst two �elds always

contain a user name and a server name; the third holds the PAP secret. When the remote

sends an authenticate request, pppd uses the entry that has a server �eld equal to the local

hostname, and a user �eld equal to the user name sent in the request. When authenticating

itself with the peer, pppd picks the secret to be sent from the line with the user �eld equal

to the local user name, and the server �eld equal to the remote hostname.

A sample PAP secrets �le might look like this:

/etc/ppp/pap-secrets

#

user server secret addrs

vlager-pap c3po cresspahl vlager.vbrew.com

c3po vlager DonaldGNUth c3po.lucas.com

The �rst line is used to authenticate ourselves when talking to c3po. The second line

describes how a user named c3po has to authenticate itself with us.

The name vlager-pap in column one is the user name we send to c3po. By default,

pppd will pick the local hostname as the user name, but you can also specify a di�erent

name by giving the user option, followed by that name.

When picking an entry from the pap-secrets �le for authentication with the peer, pppd

has to know the remote host's name. As it has no way of �nding that out, you have

to specify it on the command line using the remotename keyword, followed by the peer's

hostname. For instance, to use the above entry for authentication with c3po, we have to

add the following option to pppd 's command line:

8.11. Con�guring a PPP Server 146

\#{} pppd ... remotename c3po user vlager-pap

In the fourth �eld (and all �elds following), you may specify what IP addresses are

allowed for that particular host, just as in the CHAP secrets �le. The peer may then

only request addresses from that list. In the sample �le, we require c3po to use its real

IP address.

Note that PAP is a rather weak authentication method, and it is suggested you use

CHAP instead whenever possible. We will therefore not cover PAP in greater detail here;

if you are interested in using PAP, you will �nd some more PAP features in the pppd(8)

manual page.

8.11 Con�guring a PPP Server

Running pppd as a server is just a matter of adding the appropriate options to the command

line. Ideally, you would create a special account, say ppp, and give it a script or program as

login shell that invokes pppd with these options. For instance, you would add the following

line to /etc/passwd:

ppp:*:500:200:Public PPP Account:/tmp:/etc/ppp/ppplogin

Of course, you may want to use di�erent uids and gids than those shown above. You

would also have to set the password for the above account using the passwd command.

The ppplogin script might then look like this:

#!/bin/sh

ppplogin - script to fire up pppd on login

mesg n

stty -echo

exec pppd -detach silent modem crtscts

The mesg command disables other users to write to the tty using, for instance, the

write command. The stty command turns o� character echoing. The is necessary, because

otherwise everything the peer sends would be echoed back to it. The most important pppd

option given above is -detach, because it prevents pppd drom detaching from the controlling

tty. If we didn't specify this option, it would go to the background, making the shell script

exit. This would in turn would cause the serial line to be hung up and the connection to be

dropped. The silent option causes pppd to wait until it receives a packet from the calling

system before it starts sending. This prevents transmit timeouts to occur when the calling

8.11. Con�guring a PPP Server 147

system is slow in �ring up its PPP client. The modem makes pppd watch the DTR line to

see if the peer has dropped the connection, and crtscts turns on hardware handshake.

Beside these options, you might want to force some sort of authentication, for example

by specifying auth on pppd 's command line, or in the global options �le. The manual page

also discusses more speci�c options for turning individual authentication protocols on and

o�.

Chapter 9

Various Network Applications

After successfully setting up IP and the resolver, you have to turn to the services you want

to provide over the network. This chapter covers the con�guration of a few simple network

applications, including the inetd server, and the programs from the rlogin family. The

Remote Procedure Call interface that services like the Network File System (NFS) and the

Network Information System (NIS) are based upon will be dealt with briey, too. The

con�guration of NFS and NIS, however, takes up more room, will be described in separate

chapters. This applies to electronic mail and netnews as well.

Of course, we can't cover all network applications in this book. If you want to install

one that's not discussed here, like talk, gopher, or Xmosaic please refer to its manual pages

for details.

9.1 The inetd Super-Server

Frequently, services are performed by so-called daemons. A daemon is a program that opens

a certain port, and waits for incoming connections. If one occurs, it creates a child process

which accepts the connection, while the parent continues to listen for further requests. This

concept has the drawback that for every service o�ered, a daemon has to run that listens

on the port for a connection to occur, which generally means a waste of system resources

like swap space.

Thus, almost all un?x installations run a \super-server" that creates sockets for a number

of services, and listens on all of them simultaneously using the select(2) system call. When

a remote host requests one of the services, the super-server notices this and spawns the

server speci�ed for this port.

The super-server commonly used is inetd, the Internet Daemon. It is started at sys-

148

9.1. The inetd Super-Server 149

tem boot time, and takes the list of services it is to manage from a startup �le named

/etc/inetd.conf. In addition to those servers invoked, there are a number of trivial services

which are performed by inetd itself called internal services. They include chargen which

simply generates a string of characters, and daytime which returns the system's idea of the

time of day.

An entry in this �le consists of a single line made up of the following �elds:

service type protocol wait user server cmdline

The meaning of each �eld is as follows:

service gives the service name. The service name has to be translated to a port

number by looking it up in the /etc/services �le. This �le will be described

in section The services and protocols Files below.

type speci�es a socket type, either stream (for connection-oriented protocols) or

dgram (for datagram protocols). TCP-based services should therefore always

use stream, while UDP-based services should always use dgram.

protocol names the transport protocol used by the service. This must be a valid

protocol name found in the protocols �le, also explained below.

wait This option applies only to dgram sockets. It may be either wait or nowait.

If wait is speci�ed, inetd will only execute one server for the speci�ed port

at any time. Otherwise, it will immediately continue to listen on the port

after executing the server.

This is useful for \single-threaded" servers that read all incoming datagrams

until no more arrive, and then exit. Most RPC servers are of this type and

should therefore specify wait. The opposite type, \multi-threaded" servers,

allow an unlimited number of instances to run concurrently; this is only

rarely used. These servers should specify nowait.

stream sockets should always use nowait.

user This is the login id of the user the process is executed under. This will

frequently be the root user, but some services may use di�erent accounts.

It is a very good idea to apply the principle of least privilege here, which

states that you shouldn't run a command under a privileged account if the

program doesn't require this for proper functioning. For example, the NNTP

news server will run as news, while services that may pose a security risk

(such as tftp or �nger) are often run as nobody.

9.1. The inetd Super-Server 150

server gives the full path name of the server program to be executed. Internal

services are marked by the keyword internal.

cmdline This is the command line to be passed to the server. This includes argu-

ment 0, that is the command name. Usually, this will be the program name

of the server, unless the program behaves di�erently when invoked by a

di�erent name.

This �eld is empty for internal services.

#

inetd services

ftp stream tcp nowait root /usr/sbin/ftpd in.ftpd -l

telnet stream tcp nowait root /usr/sbin/telnetd in.telnetd -b/etc/issue

#finger stream tcp nowait bin /usr/sbin/fingerd in.fingerd

#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd

#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd /boot/diskless

login stream tcp nowait root /usr/sbin/rlogind in.rlogind

shell stream tcp nowait root /usr/sbin/rshd in.rshd

exec stream tcp nowait root /usr/sbin/rexecd in.rexecd

#

inetd internal services

#

daytime stream tcp nowait root internal

daytime dgram udp nowait root internal

time stream tcp nowait root internal

time dgram udp nowait root internal

echo stream tcp nowait root internal

echo dgram udp nowait root internal

discard stream tcp nowait root internal

discard dgram udp nowait root internal

chargen stream tcp nowait root internal

chargen dgram udp nowait root internal

Figure 9.1: A sample /etc/inetd.conf �le.

A sample inetd.conf �le is shown in �gure 9.1. The �nger service commented out, so

that it is not available. This is often done for security reasons, because may be used by

attackers to obtain names of users on your system.

The tftp is shown commented out as well. tftp implements the Primitive File Transfer

Protocol that allows to transfer any world-readable �les from your system without password

checking etc. This is especially harmful with the /etc/passwd �le, even more so when you

don't use shadow password.

9.2. The tcpd access control facility 151

TFTP is commonly used by diskless clients and X terminals to download their code

from a boot server. If you need to run tftpd for this reason, make sure to limit its scope to

those directories clients will retrieve �les from by adding those directory names to tftpd 's

command line. This is shown in the second tftp line in the example.

9.2 The tcpd access control facility

Since opening a computer to network access involves many security risks, applications are

designed to guard against several types of attacks. Some of these, however, may be awed

(most drastically demonstrated by the RTM Internet worm), or do not distinguish between

secure hosts from which requests for a particular service will be accepted, and insecure hosts

whose requests should be rejected. We already briey discussed the �nger and tftp services

above. Thus, one would want to limit access to these services to \trusted hosts" only, which

is impossible with the usual setup, where inetd either provides this service to all clients, or

not at all.

A useful tool for this is tcpd,1 a so-called daemon wrapper. For TCP services you want

to monitor or protect, it is invoked instead of the server program. tcpd logs the request

to the syslog daemon, ckecks if the remote host is allowed to use that service, and only if

this succeeds will it executes the real server program. Note that this does not work with

UDP-based services.

For example, to wrap the �nger daemon, you have to change the corresponding line in

inetd.conf to

wrap finger daemon

finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

Without adding any access control, this will appear to the client just as a usual �nger

setup, except that any requests are logged to syslog 's auth facility.

Access control is implemented by means of two �les called /etc/hosts.allow and

/etc/hosts.deny. They contain entries allowing and denying access, respectively, to cer-

tain services and hosts. When tcpd handles a request for a service such as �nger from

a client host named bi�.foobar.com, it scans hosts.allow and hosts.deny (in this order)

for an entry matching both the service and client host. If a matching entry is found in

hosts.allow, access is granted, regardless of any entry in hosts.deny. If a match is found in

hosts.deny, the request is rejected by closing down the connection. If no match is found at

all, the request is accepted.

1Written by Wietse Venema, wietse@wzv.win.tue.nl.

9.3. The services and protocols Files 152

Entries in the access �les look like this:

servicelist: hostlist [:shellcmd]

servicelist is a list of service names from /etc/services, or the keywordALL. To match

all services except �nger and tftp, use \ALL EXCEPT �nger, tftp".

hostlist is a list of host names or IP addresses, or the keywords ALL, LOCAL, or

UNKNOWN. ALL matches any host, while LOCAL matches host names not containing

a dot.2 UNKNOWN matches any hosts whose name or address lookup failed. A name

starting with a dot matches all hosts whose domain is equal to this name. For example,

.foobar.com matches bi�.foobar.com. There are also provisions for IP network addresses

and subnet numbers. Please refer to the hosts access(5) manual page for details.

To deny access to the �nger and tftp services to all but the local hosts, put the following

in /etc/hosts.deny, and leave /etc/hosts.allow empty:

in.tftpd, in.fingerd: ALL EXCEPT LOCAL, .your.domain

The optional shellcmd �eld may contain a shell command to be invoked when the entry

is matched. This is useful to set up traps that may expose potential attackers:

in.ftpd: ALL EXCEPT LOCAL, .vbrew.com : \

echo "request from %d@%h" >> /var/log/finger.log; \

if [%h != "vlager.vbrew.com"]; then \

finger -l @%h >> /var/log/finger.log \

fi

The %h and %d arguments are expanded by tcpd to the client host name and service

name, respectively. Please refer to the hosts access(5) manual page for details.

9.3 The services and protocols Files

The port numbers on which certain \standard" services are o�ered are de�ned in the \As-

signed Numbers" RFC. To enable server and client programs to convert service names to

these numbers, at least a part of the list is kept on each host; it is stored in a �le called

/etc/services. An entry is made up like this:

service port/protocol [aliases]

2Usually only local host names obtained from lookups in /etc/hosts contain no dots.

9.3. The services and protocols Files 153

Here, service speci�es the service name, port de�nes the port the service is o�ered on,

and protocol de�nes which transport protocol is used. Commonly, this is either udp or

tcp. It is possible for a service to be o�ered for more than one protocol, as well as o�ering

di�erent services on the same port, as long as the protocols are di�erent. The aliases �eld

allows to specify alternative names for the same service.

Usually, you don't have to change the services �le that comes along with the network

software on your Linux system. Nevertheless, we give a small excerpt from that �le below.

The services file:

#

well-known services

echo 7/tcp # Echo

echo 7/udp #

discard 9/tcp sink null # Discard

discard 9/udp sink null #

daytime 13/tcp # Daytime

daytime 13/udp #

chargen 19/tcp ttytst source # Character Generator

chargen 19/udp ttytst source #

ftp-data 20/tcp # File Transfer Protocol (Data)

ftp 21/tcp # File Transfer Protocol (Control)

telnet 23/tcp # Virtual Terminal Protocol

smtp 25/tcp # Simple Mail Transfer Protocol

nntp 119/tcp readnews # Network News Transfer Protocol

#

UNIX services

exec 512/tcp # BSD rexecd

biff 512/udp comsat # mail notification

login 513/tcp # remote login

who 513/udp whod # remote who and uptime

shell 514/tcp cmd # remote command, no passwd used

syslog 514/udp # remote system logging

printer 515/tcp spooler # remote print spooling

route 520/udp router routed # routing information protocol

Note that, for example, the echo service is o�ered on port 7 for both TCP and UDP,

and that port 512 is used for two di�erent services, namely the COMSAT daemon (which

noti�es users of newly arrived mail, see xbi�(1x)), over UDP, and for remote execution

(rexec(1)), using TCP.

Similar to the services �le, the networking library needs a way to translate protocol

names | for example, those used in the services �le | to protocol numbers understood by

the IP layer on other hosts. This is done by looking up the name in the /etc/protocols �le.

9.4. Remote Procedure Call 154

It contains one entry per line, each containing a protocol name, and the associated number.

Having to touch this �le is even more unlikely than having to meddle with /etc/services. A

sample �le is given below:

#

Internet (IP) protocols

#

ip 0 IP # internet protocol, pseudo protocol number

icmp 1 ICMP # internet control message protocol

igmp 2 IGMP # internet group multicast protocol

tcp 6 TCP # transmission control protocol

udp 17 UDP # user datagram protocol

raw 255 RAW # RAW IP interface

9.4 Remote Procedure Call

A very general mechanism for client-server applications is provided by RPC, the Remote

Procedure Call package. RPC was developed by Sun Micrsystems, and is a collection of tools

and library functions. Important applications built on top of RPC are NFS, the Network

Filesystem, and NIS, the Network Information System, both of which will be introduced in

later chapters.

An RPC server consists of a collection of procedures that client may call by sending an

RPC request to the server, along with the procedure parameters. The server will invoke

the indicated procedure on behalf of the client, handing back the return value, if there is

any. In order to be machine-independent, all data exchanged between client and server is

converted to a so-called External Data Representation format (XDR) by the sender, and

converted back to the machine-local representation by the receiver.

Sometimes, improvements to an RPC application introduce incompatible changes in the

procedure call interface. Of course, simply changing the server would crash all application

that still expect the original behavior. Therefore, RPC programs have version numbers

assigned to them, usually starting with 1, and with each new version of the RPC interface

this counter will be bumped. Often, a server may o�er several versions simultaneously;

clients then indicate by the version number in their requests which implementation of the

service they want to use.

The network communication between RPC servers and clients is somewhat peculiar. An

RPC server o�ers one or more collections of procedures; each set is being called a program,

and is uniquely identi�ed by a program number. A list mapping service names to program

numbers is usually kept in /etc/rpc, an excerpt of which is reproduced below in �gure 9.2.

9.4. Remote Procedure Call 155

#

/etc/rpc - miscellaenous RPC-based services

#

portmapper 100000 portmap sunrpc

rstatd 100001 rstat rstat_svc rup perfmeter

rusersd 100002 rusers

nfs 100003 nfsprog

ypserv 100004 ypprog

mountd 100005 mount showmount

ypbind 100007

walld 100008 rwall shutdown

yppasswdd 100009 yppasswd

bootparam 100026

ypupdated 100028 ypupdate

Figure 9.2: A sample /etc/rpc �le.

In TCP/IP networks, the authors of RPC were faced with the problem of mapping

program numbers to generic network services. They chose to have each server provide both

a TCP and a UDP port for each program and each version. Generally, RPC applications

will use UDP when sending data, and only fall back to TCP when the data to be transferred

doesn't �t into a single UDP datagram.

Of course, client programs have to have a way to �nd out which port a program number

maps to. Using a con�guration �le for this would be too unexible; since RPC applications

don't use reserved ports, there's no guarantee that a port originally meant to be used by our

database application hasn't been taken by some other process. Therefore, RPC applications

pick any port they can get, and register it with the so-called portmapper daemon. The latter

acts as a service broker for all RPC servers running on its machine: a client that wishes

to contact a service with a given program number will �rst query the portmapper on the

server's host which returns the TCP and UDP port numbers the service can be reached at.

This method has the particular drawback that it introduces a single point of failure,

much like the inetd daemon does for the standard Berkeley services. However, this case is

even a little worse, because when the portmapper dies, all RPC port information is lost; this

usually means you have to restart all RPC servers manually, or reboot the entire machine.

On Linux, the portmapper is called rpc.portmap and resides in /usr/sbin. Other than

making sure it is started form rc.inet2, the portmapper doesn't require any con�guration

work.

9.5. Con�guring the r Commands 156

9.5 Con�guring the r Commands

There are a number of commands for executing commands on remote hosts. These are

rlogin, rsh, rcp and rcmd. They all spawn a shell on the remote host and allow the user

to execute commands. Of course, the client needs to have an account on the host where

the commmand is to be executed. Thus all these commands perform an authorization

procedure. Usually, the client will tell the user's login name to the server, which in turn

requests a password that is validated in the usual way.

Sometimes, however, it is desirable to relax authorization checks for certain users. For

instance, if you frequently have to log into other machines on your LAN, you might want

to be admitted without having to type your password every time.

Disabling authorization is advisable only on a small number of hosts whose password

databases are synchronized, or for a small number of privileged users who need to access

many machines for administrative reasons. Whenever you want to allow people to log

into your host without having to specify a login id or password, make sure that you don't

accidentally grant access to anybody else.

There are two ways to disable authorization checks for the r commands. One is for the

super user to allow certain or all users on certain or all hosts (the latter de�nitely being

a bad idea) to log in without being asked for a password. This access is controlled by a

�le called /etc/hosts.equiv. It contains a list of host and user names that are considered

equivalent to users on the local host. An alternative option is for a user to grant other users

on certain hosts access to her account. These may be listed in the �le .rhosts in the user's

home directory. For security reasons, this �le must be owned by the user or the super user,

and must not be a symbolic link, otherwise it will be ignored.3

When a client requests an r service, her host and user name are searched in the

/etc/hosts.equiv �le, and then in the .rhosts �le of the user she wants to log in as. As

am example, assume janet is working on gauss and tries to log into joe's account on eu-

ler. Throughout the following, we will refer to Janet as the client user, and to Joe as the

local user. Now, when Janet types

$ rlogin -l joe euler

on gauss, the server will �rst check hosts.equiv4 if Janet should be granted free access, and

if this fails, it will try to look her up in .rhosts in joe's home directory.

The hosts.equiv �le on euler looks like this:

3In an NFS environment, you may need to give it a protection of 444, because the super user is often

very restricted in accessing �les on disks mounted via NFS.
4Note that the hosts.equiv �le is not searched when someone attempts to log in as root.

9.5. Con�guring the r Commands 157

gauss

euler

-public

quark.physics.groucho.edu andres

An entry consists of a host name, optionally followed by a user name. If a host name

appears all by itself, all users from that host will be admitted to their local accounts without

any checks. In the above example, Janet would be allowed to log into her account janet

when coming from gauss, and the same applies to any other user except root. However, if

Janet wants to log in as joe, she will be prompted for a password as usual.

If a host name is followed by a user name, as in the last line of the above sample �le,

this user is given password-free access to all accounts except the root account.

The host name may also be preceded by a minus sign, as in the entry \-public". This

requires authorization for all accounts on public, regardless of what rights individual users

grant in their .rhosts �le.

The format of the .rhosts �le is identical to that of hosts.equiv, but its meaning is a little

di�erent. Consider Joe's .rhosts �le on euler:

chomp.cs.groucho.edu

gauss janet

The �rst entry grants joe free acess when logging in from chomp.cs.groucho.edu, but

does not a�ect the rights of any other account on euler or chomp. The second entry is a

slight variation of this, in that it grants janet free access to Joe's account when logging in

from gauss.

Note that the client's host name is obtained by reverse mapping the caller's address to

a name, so that this feature will fail with hosts unknown to the resolver. The client's host

name is considered to match the name in the hosts �les in one of the following cases:

� The client's canonical host name (not an alias) literally matches the host name in the

�le.

� If the client's host name is a fully quali�ed domain name (such as returned by the

resolver when you have DNS running), and it doesn't literally match the host name in

the hosts �le, it is compared to that host name expanded with the local domain name.

Chapter 10

The Network Information System

When you are running a local area network, your overall goal is usually to provide an

environment to your users that makes the network transparent. An important stepping

stone to this end is to keep vital data such as user account information synchronized between

all hosts. We have seen before that for host name resolution, a powerful and sophisticated

service exists, being DNS. For others tasks, there is no such specialized service. Moreover,

if you manage only a small LAN with no Internet connectivity, setting up DNS may not

seem worth the trouble for many administrators.

This is why Sun developed NIS, the Network Information System. NIS provides generic

database access facilities that can be used to distribute information such as that contained

in the passwd and groups �les to all hosts on your network. This makes the network appear

just as a single system, with the same accounts on all hosts. In a similar fashion, you can

use NIS to distribute the hostname information form /etc/hosts to all machines on the

network.

NIS is based on RPC, and comprises a server, a client-side library, and several admin-

istrative tools. Originally, NIS was called Yellow Pages, or YP, which is still widely used

to informally refer this service. On the other hand, Yellow Pages is a trademark of British

Telecom, which required Sun to drop that name. As things go, some names stick with

people, and so YP lives on as a pre�x to the names of most NIS-related commands such as

ypserv, ypbind, etc.

Today, NIS is available for virtually all Unices, and there are even free implementations

of it. One is from the BSD Net-2 release, and has been derived from a public domain

reference implementation donated by Sun. The library client code from this release has

been in the GNU libc for a long time, while the administrative programs have only recently

been ported to Linux by Swen Th�ummler.1 An NIS server is missing from the reference

1To be reached at swen@uni-paderborn.de. The NIS clients are available as yp-linux.tar.gz from

158

10.1. Getting Acquainted with NIS 159

implementation. Tobias Reber has written another NIS package including all tools and a

server; it is called yps.2

Currently, a complete rewrite of the NIS code called NYS is being done by Peter

Eriksson,3 which supports both plain NIS and Sun's much revised NIS+. NYS not only

provides a set of NIS tools and a server, but also adds a whole new set of library func-

tions which will most probably make it into the standard libc eventually. This includes a

new con�guration scheme for hostname resolution that replaces the current scheme using

host.conf. The features of these functions will be discussed below.

This chapter will focus on NYS rather than the other two packages, to which I will refer

as the \traditional" NIS code. If you do want to run any of these packages, the instructions

in this chapter may or may not be enough. To obtain additional information, please get a

standard book on NIS, such as Hal Stern's NFS and NIS (see [Stern92]).

For the time being, NYS is still under development, and therefore standard Linux util-

ities such as the network programs or the login program are not yet aware of the NYS

con�guration scheme. Until NYS is merged into the mainstream libc you therefore have to

recompile all these binaries if you want to make them use NYS. In any of these applications'

Make�les, specify -lnsl as the last option before libc to the linker. This links in the relevant

functions from libnsl, the NYS library, instead of the standard C library.

10.1 Getting Acquainted with NIS

NIS keeps database information is in so-called maps containing key-value pairs. Maps

are stored on a central host running the NIS server, from which clients may retrieve the

information through various RPC calls. Quite frequently, maps are stored in DBM �les.4

The maps themselves are usually generated from master text �les such as /etc/hosts

or /etc/passwd. For some �les, several maps are created, one for each search key type.

For instance, you may search the hosts �le for a host name as well as for an IP address.

Accordingly, two NIS maps are derived from it, called hosts.byname and hosts.byaddr,

respectively. Table 10.1 lists common maps and the �les they are generated form.

sunsite.unc.edu in system/Network.
2The current version (as of this writing) is yps-0.21 and can be obtained from ftp.lysator.liu.se in the

/pub/NYS directory.
3To be reached at pen@lysator.liu.se.
4DBM is a simple database management library that uses hashing techniques to speed up search opera-

tions. There's a free DBM implementation from the GNU project called gdbm, which is part of most Linux

distributions.

10.1. Getting Acquainted with NIS 160

Master File Map(s)

/etc/hosts hosts.byname hosts.byaddr

/etc/networks networks.byname networks.byaddr

/etc/passwd passwd.byname passwd.byuid

/etc/group group.byname group.bygid

/etc/services services.byname services.bynumber

/etc/rpc rpc.byname rpc.bynumber

/etc/protocols protocols.byname protocols.bynumber

/usr/lib/aliases mail.aliases

Table 10.1: Some standard NIS maps and the corresponding �les.

There are other �les and maps you may �nd support for in some NIS package or other.

These may contain information for applications not discussed in this book, such as the

bootparams map that may used by some BOOTP servers, or which currently don't have any

function in Linux (like the ethers.byname and ethers.byaddr maps).

For some maps, people commonly use nicknames, which are shorter and therefore easier

to type. To obtain a full list of nicknames understood by your NIS tools, run the following

command:

$ ypcat -x

NIS map nickname translation table:

"passwd" -> "passwd.byname"

"group" -> "group.byname"

"networks" -> "networks.byaddr"

"hosts" -> "hosts.byname"

"protocols" -> "protocols.bynumber"

"services" -> "services.byname"

"aliases" -> "mail.aliases"

"ethers" -> "ethers.byname"

"rpc" -> "rpc.bynumber"

"netmasks" -> "netmasks.byaddr"

"publickey" -> "publickey.byname"

"netid" -> "netid.byname"

"passwd.adjunct" -> "passwd.adjunct.byname"

"group.adjunct" -> "group.adjunct.byname"

"timezone" -> "timezone.byname"

The NIS server is traditionally called ypserv. For an average network, a single server

usually su�ces; large networks may choose to run several of these on di�erent machines and

di�erent segments of the network to relieve the load on the server machines and routers.

10.1. Getting Acquainted with NIS 161

These servers are synchronized by making one of them the master server, and the others

slave servers. Maps will be created only on the master server's host. From there, they are

distributed to all slaves.

You will have noticed that we have been talking about \networks" very vaguely all the

time; of course there's a distinctive concept in NIS that refers to such a network, that is

the collection of all hosts that share part of their system con�guration data through NIS:

the NIS domain. Unfortunately, NIS domains have absolutely nothing in common with the

domains we encountered in DNS. To avoid any ambiguity throughout this chapter, I will

therefore always specify which type of domain I mean.

NIS domains have a purely administrative function only. They are mostly invisible to

users, except for the sharing of passwords between all machines in the domain. Therefore,

the name given to a NIS domain is relevant only to the administrators. Usually, any name

will do, as long as it is di�erent from any other NIS domain name on your local network. For

instance, the administrator at the Virtual Brewery may choose to create two NIS domains,

one for the Brewery itself, and one for the Winery, which she names brewery and winery,

respectively. Another quite common scheme is to simply use the DNS domain name for NIS

as well. To set and display the NIS domain name of your host, you can use the domainname

command. When invoked without any argument, it prints the current NIS domain name;

to set the domain name, you must become super user and type:

domainname brewery

NIS domains determine which NIS server an application will query. For instance, the

login program on a host at the Winery should, of course, only query the Winery's NIS

server (or one of them, if there were several) for a user's password information; while an

application on a Brewery host should stick with the Brewery's server.

One mystery now remains to be solved, namely how a client �nds out which server to

connect to. The simplest approach would be to have a con�guration �le that names the

host on which to �nd the server. However, this approach is rather inexible, because it

doesn't allow clients to use di�erent servers (from the same domain, of course), depending

on their availability. Therefore, traditional NIS implementations rely on a special daemon

called ypbind to detect a suitable NIS server in their NIS domain. Before being able to

perform any NIS queries, any application �rst �nds out from ypbind which server to use.

ypbind probes for servers by broadcasting to the local IP network; the �rst to respond

is assumed to be the potentially fastest one and will be used in all subsequent NIS queries.

After a certain interval has elapsed, or if the server becomes unavailable, ypbind will probe

for active servers again.

Now, the arguable point about dynamic binding is that you rarely need it, and that

10.2. NIS versus NIS+ 162

it introduces a security problem: ypbind blindly believes whoever answers, which could

be a humble NIS server as well as a malicious intruder. Needless to say this becomes

especially troublesome if you manage your password databases over NIS. To guard against

this, NYS does not use ypbind by default, but rather picks up the server host name from a

con�guration �le.

10.2 NIS versus NIS+

NIS and NIS+ share little more than their name and a common goal. NIS+ is structured

in an entirely di�erent way. Instead of a at name space with disjoint NIS domains, it uses

a hierarchical name space similar to that of DNS. Instead of maps, so called tables are used

that are made up of rows and columns, where each row represents an object in the NIS+

database, while the columns cover those properties of the objects that NIS+ knows and

cares about. Each table for a given NIS+ domain comprises those of its parent domains.

In addition, an entry in a table may contain a link to another table. These features make

it possible to structure information in many ways.

Traditional NIS has an RPC version number of 2, while NIS+ is version 3.

NIS+ does not seem to be very widely used yet, and I don't really know that much

about it. (Well, almost nothing). For this reason, we will not deal with it here. If you

are interested in learning more about it, please refer to Sun's NIS+ administration manual

([NISPlus]).

10.3 The Client Side of NIS

If you are familiar with writing or porting network applications, you will notice that most

NIS maps listed above correspond to library functions in the C library. For instance, to

obtain passwd information, you generally use the getpwnam(3) and getpwuid(3) functions

which return the account information associated with the given user name or numerical user

id, repsectively. Under normal circumstances, these functions will perform the requested

lookup on the standard �le, such as /etc/passwd.

A NIS-aware implementation of these functions, however, will modify this behavior, and

place an RPC call to have the NIS server look up the user name or id. This happens

completely transparent to the application. The function may either \append" the NIS map

to or \replace" the original �le with it. Of course, this does not refer to a real modi�cation

of the �le, it only means that it appears to the application as if the �le had been replaced

or appended to.

10.4. Running a NIS Server 163

For traditional NIS implementations, there used to be certain conventions as to which

maps replaced, and which were appended to the original information. Some, like the passwd

maps, required kludgy modi�cations of the passwd �le which, when done wrong, would open

up security holes. To avoid these pitfalls, NYS uses a general con�guration scheme that

determines whether a particular set of client functions uses the original �les, NIS, or NIS+,

and in which order. It will be described in a later section of this chapter.

10.4 Running a NIS Server

After so much theoretical techno-babble, it's time to get our hands dirty with actual con-

�guration work. In this section, we will cover the con�guration of a NIS server. If there's

already a NIS server running on your network, you won't have to set up your own server;

in this case, you may safely skip this section.

Note that if you are just going to experiment with the server, make sure you don't3

set it up for a NIS domain name that is already in use on your network. This

may disrupt the entire network service and make a lot of people very unhappy,

and very angry.

There are currently two NIS servers freely available for Linux, one contained in Tobias

Reber's yps package, and the other in Peter Eriksson's ypserv package. It shouldn't matter

which one you run, regardless of whether you use NYS or the standard NIS client code

that is in libc currently. At the time of this writing, the code for the handling of NIS slave

servers seems to be more complete in yps. So if you have to deal with slave servers, yps

might be a better choice.

After installing the server program (ypserv) in /usr/sbin, you should create the directory

that is going to hold the map �les your server is to distribute. When setting up a NIS domain

for the brewery domain, the maps would go to /var/yp/brewery. The server determines

if it is serving a particular NIS domain by checking if the map directory is present. If you

are disabling service for some NIS domain, make sure to remove the directory as well.

Maps are usually stored in DBM �les to speed up lookups. They are created from the

master �les using a program called makedbm (for Tobias' server) or dbmload (for Peter's

server). These may not be interchangeable. Transforming a master �le into a form parseable

by dbmload usually requires some awk or sed magic, which tend to be a little tedious to

type and hard to remember. Therefore, Peter Eriksson's ypserv package contains a Make�le

(called ypMake�le) that does all these jobs for you. You should install it as Make�le in

your map directory, and edit it to reect the maps you want to distribute. Towards the top

10.5. Setting up a NIS Client with NYS 164

of the �le, you �nd the all target that lists the services ypserv is to o�er. By default, the

line looks something like this:

all: ethers hosts networks protocols rpc services passwd group netid

If you don't want to produce the ethers.byname and ethers.byaddr maps, for example,

simply remove the ethers prerequisite from this rule. To test your setup, it may su�ce to

start with just one or two maps, like the services.* maps.

After editing the Make�le, while in the map directory, type \make". This will automat-

ically generate and install the maps. You have to make sure to update the maps whenever

you change the master �les, otherwise the changes will remain invisible to the network.

The next section explains how to con�gure the NIS client code. If your setup doesn't

work, you should try to �nd out whether any requests arrive at your server or not. If you

specify the -D command line ag to the NYS server, it prints debugging messages to the

console about all incoming NIS queries, and the results returned. These should give you a

hint as to where the problem lies. Tobias' server has no such option.

10.5 Setting up a NIS Client with NYS

Throughout the remainder of this chapter, we will cover the con�guration of a NIS client.

Your �rst step should be to tell NYS which server to use for NIS service, setting it in

the /etc/yp.conf con�guration �le. A very simple sample �le for a host on the Winery's

network may look like this:

yp.conf - YP configuration for NYS library.

#

domainname winery

server vbardolino

The �rst statement tells all NIS clients that they belong to the winery NIS domain. If

you omit this line, NYS will use the domain name you assigned your system through the

domainname command. The server statement names the NIS server to use. Of course, the

IP address corresponding to vbardolino must be set in the hosts �le; alternatively, you

may use the IP address itself with the server statement.

In the form shown above, the server command tells NYS to use the named server what-

ever the current NIS domain may be. If, however, you are moving your machine between

di�erent NIS domains frequently, you may want to keep information for several domains

10.6. Choosing the Right Maps 165

in the yp.conf �le. You can have information on the servers for various NIS domains in

yp.conf by adding the NIS domain name to the server statement. For instance, you might

change the above sample �le for a laptop to look like this:

yp.conf - YP configuration for NYS library.

#

server vbardolino winery

server vstout brewery

This allows you to bring up the laptop in any of the two domains by simply setting the

desired NIS domain at boot time through the domainname command.

After creating this basic con�guration �le and making sure it is world-readable, you

should run your �rst test to check if you can connect to your server. Make sure to choose

any map your server distributes, like hosts.byname, and try to retrieve it by using the ypcat

utility. ypcat, like all other administrative NIS tools, should live in /usr/sbin.

ypcat hosts.byname

191.72.2.2 vbeaujolais vbeaujolais.linus.lxnet.org

191.72.2.3 vbardolino vbardolino.linus.lxnet.org

191.72.1.1 vlager vlager.linus.lxnet.org

191.72.2.1 vlager vlager.linus.lxnet.org

191.72.1.2 vstout vstout.linus.lxnet.org

191.72.1.3 vale vale.linus.lxnet.org

191.72.2.4 vchianti vchianti.linus.lxnet.org

The output you get should look somthing like that shown above. If you get an error

message instead that says \Can't bind to server which serves domain" or something

similar, then either the NIS domain name you've set doesn't have a matching server de�ned

in yp.conf, or the server is unreachable for some reason. In the latter case, make sure that

a ping to the host yields a positive result, and that it is indeed running a NIS server. You

can verify the latter by using rpcinfo, which should produce the following output:

rpcinfo -u serverhost ypserv

program 100004 version 2 ready and waiting

10.6 Choosing the Right Maps

Having made sure you can reach the NIS server, you have to decide which con�guration

�les to replace or augment with NIS maps. Commonly, you will want use NIS maps for

the host and password lookup functions. The former is especially useful if you do not run

10.6. Choosing the Right Maps 166

BIND. The latter permits all users to log into their account from any system in the NIS

domain; this usually requires sharing a central /home directory between all hosts via NFS.

It is explained detail in section 10.7 below. Other maps, like services.byname, aren't such a

dramatic gain, but save you some editing work if you install any network applications that

use a service name that's not in the standard services �le.

Generally, you want to have some freedom of choice when a lookup function uses the

local �les, and when it queries the NIS server. NYS allows you to con�gure the order in

which a function accesses these services. This is controlled through the /etc/nsswitch.conf

�le, which stands for Name Service Switch but of course isn't limited to the name service.

For any of the data lookup functions supported by NYS, it contains a line naming the

services to use.

The right order of services depends on the type of data. It is unlikely that the ser-

vices.byname map will contain entries di�ering from those in the local services �le; it may

only contain more. So a good choice may be to query the local �les �rst, and check NIS only

if the service name wasn't found. Hostname information, on the other hand, may change

very frequently, so that DNS or the NIS server should always have the most accurate ac-

count, while the local hosts �le is only kept as a backup if DNS and NIS should fail. In this

case, you would want to check the local �le last.

The example below shows how to con�gure gethostbyname(2), gethostbyaddr(2), and

getservbyname(2) functions as described above. They will try the listed services in turn; if

a lookup succeeds, the result is returned, otherwise the next service is tried.

small sample /etc/nsswitch.conf

#

hosts: nis dns files

services: files nis

The complete list of services that may be used with an entry in the nsswitch.conf �le

is shown below. The actual maps, �les, servers and objects being queried depend on the

entry name.

nisplus or nis+

Use the NIS+ server for this domain. The location of the server is obtained

from the /etc/nis.conf �le.

nis Use the current NIS server of this domain. The location of the server queried

is con�gured in the yp.conf �le as shown in the previous section. For the

hosts entry, the maps hosts.byname and hosts.byaddr are queried.

dns Use the DNS name server. This service type is only useful with the hosts

10.7. Using the passwd and group Maps 167

entry. The name servers queried are still determined by the standard re-

solv.conf �le.

�les Use the local �le, such as the /etc/hosts �le for the hosts entry.

dbm Look up the information from DBM �les located in /var/dbm. The name

used for the �le is that of the corresponding NIS map.

Currently, NYS supports the following nsswitch.conf entries: hosts, networks, passwd,

group, shadow, gshadow, services, protocols, rpc, and ethers. More entries are likely to be

added.

Figure 10.1 shows a more complete example which introduces another feature of nss-

witch.conf: the [NOTFOUND=return] keyword in the hosts entry tells NYS to return if

the desired item couldn't be found in the NIS or DNS database. That is, NYS will continue

and search the local �les only if calls to the NIS and DNS servers failed for some other

reason. The local �les will then only be used at boot time and as a backup when the NIS

server is down.

/etc/nsswitch.conf

#

hosts: nis dns [NOTFOUND=return] files

networks: nis [NOTFOUND=return] files

services: files nis

protocols: files nis

rpc: files nis

Figure 10.1: Sample nsswitch.conf �le.

10.7 Using the passwd and group Maps

One of the major applications of NIS is in synchronizing user and account information on

all hosts in a NIS domain. To this end, you usually keep only a small local /etc/passwd

�le, to which the site-wide information from the NIS maps is appended. However, simply

enabling NIS lookups for this service in nsswitch.conf is not nearly enough.

When relying on the password information distributed by NIS, you �rst have to make

sure that the numeric user id's of any users you have in your local passwd �le match the

NIS server's idea of user id's. You will want this for other purposes as well, like mounting

NFS volumes from other hosts in your network.

10.7. Using the passwd and group Maps 168

If any of the numeric ids in /etc/passwd or /etc/group deviate from those in the maps,

you have to adjust �le ownerships for all �les that belong to that user. First you should

change all uids and gids in passwd and group to the new values; then �nd all �les that

belong to the users just changed, and �nally change their ownership. Assume news used

to have a user id of 9, and okir had a user id of 103, which were changed to some other

value; you could then issue the following commands:

find / -uid 9 -print >/tmp/uid.9

find / -uid 103 -print >/tmp/uid.103

cat /tmp/uid.9 | xargs chown news

cat /tmp/uid.103 | xargs chown okir

It is important that you execute these commands with the new passwd �le installed, and

that you collect all �le names before you change the ownership of any of them. To update

the group ownerships of �les, you will use a similar command.

Having done this, the numerical uid's and gid's on your system will agree with those

on all other hosts in your NIS domain. The next step will be to add con�guration lines to

nsswitch.conf that enables NIS lookups for user and group information:

/etc/nsswitch.conf - passwd and group treatment

passwd: nis files

group: nis files

This makes the login command and all its friends �rst query the NIS maps when a user

tries to log in, and if this lookup fails, fall back to the local �les. Usually, you will remove

almost all users from your local �les, and only leave entries for root and generic accounts

like mail in it. This is because some vital system tasks may require to map uids to user

names or vice versa. For example, administrative cron jobs may execute the su command

to temporarily become news, or the UUCP subsystem may mail a status report. If news

and uucp don't have entries in the local passwd �le, these jobs will fail miserably during a

NIS brownout.

There are two big caveats in order here: on one hand, the setup as described up to

here only works for login suites that don't use shadow password, like those included in

the util-linux package. The intricacies of using shadow passwords with NIS will be covered

below. On the other hand, the login commands are not the only ones that access the passwd

�le { look at the ls command which most people use almost constantly. Whenever doing

a long listing, ls will display the symbolic names for user and group owners of a �le; that

is, for each uid and gid it encounters, it will have to query the NIS server once. This will

slow things down rather badly if your local network is clogged, or, even worse, when the

10.8. Using NIS with Shadow Support 169

NIS server is not on the same physical network, so that datagrams have to pass through a

router.

Still, this is not the whole story yet. Imagine what happens if a user wants to change her

password. Usually, she will invoke passwd, which reads the new password and updates the

local passwd �le. This is impossible with NIS, since that �le isn't available locally anymore,

but having users log into the NIS server whenever they want to change their password is not

an option either. Therefore, NIS provides a drop-in replacement for passwd called yppasswd,

which does the analoguous thing in the presence of NIS. To change the password on the

server host, it contacts the yppasswdd daemon on that host via RPC, and provides it with

the updated password information. Usually, you install yppasswd over the normal program

by doing something like this:

cd /bin

mv passwd passwd.old

ln yppasswd passwd

At the same time you have to install rpc.yppasswdd on the server and start it from

rc.inet2. This will e�ectively hide any of the contortions of NIS from your users.

10.8 Using NIS with Shadow Support

There is no NIS support yet for sites that use the shadow login suite. John F. Haugh,

the author of the shadow suite, recently released a version of the shadow library functions

covered by the GNU Library GPL to comp.sources.misc. It already has some support for

NIS, but it isn't complete, and the �les haven't been added to the standard C library yet.

On the other hand, publishing the information from /etc/shadow via NIS kind of defeats

the purpose of the shadow suite.

Although the NYS password lookup functions don't use a shadow.byname map or any-

thing likewise, NYS supports using a local /etc/shadow �le transparently. When the NYS

implementation of getpwnam is called to look up information related to a given login name,

the facilities speci�ed by the passwd entry in nsswitch.conf are queried. The nis service will

simply look up the name in the passwd.byname map on the NIS server. The �les service,

however, will check if /etc/shadow is present, and if so, try to open it. If none is present,

or if the user doesn't have root privilege, if reverts to the traditional behavior of looking

up the user information in /etc/passwd only. However, if the shadow �le exists and can

be opened, NYS will extract the user password from shadow. The getpwuid function is

implemented accordingly. In this fashion, binaries compiled with NYS will deal with a local

the shadow suite installation transparently.

10.9. Using the Traditional NIS Code 170

10.9 Using the Traditional NIS Code

If you are using the client code that is in the standard libc currently, con�guring a NIS client

is a little di�erent. On one hand, it uses a ypbind daemon to broadcast for active servers

rather than gathering this information from a con�guration �le. You therefore have to make

sure to start ypbind at boot time. It must be invoked after the NIS domain has been set

and the RPC portmapper has been started. Invoking ypcat to test the server should then

work as shown above.

Recently, there have been numerous bug reports that NIS fails with an er-

ror message saying \clntudp create: RPC: portmapper failure - RPC: unable to

receive". These are due to an incompatible change in the way ypbind communicates

the binding information to the library functions. Obtaining the latest sources for the NIS

utilities and recompiling them should cure this problem.5

Also, the way traditional NIS decides if and how to merge NIS information with that

from the local �les deviates from that used by NYS. For instance, to use the NIS password

maps, you have to include the following line somewhere in your /etc/passwd map:

+:*:0:0:::

This marks the place where the password lookup functions \insert" the NIS maps. In-

serting a similar line (minus the last two colons) into /etc/group does the same for the

group.* maps. To use the hosts.* maps distributed by NIS, change the order line in the

host.conf �le. For instance, if you want to use NIS, DNS, and the /etc/hosts �le (in that

order), you need to change the line to

order yp bind hosts

The traditional NIS implementation does not support any other maps at the moment.

5The source for yp-linux can be gotten from ftp.uni-paderborn.de in directory /pub/Linux/LOCAL.

Chapter 11

The Network File System

NFS, the network �lesystem, is probably the most prominent network services using RPC.

It allows to access �les on remote hosts in exactly the same way as a user would access any

local �les. This is made possible by a mixture of kernel functionality on the client side (that

uses the remote �le system) and an NFS server on the server side (that provides the �le

data). This �le access is completely transparent to the client, and works across a variety of

server and host architectures.

NFS o�ers a number of advantages:

� Data accessed by all users can be kept on a central host, with clients mounting this

directory at boot time. For example, you can keep all user accounts on one host, and

have all hosts on your network mount /home from that host. If installed alongside

with NIS, users can then log into any system, and still work on one set of �les.

� Data consuming large amounts of disk space may be kept on a single host. For example,

all �les and programs relating to LATEX andMETAFONT could be kept and maintained

in one place.

� Administrative data may be kept on a single host. No need to use rcp anymore to

install the same stupid �le on 20 di�erent machines.

Linux NFS is largely the work of Rick Sladkey,1 who wrote the NFS kernel code and

large parts of the NFS server. The latter is derived from the unfsd user-space NFS server

originally written by Mark Shand, and the hnfs Harris NFS server written by Donald Becker.

Let's have a look now at how NFS works: A client may request to mount a directory

from a remote host on a local directory just the same way it can mount a physical device.

1Rick can be reached at jrs@world.std.com.

171

10.9. Using the Traditional NIS Code 172

However, the syntax used to specify the remote directory is di�erent. For example, to mount

/home from host vlager to /users on vale, the administrator would issue the following

command on vale:2

mount -t nfs vlager:/home /users

mount will then try to connect to the mountd mount daemon on vlager via RPC. The

server will check if vale is permitted to mount the directory in question, and if so, return it

a �le handle. This �le handle will be used in all subsequent requests to �les below /users.

When someone accesses a �le over NFS, the kernel places an RPC call to nfsd (the NFS

daemon) on the server machine. This call takes the �le handle, the name of the �le to be

accessed, and the user's user and group id as parameters. These are used in determining

access rights to the speci�ed �le. In order to prevent unauthorized users from reading or

modifying �les, user and group ids must be the same on both hosts.

On most un?x implementations, the NFS functionality of both client and server are

implemented as kernel-level daemons that are started from user space at system boot.

These are the NFS daemon (nfsd) on the server host, and the Block I/O Daemon (biod)

running on the client host. To improve throughput, biod performs asynchronous I/O using

read-ahead and write-behind; also, several nfsd daemons are usually run concurrently.

The NFS implementation of Linux is a little di�erent in that the client code is tightly

integrated in the virtual �le system (VFS) layer of the kernel and doesn't require additional

control through biod. On the other hand, the server code runs entirely in user space, so

that running several copies of the server at the same time is almost impossible because of

the synchronization issues this would involve. Linux NFS currently also lacks read-ahead

and write-behind, but Rick Sladkey plans to add this someday.3

The biggest problem with the Linux NFS code is that the Linux kernel as of version 1.0

is not able to allocate memory in chunks bigger than 4K; as a consequence, the networking

code cannot handle datagrams bigger than roughly 3500 bytes after subtracting header sizes

etc. This means that transfers to and from NFS daemons running on systems that use large

UDP datagrams by default (e.g. 8K on SunOS) need to be downsized arti�cially. This

hurts performance badly under some circumstances.4 This limit is gone in late Linux-1.1

kernels, and the client code has been modi�ed to take advantage of this.

2Note that you can omit the -t nfs argument, because mount sees from the colon that this speci�es an

NFS volume.
3The problem with write-behind is that the kernel bu�er cache is indexed by device/inode pairs, and

therefore can't be used for NFS-mounted �le systems.
4As explained to me by Alan Cox: The NFS speci�cation requires the server to ush each write to disk

before it returns an acknowledgement. As BSD kernels are only capable of page-sized writes (4K), writing

a 4 chunks of 1K each to a BSD-based NFS server results in 4 write operations of 4K each.

11.1. Preparing NFS 173

11.1 Preparing NFS

Before you can use NFS, be it as server or client, you must make sure your kernel has NFS

support compiled in. Newer kernels have a simple interface on the proc �lesystem for this,

the /proc/�lesystems �le, which you can display using cat:

$ cat /proc/filesystems

minix

ext2

msdos

nodev proc

nodev nfs

If nfs is missing from this list, then you have to compile your own kernel with NFS

enabled. Con�guring the kernel network options is explained in section \Kernel Con�gura-

tion" in chapter 3.

For older kernels prior to Linux 1.1, the easiest way to �nd out whether your kernel has

NFS support enabled is to actually try to mount an NFS �le system. For this, you could

create a directory below /tmp, and try to mount a local directory on it:

mkdir /tmp/test

mount localhost:/etc /tmp/test

If this mount attempt fails with an error message saying \fs type nfs no supported

by kernel", you must make a new kernel with NFS enabled. Any other error messages are

completely harmless, as you haven't con�gured the NFS daemons on your host yet.

11.2 Mounting an NFS Volume

NFS volumes5 are mounted very much the way usual �le systems are mounted. You invoke

mount using the following syntax:

mount -t nfs nfs volume local dir options

nfs volume is given as remote host :remote dir . Since this notation is unique to NFS

�le systems, you can leave out the -t nfs option.

5One doesn't say �le system, because these are not proper �le systems.

11.2. Mounting an NFS Volume 174

There are a number of additional options that you may specify to mount upon mounting

an NFS volume. These may either be given following the -o switch on the command line,

or in the options �eld of the /etc/fstab entry for the volume. In both cases, multiple options

are separated from each other by commas. Options speci�ed on the command line always

override those given in the fstab �le.

A sample entry in /etc/fstab might be

volume mount point type options

news:/usr/spool/news /usr/spool/news nfs timeo=14,intr

This volume may then be mounted using

mount news:/usr/spool/news

In the absence of a fstab entry, NFS mount invocations look a lot uglier. For instance,

suppose you mount your users' home directories from a machine named moonshot, which

uses a default block size of 4K for read/write operations. You might decrease block size to

2K to suit Linux' datagram size limit by issuing

mount moonshot:/home /home -o rsize=2048,wsize=2048

The list of all valid options is described in its entirety in the nfs(5) manual page that

comes with Rick Sladkey's NFS-aware mount tool which can be found in Rik Faith's util-

linux package). The following is an incomplete list of those you would probably want to

use:

rsize=n and wsize=n

These specify the datagram size used by the NFS clients on read and write

requests, respectively. They currently default to 1024 bytes, due to the limit

on UDP datagram size described above.

timeo=n This sets the time (in tenths of a second) the NFS client will wait for a

request to complete. The default values is 0.7 seconds.

hard Explicitly mark this volume as hard-mounted. This is on by default.

soft Soft-mount the driver (as opposed to hard-mount).

intr Allow signals to interrupt an NFS call. Useful for aborting when the server

doesn't respond.

11.3. The NFS Daemons 175

Except for rsize and wsize, all of these options apply to the client's behavior if the server

should become inaccessible temporarily. They play together in the following way: whenever

the client sends a request to the NFS server, it expects the operation to have �nished after

a given interval (speci�ed in the timeout option). If no con�rmation is received within

this time, a so-called minor timeout occurs, and the operation is retried with the timeout

interval doubled. After reaching a maximum timeout of 60 seconds, a major timeout occurs.

By default, a major timeout will cause the client to print a message to the console and

start all over again, this time with an initial timeout interval twice that of the previous

cascade. Potentially, this may go on forever. Volumes that stubbornly retry an operation

until the server becomes available again are called hard-mounted. The opposite variety, soft-

mounted volumes gerenates an I/O error for the calling process whenever a major timeout

occurs. Because of the write-behind introduced by the bu�er cache, this error condition is

not propagated to the process itself before it calls the write(2) function the next time, so a

program can never be sure that a write operation to a soft-mounted volume has succeded

at all.

Whether you hard- or soft-mount a volume is not simply a question of taste, but also

has to do with what sort of information you want to access from this volume. For example,

if you mount your X programs by NFS, you certainly would not want your X session to

go berserk just because someone brought the network to a grinding halt by �ring up seven

copies of xv at the same time, or by pulling the Ethernet plug for a moment. By hard-

mounting these, you make sure that your computer will wait until it is able to re-establish

contact with your NFS-server. On the other hand, non-critical data such as NFS-mounted

news partititons or FTP archives may as well be soft-mounted, so it doesn't hang your

session in case the remote machine should be temporarily unreachable, or down. If your

network connection to the server is akey or goes through a loaded router, you may either

increase the initial timeout using the timeo option, or hard-mount the volumes, but allow

for signals interrupting the NFS call so that you may still abort any hanging �le access.

Usually, the mountd daemon will in some way or other keep track of which directories

have been mounted by what hosts. This information can be displayed using the showmount

program, which is also included in the NFS server package. The Linux mountd, however,

does not do this yet.

11.3 The NFS Daemons

If you want to provide NFS service to other hosts, you have to run the nfsd and mountd

daemons on your machine. As RPC-based programs, they are not managed by inetd, but

are started up at boot time, and register themselves with the portmapper. Therefore, you

have to make sure to start them only after rpc.portmap is running. Usually, you include

11.4. The exports File 176

the following two lines in your rc.inet2 script:

if [-x /usr/sbin/rpc.mountd]; then

/usr/sbin/rpc.mountd; echo -n " mountd"

fi

if [-x /usr/sbin/rpc.nfsd]; then

/usr/sbin/rpc.nfsd; echo -n " nfsd"

fi

The ownership information of �les a NFS daemon provides to its clients usually contains

only numerical user and group id's. If both client and server associate the same user and

group names with these numerical id's, they are said to share the same uid/gid space. For

example, this is the case when you use NIS to distribute the passwd information to all hosts

on your LAN.

On some occasions, however, they do not match. Rather updating the uid's and gid's

of the client to match those of the server, you can use the ugidd mapping daemon to work

around this. Using the map daemon option explained below, you can tell nfsd to map the

server's uid/gid space to the client's uid/gid space with the aid of the ugidd on the client.

ugidd is an RPC-based server, and is started from rc.inet2 just like nfsd and mountd.

if [-x /usr/sbin/rpc.ugidd]; then

/usr/sbin/rpc.ugidd; echo -n " ugidd"

fi

11.4 The exports File

While the above options applied to the client's NFS con�guration, there is a di�erent set

of options on the server side that con�gure its per-client behavior. These options must be

set in the /etc/exports �le.

By default, mountd will not allow anyone to mount directories from the local host, which

is a rather sensible attitude. To permit one or more hosts to NFS-mount a directory, it

must exported, that is, must be speci�ed in the exports �le. A sample �le may look like this:

exports file for vlager

/home vale(rw) vstout(rw) vlight(rw)

/usr/X386 vale(ro) vstout(ro) vlight(ro)

/usr/TeX vale(ro) vstout(ro) vlight(ro)

/ vale(rw,no_root_squash)

/home/ftp (ro)

11.4. The exports File 177

Each line de�nes a directory, and the hosts allowed to mount it. A host name is usu-

ally a fully quali�ed domain name, but may additionally contain the * and ? wildcard,

which act the way they do with the Bourne shell. For instance, lab*.foo.com matches

lab01.foo.com as well as laber.foo.com. If no host name is given, as with the /home/ftp

directory in the example above, any host is allowed to mount this directory.

When checking a client host against the exports �le, mountd will look up the client's

hostname using the gethostbyaddr(2) call. With DNS, this call returns the client's canonical

hostname, so you must make sure not to use aliases in exports. Without using DNS, the

returned name is the �rst hostname found in the hosts �le that matches the client's address.

The host name is followed by an optional, comma-separated list of ags, enclosed in

brackets. These ags may take the following values:

insecure Permit non-authenticated access from this machine.

unix-rpc Require UNIX-domain RPC authentication from this machine. This simply

requires that requests originate from a reserved internet port (i.e. the port

number has to be less than 1024). This option is on by default.

secure-rpc Require secure RPC authentication from this machine. This has not been

implemented yet. See Sun's documentation on Secure RPC.

kerberos Require Kerberos authentication on accesses from this machine. This has

not been implemented yet. See the MIT documentation on the Kerberos

authentication system.

root squash This is a security feature that denies the super user on the speci�ed hosts

any special access rights by mapping requests from uid 0 on the client to

uid 65534 (-2) on the server. This uid should be associated with the user

nobody.

no root squash

Don't map requests from uid 0. This option is on by default.

ro Mount �le hierarchy read-only. This option is on by default.

rw Mount �le hierarchy read-write.

link relative Convert absolute symbolic links (where the link contents start with a slash)

into relative links by prepending the necessary number of ../ 's to get from

the directory containing the link to the root on the server. This option only

makes sense when a host's entire �le system is mounted, else some of the

links might point to nowhere, or even worse, �les they were never meant to

point to.

11.5. The Linux Automounter 178

This option is on by default.

link absolute Leave all symbolic link as they are (the normal behavior for Sun-supplied

NFS servers).

map identity The map identity option tells the server to assume that the client uses the

same uid's and gid's as the server. This option is on by default.

map daemon This option tells the NFS server to assume that client and server do not share

the same uid/gid space. nfsd will then build a list mapping id's between

client and server by querying the client's ugidd daemon.

An error parsing the exports �le is reported to syslogd 's daemon facility at level notice

whenever nfsd or mountd is started up.

Note that host names are obtained from the client's IP address by reverse mapping, so

you have to have the resolver con�gured properly. If you use BIND and are very security-

conscious, you should enable spoof checking in your host.conf �le.

11.5 The Linux Automounter

Sometimes, it is wasteful to mount all NFS volumes users might possibly want to access;

either because of the sheer number of volumes to be mounted, or because of the time this

would take at startup. A viable alternative to this is a so-called automounter. This is

a daemon that automatically and transparently mounts any NFS volume as needed, and

unmounts them after they have not been used for some time. One of the clever things about

an automounter is that it is able to mount a certain volume from alternative places. For

instance, you may keep copies of your X programs and support �les on two or three hosts,

and have all other hosts mount them via NFS. Using an automounter, you may specify all

three of them to be mounted on /usr/X386; the automounter will then try to mount any

of these until one of the mount attempts succeeds.

The automounter commonly used with Linux is called amd. It was originally written by

Jan-Simon Pendry and has been ported to Linux by Rick Sladkey. The current version is

amd-5.3.

Explaining amd is beyond the scope of this chapter; for a good manual please refer to

the sources; they contain a texinfo �le with very detailed information.

Chapter 12

Managing Taylor UUCP

12.1 History

UUCP was designed in the late seventies by Mike Lesk at AT&T Bell Laboratories to

provide a simple dial-up network over public telephone lines. Since most people that want

to have email and Usenet News on their home machine still communicate through modems,

UUCP has remained very popular. Although there are many implementations running on

a wide variety of hardware platforms and operating systems, they are compatible to a high

degree.

However, as with most software that has somehow become \standard" over the years,

there is no UUCP which one would call the UUCP. It has undergone a steady process of

evolution since the �rst version which was implemented in 1976. Currently, there are two

major species which di�er mainly in their support of hardware and their con�guration. Of

these, various implementations exist, each varying slightly from its siblings.

One species is the so-called \Version 2 UUCP", which dates back to a 1977 implemen-

tation by Mike Lesk, David A. Novitz, and Greg Chesson. Although it is fairly old, it is

still in frequent use. Recent implementations of Version 2 provide much of the comfort of

the newer UUCP species.

The second species was developed in 1983, and is commonly referred to as BNU (Basic

Networking Utilities), HoneyDanBer UUCP, or HDB for short. The name is derived from

the authors' names, P. Honeyman, D. A. Novitz, and B. E. Redman. HDB was conceived

to eliminate some of Version 2 UUCP's de�ciencies. For example, new transfer protocols

were added, and the spool directory was split so that now there is one directory for each

site you have UUCP tra�c with.

179

12.1. History 180

The implementation of UUCP currently distributed with Linux is Taylor UUCP 1.04,1

which is the version this chapter is based upon. Taylor UUCP Version 1.04 was released

in February 1993. Apart from traditional con�guration �les, Taylor UUCP may also be

compiled to understand the new-style { a.k.a. \Taylor" { con�guration �les.

Version 1.05 has been released recently, and will soon make its way into most distribu-

tions. The di�erences between these versions mostly a�ect features you will never use, so

you should be able to con�gure Taylor UUCP 1.05 using the information form this book.

As included in most Linux distributions, Taylor UUCP is usually compiled for BNU

compatibility, or the Taylor con�guiration scheme, or both. As the latter is much more

exible, and probably easier to understand than the often rather obscure BNU con�guration

�les, I will describe the Taylor scheme below.

The purpose of this chapter is not to give you an exhaustive description of what the

command line options for the UUCP commands are and what they do, but to give you an

introduction on how to set up a working UUCP node. The �rst section gives a hopefully

gentle introduction about how UUCP implements remote execution and �le transfers. If you

are not entirely new to UUCP, you might want to skip this and move on to section UUCP

Con�guration Files, which explains the various �les used to set up UUCP.

We will however assume that you are familiar with the user programs of the UUCP suite.

These are uucp and uux. For a description, please refer to the on-line manual pages.

Besides the publicly accessible programs, uux and uucp, the UUCP suite contains a

number of commands used for administrative purposes only. They are used to monitor

UUCP tra�c across your node, remove old log �les, or compile statistics. None of these will

be described here, because they're peripheral to the main tasks of UUCP. Besides, they're

well documented and fairly easy to understand. However, there is a third category, which

comprises the actual UUCP \work horses". They are called uucico (where cico stands for

copy-in copy-out), and uuxqt, which executes jobs sent from remote systems.

12.1.1 More Information on UUCP

Those who don't �nd everything they need in this chapter should read the documentation

that comes along with the package. This is a set of texinfo �les that describe the setup

using the Taylor con�guration scheme. Texinfo can be converted to DVI and to GNU info

�les using tex and makeinfo, respectively.

If you want to use BNU or even (shudder!) Version 2 con�guration �les, there is a very

good book, \Managing UUCP and Usenet" ([OReilly89]). I �nd it very useful. Another

1Written and copyrighted by Ian Taylor, 1993.

12.2. Introduction 181

good source for information about UUCP on Linux is Vince Skahan's UUCP-HOWTO,

which is posted regularly to comp.os.linux.announce.

There's also a newsgroup for the discussion of UUCP, called comp.mail.uucp. If you

have questions speci�c to Taylor UUCP, you may be better o� asking them there, rather

than on the comp.os.linux groups.

12.2 Introduction

12.2.1 Layout of UUCP Transfers and Remote Execution

Vital to the understanding of UUCP is the concept of jobs. Every transfer a user initiates

with uucp or uux is called a job. It is made up of a command to be executed on a remote

system, and a collection of �les to be transferred between sites. One of these parts may be

missing.

As an example, assume you issued the following command on your host, which makes

UUCP copy the �le netguide.ps to host pablo, and makes it execute the lpr command to

print the �le.

$ uux -r pablo!lpr !netguide.ps

UUCP does not generally call the remote system immediately to execute a job (else you

could make do with kermit). Instead, it temporarily stores the job description away. This is

called spooling. The directory tree under which jobs are stored is therefore called the spool

directory and is generally located in /var/spool/uucp. In our example, the job description

would contain information about the remote command to be executed (lpr), the user who

requested the execution, and a couple of other items. In addition to the job description,

UUCP has to store the input �le, netguide.ps.

The exact location and naming of spool �les may vary, depending on some compile-

time options. HDB-compatible UUCP's generally store spool �les in a directory named

/var/spool/uucp/site, where site is the name of the remote site. When compiled for

Taylor con�guration, UUCP will create subdirectories below the site-speci�c spool directory

for di�erent types of spool �les.

At regular intervals, UUCP dials up the remote system. When a connection to the

remote machine is established, UUCP transfers the �les describing the job, plus any input

�les. The incoming jobs will not be executed immediately, but only after the connection

terminates. This is done by uuxqt, which also takes care of forwarding any jobs if they are

designated for another site.

12.2. Introduction 182

To distinguish between important and less important jobs, UUCP associates a grade

with each job. This is a single letter, ranging from 0 through 9, A though Z, and a through

z, in decreasing precedence. Mail is customarily spooled with grade B or C, while news

is spooled with grade N. Jobs with higher grade are transferred earlier. Grades may be

assigned using the -g ag when invoking uucp or uux.

You can also disallow the transfer of jobs below a given grade at certain times. This

is also called the maximum spool grade allowed during a conversation and defaults to z.

Note the terminological ambiguity here: a �le is transferred only if it is equal or above the

maximum spool grade.

12.2.2 The Inner Workings of uucico

To understand why uucico needs to know certain things, a quick description of how it3

actually connects to a remote system might be in order here.

When you execute uucico -s system from the command line, it �rst has to connect

physically. The actions taken depend on the type of connection to open { e.g. when

using telephone line, it has to �nd a modem, and dial out. Over TCP, it has to call

gethostbyname(3) to convert the name to a network address, �nd out which port to open,

and bind the address to the corresponding socket.

After this connection has been established, an authorization procedure has to be passed.

It generally consists of the remote system asking for a login name, and possibly a password.

This is commonly called the login chat. The authorization procedure is performed either by

the usual getty/login suite, or { on TCP sockets { by uucico itself. If authorization succeeds,

the remote end �res up uucico. The local copy of uucico which initiated the connection is

referred to as master, the remote copy as slave.

Next follows the handshake phase: the master now sends its hostname, plus several ags.

The slave checks this hostname for permission to log in, send and receive �les, etc. The ags

describe (among other things) the maximum grade of spool �les to transfer. If enabled, a

conversation count, or call sequence number check takes place here. With this feature, both

sites maintain a count of successful connections, which are compared. If they do not match,

the handshake fails. This is useful to protect yourself against impostors.

Finally, the two uucico's try to agree on a common transfer protocol. This protocol

governs the way data is transferred, checked for consistency, and retransmitted in case of

an error. There is a need for di�erent protocols because of the di�ering types of connections

supported. For example, telephone lines require a \safe" protocol which is pessimistic about

errors, while TCP transmission is inherently reliable and can use a more e�cient protocol

that foregoes most extra error checking.

12.2. Introduction 183

After the handshake is complete, the actual transmission phase begins. Both ends turn on

the selected protocol driver. The drivers possibly perform a protocol-speci�c initialization

sequence.

First, the master sends all �les queued for the remote system whose spool grade is high

enough. When it has �nished, it informs the slave that it is done, and that the slave may

now hang up. The slave now can either agree to hang up, or take over the conversation.

This is a change of roles: now the remote system becomes master, and the local one becomes

slave. The new master now sends its �les. When done, both uucico's exchange termination

messages, and close the connection.

We will not go into this in greater detail: please refer to either the sources or any good

book on UUCP for this. There is also a really antique article oating around the net, written

by David A. Novitz, which gives a detailed description of the UUCP protocol. The Taylor

UUCP FAQ also disucsses some details of the way UUCP is implemented. It is posted to

comp.mail.uucp regularly.

12.2.3 uucico Command Line Options

This section describes the most important command line options for uucico. For a complete

list, please refer to the uucico(1) manual page.

-s system Call the named system unless prohibited by call time restrictions.

-S system Call the named system unconditionally.

-r1 Start uucico in master mode. This is the default when -s or -S is given.

All by itself, the -r1 option causes uucico to try to call all systems in sys,

unless prohibited by call or retry time restrictions.

-r0 Start uucico in slave mode. This is the default when no -s or -S is given.

In slave mode, either standard input/output are assumed to be connected

to a serial port, or the TCP port speci�ed by the -p option is used.

-x type , -X type

Turn on debugging of the speci�ed type. Several types may be given as a

comma-separated list. The following types are valid: abnormal, chat, hand-

shake, uucp-proto, proto, port, con�g, spooldir, execute, incoming, outgoing.

Using all turns on all options. For compatibility with other UUCP imple-

mentations, a number may be speci�ed instead, which turns on debugging

for the �rst n items from the above list.

Debugging messages will be logged to the �le Debug below /var/spool/uucp.

12.3. UUCP Con�guration Files 184

12.3 UUCP Con�guration Files

In contrast to simpler �le transfer programs, UUCP was designed to be able to handle all

transfers automatically. Once it is set up properly, interference by the administrator should

not be necessary on a day-to-day basis. The information required for this is is kept in a

couple of con�guration �les that reside in the directory /usr/lib/uucp. Most of these �les

are used only when dialing out.

12.3.1 A Gentle Introduction to Taylor UUCP

To say that UUCP con�guration is hard would be an understatement. It is really a hairy

subject, and the sometimes terse format of the con�guration �les doesn't make things easier

(although the Talyor format is almost easy reading compared to the older formats in HDB

or Version 2).

To give you a feel how all these �les interact, we will introduce you to the most important

ones, and have a look at sample entries of these �les. We won't explain everything in detail

now; a more accurate account is given in separate sections below. If you want to set up your

machine for UUCP, you had best start with some sample �les, and adapt them gradually.

You can pick either those shown below, or those included in your favorite Linux distribution.

All �les described in this section are kept in /usr/lib/uucp or a subdirectory thereof.

Some Linux distributions contain UUCP binaries that have support for both HDB and

Taylor con�guration enabled, and use di�erent subdirectories for each con�guration �le set.

There will usually be a README �le in /usr/lib/uucp.

For UUCP to work properly, these �les must be owned by the uucp user. Some of them

contain passwords and telephone numbers, and therefore should have permissions of 600.2

The central UUCP con�guration �le is /usr/lib/uucp/con�g, and is used to set general

parameters. The most important of them (and for now, the only one), is your host's UUCP

name. At the Virtual Brewery, they use vstout as their UUCP gateway:

/usr/lib/uucp/config - UUCP main configuration file

hostname vstout

The next important con�guration �le is the sys �le. It contains all system-speci�c

information of sites you are linked to. This includes the site's name, and information on

the link itself, such as the telephone number when using a modem link. A typical entry for

a modem-connected site called pablo would be

2Note that although most UUCP commands must be setuid to uucp, you must make sure the uuchk

program is not. Otherwise, users will be able to display passwords even though they have mode 600.

12.3. UUCP Con�guration Files 185

system

port
speed
...

pablo

38400
serial1

dialer
chat
chat-fail
...

nakwell
"" ATZ ..
BUSY

port
type
speed
device
dialer
...

serial1
modem
38400
/dev/cua1
nakwell

The sys File
The port File

The dial File

Figure 12.1: Interaction of Taylor UUCP Con�guration Files.

/usr/lib/uucp/sys - name UUCP neighbors

system: pablo

system pablo

time Any

phone 123-456

port serial1

speed 38400

chat ogin: vstout ssword: lorca

The port names a port to be used, and time speci�es the times at which it may be

called. chat describes the login chat scripts { the sequence of strings that must be exchanged

between to allow uucico to log into pablo. We will get back to chat scripts later. The port

command does not name a device special �le such as /dev/cua1, but rather names an entry

in the port �le. You can assign these names as you like as long as they refer to a valid entry

in port.

The port �le holds information speci�c to the link itself. For modem links, it describes

the device special �le to be used, the range of speeds supported, and the type of dialing

equipment connected to the port. The entry below describes /dev/cua1 (a.k.a. COM 2), to

which a NakWell modem is connected that is capable of running at speeds up to 38400bps.

The entry's name way chosen to match the port name given in the sys �le.

12.3. UUCP Con�guration Files 186

/usr/lib/uucp/port - UUCP ports

/dev/cua1 (COM2)

port serial1

type modem

device /dev/cua1

speed 38400

dialer nakwell

The information pertaining to the dialers itself is kept in yet another �le, called { you

guessed it: dial. For each dialer type, it basically contains the sequence of commands to be

issued to dial up a remote site, given the telephone number. Again, this is speci�ed as a

chat script. For example, the entry for the above NakWell might look like this:

/usr/lib/uucp/dial - per-dialer information

NakWell modems

dialer nakwell

chat "" ATZ OK ATDT\T CONNECT

The line starting with chat speci�es the modem chat, which is the sequence of commands

sent to and received from the modem to initialize it and make it dial the desired number.

The \\T" sequence will be replaced with the phone number by uucico.

To give you a rough idea how uucico deals with these con�guration �les, assume you

issued the command

$ uucico -s pablo

on the command line. The �rst thing uucico does is look up pablo in the sys �le. From the

sys �le entry for pablo it sees that it should use the serial1 port to establish the connection.

The port �le tells it that this is a modem port, and that it has a NakWell modem attached.

uucico now searches dial for the entry describing the NakWell modem, and having found

one, opens the serial port /dev/cua1 and executes the dialer chat. That is, it sends \ATZ",

waits for the \OK" response, etc. When encountering the string \\T", it substitutes the

phone number (123{456) extracted from the sys �le.

After the modem returns CONNECT, the connection has been established, and the modem

chat is complete. uucico now returns to the sys �le and executes the login chat. In our

example, it would wait for the \login:" prompt, then send its user name (neruda), wait

for the \password:" prompt, and send its password, \lorca".

After completing authorization, the remote end is assumed to �re up its own uucico.

The two will then enter the handshake phase described in the previous section.

12.3. UUCP Con�guration Files 187

The way the con�guration �les depend on each other is also shown in �gure 12.1.

12.3.2 What UUCP Needs to Know

Before you start writing the UUCP con�guration �les, you have to gather some information

it needs to know.

First, you will have to �gure out what serial device your modem is attached to. Usually,

the (DOS) ports COM1 through COM4 map to the device special �les /dev/cua0 through

/dev/cua3. Most distributions, such as Slackware, create a link /dev/modem as a link to

the appropriate cua* device �le, and con�gure kermit, seyon, etc, to use this generic �le.

In this case, you should either use /dev/modem in your UUCP con�guration, too.

The reason for this is that all dial-out programs use so-called lock �les to signal when a

serial port is in use. The names of these lock �les are a concatenation of the string LCK..

and the device �le name, for instance LCK..cua1. If programs use di�erent names for the

same device, they will fail to recognize each other's lock �les. As a consequence, they will

disrupt each other's session when started at the same time. This is not an unlikely event

when you schedule your UUCP calls using a crontab entry.

For details of setting up your serial ports, please refer to chapter 4.

Next, you must �nd out at what speed your modem and Linux will communicate. You

will have to set this to the maximum e�ective transfer rate you expect to get. The e�ective

transfer rate may be much higher than the raw physical transfer rate your modem is capable

of. For instance, many modems send and receive data at 2400bps (bits per second). Using

compression protocols such as V.42bis, the actual transfer rate may climb up to 9600bps.

Of course, if UUCP is to do anything, you will need the phone number of a system to

call. Also, you will need a valid login id and possibly a password for the remote machine.3

You will also have to know exactly how to log into the system. E.g., do you have to

press the BREAK key before the login prompt appears? Does it display login: or user:?

This is necessary for composing the chat script, which is a recipe telling uucico how to log

in. If you don't know, or if the usual chat script fails, try to call the system with a terminal

program like kermit or minicom, and write down exactly what you have to do.

3If you're just going to try out UUCP, get the number of an archive site near you. Write down the login

and password { they're public to make anonymous downloads possible. In most cases, they're something

like uucp/uucp or nuucp/uucp.

12.3. UUCP Con�guration Files 188

12.3.3 Site Naming

As with TCP/IP-based networking, your host has to have a name for UUCP networking.

As long as you simply want to use UUCP for �le transfers to or from sites you dial up

directly, or on a local network, this name does not have to meet any standards.4

However, if you use UUCP for a mail or news link, you should think about having the

name registered with the UUCPMapping project. The UUCP Mapping Project is described

in chapter 13. Even if you participate in a domain, you might consider having an o�cial

UUCP name for your site.

Frequently, people choose their UUCP name to match the �rst component of their fully

quali�ed domain name. Suppose your site's domain address is swim.twobirds.com, then

your UUCP host name would be swim. Think of UUCP sites as knowing each other on a

�rst-name basis. Of course, you can also use a UUCP name completely unrelated to your

fully quali�ed domain name.

However, make sure not to use the unquali�ed site name in mail addresses unless you

have registered it as your o�cial UUCP name.5 At the very best, mail to an unregistered

UUCP host will vanish in some big black bit bucket. If you use a name already held by

some other site, this mail will be routed to that site, and cause its postmaster no end of

headaches.

By default, the UUCP suite uses the name set by hostname as the site's UUCP name.

This name is commonly set in the /etc/rc.local script. If your UUCP name is di�erent from

what you set your host name to, you have to use the hostname option in the con�g �le to

tell uucico about your UUCP name. This is described below.

12.3.4 Taylor Con�guration Files

We now return to the con�guration �les. Taylor UUCP gets its information from the

following �les:

con�g This is the main con�guration �le. You can de�ne your site's UUCP name

here.

sys This �le describes all sites known to you. For each site, it speci�es its name,

at what times to call it, which number to dial (if any), what type of device

4The only limitation is that it shouldn't be longer than 7 characters, so as to not confuse hosts with

�lesystems that impose a narrow limit on �le names.
5The UUCP Mapping Project registers all UUCP hostnames world-wide and makes sure they are unique.

To register your UUCP name, ask the maintainers of the site that handles your mail; they will be able to

help you with it.

12.3. UUCP Con�guration Files 189

to use, and how to log on.

port Contains entries describing each port available, together with the line speed

supported and the dialer to be used.

dial Describes dialers used to establish a telephone connection.

dialcode Contains expansions for symbolic dialcodes.

call Contains the login name and password to be used when calling a system.

Rarely used.

passwd Contains login names and passwords systems may use when logging in. This

�le is used only when uucico does its own password checking.

Taylor con�guration �les are generally made up of lines containing keyword-value pairs.

A hash sign introduces a comment that entends to the end of the line. To use a hash sign

by itself, you may escape it with a backslash.

There are quite a number of options you can tune with these con�guration �les. We

can't go into all parameters here, but will only cover the most important ones. They you

should be able to con�gure a modem-based UUCP link. Additional sections will describe

the modi�cations necessary if you want to use UUCP over TCP/IP or over a direct serial

line. A complete reference is given in the Texinfo documents that accompany the Taylor

UUCP sources.

When you think you have con�gured your UUCP system completely, you can check

your con�guration using the uuchk tool (located in /usr/lib/uucp). uuchk reads your con-

�guration �les, and prints out a detailed report of the con�guration values used for each

system.

12.3.5 General Con�guration Options { the con�g File

You won't generally use this �le to describe much beside your UUCP hostname. By default,

UUCP will use the name you set with the hostname command, but it is generally a good

idea to set the UUCP name explicitly. A sample �le is shown below:

/usr/lib/uucp/config - UUCP main configuration file

hostname vstout

Of course, there are a number of miscellaneous parameters that may be set here, too,

such as the name of the spool directory, or access rights for anonymous UUCP. The latter

will be described in a later section.

12.3. UUCP Con�guration Files 190

12.3.6 How to Tell UUCP about other Systems { the sys File

The sys �le describes the systems your machine knows about. An entry is introduced by the

system keyword; the subsequent lines up to the next system directive detail the parameters

speci�c to that site. Commonly, a system entry will de�ne parameters such as the telephone

number and the login chat.

Parameters before the very �rst system line set default values used for all systems.

Usually, you will set protocol paramters and the like in the defaults section.

Below, the most prominent �elds are discussed in some detail.

System Name

The system command names the remote system. You must specify the correct name of the

remote system, not an alias you invented, because uucico will check it against what the

remote system says it is called when you log on.6

Each system name may appear more only once. If you want to use several sets of

con�gurations for the same system (such as di�erent telephone numbers uucico should try

in turn), you can specify alternates. Alternates are described below.

Telephone Number

If the remote system is to be reached over a telephone line, the phone �eld speci�es the

number the modem should dial. It may contain several tokens interpreted by uucico's

dialing procedure. An equal sign means to wait for a secondary dial tone, and a dash

generates a one-second pause. For instance, some telephone installations will choke when

you don't pause between dialing the pre�x code and telephone number.

[Don't know the proper English term for this { you know, something like a

company's private internal installation where you have to dial a 0 or 9 to get a

line to the outside.]

Any embedded alphabetic string may be used to hide site-dependent information like

area codes. Any such string is translated to a dialcode using the dialcode �le. Suppose you

have the following dialcode �le:

/usr/lib/uucp/dialcode - dialcode translation

Bogoham 024881

6Older Version 2 UUCP's don't broadcast their name when being called; however, newer implementations

often do, and so does Taylor UUCP.

12.3. UUCP Con�guration Files 191

Coxton 035119

With these translations, you can use a phone number such as Bogoham7732 in the sys

�le, which makes things probably a little more legible.

Port and Speed

The port and speed options are used to select the device used for calling the remote system,

and the maximum speed to which the device should be set.7 A system entry may use either

option alone, or both options in conjunction. When looking up a suitable device in the port

�le, only those ports are selected that have a matching port name and/or speed range.

Generally, using the speed option should su�ce. If you have only one serial device de�ned

in port, uucico will always pick the right one, anyway, so you only have to give it the desired

speed. If you have several modems attached to your systems, you still often don't want to

name a particular port, because if uucico �nds that there are several matches, it tries each

device in turn until it �nds an unused one.

The Login Chat

Above, we already encountered the login chat script, which tells uucico how to log into the

remote system. It consists of a list of tokens, specifying strings expected and sent by the

local uucico process. The intention is to make uucico wait until the remote machine sends a

login prompt, then return the login name, wait for the remote system to send the password

prompt, and send the password. Expect and send strings are given in alternation. uucico

automatically appends a carriage return character (\r) to any send string. Thus, a simple

chat script would look like

ogin: vstout ssword: catch22

You will notice that the expect �elds don't contain the whole prompts. This is to make

sure that the login succeeds even if the remote system broadcasts Login: instead of login:.

uucico also allows for some sort of conditional execution, for example in the case that

the remote machine's getty needs to be reset before sending a prompt. For this, you can

attach a sub-chat to an expect string, o�set by a dash. The sub-chat is executed only if the

main expect fails, i.e. a timeout occurs. One way to use this feature is to send a BREAK

if the remote site doesn't display a login prompt. The following example gives an allround

7The Baud rate of the tty must be at least as high as the maximum transfer speed.

12.3. UUCP Con�guration Files 192

chat script that should also work in case you have to hit return before the login appears. ""

tells UUCP to not wait for anything and continue with the next send string immediately.

"" \n\r\d\r\n\c ogin:-BREAK-ogin: vstout ssword: catch22

There are a couple of special strings and escape characters which may occur in the chat

script. The following is an incomplete list of characters legal in expect strings:

"" The empty string. It tells uucico not to wait for anything, but proceed with

the next send string immediately.

\t Tab character.

\r Carriage return character.

\s Space character. You need this to embed spaces in a chat string.

\n Newline character.

\\ Backslash character.

On send strings, the following escape characters and strings are legal in addition to the

above:

EOT End of transmission character (^D).

BREAK Break character.

\c Suppress sending of carriage return at end of string.

\d Delay sending for 1 second.

\E Enable echo checking. This requires uucico to wait for the echo of everything

it writes to be read back from the device before it can continue with the chat.

It is primarily useful when used in modem chats (which we will encounter

below). Echo checking is o� by default.

\e Disable echo checking.

\K Same as BREAK.

\p Pause for fraction of a second.

12.3. UUCP Con�guration Files 193

Alternates

Sometimes it is desirable to have multiple entries for a single system, for instance if the

system can be reached on di�erent modem lines. With Taylor UUCP, you can do this by

de�ning a so-called alternate.

An alternate entry retains all settings from the main system entry, and and speci�es

only those values that should be overridden in the default system entry, or added to it. An

alternate is o�set from the system entry by a line containing the keyword alternate.

To use two phone numbers for pablo, you would modify its sys entry in the following

way:

system pablo

phone 123-456

... entries as above ...

alternate

phone 123-455

When calling pablo, uucico will now �rst dial 123-456, and if this fails, try the alternate.

The alternate entry retains all settings from the main system entry, and overrides only the

telephone number.

Restricting Call Times

Taylor UUCP provides a number of ways you may restrict the times when calls can be

placed to a remote system. You might do this either because of limitations the remote host

places on its services during business hours, or simply to avoid times with high call rates.

Note that it is always possible to override call time restrictions by giving uucico the -S or

-f option.

By default, Taylor UUCP will disallow connections at any time, so you have to use some

sort of time speci�cation in the sys �le. If you don't care about call time restrictions, you

can specify the time option with a value of Any in your sys �le.

The simplest way to restrict call time is the time entry, which is followed by a string

made up of a day and a time sub�eld. Day may be any of Mo, Tu, We, Th, Fr, Sa, Su

combined, or Any, Never, or Wk for weekdays. The time consists of two 24-hour clock

values, separated by a dash. They specify the range during which calls may be placed. The

combination of these tokens is written without white space in between. Any number of day

and time speci�cations may be grouped together with commas. For example,

time MoWe0300-0730,Fr1805-2000

12.3. UUCP Con�guration Files 194

allows calls on Monday and Wednesdays from 3 a.m. to 7.30, and on Fridays between 18.05

and 20.00. When a time �eld spans midnight, say Mo1830-0600, it actually means Monday,

between midnight and 6 a.m., and between 6.30 p.m. and midnight.

The special time strings Any and Never mean what they say: Calls may be placed at

any or no time, respectively.

The time command takes an optional second argument that describes a retry time in

minutes. When an attempt to establish a connection fails, uucico will not allow another

attempt to dial up the remote host within a certain interval. By default, uucico uses an

exponential backo� scheme, where the retry interval increases with each repeated failure.

For instance, when you specify a retry time of 5 minutes, uucico will refuse to call the

remote system within 5 minutes after the last failure.

The timegrade command allows you to attach a maximum spool grade to a schedule.

For instance, assume you have the following timegrade commands in a system entry:

timegrade N Wk1900-0700,SaSu

timegrade C Any

This allows jobs with a spoolgrade of C or higher (usually, mail is queued with grade

B or C) to be transferred whenever a call is established, while news (usually queued with

grade N) will be transferred only during the night and at weekends.

Just like time, the timegrade command takes a retry interval in minutes as an optional

third argument.

However, a caveat about spool grades is in order here: First, the timegrade option applies

only to what your systems sends; the remote system may still transfer anything it likes.

You can use the call-timegrade option to explicitly request it to send only jobs above some

given spool grade; but there's no guarantee it will obey this request.8

Similarly, the timegrade �eld is not checked when a remote system calls in, so any jobs

queued for the calling system will be sent. However, the remote system can explicitly

request your uucico to restrict itself to a certain spool grade.

12.3.7 What Devices there are { the port File

The port �le tells uucico about the available ports. These may be modem ports, but other

types such as direct serial lines and TCP sockets are supported as well.

8If the remote system runs Talyor UUCP, it will obey.

12.3. UUCP Con�guration Files 195

Like the sys �le, port consists of separate entries starting with the keyword port, followed

by the port name. This name may be used by in the sys �le's port statement. The name

need not be unique; if there are several ports with the same name, uucico will try each in

turn until it �nds one that is not currently being used.

The port command should be immediately followed by the type statement that describes

what type of port is described. Valid types are modem, direct for direct connections, and

tcp for TCP sockets. If the port command is missing, the port type defaults to modem.

In this section, we will cover only modem ports; TCP ports and direct lines are discussed

in a later section.

For modem and direct ports, you have to specify the device for calling out using the

device directive. Usually, this is the name of a device special �le in the /dev directory, like

/dev/cua1.9

In the case of a modem device, the port entry also determines what type of modem is

connected to the port. Di�erent types of modems have to be con�gured di�erently. Even

modems that claim to be Hayes-compatible needn't be really compatible with each other.

Therefore, you have to tell uucico how to initialize the modem and how to make it dial the

desired number. Taylor UUCP keeps the descriptions of all dialers in a �le named dial. To

use any of these, you have to specify the dialer's name using the dialer command.

Sometimes, you will want to use a modem in di�erent ways, depending on which system

you call. For instance, some older modems don't understand when a high-speed modem

attempts to connect at 14400bps; they simply drop the line instead of negotiating a connect

at, say, 9600bps. When you know site drop uses such a dumb modem, you have to set

up your modem di�erently when calling them. For this, you need an additional port entry

in the port �le that speci�es a di�erent dialer. Now you can give the new port a di�erent

name, such as serial1-slow, and use the port directive in drop system entry in sys.

A better way is to distinguish the ports by the speeds they support. For instance, the

two port entries for the above situation may look like this:

NakWell modem; connect at high speed

port serial1 # port name

type modem # modem port

device /dev/cua1 # this is COM2

speed 38400 # supported speed

dialer nakwell # normal dialer

NakWell modem; connect at low speed

port serial1 # port name

9Some people use the ttyS* devices instead, which are intended for dial-in only.

12.3. UUCP Con�guration Files 196

type modem # modem port

device /dev/cua1 # this is COM2

speed 9600 # supported speed

dialer nakwell-slow # don't attempt fast connect

The system entry for site drop would now give serial1 as port name, but request to use

it at 9600bps only. uucico will then automatically use the second port entry. All remaining

sites that have a speed of 38400bps in the system entry will be called using the �rst port

entry.

12.3.8 How to Dial a Number { the dial File

The dial �le describes the way various dialers are used. Traditionally, UUCP talks of dialers

rather than modems, because in earlier times, it was usual practice to have one (expensive)

automatic dialing device serve a whole bank of modems. Today, most modems have dialing

support builtin, so this distinction gets a little blurred.

Nevertheless, di�erent dialers or modems may require a di�erent con�guration. You can

describe each of them in the dial �le. Entries in dial start with the dialer command that

gives the dialer's name.

The most important entry beside this is the modem chat, speci�ed by the chat command.

Similar to the login chat, it consists of a sequence of strings uucico sends to the dialer and

the responses it expects in return. It is commonly used to reset the modem to some known

state, and dial the number. The following sample dialer entry shows a typical modem chat

for a Hayes-compatible modem:

NakWell modem; connect at high speed

dialer nakwell # dialer name

chat "" ATZ OK\r ATH1E0Q0 OK\r ATDT\T CONNECT

chat-fail BUSY

chat-fail ERROR

chat-fail NO\sCARRIER

dtr-toggle true

The modem chat begins with "", the empty expect string. uucico will therefore send the

�rst command (ATZ) right away. ATZ is the Hayes command to reset the modem. It then

waits until the modem has sent OK, and sends the next command which turns o� local echo,

and the like. After the modem returns OK again, uucico sends the dialing command (ATDT).

The escape sequence \T in this string is replaced with the phone number taken from the

system entry sys �le. uucico then waits for the modem to return the string CONNECT, which

signals that a connection with the remote modem has been established successfully.

12.3. UUCP Con�guration Files 197

Often, the modem fails to connect to the remote system, for instance if the other system

is talking to someone else and the line is busy. In this case, the modem will return some

error message indicating the reason. Modem chats are not capable to detect such messages;

uucico will continue to wait for the expected string until it times out. The UUCP log �le

will therefore only show a bland \timed out in chat script" instead of the true reason.

However, Taylor UUCP allows you to tell uucico about these error messages using the

chat-fail command as shown above. When uucico detects a chat-fail string while executing

the modem chat, it aborts the call, and logs the error message in the UUCP log �le.

The last command in the example shown above tells UUCP to toggle the DTR line before

starting the modem chat. Most modems can be con�gured to go on-hook when detecting a

change on the DTR line, and enter command mode.10

12.3.9 UUCP Over TCP

Absurd as it may sound at the �rst moment, using UUCP to transfer data over TCP not

that bad an idea, especially when transferring large amount of data such as Usenet news. On

TCP-based links, news is generally exchanged using the NNTP protocol, where articles are

requested and sent individually, without compression or any other optimization. Although

adequate for large sites with several concurrent newsfeeds, this technique is very unfavorable

for small sites that receive their news over a slow connection such as ISDN. These sites will

usually want to combine the qualities of TCP with the advantages of sending news in large

batches, which can be compressed and thus transferred with very low overhead. A standard

way to transfer these batches is to use UUCP over TCP.

In sys, you would specify a system to be called via TCP in the following way:

system gmu

address news.groucho.edu

time Any

port tcp-conn

chat ogin: vstout word: clouseau

The address command gives the IP address of the host, or its fully quali�ed domain

name. The corresponding port entry would read:

port tcp-conn

type tcp

service 540

10You can also con�gure some modems to reset themselves when detecting a transition on DTR. Some of

them, however, don't seem to like this, and occasionally get hung.

12.4. The Do's and Dont's of UUCP { Tuning Permissions 198

The entry states that a TCP connection should be used when a sys entry references

tcp-conn, and that uucico should attempt to connect to the TCP network port 540 on the

remote host. This is the default port number of the UUCP service. Instead of the port

number, you may also give a symbolic port name to the service command. The port number

corresponding to this name will be looked up in /etc/services. The common name for the

UUCP service is uucpd.

12.3.10 Using a Direct Connection

Assume you use a direct line connecting your system vstout to tiny. Very much like in the

modem case, you have to write a system entry in the sys �le. The port command identi�es

the serial port tiny is hooked up to.

system tiny

time Any

port direct1

speed 38400

chat ogin: cathcart word: catch22

In the port �le, you have to describe the serial port for the direct connection. A dialer

entry is not needed, because there's no need for dialing.

port direct1

type direct

speed 38400

12.4 The Do's and Dont's of UUCP { Tuning Permissions

12.4.1 Command Execution

UUCP's task is to copy �les from one system to another, and to request execution of certain

commands on remote hosts. Of course, you as an administrator would want to control what

rights you grant other systems { allowing them to execute any command on your system is

de�nitely not a good idea.

By default, the only commands Taylor UUCP allows other systems to execute on your

machine are rmail and rnews, which are commonly used to to exchange email and Usent

news over UUCP. The default search path used by uuxqt is a compile-time option, but

should usually contain /bin, /usr/bin, and /usr/local/bin. To change the set of commands

for a particular system, you can use the commands keyword in the sys �le. Similarly, the

12.4. The Do's and Dont's of UUCP { Tuning Permissions 199

search path can be changed with the command-path statement. For instance, you may want

to allow system pablo to execute the rsmtp command in addition to rmail and rnews:11

system pablo

...

commands rmail rnews rsmtp

12.4.2 File Transfers

Taylor UUCP also allows you to �ne-tune �le transfers in great detail. At one extreme,

you can disable transfers to and from a particular system. Just set request to no, and the

remote system will not be able either to retrieve �les from your system or send it any �les.

Similarly, you can prohibit your users from transferring �les to or from a system by setting

transfer to no. By default, users on both the local and the remote system are allowed to

up- and download �les.

In addition, you can con�gure the directories to and from which �les may be copied.

Usually, you will want to restrict access from remote systems to a single directory hierarchy,

but still allow your users to send �les from their home directory. Commonly, remote users

will be allowed to receive �les only from the public UUCP directory, /var/spool/uucppublic.

This is the traditional place to make �les publicly available; very much like FTP servers on

the Internet. It is commonly referred to using the tilde character.

Therefore, Taylor UUCP provides four di�erent commands to con�gure the directories

for sending and receiving �les. They are local-send, which speci�es the list of directories a

user may ask UUCP to send �les from; local-receive, which gives the the list of directories a

user may ask to receive �les to; and remote-send and remote-receive, which do the analogous

for requests from a foreign system. Consider the following example:

system pablo

...

local-send /home ~

local-receive /home ~/receive

remote-send ~ !~/incoming !~/receive

remote-receive ~/incoming

The local-send command allows users on your host to send any �les below /home and

from the public UUCP directory to pablo. The local-receive command allows them to

receive �les either to the world-writable receive directory in the uucppublic, or any world-

writable directory below /home. The remote-send directive allows pablo to request �les

11rsmtp is used to deliver mail with batched SMTP. This is described in the mail chapters.

12.4. The Do's and Dont's of UUCP { Tuning Permissions 200

from /var/spool/uucppublic, except for �les below the incoming and receive directories. This

is signaled to uucico by preceding the directory names with exclamation marks. Finally,

the last line allows pablo to upload any �les to incoming.

One of the biggest problems with �le transfers using UUCP is that will only receive

�les to directories that are world-writable. This may tempt some users to set up traps for

other users, etc. However, there's no way escaping this problem except disabling UUCP �le

transfers altogether.

12.4.3 Forwarding

UUCP provides a mechanism to have other systems execute �le transfers on your behalf.

For instance, this allows you to make seci retrieve a �le from uchile for you, and send it

to your system. The following command would achieve this:

$ uucp -r seci!uchile!~/find-ls.gz ~/uchile.files.gz

This technique of passing a job through several systems is called forwarding. In the

above example, the reason to use forwarding may be that seci has UUCP access to uchile,

but your host doesn't. However, if you run a UUCP system, you would want to limit the

forwarding service to a few hosts you trust not to run up a horrendous phone bill by making

you download the latest X11R6 source release for them.

By default, Taylor UUCP disallows forwarding altogether. To enable forwarding for a

particular system, you can use the forward command. This command speci�es a list of

sites the system may request you to forward jobs to and from. For instance, the UUCP

administrator of seci would have to add the following lines to the sys �le to allow pablo

to request �les from uchile:

####################

pablo

system pablo

...

forward uchile

####################

uchile

system uchile

...

forward-to pablo

The forward-to entry for uchile is necessary so that any �les returned by it are actually

passed on to pablo. Otherwise UUCP would drop them. This entry uses a variation of the

12.5. Setting up your System for Dialing in 201

forward command that permits uchile only to send �les to pablo through seci; not the

other way round.

To permit forwarding to any system, use the special keyword ANY (capital letters

required).

12.5 Setting up your System for Dialing in

If you want to set up your site for dialing in, you have to permit logins on your serial port,

and customize some system �les to provide UUCP accounts. This will be the topic of the

current section.

12.5.1 Setting up getty

If you want to use a serial line as a dialin port, you have to enable a getty process on

this port. However, some getty implementations aren't really suitable for this, because you

usually want to use a serial port for dialing in and out. You therefore have to make sure

to use a getty that is able to share the line with other programs like uucico, or minicom.

One program that does this is uugetty from the getty ps package. Most Linux distributions

have it; check for uugetty in your /sbin directory. Another program I am aware of is Gert

Doering's mgetty, which also supports reception of facsimiles. You can also obtain the latest

versions of these from sunsite.unc.edu as either binary or source.

Explaining the di�erences in the way uugetty and mgetty handle logins is beyond the

scope of this little section; for more information, please refer to the Serial HOWTO by Grag

Hankins, as well as the documentation that comes along with getty ps and mgetty.

12.5.2 Providing UUCP Accounts

Next, you have to set up user accounts that let remote sites log into your system and

establish a UUCP connection. Generally, you will provide a separate login name to each

system that polls you. When setting up an account for system pablo, you would probably

give it Upablo as the user name.

For systems that dial in through the serial port, you usually have to add these accounts

to the system password �le, /etc/passwd. A good practice is to put all UUCP logins in a

special group such as uuguest. The account's home directory should be set to the public

spool directory /var/spool/uucppublic; its login shell must be uucico.

12.5. Setting up your System for Dialing in 202

If you have the shadow password suite installed, you can do this with the useradd com-

mand:

useradd -d /var/spool/uucppublic -G uuguest -s /usr/lib/uucp/uucico Upablo

If you don't use the shadow password suite, you probably have to edit /etc/passwd by

hand, adding a line like that shown below, where 5000 and 150 are the numerical uid and

gid assigned to user Upablo and group uuguest, respectively.

Upablo:x:5000:150:UUCP Account:/var/spool/uucppublic:/usr/lib/uucp/uucico

After installing the account, you have to activate it by setting its password with the

passwd command.

To serve UUCP systems that connect to your site over TCP, you have to set up inetd

to handle incoming connections on the uucp port. You do this by adding the following line

to /etc/inetd.conf:12

uucp stream tcp nowait root /usr/sbin/tcpd /usr/lib/uucp/uucico -l

The -l option makes uucico perform its own login authorization. It will prompt for

a login name and a password just like the standard login program, but will rely on its

private password database instead of /etc/passwd. This private password �le is named

/usr/lib/uucp/passwd and contains pairs of login names and passwords:

Upablo IslaNegra

Ulorca co'rdoba

Of course, this �le must be owned by uucp and have permissions of 600.

If this database sounds like such a good idea you would like to use on normal serial

logins, too, you will be disappointed to hear that this isn't possible at the moment without

major contortions. First o�, you need Taylor UUCP 1.05 for this, because it allows getty

to pass the login name of the calling user to uucico using the -u option.13 Then, you have

to trick the getty you are using into invoking uucico instead of the usual /bin/login. With

getty ps, you can do this by setting the LOGIN option in the con�guration �le. However,

this disables interactive logins altogether. mgetty, on the other hand, has a nice feature that

allows you to invoke di�erent login commands based on the name the user provided. For

12Note that usually, tcpd has mode 700, so that you must invoke it as user root, not uucp as you would

usually do.
13The -u option is present in 1.04, too, but is only a no-op.

12.5. Setting up your System for Dialing in 203

instance, you can tell mgetty to use uucico for all users that provide a login name beginning

with a capital U, but let everyone else be handled by the standard login command.

To protect your UUCP users from callers giving a false system name and snar�ng all

their mail, you should add called-login commands to each system entry in the sys �le. This

is described in section Protecting Yourself Against Swindlers above.

12.5.3 Protecting Yourself Against Swindlers

One of the biggest problems about UUCP is that the calling system can lie about its name;

it announces its name to the called system after logging in, but the server doesn't have a

way to check this. Thus, an attacker could log into his or her own UUCP account, pretend

to be someone else, and pick up that other site's mail. This is particularly troublesome if

you o�er login via anonymous UUCP, where the password is made public.

Unless you know you can trust all sites that call your system to be honest, you must

guard against this sort of impostors. The cure against this disease is to require each system

to use a particular login name by specifying a called-login in sys. A sample system entry

may look like this:

system pablo

... usual options ...

called-login Upablo

The upshot of this is that whenever a system logs in and pretends it is pablo, uucico

will check whether it has logged in asUpablo. If it hasn't, the calling system will be turned

down, and the connection is dropped. You should make it a habit to add the called-login

command to every system entry you add to your sys �le. It is important that you do this

for all sytems, regardless of whether they will ever call your site or not. For those sites that

never call you, you should probably set called-login to some totally bogus user name, such

as neverlogsin.

12.5.4 Be Paranoid { Call Sequence Checks

Another way to fend o� and detect impostors is to use call sequence checks. Call sequence

checks help you protect against intruders that somehow managed to �nd out the password

you log into your UUCP system with.

When using call sequence checks, both machines keep track of the number of connections

established so far. It is incremented with each connection. After logging in, the caller sends

its call sequence number, and the callee checks it against its own number. If they don't

12.5. Setting up your System for Dialing in 204

match, the connection attempt will be rejected. If the initial number is chosen at random,

attackers will have a hard time guessing the correct call sequence number.

But call sequence checks do more for you than this: even if some very clever person

should detect your call sequence number as well as your password, you will �nd this out.

When the attacker call your UUCP feed and steals your mail, this will increase the feeds

call sequence number by one. The next time you call your feed and try to log in, the remote

uucico will refuse you, because the numbers don't match anymore!

If you have enabled call sequence checks, you should check your log �les regularly for

error messages that hint at possible attacks. If your system rejects the call sequence number

the calling system o�ers it, uucico will put a message into the log �le saying something like

\Out of sequence call rejected". If your system is rejected by its feed because the sequence

numbers are out of sync, it will put a message in the log �le saying \Handshake failed

(RBADSEQ)".

To enable call sequence checks, you have to add following command to the system entry:

enable call sequence checks

sequence true

Beside this, you have to create the �le containing the sequence number itself. Taylor

UUCP keeps the sequence number is in a �le called .Sequence in the remote site's spool

directory. It must be owned by uucp, and must be mode 600 (i.e. readable and writeable

only by uucp). It is best to initialize this �le with an arbitrary, agreed-upon start value.

Otherwise, an attacker might manage to guess the number by trying out all values smaller

than, say, 60.

cd /var/spool/uucp/pablo

echo 94316 > .Sequence

chmod 600 .Sequence

chown uucp.uucp .Sequence

Of course, the remote site has to enable call sequence checks as well, and start by using

exactly the same sequence number as you.

12.5.5 Anonymous UUCP

If you want to provide anonymous UUCP access to your system, you �rst have to set up a

special account for it as described above. A common practive is to give it a login name and

a password of uucp.

12.6. UUCP Low-Level Protocols 205

In addition, you have to set a few of the security options for unknown systems. For

instance, you may want to prohibit them from executing any commands on your system.

However, you cannot set these parameters in a sys �le entry, because the system command

requires the system's name, which you don't have. Taylor UUCP solves this dilemma

through the unknown command. unknown can be used in the con�g �le to specify any

command that can usually appear in a system entry:

unknown remote-receive ~/incoming

unknown remote-send ~/pub

unknown max-remote-debug none

unknown command-path /usr/lib/uucp/anon-bin

unknown commands rmail

This will restrict unknown systems to downloading �les from below the pub directory and

uploading �les to the incoming directory below /var/spool/uucppublic. The next line will

make uucico ignore any requests from the remote system to turn on debugging locally. The

last two lines permit unknown systems to execute rmail; but the command path speci�ed

makes uucico look for the rmail command in a private directory named anon-bin only.

This allows you to provide some special rmail that, for instance, forwards all mail to the

super-user for examination. This allows anonymous users to reach the maintainer of the

system, but prevents them at the same time from injecting any mail to other sites.

To enable anonymous UUCP, you must specify at least one unknown statement in con�g.

Otherwise uucico will reject any unknown systems.

12.6 UUCP Low-Level Protocols

To negotiate session control and �le transfers with the remote end, uucico uses a set of

standardized messages. This is often referred to as the high-level protocol. During the

initialization phase and the hangup phase these are simply sent across as strings. However,

during the real transfer phase, an additional low-level protocol is employed which is mostly

transparent to the higher levels. This is to make error checks possible when using unreliable

lines, for instance.

12.6.1 Protocol Overview

As UUCP is used over di�erent types of connections, such as serial lines or TCP, or even

X.25, speci�c low-level protocols are needed. In addition, several implementations of UUCP

have introduced di�erent protocols that do roughly the same thing.

12.6. UUCP Low-Level Protocols 206

Protocols can be divided into two categories: streaming and packet-oriented protocols.

Protocols of the latter variety transfer a �le as a whole, possibly computing a checksum

over it. This is nearly free of any overhead, but requires a reliable connection, because any

error will cause the whole �le to be retransmitted. These protocols are commonly used

over TCP connections, but are not suitable for use over telephone lines. Although modern

modems do quite a good job at error correction, they are not perfect, nor is there any error

detection between your computer and the modem.

On the other hand, packet protocols split up the �le into several chunks of equal size.

Each packet is sent and received separately, a checksum is computed, and an acknowledge-

ment is returned to the sender. To make this more e�cient, sliding-window protocols were

invented, which allow for a limited number (a window) of outstanding acknoledgements at

any time. This greatly reduces the amount of time uucico has to wait during a transmission.

Still, the relatively large overhead compared to a streaming protocol make packet protocls

ine�cient for use over TCP.

The width of the data path also makes a di�erence. Sometimes, sending eight-bit char-

acters over a serial connection is impossible, for instance if the connection goes through a

stupid terminal server. In this case, characters with the eighth bit set have to be quoted

on transmission. When you transmit eight-bit characters over a seven-bit connection, they

have to be Under worst-case assumptions, this doubles the amount of data to be transmit-

ted, although compression done by the hardware may compensate for this. Lines that can

transmit arbitrary eight-bit characters are usually called eight-bit clean. This is the case

for all TCP connections, as well as for most modem connections.

The following protocols are available with Taylor UUCP 1.04:

g This is the most common protocol and should be understood by virtually

all uucico's. It does thorough error checking and is therefore well-suited

for noisy telephone links. g requires an eight-bit clean connection. It is a

packet-oriented protocol which uses a sliding-window technique.

i This is a bidirectional packet protocol which can send and receive �les at

the same time. It requires a full-duplex connection and an eight-bit clean

data path. It is currently understood only by Taylor UUCP.

t This is a protocol intended for use over a TCP connection, or other truly

error-free networks. It uses packets of 1024 bytes and requires an eight-bit

clean connection.

e This should basically do the same as t. The main di�erence is that e is a

streaming protocol.

12.6. UUCP Low-Level Protocols 207

f This is intended for use with reliable X.25 connections. It is a streaming

protocol and expects a seven-bit data path. Eight-bit characters are quoted,

which can make it very ine�cient.

G This is the System V Release 4 version of the g protocol. It is also understood

by some other versions of UUCP.

a This protocol is similiar to ZMODEM. It requires an eight bit connection,

but quotes certain control characters like XON and XOFF.

12.6.2 Tuning the Transmission Protocol

All protocols allow for some variation in packet sizes, timeouts, and the like. Usually, the

defaults provided work well under standard circumstances, but may not be optimal for your

situation. The g protocol, for instance, uses window sizes from 1 to 7, and packet sizes in

powers of 2 ranging from 64 through 4096.14 If your telephone line is usually so noisy that

it drops more than 5 percent all packets, you should probably lower the packet size and

shrink the window. On the other hand, on very good telephone lines the protocol overhead

of sending ACKs for every 128 bytes may prove wasteful, so that you might increase the

packet size to 512 or even 1024.

Taylor UUCP provides a meachanism to suit your needs by tuning these parameters

with the protocol-parameter command in the sys �le. For instance, to set the g protocol's

packet size to 512 when talking to pablo, you have to add:

system pablo

...

protocol-parameter g packet-size 512

The tunable parameters and their names vary from protocol to protocol. For a complete

list of them please refer to the documentation enclosed in the Taylor UUCP source.

12.6.3 Selecting Speci�c Protocols

Not every implementation of uucico speaks and understand each protocol, so during the

initial handshake phase, both processes have to agree on a common protocol. The master

uucico o�ers the slave a list of supported protocols by sending Pprotlist , from which the

slave may pick one.

14Most binaries included in Linux distributions default to a window size of 7 and 128 byte packets.

12.7. Troubleshooting 208

Based on the type of port used (modem, TCP, or direct), uucico will compose a default

list of protocols. For modem and direct connections, this list usually comprises i, a, g, G,

and j. For TCP connections, the list is t, e, i, a, g, G, j, and f. You can override this default

list with the protocols command, which may be speci�ed in a system entry as well as a port

entry. For instance, you might edit the port �le entry for your modem port like this:

port serial1

...

protocols igG

This will require any incoming or outgoing connection through this port to use i, g, or

G. If the remote system does not support any of these, the conversation will fail.

12.7 Troubleshooting

This section describes what may go wrong with your UUCP connection, and makes sugges-

tions where to look for the error. However, the questions were compiled o� the top of my

head. There's much more that can go wrong.

In any case, enable debugging with -xall, and take a look at the output in Debug in

the spool directory. It should help you to quickly recognize where the problem lies. Also, I

have always found it helpful to turn on my modem's speaker when it didn't connect. With

Hayes-compatible modems, this is accomplished by adding \ATL1M1 OK" to the modem chat

in the dial �le.

The �rst check always should be whether all �le permissions are set correctly.

uucico should be setuid uucp, and all �les in /usr/lib/uucp, /var/spool/uucp and

/var/spool/uucppublic should be owned by uucp. There are also some hidden �les15 in

the spool directory which must be owned by uucp as well.

uucico keeps saying \Wrong time to call": This probably means that in the system

entry in sys, you didn't specify a time command that details when the remote system may

be called, or you gave one which actually forbids calling at the current time. If no call

schedule is given, uucico assumes that the system may never be called.

uucico complains that the site is already locked: This means that uucico detected

a lock �le for the remote system in /var/spool/uucp. The lock �le may be from an earlier

call to the system that crashed, or was killed. However, it's also likely that there's another

uucico process sitting around that is trying to dial the remote system and got stuck in a

15That is, �les whose name begins with a dot. Such �les aren't normally displayed by the ls command.

12.7. Troubleshooting 209

chat script, etc. If this uucico process doesn't succeed in connecting to the remote system,

kill it with a hangup signal, and remove any lock �les it left lying around.

I can connect to the remote site, but the chat script fails: Look at the text

you receive from the remote site. If it's garbled, this might be a speed-related problem.

Otherwise, con�rm if it really agrees with what your chat script expects. Remember, the

chat script starts with an expect string. If you receive the login prompt, then send your

name, but never get the password prompt, insert some delays before sending it, or even

in-between the letters. You might be too fast for your modem.

My modem does not dial: If your modem doesn't indicate that the DTR line has

been raised when uucico calls out, you possibly haven't given the right device to uucico.

If your modem recognizes DTR, check with a terminal program that you can write to it.

If this works, turn on echoing with \E at the start of the modem chat. If it doesn't echo

your commands during the modem chat, check if your line speed is too high or low for your

modem. If you see the echo, check if you have disabled modem responses, or set them to

number codes. Verify that the chat script itself is correct. Remember that you have to

write two backslashes to send one to the modem.

My modem tries to dial, but doesn't get out: Insert a delay into the phone

number. This is especially useful when dialing out from a company's internal telephone

net. For people in Europe, who usually dial pulse-tone, try touch-tone. In some countries,

postal services have been upgrading their nets recently. Touch-tone sometimes helps.

I log �le says I have extremely high packet loss rates: This looks like a speed

problem. Maybe the link between computer and modem is too slow (remember to adapt

it to the highest e�ective rate possible)? Or is it your hardware that is too slow to service

interrupts in time? With a NSC 16550A chipset on your serial port, 38kbps are said to work

reasonably well; however, without FIFOs (like 16450 chips), 9600 bps is the limit. Also,

you should make sure hardware handshake is enabled on the serial line.

Another likely cause is that hardware handshake isn't enabled on the port. Taylor

UUCP 1.04 has no provisions for turning on RTS/CTS handshake. You have to enable this

explicitly from rc.serial using the following command:

$ stty crtscts < /dev/cua3

I can log in, but handshake fails: Well, there can be a number of problems. The

output in the log �le should tell you a lot. Look at what protocols the remote site o�ers (It

sends a string Pprotlist during the handshake). Maybe they don't have any in common

(did you select any protocols in sys or port?).

If the remote system sends RLCK, there is a stale lock�le for you on the remote system.

12.8. Log Files 210

If it's not because you're already connected to the remote system on a di�erent line, ask to

have it removed.

If it sends RBADSEQ, the other site has conversation count checks enabled for you, but

numbers didn't match. If it sends RLOGIN, you were not permitted to login under this id.

12.8 Log Files

When compiling the UUCP suite to use Taylor-style logging, you have only three global log

�les, all of which reside in the spool directory. The main log �le is named Log and contains

all information about connections established and �les transferred. A typical excerpt looks

like this (after a little reformatting to make it �t the page):

uucico pablo - (1994-05-28 17:15:01.66 539) Calling system pablo (port cua3)

uucico pablo - (1994-05-28 17:15:39.25 539) Login successful

uucico pablo - (1994-05-28 17:15:39.90 539) Handshake successful

(protocol 'g' packet size 1024 window 7)

uucico pablo postmaster (1994-05-28 17:15:43.65 539) Receiving D.pabloB04aj

uucico pablo postmaster (1994-05-28 17:15:46.51 539) Receiving X.pabloX04ai

uucico pablo postmaster (1994-05-28 17:15:48.91 539) Receiving D.pabloB04at

uucico pablo postmaster (1994-05-28 17:15:51.52 539) Receiving X.pabloX04as

uucico pablo postmaster (1994-05-28 17:15:54.01 539) Receiving D.pabloB04c2

uucico pablo postmaster (1994-05-28 17:15:57.17 539) Receiving X.pabloX04c1

uucico pablo - (1994-05-28 17:15:59.05 539) Protocol 'g' packets: sent 15,

resent 0, received 32

uucico pablo - (1994-05-28 17:16:02.50 539) Call complete (26 seconds)

uuxqt pablo postmaster (1994-05-28 17:16:11.41 546) Executing X.pabloX04ai

(rmail okir)

uuxqt pablo postmaster (1994-05-28 17:16:13.30 546) Executing X.pabloX04as

(rmail okir)

uuxqt pablo postmaster (1994-05-28 17:16:13.51 546) Executing X.pabloX04c1

(rmail okir)

The next important log �le is Stats, which lists �le transfer statistics. The section of

Stats corresponding to the above transfer looks like this:

postmaster pablo (1994-05-28 17:15:44.78)

received 1714 bytes in 1.802 seconds (951 bytes/sec)

postmaster pablo (1994-05-28 17:15:46.66)

received 57 bytes in 0.634 seconds (89 bytes/sec)

postmaster pablo (1994-05-28 17:15:49.91)

received 1898 bytes in 1.599 seconds (1186 bytes/sec)

12.8. Log Files 211

postmaster pablo (1994-05-28 17:15:51.67)

received 65 bytes in 0.555 seconds (117 bytes/sec)

postmaster pablo (1994-05-28 17:15:55.71)

received 3217 bytes in 2.254 seconds (1427 bytes/sec)

postmaster pablo (1994-05-28 17:15:57.31)

received 65 bytes in 0.590 seconds (110 bytes/sec)

Again, the lines have been split to make it �t the page.

The third �le if Debug. This is the place where debugging information is written. If you

use debugging, you should make sure that this �le has a protection mode of 600. Depending

on the debug mode you selected, it may contain the login and password you use to connect

to the remote system.

Some UUCP binaries included in Linux distributions have been compiled to use

HDB-style logging. HDB UUCP uses a whole bunch of log �les stored below

/var/spool/uucp/.Log. This directory contains three more directories, named uucico, uuxqt,

and uux. They contain the logging output generated by each of the corresponding com-

mands, sorted into di�erent �les for each site. Thus, output from uucico when calling

site pablo will go into .Log/uucico/pablo, while the subsequent uuxqt run will write to

.Log/uuxqt/pablo. The lines written to the various lo�les are however the same as with

Taylor logging.

When you enable debugging output with HDB-style logging compiled in, it will go to

the .Admin directory below /var/spool/uucp. During outgoing calls, debugging information

will be sent to .Admin/audit.local, while the output from uucico when someone calls in will

go to .Admin/audit.

Chapter 13

Electronic Mail

One of the most prominent uses of networking since the �rst networks were devised, has

been eletronic mail. It started as a simple service that copied a �le from one machine to

another, and appended it to the recipient's mailbox �le. Basically, this is still what email is

all about, although an ever growing net with its complex routing requirements and its ever

increasing load of messages has made a more elaborate scheme necessary.

Various standards of mail exchange have been devised. Sites on the Internet adhere to

one laid out in RFC 822, augmented by some RFCs that describe a machine-independent

way of transferring special characters, and the like. Much thought has also been given

recently to \multi-media mail", which deals with including pictures and sound in mail

messages. Another standard, X.400, has been de�ned by CCITT.

Quite a number of mail transport programs have been implemented for un?x systems.

One of the best-known is the University of Berkeley's sendmail, which is used on a number

of platforms. The original author was Eric Allman, who is now actively working on the

sendmail team again. There are two Linux ports of sendmail-5.56c available, one of which

will be described in chapter 15. The sendmail version currently being developed is 8.6.5.

The mail agent most commonly used with Linux is smail-3.1.28, written and copyrighted

by Curt Landon Noll and Ronald S. Karr. This is the one included in most Linux distribu-

tions. In the following, we will refer to it simply as smail, although there are other versions

of it which are entirely di�erent, and which we don't describe here.

Compared to sendmail, smail is rather young. When handling mail for a small site

without complicated routing requirements, their capabilities are pretty close. For large sites,

however, sendmail always wins, because its con�guration scheme is much more exible.

Both smail and sendmail support a set of con�guration �les that have to be customized.

Apart from the information that is required to make the mail subsystem run (such as the

212

13.1. What is a Mail Message? 213

local hostname), there are many more parameters that may be tuned. sendmail 's main

con�guration �le is very hard to understand at �rst. It looks as if your cat had taken a nap

on your keyboard with the shift key pressed. smail con�guration �les are more structured

and easier to understand than sendmail 's, but don't give the user as much power in tuning

the mailer's behavior. However, for small UUCP or Internet sites the work required in

setting up any of them is roughly the same.

In this chapter, we will deal with what email is and what issues you as an administrator

will have to deal with. Chapters 14 and 15 will give instructions on setting up smail and

sendmail for the �rst time. The information provided there should su�ce to get smaller

sites operational, but there are many more options, and you can spend many happy hours

in front of your computer con�guring the fanciest features.

Toward the end of the current chapter we will briey cover setting up elm, a very common

mail user agent on many un?xish systems, including Linux.

For more information about issues speci�c to electronic mail on Linux, please refer to the

Electronic Mail HOWTO by Vince Skahan, which is posted to comp.os.linux.announce

regularly. The source distributions of elm, smail and sendmail also contain very extensive

documentation that should answer most of your questions on setting them up. If you are

looking for information on email in general, there's a number of RFCs that deal with this

topic. They are listed in the bibliography at the end of the book.

13.1 What is a Mail Message?

A Mail message generally consists of a message body, which is the text the sender wrote,

and special data specifying recipients, transport medium, etc., very much like what you see

when you look at a letter's envelope.

This administrative data falls into two categories; in the �rst category is any data that

is speci�c to the transport medium, like the address of sender and recipient. It is therefore

called the envelope. It may be transformed by the transport software as the message is

passed along.

The second variety is any data necessary for handling the mail message, which is not

particular to any transport mechanism, such as the message's subject line, a list of all

recipients, and the date the message was sent. In many networks, it has become standard

to prepend this data to the mail message, forming the so-called mail header. It is o�set

from the mail body by an empty line.1

1It is customary to append a signature or .sig to a mail message, usually containing information on the

author, along with a joke or a motto. It is o�set from the mail message by a line containing \-- ".

13.1. What is a Mail Message? 214

Most mail transport software in the un?x world uses a header format outlined in a

RFC 822. Its original purpose was to specify a standard for use on the ARPANET, but

since it was designed to be independent from any environment, it has been easily adapted

to other networks, including many UUCP-based networks.

RFC 822 however is only the greatest common denominator. More recent standards have

been conceived to cope with growing needs as, for example, data encryption, international

character set support, and multi-media mail extensions (MIME).

In all these standards, the header consists of several lines, separated by newline charac-

ters. A line is made up of a �eld name, beginning in column one, and the �eld itself, o�set

by a colon and white space. The format and semantics of each �eld vary depending on the

�eld name. A header �eld may be continued across a newline, if the next line begins with

a TAB. Fields can appear in any order.

A typical mail header may look like this:

From brewhq.swb.de!ora.com!andyo Wed Apr 13 00:17:03 1994

Return-Path: <brewhq.swb.de!ora.com!andyo>

Received: from brewhq.swb.de by monad.swb.de with uucp

(Smail3.1.28.1 #6) id m0pqqlT-00023aB; Wed, 13 Apr 94 00:17 MET DST

Received: from ora.com (ruby.ora.com) by brewhq.swb.de with smtp

(Smail3.1.28.1 #28.6) id <m0pqoQr-0008qhC>; Tue, 12 Apr 94 21:47 MEST

Received: by ruby.ora.com (8.6.8/8.6.4) id RAA26438; Tue, 12 Apr 94 15:56 -0400

Date: Tue, 12 Apr 1994 15:56:49 -0400

Message-Id: <199404121956.PAA07787@ruby>

From: andyo@ora.com (Andy Oram)

To: okir@monad.swb.de

Subject: Re: Your RPC section

Usually, all necessary header �elds are generated by the mailer interface you use, like

elm, pine, mush, or mailx. Some however are optional, and may be added by the user. elm,

for example, allows you to edit part of the message header. Others are added by the mail

transport software. A list of common header �elds and their meaning are given below:

From: This contains the sender's email address, and possibly the \real name". A

complete zoo of formats is used here.

To: This is the recipient's email address.

Subject: Describes the content of the mail in a few words. At least that's what it

should do.

Date: The date the mail was sent.

13.1. What is a Mail Message? 215

Reply-To: Speci�es the address the sender wants the recipient's reply directed to. This

may be useful if you have several accounts, but want to receive the bulk of

mail only on the one you use most frequently. This �eld is optional.

Organization:

The organization that owns the machine from which the mail originates.

If your machine is owned by you privately, either leave this out, or insert

\private" or some complete nonsense. This �eld is optional.

Message-ID: A string generated by mail transport on the originating system. It is unique

to this message.

Received: Every site that processes your mail (including the machines of sender and

recipient) inserts such a �eld into the header, giving its site name, a message

id, time and date it received the message, which site it is from, and which

transport software was used. This is so that you can trace which route the

message took, and can complain to the person responsible if something went

wrong.

X-anything: No mail-related programs should complain about any header which starts

with X-. It is used to implement additional features that have not yet made

it into an RFC, or never will. This is used by the Linux Activists mailing

list, for example, where the channel is selected by the X-Mn-Key: header

�eld.

The one exception to this structure is the very �rst line. It starts with the keyword

From which is followed by a blank instead of a colon. To distinguish it from the ordinary

From: �eld, it is frequently referred to as From . It contains the route the message has

taken in UUCP bang-path style (explained below), time and date when it was received by

the last machine having processed it, and an optional part specifying which host it was

received from. Since this �eld is regenerated by every system that processes the message,

it is somtimes subsumed under the envelope data.

The From �eld is there for backward compatibilty with some older mailers, but is not

used very much anymore, except by mail user interfaces that rely on it to mark the beginning

of a message in the user's mailbox. To avoid potential trouble with lines in the message

body that begin with \From ", too, it has become standard procedure to escape any such

occurence by preceding it with \>".

13.2. How is Mail Delivered? 216

13.2 How is Mail Delivered?

Generally, you will compose mail using a mailer interface like mail or mailx; or more sophis-

ticated ones like elm, mush, or pine. These programs are called mail user agents, or MUA's

for short. If you send a mail message, the interface program will in most cases hand it to

another program for delivery. This is called the mail transport agent, or MTA. On some

systems, there are di�erent mail transport agents for local and remote delivery; on others,

there is only one. The command for remote delivery is usually called rmail, the other is

called lmail (if it exists).

Local delivery of mail is, of course, more than just appending the incoming message to

the recipient's mailxbox. Usually, the local MTA will understand aliasing (setting up local

recipient addresses pointing to other addresses), and forwarding (redirecting a user's mail to

some other destination). Also, messages that cannot be delivered must usually be bounced,

that is, returned to the sender along with some error message.

For remote delivery, the transport software used depends on the nature of the link. If

the mail must be delivered over a network using TCP/IP, SMTP is commonly used. SMTP

stands for Simple Mail Transfer Protocol, and is de�ned in RFC 788 and RFC 821. SMTP

usually connects to the recipient's machine directly, negotiating the message transfer with

the remote side's SMTP daemon.

In UUCP networks, mail will usually not be delivered directly, but rather be forwarded

to the destination host by a number of intermediate systems. To send a message over a

UUCP link, the sending MTA will usually execute rmail on the forwarding system using

uux, and feed it the message on standard input.

Since this is done for each message separately, it may produce a considerable work load

on a major mail hub, as well as clutter the UUCP spool queues with hundreds of small �les

taking up an unproportional amount of disk space.2 Some MTAs therefore allow you to

collect several messages for a remote system in a single batch �le. The batch �le contains

the SMTP commands that the local host would normally issue if a direct SMTP connection

was used. This is called BSMTP, or batched SMTP. The batch is then fed to the rsmtp or

bsmtp program on the remote system, which will process the input as if a normal SMTP

connection had occurred.

2This is because disk space is usually allocated in blocks of 1024 Bytes. So even a message of at most

400 Bytes will eat a full KB.

13.3. Email Addresses 217

13.3 Email Addresses

For electronic mail, an address is made up of at least the name of a machine handling

the person's mail, and a user identi�cation recognized by this system. This may be the

recipient's login name, but may also be anything else. Other mail addressing schemes, like

X.400, use a more general set of \attributes" which are used to look up the recipient's host

in an X.500 directory server.

The way a machine name is interpreted, i.e. at which site your message will �nally wind

up, and how to combine this name with the recipient's user name greatly depends on the

network you are on.

Internet sites adhere to the RFC 822 standard, which requires a notation of

user@host.domain, where host.domain is the host's fully quali�ed domain name. The

middle thing is called an \at" sign. Because this notation does not involve a route to the

destination host but gives the (unique) hostname instead, this is called an absolute address.

In the original UUCP environment, the prevalent form was path!host!user, where path

described a sequence of hosts the message had to travel before reaching the destination

host. This construct is called the bang path notation, because an exclamation mark is

loosely called a \bang". Today, many UUCP-based networks have adopted RFC 822, and

will understand this type of address.

Now, these two types of addressing don't mix too well. Assume an address of

hostA!user@hostB. It is not clear whether the `@' sign takes precedence over the path,

or vice versa: do we have to send the message to hostB, which mails it to hostA!user, or

should it be sent to hostA, which fowards it to user@hostB?

Addresses that mix di�erent types of address operators are called hybrid addresses. Most

notorious is the above example. It is usually resolved by giving the `@' sign precedence

over the path. In the above example, this means sending the message to hostB �rst.

However, there is a way to specify routes in RFC 822-conformant ways:

<@hostA,@hostB:user@hostC> denotes the address of user on hostC, where hostC is

to be reached through hostA and hostB (in that order). This type of address is freqeuently

called a route-addr address.

Then, there is the `%' address operator: user%hostB@hostA will �rst be sent to

hostA, which expands the rightmost (in this case, only) percent sign to an `@' sign. The

address is now user@hostB, and the mailer will happily forward your message to hostB

which delivers it to user. This type of address is sometimes referred to as \Ye Olde

ARPANET Kludge", and its use is discouraged. Nevertheless, many mail transport agents

generate this type of address.

13.4. How does Mail Routing Work? 218

Other networks have still di�erent means of addressing. DECnet-based networks, for

example, use two colons as an address separator, yielding an address of host ::user .3 Lastly,

the X.400 standard uses an entirely di�erent scheme, by describing a recipient by a set of

attribute-value pairs, like country and organization.

On FidoNet, each user is identi�ed by a code like 2:320/204.9, consisting of four num-

bers denoting zone (2 is for Europe), net (320 being Paris and Banlieue), node (the local

hub), and point (the individual user's PC). Fidonet addresses can be mapped to RFC 822;

the above would be written as Thomas.Quinot@p9.f204.n320.z2.�donet.org. Now

didn't I say domain names are easy to remember?

There are some implications to using these di�erent types of addressing which will be

described throughout the following sections. In a RFC 822 environment, however, you will

rarely use anything else than absolute addresses like user@host.domain.

13.4 How does Mail Routing Work?

The process of directing a message to the recipient's host is called routing. Apart from

�nding a path from the sending site to the destination, it involves error checking as well as

speed and cost optimization.

There is a big di�erence between the way a UUCP site handles routing, and the way

an Internet site does. On the Internet, the main job of directing data to the recipient host

(once it is known by it's IP address) is done by the IP networking layer, while in the UUCP

zone, the route has to be supplied by the user, or generated by the mail transfer agent.

13.4.1 Mail Routing on the Internet

On the Internet, it depends entirely on the destination host whether any speci�c mail routing

is performed at all. The default is to deliver the message to the destination host directly

by looking up its IP address, and leave the actual routing of the data to the IP transport

layer.

Most sites will usually want to direct all inbound mail to a highly available mail server

that is capable of handling all this tra�c, and have it distribute this mail locally. To

announce this service, the site publishes a so-called MX record for their local domain in the

DNS database. MX stands for Mail Exchanger and basically states that the server host is

willing to act as a mail forwarder for all machines in this domain. MX records may also

3When trying to reach a DECnet address from an RFC 822 environment, you may use

"host::user"@relay, where relay is the name of a known Internet-DECnet relay.

13.4. How does Mail Routing Work? 219

be used to handle tra�c for hosts that are not connected to the Internet themselves, like

UUCP networks, or company networks with hosts carrying con�dential information.

MX records also have a preference associated with them. This is a positive integer. If

several mail exchangers exist for one host, the mail transport agent will try to transfer the

message to the exchanger with the lowest preference value, and only if this fails will it try

a host with a higher value. If the local host is itself a mail exchanger for the destination

address, it must not forward messages to any MX hosts with a higher preference than its

own; this is a safe way of avoiding mail loops.

Suppose that an organization, say Foobar Inc., want all their mail handled by their

machine called mailhub. They will then have an MX record like this in the DNS database:

foobar.com IN MX 5 mailhub.foobar.com

This announcesmailhub.foobar.com as a mail exchanger for foobar.com with a pref-

erence value of 5. A host that wishes to deliver a message to joe@greenhouse.foobar.com

will check DNS for foobar.com, and �nds the MX record pointing at mailhub. If there's

no MX with a preference smaller than 5, the message will be delivered to mailhub, which

then dispatches it to greenhouse.

The above is really only a sketch of how MX records work. For more information on the

mail routing on the Internet, please refer to RFC 974.

13.4.2 Mail Routing in the UUCP World

Mail routing on UUCP networks is much more complicated than on the Internet, because

the transport software does not perform any routing itself. In earlier times, all mail had

to be addressed using bang paths. Bang paths speci�ed a list of hosts through which to

forward the message, separated by exclamation marks, and followed by the user's name. To

address a letter to Janet User on a machine named moria, you would have used the path

eek!swim!moria!janet. Whis would have sent the mail from your host to eek, from there

on to swim and �nally to moria.

The obvious drawback of this technique is that it requires you to remember much about

the network topology, fast links, etc. Much worse than that, changes in the network topol-

ogy | like links being deleted or hosts being removed | may cause messages to fail simply

because you weren't aware of the change. And �nally, in case you move to a di�erent place,

you will most likely have to update all these routes.

One thing, however, that made the use of source routing necessary was the presence of

ambiguous hostnames: For instance, assume there are two sites named moria, one in the

13.4. How does Mail Routing Work? 220

U.S., and one in France. Which site now does moria!janet refer to? This can be made

clear by specifying what path to reach moria through.

The �rst step in disambiguating hostnames was the founding of The UUCP Mapping

Project. It is located at Rutgers University, and registers all o�cial UUCP hostnames, along

with information on their UUCP neighbors and their geographic location, making sure no

hostname is used twice. The information gathered by the Mapping Project is published as

the Usenet Maps, which are distributed regularly through Usenet.4 A typical system entry

in a Map (after removing the comments) looks like this.

moria

bert(DAILY/2),

swim(WEEKLY)

This entry says that moria has a link to bert, which it calls twice a day, and swim,

which it calls weekly. We will come back to the Map �le format in more detail below.

Using the connectivity information provided in the maps, you can automatically generate

the full paths from your host to any destination site. This information is usually stored in

the paths �le, also called pathalias database sometimes. Assume the Maps state that you

can reach bert through ernie, then a pathalias entry for moria generated from the Map

snippet above may look like this:

moria ernie!bert!moria!%s

If you now give a destination address of janet@moria.uucp, your MTA will pick

the route shown above, and send the message to ernie with an envelope address of

bert!moria!janet.

Building a paths �le from the full Usenet maps is however not a very good idea. The

information provided in them is usually rather distorted, and occasionally out of date.

Therefore, only a number of major hosts use the complete UUCP world maps to build their

paths �le. Most sites only maintain routing information for sites in their neighborhood,

and send any mail to sites they don't �nd in their databases to a smarter host with more

complete routing information. This scheme is called smart-host routing. Hosts that have

only one UUCP mail link (so-called leaf sites) don't do any routing of their own; they rely

entirely on their smart-host.

4Maps for sites registered with The UUCP Mapping Project are distributed through the newsgroup

comp.mail.maps; other organizations may publish separate maps for their network.

13.4. How does Mail Routing Work? 221

13.4.3 Mixing UUCP and RFC 822

The best cure against the problems of mail routing in UUCP networks so far is the adoption

of the domain name system in UUCP networks. Of course, you can't query a name server

over UUCP. Nevertheless, many UUCP sites have formed small domains that coordinate

their routing internally. In the Maps, these domains announce one or two host as their mail

gateways, so that there doesn't have to be a map entry for each host in the domain. The

gateways handle all mail that ows into and out of the domain. The routing scheme inside

the domain is completely invisible to the outside world.

This works very well with the smart-host routing scheme described above. Global routing

information is maintained by the gateways only; minor hosts within a domain will get along

with only a small hand-written paths �le that lists the routes inside their domain, and the

route to the mail hub. Even the mail gateways do not have to have routing information for

every single UUCP host in the world anymore. Beside the complete routing information for

the domain they serve, they only need to have routes to entire domains in their databases

now. For instance, the pathalias entry shown below will route all mail for sites in the

sub.org domain to smurf:

.sub.org swim!smurf!%s

Any mail addressed to claire@jones.sub.org will be sent to swim with an envelope

address of smurf!jones!claire.

The hierarchical organization of the domain name space allows mail servers to mix more

speci�c routes with less speci�c ones. For instance, a system in France may have speci�c

routes for subdomains of fr, but route any mail for hosts in the us domain toward some

system in the U.S. In this way, domain-based routing (as this technique is called) greatly

reduces the size of routing datbases as well as te administrative overhead needed.

The main bene�t of using domain names in a UUCP environment, however, is that com-

pliance with RFC 822 permits easy gatewaying between UUCP networks and the Internet.

Many UUCP domains nowadays have a link with an Internet gateway that acts as their

smart-host. Sending messages across the Internet is faster, and routing information is much

more reliable because Internet hosts can use DNS instead of the Usenet Maps.

In order to be reachable from the Internet, UUCP-based domains usually have their

Internet gateway announce an MX record for them (MX records were described above).

For instance, assume that moria belongs to the orcnet.org domain. gcc2.groucho.edu

acts as their Internet gateway. moria would therefore use gcc2 as its smart-host, so that

all mail for foreign domains is delivered across the Internet. On the other hand, gcc2 would

announce an MX record for orcnet.org, and deliver all incoming mail for orcnet sites to

moria.

13.5. Pathalias and Map File Format 222

The only remaining problem is that the UUCP transport programs can't deal with fully

quali�ed domain names. Most UUCP suites were designed to cope with site names of up

to eight characters, some even less, and using non-alphanumeric characters such as dots is

completely out of the question for most.

Therefore, some mapping between RFC 822 names and UUCP hostnames is needed.

The way this mapping is done is completely implementation-dependent. One common way

of mapping FQDNs to UUCP names is to use the pathalias �le for this:

moria.orcnet.org ernie!bert!moria!%s

This will produce a pure UUCP-style bang path from an address that speci�es a fully

quali�ed domain name. Some mailers provide a special �les for this; sendmail, for instance,

uses the uucpxtable for this.

The reverse transformation (colloquially called domainizing) is sometimes required when

sending mail from a UUCP network to the Internet. As long as the mail sender uses the

fully quali�ed domain name in the destination address, this problem can be avoided by not

removing the domain name from the envelope address when forwarding the message to the

smart-host. However, there are still some UUCP sites that are not part of any domain.

They are usually domainized by appending the pseudo-domain uucp.

13.5 Pathalias and Map File Format

The pathalias database provides the main routing information in UUCP-based networks.

A typical entry looks like this (site name and path are separated by TABs):

moria.orcnet.org ernie!bert!moria!%s

moria ernie!bert!moria!%s

This makes any message tomoria be delivered via ernie and bert. Both moria's fully

quali�ed name and its UUCP name have to be given if the mailer does not have a separate

way to map between these name spaces.

If you want to direct all messages to hosts inside some domain to its mail relay, you may

also specify a path in the pathalias database, giving the domain name as target, preceded

by a dot. For example, if all hosts in the sub.org may be reached through swim!smurf,

the pathalias entry might look like this:

.sub.org swim!smurf!%s

13.5. Pathalias and Map File Format 223

Writing a pathalias �le is acceptable only when you are running a site that does not have

to do much routing. If you have to do routing for a large number of hosts, a better way is

to use the pathalias command to create the �le from map �les. Maps can be maintained

much easier, because you may simply add or remove a system by editing the system's map

entry, and re-create the map �le. Although the maps published by the Usenet Mapping

Project aren't used for routing very much anymore, smaller UUCP networks may provide

routing information in their own set of maps.

A map �le mainly consists of a list of sites, listing the sites each system polls or is polled

by. The system name begins in column one, and is followed by a comma-separated list of

links. The list may be continued across newlines if the next line begins with a tab. Each

link consists of the name of the site, followed by a cost given in brackets. The cost is an

arithmetic expression, made up of numbers and symbolic costs. Lines beginning with a

hash sign are ignored.

As an example, consider moria, which polls swim.twobirds.com twice a day, and

bert.sesame.com once per week. Moreover, the link to bert only uses a slow 2400bps

modem. moria's would publish the following maps entry:

moria.orcnet.org

bert.sesame.com(DAILY/2),

swim.twobirds.com(WEEKLY+LOW)

moria.orcnet.org = moria

The last line would make it known under its UUCP name, too. Note that it must be

DAILY/2, because calling twice a day actually halves the cost for this link.

Using the information from such map �les, pathalias is able to calculate optimal routes

to any destination site listed in the paths �le, and produce a pathalias database from this

which can then be used for routing to these sites.

pathalias provides a couple of other features like site-hiding (i.e. making sites accessible

only through a gateway) etc. See the manual page for pathalias for details, as well as a

complete list of link costs.

Comments in the map �le generally contain additional information on the sites described

in it. There is a rigid format in which to specify this, so that it can be retrieved from the

maps. For instance, a program called uuwho uses a database created from the map �les to

display this information in a nicely formatted way.

When you register your site with an organization that distributes map �les to its mem-

bers, you generally have to �ll out such a map entry.

13.6. Con�guring elm 224

Below is a sample map entry (in fact, it's the one for my site):

#N monad, monad.swb.de, monad.swb.sub.org

#S AT 486DX50; Linux 0.99

#O private

#C Olaf Kirch

#E okir@monad.swb.de

#P Kattreinstr. 38, D-64295 Darmstadt, FRG

#L 49 52 03 N / 08 38 40 E

#U brewhq

#W okir@monad.swb.de (Olaf Kirch); Sun Jul 25 16:59:32 MET DST 1993

#

monad brewhq(DAILY/2)

Domains

monad = monad.swb.de

monad = monad.swb.sub.org

The white space after the �rst two characters is a TAB. The meaning of most of the

�elds is pretty obvious; you will receive a detailed description from whichever domain you

register with. The L �eld is the most fun to �nd out: it gives your geographical position

in latitude/longitude and is used to draw the postscript maps that show all sites for each

country, as well as world-wide.5

13.6 Con�guring elm

elm stands for \electronic mail" and is one of the more reasonably named un?x tools. It

provides a full-screen interface with a good help feature. We won't discuss here how to use

elm, but only dwell on its con�guration options.

Theoretically, you can run elm uncon�gured, and everything works well | if you are

lucky. But there are a few options that must be set, although only required on occasions.

When it starts, elm reads a set of con�guration variables from the elm.rc �le in

/usr/lib/elm. Then, it will attempt to read the �le .elm/elmrc in your home directory.

You don't usually write this �le yourself. It is created when you choose \save options" from

elm's options menu.

The set of options for the private elmrc �le is also available in the global elm.rc �le.

Most settings in your private elmrc �le override those of the global �le.

5They are posted regularly in news.lists.ps-maps. Beware. They're HUGE.

13.6. Con�guring elm 225

13.6.1 Global elm Options

In the global elm.rc �le, you must set the options that pertain to your host's name. For

example, at the Virtual Brewery, the �le for vlager would contain the following:

#

The local hostname

hostname = vlager

#

Domain name

hostdomain = .vbrew.com

#

Fully qualified domain name

hostfullname = vlager.vbrew.com

These options set elm's idea of the local hostname. Although this information is rarely

used, you should set these options nevertheless. Note that these options only take e�ect

when giving them in the global con�guration �le; when found in your private elmrc, they

will be ignored.

13.6.2 National Character Sets

Recently, there have been proposals to amend the RFC 822 standard to support various

types of messages, such as plain text, binary data, Postscript �les, etc. The set of standards

and RFCs covering these aspects are commonly referred to as MIME, or Multipurpose

Internet Mail Extensions. Among other things, this also lets the recipient know if a character

set other than standard ASCII has been used when writing the message, for example using

French accents, or German umlauts. This is supported by elm to some extent.

The character set used by Linux internally to represent characters is usually referred

to as ISO-8859-1, which is the name of the standard it conforms to. It is also known as

Latin-1. Any message using characters from this character set should have the following

line in its header:

Content-Type: text/plain; charset=iso-8859-1

The receiving system should recognize this �eld and take appropriate measures when

displaying the message. The default for text/plain messages is a charset value of us-ascii.

To be able to display messages with character sets other than ASCII, elm must know

how to print these characters. By default, when elm receives a message with a charset �eld

13.6. Con�guring elm 226

other than us-ascii (or a content type other than text/plain, for that matter), it tries to

display the message using a command called metamail. Messages that require metamail to

be displayed are shown with an `M' in the very �rst column in the overview screen.

Since Linux' native character set is ISO-8859-1, calling metamail is not necessary to

display messages using this character set. If elm is told that the display understands ISO-

8859-1, it will not use metamail but will display the message directly instead. This can be

done by setting the following option in the global elm.rc:

displaycharset = iso-8859-1

Note that you should set this options even when you are never going to send or receive

any messages that actually contain characters other than ASCII. This is because people

who do send such messages usually con�gure their mailer to put the proper Content-Type:

�eld into the mail header by default, whether or not they are sending ASCII-only messages.

However, setting this option in elm.rc is not enough. The problem is that when dis-

playing the message with its builtin pager, elm calls a library function for each character

to determine whether it is printable or not. By default, this function will only recognize

ASCII characters as printable, and display all other characters as \^?". You may overcome

this by setting the environment variable LC CTYPE to ISO-8859-1, which tells the library

to accept Latin-1 characters as printable. Support for this and other features is available

since libc-4.5.8.

When sending messages that contain special characters from ISO-8859-1, you should

make sure to set two more variables in the elm.rc �le:

charset = iso-8859-1

textencoding = 8bit

This makes elm report the character set as ISO-8859-1 in the mail header, and send it

as an 8 bit value (the default is to strip all characters to 7 bit).

Of course, any of these options can also be set in the private elmrc �le instead of the

global one.

Chapter 14

Getting smail Up and Running

This chapter will give you a quick introduction to setting up smail, and an overview of

the functionality it provides. Although smail is largely compatible with sendmail in its

behaviour, their con�guration �les are completely di�erent.

The main con�guration �le is the /usr/lib/smail/con�g. You always have to edit this

�le to reect values speci�c to your site. If you are only a UUCP leaf site, you will have

relatively little else to do, ever. Other �les that con�gure routing and transport options

may also be used; they will be dealt with briey, too.

By default, smail processes and delivers all incoming mail immediately. If you have

relatively high tra�c, you may instead have smail collect all messages in the so-called

queue, and process it at regular intervals only.

When handling mail within a TCP/IP network, smail is frequently run in daemon mode:

at system boot time, it is invoked from rc.inet2, and puts itself in the background where

it waits for incoming TCP connections on the SMTP port (usually port 25). This is very

bene�cial whenever you expect to have a signi�cant amount of tra�c, because smail isn't

started up separately for every incoming connection. The alternative would be to have inetd

manage the SMTP port, and have it spawn smail whenever there is a connection on this

port.

smail has a lot a ags that control it behavior; describing them in detail here wouldn't

make help you much. Fortunately, smail supports a number of standard modes of operation

that are enabled when you invoke it by a special command name, like rmail, or smtpd.

Usually, these aliases are symbolic links to the smail binary itself. We will encounter most

of them when discussing the various features of smail.

There are two links to smail you should have under all circumstances; namely

227

14.1. UUCP Setup 228

/usr/bin/rmail and /usr/sbin/sendmail.1 When you compose and send a mail message

with a user agent like elm, the message will be piped into rmail for delivery, with the re-

cipient list given to it on the command line. The same happens with mail coming in via

UUCP. Some versions of elm, however, invoke /usr/sbin/sendmail instead of rmail, so you

need both of them. For example, if you keep smail in /usr/local/bin, type the following at

the shell prompt:

ln -s /usr/local/bin/smail /usr/bin/rmail

ln -s /usr/local/bin/smail /usr/sbin/sendmail

If you want to dig further into the details of con�guring smail, please refer to the manual

pages smail(1) and smail(5). If it isn't included in your favorite Linux distribution, you

can get it from the source to smail.

14.1 UUCP Setup

To use smail in a UUCP-only environment, the basic installation is rather simple. First, you

must make sure you have the two symbolic links to rmail and sendmail mentioned above.

If you expect to receive SMTP batches from other sites, you also have to make rsmtp a link

to smail.

In Vince Skahan's smail distribution, you will �nd a sample con�guration �le. It is

named con�g.sample and resides in /usr/lib/smail. You have to copy it to con�g and edit

it to reect values speci�c to your site.

Assume your site is named swim.twobirds.com, and is registered in the UUCP maps as

swim. Your smarthost is ulysses. Then your con�g �le should look like this:

#

Our domain names

visible_domain=two.birds:uucp

#

Our name on outgoing mails

visible_name=swim.twobirds.com

#

Use this as uucp-name as well

uucp_name=swim.twobirds.com

#

Our smarthost

smart_host=ulysses

1This is the new standard location of sendmail according to the Linux File System Standard. Another

common location is /usr/lib.

14.2. Setup for a LAN 229

The �rst statement tells smail about the domains your site belongs to. Insert their

names here, separated by colons. If your site name is registered in the UUCP maps, you

should also add uucp. When being handed a mail message, smail determines your host's

name using the hostname(2) system call, and checks the recipient's address against this

hostname, tacking on all names from this list in turn. If the address matches any of these

names, or the unquali�ed hostname, the recipient is considered local, and smail attempts

to deliver the message to a user or alias on the local host. Otherwise, the recipient is

considered remote, and delivery to the destination host is attempted.

visible name should contain a single, fully quali�ed domain name of your site that you

want to use on outgoing mails. This name is used when generating the sender's address on

all outgoing mail. You must make sure to use a name that smail recognizes as referring

to the local host (i.e. the hostname with one of the domains listed in the visible domain

attribute). Otherwise, replies to your mails will bounce o� your site.

The last statement sets the path used for smart-host routing (described in section 13.4).

With this sample setup, smail will forward any mail for remote addresses to the smart host.

The path speci�ed in the smart path attribute will be used as a route to the smart host.

Since messages will be delivered via UUCP, the attribute must specify a system known to

your UUCP software. Please refer to chapter 12 on making a site known to UUCP.

There's one option used in the above �le that we haven't explained yet; this is uucp name.

The reason to use the option is this: By default, smail uses the value returned by host-

name(2) for UUCP-speci�c things such as the return path given in the From header line. If

your hostname is not registered with the UUCP mapping project, you should tell smail to

use your fully quali�ed domain name instead.2 This can be done by adding the uucp name

option to the con�g �le.

There is another �le in /usr/lib/smail, called paths.sample. It is an example of what a

paths �le might look like. However, you will not need one unless you have mail links to

more than one site. If you do, however, you will have to write one yourself, or generate one

from the Usenet maps. The paths �le will be described later in this chapter.

14.2 Setup for a LAN

If you are running a site with two or more hosts connected by a LAN, you will have to

designate one host that handles your UUCP connection with the outside world. Between

the hosts on your LAN, you will most probably want to exchange mail with SMTP over

2The reason is this: Assume your hostname is monad, but is not registered in the maps. However, there

is a site in the maps called monad, so every mail to monad!root, even sent from a direct UUCP neighbor of

yours, will wind up on the other monad. This is a nuisance for everybody.

14.2. Setup for a LAN 230

TCP/IP. Assume we're back at the Virtual Brewery again, and vstout is set up as the

UUCP gateway.

In a networked environment, it is best to keep all user mailboxes on a single �le system,

which is NFS-mounted on all other hosts. This allows users to move from machine to

machine, without having to move their mail around (or even worse, check some three or four

machines for newly-arrived mail each morning). Therefore, you also want to make sender

addresses independent from the machine the mail was written on. It is common practice to

use the domain name all by itself in the sender address, instead of a hostname. Janet User,

for example, would specify janet@vbrew.com instead of janet@vale.vbrew.com. We

will explain below how to make the server recognize the domain name as a valid name for

your site.

A di�erent way of keeping all mailboxes on a central host is to use POP or IMAP. POP

stands for Post O�ce Protocol and lets users access their mailboxes over a simple TCP/IP

conection. IMAP, the Interactive Mail Access Protocol, is similar to POP, but more general.

Both clients and servers for IMAP and POP have been ported to Linux, and are available

from sunsite.unc.edu below /pub/Linux/system/Network.

14.2.1 Writing the Con�guration Files

The con�guration for the Brewery works as follows: all hosts except the mail server vstout

itself route all outgoing mail to the server, using smart host routing. vstout itself sends

all outgoing mail to the real smart host that routes all of the Brewery's mail; this host is

called moria.

The standard con�g �le for all hosts other than vstout looks like this:

#

Our domain:

visible_domain=vbrew.com

#

What we name ourselves

visible_name=vbrew.com

#

Smart-host routing: via SMTP to vstout

smart_path=vstout

smart_transport=smtp

This is very similar to what we used for a UUCP-only site. The main di�erence is that

the transport used to send mail to the smart host is, of course, SMTP. The visible domain

attribute makes smail use the domain name instead of the local hostname on all outgoing

mail.

14.2. Setup for a LAN 231

On the UUCP mail gateway vstout, the con�g �le looks a little di�erent:

#

Our hostnames:

hostnames=vbrew.com:vstout.vbrew.com:vstout

#

What we name ourselves

visible_name=vbrew.com

#

in the uucp world, we're known as vbrew.com

uucp_name=vbrew.com

#

Smart transport: via uucp to moria

smart_path=moria

smart_transport=uux

#

we're authoritative for our domain

auth_domains=vbrew.com

This con�g �le uses a di�erent scheme to tell smail what the local host is called. Instead

of giving it a list of domains and letting it �nd the hostname with a system call, it speci�es a

list explicitly. The above list contains both the fully quali�ed and the unquali�ed hostname,

and the domain name all by itself. This makes smail recognize janet@vbrew.com as a

local address, and deliver the message to janet.

The auth domains variable names the domains for which vstout is considered to be

authoritative. That is, if smail receives any mail addressed to host .vbrew.com where

host does not name an existing local machine, it rejects the message and returns it to the

sender. If this entry isn't present, any such message will be sent to the smart-host, who will

return it to vstout, and so on until it is discarded for exceeding the maximum hop count.

14.2.2 Running smail

First, you have to decide whether to run smail as a separate daemon, or whether to have

inetd manage the SMTP port and invoke smail only whenever an SMTP connection is

requested from some client. Usually, you will prefer daemon operation on the mail server,

because this loads the machine far less than spawning smail over and over again for each

single connection. As the mail server also delivers most incoming mail directly to the users,

you will choose inetd operation on most other hosts.

Whatever mode of operation you choose for each individual host, you have to make sure

you have the following entry in your /etc/services �le:

14.3. If You Don't Get Through: : : 232

smtp 25/tcp # Simple Mail Transfer Protocol

This de�nes the TCP port number that smail should use for SMTP conversations. 25

is the standard de�ned by the Assigned Numbers RFC.

When run in daemon mode, smail will put itself in the background, and wait for a

connection to occur on the SMTP port. When a connection occurs, it forks and conducts

an SMTP conversation with the peer process. The smail daemon is usually started by

invoking it from the rc.inet2 script using the following command:

/usr/local/bin/smail -bd -q15m

The -bd ag turns on daemon mode, and -q15m makes it process whatever messages

have accumulated in the message queue every 15 minutes.

If you want to use inetd instead, your /etc/inetd.conf �le should contain a line like this:

smtp stream tcp nowait root /usr/sbin/smtpd smtpd

smtpd should be a symbolic link to the smail binary. Remember you have to make inetd

re-read inetd.conf by sending it a HUP signal after making these changes.

Daemon mode and inetd mode are mutually exclusive. If you run smail in deamon

mode, you should make sure to comment out any line in inetd.conf for the smtp service.

Equivalently, when having inetd manage smail, make sure that rc.inet2 does not start the

smail daemon.

14.3 If You Don't Get Through: : :

If something goes wrong with your installation, there are a number of features that may help

you to �nd what's at the root of the problem. The �rst place to check are smail 's log �les.

They are kept in /var/spool/smail/log, and are named log�le and paniclog, respectively.

The former lists all transactions, while the latter is only for error messages related to

con�guration errors and the like.

A typical entry in log�le looks like this:

04/24/94 07:12:04: [m0puwU8-00023UB] received

| from: root

| program: sendmail

| size: 1468 bytes

14.3. If You Don't Get Through: : : 233

04/24/94 07:12:04: [m0puwU8-00023UB] delivered

| via: vstout.vbrew.com

| to: root@vstout.vbrew.com

| orig-to: root@vstout.vbrew.com

| router: smart_host

| transport: smtp

This shows that a message from root to root@vstout.vbrew.com has been properly

delivered to host vstout over SMTP.

Messages smail could not deliver generate a similar entry in the log �le, but with an

error message instead of the delivered part:

04/24/94 07:12:04: [m0puwU8-00023UB] received

| from: root

| program: sendmail

| size: 1468 bytes

04/24/94 07:12:04: [m0puwU8-00023UB] root@vstout.vbrew.com ... deferred

(ERR_148) transport smtp: connect: Connection refused

The above error is typical for a situation in which smail properly recognizes that the

message should be delivered to vstout but was not able to connect to the SMTP service

on vstout. If this happens, you either have a con�guration problem, or TCP support is

missing from your smail binaries.

This problem is not as uncommon as one might think. There have been precompiled

smail binaries around, even in some Linux distributions, without support for TCP/IP

networking. If this is the case for you, you have to compile smail yourself. Having installed

smail, you can check if it has TCP networking support by telnetting to the SMTP port

on your machine. A successful connect to the SMTP server is shown below (your input is

marked like this):

$ telnet localhost smtp

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

220 monad.swb.de Smail3.1.28.1 #6 ready at Sun, 23 Jan 94 19:26 MET

QUIT

221 monad.swb.de closing connection

If this test doesn't produce the SMTP banner (the line starting with the 220 code), �rst

make sure that your con�guration is really correct before you go through compiling smail

yourself, which is described below.

14.4. Mail Delivery Modes 234

If you encounter a problem with smail that you are unable to locate from the error

message smail generates, you may want to turn on debugging messages. You can do this

using the -d ag, optionally followed by a number specifying the level of verbosity (you may

not have any space between the ag and the numerical argument). smail will then print a

report of its operation to the screen, which may give you more hints about what is going

wrong.

[Don't know,: : :Maybe people don't �nd this funny:] If nothing else helps, you

may want to invoke smail in Rogue mode by giving the -bR option on the command line.

The manpage says on this option: \Enter the hostile domain of giant mail messages, and

RFC standard scrolls. Attempt to make it down to protocol level 26 and back." Although

this option won't solve your problems, it may provide you some comfort and consolation.3

14.3.1 Compiling smail

If you know for sure that smail is lacking TCP network support, you have to get the source.

It is probably included in your distribution, if you got it via CD-ROM, otherwise you may

get it from the net via FTP.4

When compiling smail, you had best start with the set of con�guration �les from Vince

Skahan's newspak distribution. To compile in the TCP networking driver, you have to set

the DRIVER CONFIGURATION macro in the conf/EDITME �le to either bsd-network

or arpa-network. The former is suitable for LAN installations, but the Internet requires

arpa-network. The di�erence between these two is that the latter has a special driver for

BIND service that is able to recognize MX records, which the former doesn't.

14.4 Mail Delivery Modes

As noted above, smail is able to deliver messages immediately, or queue them for later

processing. If you choose to queue messages, smail will store away all mail in the messages

directory below /var/spool/smail. It will not process them until explicitly told so (this is

also called \running the queue").

You can select one of three delivery modes by setting the delivery mode attribute in

the con�g �le to either of foreground, background, or queued. These select delivery in the

foreground (immediate processing of incoming messages), in the background, (message is

delivered by a child of the receiving process, with the parent process exiting immediately

3Don't use this if you're in a really bad mood.
4If you bought this with a Linux distribution from a vendor, you are entitled to the source code \for a

nominal shipping charge", according to smail 's copying conditions.

14.5. Miscellaneous con�g Options 235

after forking), and queued. Incoming mail will always be queued regardless of this option

if the boolean variable queue only is set in the con�g �le.

If you turn on queuing, you have to make sure the queues are checked regularly; probably

every 10 or 15 minutes. If you run smail in daemon mode, you have to add the option -q10m

on the command line to process the queue every 10 minutes. Alternatively, you can invoke

runq from cron at these intervals. runq should be a link to smail.

You can display the current mail queue by invoking smail with the -bp option. Equiva-

lently, you can make mailq a link to smail, and invoke mailq:

$ mailq -v

m0pvB1r-00023UB From: root (in /var/spool/smail/input)

Date: Sun, 24 Apr 94 07:12 MET DST

Args: -oem -oMP sendmail root@vstout.vbrew.com

Log of transactions:

Xdefer: <root@vstout.vbrew.com> reason: (ERR_148) transport smtp:

connect: Connection refused

This shows a single message sitting in the message queue. The transaction log (which is

only displayed if you give mailq the -v option) may give an additional reason why it is still

waiting for delivery. If no attempt has been made yet to deliver the message, no transaction

log will be displayed.

Even when you don't use queuing, smail will occasionally put messages into the queue

when it �nds immediate delivery fails for a transient reason. For SMTP connections, this

may be an unreachable host; but messages may also be deferred when the �le system is

found to be full. You should therefore put in a queue run every hour or so (using runq),

else any deferred message will stick around the queue forever.

14.5 Miscellaneous con�g Options

There are quite a number of options you may set in the con�g �le, which, although useful,

are not essential to running smail, and which we will not discuss here. Instead, we will only

mention a few that you might �nd a reason to use:

error copy postmaster

If this boolean variable is set, any error will generate a message to the

postmaster. Usually, this is only done for errors that are due to a faulty

con�guration. The variable can be turned on by putting it in the con�g �le,

preceded by a plus (+).

14.6. Message Routing and Delivery 236

max hop count

If the hop count for a message (i.e. the number of hosts already traversed)

equals or exceeds this number, attempts at remote delivery will result in an

error message being returned to the sender. This is used to prevent messages

from looping forever. The hop count is generally computed from the number

of Received: �elds in the mail header, but may also be set manually using

the -h option on the command line.

This variable defaults to 20.

postmaster The postmaster's address. If the address Postmaster cannot be resolved

to a valid local address, then this is used as the last resort. The default is

root.

14.6 Message Routing and Delivery

smail splits up mail delivery into three di�erent tasks, the router, director, and transport

module.

The router module resolves all remote addresses, determining to which host the message

should be sent to next, and which transport must be used. Depending on the nature of the

link, di�erent transports such as UUCP or SMTP may be used.

Local addresses are given to the director task which resolves any forwarding or aliasing.

For example, the address might be an alias or a mailing list, or the user might want to

forward her mail to another address. If the resulting address is remote, it is handed to the

router module for additional routing, otherwise it is assigned a transport for local delivery.

By far the most common case will be delivery to a mailbox, but messages may also be piped

into a command, or appended to some arbitrary �le.

The transport module, �nally, is responsible for whatever method of delivery has been

chosen. It tries to deliver the message, and in case of failure either generates a bounce

message, or defers it for a later retry.

With smail, you have much freedom in con�guring these tasks. For each of them, a

number of drivers are available, from which you can choose those you need. You describe

them to smail in a couple of �les, namely routers, directors, and transports, located in

/usr/lib/smail. If these �les do not exist, reasonable defaults are assumed that should be

suitable for many sites that either use SMTP or UUCP for transport. If you want to change

smail 's routing policy, or modify a transport, you should get the sample �les from the smail

source distribution,5 copy the sample �les to /usr/lib/smail, and modify them according to

5The default con�guration �les can be found in samples/generic below the source directory.

14.7. Routing Messages 237

your needs. Sample con�guration �les are also given in Appendix B.

14.7 Routing Messages

When given a message, smail �rst checks if the destination is the local host, or a remote site.

If the target host address is one of the local hostnames con�gured in con�g, the message is

handed to the director module. Otherwise, smail hands the destination address to a number

of router drivers to �nd out which host to forward a message to. They can be described in

the routers �le; if this �le does not exist, a set of default routers are used.

The destination host is passed to all routers in turn, and the one �nding the most speci�c

route is selected. Consider a message addressed to joe@foo.bar.com. Then, one router

might know a default route for all hosts in the bar.com domain, while another one has

information for foo.bar.com itself. Since the latter is more speci�c, it is chosen over the

former. If there are two routers that provide a \best match", the one coming �rst in the

routers �le is chosen.

This router now speci�es the transport to be used, for instance UUCP, and generates a

new destination address. The new address is passed to the transport along with the host to

forward the message to. In the above example, smail might �nd out that foo.bar.com is

to be reached via UUCP using the path ernie!bert. It will then generate a new target of

bert!foo.bar.com!user, and have the UUCP transport use this as the envelope address

to be passed to ernie.

When using the default setup, the following routers are available:

� If the destination host address can be resolved using the gethostbyname(3) or gethost-

byaddr(3) library call, the message will be delivered via SMTP. The only exception is

if the address is found to refer to the local host, it is handed to the director module,

too.

smail also recognizes IP addresses written as dotted quad as a legal hostname,

as long as they can be resolved through a gethostbyaddr(3) call. For example,

scrooge@[149.76.12.4] would be a valid although highly unusual mail address for

scrooge on quark.physics.groucho.edu.

If your machine is on the Internet, these routers are not what you are looking for,

because they do not support MX records. See below for what to do in this case.

� If /usr/lib/smail/paths, the pathalias database, exists, smail will try to look up the

target host (minus any trailing .uucp) in this �le. Mail to an address matched by this

router will be delivered using UUCP, using the path found in the database.

14.7. Routing Messages 238

� The host address (minus any trailing .uucp) will be compared to the output of the

uuname command to check if the target host is in fact a UUCP neighbor. If this is

the case, the message will be delivered using the UUCP transport.

� If the address has not been matched by any of the above routers, it will be delivered

to the smart host. The path to the smart host as well as the transport to be used are

set in the con�g �le.

These defaults work for many simple setups, but fail if routing requirements get a little

more complicated. If you are faced with any of the problems discussed below, you will

have to install your own routers �le to override the defaults. A sample routers �le you

might start with is given in appendix B. Some Linux distributions also come with a set of

con�guration �les that are tailored to work around these di�culties.

Probably the worst problems arise when your host lives in a dual universe with both

dialup IP and UUCP links. You will then have hostnames in your hosts �le that you only

talk occasionally to through your SLIP link, so smail will attempt to deliver any mail for

these hosts via SMTP. This is usually not what you want, because even if the SLIP link

is activated regularly, SMTP is much slower than sending the mail over UUCP. With the

default setup, there's no way escaping smail.

You can avoid this problem by having smail check the paths �le before querying the

resolver, and put all hosts you want to force UUCP delivery to into the paths �le. If you

don't want to send any messages over SMTP ever, you can also comment out the resolver-

based routers altogether.

Another problem is that the default setup doesn't provide for true Internet mail routing,

because the resolver-based router does not evaluate MX records. To enable full support for

Internet mail routing, comment out this router, and uncomment the one that used BIND

instead. There are, however, smail binaries included in some Linux distributions that don't

have BIND support compiled in. If you enable BIND, but get a message in the paniclog �le

saying \router inet hosts: driver bind not found", then you have to get the sources

and recompile smail (see section 14.2 above).

Finally, it is not generally a good idea to use the uuname driver. For one, it will generate

a con�guration error when you don't have UUCP installed, because no uuname command

will be found. The second is when you have more sites listed in your UUCP Systems �le

than you actually have mail links with. These may be sites you only exchange news with,

or sites you occasionally download �les from via anonymous UUCP, but have no tra�c with

otherwise.

To work around the �rst problem, you can substitute a shell script for uuname which

does a simple exit 0. The more general solution is, however, to edit the routers �le and

14.8. Delivering Messages to Local Addresses 239

remove this driver altogether.

14.7.1 The paths database

smail expects to �nd the pathalias database in the paths �le below /usr/lib/smail. This �le

is optional, so if you don't want to perform any pathalias routing at all, simply remove any

existing paths �le.

paths must be a sorted ASCII �le that contains entries which map destination site names

to UUCP bang paths. The �le has to be sorted because smail uses a binary search for looking

up a site. Comments are not allowed in this �le, and the site name must be separated from

the path using a TAB. Pathalias databases are discussed in somewhat greater detail in

chapter 13.

If you generate this �le by hand, you should make sure to include all legal names for

a site. For example, if a site is known by both a plain UUCP name and a fully quali�ed

domain name, you have to add an entry for each of them. The �le can be sorted by piping

it through the sort(1) command.

If your site is only a leaf site, however, then no paths �le should be necessary at all: just

set up the smart host attributes in your con�g �le, and leave all routing to your mail feed.

14.8 Delivering Messages to Local Addresses

Most commonly, a local address is just a user's login name, in which case the message is

delivered to her mailbox, /var/spool/mail/user. Other cases include aliases and mailing

list names, and mail forwarding by the user. In these cases, the local address expands to a

new list of addresses, which may be either local or remote.

Apart from these \normal" addresses, smail can handle other types of local message

destinations, like �le names, and pipe commands. These are not addresses in their own

right, so you can't send mail to, say, /etc/passwd@vbrew.com; they are only valid if

they have been taken from forwarding or alias �les.

A �le name is anything that begins with a slash (/) or a tilde (~). The latter refers to

the user's home directory, and is possible only if the �lename was taken from a .forward �le

or a forwarding entry in the mailbox (see below). When delivering to a �le, smail appends

the messages to the �le, creating it if necessary.

A pipe command may be any un?x command preceded by the pipe symbol (|). This

causes smail to hand the command to the shell along with its arguments, but without the

14.8. Delivering Messages to Local Addresses 240

leading `|'. The message itself is fed to this command on standard input.

For example, to gate a mailing list into a local newsgroup, you might use a shell script

named gateit, and set up a local alias which delivers all messages from this mailing list to

the script using "|gateit".

If the invocation contains white space, it has to be enclosed in double quotes. Due to the

security issues involved, care is taken not to execute the command if the address has been

obtained in a somewhat dubious way (for example, if the alias �le from which the address

was taken was writable by everyone).

14.8.1 Local Users

The most common case for a local address is to denote a user's mailbox. This mailbox is

located in /var/spool/mail and has the name of the user. It is owned by her, with a group

of mail, and has mode 660. If it does not exist, it is created by smail.

Note that although /var/spool/mail is currently the standard place to put the mailbox

�les, some mail software may have di�erent paths compiled in, for example /usr/spool/mail.

If delivery to users on your machine fails consistently, you should try if it helps to make

this a symbolic link to /var/spool/mail.

There are two addresses smail requires to exist: MAILER-DAEMON and Postmas-

ter. When generating a bounce message for an undeliverable mail, a carbon copy is sent

to the postmaster account for examination (in case this might be due to a con�gura-

tion problem). The MAILER-DAEMON is used as the sender's address on the bounce

message.

If these addresses do not name valid accounts on your system, smail implicitly maps

MAILER-DAEMON to postmaser, and postmaster to root, respectively. You should

usually override this by aliasing the postmaster account to whoever is responsible for

maintaining the mail software.

14.8.2 Forwarding

A user may redirect her mail by having it forwarded to an alternative address using one of

two methods supported by smail. One option is to put

Forward to recipient,: : :

in the �rst line of her mailbox �le. This will send all incoming mail to the speci�ed list

of recipients. Alternatively, she might create a .forward �le in her home directory, which

14.8. Delivering Messages to Local Addresses 241

contains the comma-separated list of recipients. With this variety of forwarding, all lines of

the �le are read and interpreted.

Note that any type of address may be used. Thus, a practical example of a .forward �le

for vacations might be

janet, "|vacation"

The �rst address delivers the incoming message to janet's mailbox nevertheless, while

the vacation command returns a short noti�cation to the sender.

14.8.3 Alias Files

smail is able to handle alias �les compatible with those known by Berkeley's sendmail.

Entries in the alias �le may have the form

alias: recipients

recipients is a comma-separated list of addresses that will be substituted for the alias.

The recipient list may be continued across newlines if the next line begins with a TAB.

There is a special feature that allows smail to handle mailing lists from the alias �le:

if you specify \:include:filename" as recipient, smail will read the �le speci�ed, and

substitute its contents as a list of recipients.

The main aliases �le is /usr/lib/aliases. If you choose to make this �le world-writable,

smail wil not deliver any messages to shell commands given in this �le. A sample �le is

shown below:

vbrew.com /usr/lib/aliases file

hostmaster: janet

postmaster: janet

usenet: phil

The development mailing list.

development: joe, sue, mark, biff

/var/mail/log/development

owner-development: joe

Announcements of general interest are mailed to all

of the staff

announce: :include: /usr/lib/smail/staff,

/var/mail/log/announce

owner-announce: root

14.9. UUCP-based Transports 242

gate the foobar mailing list to a local newsgroup

ppp-list: "|/usr/local/lib/gateit local.lists.ppp"

If an error occurs while delivering to an address generated from the aliases �le, smail will

attempt to send a copy of the error message to the \alias owner". For example, if delivery

to bi� fails when delivering a message to the developmentmailing list, a copy of the error

message will be mailed to the sender, as well as to postmaster and owner-development.

If the owner address does not exist, no additional error message will be generated.

When delivering to �les or when invoking programs given in the aliases �le, smail will

become the nobody user to avoid any security hassles. Especially when delivering to �les,

this can be a real nuisance. In the �le given above, for instance, the log �les must be owned

and writable by nobody, or delivery to them will fail.

14.8.4 Mailing Lists

Instead of using the aliases �le, mailing lists may also be managed by means of �les in

the /usr/lib/smail/lists directory. A mailing list named nag-bugs is described by the �le

lists/nag-bugs, which should contain the members' addresses, separated by commas. The

list may be given on multiple lines, with comments being introduced by a hash sign.

For each mailing list, a user (or alias) named owner-listname should exist; any errors

occurring when resolving an address are reported to this user. This address is also used as

the sender's address on all outgoing messages in the Sender: header �eld.

14.9 UUCP-based Transports

There are a number of transports compiled into smail that utilize the UUCP suite. In a

UUCP environment, messages are usually passed on by invoking rmail on the next host,

giving it the message on standard input and the envelope address on the command line.

On your host, rmail should be a link to the smail command.

When handing a message to the UUCP transport, smail converts the target address to

a UUCP bang path. For example, user@host will be transformed to host!user. Any

occurrence of the `%' address operator is preserved, so user%host@gateway will become

gateway!user%host. However, smail will never generate such addresses itself.

Alternatively, smail can send and receive BSMTP batches via UUCP. With BSMTP, one

or more messages are wrapped up in a single batch that contains the commands the local

mailer would issue if a real SMTP connection had be established. BSMTP is frequently

used in store-and-forward (e.g. UUCP-based) networks to save disk space. The sample

14.10. SMTP-based Transports 243

transports �le in appendix B contains a transport dubbed bsmtp that generates partial

BSMTP batches in a queue directory. They must be combined into the �nal batches later,

using a shell script that adds the appropriate HELO and QUIT command.

To enable the bsmtp transport for speci�c UUCP links you have to use so-called method

�les (please refer to the smail(5) manual page for details). If you have only one UUCP

link, and use the smart host router, you enable sending SMTP batches by setting the

smart transport con�guration variable to bsmtp instead of uux.

To receive SMTP batches over UUCP, you must make sure that you have the unbatching

command the remote site sends its batches to. If the remote site uses smail, too, you need

to make rsmtp a link to smail. If the remote site runs sendmail, you should additionally

install a shell script named /usr/bin/bsmtp that does a simple \exec rsmtp" (a symbolic

link won't work).

14.10 SMTP-based Transports

smail currently supports an SMTP driver to deliver mail over TCP connections.6 It is

capable of delivering a message to any number of addresses on one single host, with the

hostname being speci�ed as either a fully quali�ed domain name that can be resolved by

the networking software, or in dotted quad notation enclosed in square brackets. Generally,

addresses resolved by any of the BIND, gethostbyname(3), or gethostbyaddr(3) router drivers

will be delivered to the SMTP transport.

The SMTP driver will attempt to connect to the remote host immediately through the

smtp port as listed in /etc/services. If it cannot be reached, or the connection times out,

delivery will be reattempted at a later time.

Delivery on the Internet requires that routes to the destination host be speci�ed in the

route-addr format described in chapter 13, rather than as a bang path.7 smail will therefore

transform user%host@gateway, where gateway is reached via host1!host2!host3, into

the source-route address <@host2,@host3:user%host@gateway> which will be sent as

the message's envelope address to host1. To enable these transformation (along with the

built-in BIND driver), you have to edit the entry for the smtp driver in the transports �le.

A sample transports �le is given in Appendix B.

6The authors call this support \simple". For a future version of smail, they advertise a complete backend

which will handle this more e�ciently.
7However, the use of routes in the Internet is discouraged altogether. Fully quali�ed domain names should

be used instead.

14.11. Hostname Quali�cation 244

14.11 Hostname Quali�cation

Sometimes it is desirable to catch unquali�ed hostnames (i.e. those that don't have a domain

name) speci�ed in sender or recipient addresses, for example when gatewaying between two

networks, where one requires fully quali�ed domain names. On an Internet-UUCP relay,

unqualifed hostnames should be mapped to the uucp domain by default. Other address

modi�cations than these are questionable.

The /usr/lib/smail/qualify �le tells smail which domain names to tack onto which host-

names. Entries in the qualify �le consists of a hostname beginning in column one, followed

by domain name. Lines containing a hash sign as its �rst non-white character are considered

comments. Entries are searched in the order they appear in.

If no qualify �le exists, no hostname quali�cation is performed at all.

A special hostname of * matches any hostnames, thus enabling you to map all hosts not

mentioned before into a default domain. It should be used only as the last entry.

At the Virtual Brewery, all hosts have been set up to use fully quali�ed domain names

in the sender's addresses. Unquali�ed recipient addresses are considered to be in the uucp

domain, so only a single entry in the qualify �le is needed.

/usr/lib/smail/qualify, last changed Feb 12, 1994 by janet

#

* uucp

Chapter 15

Sendmail+IDA

15.1 Introduction to Sendmail+IDA

It's been said that you aren't a real Unix system administrator until you've edited a send-

mail.cf �le. It's also been said that you're crazy if you've attempted to do so twice:-)

Sendmail is an incredibly powerful program. It's also incredibly di�cult to learn and

understand for most people. Any program whose de�nitive reference (Sendmail, published

by O'Reilly and Associates) is 792 pages long quite justi�ably scares most people o�.

Sendmail+IDA is di�erent. It removes the need to edit the always cryptic sendmail.cf

�le and allows the administrator to de�ne the site-speci�c routing and addressing con-

�guration through relatively easy to understand support �les called tables. Switching to

sendmail+IDA can save you many hours of work and stress.

Compared to the other major mail transport agents, there is probably nothing that can't

be done faster and simpler with sendmail+IDA. Typical things that are needed to run a

normal UUCP or Internet site become simple to accomplish. Con�gurations that normally

are extremely di�cult are simple to create and maintain.

At this writing, the current version of sendmail5.67b+IDA1.5 is available via anonymous

FTP from vixen.cso.uiuc.edu. It compiles without any patching required under Linux.

All the con�guration �les required to get sendmail+IDA sources to compile, install, and

run under Linux are included in newspak-2.2.tar.gz which is available via anonymous FTP

on sunsite.unc.edu in the directory /pub/Linux/system/Mail.

245

15.2. Con�guration Files | Overview 246

15.2 Con�guration Files | Overview

Traditional sendmail is set up through a system con�guration �le (typically /etc/sendmail.cf

or /usr/lib/sendmail.cf), that is not anything close to any language you've seen before.

Editing the sendmail.cf �le to provide customized behavior can be a humbling experience.

Sendmail+IDA makes such pain essentially a thing of the past by having all con�guration

options table-driven with rather easy to understand syntax. These options are con�gured

by running m4 (a macro processor) or dbm (a database processor) on a number of data �les

via Make�les supplied with the sources.

The sendmail.cf �le de�nes only the default behavior of the system. Virtually all special

customization is done through a number of optional tables rather than by directly editing

the sendmail.cf �le. A list of all sendmail tables is given in �gure 15.1.

mailertable de�nes special behavior for remote hosts or domains.

uucpxtable forces UUCP delivery of mail to hosts that are in DNS format.

pathtable de�nes UUCP bang-paths to remote hosts or domains.

uucprelays short-circuits the pathalias path to well-known remote hosts.

genericfrom converts internal addresses into generic ones visible to the outside

world.

xaliases converts generic addresses to/from valid internal ones.

decnetxtable converts RFC-822 addresses to DECnet-style addresses.

Figure 15.1: sendmail Support Files.

15.3 The sendmail.cf File

The sendmail.cf �le for sendmail+IDA is not edited directly, but is generated from an m4

con�guration �le provided by the local system administrator. In the following, we will refer

to it as sendmail.m4.

This �le contains a few de�nitions and otherwise merely points to the tables where the

real work gets done. In general, it is only necessary to specify:

� the pathnames and �lenames used on the local system.

15.3. The sendmail.cf File 247

� the name(s) the site is known by for e-mail purposes.

� which default mailer (and perhaps smart relay host) is desired.

There are a large variety of parameters that can be de�ned to establish the behavior of

the local site or to override compiled-in con�guration items. These con�guration options

are identi�ed in the �le ida/cf/OPTIONS in the source directory.

A sendmail.m4 �le for a minimal con�guration (UUCP or SMTP with all non-local mail

being relayed to a directly connected smart-host) can be as short as 10 or 15 lines excluding

comments.

15.3.1 An Example sendmail.m4 File

A sendmail.m4 �le for vstout at the Virtual Brewery is shown below. vstout uses SMTP

to talk to all hosts on the Brewery's LAN, and sends all mail for other destinations to

moria, its Internet relay host, via UUCP.

15.3.2 Typically Used sendmail.m4 Parameters

A few or the items in the sendmail.m4 �le are required all the time; others can be ignored

if you can get away with defaults. The following sections describe each of the items in the

example sendmail.m4 �le in more detail.

Items that De�ne Paths

dnl #define(LIBDIR,/usr/local/lib/mail)dnl # where all support files go

LIBDIR de�nes the directory where sendmail+IDA expects to �nd con�guration �les,

the various dbm tables, and special local de�nitions. In a typical binary distribution, this is

compiled into the sendmail binary and does not need to be explicitly set in the sendmail.m4

�le.

The above example has a leading dnl which means that this line is essentially a comment

for information only.

To change the location of the support �les to a di�erent location, remove the leading

dnl from the above line, set the path to the desired location, and rebuild and reinstall the

sendmail.cf �le.

15.3. The sendmail.cf File 248

dnl #------------------ SAMPLE SENDMAIL.M4 FILE ------------------

dnl # (the string 'dnl' is the m4 equivalent of commenting out a line)

dnl # you generally don't want to override LIBDIR from the compiled in paths

dnl #define(LIBDIR,/usr/local/lib/mail)dnl # where all support files go

define(LOCAL_MAILER_DEF, mailers.linux)dnl # mailer for local delivery

define(POSTMASTERBOUNCE)dnl # postmaster gets bounces

define(PSEUDODOMAINS, BITNET UUCP)dnl # don't try DNS on these

dnl #---

dnl #

define(PSEUDONYMS, vstout.vbrew.com vstout.UUCP vbrew.com)

dnl # names we're known by

define(DEFAULT_HOST, vstout.vbrew.com)dnl # our primary 'name' for mail

define(UUCPNAME, vstout)dnl # our uucp name

dnl #

dnl #---

dnl #

define(UUCPNODES, |uuname|sort|uniq)dnl # our uucp neighbors

define(BANGIMPLIESUUCP)dnl # make certain that uucp

define(BANGONLYUUCP)dnl # mail is treated correctly

define(RELAY_HOST, moria)dnl # our smart relay host

define(RELAY_MAILER, UUCP-A)dnl # we reach moria via uucp

dnl #

dnl #--

dnl #

dnl # the various dbm lookup tables

dnl #

define(ALIASES, LIBDIR/aliases)dnl # system aliases

define(DOMAINTABLE, LIBDIR/domaintable)dnl # domainize hosts

define(PATHTABLE, LIBDIR/pathtable)dnl # paths database

define(GENERICFROM, LIBDIR/generics)dnl # generic from addresses

define(MAILERTABLE, LIBDIR/mailertable)dnl # mailers per host or domain

define(UUCPXTABLE, LIBDIR/uucpxtable)dnl # paths to hosts we feed

define(UUCPRELAYS, LIBDIR/uucprelays)dnl # short-circuit paths

dnl #

dnl #--

dnl #

dnl # include the 'real' code that makes it all work

dnl # (provided with the source code)

dnl #

include(Sendmail.mc)dnl # REQUIRED ENTRY !!!

dnl #

dnl #------------ END OF SAMPLE SENDMAIL.M4 FILE -------

Figure 15.2: A sample sendmail.m4 �le for vstout.

15.3. The sendmail.cf File 249

De�ning the Local Mailer

define(LOCAL_MAILER_DEF, mailers.linux)dnl # mailer for local delivery

Most operating systems provide a program to handle local delivery of mail. Typical

programs for many of the major variants of Unix are already built into the sendmail binary.

In Linux, it is necessary to explicitly de�ne the appropriate local mailer since a local

delivery program is not necessarily present in the distribution you've installed. This is done

by specifying LOCAL MAILER DEF in the sendmail.m4 �le.

For example, to have the commonly used deliver program1 provide this service, you

would set LOCAL MAILER DEF to mailers.linux.

The following �le should then be installed as mailers.linux in the directory pointed to

by LIBDIR. It explicitly de�nes the deliver program in the internal Mlocal mailer with

the proper parameters to result in sendmail correctly delivering mail targeted for the local

system. Unless you are a sendmail expert, you probably do not want to alter the following

example.

-- /usr/local/lib/mail/mailers.linux --

(local mailers for use on Linux)

Mlocal, P=/usr/bin/deliver, F=SlsmFDMP, S=10, R=25/10, A=deliver $u

Mprog, P=/bin/sh, F=lsDFMeuP, S=10, R=10, A=sh -c $u

There is a also built-in default for deliver in the Sendmail.mc �le that gets included

into the sendmail.cf �le. To specify it, you would not use the mailers.linux �le and would

instead de�ne the following in your sendmail.m4 �le:

dnl --- (in sendmail.m4) ---

define(LOCAL_MAILER_DEF, DELIVER)dnl # mailer for local delivery

Unfortunately, Sendmail.mc assumes deliver is installed in /bin, which is not the case

with Slackware1.1.1 (which installs it in /usr/bin). In that case you'd need to either fake

it with a link or rebuild deliver from sources so that it resides in /bin.

Dealing with Bounced Mail

define(POSTMASTERBOUNCE)dnl # postmaster gets bounces

1deliver was written by Chip Salzenberg (chip%tct@ateng.com). It is part of several Linux distribu-

tions and can be found in the usual anonymous FTP archives such as ftp.uu.net.

15.3. The sendmail.cf File 250

Many sites �nd that it is important to ensure that mail is sent and received with close to

a 100% success rate. While examining syslogd(8) logs is helpful, the local mail administrator

generally needs to see the headers on bounced mail in order to determine if the mail was

undeliverable because of user error or a con�guration error on one of the systems involved.

De�ning POSTMASTERBOUNCE results in a copy of each bounced message being set

to the person de�ned as Postmaster for the system.

Unfortunately, setting this parameter also results in the text of the message being sent

to the Postmaster, which potentially has related privacy concerns for people using mail on

the system.

Site postmasters should in general attempt to discipline themselves (or do so via technical

means through shell scripts that delete the text of the bounce messages they receive) from

reading mail not addressed to them.

Domain Name Service Related Items

define(PSEUDODOMAINS, BITNET UUCP)dnl # don't try DNS on these

There are several well known networks that are commonly referenced in mail addresses

for historical reasons but that are not valid for DNS purposes. De�ning PSEUDODOMAINS

prevents needless DNS lookup attempts that will always fail.

De�ning Names the Local System is Known by

define(PSEUDONYMS, vstout.vbrew.com vstout.UUCP vbrew.com)

dnl # names we're known by

define(DEFAULT_HOST, vstout.vbrew.com)dnl # our primary 'name' for mail

Frequently, systems wish to hide their true identity, serve as mail gateways, or receive

and process mail addressed to `old' names by which they used to be known.

PSEUDONYMS speci�es the list of all hostnames for which the local system will accept

mail.

DEFAULT HOST speci�es the hostname that will appear in messages originating on

the local host. It is important that this parameter be set to a valid value or all return mail

will be undeliverable.

UUCP-Related Items

15.3. The sendmail.cf File 251

define(UUCPNAME, vstout)dnl # our uucp name

define(UUCPNODES, |uuname|sort|uniq)dnl # our uucp neighbors

define(BANGIMPLIESUUCP)dnl # make certain that uucp

define(BANGONLYUUCP)dnl # mail is treated correctly

Frequently, systems are known by one name for DNS purposes and another for UUCP

purposes. UUCPNAME permits you to de�ne a di�erent hostname that appears in the

headers of outgoing UUCP mail.

UUCPNODES de�nes the commands that return a list of hostnames for the systems we

are connected directly to via UUCP connections.

BANGIMPLIESUUCP and BANGONLYUUCP ensure that mail addressed with UUCP

`bang' syntax is treated according to UUCP behavior rather than the more current Domain

Name Service behavior used today on Internet.

Relay Systems and Mailers

define(RELAY_HOST, moria)dnl # our smart relay host

define(RELAY_MAILER, UUCP-A)dnl # we reach moria via UUCP

Many system administrators do not want to be bothered with the work needed to ensure

that their system is able to reach all the networks (and therefore systems) on all networks

worldwide. Instead of doing so, they would rather relay all outgoing mail to another system

that is known to be indeed \smart".

RELAY HOST de�nes the UUCP hostname of such a smart neighboring system.

RELAY MAILER de�nes the mailer used to relay the messages there.

It is important to note that setting these parameters results in your outgoing mail being

forwarded to this remote system, which will a�ect the load of their system. Be certain to

get explicit agreement from the remote Postmaster before you con�gure your system to use

another system as a general purpose relay host.

The Various Con�guration Tables

define(ALIASES, LIBDIR/aliases)dnl # system aliases

define(DOMAINTABLE, LIBDIR/domaintable)dnl # domainize hosts

define(PATHTABLE, LIBDIR/pathtable)dnl # paths database

define(GENERICFROM, LIBDIR/generics)dnl # generic from addresses

define(MAILERTABLE, LIBDIR/mailertable)dnl # mailers per host or domain

define(UUCPXTABLE, LIBDIR/uucpxtable)dnl # paths to hosts we feed

15.3. The sendmail.cf File 252

define(UUCPRELAYS, LIBDIR/uucprelays)dnl # short-circuit paths

With these macros, you can change the location where sendmail+IDA looks for the

various dbm tables that de�ne the system's \real" behavior. It is generally wise to leave

them in LIBDIR.

The Master Sendmail.mc File

include(Sendmail.mc)dnl # REQUIRED ENTRY !!!

The authors of sendmail+IDA provide the Sendmail.mc �le which contains the true

\guts" of what becomes the sendmail.cf �le. Periodically, new versions are released to �x

bugs or add functionality without requiring a full release and recompilation of sendmail

from sources.

It is important not to edit this �le.

So Which Entries are Really Required?

When not using any of the optional dbm tables, sendmail+IDA delivers mail via the DE-

FAULT MAILER (and possibly RELAY HOST and RELAY MAILER) de�ned in the send-

mail.m4 �le used to generate sendmail.cf. It is easily possible to override this behavior

through entries in the domaintable or uucpxtable.

A generic site that is on Internet and speaks Domain Name Service, or one that is UUCP-

only and forwards all mail via UUCP through a smart RELAY HOST, probably does not

need any speci�c table entries at all.

Virtually all systems should set the DEFAULT HOST and PSEUDONYMS macros,

which de�ne the canonical site name and aliases it is known by, and DEFAULT MAILER.

If all you have is a relay host and relay mailer, you don't need to set these defaults since it

works automagically.

UUCP hosts will probably also need to set UUCPNAME to their o�cial UUCP name.

They will also probably set RELAY MAILER, and RELAY HOST which enable smart-host

routing through a mail relay. The mail transport to be used is de�ned in RELAY MAILER

and should usually be UUCP-A for UUCP sites.

If your site is SMTP-only and talks `Domain Name Service', you would change the DE-

FAULT MAILER to TCP-A and probably delete the RELAY MAILER and RELAY HOST

lines.

15.4. A Tour of Sendmail+IDA Tables 253

15.4 A Tour of Sendmail+IDA Tables

Sendmail+IDA provides a number of tables that allow you to override the default behavior of

sendmail (speci�ed in the sendmail.m4 �le) and de�ne special behavior for unique situations,

remote systems, and networks. These tables are post-processed with dbm using the Make�le

provided with the distribution.

Most sites will need few, if any, of these tables. If your site does not require these tables,

the easiest thing is probably to make them zero length �les (with the touch command) and

use the default Make�le in LIBDIR rather than editing the Make�le itself.

15.4.1 mailertable

The mailertable de�nes special treatment for speci�c hosts or domains based on the remote

host or network name. It is frequently used on Internet sites to select an intermediate

mail relay host or gateway to reach a remote network through, and to specify a particular

protocol (UUCP or SMTP) to be used. UUCP sites will generally not need to use this �le.

Order is important. Sendmail reads the �le top-down and processes the message accord-

ing to the �rst rule it matches. So it is generally wise to place the most explicit rules at the

top of the �le and the more generic rules below.

Suppose you want to forward all mail for the Computer Science department at Groucho

Marx University via UUCP to a relay host ada. To do so, you would have a mailertable

entry that looked like the following:

(in mailertable)

#

forward all mail for the domain .cs.groucho.edu via UUCP to ada

UUCP-A,ada .cs.groucho.edu

Suppose you want all mail to the larger groucho.edu domain to go to a di�erent relay-

host bighub for address resolution and delivery. The expanded mailertable entries would

look quite similar.

(in mailertable)

#

forward all mail for the domain cs.groucho.edu via UUCP to ada

UUCP-A,ada .cs.groucho.edu

#

forward all mail for the domain groucho.edu via UUCP to bighub

UUCP-A,bighub .groucho.edu

15.4. A Tour of Sendmail+IDA Tables 254

As mentioned above, order is important. Reversing the order of the two rules shown

above will result in all mail to .cs.groucho.edu going through the more generic bighub

path instead of the explicit ada path that is really desired.

(in mailertable)

#

forward all mail for the domain .groucho.edu via UUCP to bighub

UUCP-A,bighub .groucho.edu

#

(it is impossible to reach the next line because

the rule above will be matched first)

UUCP-A,ada .cs.groucho.edu

#

In the mailertable examples above, the UUCP-A mailer makes sendmail use UUCP

delivery with domainized headers.

The comma between the mailer and remote system tells it to forward the message to

ada for address resolution and delivery.

Mailertable entries are of the format:

mailer delimiter relayhost host or domain

There are a number of possible mailers. The di�erences are generally in how they treat

addresses. Typical mailers are TCP-A (TCP/IP with Internet-style addresses), TCP-U

(TCP/IP with UUCP-style addresses), and UUCP-A (UUCP with Internet-style addresses).

The character that separates the mailer from the host portion on the left-hand-side of

a mailertable line de�nes how the address is modi�ed by the mailertable. The important

thing to realize is that this only rewrites the envelope (to get the mail into the remote

system). Rewriting anything other than the envelope is generally frowned upon due to the

high probability of breaking the mail con�guration.

! An exclamation point strips o� the recipient hostname before forwarding to

the mailer. This can be used when you want to wish to essentially force mail

into a miscon�gured remote site.

, A comma does not change the address in any way. The message is merely

forwarded via the speci�ed mailer to the speci�ed relay host.

: A colon removes the recipient hostname only if there are intermediate hosts

between you and the destination. Thus, foo!bar!joe will have foo removed,

while xyzzy!janet will remain unchanged.

15.4. A Tour of Sendmail+IDA Tables 255

15.4.2 uucpxtable

Usually, mail to hosts with fully-quali�ed domain names is delivered via Internet style

(SMTP) delivery using Domain Name Service (DNS), or via the relay host. The uucpxtable

forces delivery via UUCP routing by converting the domainized name into a UUCP-style

un-domainized remote hostname.

It is frequently used when you're a mail forwarder for a site or domain or when you

wish to send mail via a direct and reliable UUCP link rather than potentially multiple hops

through the default mailer and any intermediate systems and networks.

UUCP sites that talk to UUCP neighbors who use domainized mail headers would use

this �le to force delivery of the mail through the direct UUCP point-to-point link between

the two systems rather than using the less direct route through the RELAY MAILER and

RELAY HOST or through the DEFAULT MAILER.

Internet sites who do not talk UUCP probably would not use the uucpxtable.

Suppose you provide mail forwarding service to a system called sesame.com in DNS

and sesame in the UUCP maps. You would need the following uucpxtable entry to force

mail for their host to go through your direct UUCP connection.

#============== /usr/local/lib/mail/uucpxtable ============

Mail sent to joe@sesame.com is rewritten to sesame!joe and

therefore delivered via UUCP

#

sesame sesame.com

#

#--

15.4.3 pathtable

The pathtable is used to de�ne explicit routing to remote hosts or networks. The pathtable

�le should be in pathalias-style syntax, sorted alphabetically. The two �elds on each line

must be separated by a real TAB, else dbm might complain.

Most systems will not need any pathtable entries.

#=============== /usr/local/lib/mail/pathtable ================

#

this is a pathalias-style paths file to let you kick mail to

UUCP neighbors to the direct UUCP path so you don't have to

go the long way through your smart host that takes other traffic

15.4. A Tour of Sendmail+IDA Tables 256

#

you want real tabs on each line or m4 might complain

#

route mail through one or more intermediate sites to a remote

system using UUCP-style addressing.

#

sesame!ernie!%s ernie

#

forwarding to a system that is a UUCP neighbor of a reachable

internet site.

#

swim!%s@gcc.groucho.edu swim

#

The following sends all mail for two networks through different

gateways (see the leading '.' ?).

In this example, "uugate" and "byte" are specific systems that serve

as mail gateways to the .UUCP and .BITNET pseudo-domains respectively

#

%s@uugate.groucho.edu .UUCP

byte!%s@mail.shift.com .BITNET

#

#=================== end of pathtable =======================

15.4.4 domaintable

The domaintable is generally used to force certain behavior after a DNS lookup has occurred.

It permits the administrator to make shorthand names available for commonly referenced

systems or domains by replacing the shorthand name with the proper one automatically. It

can also be used to replace incorrect host or domain names with the \correct" information.

Most sites will not need any domaintable entries.

The following example shows how to replace an incorrect address people are attempting

to mail to with the correct address:

#============= /usr/local/lib/mail/domaintable =================

#

#

brokenhost.correct.domain brokenhost.wrong.domain

#

#

#=================== end of domaintable ========================

15.4. A Tour of Sendmail+IDA Tables 257

15.4.5 aliases

Aliases permit a number of things to happen:

� They provide a shorthand or well-known name for mail to be addressed to in order to

go to one or more persons.

� They invoke a program with the mail message as the input to the program.

� They send mail to a �le.

All systems require aliases for Postmaster and MAILER-DAEMON to be RFC-

compliant.

Always be extremely aware of security when de�ning aliases that invoke programs or

write to programs since sendmail generally runs setuid-root.

Changes to the aliases �le do not take e�ect until the command

/usr/lib/sendmail -bi

is executed to build the required dbm tables. This can also be done by executing the

newaliases command, usually from cron.

Details concerning mail aliases may be found in the aliases(5) manual page.

#--------------------- /usr/local/lib/mail/aliases ------------------

#

demonstrate commonly seen types of aliases

#

usenet: janet # alias for a person

admin: joe,janet # alias for several people

newspak-users: :include:/usr/lib/lists/newspak

read recipients from a file

changefeed: | /usr/local/lib/gup # alias that invokes a program

complaints: /var/log/complaints # alias that writes mail to a file

#

The following two aliases must be present to be RFC-compliant.

It is important to have them resolve to 'a person' who reads mail routinely.

#

postmaster: root # required entry

MAILER-DAEMON: postmaster # required entry

#

#---

15.5. Installing sendmail 258

15.4.6 Rarely Used Tables

The following tables are available, but rather infrequently used. Consult with the docu-

mentation that comes with the sendmail+IDA sources for details.

uucprelays The uucprelays �le is used to \short-circuit" the UUCP path to especially

well known sites rather than using a multi-hop or unreliable path generated

by processing the UUCP maps with pathalias.

genericfrom and xaliases

The genericfrom �le hides local usernames and addresses from the outside

world by automatically converting local usernames to generic sender ad-

dresses that do not match internal usernames.

The associated xalparse utility automates the generation of the genericfrom

and aliases �le so that both incoming and outgoing username translations

occur from a master xaliases �le.

decnetxtable The decnetxtable rewrites domainized addresses into decnet-style addresses

much like the domaintable can be used to rewrite undomainized addresses

into domainized SMTP-style addresses.

15.5 Installing sendmail

In this section, we'll take a look at how to install a typical binary distribution of send-

mail+IDA, and walk through what needs to be done to make it localized and functional.

The current binary distribution of sendmail+IDA for Linux can be gotten from sun-

site.unc.edu in /pub/Linux/system/Mail. Even if you have an earlier version of sendmail

I strongly recommend you go to the sendmail5.67b+IDA1.5 version since all required Linux-

speci�c patches are now in the vanilla sources and several signi�cant security holes have

been plugged that were in versions prior to about December 1, 1993.

If you are building sendmail from the sources, you should follow the instructions in the

READMEs included in the source distribution. The current sendmail+IDA source is avail-

able from vixen.cso.uiuc.edu. To build sendmail+IDA on Linux, you also need the Linux-

speci�c con�guration �les from newspak-2.2.tar.gz, which is available on sunsite.unc.edu

in the /pub/Linux/system/Mail directory.

If you have previously installed smail or another mail delivery agent, you'll probably

want to remove (or rename) all the �les from smail to be safe.

15.5. Installing sendmail 259

15.5.1 Extracting the binary distribution

First, you have to unpack the archive �le in some safe location:

$ gunzip -c sendmail5.65b+IDA1.5+mailx5.3b.tgz | tar xvf -

If you have a \modern" tar, for example from a recent Slackware Distribution, you can

probably just do a tar -zxvf filename.tgz and get the same results.

Unpacking the archive creates a directory named sendmail5.65b+IDA1.5+mailx5.3b. In

this directory, you �nd a complete installation of sendmail+IDA plus a binary of the mailx

user agent. All �le paths below this directory reect the location where the �les should be

installed, so it's safe to work up a tar command to move 'em over:

cd sendmail5.65b+IDA1.5+mailx5.3b

tar cf - . | (cd /; tar xvvpoof -)

15.5.2 Building sendmail.cf

To build a sendmail.cf �le customized for your site, you have to write a sendmail.m4 �le,

and process it with m4. In /usr/local/lib/mail/CF, you �nd a sample �le called sample.m4.

Copy it to yourhostname .m4, and edit it to reect the situation of your site.

The sample �le is set up for a UUCP-only site that has domainized headers and talks

to a smart host. Sites like this only need to edit a few items.

In the current section, I will only give a short overview of the macros you have to

change. For a complete description of what they do, please refer to the earlier discussion of

the sendmail.m4.

LOCAL MAILER DEF

De�ne de�ne the �le that de�nes the mailers for local mail delivery. See

section \De�ning the Local Mailer" above for what goes in here.

PSEUDONYMS

De�ne all the names your local host is known by.

DEFAULT HOST

Put in your fully quali�ed domain name. This name will appear as your

hostname in all outgoing mail.

UUCPNAME

Put in your unquali�ed hostnmae.

15.5. Installing sendmail 260

RELAY HOST and RELAY MAILER

If you talk UUCP to a smart-host, set RELAY HOST to the UUCP name

of your `smart relay' uucp neighbor. Use the UUCP-A mailer if you want

domainized headers.

DEFAULT MAILER

If you are on Internet and talk DNS, you should set this to TCP-A. This

tells sendmail to use the TCP-A mailer, which delivers mail via SMTP using

normal RFC style addressing for the envelope. Internet sites probably do

not need to de�ne RELAY HOST or RELAY MAILER.

To create the sendmail.cf �le, execute the command

make yourhostname.cf

This processes the yourhostname .m4 �le and creates yourhostname .cf from it.

Next, you should test whether the con�guration �le you've created does what you expect

it to do. This is explained in the following two sections.

Once you're happy with its behavior, copy it into place with the command:

cp yourhostname.cf /etc/sendmail.cf

At this point, your sendmail system is ready for action. Put the following line in the

appropriate startup �le (generally /etc/rc.inet2). You can also execute it by hand to have

the process start up now.

/usr/lib/sendmail -bd -q1h

15.5.3 Testing the sendmail.cf �le

To put sendmail into `test' mode, you invoke it with the -bt ag. The default con�guration

�le is the sendmail.cf �le that is installed on the system. You can test an alternate �le by

using the -Cfilename option.

In the following examples, we test vstout.cf, the con�guration �le generated from the

vstout.m4 �le shown in �gure 15.2.

/usr/lib/sendmail -bt -Cvstout.cf

ADDRESS TEST MODE

Enter <ruleset> <address>

15.5. Installing sendmail 261

[Note: No initial ruleset 3 call]

>

The following tests ensure that sendmail is able to deliver all mail to users on your

system. In all cases the result of the test should be the same and point to the local system

name with the LOCAL mailer.

First test how a mail to a local user would be delivered.

/usr/lib/sendmail -bt -Cvstout.cf

ADDRESS TEST MODE

Enter <ruleset> <address>

[Note: No initial ruleset 3 call]

> 3,0 me

rewrite: ruleset 3 input: me

rewrite: ruleset 7 input: me

rewrite: ruleset 9 input: me

rewrite: ruleset 9 returns: < me >

rewrite: ruleset 7 returns: < > , me

rewrite: ruleset 3 returns: < > , me

rewrite: ruleset 0 input: < > , me

rewrite: ruleset 8 input: < > , me

rewrite: ruleset 20 input: < > , me

rewrite: ruleset 20 returns: < > , @ vstout . vbrew . com , me

rewrite: ruleset 8 returns: < > , @ vstout . vbrew . com , me

rewrite: ruleset 26 input: < > , @ vstout . vbrew . com , me

rewrite: ruleset 26 returns: $# LOCAL $@ vstout . vbrew . com $: me

rewrite: ruleset 0 returns: $# LOCAL $@ vstout . vbrew . com $: me

The output shows how sendmail processes the address internally. It is handed to various

rulesets which analyze it, invoke other rulesets in turn, and break it up into its components.

In our example, we passed the address me to rulesets 3 and 0 (this is the meaning of

the 3,0 entered before the address). The last line shows the parsed address as returned by

ruleset 0, containing the mailer the message would be delivered by, and the host and user

name given to the mailer.

Next, test mail to a user on your system with UUCP syntax.

/usr/lib/sendmail -bt -Cvstout.cf

ADDRESS TEST MODE

Enter <ruleset> <address>

15.5. Installing sendmail 262

[Note: No initial ruleset 3 call]

> 3,0 vstout!me

rewrite: ruleset 3 input: vstout ! me

[...]

rewrite: ruleset 0 returns: $# LOCAL $@ vstout . vbrew . com $: me

>

Next, test mail addressed to a user on your system with Internet syntax to your fully

quali�ed hostname.

/usr/lib/sendmail -bt -Cvstout.cf

ADDRESS TEST MODE

Enter <ruleset> <address>

[Note: No initial ruleset 3 call]

> 3,0 me@vstout.vbrew.com

rewrite: ruleset 3 input: me @ vstout . vbrew . com

[...]

rewrite: ruleset 0 returns: $# LOCAL $@ vstout . vbrew . com $: me

>

You should repeat the above two tests with each of the names you speci�ed in the

PSEUDONYMS and DEFAULT NAME parameters in your sendmail.m4 �le.

Lastly, test that you can mail to your relay host.

/usr/lib/sendmail -bt -Cvstout.cf

ADDRESS TEST MODE

Enter <ruleset> <address>

[Note: No initial ruleset 3 call]

> 3,0 fred@moria.com

rewrite: ruleset 3 input: fred @ moria . com

rewrite: ruleset 7 input: fred @ moria . com

rewrite: ruleset 9 input: fred @ moria . com

rewrite: ruleset 9 returns: < fred > @ moria . com

rewrite: ruleset 7 returns: < @ moria . com > , fred

rewrite: ruleset 3 returns: < @ moria . com > , fred

rewrite: ruleset 0 input: < @ moria . com > , fred

rewrite: ruleset 8 input: < @ moria . com > , fred

rewrite: ruleset 8 returns: < @ moria . com > , fred

rewrite: ruleset 29 input: < @ moria . com > , fred

rewrite: ruleset 29 returns: < @ moria . com > , fred

15.5. Installing sendmail 263

rewrite: ruleset 26 input: < @ moria . com > , fred

rewrite: ruleset 25 input: < @ moria . com > , fred

rewrite: ruleset 25 returns: < @ moria . com > , fred

rewrite: ruleset 4 input: < @ moria . com > , fred

rewrite: ruleset 4 returns: fred @ moria . com

rewrite: ruleset 26 returns: < @ moria . com > , fred

rewrite: ruleset 0 returns: $# UUCP-A $@ moria $: < @ moria . com > , fred

>

15.5.4 Putting it all together - Integration Testing sendmail.cf and the

tables

At this point, you've veri�ed that mail will have the desired default behavior and that you'll

be able to both send and received validly addressed mail. To complete the installation, it

may be necessary to create the appropriate dbm tables to get the desired �nal results.

After creating the table(s) that are required for your site, you must process them through

dbm by typing make in the directory containing the tables.

If you are UUCP-only, you do not need to create any of the tables mentioned in the

README.linux �le. You'll just have to touch the �les so that the Make�le works.

If you're UUCP-only and you talk to sites in addition to your smart-host, you'll need to

add uucpxtable entries for each (or mail to them will also go through the smart host) and

run dbm against the revised uucpxtable.

First, you need to make certain that mail through your RELAY HOST is sent to them

via the RELAY MAILER.

/usr/lib/sendmail -bt -Cvstout.cf

ADDRESS TEST MODE

Enter <ruleset> <address>

[Note: No initial ruleset 3 call]

> 3,0 fred@sesame.com

rewrite: ruleset 3 input: fred @ sesame . com

rewrite: ruleset 7 input: fred @ sesame . com

rewrite: ruleset 9 input: fred @ sesame . com

rewrite: ruleset 9 returns: < fred > @ sesame . com

rewrite: ruleset 7 returns: < @ sesame . com > , fred

rewrite: ruleset 3 returns: < @ sesame . com > , fred

rewrite: ruleset 0 input: < @ sesame . com > , fred

rewrite: ruleset 8 input: < @ sesame . com > , fred

15.5. Installing sendmail 264

rewrite: ruleset 8 returns: < @ sesame . com > , fred

rewrite: ruleset 29 input: < @ sesame . com > , fred

rewrite: ruleset 29 returns: < @ sesame . com > , fred

rewrite: ruleset 26 input: < @ sesame . com > , fred

rewrite: ruleset 25 input: < @ sesame . com > , fred

rewrite: ruleset 25 returns: < @ sesame . com > , fred

rewrite: ruleset 4 input: < @ sesame . com > , fred

rewrite: ruleset 4 returns: fred @ sesame . com

rewrite: ruleset 26 returns: < @ sesame . com > , fred

rewrite: ruleset 0 returns: $# UUCP-A $@ moria $: < @ sesame . com > , fred

>

If you have UUCP neighbors other than your RELAY HOST, you need to ensure that

mail to them has the proper behavior. Mail addressed with UUCP-style syntax to a host

you talk UUCP with should go directly to them (unless you explicitly prevent it with a

domaintable entry). Assume host swim is a direct UUCP neighbor of yours. Then feeding

swim!fred to sendmail should produce the following result:

/usr/lib/sendmail -bt -Cvstout.cf

ADDRESS TEST MODE

Enter <ruleset> <address>

[Note: No initial ruleset 3 call]

> 3,0 swim!fred

rewrite: ruleset 3 input: swim ! fred

[...lines omitted...]

rewrite: ruleset 0 returns: $# UUCP $@ swim $: < > , fred

>

If you have uucpxtable entries to force UUCP delivery to certain UUCP neighbors who

send their mail with Internet style domainized headers, that also needs to be tested.

/usr/lib/sendmail -bt -Cvstout.cf

ADDRESS TEST MODE

Enter <ruleset> <address>

[Note: No initial ruleset 3 call]

> 3,0 dude@swim.2birds.com

rewrite: ruleset 3 input: dude @ swim . 2birds . com

[...lines omitted...]

rewrite: ruleset 0 returns: $# UUCP $@ swim . 2birds $: < > , dude

>

15.6. Administrivia and Stupid Mail Tricks 265

15.6 Administrivia and Stupid Mail Tricks

Now that we've discussed the theory of con�guring, installing, and testing a sendmail+IDA

system, lets take a few moments to look into things that do happen routinely in the life of

a mail administrator.

Remote systems sometimes break. Modems or phone lines fail, DNS de�nitions are

set incorrectly due to human error. Networks go down unexpectedly. In such cases, mail

administrators need to know how to react quickly, e�ectively, and safely to keep mail owing

through alternate routes until the remote systems or service providers can restore normal

services.

The rest of this chapter is intended to provide you with the solutions to the most fre-

quently encountered \electronic mail emergencies".

15.6.1 Forwarding Mail to a Relay Host

To forward mail for a particular host or domain to a designated relay system, you generally

use the mailertable.

For example, to forward mail for backwood.org to their UUCP gateway system back-

door, you'd put the following entry into mailertable:

UUCP-A,backdoor backwood.org

15.6.2 Forcing Mail into Miscon�gured Remote Sites

Frequently, Internet hosts will have trouble getting mail into miscon�gured remote sites.

There are several variants of this problem, but the general symptom is that mail is bounced

by the remote system or never gets there at all.

These problems can put the local system administrator in a bad position because your

users generally don't care that you don't personally administer every system worldwide (or

know how to get the remote administrator to �x the problem). They just know that their

mail didn't get through to the desired recipient on the other end and that you're a likely

person to complain to.

A remote site's con�guration is their problem, not yours. In all cases, be certain to not

break your site in order to communicate with a miscon�gured remote site. If you can't get

in touch with the Postmaster at the remote site to get them to �x their con�guration in a

timely manner, you have two options.

15.6. Administrivia and Stupid Mail Tricks 266

� It is generally possible to force mail into the remote system successfully, although since

the remote system is miscon�gured, replies on the remote end might not work: : :but

then that's the remote administrator's problem.

You can �x the bad headers in the envelope on your outgoing messages only by using a

domaintable entry for their host/domain that results in the invalid information being

corrected in mail originating from your site:

braindead.correct.domain.com braindead.wrong.domain.com

� Frequently, miscon�gured sites `bounce' mail back to the sending system and e�ectively

say \that mail isn't for this site" because they do not have their PSEUDONYMNS

or equivalent set properly in their con�guration. It is possible to totally strip o� all

hostname and domain information from the envelope of messages going from your site

to them.

The ! in the following mailertable delivers mail to their remote site making it ap-

pear to their sendmail as if it had originated locally on their system. Note that this

changes only the envelope address, so the proper return address will still show up in

the message.

TCP!braindead.correct.domain.com braindead.wrong.domain.com

Regardless, even if you get mail into their system, there is no guarantee that they can

reply to your message (they're broken, remember: : :) but then their users are yelling at

their administrators rather than your users yelling at you.

15.6.3 Forcing Mail to be Transferred via UUCP

In an ideal world (from the Internet perspective), all hosts have records in the Domain

Name Service (DNS) and will send mail with fully quali�ed domain names.

If you happen to talk via UUCP to such a site, you can force mail to go through the

point-to-point UUCP connection rather than through your default mailer by essentially

\undomainizing" their hostname through the uucpxtable.

To force UUCP delivery to sesame.com, you would put the following in your uucpxtable:

un-domainize sesame.com to force UUCP delivery

sesame sesame.com

The result is that sendmail will then determine (via UUCPNODES in the sendmail.m4

�le) that you are directly connected to the remote system and will queue the mail for

delivery with UUCP.

15.6. Administrivia and Stupid Mail Tricks 267

15.6.4 Preventing Mail from Being Delivered via UUCP

The opposite condition also occurs. Frequently, systems may have a number of direct UUCP

connections that are used infrequently or that are not as reliable and always available as

the default mailer or relay host.

For example, in the Seattle area there are a number of systems that exchange the var-

ious Linux distributions via anonymous UUCP when the distributions are released. These

systems talk UUCP only when necessary, so it is generally faster and more reliable to send

mail through multiple very reliable hops and common (and always available) relay hosts.

It is easily possible to prevent UUCP delivery of mail to a host that you are directly

connected to. If the remote system has a fully-quali�ed domain name, you can add an entry

like this to the domaintable:

prevent mail delivery via UUCP to a neighbor

snorkel.com snorkel

This will replace any occurence of the UUCP name with the FQDN, and thus prevent a

match by the UUCPNODES line in the sendmail.m4 �le. The result is generally that mail

will go via the RELAY MAILER and RELAY HOST (or DEFAULT MAILER).

15.6.5 Running the Sendmail Queue on Demand

To process queued messages immediately, merely type '/usr/lib/runq'. This invokes send-

mail with the appropriate options to cause sendmail to run through the queue of pending

jobs immediately rather than waiting for the next scheduled run.

15.6.6 Reporting Mail Statistics

Many site administrators (and the persons they work for) are interested in the volume of

mail passing to, from, and through the local site. There are a number of ways to quantify

mail tra�c.

� Sendmail comes with a utility called mailstats that reads a �le called

/usr/local/lib/mail/sendmail.st and reports the number of messages and number of

bytes transferred by each of the mailers used in the sendmail.cf �le. This �le must

be created by the local administrator manually for sendmail logging to occur. The

running totals are cleared by removing and recreating the sendmail.st �le. One way

is to do the following:

15.7. Mixing and Matching Binary Distributions 268

cp /dev/null /usr/lib/local/mail/sendmail.st

� Probably the best way to do quality reporting regarding who uses mail and how

much volume passes to, from, and through the local system is to turn on mail debug-

ging with syslogd(8). Generally, this means running the /etc/syslogd daemon from

your system startup �le (which you should be doing anyway), and adding a line to

/etc/syslog.conf(5) that looks something like the following:

mail.debug /var/log/syslog.mail

If you use mail.debug and get any medium to high mail volume, the syslog output can

get quite large. Output �les from syslogd generally need to be rotated or purged on a

routine basis from crond(8).

There are a number of commonly available utilities that can summarize the output of

mail logging from syslogd. One of the more well known utilities is syslog-stat.pl, a perl

script that is distributed with the sendmail+IDA sources.

15.7 Mixing and Matching Binary Distributions

There is no true standard con�guration of electronic mail transport and delivery agents and

there is no \one true directory structure."

Accordingly, it is necessary to ensure that all the various pieces of the system (USENET

news, mail, TCP/IP) agree on the location of the local mail delivery program (lmail, deliver,

etc.), remote mail delivery program (rmail), and the mail transport program (sendmail

or smail). Such assumptions are not generally documented, although use of the strings

command can help determine what �les and directories are expected. The following are

some problems we've seen in the past with some of the commonly available Linux binary

distributions and sources.

� Some versions of the NET-2 distribution of TCP/IP have services de�ned for a program

called umail rather than sendmail.

� There are various ports of elm and mailx that look for a delivery agent of

/usr/bin/smail rather than sendmail.

� Sendmail+IDA has a built-in local mailer for deliver, but expects it to be located in

/bin rather than the more typical Linux location of /usr/bin.

Rather than go through the trouble of building all the mail clients from sources, we

generally fake it with the appropriate soft links: : :

15.8. Where to Get More Information 269

15.8 Where to Get More Information

There are many places you can look for more information on sendmail. For a list, see the

Linux MAIL Howto posted regularly to comp.answers. It is also available for anonymous

FTP on rtfm.mit.edu. However, the de�nitive place is in the sendmail+IDA sources. Look

in the directory ida/cf below the source directory for the �les DBM-GUIDE, OPTIONS,

and Sendmail.mc.

Chapter 16

Netnews

16.1 Usenet History

The idea of network news was born in 1979 when two graduate students, Tom Truscott

and Jim Ellis, thought of using UUCP to connect machines for the purpose of information

exchange among un?x users. They set up a small network of three machines in North

Carolina.

Initially, tra�c was handled by a number of shell scripts (later rewritten in C), but they

were never released to the public. They were quickly replaced by \A" news, the �rst public

release of news software.

\A" news was not designed to handle more than a few articles per group and day. When

the volume continued to grow, it was rewritten by Mark Horton and Matt Glickman, who

called it the \B" release (a.k.a. Bnews). The �rst public release of Bnews was version 2.1

in 1982. It was expanded continuously, with several new features being added. Its current

version is Bnews 2.11. It is slowly becoming obsolete, with its last o�cial maintainer having

switched to INN.

Another rewrite was done and released in 1987 by Geo� Collyer and Henry Spencer; this

is release \C", or C News. In the time following there have been a number of patches to

C News, the most prominent being the C News Performance Release. On sites that carry

a large number of groups, the overhead involved in frequently invoking relaynews, which is

responsible for dispatching incoming articles to other hosts, is signi�cant. The Performance

Release adds an option to relaynews that allows to run it in daemon mode, in which the

program puts itself in the background.

The Performance Release is the C News version currently included in most Linux releases.

270

16.2. What is Usenet, Anyway? 271

All news releases up to \C" are primarily targeted for UUCP networks, although they

may be used in other environments as well. E�cient news transfer over networks like

TCP/IP, DECNet, or related requires a new scheme. This was the reason why, in 1986,

the \Network News Transfer Protocol", NNTP, was introduced. It is based on network

connections, and speci�es a number of commands to interactively transfer and retrieve

articles.

There are a number of NNTP-based applications available from the Net. One of them

is the nntpd package by Brian Barber and Phil Lapsley, which you can use, among other

things, to provides newsreading service to a number of hosts inside a local network. nntpd

was designed to complement news packages such as Bnews or C News to give them NNTP

features.

A di�erent NNTP package is INN, or Internet News. It is not merely a front end, but

a news system by its own right. It comprises a sophisticated news relay daemon that is

capable of maintaining several concurrent NNTP links e�ciently, and is therefore the news

server of choice for many Internet sites.

16.2 What is Usenet, Anyway?

One of the most astounding facts about Usenet is that it isn't part of any organization, or

has any sort of centralized network management authority. In fact, it's part of Usenet lore

that except for a technical description, you cannot de�ne what it is, you can only say what

it isn't. If you have Brendan Kehoe's excellent \Zen and the Art of the Internet" (available

online or through Prentice-Hall, see [Kehoe92]) at hand, you will �nd an amusing list of

Usenet's non-properties.

At the risk of sounding stupid, one might de�ne Usenet as a collaboration of separate

sites who exchange Usenet news. To be a Usenet site, all you have to do is �nd another site

Usenet site, and strike an agreement with its owners and maintainers to exchange news with

you. Providing another site with news is also called feeding it, whence another common

axiom of Usenet philosophy originates: \Get a feed and you're on it."

The basic unit of Usenet news is the article. This is a message a user writes and \posts" to

the net. In order to enable news sytems to deal with it, it is prepended with administrative

information, the so-called article header. It is very similar to the mail header format laid

down in the Internet mail standard RFC 822, in that it consists of several lines of text, each

beginning with a �eld name terminated by a colon, which is followed by the �eld's value.1

1The format of Usenet news messages is speci�ed in RFC 1036, \Standard for interchange of USENET

messages".

16.2. What is Usenet, Anyway? 272

Articles are submitted to one or more newsgroups. One may consider a newsgroup a

forum for articles relating to a common topic. All newsgroups are organized in a hierarchy,

with each group's name indicating its place in the hierarchy. This often makes it easy to see

what a group is all about. For example, anybody can see from the newsgroup name that

comp.os.linux.announce is used for announcements concerning a computer operating

system named Linux.

These articles are then exchanged between all Usenet sites that are willing to carry news

from this group. When two sites agree to exchange news, they are free to exchange whatever

newsgroups they like to, and may even add their own local news hierarchies. For example,

groucho.edu might have a news link to barnyard.edu, which is a major news feed, and

several links to minor sites which it feeds news. Now, Barnyard College might receive all

Usenet groups, while GMU only wants to carry a few major hierarchies like sci, comp, rec,

etc. Some of the downstream sites, say a UUCP site called brewhq, will want to carry

even fewer groups, because they don't have the network or hardware resources. On the

other hand, brewhq might want to receive newsgroups from the fj hierarchy, which GMU

doesn't carry. It therefore maintains another link with gargleblaster.com, who carry all

fj groups, and feed them to brewhq. The news ow is shown in �gure 16.1.

brewhq

gargleblaster.com

Usenet

groucho.edu

barnyard.edu

comp,sci,

recall

all,!fj

comp.os,
comp.periphs

fj
fj

Figure 16.1: Usenet news ow through Groucho Marx University.

The labels on the arrows originating from brewhq may require some explanation,

though. By default, it wants all locally generated news to be sent to groucho.edu. How-

16.3. How Does Usenet Handle News? 273

ever, as groucho.edu does not carry the fj groups, there's no pointing in sending it any

messages from those groups. Therefore, the feed from brewhq to GMU is labelled all,!fj,

meaning that all groups except those below fj are sent to it.

16.3 How Does Usenet Handle News?

Today, Usenet has grown to enormous proportions. Sites that carry the whole of netnews

usually transfer something like a paltry sixty megabytes a day.2 Of course this requires

much more than pushing around �les. So let's take a look at the way most un?x systems

handle Usenet news.

News is distributed through the net by various transports. The historical medium used

to be UUCP, but today the main tra�c is carried by Internet sites. The routing algorithm

used is called ooding: Each site maintains a number of links (news feeds) to other sites.

Any article generated or received by the local news system is forwarded to them, unless

it has already been seen at that site, in which case it is discarded. A site may �nd out

about all other sites the article has already traversed by looking at the Path: header �eld.

This header contains a list of all systems the article has been forwarded by in bang path

notation.

To distinguish articles and recognize duplicates, Usenet articles have to carry a message

id (speci�ed in the Message-Id: header �eld), which combines the posting site's name and

a serial number into \<serial@site>". For each article processed, the news system logs

this id into a history �le against which all newly arrived articles are checked.

The ow between any two sites may be limited by two criteria: for one, an article is

assigned a distribution (in the Distribution: header �eld) which may be used to con�ne

it to a certain group of sites. On the other hand, the newsgroups exchanged may be limited

by both the sending or receiving system. The set of newsgroups and distributions allowed

for transmission to a site are usually kept in the sys �le.

The sheer number of articles usually requires that improvements be made to the above

scheme. On UUCP networks, the natural thing to do is to collect articles over a period of

time, and combine them into a single �le, which is compressed and sent to the remote site.

This is called batching.3

An alternative technique is the ihave/sendme protocol that prevents duplicate articles

from being transferred in the �rst place, thus saving net bandwidth. Instead of putting all

articles in batch �les and sending them along, only the message ids of articles are combined

2Wait a moment: 60 Megs at 9600 bps, that's 60 million by 1200, that is: : :mutter, mutter,: : :Hey! That's

34 hours!
3The golden rule of netnews, according to Geo� Collyer: \Thou shalt batch thine articles."

16.3. How Does Usenet Handle News? 274

into a giant \ihave" message and sent to the remote site. It reads this message, compares

it to its history �le, and returns the list of articles it wants in a \sendme" message. Only

these articles are then sent.

Of course, ihave/sendme only makes sense if it involves two big sites that receive news

from several independent feeds each, and who poll each other often enough for an e�cient

ow of news.

Sites that are on the Internet generally rely on TCP/IP-based software that uses the

Network News Transfer Protocol, NNTP.4 It transfers news between feeds and provides

Usenet access to single users on remote hosts.

NNTP knows three di�erent ways to transfer news. One is a real-time version of

ihave/sendme, also referred to as pushing news. The second technique is called pulling

news, in which the client requests a list of articles in a given newsgroup or hierarchy that

have arrived at the server's site after a speci�ed date, and chooses those it cannot �nd in

its history �le. The third mode is for interactive newsreading, and allows you or your news-

reader to retrieve articles from speci�ed newgroups, as well as post articles with incomplete

header information.

At each site, news are kept in a directory hierarchy below /var/spool/news, each arti-

cle in a separate �le, and each newsgroup in a separate directory. The directory name is

made up of the newsgroup name, with the components being the path components. Thus,

comp.os.linux.misc articles are kept in /var/spool/news/comp/os/linux/misc. The arti-

cles in a newsgroup are assigned numbers in the order they arrive. This number serves as

the �le's name. The range of numbers of articles currently online is kept in a �le called

active, which at the same time serves as a list of newsgroups known at your site.

Since disk space is a �nite resource,5 one has to start throwing away articles after some

time. This is called expiring. Usually, articles from certain groups and hierarchies are

expired at a �xed number of days after they arrive. This may be overridden by the poster

by specifying a date of expiration in the Expires: �eld of the article header.

4Described in RFC 977.
5Some people claim that Usenet is a conspiracy by modem and hard disk vendors.

Chapter 17

C News

One of the most popular software packages for Netnews is C News. It was designed for sites

that carry news over UUCP links. This chapter will discuss the central concepts of C News,

and the basic installation and maintenance tasks.

C News stores its con�guration �les in /usr/lib/news , and most of its binaries in the

/usr/lib/news/bin directory. Articles are kept below /var/spool/news. You should make

sure virtually all �les in these directories are owned by user news, group news. Most

problems arise from �les being inaccessible to C News. Make it a rule for you to become

user news using su before you touch anything in there. The only exceptions is setnewsids,

which is used to set the real user id of some news programs. It must be owned by root and

must have the setuid bit set.

In the following, we describe all C News con�guration �les in detail, and show you what

you have to do to keep your site running.

17.1 Delivering News

Articles may be fed to C News in several ways. When a local user posts an article, the

newsreader usually hands it to the inews command, which completes the header information.

News from remote sites, be it a single article or a whole batch, is given to the rnews

command, which stores it in the /var/spool/newsin.coming directory, from where it will

be picked up at a later time by newsrun. With any of these two techniques, however, the

article will eventually be handed to the relaynews command.

For each article, the relaynews command �rst checks if the article has already been seen

at the local site by looking up the message id in the history �le. Duplicate articles will be

dropped. Then, relaynews looks at the Newsgroups: header line to �nd out if the local

275

17.1. Delivering News 276

site requests articles from any of these groups. If it does, and the newsgroup is listed in the

active �le, relaynews tries to store the article in the corresponding directory in the news

spool area. If this directory does not exist, it is created. The article's message id will then

be logged to the history �le. Otherwise, relaynews drops the article.

If relaynews fails to store an incoming article because a group it has been posted to is

not listed in your active �le, the article will be moved to the junk group.1 relaynews will

also check for stale or misdated articles and reject them. Incoming batches that fail for any

other reason are moved to /var/spool/news/in.coming/bad, and an error message is logged.

After this, the article will be relayed to all other sites that request news from these

groups, using the transport speci�ed for each particular site. To make sure it isn't sent to

a site that already has seen it, each destination site is checked against the article's Path:

header �eld, which contains the list of sites the article has traversed so far, written in bang

path style. Only if the destination site's name does not appear in this list will the article

be sent to it.

C News is commonly used to relay news between UUCP sites, altough it is also possible

to use it in a NNTP environment. To deliver news to a remote UUCP site | either single

articles or whole batches | uux is used to execute the rnews command on the remote site,

and feed the article or batch to it on standard input.

When batching is enabled for a given site, C News does not send any incoming article

immediately, but appends its path name to a �le, usually out.going/site/togo. Periodically,

a batcher program is executed from a crontab entry,2 which puts the articles in one or more

�les, optionally compresses them, and sends them to rnews at the remote site.

Figure 17.1 shows the news ow through relaynews. Articles may be relayed to the local

site (denoted by ME), to some site named ponderosa via email, and a site named moria,

for which batching is enabled.

1There may be a di�erence between the groups that exist at your site, and those that your site is willing

to receive. For example, the subscription list may specify comp.all, which means all newsgroups below the

comp hierarchy, but at your site, only a number of comp groups are listed in active. articles posted to

those groups will be moved to junk.
2Note that this should be the crontab of news, in order not to mangle �le permissions.

17.2. Installation 277

ME ponderosa moria

mail

active spooldir out.going/
moria/togo

history

relaynews

article

Figure 17.1: News ow through relaynews.

17.2 Installation

To install C News, untar the �les into their proper places if you haven't done so yet, and edit

the con�guration �les listed below. They are all located in /usr/lib/news. Their formats

will be described in the following sections.

sys You probably have to modify the ME line that describes your system, al-

though using all/all is always a safe bet. You also have to add a line for

each site you feed news to.

If you are a leaf site, you only need a line that sends all locally generated

articles to your feed. Assume your feed is moria, then your sys �le should

look like this:

ME:all/all::

moria/moria.orcnet.org:all/all,!local:f:

organization Your organization's name. For example, \Virtual Brewery, Inc.". On

your home machine, enter \private site", or anything else you like. Most

people will not call your site properly con�gured if you haven't customized

this �le.

newsgroups

mailname Your site's mail name, e.g. vbrew.com.

17.2. Installation 278

whoami Your site's name for news purposes. Quite often, the UUCP site name is

used, for example vbrew.

explist You should probably edit this �le to reect your preferred expiry times for

some special newsgroups. Disk space may play an important role in it.

To create an initial hierarchy of newsgroups, obtain an active and a newsgroups �le

from the site that feeds you, and install them in /usr/lib/news, making sure they are

owned by news and have a mode of 644. Remove all to.* groups from the active �le,

and add to.mysite and to.feedsite , as well as junk and control. The to.* groups are

normally used for exchanging ihave/sendme messages, but you should create them regardless

of whether you plan to use ihave/sendme or not. Next, replace all article numbers in the

second and third �eld of active using the following command:

cp active active.old

sed 's/ [0-9]* [0-9]* / 0000000000 00001 /' active.old > active

rm active.old

The second command is an invocation of sed(1), one of my favorite un?x commands.

This invocation replaces two strings of digits with a string of zeroes and the string 000001,

respectively.

Finally, create the news spool directory and the subdirectories used for incoming and

outgoing news:

cd /var/spool

mkdir news news/in.coming news/out.going

chown -R news.news news

chmod -R 755 news

If you're using a later release of C News, you may also have to create the out.master

directory in the news spool directory.

If you're using newsreaders from a di�erent distribution than the C News you have

running, you may �nd that some expect the news spool on /usr/spool/news rather than in

/var/spool/news. If your newsreader doesn't seem to �nd any articles, create a symbolic

from /usr/spool/news to /var/spool/news.

Now, you are ready to receive news. Note that you don't have to create any directories

other than those shown above, because each time C News receives an article from a group

for which there's no spool directory yet, it will create it.

In particular, this happens to all groups an article has been crossposted to. So, after a

while, you will �nd your news spool cluttered with directories for newsgroups you have never

17.3. The sys �le 279

subscribed to, like alt.lang.teco. You may prevent this by either removing all unwanted

groups from active, or by regularly running a shell script which removes all empty directories

below /var/spool/news (except out.going and in.coming, of course).

C News needs a user to send error messages and status reports to. By default, this is

usenet. If you use the default, you have to set up an alias for it which forwards all of its

mail to one or more responsible persons. (Chapters 14 and 15 explain how to do so for smail

and sendmail). You may also override this behavior by setting the environment variable

NEWSMASTER to the appropriate name. You have to do so in news' crontab �le, as well

as every time you invoke an administrative tool manually, so installing an alias is probably

easier.

While you're hacking /etc/passwd, make sure that every user has her real name in the

pw gecos �eld of the password �le (this is the fourth �eld). It is a question of Usenet

netiquette that the sender's real name appears in the From: �eld of the article. Of course,

you will want to do so anyway when you use mail.

17.3 The sys �le

The sys �le, located in /usr/lib/news, controls which hierarchies you receive and forward

to other sites. Although there are maintenance tools named addfeed and delfeed, I think

it's better to maintain this �le by hand.

The sys �le contains entries for each site you forward news to, as well as a description

of the groups you will accept. An entry looks like

site[/exclusions]:grouplist[/distlist][:flags[:cmds]]

Entries may be continued across newlines using a backslash (\). A hash sign (#) denotes

a comment.

site This is the name of the site the entry applies to. One usually chooses the

site's UUCP name for this. There has to be an entry for your site in the sys

�le, too, else you will not receive any articles yourself.

The special site name ME denotes your site. The ME entry de�nes all

groups you are willing to store locally. Articles that aren't matched by the

ME line will go to the junk group.

Since C News checks site against the site names in the Path: header �eld,

you have to make sure they really match. Some sites use their fully quali�ed

domain name in this �eld, or an alias like news.site.domain . To prevent

17.3. The sys �le 280

any articles from being returned to these sites, you have to add these to the

exclusion list, separated by commas.

For the entry applying to sitemoria, for instance, the site �eld would contain

moria/moria.orcnet.org.

grouplist This is a comma-separated subscription list of groups and hierarchies for

that particular site. A hierarchy may be speci�ed by giving the hierarchy's

pre�x (such as comp.os for all groups whose name starts with this pre�x),

optionally followed by the keyword all (e.g. comp.os.all).

A hierarchy or group is excluded from forwarding by preceding it with an

exclamation mark. If a newsgroup is checked against the list, the longest

match applies. For example, if grouplist contains

!comp,comp.os.linux,comp.folklore.computers

no groups from the comp hierarchy except comp.folklore.computers and

all groups below comp.os.linux will be fed to that site.

If the site requests to be forwarded all news you receive yourself, enter all

as grouplist .

distlist is o�set from the grouplist by a slash, and contains a list of distributions

to be forwarded. Again, you may exclude certain distributions by preced-

ing them with an exclamation mark. All distributions are denoted by all.

Omitting distlist implies a list of all.

For example, you may use a distribution list of all,!local to prevent news for

local use only from being sent to remote sites.

There are usually at least two distributions: world, which is often the default

distribution used when none is speci�ed by the user, and local. There may

be other distributions that apply to a certain region, state, country, etc.

Finally, there are two distributions used by C News only; these are sendme

and ihave, and are used for the sendme/ihave protocol.

The use of distributions is a subject of debate. For one, some newsreaders

create bogus distributions by simply using the top level hierarchy, for ex-

ample comp when posting to comp.os.linux. Distributions that apply to

regions are often questionable, too, because news may travel outside of your

region when sent across the Internet.3 Distributions applying to an orga-

nization, however, are very meaningful, for example to prevent con�dential

information from leaving the company network. This purpose, however, is

3It is not uncommon for an article posted in, say Hamburg, to go to Frankfurt via reston.ans.net in

the Netherlands, or even via some site in the U.S.

17.3. The sys �le 281

generally served better by creating a separate newsgroup or hierarchy.

flags This describes certain parameters for the feed. It may be empty, or a com-

bination of the following:

F This ag enables batching.

f This is almost identical to the F ag, but allows C News to

calculate the size of outgoing batches more precisely.

I This ag makes C News produce an article list suitable for

use by ihave/sendme. Additional modi�cations to the sys

and the batchparms �le are required to enable ihave/sendme.

n This creates batch �les for active NNTP transfer clients like

nntpxmit (see chapter 18). The batch �les contain the arti-

cle's �lename along with its message id.

L This tells C News to transmit only articles posted at your

site. This ag may be followed by a decimal number n , which

makes C News only transfer articles posted within n hops

from your site. C News determines the number of hops from

the Path: �eld.

u This tells C News to batch only articles from unmoderated

groups.

m This tells C News to batch only articles from moderated

groups.

You may use at most one of F, f, I, or n.

cmds This �eld contains a command to be executed for each article, unless batching

is enabled. The article will be fed to the command on standard input. This

should only be used for very small feeds; otherwise the load on both systems

will be too high.

The default command is

uux - -r -z system!rnews

which invokes rnews on the remote system, feeding it the article on standard

input.

The default search path for commands given in this �eld is

/bin:/usr/bin:/usr/lib/news/bin/batch. The latter directory contains a num-

17.4. The active �le 282

ber of shell scripts whose name starts with via; they are briey described

later in this chapter.

If batching is enabled using either of the F or f, I or n ags, C News

expects to �nd a �le name in this �eld rather than a command. If the

�le name does not begin with a slash (/), it is assumed to be relative to

/var/spool/news/out.going. If the �eld is empty, it defaults to system/togo.

When setting up C News, you will most probably have to write your own sys �le. To

help you with it, we give a sample �le for vbrew.com below, from which you might copy

what you need.

We take whatever they give us.

ME:all/all::

We send everything we receive to moria, except for local and

brewery-related articles. We use batching.

moria/moria.orcnet.org:all,!to,to.moria/all,!local,!brewery:f:

We mail comp.risks to jack@ponderosa.uucp

ponderosa:comp.risks/all::rmail jack@ponderosa.uucp

swim gets a minor feed

swim/swim.twobirds.com:comp.os.linux,rec.humor.oracle/all,!local:f:

Log mail map articles for later processing

usenet-maps:comp.mail.maps/all:F:/var/spool/uumaps/work/batch

17.4 The active �le

The active �le is located in /usr/lib/news and lists all groups known at your site, and the

articles currently online. You will rarely have to touch it, but we explain it nevertheless for

sake of completeness. Entries take the following form:

newsgroup high low perm

newsgroup is, of course, the group's name. low and high are the lowest and highest

numbers of articles currently available. If none are available at the moment, low is equal

to high+1.

At least, that's what the low �eld is meant to do. However, for e�ciency reasons,

C News doesn't update this �eld. This wouldn't be such a big loss if there weren't some

17.4. The active �le 283

newsreaders that depend on it. For instance, trn checks this �eld to see if it can purge any

articles from its thread database. To update the low �eld, you therefore have to run the

updatemin command regularly (or, in earlier version of C News, the upact script).

perm is a parameter detailing the access users are granted to the group. It takes one of

the following values:

y Users are allowed to post to this group.

n Users are not allowed to post to this group. However, the group may still

be read.

x This group has been disabled locally. This happens sometimes when news

admininistrators (or their superiors) take o�ense to articles posted to certain

groups.

Articles received for this group are not stored locally, although they are

forwarded to the sites that request them.

m This denotes a moderated group. When a user tries to post to this group,

an intelligent newsreader will notify her of this, and send the article to the

moderator instead. The moderator's address is taken from the moderators

�le in /usr/lib/news.

=real-group

This marks newsgroup as being a local alias for another group, namely

real-group . All articles posted to newsgroup will be redirected to it.

In C News, you will generally not have to access this �le directly. Groups may be added

or deleted locally using addgroup and delgroup (see below in section Maintenance Tools and

Tasks). When groups are added or deleted for the whole of Usenet, this is usually done by

sending a newgroup or rmgroup control message, respectively. Never send such a message

yourself ! For instructions on how to create a newsgroup, read the monthly postings in

news.announce.newusers.

A �le closely related to active is active.times. Whenever a group is created, C News

logs a message to this �le, containing the name of the group created, the date of creation,

whether it was done by a newgroup control message or locally, and who did it. This is for

the convenience of newsreaders who may notify the user of any recently created groups. It

is also used by the NEWGROUPS command of NNTP.

17.5. Article Batching 284

17.5 Article Batching

Newsbatches follow a particular format which is the same for Bnews, C News, and INN.

Each article is preceded by a line like this:

#! rnews count

where count is the number of bytes in the article. When batch compression is used, the

resulting �le is compressed as a whole, and preceded by another line, indicated by the

message to be used for unpacking. The standard compression tool is compress, which is

marked by

#! cunbatch

Sometimes, when having to send batches via mail software that removes the eighth bit

from all data, a compressed batch may be protected using what is called c7-encoding; these

batches will be marked by c7unbatch.

When a batch is fed to rnews on the remote site, it checks for these markers and processes

the batch appropriately. Some sites also use other compression tools, like gzip, and precede

their gzipped �les with zunbatch instead. C News does not recognize non-standard headers

like these; you have to modify the source to support them.

In C News, article batching is performed by /usr/lib/news/bin/batch/sendbatches, which

takes a list of articles from the site/togo �le, and puts them into several newsbatches. It

should be executed once per hour or even more frequently, depending on the volume of

tra�c.

Its operation is controlled by the batchparms �le in /usr/lib/news. This �le describes the

maximum batch size allowed for each site, the batching and optional compression program

to be used, and the transport for delivering it to the remote site. You may specify batching

parameters on a per-site basis, as well as a set of default parameters for sites not explicitly

mentioned.

To perform batching for a speci�c site, you invoke it as

su news -c "/usr/lib/news/bin/batch/sendbatches site"

When invoked without arguments, sendbatches handles all batch queues. The interpre-

tation of \all" depends on the presence of a default entry in batchparms. If one is found,

all directories in /var/spool/news/out.going are checked, otherwise, it cycles through all

17.5. Article Batching 285

entries in batchparms. Note that sendbatches, when scanning the out.going directory, takes

only those directories that contain no dot or at sign (@) as site names.

When installing C News, you will most likely �nd a batchparms �le in your distribution

which contains a reasonable default entry, so there's a good chance that you wouldn't have

to touch the �le. Just in case, we describe its format nevertheless. Each line consists of six

�elds, separated by spaces or tabs:

site size max batcher muncher transport

The meaning of these �elds is as follows:

site is the name of the site the entry applies to. The togo �le for this site must reside

in out.going/togo below the news spool. A site name of /default/ denotes the default entry.

size is the maximum size of article batches created (before compression). For single

articles larger than this, C News makes an exception and puts them in a single batch by

themselves.

max is the maximum number of batches created and scheduled for transfer before batch-

ing stalls for this particular site. This is useful in case the remote site should be down for

a long time, because it prevents C News from cluttering your UUCP spool directories with

zillions of newsbatches.

C News determines the number of queued batches using the queulen script in

/usr/lib/news/bin. Vince Skahan's newspak release should contain a script for BNU-

compatible UUCPs. If you use a di�erent avor of spool directories, for example, Taylor

UUCP, you might have to write your own.4

The batcher �eld contains the command used for producing a batch from the list of

articles in the togo �le. For regular feeds, this is usually batcher. For other purposes,

alternative batchers may be provided. For instance, the ihave/sendme protocol requires the

article list to be turned into ihave or sendme control messages, which are posted to the

newsgroup to.site. This is performed by batchih and batchsm.

The muncher �eld speci�es the command used for compression. Usually, this is com-

pcun, a script that produces a compressed batch.5 Alternatively, you might provide a

muncher that uses gzip, say gzipcun (to be clear: you have to write it yourself). You have

4If you don't care about the number of spool �les (because you're the only person using your computer,

and you don't write articles by the megabyte), you may replace the script's contents by a simple exit 0

statement.
5As shipped with C News, compcun uses compress with the 12 bit option, since this is the least

common denominator for most sites. You may produce a copy of it, say compcun16, where you use 16 bit

compression. The improvement is not too impressive, though.

17.6. Expiring News 286

to make sure that uncompress on the remote site is patched to recognize �les compressed

with gzip.

If the remote site does not have an uncompress command, you may specify nocomp

which does not do any compression.

The last �eld, transport , describes the transport to be used. A number of standard

commands for di�erent transports are available whose names begin with via. sendbatches

passes them the destination site name on the command line. If the batchparms entry was

not /default/, it derives the site name from the site �eld by stripping of anything after

and including the �rst dot or slash. If entry was /default/, the directory names in out.going

are used.

There are two commands that use uux to execute rnews on the remote system; viauux

and viauuxz. The latter sets the -z ag for (older versions of) uux to keep it from returning

success messages for each article delivered. Another command, viamail, sends article batches

to the user rnews on the remote system via mail. Of course, this requires that the remote

system somehow feeds all mail for rnews to their local news system. For a complete list of

these transports, refer to the newsbatch(8) manual page.

All commands from the last three �elds must be located in either of out.going/site or

/usr/lib/news/bin/batch. Most of them are scripts, so that you may easily tailor new tools

for your personal needs. They are invoked as a pipe. The list of articles is fed to the batcher

on standard input, which produces the batch on standard output. This is piped into the

muncher, and so on.

A sample �le is given below.

batchparms file for the brewery

site | size |max |batcher |muncher |transport

#-------------+--------+-------+---------+-----------+-----------

/default/ 100000 22 batcher compcun viauux

swim 10000 10 batcher nocomp viauux

17.6 Expiring News

In Bnews, expiring used to be performed by a program called expire, which took a list of

newsgroups as arguments, along with a time speci�cation after which articles had to be

expired. To have di�erent hierarchies expired at di�erent times, you had to write a script

that invoked expire for each of them separately. C News o�ers a more convenient solution

to this: in a �le called explist, you may specify newsgroups and expiration intervals. A

17.6. Expiring News 287

command called doexpire is usually run once a day from cron, and processes all groups

according to this list.

Occasionally, you may want to retain articles from certain groups even after they have

been expired; for example, youmight want to keep programs posted to comp.sources.unix.

This is called archiving. explist permits you to mark groups for archiving.

An entry in explist looks like this:

grouplist perm times archive

grouplist is a comma-separated list of newsgroups to which the entry applies. Hier-

archies may be speci�ed by giving the group name pre�x, optionally appended with all.

For example, for an entry applying to all groups below comp.os, you might either enter

comp.os or comp.os.all in grouplist .

When expiring news from a group, the name is checked against all entries in explist in

the order given. The �rst matching entry applies. For example, to throw away the majority

of comp after four days, except for comp.os.linux.announce which you want to keep

for a week, you simply have an entry for the latter, which speci�es a seven-day expiration

period, followed by that for comp, which speci�es four days.

The perm �eld details if the entry applies to moderated, unmoderated, or any groups.

It may take the values m, u, or x, which denote moderated, unmoderated, or any type.

The third �eld, times , usually contains only a single number. This is the number of days

after which articles will be expired if they haven't been assigned an arti�cial expiration date

in an Expires: �eld in the article header. Note that this is the number of days counting

from its arrival at your site, not the date of posting.

The times �eld may, however, be more complex than that. It may be a combination of

up to three numbers, separated from one another by a dash. The �rst denotes the number

of days that have to pass before the article is considered a candidate for expiration. It is

rarely useful to use a value other than zero. The second �eld is the above-mentioned default

number of days after which it will be expired. The third is the number of days after which

an article will be expired unconditionally, regardless of whether it has an Expires: �eld or

not. If only the middle number is given, the other two take default values. These may be

speci�ed using the special entry /bounds/, which is described below.

The fourth �eld, archive , denotes whether the newsgroup is to be archived, and where.

If no archiving is intended, a dash should be used. Otherwise, you either use a full path

name (pointing to a directory), or an at sign (@). The at sign denotes the default archive

directory which must then be given to doexpire by using the -a ag on the command

line. An archive directory should be owned by news. When doexpire archives an article

17.6. Expiring News 288

from, say comp.sources.unix, it stores it in the directory comp/sources/unix below

the archive directory, creating it if not existent. The archive directory itself, however, will

not be created.

There are two special entries in your explist �le that doexpire relies on. Instead of a

list of newsgroups, they have the keywords /bounds/ and /expired/. The /bounds/ entry

contains the default values for the three values of the times �eld described above.

The /expired/ �eld determines how long C News will hold on to lines in the history

�le. This is needed because C News will not remove a line from the history �le once

the corresponding article(s) have been expired, but will hold on to it in case a duplicate

should arrive after this date. If you are fed by only one site, you can keep this value small.

Otherwise, a couple of weeks is advisable on UUCP networks, depending on the delays you

experience with articles from these sites.

A sample explist �le with rather tight expiry intervals is reproduced below:

keep history lines for two weeks. Nobody gets more than three months

/expired/ x 14 -

/bounds/ x 0-1-90 -

groups we want to keep longer than the rest

comp.os.linux.announce m 10 -

comp.os.linux x 5 -

alt.folklore.computers u 10 -

rec.humor.oracle m 10 -

soc.feminism m 10 -

Archive *.sources groups

comp.sources,alt.sources x 5 @

defaults for tech groups

comp,sci x 7 -

enough for a long weekend

misc,talk x 4 -

throw away junk quickly

junk x 1 -

control messages are of scant interest, too

control x 1 -

catch-all entry for the rest of it

all x 2 -

17.7. Miscellaneous Files 289

With expiring in C News, there are a number of potential troubles looming. One is that

your newsreader might rely on the third �eld of the active �le, which contains the number

of the lowest article on-line. When expiring articles, C News does not update this �eld. If

you need (or want) to have this �eld represent the real situation, you need to run a program

called updatemiin after each run of doexpire.6

Second, C News does not expire by scanning the newsgroup's directory, but simply checks

the history �le if the article is due for expiration.7 If your history �le somehow gets out of

sync, articles may be around on your disk forever, because C News has literally forgotten

them.8 You can repair this using the addmissing script in /usr/lib/news/bin/maint, which

will add missing articles to the history �le, or mkhistory, which re-builds the entire �le

from scratch. Don't forget to become news before invoking it, else you will wind up with

a history �le unreadable by C News.

17.7 Miscellaneous Files

There are a number of �les that control C News' behavior, but are not essential to its

functioning. All of them reside in /usr/lib/news. We will describe them briey.

newsgroups This is a companion �le of active which contains a list of newsgroup names,

along with a one-line description of its main topic. This �le is automati-

cally updated when C News receives a checknews control message (see sec-

tion 17.8).

localgroups If you have a number of local groups that you don't want C News to complain

about every time you receive a checknews message, put their names and

descriptions in this �le, just like they would appear in newsgroups.

mailpaths This �le contains the moderator's address for each moderated group. Each

line contains the group name, followed by the moderator's email address

(o�set by a tab).

Two special entries are provided as default. These are backbone and internet.

Both provide | in bang-path notation | the path to the nearest backbone

site, and the site that understands RFC 822-style addresses (user@host).

The default entries are

internet backbone

6In older versions of C News, this was done by a script called upact.
7The article's date of arrival is kept in the middle �eld of the history line, given in seconds since January 1,

1970.
8I don't know why this happens, but for me, it does from time to time.

17.8. Control Messages 290

You will not have to change the internet entry if you have smail or sendmail

installed, because they understand RFC 822-addressing.

The backbone entry is used whenever a user posts to a moderated group

whose moderator is not listed explicitly. If the newsgroup's name is

alt.sewer, and the backbone entry contains path!%s, C News will mail

the article to path!alt-sewer, hoping that the backbone machine is able to

forward the article. To �nd out which path to use, ask the news admins at

the site that feeds you. As a last resort, you can also use uunet.uu.net!%s.

distributions This �le is not really a C News �le, but it is used by some newsreaders, and

nntpd. It contains the list of distributions recognized by your site, and a

description of its (intended) e�ect. For example, Virtual Brewery has the

following �le:

world everywhere in the world

local Only local to this site

nl Netherlands only

mugnet MUGNET only

fr France only

de Germany only

brewery Virtual Brewery only

log This �le contains a log of all C News activities. It is culled regularly by

running newsdaily; copies of the old log�les are kept in log.o, log.oo, etc.

errlog This is a log of all error messages created by C News. These do not include

articles junked due to wrong group, etc. This �le is mailed to the newsmaster

(usenet by default) automatically by newsdaily if it is found to be non-

empty.

errlog is cleared by newsdaily. Old copies are kept in errlog.o and compan-

ions.

batchlog This logs all runs of sendbatches. It is usually of scant interest only. It is

also attended by newsdaily.

watchtime This is an empty �le created each time newswatch is run.

17.8 Control Messages

The Usenet news protocol knows a special category of articles which evoke certain responses

or actions by the news system. These are called control messages. They are recognized by

17.8. Control Messages 291

the presence of a Control: �eld in the article header, which contains the name of the control

operation to be performed. There are several types of them, all of which are handled by

shell scripts located in /usr/lib/news/ctl.

Most of these will perform their action automatically at the time the article is processed

by C News, without notifying the newsmaster. By default, only checkgroups messages will

be handed to the newsmaster,9 but you may change this by editing the scripts.

17.8.1 The cancel Message

The most widely known message is cancel, with which a user may cancel an article sent

by her earlier. This e�ectively removes the article from the spool directories, if it exists.

The cancel message is forwarded to all sites that receive news from the groups a�ected,

regardless of whether the article has been seen already or not. This is to take into account

the possibility that the original article has been delayed over the cancellation message.

Some news systems allow users to cancel other person's messages; this is of course a de�nite

no-no.

17.8.2 newgroup and rmgroup

Two messages dealing with creation or removal of newsgroups are the newgroup and rmgroup

message. Newsgroups below the \usual" hierarchies may be created only after a discussion

and voting has been held among Usenet readers. The rules applying to the alt hierarchy

allow for something close to anarchy. For more information, see the regular postings in

news.announce.newusers and news.announce.newgroups. Never send a newgroup or

rmgroup message yourself unless you de�nitely know that you are allowed to.

17.8.3 The checkgroups Message

checkgroups messages are sent by news administrators to make all sites within a net-

work synchronize their active �les with the realities of Usenet. For example, commer-

cial Internet service providers might send out such a message to their customers' sites.

Once a month, the \o�cial" checkgroups message for the major hierarchies is posted to

comp.announce.newgroups by its moderator. However, it is posted as an ordinary ar-

ticle, not as a control message. To perform the checkgroups operation, save this article to

a �le, say /tmp/check, remove everything up to the beginning of the control message itself,

and feed it to the checkgroups script using the following command:

9There's a funny typo in RFC 1036 (p.12): \Implementors and administrators may choose to allow control

messages to be carried out automatically, or to queue them for annual processing."

17.8. Control Messages 292

su news -c "/usr/lib/news/bin/ctl/checkgroups" < /tmp/check

This will update your newsgroups �le, adding the groups listed in localgroups. The old

newsgroups �le will be moved to newsgroups.bac. Note that posting the message locally will

rarely work, because inews refuses to accept that large an article.

If C News �nds mismatches between the checkgroups list and the active �le, it will

produce a list of commands that would bring your site up to date, and mail it to the news

administrator. The output typically looks like this:

From news Sun Jan 30 16:18:11 1994

Date: Sun, 30 Jan 94 16:18 MET

From: news (News Subsystem)

To: usenet

Subject: Problems with your active file

The following newsgroups are not valid and should be removed.

alt.ascii-art

bionet.molbio.gene-org

comp.windows.x.intrisics

de.answers

You can do this by executing the commands:

/usr/lib/news/bin/maint/delgroup alt.ascii-art

/usr/lib/news/bin/maint/delgroup bionet.molbio.gene-org

/usr/lib/news/bin/maint/delgroup comp.windows.x.intrisics

/usr/lib/news/bin/maint/delgroup de.answers

The following newsgroups were missing.

comp.binaries.cbm

comp.databases.rdb

comp.os.geos

comp.os.qnx

comp.unix.user-friendly

misc.legal.moderated

news.newsites

soc.culture.scientists

talk.politics.crypto

talk.politics.tibet

When you receive a message like this from your news system, don't believe it blindly.

Depending on who sent the checkgroups message, it may lack a few groups or even entire

hierarchies; so you should be careful about removing any groups. If you �nd groups are

17.9. C News in an NFS Environment 293

listed as missing that you want to carry at your site, you have to add them using the

addgroup script. Save the list of missing groups to a �le and feed it to the following little

script:

#!/bin/sh

cd /usr/lib/news

while read group; do

if grep -si "^$group[[:space:]].*moderated" newsgroup; then

mod=m

else

mod=y

fi

/usr/lib/news/bin/maint/addgroup $group $mod

done

17.8.4 sendsys, version, and senduuname

Finally, there are three messages that may be used to �nd out about the network's topology.

These are sendsys, version, and senduuname. They cause C News to return to the sender

the sys �le, a software version string, and the output of uuname(1), respectively. C News

is very laconic about version messages; it returns a simple, unadorned \C".

Again, you should never issue such a message, unless you have made sure that it cannot

leave a your (regional) network. Replies to sendsys messages can quickly bring down a

UUCP network.10

17.9 C News in an NFS Environment

A simple way to distribute news within a local network is to keep all news on a central

host, and export the relevant directories via NFS, so that newsreaders may scan the arti-

cles directly. The advantage of this method over NNTP is that the overhead involved in

retrieving and threading articles is signi�cantly lower. NNTP, on the other hand, wins in

a heterogeneous network where equipment varies widely among hosts, or where users don't

have equivalent accounts on the server machine.

When using NFS, articles posted on a local host have to be forwarded to the central

machine, because accessing adminstrative �les might otherwise expose the system to race-

conditions that leave the �les inconsistent. Also, you might want to protect your news spool

area by exporting it read-only, which requires forwarding to the central machine, too.

10I wouldn't try this on the Internet, either.

17.10. Maintenance Tools and Tasks 294

C News handles this transparently. When you post an article, your newsreader usually

invokes inews to inject the article into the news system. This command runs a number of

checks on the article, completes the header, and checks the �le server in /usr/lib/news. If

this �le exists and contains a hostname di�erent from the local host's name, inews is invoked

on that server host via rsh. Since the inews script uses a number of binary commands and

support �les from C News, you have to either have C News installed locally, or mount the

news software from the server.

For the rsh invocation to work properly, each user must have an equivalent account on

the server system, i.e. one to which she can log in without being asked for a password.

Make sure that the hostname given in server literally matches the output of the host-

name(1) command on the server machine, else C News will loop forever when trying to

deliver the article.

17.10 Maintenance Tools and Tasks

Despite the complexity of C News, a news administrator's life can be fairly easy, because

C News provides you with a wide variety of maintenance tools. Some of these are intended

to be run regularly from cron, like newsdaily. Using these scripts reduces daily care and

feeding requirements of your C News installation greatly.

Unless stated otherwise, these commands are located in /usr/lib/news/bin/maint. Note

that you must become user news before invoking these commands. Running them as

super-user may render these �les inaccessible to C News.

newsdaily The name already says it: runs this once a day. It is an important script that

helps you keep log �les small, retaining copies of each from the last three

runs. It also tries to sense any anomalies, like stale batches in the incoming

and outgoing directories, postings to unkown or moderated newsgroups, etc.

Resulting error messages will be mailed to the newsmaster.

newswatch This is a script that should be run regularly to look for anomalies in the

news system, once an hour or so. It is intended to detect problems that

will have immediate e�ect on the operability of your news system and mail

a trouble report to the newsmaster. Things checked include stale lock �les

that don't get removed, unattended input batches, and disk space shortage.

addgroup Adds a group to your site locally. The proper invocation is

addgroup groupname y|n|m|=realgroup

17.10. Maintenance Tools and Tasks 295

The second argument has the same meaning as the ag in the active �le,

meaning that anyone may post to the group (y), that no-one may post

(n), that it is moderated (m), or that it is an alias for another group

(=realgroup).

You might also want to use addgroup when the �rst articles in a newly created

group arrive earlier than the newgroup control message that is intended to

create it.

delgroup Allows you to delete a group locally. Invoke it as

delgroup groupname

You still have to delete the articles that remain in the newsgroup's spool

directory. Alternatively, you might leave it to the natural course of events

(a.k.a. expire) to make them go away.

addmissing Adds missing articles to the history �le. Run this script when there are

articles that seem to hang around forever.11

newsboot This script should be run at system boot time. It removes any lock �les left

over when news processes were killed at shutdown, and closes and executes

any batches left over from NNTP connections that were terminated when

shutting down the system.

newsrunning This resides in /usr/lib/news/bin/input, and may be used to disable un-

batching of incoming news, for instance during work hours. You may turn

o� unbatching by invoking

/usr/lib/news/bin/input/newsrunning off

It is turned on by using on instead of o�.

11Ever wondered how to get rid of that \Help! I can't get X11 to work with 0.97.2!!!" article?

Chapter 18

A Description of NNTP

18.1 Introduction

Due to the di�erent network transport used, NNTP provides for a vastly di�erent approach

to news exchange from C news. NNTP stands for \Network News Transfer Protocol", and

is not a particular software package, but an Internet Standard.1 It is based on a stream-

oriented connection { usually over TCP { between a client anywhere in the network, and a

server on a host that keeps netnews on disk storage. The stream connection allows the client

and server to interactively negotiate article transfer with nearly no turnaround delay, thus

keeping the number of duplicate articles low. Together with the Internet's high transfer

rates, this adds up to a news transport that surpasses the original UUCP networks by far.

While some years ago it was not uncommon for an article to take two weeks or more before

it arrived in the last corner of Usenet, this is now often less than two days; on the Internet

itself, it is even within the range of minutes.

Various commands allow clients to retrieve, send and post articles. The di�erence be-

tween sending and posting is that the latter may involve articles with incomplete header

information.2 Article retrieval may be used by news transfer clients as well as newsreaders.

This makes NNTP an excellent tool for providing news access to many clients on a local

network without going through the contortions that are necessary when using NFS.

NNTP also provides for an active and a passive way of news transfer, colloquially called

\pushing" and \pulling". Pushing is basically the same as the C news ihave/sendme proto-

col. The client o�ers an article to the server through the \IHAVE <varmsgid>" command,

and the server returns a response code that indicates whether it already has the article, or

1Formally speci�ed in RFC 977.
2When posting an article over NNTP, the server always adds at least one header �eld, which is

Nntp-Posting-Host:. It contains the client's host name.

296

18.1. Introduction 297

if it wants it. If so, the client sends the article, terminated by a single dot on a separate

line.

Pushing news has the single disadvantage that it places a heavy load on the server

system, since it has to search its history database for every single article.

The opposite technique is pulling news, in which the client requests a list of all (available)

articles from a group that have arrived after a speci�ed date. This query is performed by

the NEWNEWS command. From the returned list of message ids, the client selects those

articles it does not yet have, using the ARTICLE command for each of them in turn.

The problem with pulling news is that it needs tight control by the server over which

groups and distributions it allows a client to request. For example, it has to make sure that

no con�dential material from newsgroups local to the site are sent to unauthorized clients.

There are also a number of convenience commands for newsreaders that permit them to

retrieve the article header and body separately, or even single header lines from a range of

articles. This lets you keep all news on a central host, with all users on the (presumably

local) network using NNTP-based client programs for reading and posting. This is an

alternative to exporting the news directories via NFS which is described in chapter 17.

An overall problem of NNTP is that it allows the knowledgeable to insert articles into

the news stream with false sender speci�cation. This is called news faking.3 An extension

to NNTP allows to require a user authentication for certain commands.

There are a number of NNTP packages available. One of the more widely known is the

NNTP daemon, also known as the reference implementation. Originally, it was written by

Stan Barber and Phil Lapsley to illustrate the details of RFC 977. Its most recent version is

nntpd-1.5.11, which will be described below. You may either get the sources and compile it

yourself, or use the nntpd from Fred van Kempen's net-std binary package. No ready-to-go

binaries of nntpd are provided, because of various site-speci�c values that must be compiled

in.

The nntpd package consists of a server and two clients for pulling and pushing news,

respectively, as well as an inews replacement. They live in a Bnews environment, but with

a little tweaking, they will be happy with C news, too. However if you plan to use NNTP

for more than o�ering newsreaders access to your news server, the reference implementation

is not really an option. We will therefore discuss only the NNTP daemon contained in the

nntpd package, and leave out the client programs.

There is also a package called \InterNet News", or INN for short, that was written by

Rich Salz. It provides both NNTP and UUCP-based news transport, and is more suitable

for large news hubs. When it comes to news transport over NNTP, it is de�nitely better

3The same problem exists with SMTP, the Simple Mail Transfer Protocol.

18.2. Installing the NNTP server 298

than nntpd. INN is currently at version inn-1.4sec. There is a kit for building INN on a

Linux machine from Arjan de Vet; it is available from sunsite.unc.edu in the system/Mail

directory. If you want to set up INN, please refer to the documentation that comes along

with the source, as well as the INN FAQ posted regularly to news.software.b.

18.2 Installing the NNTP server

The NNTP server is called nntpd, and may be compiled in two ways, depending on the

expected load on the news system. There are no compiled versions available, because of

some site-speci�c defaults that are hard-coded into the executable. All con�guration is done

through macro de�nines in common/conf.h.

nntpd may be con�gured as either a standalone server that is started at system boot

time from rc.inet2, or a daemon managed by inetd. In the latter case you have to have the

following entry in /etc/inetd.conf:

nntp stream tcp nowait news /usr/etc/in.nntpd nntpd

If you con�gure nntpd as standalone, make sure that any such line in inetd.conf is com-

mented out. In either case, you have to make sure there's the following line in /etc/services:

nntp 119/tcp readnews untp # Network News Transfer Protocol

To temporarily store any incoming articles, etc, nntpd also needs a .tmp directory in

your news spool. You should create it using

mkdir /var/spool/news/.tmp

chown news.news /var/spool/news/.tmp

18.3 Restricting NNTP Access

Access to NNTP resources is governed by the �le nntp access in /usr/lib/news. Lines in the

�le describe the access rights granted to foreign hosts. Each line has the following format:

site read|xfer|both|no post|no [!exceptgroups]

If a client connects to the NNTP port, nntpd attempts to obtain the host's fully quali�ed

domain name from its IP address by reverse lookup. The client's hostname and IP address

18.3. Restricting NNTP Access 299

are checked against the site �eld of each entry in the order in which they appear in the

�le. Matches may be either partial or exact. If an entry matches exactly, it applies; if the

match is partial, it only applies if there is no other match following which is at least as

good. site may be speci�ed in one of the following ways:

hostname This is a fully quali�ed domain name of a host. If this matches the client's

canonical hostname literally, the entry applies, and all following entries are

ignored.

IP address This is an IP address in dotted quad notation. If the client's IP address

matches this, the entry applies, and all following entries are ignored.

domain name This is a domain name, speci�ed as *.domain . If the client's hostname

matches the domain name, the entry matches.

network name

This is the name of a network as speci�ed in /etc/networks. If the network

number of the client's IP address matches the network number associated

with the network name, the entry matches.

default The default matches any client.

Entries with a more general site speci�cation should be speci�ed earlier, because any

matches by these will be overridden by later, more exact matches.

The second and third �eld describe the access rights granted to the client. The second

details the permissions to retrieve news by pulling (read), and transmit news by pushing

(xfer). A value of both enables both, no denies access altogether. The third �eld grants the

client the right to post articles, that is, deliver articles with incomplete header information

which is completed by the news software. If the second �eld contains no, the third �eld is

ignored.

The fourth �eld is optional, and contains a comma-separated list of groups the client is

denied access to.

A sample nntp access �le is shown below:

#

by default, anyone may transfer news, but not read or post

default xfer no

#

public.vbrew.com offers public access via modem, we allow

them to read and post to any but the local.* groups

public.vbrew.com read post !local

18.4. NNTP Authorization 300

#

all other hosts at the brewery may read and post

*.vbrew.com read post

18.4 NNTP Authorization

When capitalizing the access tokens like xfer or read in the nntp acces �le, nntpd requires

the authorization from the client for the respective operations. For instance, when specifying

a permission of Xfer or XFER, nntpd will not let the client transfer articles to your site

unless it passes authorization.

The authorization procedure is implemented by means of a new NNTP command named

AUTHINFO. Using this command, the client transmits a user name and a password to the

NNTP server. nntpd will validate them by checking them against the /etc/passwd database,

and verify that the user belongs to the nntp group.

The current implementation of NNTP authorization is only experimental, and has there-

fore not been implemented very portably. The result of this is that it works only with

plain-style password databases; shadow passwords will not be recognized.

18.5 nntpd Interaction with C News

When receiving an article, nntpd has to deliver it to the news subsystem. Depending

on whether it was received as a result of an IHAVE or POST command, the article is

handed to rnews or inews, respectively. Instead of invoking rnews, you may also con�g-

ure it (at compile time) to batch the incoming articles and move the resulting batches to

/var/spool/news/in.coming, where they are left for relaynews to pick them up at the next

queue run.

To be able to properly perform the ihave/sendme protocol, nntpd has to be able to access

the history �le. At compile time, you therefore have to make sure the path is set correctly.

You should also make sure that C news and nntpd agree on the format of your history

�le. C news uses dbm hashing functions to access it; however, there are quite a number of

di�erent and slightly incompatible implementations of the dbm library. If C news has been

linked with the a di�erent dbm library than you have in your standard libc, you have to

link nntpd with this library, too.

A typical symptom of nntpd and C news disagreeing on the database format are error

messages in the system log that nntpd could not open it properly, or duplicate articles

received via NNTP. A good test is to pick an article from your spool area, telnet to the

18.5. nntpd Interaction with C News 301

nntp port, and o�er it to nntpd as shown in the example below (your input is marked like

this). Of course, you have to replace <msg@id> with the message-ID of the article you

want to feed to nntpd again.

$ telnet localhost nntp

Trying 127.0.0.1...

Connected to loalhost

Escape characters is '^]'.

201 vstout NNTP[auth] server version 1.5.11t (16 November 1991) ready at

Sun Feb 6 16:02:32 1194 (no posting)

IHAVE <msg@id>

435 Got it.

QUIT

This conversation shows the proper reaction of nntpd; the message \Got it" tells you

that it already has this article. If you get a message of \335 Ok" instead, the lookup in the

history �le failed for some reason. Terminate the conversation by typing Ctrl-D. You can

check what has gone wrong by checking the system log; nntpd logs all kinds of messages

to the daemon facility of syslog. An incompatible dbm library usually manifests itself in a

message complaining that dbminit failed.

Chapter 19

Newsreader Con�guration

Newsreaders are intended to o�er the user functionality that allows her to access the func-

tions of the news system easily, like posting articles, or skimming the contents of a newsgroup

in a comfortable way. The quality of this interface is subject of endless ame wars.

There are a couple of newsreaders available which have been ported to Linux. Below I

will describe the basic setup for the three most popular ones, namely tin, trn, and nn.

One of the most e�ective newsreaders is

$ find /var/spool/news -name '[0-9]*' -exec cat {} \; | more

This is the way un?x die-hards read their news.

The majority of newsreaders, however, are much more sophisticated. They usually o�er

a full-screen interface with separate levels for displaying all groups the user has subscribed

to, for displaying an overview of all articles in one group. and for individual articles.

At the newsgroup level, most newsreaders display a list of articles, showing their subject

line, and the author. In big groups, it is impossible for the user to keep track of articles

relating to each other, although it is possible to identify responses to earlier articles.

A response usually repeats the original article's subject, prepending it with \Re: ".

Additionally, the message id of the article it is a direct follow-up to may be given in the

References: header line. Sorting articles by these two criteria generates small clusters (in

fact, trees) of articles, which are called threads. One of the tasks in writing a newsreader is

devising an e�cient scheme of threading, because the time required for this is proportional

to the square of the number of articles.

Here, we will not dig any further into how the user interfaces are built. All newsreaders

currently available for Linux have a good help function, so you ought to get along.

302

19.1. tin Con�guration 303

In the following, we will only deal with administrative tasks. Most of these relate to the

creation of threads databases and accounting.

19.1 tin Con�guration

The most versatile newsreader with respect to threading is tin. It was written by Iain Lea

and is loosely modeled on an older newsreader named tass.1 It does its threading when the

user enters the newsgroup, and it is pretty fast at this unless you're doing this via NNTP.

On an 486DX50, it takes roughly 30 seconds to thread 1000 articles when reading directly

from disk. Over NNTP to a loaded news server, this would be somewhere above 5 minutes.2

You may improve this by regularly updating your index �le with the -u option, or by

invoking tin with the -U option.

Usually, tin dumps its threading databases in the user's home directory below .tin/index.

This may however be costly in terms of resources, so that you should want to keep a single

copy of them in a central location. This may be achieved by making tin setuid to news,

for example, or some entirely unprivileged account.3 tin will then keep all thread databases

below /var/spool/news/.index. For any �le access or shell escape, it will reset its e�ective

uid to the real uid of the user who invoked it.4

A better solution is to install the tind indexing daemon that runs as a daemon and

regularly updates the index �les. This daemon is however not included in any release of

Linux, so you would have to compile it yourself. If you are running a LAN with a central

news server, you may even run tind on the server and have all clients retrieve the index

�les via NNTP. This, of course, requires an extension to NNTP. Patches for nntpd that

implement this extension are included in the tin source.

The version of tin included in some Linux distributions has no NNTP support compiled
in, but most do have it now. When invoked as rtin or with the -r option, tin tries to connect
to the NNTP server speci�ed in the �le /etc/nntpserver or in the NNTPSERVER environment

variable. The nntpserver �le simply contains the server's name on a single line.

1Written by Rich Skrenta.
2Things improve drastically if the NNTP server does the threading itself, and lets the client retrieve the

threads databases; INN-1.4 does this, for instance.
3However, do not use nobody for this. As a rule, no �les or commands whatsoever should be associated

with this user.
4This is the reason why you will get ugly error messages when invoking it as super user. But then, you

shouldn't work as root, anyway.

19.2. trn Con�guration 304

19.2 trn Con�guration

trn is the successor to an older newsreader, too, namely rn (which means read news). The \t" in

its name stands for \threaded". It was written by Wayne Davidson.

Unlike tin, trn has no provision for generating its threading database at run-time. Instead, it

uses those prepared by a program called mthreads that has to be invoked regularly from cron to

update the index �les.

Not running mthreads, however, doesn't mean you cannot access new articles, it only means you

will have all those \Novell buys out Linix!!" articles scattered across your article selection menu,

instead of a single thread you may easily skip.

To turn on threading for particular newsgroups, mthreads is invoked with the list of newsgroups

on the command line. The list is made up in exactly the same fashion as the one in the sys �le:

mthreads comp,rec,!rec.games.go

will enable threading for all of comp and rec, except for rec.games.go (people who play Go don't

need fancy threads). After that, you simply invoke it without any option at all to make it thread

any newly arrived articles. Threading of all groups found in your active �le can be turned on by

invoking mthreads with a group list of all.

If you're receiving news during the night, you will customarily run mthreads once in the morning,

but you can also to do so more frequently if needed. Sites that have very heavy tra�c may want to

run mthreads in daemon mode. When it is started at boot time using the -d option, it puts itself

in the background, and wakes up every 10 minutes to check if there are any newly-arrived articles,

and threads them. To run mthreads in daemon mode, put the following line in your rc.news script:

/usr/local/bin/rn/mthreads -deav

The -a option makesmthread automatically turn on threading for new groups as they are created;

-v enables verbose log messages to mthreads' log �le, mt.log in the directory where you have trn

installed.

Old articles no longer available must be removed from the index �les regularly. By default, only

articles whose number is below the low water mark will be removed.5 Articles above this number

who have been expired nevertheless (because the oldest article has been assigned an long expiry

date by an Expires: header �eld) may be removed by giving mthreads the -e option to force an

\enhanced" expiry run. When mthreads is running in daemon mode, the -e option makes it put in

such an enhanced expiry run once a day, shortly after midnight.

5Note that C news doesn't update this low water mark automatically; you have to run updatemin to do

so. Please refer to chapter 17.

19.3. nn Con�guration 305

19.3 nn Con�guration

nn, written by Kim F. Storm, claims to be a newsreader whose ultimate goal is not to read news.

It's name stands for \No News", and its motto is \No news is good news. nn is better."

To achieve this ambitious goal, nn comes along with a large assortment of maintenance tools that

not only allow generation of threads, but also extensive checks on the consistency of these databases,

accounting, gathering of usage statistics, and access restrictions. There is also an administration

program called nnadmin, which allows you to perform these tasks interactively. It is very intuitive,

hence we will not dwell on these aspects, and only deal with the generation of the index �les.

The nn threads database manager is called nnmaster. It is usually run as a daemon, started

from the rc.news or rc.inet2 script. It is invoked as

/usr/local/lib/nn/nnmaster -l -r -C

This enables threading for all newsgroups present in your active �le.

Equivalently, you may invoke nnmaster periodically from cron, giving it a list of groups to act

upon. This list is very similar to the subscription list in the sys �le, except that it uses blanks

instead of commas. Instead of the fake group name all, an empty argument of "" should be used to

denote all groups. A sample invocation is

/usr/local/lib/nn/nnmaster !rec.games.go rec comp

Note that the order is signi�cant here: The leftmost group speci�cation that matches always

wins. Thus, if we had put !rec.games.go after rec, all articles from this group had been threaded

nevertheless.

nn o�ers several methods to remove expired articles from its databases. The �rst is to update

the database by scanning the news group directories and discarding the entries whose corresponding

article is no longer available. This is the default operation obtained by invoking nnmaster with the

-E option. It is reasonably fast unless you're doing this via NNTP.

Method 2 behaves exactly like a default expiry run of mthreads, in that it only removes those

entries that refer to articles whose number is below the low water mark in the active �le. It may be

enabled using the -e option.

Finally, a third strategy is to discard the entire database and recollect all articles. This may be

done by giving -E3 to nnmaster.

The list of groups to be expired is given by the -F option in the same fashion as above. However,

if you have nnmaster running as daemon, you must kill it (using -k) before expiry can take place,

and to re-start it with the original options afterwards. Thus the proper command to run expire on

all groups using method 1 is:

nnmaster -kF ""

nnmaster -lrC

19.3. nn Con�guration 306

There are many more ags that may be used to �ne-tune the behavior of nn. If you are concerned

about removing bad articles or digestifying article digests, read the nnmaster manual page.

nnmaster relies on a �le named GROUPS, which is located in /usr/local/lib/nn. If it does not

exist initially, it is created. For each newsgroup, it contains a line that begins with the group's

name, optionally followed by a time stamp, and ags. You may edit these ags to enable certain

behavior for the group in question, but you may not change the order in which the groups appear.6

The ags allowed and their e�ects are detailed in the nnmaster manual page, too.

6This is because their order has to agree with that of the entries in the (binary) MASTER �le.

Appendix A

A Null Printer Cable for PLIP

To make a Null Printer Cable for use with a PLIP connection, you need two 25-pin connectors

(called DB-25) and some 11-conductor cable. The cable must be at most 15 meters long.

If you look at the connector, you should be able to read tiny numbers at the base of each pin,

from 1 for the pin top left (if you hold the broader side up) to 25 for the pin bottom right. For the

Null Printer cable, you have to connect the following pins of both connectors with each other:

D0 2|15 ERROR

D1 3|13 SLCT

D2 4|12 PAPOUT

D3 5|10 ACK

D4 6|11 BUSY

GROUND 25|25 GROUND

ERROR 15| 2 D0

SLCT 13| 3 D1

PAPOUT 12| 4 D2

ACK 10| 5 D3

BUSY 11| 6 D4

All remaining pins remain unconnected. If the cable is shielded, the shield should be connected

to the DB-25's metallic shell on one end only.

307

Appendix B

Sample smail Con�guration Files

This section shows sample con�guration �les for a UUCP leaf site on a local area network. They

are based on the sample �les included in the source distribution of smail-3.1.28. Although I make a

feeble attempt to explain how these �les work, you are advised to read the very �ne smail(8) manual

page, which discusses these �les in great length. Once you've understood the basic idea behind smail

con�guration, it's worthwhile reading. It's easy!

The �rst �le shown is the routers �le, which describes a set of routers to smail. When smail has

to deliver a message to a given address, it hands the address to all routers in turn, until one of them

matches it. Matching here means that the router �nds the destination host in its database, be it

the paths �le, /etc/hosts, or whatever routing mechanism the router interfaces to.

Entries in smail con�guration �les always begin with a unique name identifying the router,

transport, or director. They are followed by a list of attributes that de�ne its behavior. This list

consists of a set of global attributes, such as the driver used, and private attributes that are only

understood by that particular driver. Attributes are separated by commas, while the sets of global

and private attributes are separated from each other using a semicolon.

To make these �ne distinctions clear, assume you want to maintain two separate pathalias �les;

one containing the routing information for your domain, and a second one containing global routing

information, probably generatzed from the UUCP maps. With smail, you can now specify two

routers in the routers �le, both of which use the pathalias driver. This driver looks up hostnames

in a pathalias database. It expects to be given the name of the �le in a private attribute:

#

pathalias database for intra-domain routing

domain_paths:

driver=pathalias, # look up host in a paths file

transport=uux; # if matched, deliver over UUCP

file=paths/domain, # file is /usr/lib/smail/paths/domain

proto=lsearch, # file is unsorted (linear search)

308

19.3. nn Con�guration 309

optional, # ignore if the file does not exist

required=vbrew.com, # look up only *.vbrew.com hosts

#

pathalias database for routing to hosts outside our domain

world_paths:

driver=pathalias, # look up host in a paths file

transport=uux; # if matched, deliver over UUCP

file=paths/world, # file is /usr/lib/smail/paths/world

proto=bsearch, # file is sorted with sort(1)

optional, # ignore if the file does not exist

-required, # no required domains

domain=uucp, # strip ending ".uucp" before searching

The second global attribute given in each of the two routers entries above de�nes the transport

that should be used when the router matches the address. In our case, the message will be delivered

using the uux transport. Transports are de�ned in the transports �le, which is exlained below.

You can �ne-tune by which transport a message will be delivered if you specify a mathod �le

instead of the transports attribute. Method �les provide a mapping from target hostnames to

transports. We won't deal with them here.

The following routers �le de�nes routers for a local area network that query the resolver library.

On an Internet host, however, you would want to use a router that handles MX records. You should

therefore uncomment the alternative inet bind router that uses smail 's builtin BIND driver.

In an environment that mixes UUCP and TCP/IP, you may encounterthe problem that you

have hosts in your /etc/hosts �le that you have only occasional SLIP or PPP contact with. Usually,

you would still want to send any mail for them over UUCP. To prevent the inet hosts driver from

matching these hosts, you have to put them into the paths/force �le. This is another pathalias-style

database, and is consulted before smail queries the resolver.

A sample /usr/lib/smail/routers file

#

force - force UUCP delivery to certain hosts, even when

they are in our /etc/hosts

force:

driver=pathalias, # look up host in a paths file

transport=uux; # if matched, deliver over UUCP

file=paths/force, # file is /usr/lib/smail/paths/force

optional, # ignore if the file does not exist

proto=lsearch, # file is unsorted (linear search)

-required, # no required domains

domain=uucp, # strip ending ".uucp" before searching

19.3. nn Con�guration 310

inet_addrs - match domain literals containing literal

IP addresses, such as in janet@[191.72.2.1]

inet_addrs:

driver=gethostbyaddr, # driver to match IP domain literals

transport=smtp; # deliver using SMTP over TCP/IP

fail_if_error, # fail if address is malformed

check_for_local, # deliver directly if host is ourself

inet_hosts - match hostnames with gethostbyname(3N)

Comment this out if you wish to use the BIND version instead.

inet_hosts:

driver=gethostbyname, # match hosts with the library function

transport=smtp; # use default SMTP

-required, # no required domains

-domain, # no defined domain suffixes

-only_local_domain, # don't restrict to defined domains

inet_hosts - alternate version using BIND to access the DNS

#inet_hosts:

driver=bind, # use built-in BIND driver

transport=smtp; # use TCP/IP SMTP for delivery

#

defnames, # use standard domain searching

defer_no_connect, # try again if the nameserver is down

-local_mx_okay, # fail (don't pass through) an MX

to the local host

#

pathalias database for intra-domain routing

domain_paths:

driver=pathalias, # look up host in a paths file

transport=uux; # if matched, deliver over UUCP

file=paths/domain, # file is /usr/lib/smail/paths/domain

proto=lsearch, # file is unsorted (linear search)

optional, # ignore if the file does not exist

required=vbrew.com, # look up only *.vbrew.com hosts

#

pathalias database for routing to hosts outside our domain

world_paths:

driver=pathalias, # look up host in a paths file

19.3. nn Con�guration 311

transport=uux; # if matched, deliver over UUCP

file=paths/world, # file is /usr/lib/smail/paths/world

proto=bsearch, # file is sorted with sort(1)

optional, # ignore if the file does not exist

-required, # no required domains

domain=uucp, # strip ending ".uucp" before searching

smart_host - a partically specified smarthost director

If the smart_path attribute is not defined in

/usr/lib/smail/config, this router is ignored.

The transport attribute is overridden by the global

smart_transport variable

smart_host:

driver=smarthost, # special-case driver

transport=uux; # by default deliver over UUCP

-path, # use smart_path config file variable

The handling of mail for local addresses is con�gured in the directors �le. It is made up just

like the routers �le, with a list of entries that de�ne a director each. Directors do not deliver a

message, they merely perform all the redirection that is possible, for instance through aliases, mail

forwarding, and the like.

When delivering mail to a local address, such as janet, smail passes the usr name to all directors

in turn. If a director matches, it either speci�es a transport the message should be delivered by (for

instance, to the user's mailbox �le), or generates a new address (for instance, after evaluating an

alias).

Because of the security issues involved, directors usually do a lot of checking of whether the �les

they use may be compromised or not. Addresses obtained in a somewhat dubious way (for instance

from a world-writable aliases �le) are agged as unsecure. Some transport drivers will turn down

such addresses, for instance the transport that delivers a message to a �le.

Apart from this, smail also associates a user with each address. Any write or read operations are

performed as the user. For delivery to, say janet's mailbox, the address is of course associated with

janet. Other addresses, such as those obtained from the aliases �le, have other users associated

from them, for instance, the nobody user.

For details of these features, please refer to the smail(8) manpage.

A sample /usr/lib/smail/directors file

aliasinclude - expand ":include:filename" addresses produced

by alias files

19.3. nn Con�guration 312

aliasinclude:

driver=aliasinclude, # use this special-case driver

nobody; # access file as nobody user if unsecure

copysecure, # get permissions from alias director

copyowners, # get owners from alias director

forwardinclude - expand ":include:filename" addrs produced

by forward files

forwardinclude:

driver=forwardinclude, # use this special-case driver

nobody; # access file as nobody user if unsecure

checkpath, # check path accessibility

copysecure, # get perms from forwarding director

copyowners, # get owners from forwarding director

aliases - search for alias expansions stored in a database

aliases:

driver=aliasfile, # general-purpose aliasing director

-nobody, # all addresses are associated

with nobody by default anyway

sender_okay, # don't remove sender from expansions

owner=owner-$user; # problems go to an owner address

file=/usr/lib/aliases, # default: sendmail compatible

modemask=002, # should not be globally writable

optional, # ignore if file does not exist

proto=lsearch, # unsorted ASCII file

dotforward - expand .forward files in user home directories

dotforward:

driver=forwardfile, # general-purpose forwarding director

owner=real-$user, # problems go to the user's mailbox

nobody, # use nobody user, if unsecure

sender_okay; # sender never removed from expansion

file=~/.forward, # .forward file in home directories

checkowner, # the user can own this file

owners=root, # or root can own the file

modemask=002, # it should not be globally writable

caution=0-10:uucp:daemon, # don't run things as root or daemons

be extra careful of remotely accessible home directories

unsecure="~ftp:~uucp:~nuucp:/tmp:/usr/tmp",

forwardto - expand a "Forward to " line at the top of

19.3. nn Con�guration 313

the user's mailbox file

forwardto:

driver=forwardfile,

owner=Postmaster, # errors go to Postmaster

nobody, # use nobody user, if unsecure

sender_okay; # don't remove sender from expansion

file=/var/spool/mail/${lc:user}, # location of user's mailbox

forwardto, # enable "Forward to " check

checkowner, # the user can own this file

owners=root, # or root can own the file

modemask=0002, # under System V, group mail can write

caution=0-10:uucp:daemon, # don't run things as root or daemons

user - match users on the local host with delivery to their mailboxes

user: driver=user; # driver to match usernames

transport=local, # local transport goes to mailboxes

real_user - match usernames when prefixed with the string "real-"

real_user:

driver=user; # driver to match usernames

transport=local, # local transport goes to mailboxes

prefix="real-", # for example, match real-root

lists - expand mailing lists stored below /usr/lib/smail/lists

lists: driver=forwardfile,

caution, # flag all addresses with caution

nobody, # and then associate the nobody user

sender_okay, # do NOT remove the sender

owner=owner-$user; # the list owner

map the name of the mailing list to lower case

file=lists/${lc:user},

After successfully routing or directing a message, smail hands the message to the transport

speci�ed by the router or director that matched the address. These transports are de�ned in the

transports �le. Again, a transport is de�ned by a set of global and private options.

The most important option de�ned by each entry is driver that handles the transport, for instance

the pipe driver, which invokes the command speci�ed in the cmd attribute. Apart from this, there

are a number of global attributes a transport may use, that perform various transformations on

the message header, and possibly message body. The return path attribute, for instance, makes the

transport insert a return path �eld in the message header The unix from hack attribute makes it

precede every occurrence of the word From at the beginning of a line with a > sign.

19.3. nn Con�guration 314

A sample /usr/lib/smail/transports file

local - deliver mail to local users

local: driver=appendfile, # append message to a file

return_path, # include a Return-Path: field

from, # supply a From_ envelope line

unix_from_hack, # insert > before From in body

local; # use local forms for delivery

file=/var/spool/mail/${lc:user}, # location of mailbox files

group=mail, # group to own file for System V

mode=0660, # group mail can access

suffix="\n", # append an extra newline

pipe - deliver mail to shell commands

pipe: driver=pipe, # pipe message to another program

return_path, # include a Return-Path: field

from, # supply a From_ envelope line

unix_from_hack, # insert > before From in body

local; # use local forms for delivery

cmd="/bin/sh -c $user", # send address to the Bourne Shell

parent_env, # environment info from parent addr

pipe_as_user, # use user-id associated with address

ignore_status, # ignore a non-zero exit status

ignore_write_errors, # ignore write errors, i.e., broken pipe

umask=0022, # umask for child process

-log_output, # do not log stdout/stderr

file - deliver mail to files

file: driver=appendfile,

return_path, # include a Return-Path: field

from, # supply a From_ envelope line

unix_from_hack, # insert > before From in body

local; # use local forms for delivery

file=$user, # file is taken from address

append_as_user, # use user-id associated with address

expand_user, # expand ~ and $ within address

suffix="\n", # append an extra newline

mode=0600, # set permissions to 600

uux - deliver to the rmail program on a remote UUCP site

uux: driver=pipe,

uucp, # use UUCP-style addressing forms

from, # supply a From_ envelope line

19.3. nn Con�guration 315

max_addrs=5, # at most 5 addresses per invocation

max_chars=200; # at most 200 chars of addresses

cmd="/usr/bin/uux - -r -a$sender -g$grade $host!rmail $(($user)$)",

pipe_as_sender, # have uucp logs contain caller

log_output, # save error output for bounce messages

defer_child_errors, # retry if uux returns an error

demand - deliver to a remote rmail program, polling immediately

demand: driver=pipe,

uucp, # use UUCP-style addressing forms

from, # supply a From_ envelope line

max_addrs=5, # at most 5 addresses per invocation

max_chars=200; # at most 200 chars of addresses

cmd="/usr/bin/uux - -a$sender -g$grade $host!rmail $(($user)$)",

pipe_as_sender, # have uucp logs contain caller

log_output, # save error output for bounce messages

defer_child_errors, # retry if uux returns an error

hbsmtp - half-baked BSMTP. The output files must

be processed regularly and sent out via UUCP.

hbsmtp: driver=appendfile,

inet, # use RFC 822-addressing

hbsmtp, # batched SMTP w/o HELO and QUIT

-max_addrs, -max_chars; # no limit on number of addresses

file="/var/spool/smail/hbsmtp/$host",

user=root, # file is owned by root

mode=0600, # only read-/writeable by root.

smtp - deliver using SMTP over TCP/IP

smtp: driver=tcpsmtp,

inet,

-max_addrs, -max_chars; # no limit on number of addresses

short_timeout=5m, # timeout for short operations

long_timeout=2h, # timeout for longer SMTP operations

service=smtp, # connect to this service port

For internet use: uncomment the below 4 lines

use_bind, # resolve MX and multiple A records

defnames, # use standard domain searching

defer_no_connect, # try again if the nameserver is down

-local_mx_okay, # fail an MX to the local host

Appendix C

The GNU General Public License

Printed below is the GNU General Public License (the GPL or copyleft), under which Linux is

licensed. It is reproduced here to clear up some of the confusion about Linux's copyright status|

Linux is not shareware, and it is not in the public domain. The bulk of the Linux kernel is copyright

c1993 by Linus Torvalds, and other software and parts of the kernel are copyrighted by their

authors. Thus, Linux is copyrighted, however, you may redistribute it under the terms of the GPL

printed below.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139,

USA Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

C.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By

contrast, the GNU General Public License is intended to guarantee your freedom to share and change

free software{to make sure the software is free for all its users. This General Public License applies

to most of the Free Software Foundation's software and to any other program whose authors commit

to using it. (Some other Free Software Foundation software is covered by the GNU Library General

Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free software

(and charge for this service if you wish), that you receive source code or can get it if you want it,

that you can change the software or use pieces of it in new free programs; and that you know you

can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights

316

C.2. Terms and Conditions 317

or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must

give the recipients all the rights that you have. You must make sure that they, too, receive or can

get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this license

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands

that there is no warranty for this free software. If the software is modi�ed by someone else and

passed on, we want its recipients to know that what they have is not the original, so that any

problems introduced by others will not reect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the

danger that redistributors of a free program will individually obtain patent licenses, in e�ect making

the program proprietary. To prevent this, we have made it clear that any patent must be licensed

for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

C.2 Terms and Conditions for Copying, Distribution, and

Modi�cation

0. This License applies to any program or other work which contains a notice placed by the

copyright holder saying it may be distributed under the terms of this General Public License.

The \Program", below, refers to any such program or work, and a \work based on the Program"

means either the Program or any derivative work under copyright law: that is to say, a

work containing the Program or a portion of it, either verbatim or with modi�cations and/or

translated into another language. (Hereinafter, translation is included without limitation in

the term \modi�cation".) Each licensee is addressed as \you".

Activities other than copying, distribution and modi�cation are not covered by this License;

they are outside its scope. The act of running the Program is not restricted, and the output

from the Program is covered only if its contents constitute a work based on the Program

(independent of having been made by running the Program). Whether that is true depends

on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this License and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option

o�er warranty protection in exchange for a fee.

C.2. Terms and Conditions 318

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work

based on the Program, and copy and distribute such modi�cations or work under the terms of

Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating that you changed

the �les and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains

or is derived from the Program or any part thereof, to be licensed as a whole at no charge

to all third parties under the terms of this License.

c. If the modi�ed program normally reads commands interactively when run, you must

cause it, when started running for such interactive use in the most ordinary way, to print

or display an announcement including an appropriate copyright notice and a notice that

there is no warranty (or else, saying that you provide a warranty) and that users may

redistribute the program under these conditions, and telling the user how to view a copy

of this License. (Exception: if the Program itself is interactive but does not normally

print such an announcement, your work based on the Program is not required to print an

announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections of that

work are not derived from the Program, and can be reasonably considered independent and

separate works in themselves, then this License, and its terms, do not apply to those sections

when you distribute them as separate works. But when you distribute the same sections as

part of a whole which is a work based on the Program, the distribution of the whole must be

on the terms of this License, whose permissions for other licensees extend to the entire whole,

and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written

entirely by you; rather, the intent is to exercise the right to control the distribution of derivative

or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program

(or with a work based on the Program) on a volume of a storage or distribution medium does

not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object

code or executable form under the terms of Sections 1 and 2 above provided that you also do

one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Sections 1 and 2 above on a medium customarily used

for software interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to give any third party, for

a charge no more than your cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be distributed under the

terms of Sections 1 and 2 above on a medium customarily used for software interchange;

or,

c. Accompany it with the information you received as to the o�er to distribute corresponding

source code. (This alternative is allowed only for noncommercial distribution and only if

C.2. Terms and Conditions 319

you received the program in object code or executable form with such an o�er, in accord

with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�cations to

it. For an executable work, complete source code means all the source code for all modules

it contains, plus any associated interface de�nition �les, plus the scripts used to control com-

pilation and installation of the executable. However, as a special exception, the source code

distributed need not include anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from a designated

place, then o�ering equivalent access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not compelled to copy the source

along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-

gram is void, and will automatically terminate your rights under this License. However, parties

who have received copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing

else grants you permission to modify or distribute the Program or its derivative works. These

actions are prohibited by law if you do not accept this License. Therefore, by modifying or

distributing the Program (or any work based on the Program), you indicate your acceptance

of this License to do so, and all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients' exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other

reason (not limited to patent issues), conditions are imposed on you (whether by court order,

agreement or otherwise) that contradict the conditions of this License, they do not excuse you

from the conditions of this License. If you cannot distribute so as to satisfy simultaneously

your obligations under this License and any other pertinent obligations, then as a consequence

you may not distribute the Program at all. For example, if a patent license would not permit

royalty-free redistribution of the Program by all those who receive copies directly or indirectly

through you, then the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,

the balance of the section is intended to apply and the section as a whole is intended to apply

in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose of

C.2. Terms and Conditions 320

protecting the integrity of the free software distribution system, which is implemented by

public license practices. Many people have made generous contributions to the wide range of

software distributed through that system in reliance on consistent application of that system;

it is up to the author/donor to decide if he or she is willing to distribute software through any

other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the

rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents

or by copyrighted interfaces, the original copyright holder who places the Program under this

License may add an explicit geographical distribution limitation excluding those countries, so

that distribution is permitted only in or among countries not thus excluded. In such case, this

License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version,

but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a version

number of this License which applies to it and \any later version", you have the option of

following the terms and conditions either of that version or of any later version published

by the Free Software Foundation. If the Program does not specify a version number of this

License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are di�erent, write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

sometimes make exceptions for this. Our decision will be guided by the two goals of preserving

the free status of all derivatives of our free software and of promoting the sharing and reuse of

software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE

LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-

ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \AS IS" WITHOUT WAR-

RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-

FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE

DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR

OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-

ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTYWHO MAY MODIFY

AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-

SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

C.3. How to Apply These Terms 321

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES

OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-

BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

C.3 Appendix: How to Apply These Terms to Your New

Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start

of each source �le to most e�ectively convey the exclusion of warranty; and each �le should have at

least the \copyright" line and a pointer to where the full notice is found.

hone line to give the program's name and a brief idea of what it does.i Copyright c19yy

hname of authori

This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-

NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

You should have received a copy of the GNU General Public License along with this

program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,

MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision

comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This

is free software, and you are welcome to redistribute it under certain

conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the

General Public License. Of course, the commands you use may be called something other than

`show w' and `show c'; they could even be mouse-clicks or menu items{whatever suits your program.

C.3. How to Apply These Terms 322

You should also get your employer (if you work as a programmer) or your school, if any, to sign

a \copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision'

(which makes passes at compilers) written by James Hacker.

hsignature of Ty Cooni, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-

grams. If your program is a subroutine library, you may consider it more useful to permit linking

proprietary applications with the library. If this is what you want to do, use the GNU Library

General Public License instead of this License.

Glossary

[Meta: This could use more entries, and a little polishing. Feel free to make sugges-

tions.]

An enormous di�culty in networking is to remember what all the abbreviations and terms one

encounters really mean. Here's a list of those used frequently throughout the guide, along with a

short explanation.

ACU Automatic Call Unit. A modem.1

ARP Address Resolution Protocol. Used to map IP addresses to Ethernet addresses.

ARPA Advanced Research Project Agency, later DARPA. Founder of the Internet.

ARPANET The ancestor of today's Internet; an experimental network funded by the U.S. De-

fense Advanced Research Project Agency (DARPA).

Assigned Numbers

The title of an RFC published regularly that lists the publicly allocated numbers

used for various things in TCP/IP networking. For example, it contains the list

of all port numbers of well-known services like rlogin, telnet, etc. The most recent

release of this document is RFC 1340.

bang path In UUCP networks, a special notation for the path from one UUCP site to another.

The name derives from the use of exclamation marks (`bangs') to separate the host

names. Example: foo!bar!ernie!bert denotes a path to host bert, travelling (in

this order) foo, bar, and ernie.

BBS Bulletin Board System. A dial-up mailbox system.

BGP Border Gateway Protocol. A protocol for exchanging routing information between

autonomous systems.

BIND The Berkeley Internet Name Domain server. An implementation of a DNS server.

BNU Basic Networking Utilities. This is the most commonUUCP variety at the moment.

It is also known as HoneyDanBer UUCP. This name is derived from the authors'

names: P. Honeyman, D.A. Novitz, and B.E. Redman.

1Alternatively: A teenager with a telephone.

323

Glossary 324

broadcast network

A network that allows one station to address a datagram to all other stations on

the network simultaneously.

BSD Berkeley Software Distribution. A un?x avor.

canonical hostname

A host's primary name within the Domain Name System. This is the host's only

name that has an A record associated with it, and which is returned when perform-

ing a reverse lookup.

CCITT Comite�e Consultatif International de T�el�egraphique et T�el�ephonique. An Interna-

tional organization of telephone services, etc.

CSLIP Compressed Serial Line IP. A protocol for exchanging IP packets over a serial line,

using header compression of most TCP/IP datagrams.

DNS Domain name system. This is a distributed database used on the Internet for

mapping of host names to IP addresses.

EGP External Gateway Protocol. A protocol for exchanging routing information between

autonomous systems.

Ethernet In colloquial terms, the name of a sort of network equipment. Technically, Ethernet

is part of a set of standards set forth by the IEEE. The Ethernet hardware uses

a single piece of cable, frequently coax cable, to connect a number of hosts, and

allows transfer rates of up to 10Mbps. The Ethernet protocol de�nes the manner

in which hosts may communicate over this cable.2

FQDN Fully Quali�ed Domain Name. A hostname with a domain name tacked onto it, so

that it is a valid index into the Domain Name database.

FTP File Transfer Protocol. The protocol one of the best-known �le transfer service is

based on and named after.

FYI \For Your Information." Series of documents with informal information on Internet

topics.

GMU Groucho Marx University. Fictitious University used as an example throughout this

book.

GNU GNU's not Unix { this recursive acronym is the name of a project by the Free

Software Association to provide a coherent set of un?x-tools that may be used

and copied free of charge. All GNU software is covered by a special Copyright

notice, also called the GNU General Public License (GPL), or Copyleft. The GPL

is reproduced in section C.

HoneyDanBer The name of a UUCP variety. See also BNU.

2As an aside, the Ethernet protocol commonly used by TCP/IP is not exactly the same as IEEE 802.3.

Ethernet frames have a type �eld where IEEE 802.3 frames have a length �eld.

Glossary 325

host Generally, a network node: something that is able to receive and transmit network

messages. This will usually be a computer, but you can also think of X-Terminals,

or smart printers.

ICMP Internet Control Message Protocol. A networking protocol used by IP to return

error information to the sending host, etc.

IEEE Institute of Electrical and Eletronics Engineers. Another standards organization.

From a UNIX user's point of view, their most important achievement are probably

the POSIX standards which de�ne aspects of a UNIX systems, ranging from system

call interfaces and semantics to administration tools.

Apart from this, the IEEE developed the speci�cations for Ethernet, Token Ring,

and Token Bus networks. A widely-used standard for binary representation of real

numbers is also due to the IEEE.

IETF Internet Engineering Task Force.

internet A computer network formed of a collection of individual smaller networks.

Internet A particular world-wide internet.

IP Internet Protocol. A networking protocol.

ISO International Standards Organization.

ISDN Integrated Services Digital Network. New telecommunications technology using

digital instead of analogue circuitry.

LAN Local Area Network. A small computer network.

MX Mail Exchanger. A DNS resource record type used for marking a host as mail

gateway for a domain.

network, packet-switched

A variety of networks that provide instantaneous forwarding of data by all data up

in small packets, which are tramsported to their destination individually. Packet-

switched networks rely on permanent or semi-permanent connections.

network, store-and-forward

They are pretty much the opposite of packet-switched networks. These networks

transfer data as entire �les, and don't use permanent connections. Instead, hosts

conect to each other at certain intervals only, and transfer all data at once. This

requires that data be stored intermediately until a connection is established.

NFS Network File System. A standard networking protocol and software suite for ac-

cessing data on remote disks transparently.

NIS Network Information System. An RPC-based application that allows to share con-

�guration �les such as the password �le between several hosts. See also the entry

under YP.

Glossary 326

NNTP Network News Transfer Protocol. Used to transfer news over TCP network connec-

tions.

octet On the Internet, the technical term referring to a quantity of eight bits. It is used

rather than byte, because there are machines on the Internet that have byte sizes

other than eight bits.

OSI Open Systems Interconnection. An ISO standard on network software.

path Often used in UUCP networks as a synonym for route. Also see bang path.

PLIP Parallel Line IP. A protocol for exchanging IP packets over a parallel line such as a

printer port.

port, TCP or UDP

Ports are TCP's and UDP's abstraction of a service endpoint. Before a process

can provide or access some networking service, it must claim (bind) a port. To-

gether with the hosts' IP addresses, ports uniquely identify the two peers of a TCP

connection.

portmapper The portmapper is the mediator between the program numbers used by RPC as

an identi�cation of individual RPC servers, and the TCP and UDP port numbers

those services are listening to.

PPP The point-to-point protocol. PPP is a exible and fast link-layer protocol to send

various network protocols such as IP or IPX across a point-to-point connection.

Apart from being used on serial (modem) links, PPP can also be employed as the

link-level protocol on top of ISDN.

RARP Reverse Address Resolution Protocol. It permits hosts to �nd out their IP address

at boot time.

resolver This is a library responsible for mapping hostnames to IP addresses and vice versa.

resource record

This is the basic unit of information in the DNS database, commonly abbreviated

as RR. Each record has a certain type and class associated with it, for instance a

record mapping a host name to an IP address has a type of A (for address), and a

class of IN (for the Internet Protocol).

reverse lookup The act of looking up a host's name based on a given IP address. Within DNS, this

is done by looking up the host's IP address in the in-addr.arpa domain.

RFC Request For Comments. Series of documents describing Internet standards.

RIP Routing Information Protocol. This is a routing protocol used dynamically adjust

routes inside a (small) network.

route The sequence of hosts a piece of information has to travel from the originating host

to the destination host. Finding an appropriate route is also called routing.

Glossary 327

routing daemon

In larger networks, network topology changes are hard to adapt to manually, so

facilities are used to distribute current routing information to the network's member

hosts. This is called dynamic routing; the routing information is exchanged by

routing daemons running on central hosts in the network. The protocols they

employ are called routing protocols.

RPC Remote Procedure Call. Protocol for executing procdures inside a process on a

remote host.

RR Short for resource record.

RS-232 This is a very common standard for serial interfaces.

RTS/CTS A colloquial name for the hardware handshake performed by two devices communi-

cating over RS-232. The name derives from the two cicuits involved, RTS (\Ready

To Send"), and CTS (\Clear To Send").

RTM Internet Worm

A Virus-like program that used several aws in VMS and BSD 4.3 Unix to spread

through the Internet. Several \mistakes" in the program caused it to multiply

without bound, and so e�ectively bringing down large parts of the Internet. RTM

are the author's initials (Robert T. Morris), which he left in the program.

site An agglomeration of hosts which, to the outside, behave almost like a single network

node. For example, when speaking from an Internet point of view, one would call a

Groucho Marx University a site, regardless of the complexity of its interior network.

SLIP Serial Line IP. This is a protocol for exchanging IP packets over a serial line, see

also CSLIP.

SMTP Simple Mail Transfer Protocol. Used for mail transport over TCP connections, but

also for mail batches transported over UUCP links (batched SMTP).

SOA Start of Authority. A DNS resource record type.

System V A un?x avor.

TCP Transmission Control Protocol. A networking protocol.

TCP/IP Sloppy description of the Internet protocol suite as a whole.

UDP User Datagram Protocol. A networking protocol.

UUCP Unix to Unix Copy. A suite of network transport commands for dial-up networks.

Version 2 UUCP

An aging UUCP variety.

virtual beer Every Linuxer's favorite drink. The �rst mention of virtual beer I remember was

in the release note of the Linux 0.98.X kernel, where Linus listed the \Oxford Beer

Trolls" in his credits section for sending along some virtual beer.

Glossary 328

well-known services

This term is frequently used to refer to common networking services such as telnet

and rlogin. In a more technical sense, it describes all services that have been assigned

an o�cial port number in the \Assigned Numbers" RFC.

YP Yellow Pages. An older name for NIS which is no longer used, because Yellow Pages

is a trademark of British Telecom. Nevertheless, most NIS utilities have retained

names with a pre�x of yp.

Annotated Bibliography

Books

The following is a list of books you might want to read to if you want to know more about some

of the topics covered in the Networking Guide. It is not very complete or systematic, I just happen

to have read them and �nd them quite useful. Any additions to, and enhancement of this list are

welcome.

General Books on the Internet

[Kehoe92] Brendan P. Kehoe: Zen and the Art of the Internet. .

\Zen" was one of, if not the �rst Internet Guide, introducing the novice user to

the various trades, services and the folklore of the Internet. Being a 100-page

tome, it covered topics ranging from email to Usenet news to the Internet Worm.

It is available via anonymous FTP from many FTP servers, and may be freely

distributed and printed. A printed copy is also available from Prentice-Hall.

Administration Issues

[Hunt92] Craig Hunt: TCP/IP Network Administration. O'Reilly and Associates, 1992.

ISBN 0-937175-82-X.

If the Linux Network Administrators' Guide is not enough for you, get this book.

It deals with everything from obtaining an IP address to troubleshooting your

network to security issues.

Its focus is on setting up TCP/IP, that is, interface con�guration, the setup of

routing, and name resolution. It includes a detailed description of the facili-

ties o�ered by the routing daemons routed and gated, which supply dynamic

routing.

It also describes the con�guration of application programs and network daemons,

such as inetd, the r commands, NIS, and NFS.

329

Administration Issues 330

The appendix has a detailed reference of gated, and named, and a description

of Berkeley's sendmail con�guration.

[Stern92] Hal Stern: Managing NIS and NFS. O'Reilly and Associates, 1992. ISBN 0-

937175-75-7.

This is a companion book to Craig Hunt's \TCP/IP Network Administration"

book. It covers the use of NIS, the Network Information System, and NFS, the

Network File System, in extenso, including the con�guration of an automounter,

and PC/NFS.

[OReilly89] TimO'Reilly and Grace Todino: Managing UUCP and Usenet, 10th ed. O'Reilly

and Associates, 1992. ISBN 0-93717593-5.

This is the standard book on UUCP networking. It covers Version 2 UUCP as

well as BNU. It helps you to set up your UUCP node from the start, giving

practical tips and solutions for many problems, like testing the connection, or

writing good chat scripts. It also deals with more exotic topics, like how to

set up a travelling UUCP node, or the subtleties present in di�erent avors of

UUCP.

The second part of the book deals with Usenet and netnews software. It explains

the con�guration of both Bnews (version 2.11) and C news, and introduces you

to netnews maintenance tasks.

[Spaf93] Gene Spa�ord and Simson Gar�nkel: Practical UNIX Security. O'Reilly and

Associates, 1992. ISBN 0-937175-72-2.

This is a must-have for everyone who manages a system with network access, and

for others as well. The book discusses all issues relevant to computer security,

ranging the basic security features un?x o�ers physical security. Although you

should strive to secure all parts of your system, the discussion of networks and

security is the most interesting part of the book in our context. Apart from basic

security policies that concern the Berkeley services (telnet, rlogin, etc), NFS and

NIS, it also deals with enhanced security features like MIT's Kerberos, Sun's

Secure RPC, and the use of �rewalls to shield your network from attacks from

the Internet.

The Background 331

[AlbitzLiu92] Paul Albitz and Cricket Liu: DNS and BIND. O'Reilly and Associates, 1992.

ISBN 1-56592-010-4.

This book is useful for all those that have to manage DNS name service. It

explains all features of DNS in great detail and give examples that make even

those BIND options plausible that appear outright weird at �rst sight. I found

it fun to read, and really learned a lot from it.

[NISPlus] Rick Ramsey: All about Administering NIS+. Prentice-Hall, 1993. ISBN 0-13-

068800-2.

The Background

The following is a list of books that might be of interest to people who want to know more about

how TCP/IP and its applications work, but don't want to read RFCs.

[Stevens90] Richard W. Stevens: UNIX Network Programming. Prentice-Hall International,

1990. ISBN 0-13-949876-X.

This is probably the most widely used book on TCP/IP network programming,

which, at the same time, tells you a lot about the nuts and bolts of the Internet

Protocols.3

[Tanen89] Andrew S. Tanenbaum: Computer Networks. Prentice-Hall International, 1989.

ISBN 0-13-166836-64.

This book gives you a very good insight into general networking issues. Using

the OSI Reference Model, it explains the design issues of each layer, and the

algorithms that may be used to achieve these. At each layer, the implementations

of several networks, among them the ARPAnet, are compared to each other.

The only drawback this book has is the abundance of abbreviations, which some-

times makes it hard to follow what the author says. But this is probably inherent

to networking.

3Note that Stevens has just written a new TCP/IP, called TCP/IP Illustrated, Volume 1, The Protocols,

published by Addison Wesley. I didn't have the time to look at it, though.
4The ISBN under which it is available in North America might be di�erent.

HOWTOs 332

[Comer88] Douglas R. Comer: Internetworking with TCP/IP: Principles, Protocols, and

Architecture. Prentice-Hall International, 1988.

HOWTOs

The following is an excerpt of the HOWTO-INDEX, version 2.0 (17 March 1994), written by Matt

Welsh.

What are Linux HOWTOs?

Linux HOWTOs are short online documents which describe in detail a certain aspect of con�guring

or using the Linux system. For example, there is the Installation HOWTO, which gives instructions

on installing Linux, and the Mail HOWTO, which describes how to set up and con�gure mail under

Linux. Other examples include the NET-2-HOWTO (previously the NET-2-FAQ) and the Printing

HOWTO.

Information in HOWTOs is generally more detailed and in-depth than what can be squeezed

into the Linux FAQ. For this reason, the Linux FAQ is being rewritten. A large amount of the

information contained therein will be relegated to various HOWTO documents. The FAQ will be

a shorter list of frequently asked questions about Linux, covering small speci�c topics. Most of the

\useful" information in the FAQ will now be covered in the HOWTOs.

HOWTOs are comprehensive documents|much like an FAQ but generally not in question-and-

answer format. However, many HOWTOs contain an FAQ section at the end. For example, the

NET-2-FAQ has been renamed to the NET-2-HOWTO, because it wasn't in question-and-answer

format. However, you will see the NET-2-HOWTO named as the NET-2-FAQ in many places. The

two docs are one and the same.

Where to get Linux HOWTOs

HOWTOs can be retrieved via anonymous FTP from the following sites:

� sunsite.unc.edu:/pub/Linux/docs/HOWTO

� tsx-11.mit.edu:/pub/linux/docs/HOWTO

as well as the many mirror sites, which are listed in the Linux META-FAQ (see below).

The Index, printed below, lists the currently available HOWTOs.

HOWTOs are also posted regularly to the newsgroups comp.os.linux and

comp.os.linux.announce. In addition, a number of the HOWTOs will be crossposted to

news.answers. Therefore, you can �nd the Linux HOWTOs on the news.answers archive site

rtfm.mit.edu.

HOWTO Index 333

HOWTO Index

The following Linux HOWTOs are currently available.

� Linux Busmouse HOWTO, bymike@starbug.apana.org.au (Mike Battersby). Information

on bus mouse compatibility with Linux.

� Linux CDROM HOWTO, by tranter@software.mitel.com (Je� Tranter). Information on

CD-ROM drive compatibility for Linux.

� Linux DOSEMU HOWTO, by deisher@enws125.EAS.ASU.EDU (Michael E. Deisher).

HOWTO about the Linux MS-DOS Emulator, DOSEMU.

� Linux Distribution HOWTO, by mdw@sunsite.unc.edu (Matt Welsh). A list of mail order

distributions and other commercial services.

� Linux Ethernet HOWTO, by Paul Gortmaker gpg109@rsphysse.anu.edu.au. Information

on Ethernet hardware compatibility for Linux.

� Linux Ftape HOWTO, by ftape@mic.dth.dk (Linux ftape-HOWTO maintainer). Informa-

tion on ftape drive compatibility with Linux.

� Linux HOWTO Index, by mdw@sunsite.unc.edu (Matt Welsh). Index of HOWTO docu-

ments about Linux.

� Linux Hardware Compatibility HOWTO, by erc@apple.com (Ed Carp). A near-extensive

list of hardware known to work with Linux.

� Linux Installation HOWTO, by mdw@sunsite.unc.edu (Matt Welsh). How to obtain and

install the Linux software.

� Linux JE-HOWTO, by Yasuhiro Yamazaki hiro@rainbow.physics.utoronto.ca. Informa-

tion on JE, a set of Japanese language extensions for Linux.

� Linux Keystroke HOWTO, by Zenon Fortuna (zenon@netcom.com). HOWTO bind macro

actions to keystrokes under Linux.

� Linux MGR HOWTO, by broman@Np.nosc.mil (Vincent Broman). Information on the

MGR graphics interface for Linux.

� Linux Electronic Mail HOWTO, by vince@victrola.wa.com (Vince Skahan). Information

on Linux-based mail servers and clients.

� Linux NET-2 HOWTO, by terryd@extro.ucc.su.oz.au (Terry Dawson). HOWTO con�gure

TCP/IP networking, SLIP, PLIP, and PPP under Linux.

� Linux News HOWTO, by vince@victrola.wa.com (Vince Skahan). Information on USENET

news server and client software for Linux.

� Linux PCI-HOWTO, by Michael Willmichaelw@desaster.student.uni-tuebingen.de. In-

formation on PCI-architecture compatibility with Linux.

� Linux Printing HOWTO, by gtaylor@cs.tufts.edu (Grant Taylor). HOWTO on printing

software for Linux.

Miscellaneous and Legalese 334

� Linux SCSI HOWTO, by Drew Eckhardt drew@kinglear.cs.Colorado.EDU. Information

on SCSI driver compatibility with Linux.

� Linux Serial HOWTO, by gregh@cc.gatech.edu (Greg Hankins). Information on use of

serial devices and communications software.

� Linux Sound HOWTO, by tranter@software.mitel.com (Je� Tranter). Sound hardware

and software for the Linux operating system.

� Linux Term HOWTO, by Bill Reynolds bill@goshawk.lanl.gov. HOWTO use the `term'

communications package on Linux systems.

� Linux Tips HOWTO, by Vince Reed reedv@rpi.edu. HOWTO on miscellaneous tips and

tricks for Linux.

� Linux UUCP HOWTO, by vince@victrola.wa.com (Vince Skahan). Information on UUCP

software for Linux.

� Linux XFree86 HOWTO, by geyer@polyhymnia.iwr.uni-heidelberg.de (Helmut Geyer).

HOWTO on installation of XFree86 (X11R5) for Linux.

Miscellaneous and Legalese

If you have questions, please feel free to mailmdw@sunsite.unc.edu. The Linux FAQ rewrite is

being coordinated by Ian Jackson, ijackson@nyx.cs.du.edu, with help from others.

Unless otherwise stated, Linux HOWTO documents are copyrighted by their respective authors.

Linux HOWTO documents may be reproduced and distributed in whole or in part, in any medium

physical or electronic, without permission of the author. Translations and derivative works are sim-

ilarly permitted without express permission. Commercial redistribution is allowed and encouraged;

however, the author would like to be noti�ed of any such distributions.

In short, we wish to promote dissemination of this information through as many channels as

possible. However, we do wish to retain copyright on the HOWTO documents, and would like to

be noti�ed of any plans to redistribute the HOWTOs. If you have questions, please contact Matt

Welsh, the Linux HOWTO coordinator, at mdw@sunsite.unc.edu.

RFCs

The following is a list of RFCs mentioned throughout this book. All RFCs are available via anony-

mous FTP from nic.ddn.mil, ftp.uu.net. To obtain an RFC via email, send a message to ser-

vice@nic.ddn.mil, putting the request send RFC-number.TXT in the subject header line.

1340 Assigned Numbers, Postel, J., and Reynolds, J. The Assigned Numbers RFC de-

�nes the meaning of numbers used in various protocols, such as the port numbers

standard TCP and UDP servers are known to listen on, and the protocol numbers

used in the IP datagram header.

RFCs 335

1144 Compressing TCP/IP headers for low-speed serial links, Jacobson, V. This doc-

ument describes the algorithm used to compress TCP/IP headers in CSLIP and

PPP. Very worthwhile reading!

1033 Domain Administrators Operations Guide, Lottor, M. Together with its companion

RFCs, RFC 1034 and RFC 1035, this is the de�nitive source on DNS, the Domain

Name System.

1034 Domain Names - Concepts and Facilities, Mockapetris, P.V. A companion to

RFC 1033.

1035 Domain names - Implementation and Speci�cation,Mockapetris, P.V. A companion

to RFC 1033.

974 Mail Routing and the Domain System, Partridge, C. This RFC describes mail

routing on the Internet. Read this for the full story about MX records: : :

977 Network News Transfer Protocol, Kantor, B., and Lapsley, P. The de�nition of

NNTP, the common news transport used on the Internet.

1094 NFS: Network File System Protocol speci�cation, Nowicki, B. The formal speci�-

cation of the NFS and mount protocols (version 2).

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP, Romkey,

J.L. Describes SLIP, the Serial Line Internet Protocol.

1057 RPC: Remote Procedure Call Protocol Speci�cation: Version 2, Sun Microsystems,

Inc

1058 Routing Information Protocol, Hedrick, C.L. Describes RIP, which is used to ex-

change dynamic routing information within LANs and MANs.

821 Simple Mail Transfer Protocol, Postel, J.B. De�nes SMTP, the mail transport pro-

tocol over TCP/IP.

1036 Standard for the Interchange of USENET messages, Adams, R., and Horton, M.R.

This RFC describes the format of Usenet News messages, and how they are ex-

changed on the Internet as well as on UUCP networks. A revision of this RFC is

expected to be released sometime soon.

822 Standard for the Format of ARPA Internet text messages, Crocker, D. This is the

de�nitive source of wisdom regarding, well, RFC-conformant mail. Everyone knows

it, few have really read it.

968 Twas the Night Before Start-up, Cerf, V.Who says the heroes of networking remain

unsung?

Index

/proc/net, 81

16450 UART, 77

16550 UART, 77

8250 UART, 77

A (DNS record), 112

access

granting, 123, 130, 176

NNTP, 298, 300

PPP, 141

restrict, 177

restricting, 39, 144, 151

UUCP, 198{204

access network hardware, see interface

acessing

remote �les, 173

address

bang path, 217, 219

broadcast, 44, 89, 96

choosing (IP), 83

DNS resource record, 112

Ethernet, 30

hybrid, 217

IP, 32

mail, 217{218

mapping to hostnames, 58

negotiation with PPP, 133, 138, 144

route-addr, 217

UUCP hostname, 188

Address Resolution Protocol, see ARP

alias

and C News, 279

hostname, 56, 112

mail, 241

aliases, 241{242

Allman, Eric, 212

amateur radio, 30

amd, 178

anonymous UUCP, 204

ARP, 44{45

display table, 100

enabling, 96

proxy, 93, 101, 139

ARPANET, 28

assigning IP addresses, 83

authoritative name server, 56, 57, 59, 111

authorization

and r commands, 156

with NNTP, 300

with PPP, 131, 142{146

auto-IRQ, 71

automounter, 178

autoprobing fails, 71

autoprobing, Ethernet, 70

avoid mail routing loops, 236

avoid tinygrams, 67

AX.25, 30, 68

Barber, Stan, 297

Basic Networking Utilities, see UUCP, HDB

batching

mail, 216

news, 273, 284{286

Baud rate, 76

BBS, 74

Becker, Donald, 69

Berkeley Internet Name Domain, 103

BIND, 103, 107{119

Biro, Ross, 36

Bit rate, 76

BNC connector, 29, 69

BNU, see UUCP, HDB

BOOTP, 45

bootup sequence, 80

bounce mail, 216

Brewery, Virtual, 82

336

INDEX 337

broadcast address, 96

BSD socket library, 35

BSMTP, 216

bulletin board, 74

C News, 270, 275{295

active �le, 275, 278{279, 282{283

archiving, 287

batch parameters, 284{286

batching, 276, 281, 282, 284{286

compressing batches, 285

create initial con�guration, 278

exchanging news, 280, 281

excluding sites, 279

expiring, 286{289

history �le, 275, 289

hostname aliases, 279

ihave/sendme, 281, 285

LAN, 293

limit a feed, 280, 290

list of current groups, 282, 289

log �les, 290

moderated groups, 289

newsmaster, 279

NNTP support, 281, 300

receiving news, 275{277, 279

relaynews, 275

rnews, 281

sending news, 281, 284{286

spool directory, 275

sys �le, 277, 279{282

togo �le, 282

update active �le, 291

update low water mark, 304

usenet, 279

UUCP, 276, 286

cache (BIND option), 109

caching-only name server, 120

cancel control message, 291

canonical hostname, 56, 112

centralized mail handling, 218, 221, 222

Challenge Handshake Authentication Proto-

col, 131, 142{145

CHAP, see Challenge Handshake Authentica-

tion Protocol

character set in elm, 225

chargen, 148

chat

PPP, 135

SLIP, 125

chat, 135{137

chat script, 135

UUCP, 191

checkgroups control message, 291

checking

ARP tables, 100

Ethernet interface, 100

host names, 114

IP routing table, 90

mail queue, 235

name server, 114

network con�guration, 87, 90

network connections, 99

network interface, 87, 98

NIS, 164, 165

NNTP, 300

PPP, 137

reachabilty, 87, 90

sendmail, 260{264

smail con�guration, 233

TCP server activity, 99

the routing table, 97

UUCP, 189

choosing

a NIS domain, 161

IP addresses, 83

NIS maps, 165

UUCP hostname, 188

CNAME (DNS record), 112, 113

collision, Ethernet, 30

Collyer, Geo�, 270

COM port, 76

composing mail, 216

Compressed Serial Line IP, see CSLIP, 121

compressing TCP/IP packets, 121, 132

con�guring

C News, 277{295

C News on a LAN, 293

caching-only name server, 120

default domain, 106

dip, 123

DNS over SLIP/PPP, 120

INDEX 338

elm, 224{226

Ethernet, 64, 69{72, 89

hostname, 82

hostname resolution, 84, 103{119

IP gateway, 92

IPX, 67

kernel, 64

loopback interface, 87

mail gateway, 230

mail on a LAN, 229{232

name server, 107{119

network hardware, 61{73

network interfaces, 86

network services, 148

newsreader, 302

NFS, 65

NIS, 158{170

NNTP, 296{301

PLIP, 64, 72, 73, 92

PPP, 64, 93, 94, 131{147

sendmail, 245{269

serial port, 77{79

SLIP, 64, 93, 94, 120{130

SLIP server, 129

smail, see smail

the r commands, 156{157

use of name server, 106

Usenet news, 277{295

UUCP, 179{211

UUCP mail, 228

connecting LANs, 139

connections, display, 99

Cox, Alan, 36

creating

DNS zones, 59

NIS maps, 163

subdomains, 54

subnets, 59, 83

CSLIP, 33, 121, 129, 132

C News

update low water mark, 282, 289

D-Link pocket adaptor, 69

Davies, David C., 69

Dawson, Terry, 19

daytime, 148

DDI, 36

debugging

DNS databases, 119

PPP setup, 137

UUCP setup, 183

default IP route, see route, default

default mail route, 220

delegating

DNS subdomains, 54, 59

IP subnets, 47

delivering

mail, 216

news, 273{275

Dent, Arthur, 129

/dev/cua*, 76{77

/dev/modem, 77

/dev/ttyS*, 76{77

device driver interface, see DDI

device, serial, 74{79

dial-up IP, 120

dialin device, 76

dialout device, 76

dip, 123{130

diphosts, 129

diplogin, 129

directing mail to a �le, 239

disabling ARP, 96

diskless clients, 45

display

active connections, 99

ARP table, 100

interface con�guration, 94

interface statistics, 98

IP routing table, 90, 97

NIS map nicknames, 160

UUCP con�guration, 189

DNS, 51{60

checking, 114

con�guring server, 107{119

converting /etc/hosts, 119

creating zones, 59

database, 56

debugging databases, 119

lookup, 55

query, 55

resource record, 56, 110

INDEX 339

reverse mapping, 58{60

root name servers, 114, 118

RR, see DNS, resource record

time to live, 55, 110

tools, 119

ttl, see DNS, time to live

zone, 54{57, 59, 111

dnswalk, 119

domain

mail routing, 221

domain name, 52{54

default, 106

NIS vs. DNS, 82

setting NIS, 161

Domain Name System, see DNS

domainname, 82, 161

domains

top-level, 53

dotted quad, 32, 43

driver

D-Link, 69

Ethernet, 69

ISDN, 68

PLIP, 72

PPP, 73, 132

SLIP, 73

dummy interface, 94

dynamic routing, 49

Ekwall, Bj�rn, 69

electronic mail, 212

elm, 224{226

national character sets, 225

email, see mail

enabling ARP, 96

Eriksson, Peter, 159

establishing the connection, 135

eth0 (Ethernet interface), 89

Ethernet, 29{30

address, 30, 44

address vs. IP address, 32

autoprobing, 70{72

Becker drivers, 69

cabling, 69

collision, 30

con�guration, 89

installation, 69

promiscuous mode, 96

thin, 29, 69

through parallel port, 69

exchanging

mail, 216

news, 271{273

exporting an NFS volume, 176

exports, 176

External Data Representation, 154

Faith, Rik, 16

FDDI, 30

feed, news, 273

feeding mail to a command, 239

FidoNet, 74

�le sharing, 171

File System Standard, 23

�nger, 150

Flintstone, Fred, 24

ooding algorithm, 273

forwarding

IP, 31, 66

mail, 240, 241

UUCP, 26

fstab, 81, 173

FTP, location of Linux code, 37, 82

full user names, 279

gated, 49, 93, 140

gateway, 31, 47{48

con�guring, 92

IP, 91

mail, 218

generating a paths �le, 222

getty, 201

Gortmaker, Paul, 69

Groucho Marx University, 28, 46

group.bygid, 167

group.byname, 167

ham radio, 30, 44

handshake, hardware, 77, 78, 133

Hankins, Greg, 74

hardware

handshake, 77, 78, 133

networking, 61{73

INDEX 340

serial, 74{79

HDB, see UUCP, HDB

HDLC, 131

HoneyDanBer, see UUCP, HDB

host, 24

standalone, 94

host.conf, 104, 159, 170

hostcvt, 119

hostname

aliases, 112

ambiguous, 219

and domain name, 52

canonical, 56, 112

catching unquali�ed, 244

fully quali�ed, 52

lookup, 55, 114

mapping to addresses, 51

obtaining from address, 58

resolution, 51, 84, 103, 158, 170

setting, 82

UUCP, 188

hosts, 84, 159

converting to BIND master �les, 119

hosts �le, 84

hosts.byaddr, 159

hosts.byname, 159, 166

hosts.equiv, 156

HOWTO, 16

Ethernet, 69

Networking, 19

Serial, 74

UUCP, 180

ICMP, 50

Port Unreachable, 50

Redirect, 50

IDA, see sendmail, IDA

ifcon�g, 86, 94

IMAP, 230

in-addr.arpa domain, 58

inetd, 148, 155, 232

inetd.conf, 148{151

inews, 275

initializing networking, 80

INN, 271, 297, 303

installing

network binaries, 81

Interactive Mail Access Protocol, 230

interface, 42, 61, 62, 68

con�guration, 86

D-Link DE-600, 68

dummy, 94

Ethernet, 68, 89

loopback, 68, 87

netmask, 46, 83, 89, 95

PLIP, 68, 92

PPP, 68, 93, 134

SLIP, 68, 93

statistics, 98

internationalization for elm, 225

Internet, 28

connecting to, 120, 131, 133

mail routing, 218

vs. internetworking, 32

Internet Control Message Protocol, 50

InterNet News (INN), 271

Internet Protocol, see IP

internetworking, 32, 47

IP, 31{33

address, 32, 43{44

and hostname, 51, 58

assigning, 83

negotiation in PPP, 133, 138, 144

address vs. hostname, 32

broadcast address, 89, 96

Control Protocol, 132, 137

default route, 44, 92

dial-up, 120, 131

dynamic routing, 49

forwarding, 31, 66

gateway, 31, 91, 92

interface, 62

interface con�guration, 86

metric, 50, 96

MTU, see Maximum Transfer Unit

multicast addresses, 97

netmask, 46, 83, 89, 95

network, 58

Network Control Protocol (PPP), 132

networks, 43, 45

parallel line, see PLIP

routing, 32, 45{50, 66, 91, 92

INDEX 341

routing protocols, 49

routing table, 49, 90, 97

serial line, see SLIP, 120, 131

sub-networks, see IP, subnet

subnet, 46{47, 59, 66, 91, 92

tinygrams, 67

IPCP, see IP, Control Protocol

IPX, 67

IRQ, 62, 71

ISDN, 68

ISO-8859-1, 225

Johnson, Michael K., 16

junk newsgroup, 276

Karr, Ronald S., 212

Kempen, Fred van, 28, 36

kernel network con�guration, 64

LAN, 27

connecting, 139

hostname resolution, 170

mail, 230

news, 293

passwords, 156, 167, 170

r commands, 156

Lapsley, Phil, 297

Latin-1 character set, 225

LCP, see Link Control Protocol (PPP)

LDP, see Linux Documentation Project

leaf site, 220

lilo, 71

line discipline, 75, 121, 132

Link Control Protocol (PPP), 131, 140{141

Linux Activists, 22

Linux Documentation Project, 16, 22

lmail, 216

lo (loopback interface), 87

Local Area Network, see LAN

localhost, 87

lock �les

and PPP, 134

looking up addresses, 58

loopback

address, 44

interface, 87

looped back serial line, 131

mail, 212

address formats, 217{218

aliases, 241{242

bang path address, 217, 219

batching, 216

bounce, 216, 235, 249

centralizing, 218, 221, 222

composing, 216

daemon, 227

default route, 220

delivering, 216

directing to a �le, 239

domain-based routing, 218, 222

feeding to a command, 239

forcing UUPC delivery, 266

forwarding, 240, 241

gateway, 218

headers, 213

maps, 220, 223

message format, 213

multi-media, 212

on a LAN, 230

over UUCP, 216

paths �le, 220, 222{224

postmaster, 235, 236

preventing UUPC delivery, 267

queue, 227, 234{235

route-addr address, 217

routing, 218{222

between Internet and UUCP, 218

domain-based, 221

Internet, 218

smart-host, 220

UUCP networks, 219

site hiding, 230

Mail Exchanger (DNS record), 218

mailbox �le, 240

mailboxes

mounting via NFS, 230

maintenance, system, 37

manual con�guration (Ethernet), 71

manual con�guration (PLIP), 73

maps, Usenet, 220, 223

Marx, Groucho, 28

Maximum Receive Unit (PPP), 141

Maximum Transfer Unit, 95, 96, 101, 141

INDEX 342

metamail, 226

metric, routing, see routing, metric

mgetty, 201, 202

modem, speed, 76

mountd, 175, 176

mounting

an NFS volume, 173

automatically, 178

readonly, 177

the proc �lesystem, 81

MRU, see PPP, Maximum Receive Unit

mthreads, 304

MTU, see Maximum Transfer Unit

multi-media mail, 212

MX (DNS record), 113, 218

Nagle's algorithm, 67

name server, 55{56

authoritative, 56, 57, 59

cache, 109

caching-only, 56, 120

checking, 114

con�guring, 107{119

primary, 56, 109

root, 114, 118

secondary, 56, 109

slave, 110

synchronizing, 56

name space (DNS), 52

named, 103, 107{119

named.boot, 107{110

national character sets in elm, 225

NCP, see Network Control Protocols

Net-1, 36

Net-2d, 36

Net-2Debugged, 36

Net-2e, 36, 37, 82

Net-3, 36, 37, 82

Net-BSD, 37, 82

netstat, 97{100

network, 24

booting, 80

connections, see network, port

devices, 61

display connections, 99

hostname resolution, 170

interconnecting, see internetworking

interface, see interface

Internet, 28

kernel options, 64

names, 84

packet-switched, 27

passwords, 167, 170

port, 34{35

port numbers, 34

programming interface, 35

protocols, 24

services, see port

synchronizing passwords, 158

TCP/IP, see TCP/IP

unreachable, 88

UUCP, see UUCP

Network Control Protocols, 132

Network File System, see NFS

Network Information System, see NIS

Network News Transfer Protocol, see NNTP

\Network Unreachable" error message, 88

networks �le, 84

newgroup control message, 291

news, 270{274

active �le, 274, 275

add new group, 291

archiving articles, 287

article, 271

batching, 273, 276, 284

C release, see C News

cancel article, 291

control messages, 290

deleting old news, 274

distribution, 273

distributions, 280

exchanging, 271{274

expiring, 304, 305

expiring old articles, 274

faking, 297

feeding, 271{274

ooding algorithm, 273

follow-up, 302

groups, 271

history, 273, 275

ihave/sendme, 273

limit a feed, 273

INDEX 343

message id, 273, 275

newsmaster, 279

NNTP, 274

nntpd, 296

pulling, 274, 296

pushing, 274, 296

reader, see newsreader

receiving, 279

remove old group, 291

spool, 274

update active �le, 291

Usenet, 271

newsmaster, 279

newsreader

con�guring, 302

creating thread databases, 303{305

nn, 305

tass, 303

threading, 302, 303

tin, 303

trn, 304

NFS, 171{178

automounter, 178

exporting a volume, 176

exports, 176

hard-mounting vs. soft-mounting, 175

limitations, 172

matching uids and gids, 176, 178

mounting a volume, 171, 173

readonly volume, 177

restricting block size, 174

server, 172, 175

timeout, 175

nfsd, 172, 175

NIS, 158{170

and shadow passwords, 169

and the resolver, 104

client, 162{170

creating maps, 163

databases, 159

domain, 161{162

locating server, 161

map, 159{160, 162

nickname, 160

passwd maps, 167{170

server, 160{164

traditional code, 170

NIS+, 162

nn, 305

NNTP, 270, 296

and C News, 300

authorization, 300

restricting access, 298, 300

nntp access, 298

nntpd, 297

Noll, Curt Landon, 212

nslookup, 114{119

nsswitch.conf, 165{167

NYS, 159{170

obtaining the source code, 37, 82

order of resolver services used, 104

Packet Assembler/Disassembler, 30

PAD, 30

PAP, see Password Authentication Protocol

Parallel Line IP, see PLIP

parallel port

Ethernet, 69

IP, 72

passwd, 159

real user names, 279

passwd.byname, 167

passwd.byuid, 167

Password Authentication Protocol, 131, 142

passwords

and remote login, 156

network-wide, 167{169

pathalias, 220, 223{224

paths �le, 220, 222{224

PC/TCP compatibility, 66

ping, 87

PLIP, 72, 92

routing, 101

plip1 (PLIP interface), 92

point-to-point link, 92, 93, 95, 101, 131

Point-to-Point Protocol, see PPP, 131

POP, 230

port, see network, port

COM, 76

numbers, 34

portmap, 155

INDEX 344

portmapper daemon, 155

portmapper failure (error message), 170

Post O�ce Protocol, 230

PPP, 33, 93, 120, 131{147

and IP addresses, 133

async map, 140

authentication, 142{146

chat script, 135{137

compressing data, 132, 141

daemon, 132

debug information, 137

default route, 134

driver, 132

dynamic address assignment, 138

escaping control characters, 140

IP addresses, 138

lock �les, 134

Maximum Receive Unit, 141

option �les, 134

proxy ARP, 139

routing, 101, 139{140

security, 141

server, 146

using CHAP, 142{145

using PAP, 142, 145{146

pppd, 132{147

.ppprc, 134

prevent spoo�ng, 104

primary (BIND option), 109

proc �lesystem, 81

protocol, 24

AX.25, 30, 68

CSLIP, 33

Ethernet, 29

IP, see IP

IPX, 67, 68

NNTP, 296

PPP, 33

SLIP, 33

TCP, 33

UDP, 34

UUCP, 205

X.25, 30

protocol numbers, 153

protocols, 149, 152{154

proxy ARP, 93, 101, 139

PTR (DNS record), 113

queuing mail, 234

Quinlan, Dan, 23

RARP, 45, 66

rc scripts, 80

rc.inet, 80, 86, 88, 175

rcp, 156

reaching a host, 87

readonly NFS volume, 177

real user names, 279

Reber, Tobias, 158

receiving news, 279

remote

command execution, 156

execution, 25, 216

�le access, 26, 156, 171

�le system, 173

login, 28, 34, 156

X11 session, 28

Remote Procedure Call, 154{155

mapping ports to programs, 155

program numbers, 154

resolv.conf, 106

resolver

con�guring, 104{107

environment variables, 105

library, 104

robustness, 107

using a name server, 104

using NIS, 104

resource record, see DNS, resource record

restrict root access, 177

restricting access, 151

Reverse Address Resolution Protocol, see

RARP

reverse mapping, 58{60

.rhosts, 156

RIP, see Routing Information Protocol

rlogin, 156

rmail, 198, 216

rmgroup control message, 291

rnews, 198, 275, 286

round-trip time (IP), 87

route, 86, 90, 101

INDEX 345

route, default, 44, 92, 134

routed, 49

routing

daemon, 49

dynamic, 49, 50, 93, 101, 140

ICMP Redirect, 50

IP datagrams, see IP, routing

IP gateway, 91

loop avoidance, 236

mail, see mail routing

metric, 50, 95, 96

over PPP, 139

protocols, 49

proxy ARP, 101

smart-host, 220

table, 49, 97

Routing Information Protocol, 49, 50, 93, 96

RPC, see Remote Procedure Call

rpc, 154

rpcinfo, 165

RR, see DNS, resource record

RS-232, 77

rsh, 156

rsmtp, 216

RTS/CTS, 77

Salz, Rich, 297

secondary (BIND option), 109

security, 130

Ethernet, 96

false hostnames, 104

PPP, 136, 141{146

r commands, 156

remote login, 156

SLIP, 123

spoo�ng, 104

system, 38

TCP servers, 150, 151

UUCP, 198{204

UUCP logins, 203{204

sendbatches, 284

sendmail, 212, 245{269

aliases, 257

CF, 246{252, 259{260

DECnet, 258

deliver, 249

�le locations, 268

forcing mail, 265

forcing UUPC delivery, 266

fully quali�ed domain name, 255, 256

generating sendmail.cf, 259{260

IDA, 246

installing, 258

Internet site, 252

local hostnames, 250

mailers, 249, 251, 253, 255, 256, 266, 267

mailertable, 253

postmaster, 257

postmaster, 249

preventing UUPC delivery, 267

queue operation, 267

relay host, 251, 265

remote site miscon�gured, 265

routing, 255

domain, 265

smart-host, 251

UUCP, 255, 258, 266, 267

run the queue, 267

running, 260

sendmail.cf, 245

statistics, 267

tables, 246, 251, 258, 263

testing, 260{264

transport, see , mailers249

unquali�ed hostname, 255, 256, 266, 267

user aliases, 257, 258

UUCP, 250, 255, 266, 267

UUCP leaf site, 252

version, 258

writing mail to a �le, 257

sendmail.cf, see sendmail, sendmail.cf

checkgroups control message, 293

checkgroups control message, 293

serial line

device �le, 76

hardware handshake, 77, 78

looped back, 131

protecting characters, 140

speed, 76

serial line IP, see PPP, see SLIP

server

inetd, 148{152

INDEX 346

tcpd, 151{152

nfsd, 172

NIS, 160

NNTP, 296

sendmail, 260

UUCP, 201{204

ypserv, 160

services, 34

and port numbers, 35

restricting access, 39, 151

setting up, 148

well-known, 35, 152

services, 149, 152{154

services.byname, 166

setserial, 77

setting

domain name, 82

hostname, 82

NIS domain, 161, 164

Simple Mail Transfer Protocol, see SMTP

site, 24

leaf, 220

sl0 (PPP interface), 93

sl0 (SLIP interface), 93

slattach, 121

SLIP, 33, 73, 75, 93, 120{130

let users initiate, 123

routing, 101

SLIPDISC, 121

smail, 212, 227{244

and SLIP/PPP, 238

BSMTP, 228, 242

check mail queue, 235

compiling, 234

con�g �le, 227{229, 235

delivery modes, 234

directing mail to a �le, 239

directors, 236

feeding mail to a command, 239

forwarding, 240

handling mail for a domain, 230

local addresses, 239{242

local hostnames, 229

log �les, 232

mailing lists, 242

on a LAN, 229{232

paths �le, 237, 239

postmaster, 235, 236

queuing mail, 234

routers, 236

routing, 236{239

avoid loops, 236

Internet, 238

smart-host, 229

UUCP, 237, 239

UUCP vs. SLIP, 238

run the queue, 235

SMTP, 231{232, 243

transports, 236

troubleshooting, 232

unquali�ed hostnames, 244

user aliases, 241{242

user mailbox, 240

utilities, 227

UUCP, 228{229, 238, 239, 242{243

smart-host routing, 220

SMTP, 216

batched, 198, 216

service, 231

SNARL, see `Subnets Are Local' Policy

SOA (DNS record), 57, 111

socket, 35

Space.c, 71, 73

Spencer, Henry, 270

spoo�ng, 104

standalone host, 94

Start of Authority, 57

Storm, Kim F., 305

subdomain (DNS), 54, 59

subnet (DNS), 83

subnet (IP), 47, 66

`Subnets Are Local' Policy, 66, 102

synchronizing name servers, 56

syslog, 137, 151, 178

system maintenance, 37

system security, 38

T'so, Theodore, 77

tass, 303

Taylor, Ian, 179

TCP, 33{34

UUCP, 197

INDEX 347

wrapper program, 151

TCP/IP, 27{35, 42{51

tcpd, 151{152

telephone, sending data over, 33, 120, 131

terminal programs, 74

testing network con�guration, 87, 90

TFTP, see Trivial File Transfer Protocol

tftp, 150

thinnet, 29, 69

Th�ummler, Swen, 158

tin, 303

tinygrams, 67

Transmission Control Protocol, see TCP

tripwire, 39

Trivial File Transfer Protocol, 150

trn, 304

tty, 75{79

line discipline, 75, 121, 132

UART, 77

UDP, 34

Urlichs, Matthias, 36

Usenet, 271

maps, 220, 223

User Datagram Protocol, see UDP

uucico, 183

UUCP, 25{27, 74, 179{211

accounts, 201

alternates, 193

and getty, 201

anonymous, 204

BNU, 179

call sequence check, 182, 203{204

call time, 193

calling in, 201

calling out, 183

chat scripts, 191{192

checking, 189, 208

command execution, 198

con�g �le, 189

con�guration �les, 184{187

con�gure as server, 201{205

device, 191, 194{196

dial �le, 196

dialcode �le, 190

direct lines, 198

�le transfer, 199

forwarding, 26, 200

handshake, 182

HDB, 179, 211

hostname, 188{190

job, 181

logging and debugging, 183, 210{211

logging in, 187, 191

login chat, 191

login security, 203{204

mail, 198, 216, 219

Mapping Project, 188, 220

maps, 223

master, 182

modem, 194, 196{197

news, 198, 276

over TCP/IP, 197

passwd �le, 202

phone number, 190

port �le, 194

priorities, 181, 194

protocol, 182, 205{208

selection, 207

tuning, 207

remote system, 190{194

restrict

call time, 193

command execution, 198

�le transfer, 199

forwarding, 200

retry interval, 194

set up logins, 201{203

slave, 182

spool directory, 181

spool grade, 181, 194

statistics, 210

sys �le, 190

Taylor, 179

troubleshooting, 208

using smail, 228

uucico, 182{183

Version 2, 179

uugetty, 201

uux, 286

Van Jacobson header compression, 121, 132

INDEX 348

checkgroups control message, 293

Virtual Brewery, 82

Welsh, Matt, 16

Wirzenius, Lars, 16

wrapper, TCP, 151

X.25, 30

XDR, see External Data Representation

Ye Olde ARPANET kludge, 217

Yellow Pages, see NIS

YP, see NIS

yp-linux, 158

yp.conf, 164{165

ypbind, 161

ypcat, 160, 165

yps, 158

ypserv, 160

Yutaka, Niibe, 72

Zen, 271

zone, DNS, see DNS, zone

