
Tressel: Semantic mark-up of RSS feeds

Brian McLernon Nicholas Kushmerick
School of Computer Science and Informatics

University College Dublin, Ireland
{brian.mclernon,nick}@ucd.ie

www.smi.ucd.ie/tressel

ABSTRACT
The recent explosion in the popularity of RSS and other syn-
dication technologies has led to a wealth of information be-
ing published from an increasingly diverse range of sources.
However this popularity makes it difficult for users to find
interesting documents, and this challenge is compounded by
the fact that most RSS clients offer very modest personal-
ization capabilities.

We propose Tressel, a collaborative RSS aggregator that
extracts semantically meaningful passages of text from RSS
feeds. Tressel employs a semi-supervised machine learning
algorithm to identify semantic information. The algorithm
learns from a small amount of training data provided by the
user. Tressel is collaborative in that the input of each user
is used to benefit all of the users.

One challenge with such an open system is the danger that
users could (intentionally or accidentally) introduce noisy
training data. In this paper, we describe Tressel’s archi-
tecture and adaptive information extraction algorithm, and
then report on experiments which demonstrate that we can
reliably detect noisy training data.

1. INTRODUCTION
RSS [web.resource.org/rss] and similar syndication tech-

nologies have been available for years, however, their use has
recently skyrocketed due primarily to wide scale adoption
by blogging and news sites. The large variety of RSS feeds,
clients and aggregators means that user’s have ready access
to ever larger document streams. However, most RSS clients
offer relatively poor support for personalized retrieval or fil-
tering, forcing users to manually sift through vast quantities
of text to find information pertinent to their need.

In response to this challenge, we propose the Tressel RSS
aggregator. Tressel uses adaptive information extraction [3]
techniques to identify document fragments that summarize
the document’s semantic content. This extracted data can
then be used to drive sophisticated semantic filtering capa-
bilities, as well as to highlight parts of the text that are of
interest to the user.

There has been considerable commercial interest in collab-
orative document tagging (eg, del.ic.ious, flickr, etc). Tressel
takes this idea one step further: rather than allowing users
to annotate documents as a whole, users can share annota-
tions of particular document fragments.

Tressel is intended as a wide-scale collaborative RSS ag-

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

gregator. As described below, the data extraction compo-
nent involves learning extraction patterns from manually
annotated training data. Naturally, a large group of users
will be interested in extracting a wide variety of data from
many distinct RSS feeds. Our conjecture is that in a suf-
ficiently broad user community, there will be some overlap
in users’ interests. Consequently, a key advantage of Tressel
compared to conventional adaptive information extraction
scenarios is that the effort of providing annotated training
data is amortized over a large number of users, with each
individual user only needing to provide a few annotations
(say, one document’s worth).

Fig. 1 shows an example scenario of Tressel in action.
Fig. 1(a) depicts a user A’s annotations of a document.
When a second user B views another document (Fig. 1(b)),
he benefits from the system learning from A’s annotations.
If he spots an error (in this case, B notices that Buffett’s
first name was not annotated), B can edit the annotation.
The system learns from the update and applies this to sub-
sequent annotations (Fig. 1(c)). The power of Tressel is that
these refined annotations are supplied to a pattern learning
algorithm so that new documents (perhaps from different
RSS feeds) can also be annotated.

2. ARCHITECTURE
As shown in Fig. 2, Tressel comprises three main compo-

nents. The Poller is the core RSS engine that monitors the
feeds and maintains a local cache of their content. Tplex is
the information extraction component which learns extrac-
tion patterns from training data and then applies these rules
to the cached RSS documents. Finally, a user interface al-
lows users to view the RSS feeds (filtered by, and augmented
with, the semantic text fragments identified by Tplex), and
to add semantic annotations of there own to documents.

Once an RSS feed has been registered with the Poller,
it is regularly polled for updates and any new documents
are retrieved and cached. Thus Tressel always maintains an
up-to-date local cache of the feed. With this cache, Tressel
allows users to view the feed’s documents and (optionally)
provide document annotations. Tressel is flexible and open
in that users can create new fields on the fly, which are
then automatically shared with other users. For example,
a user might decide to annotate the names of CEOs in a
few documents from a financial news feed. All users of the
system that subscribe to that feed can then see and edit
these annotations.

Once Tressel has an initial set of document annotations, it
gives them to the Tplex algorithm (described below) which

(a)

(b)

(c)

Figure 1: Users annotate documents (a). Tressel
learns from annotated documents and users can edit
annotation errors (b). Tressel learns from collabo-
ratively annotations and applies this to subsequent
documents (c).

Tressel

User supplied
rss url

WEB

Markered up
document
returned

TPLEX

Rss Feed 1 Original Documents

Interface

Rss Feed n

POLLER

User

Figure 2: An overview of the Tressel system.

learns extraction rules that can be applied to the rest of the
documents in the feed. The learned rules can then be applied
to new feed documents, and those fragments extracted with
high confidence are highlighted for subsequent viewers. If a
user thinks that a fragment has been incorrectly highlighted
they can edit the annotation and submit the changes. The
learning algorithm then takes these changes into account on
the next pass over the feed.

3. THE TPLEX ALGORITHM
Tplex [4] is a transductive algorithm for learning infor-

mation extraction patterns. A key distinction compared to
other adaptive information extraction algorithms (eg, [1, 2])
is that Tplex learns from a mixture of manually labelled as
well as unlabelled documents. The key idea is to exploit the
following recursive definitions: good patterns extract good
fragments, and good fragments are extracted by good pat-
terns.

Tplex operates by bootstrapping the learning process from
a seed set of labeled examples. The examples are used to
populate initial pattern sets for each target field, with pat-
terns that match the start and end positions of the seed
fragments. Each pattern is then repeatedly generalized and
matched against the corpus to produce more patterns.

The pattern and fragment scores are initialized from the
labeled data. They are then updated based on a recursive
definition of “goodness”. This process iterates until the
scores have converged. Our scoring mechanism calculates
the “goodness” score of a pattern as a function of the scores
of the positions that it matches, and the score of a position
as a function of the scores of the patterns that extract it.

Tplex is a multi-field extraction algorithm in that it ex-
tracts multiple fields simultaneously. By doing this, infor-
mation learned for one field can be used to constrain pat-
terns learned for others. Specifically, our scoring mechanism
ensures that if a pattern scores highly for one field, its score
for all other fields is reduced. In so doing this bias is then
transferred to the positions that the pattern extracts. Note
that Tressel continually resamples the feeds and re-learns
the patterns. In this way the system can adapt to changes
in the formatting, style or content of a feed over time.

We will now describe in detail the operation of the Tplex
algorithm. Positions are denoted by r, and patterns are
denoted by p. Formally, a pattern is equivalent to the set of
positions that it extracts.The notation p → r indicates that
pattern p matches position r. Fields are denoted by f , and
F is the set of all fields.

The labelled training data consists of a set of positions
R = {. . . , r, . . .}, and a labelling function T : R → F ∪ {X}
for each such position. T (r) = f indicates that position r is
labelled with field f in the training data. T (r) = X means
that r is not labelled in the training data (i.e. r is a negative
example for all fields).

The unlabelled test data consists of an additional set of
positions U . Given this notation, the learning task can be
stated concisely as follows: extend the domain of T to U ,
i.e. generalize from T (r) for r ∈ R, to T (r) for r ∈ U .

3.0.1 Initialization
As the scores of the patterns and positions of a field are

recursively dependant, we must assign initial scores to one
or the other. Initially the only elements that we can classify
with certainty are the seed fragments. We initialise the scor-
ing function by assigning scores to the positions for each of
the fields. In this way it is then possible to score the patterns
based on these initial scores.

From the labelled training data, we derive the prior prob-
ability π(f) that a randomly selected position belongs to
field f ∈ F :

π(f) = |{r ∈ R |T (r) = f}|/|R|.

Given the priors π(f), we score each potential position r

in field f :

score0
f (r) =

8<: π(f) if r ∈ U,
1 if r ∈ R ∧ T (r) = f, and
0 if r ∈ R ∧ T (r) 6= f.

The first case handles positions in the unlabelled documents;
at this point we don’t know anything about them and so fall
back to the prior probabilities. The second and third cases
handle positions in the seed documents, for which we have
complete information.

3.0.2 Iteration
After initializing the scores of the positions, we begin the

iterative process of scoring the patterns and the positions.
To compute the score of a pattern p for field f we compute a
positive score, posf (p); a negative score, negf (p); and an un-
known score, unk(p). These quantities are defined as follows
for each field f and pattern p:

posf (p) =
1

Zp

X
p→r

scoret
f (r),

where Zp =
P

f

P
p→r scoret

f (r) is a normalizing constant

to ensure that
P

f posf (p) = 1.

negf (p) = 1− posf (p).

unk(p) =
1

|{p → r}|
X
p→r

unk(r),

where unk(r) measures the degree to which position r is
unknown. To be completely ignorant of a position’s field
is to fall back on the prior field probabilities π(f). There-
fore, we calculate unk(r) by computing the sum of squared
differences between scoret

f (r) and π(f):

unk(r) = 1− 1

Z
SSD(r),

SSD(r) =
X

f

`
scoret

f (r)− π(f)
´2

,

Z = max
r

SSD(r).

The normalization constant Z ensures that unk(r) = 0 for
the position r whose scores are the most different from the
priors—ie, r is the “least unknown” position.

For each field f and pattern p, scoret
f (p) is defined in

terms of posf (p), negf (p) and unk(p) as follows:

scoret+1
f (p) =

posf (p)

posf (p)+negf (p)+unk(p)
· posf (p)

This definition penalizes patterns that are either inaccu-
rate or have low coverage. Finally, we complete the iterative
step by calculating a revised score for each position:

scoret+1
f (r) =

(
scoret

f (r) if r ∈ RP
p→r scoret

f (p)−min

max−min
if r ∈ U,

where min = minf,p→r

P
p→r scoret

f (p) and

max = maxf,p→r

P
p→r scoret

f (p), are used to normalize the
scores to ensure that the scores of unlabelled positions never

exceed the scores of labelled positions. The first case in
the function for scoret+1

f (r) handles positive and negative

seeds (i.e. positions in labelled texts), the second case is for
unlabelled positions. We iterate this procedure until the
scores of the patterns and positions converge.

4. AUTOMATIC MODERATOR
Tressel’s open approach to document annotation gives rise

to potential problems. There is always a possibility that
a user will (intentionally or accidentally) provide incorrect
document annotations. As a semi-supervised learning algo-
rithm, Tplex is quite sensitive to noisy training data. Thus,
it is necessary for Tressel to validate the annotations sup-
plied by the users that are used for input to the algorithm.

One approach to this would be to compare the annota-
tions of multiple users on the same document and come to
a consensus. However, collaborative systems have always be
subject to sparcity of information and there is no guarantee
that a document will be annotated by more than one user.
And even if multiple annotated examples exist, it might be
difficult to reach a correct consensus about the annotations
if there are inconsistencies in a relatively small set.

Therefore, Tressel includes as part of its core functional-
ity a method for automatically detecting noisy annotations
that avoids the need to have multiple submissions of a par-
ticular document. It does this by comparing a documents’
annotations with those of other documents via Tplex.

Tressel assumes that the user community consists of a
(small) trusted group and a (large) untrusted group. An-
notations from untrusted users are checked and rejected if
found to be noisy. The key idea of our noise detection al-
gorithm is to train Tplex with and without each suspect
document in turn, and compare the results.

To do this we select a set of annotated documents from
trusted users and a document from an untrusted user. We
then train Tplex on one document at a time and tag the
other documents in the set. An accuracy score is determined
based on the similarity between the fragments suggested by
Tplex and the original tagged fragments. Thus we generate
a score for each document against the set. Typically the
trusted documents will score highly. If the score from the
untrusted document is within the range of the scores from
the trusted documents then the annotations are accepted.
However, if its score falls below this range, then the docu-
ment is considered a rogue. Once a rogue document has been
detected, Tressel automatically corrects the annotations by
tagging the fragments suggested by Tplex when trained on
the trusted documents.

In this way we can track the accuracy of a particular user.
Over time the trust level of a user will increase if they consis-
tently provide accurate annotations. Thus they can migrate
from the untrusted set to the trusted set. But should the
quality of their submissions fall they will be relegated back
to the untrusted set.

5. EXPERIMENTS
We carried out a number of experiments to test the ac-

curacy with which we could detect and correct errors in the
inputs given to the system. To do this we simulated a case
where a user incorrectly annotates a document, by subject-
ing it to one of three types of alteration. The first type
of alteration involves randomly moving tag pairs by up to

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

Accuracy

Number of trusted documents

Random

3

3

3

3
3 3 3 3 3

3

Move
+

+

+

+ +
+ + + +

+
Switch

2

22

2 2
2 2

2
2

2

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40

F1Gain

Number of trusted documents

Random

3

3

3

3

3

3

3
3

3

3

Move

+

+

+

+
+

+ + + +

+
Switch2

2
2

2

2 2 2 2

2

2

(b)

Figure 3: Rogue document detection accuracy (a)
and F1 gain after retagging documents (b).

four places. The second involves swapping tag pairs with
other tags and the third altered the annotations by ran-
domly re-tagging the document. We varied the number of
trusted documents provided to the system from 3 to 35. We
then measured the fraction of time we can detect the rogue
document, and the gain in F1 accuracy of the re-annotated
document compared to the original document. The averaged
results of 20 iterations are presented in Fig. 3.

The results in Fig. 3(a) show that even with quite few
trusted documents, Tressel can reliably identify a rogue doc-
ument, though the accuracy depends on how the document
was altered. Specifically, when the document was tagged
randomly the system correctly identified the rogue docu-
ment 98% of the time given just 20 trusted documents.
Similarly when the tags were moved the system was able
to identify the correct document 94% of the time with 20
trusted documents. The switch alteration (a correctly anno-
tated document with mislabelled fragments) is the hardest
to detect. Here the system identified the rogue document
68% of the time when given 20 trusted documents. The
poorer performance on this task is due to a high degree of
similarity between two of the four test fields.

Fig. 3(b) shows that by re-annotating the identified docu-
ment we can achieve quite substantial increases in extraction
F1. As before the performance is dependant on the mode of
alteration. As the system automatically re-annotates those
documents that it perceives to be rogue, if it identifies the
wrong document it will incur a negative F1 gain. Even so
the system generated gains in F1 for all types of alteration.
When random tagging was used the system recorded a 37%
gain in F1 with 20 trusted documents. And when the tags
were moved there was a 34% gain in F1 with 20 trusted doc-

uments. Finally when the tags of the rogue document were
switched the system achieved an F1 gain of 13% given 20
trusted documents.

6. DISCUSSION
Tressel is a new kind of semantic RSS aggregator that

makes it easy for users to share document annotations, and
then uses adaptive information extraction methods to learn
patterns for annotating new documents.

A prototype of Tressel is currently under construction.
The Poller and Tplex components are completed, and we are
currently developing the user interface. Once completed, we
intend to engage in large-scale user studies to evaluate its
effectiveness. We believe that Tressel promises to radically
change the way people use RSS, but to do so will require
achieving a critical mass of users. We are therefore focusing
on a simple interface and highly reliable service in order to
attract as many users as possible.

7. FUTURE WORK
In addition to completing our prototype, we intend to ex-

tend our ideas in various ways. First, we believe that the
underlying Tplex extraction algorithm can be made more
accurate. Second, so far we have focused on extracting doc-
ument fragments, but it may also be useful to provide text
classification or collaborative filtering capabilities for docu-
ments as a whole.

In addition as Tressel grows it would be relatively straight-
forward to implement a recommender system for feeds and
introduce users to new feeds that they might appreciate.

For a system such as Tressel to work successfully user
interaction is essential. Therefore, to promote participation,
we suggest giving the users a financial incentive. If we were
to host advertisements on the Tressel main page then the
users could be paid for participation. When a user supplies
accurate annotations to the system they will receive a small
payment derived from the advertising revenue. This will not
only encourage the users to interact with the system but it
will also encourage them to do so reliably.

Acknowledgements. This research was supported by grants
SFI/01/F.1/C015 from Science Foundation Ireland, and N00014-
03-1-0274 from the US Office of Naval Research.

8. REFERENCES
[1] F. Ciravegna. Adaptive information extraction from

text by rule induction and generalisation. In Proc. Int.
J. Conf. Artificial Intelligence, 2001.

[2] D. Freitag and N. Kushmerick. Boosted wrapper
induction. In Proc. American Nat. Conf. Artificial
Intelligence, 2000.

[3] N. Kushmerick and B. Thomas. Adaptive information
extraction: Core technologies for information agents.
Lecture Notes in Computer Science, 2586, 2003.
Intelligent information agents: The AgentLink
perspective; M. Klusch, S. Bergamaschi, P. Edwards
and P. Petta, editors.

[4] B. McLernon and N. Kushmerick. Transducive pattern
learning for information extraction. Adaptive Text
Extraction and Mining workshop, 11th conference of
the European Chapter of the Association of
Computational Linguistics, 2006.

