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This paper contains progress reports of NASA-sponsored

studies in the areas of space flight and guidance theory.
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authors first derive some formulas of Keplerian motion
involving their six elements, then the perturbation equations,
and finally, present the first order solution. It is inter-
esting to observe that no critical angles occur in the second
order solution, but that they will appear in a third order
solution.

The tenth paper by R. E. Wheeler of Hayes International
Corporation presents a statistical procedure for estimating
the ,accuracy that can be expected of a given guidance func-
tion. Variations due to changes in launch times, vehicle
parameters, and other disturbances are considered. The
procedure establishes an upper bound for 2-sigma limits and
checks the validity of such limits.

The eleventh paper by R. E. Wheeler of Hayes Inter-
national Corporation presents the derivation of a mathematical
model for fitting the steering function. No end conditions
were considered since all constants of integration were
combined with unknown constants in the expansion.

The twelfth paper by Daniel E. Dupree, James O'Neil,
and Edward Anders of Northeast Louisiana State College
presents a method of developing a function _N+I(B')
previously derived in Progress Report No. 5. The method
is detailed in the report and will be implemented here in
the near future.
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SUMMARY

Dirac's generalized Hamiltonian dynamics is described and applied first

to a particular optimization problem and then to a general class of such problems.

It is shown that the Dirac formulation leads to a Hamiltonian to which the

Pontryagin Maximum Principle can be applied. Further, this Hamiltonian has

the property of being canonical in all of its variables, and is thus susceptible

to treatmentby the methods of classical celestial mechanics. The report

closes with a brief discussion of how perturbation techniques, based on the

Dirac Hamiltonian, might be developed for the solution of optimization problems.
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I. INTRODUCTION

The purpose of this report is to formulate a generalization of the

PontryagLn approach for application to optimization problems. This generali-

zation will add nothing new to the basic equations to be solved, but is, rather,

intended to lead to perturbation procedures for the solution of these equations.

In the Pontryagin formulation of optimization problems a function which bears

close resemblance to a Hamiltonian function is introduced. It differs from

most classical Hamiltonian functions in two respects: First, the classical

Hamiltonian for most problems in dynamics is quadratic in the momenta

whereas the Pontryagin Hamiltonian is linear. The second difference is that

the Pontryagin Hamiltonian is canonical only in the state variables and their

conjugate momenta. In the Pontryagin approach, the control variables are

determined, not from Hamilton equations, but by the PontTyagin maximum prin-

ciple which says that the Hamiltonian must be a maximum in the control variables.

The generalization consists in defining a new Hamiltonian, to which the maximum

principle can still be applied, but which is canonical in all the variables. The

advantage of this new Hamiltonian is that all the methods of classical dynamics

now become available for the solution of the problem. In particular, the classi-

cal perturbation theories can be applied for obtaining successive closed form

approximations for the solution. Most current efforts to solve optimization

problems involve numerical integration with the serious defect that initial values

of the momenta must be found from an initial set of trial values by some differ-

ential correction procedure whose success will in general depend on how close

these trial values are to the actual initial conditions.

The construction of the new Hamiltonian is based on a technique developed

by Dirac for problems in which the Lagrangian function is linear in the velocities.
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It is shownin SectionHI that the construction of a Hamiltonian for such problems

involves special difficulties that are not present in the usual problems of

classical dynamics for which the Lagrangian is quadratic in the velocities.

Dirac's motivation for this work was his interest in relativistic gravitational

fields and quantum electrodynamics. In both problems the Lagrangian is

linear in some of the generalized velocities, so that the difficulties that are

involved in the construction of a Hamiltonian are identical with those involved

in optimization problems. Thus the Dirac formulation, although not originally

intended for this purpose, can be applied to optimization problems.

It will be seen that the new Hamiltonian, which will be referred to as the

Dirac Hamiltonian, will be linear in all the momenta problems for optimization.

This fact makes it very attractive from the point of view of development of a

Hamilton-Jacobi perturbation theory since the Hamilton-Jacobi equation will be

a linear partial differential equation of first order.

Section II presents some general background material. In Section HI,

the construction of the Dirac Hamiltonian is discussed in some detail. Section

IV presents a development of the Dirac Hamiltonian for a time optimal point-to-

point transfer problem. In Section V the connection between the Pontryagin and

Dirac Hamiltonians is discussed for the example of Section IV, and in Section V

the theory is extended to more general problems. Finally, Section VII presents

a brief discussion of the ways in which perturbation procedures might be developed

for the solution of optimization problems.

H. BACKGROUND

In the Pontryagin formulation of optimization problems, the variables are

classified as state variables x. which must satisfy certain equations of motion1

and control variables Yi which appear in the equations of motion:

_i = fi (x,y) , i = 1,2,...n. (i)
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From the state variables xi and a set of adjoint or conjugate variables ¢i a

Hamiltonian function Hp is constructed which is canonical in the variables

x i and their conjugate momenta ¢i" That is, the Hamilton equations

5 Hp 5 Hp

ki- 5}i _i- 5x i
(2)

are satisfied. The Hamiltonian is constructed so that the Hamilton equations

for x i are just the equations of motion, and the equations for _bi serve to define

the conjugate functions $ i" The Hamiltonian Hp is not canonical in the control

variables Yi since no momenta conjugate to the Yi appear and hence the Yi are

not given by partials of HI) with respect to their momenta. The subscript P is

used to distinguish the Pontryagin Hamiltonian from a conventional Hamiltonian

which is canonical in all of its variables.

For a problem which optimizes x with
O

_:o fo (x,y) ,

an additional variable _)o is introduced and the Pontryagin Hamiltonian has the

form

n

Hp= _ _bifi(x,y).

i=O

(3)

(4)

For a time optimal problem fo = 1, and it is shown (page 20 of Ref. 1) that $o

is a negative constant, which may be taken as -1 without loss of generality.

As mentioned above, the Pontryagin Hamiltonian is not canonical in the

control variables. The control variables are determined from the Maximum

Principle which says that Hp must be a maximum in the control variables if the

optimization is a minimization. It is shown in this report that a technique

developed by Dirac may be used to define a Hamiltonian H D which is canonical

in all of the variables. This Hamiltonian is usable as a Pontryagin Hamiltonian

for application of the Maximum Principle and has the added advantage that the

12



transformation theory of Hamiltonian dynamics is now available for the solution

of optimization problems. It is evident from Eq. (4) that Hp is linear in the

momenta _bi and this property will also hold for the Dirac Hamiltonian HD,

which in fact is linear in all the momenta Pi conjugate to the coordinates qi'

which will be seen to include not only the state and control variables, but also

the Lagrange multipliers associated with the Lagrangian formulation of the

problem. Thus, for example, the Hamilton-Jacobi equation obtained by substi-

tuting

(5)

in HD will be a linear partial differential equation for the generating function S.

Its solution would lead to a canonical transformation, defined by S, to new

canonical variables _i and Qi obtained from Eq. (5) and the following equation:

5S(q,_)

Qi = 5 c_. (6)
1

The Hamiltonian may be written

H D = HD (_i) (7)

in terms of the new variables, so that

5 H D 5 HD

(xi- 5Q i -0 Qi: 5(_--_. =vi=c°nstant (8)

or

Q i = vit +/_i " (9)

Even ifthe Hamilton-Jacobi equation is not solvable, the standard perturbation

procedures of celestialmechanics would now be available by writing H D as the

sum of HD0 and HD1 with HD0 selected to represent a solvable problem and HDI

treated as a perturbation (Ref. 2, pp. 62-74).
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In order to obtain the Dirac Hamiltonian H D, it is necessary to start from

a Lagrangian formulation. For a time optimal problem the Lagrangian function

is

n

i=l

(10)

where the k. are the usual Lagrange multipliers associated with the equations
1

of motion regarded as differential constraints. To pass from a Lagrangian to

a Hamiltonian formulation, one first defines momenta Pi conjugate to the

variables qi (which include the x i, Yi and ki) by the equation

_L
pi =-

For the Lagrangian (10), the momenta conjugate to x i, Yi and k i are

5L =li, 5L =0 , p .=SL -0
Pxi = 5_--_ Pli = 5I i Y_ 5Yi

(ii)

(12)

The Hamiltonian is conventionally defined as the function

n

H= Pi _li - L.

i=1

(13)

It is readily shown that this Hamiltonian is a function only of the q's and p's and

is independent of the _l'S. This is done by considering the variation in H produced

by variations in the q's, _l'S and p's consistent with the defining relations (11)

for the p's, but otherwise arbitrary:

_n n n _L n _L

i=l i=l i=l i=l

n n

(14)
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The variation in H is independent of the variations in the _l'S and hence it must

be possible to write H in such a way that it depends only on q's and p's. In

conventional problems in dynamics, Eqs. (11), defining the p's, may be uniquely

inverted to give the _l'S as functions of the q's and p's. These expressions for

the tl's may then be substituted for H in the defining Eq. (13) to give a unique

expression for H as a function of q's and p's.

For the optimization problem, with the Lagrangian (10), the relations of

Eq. (14) still hold, so that the Hamiltonian is still independent of the _t's. It is,

however, no longer unique, as may be seen by direct use of Eqs. (12) and (13):

!
n n n n n

i=l i=l i=l i=l i=l

!
n n n n

+
i=l i= 1 1 i= 1 i= 1

(15)

n

n _ = number of control variables

since the first three sums vanish by virtue of Eqs. (12).

use of Eqs. (12) to write the Hamiltonian as

n

H' =_ Pxifi - 1

i=1

One can again make

(16)

which has, of course, the same "value" as H, but has a different functional form.

The form (15) would require that all velocities vanish if it is considered as a

"true" Hamiltonian, canonical in its variables. The form (16) is substantially

the Pontryagin Hamiltonian and is canonical in the state variables.

15



III. THE DIRAC HAMILTONIAN

In References 3 and 4, Dirac has developed his Hamiltonian formulation

for problems in which constraints among the coordinates and momenta are

implied by the defining equations for the momenta. The treatment in Reference

3 is more detailed and also more difficult to read than that in Reference 4.

Most of the development in Reference 3 is for a Lagrangian homogeneous of the

first degree in the velocities. While this restriction involves no loss of general-

ity (the Lagrangian may always be transformed to this form, as shown in Refer-

ence 5), it does not appear in Reference 4. The results of the two analyses are

substantially the same. The treatment in Reference 4 is in a form more useful

for optimization problems. The contents of References 3 and 4 are presented

below, for direct application to optimization problems.

The starting point for Dirac's development is a Lagrangian which is a

function of N generalized coordinates qi and their velocities _li :

L = L (q,tl) (17)

from which momenta Pi conjugate to the coordinates qi are defined by

bL

Pi = _i (18)

As noted in Section II, if Eqs. (18) may be inverted to give each _ti as a unique

function of the q's and p's, the classical Hamiltonian development follows. If

this is not the case, the classical definition of the Hamiltonian becomes ambiguous,

as illustrated by Eqs. (15) and (16). Actually these two equations are special

cases of an infinite number of forms for the Hamiltonian:

(19)
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where H 1 is any form such as in Eqs. (15) or (16), the am are arbitrary functions

of the q's and p's, and the_'s represent the constraints among the q's and p's

implicit in Eq. (18) defining the p's:

(Pm (q'P) = 0 (20)

These constraints may arise because some of the _'s do not appear in Eqs. (18)

or because of redundancy of these equations in the q's. Strictly speaking, the

expressions (19) cannot really all be regarded as Hamiltonians since by a

Hamiltonian one usually means a function of coordinates and their conjugate

momenta such that the tiamilton equations

b H 5H (21)
_i - b Pi Pi : - _--_.

are equivalent to the equations of motion of the system described by the

Lagrangian L. Thus, the question that Dirac asks is "How may coefficients

u m be chosen from all arbitrary coefficients a m in Eq. (19) so that, given some

H 1 satisfying

HI= )_, Pitli- L (22)

the function

H = H1 +_ Um_O m

m

(23)

is the Hamiltonian for the Lagrangian system L?" As shown in Section II, the

function H1, defined by Eq. (22), may be regarded as a function only of q's and
I'

p s. Since the _m are also functions only of q's and p's, the function H of Eq.

(23) satisfies the first condition for a Hamiltonian, i.e., it is a function only of

coordinates qi and their conjugate momenta Pi" It remains to determine the u m

as functions of the qi and Pi such that the Hamilton equations describe the motion

of the system. It will turn out that the Hamiltonian so obtained is not unique. The

essential reason for this is discussed at the end of this section.
17



It is necessary to make a few remarks about the functions q_m before

proceeding. These functions are assumed to form a complete, independent set

of constraints on the q's and p's implied by Eqs. (18). The term " independent"

means that no constraint, say q_k' is implied by the remaining constraints. In

this connection, it should be noted that independent constraints q_k = 0 and

independent functions ¢_k are not synonomous terms. The functions q and 2

are independent but the constraints q = 0 and q2 = 0 are not independent; each

implies the other. The term "complete" means that every constraint implied by

Eqs. (18) is also implied by Eqs. (20) and conversely. It is obvious that the

number of constraints M cannot exceed the number of coordinates N. If the

Lagrangian is independent of some velocity, say _tk, it follows that the momentum

Pk conjugate to qk vanishes so that one constraint would be

_1 = Pk = 0 (24)

If the Lagrangian is homogeneous of the first degree in the velocities, the

momenta will be homogeneous of degree zero in the velocities and hence depend

only on the ratio of the velocities. Since there are only N-1 independent ratios

of velocities and there are N p's, at least one constraint among the q's and p's

must exist. Still another way in which constraints might arise occurs when the

velocities [t 1 and _t2 appear, for example, only in the form _11 + _l2. Then

5L

Pl = P2 - 5 (_t 1 + _12) (25)

and the corresponding constraint is

q_ = Pl - P2 = 0 (26)

In the following development the assumptions made on the nature of the

constraints is that they be independent, complete, and differentiable. The pur-

pose of this last condition will appear immediately.

It has already been seen (Section 1I) that the variation in H1, induced by

variations in the q's, _l'S and p's consistent with the defining equations for the

momenta, may be written

18



6H1 _tli6Pi _ 8L
= _ _. 6qi

i i

(27)

The condition on the variations in the q's, tl's and p's implies not only that Eq.

(18) holds (this was used to cancel out the 6 _1terms) but that they be such that

the induced variations in the q_'s shall vanish -- that is that the constraints not be

violated. Thus, the following relations among the 6 q i and 6 Pi hold:

5q_m= _- b_q___TM 6q i _ bq_m 6pi 0
:_, b qi + ' BP_" =
i i

(28)

These equations may be interpreted as saying that of the 2 N variations, 5 qi

and 5pi, some M may be determined in terms of the remaining 2 N - M. At

this point the meaning of the independence of the q_'s may be more precisely

stated: the _'s must be such that Eq. (28) form a consistent independent set of

linear equations in the 5 q i and 6 Pi"

Recalling that H 1 is a function only of the q's and p's, and using the condi-

tion of differentiability on L which implies dffferentiability of H 1 with respect to

its variables, one may write the variation of H 1 in the form

bH 1 - bH 1

6H1=_ bqi 6qi + _. -_-i 6pi
i I

(29)

If there were no constraints the 5q i and 5 Pi could all be regarded as independent

and matching coefficients of the 6q i and 5pi in Eqs. (27) and (29) would lead to

the usual Hamilton equations. With constraints present, one may proceed as

follows: Multiply Eq. (28) by the undetermined multiplier (-urn) and sum over

m, add Eq. (27) and subtract Eq. (29) to obtain

=0 (30)

19



Now think of some M of the 5 qi and 5Pi as being determined in terms of the

remaining 2N - M by Eq. {28) and require that the u m be such that the coeffi-

cients of these M variations vanish. The remaining (2N - M) 6 qi and 6Pi may

now be regarded as independent, so that their coefficients must also vanish.

Thus all coefficients in Eq. (30) are to vanish and, making use of the Lagrange

equations

d 5L 5L

_i =_- _'q-i - 5qi
(31)

one obtains

5H 1 5(D m
_li- --- +_u m

Pi 5 Pi
m

5H1 _ u m b(Pm
Pi= 5qi _ 5qi

m

Since the _m all vanish, it follows that for any variable x

5 5 ¢Pm 5 u m 5 ¢_m

_--'xUmCPm=Um 5x +¢m 5m Um 5x

(32)

(33)

and hence, defining the Dirac Hamiltonian

HD=Hl+_Umq_m

one may conclude that H D is a Hamiltonian with Hamilton equations:

(34)

5 H D 5 H D

_ti = 5p i f°i - 5q i
(35)

The coefficients u may be determined as functions of the q's and p's asm

follows. The equations of motion (35) obtained from the Hamiltonian (30) must

be consistent with the constraints (20). This means that not only must the q_m

vanish, but so must their time derivatives. That is, for each m
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_m

i i

=C bq i \ bp--_. _ Um• + bPi j
1 m

(36)

Um% 
!-_ _Pi \_qi _qi _
1 m

It generally happens that no u's will appear in some of Eqs. (36). In this case,

additional constraints among the q's and p's appear, whose time derivatives

must also vanish. Those constrair_ts associated with the defining equations for

the p's are denoted by q_m and are called primary constraints. All other con-

straints are denoted by Xi and are called secondary constraints. Only the

primary constraints appear in the Hamiltonian. All constraints must have

vanishing time derivatives, so that secondary constraints arising from _bm = 0

may lead to additional secondary constraints. This process of equating time

derivatives of constraints to zero must be repeated until no further secondary

constraints appear. There will then remain a number of equations for the u m

which may be insufficient to determine all M of the um. The case in which the

remaining equations are insufficient to determine all of the u m requires special

discussion. Any inconsistency in either the constraining equations or the

equations for the u indicates an original Lagrangian formulation containingm

inconsistencies.

To see how this process works in detail, it is desirable to introduce the

Poisson Bracket notation. If _ and 7? are two dynamical variables (functions of

q's and p's) their Poisson Bracket (P. B.) is defined by

_qi _Pi _Pi _qi
i

(37)
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from which it follows immediately that

I'_,_] =- [_,_] E_,_]=O

[_,_] =n[_,_ ] +_[_,n]

The Usefulness of this notation lies in the following relation :

(38)

5 qi + bPi
i

-_--_- 5HD _ 5HD

i

where use has been made of the Hamilton Eqs. (35).

(34) for Hl_one obtains

m

Recalling the definition

(39)

=[_j, H1.] + _ UmJ]_J, _m] + _ _mE EJ'Um J

m m

(40)

--E_, H1]+_Um[_J,_m-]

m

on making use of Eqs. (38).

The condition that a primary constraint have vanishing time derivatives

may now be written

22



_,: [o,,.,]+Lum[_,,On,]_0
m

(41)

It may happen that for some ¢)k' [_°k' _°m ] vanishes for all m, and in this case

[ ]_0k, H 1 =0=XI 142)

would appear as a secondary constraint. Secondary constraints could also

arise by elimination of u's among some of Eqs. (41). Let the independent

secondary constraints obtained from Eq. (41)be denoted by Xi. Itis now re-

qnired that all_(ishould vanish; that is

_i =Exi , H1]+ _ Um [Xi,_m] (43)

m

and Eqs. (43) may lead to further secondary constraints.

constraints have been found, there will remain a number of independent linear

equations in the um.

When all the s_ondary

It is now necessary to provide a further classification of the constraints.

A constraint is defined as first class if its P.B. with H 1 and with every other

constraint vanishes either identically or by virtue of the constraints. All other

constraints are second class. Suppose that a set of the primary constraints,

denoted by _k' is first class. It follows that

E_,"_q=E_,_3=E_.×_]=0 (44)

Thus

_:[_ .,]+Zu_[_o_]:0
m

_m' =i_m l' H1] +Z un,Eom,,_]
m_

=0 (45)

(cont'd on next page)
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 iExi  11+ umj×iOm 0 ,45 ,oontd 
mCk

and none of the equations requiring time derivatives of the constraints to vanish

contain the uk. Therefore, the uk are undetermined and the first class constraints

appear in the Hamiltonian H with undetermined multipliers. Dirac shows in his

paper that the multipliers associated with the second class primary constraints

are uniquely determined by those Eqs. (45) corresponding to the second class

constraints. The equations corresponding to the first class constraints, whether

primary or secondary, yield no information of the u's.

The Dirac Hamiltonian, given by Eq. (34), is now determined in terms of

any H 1 consistent with Eq. (22) and the u's determined from Eq. (45). The u's

so obtained will, of course, depend on the particular form selected for H I . The

Dirac Hamiltonians obtained from different choices for H 1 may appear, at first

glance, to have different forms. This brings up the question, noted at the be-

ginning of this section, of the ambiguity in the Dirac Hamiltonian. It is, of

course, immediately obvious that first class primary constraints introduce an

ambiguity since their u coefficients are undetermined. There is a further ambiguity

which arises from the fact that the Hamiltonian has been constructed to be a

function only of q's and p's. Further, the Hamilton equations are satisfied and

are such that all constraints are maintained. The validity of the Hamilton

equations was obtained from the first order variation of H I and the ¢p's. blow,

suppose that some function g (q, p) is such that its first order variation

-- _ qi + _P--_l 5pi
i i

2
vanishes by virtue of the constraints. Such a function is q_k or cos ¢Pk :

2#



8 2) 0 since =0

since sin q_k=0

(47)

Since any such function may be added to the Dirac Hamiltonian without changing

either the Hamilton equations or the validity of the constraints, an additional

ambiguity is introduced besides that inherent in the existence of first class

constraints. The Dirac Hamiltonians obtained from different choices of H I

all lead to the same final equations of motion and all maintain the same con-

straints. Hence, they must differ only by functions whose first order variation

vanishes.

The introduction into H D of additional terms whose first order variation

vanishes has a very practical application:it frequer_tly makes possible the elimina-

tion of some of the variables from the Hamiltonian, and reduces the number of

equations which must be solved. Just how this works is illustrated in the time

optimal orbit transfer problem discussed in Section IV.

IV. THE DIRAC FORMULATION
FOR A TIME OPTIMAL TRANSFER PROBLEM

This section illustrates how the Dirac Hamiltonian formulation is applied

to optimization problems for the following time optimal transfer problem. For

simplicity, the two dimensional problem is chosen. The state variables are the

coordinates x and y, their time rates of change _ and 7?, and the mass, m. It is

assumed that initial and final values of all state variables are specified. The

control variables are 0, the direction of thrust, and the rate of fuel flow which

is assumed bounded between zero and some fixed upper limit ft. Thus, the

equations of motion for the problem are:

2
__V +ct_cos _ sinem

(48)
5V +cflcos2_ cos 0

:_=r/ _/- by m
2

n_ = - fl cos 0_

25



where the thrust is, of course, -crh, and the constraint on the fuel flow is

carried by the variable _. Forces other than thrust acting on the vehicle are

assumed derivable from a potential function V(x, y) dependent only on position

of the vehicle. The transfer time is to be minimized, subject to the equations

of motion (48), which are to be regarded as differential constraints. Since the

Dirac formulation can give information only on first order variations in the time

integral of the Lagrangian, no information on the nature of the extremals for

this integral appears in this section. In the next section the Maximum Principle

is incorporated in the theory, and discussions of the nature of the solution ob-

tained in this section are thus deferred. Introducing Lagrange multipliers, the

Lagrangian for this optimization problem is

L= I+X 1 (_- _)+ X2 (_,-_7)

(_ 5V cflcos 2)'3 _ sin 8+ +Sx m

2

+)'4(/7+sySV cflCOSm (_cose)

2
+ cos

(49)

The Lagrangian L contains, explicitly, the differential constraints and the bound-

ing constraints on rh. It does not, however, contain the constraints on the initial

and final values of the state variables. This omission means that the constants

of integration from the Hamilton equations must be ultimately used to determine

initial values for the control variables and the Lag-range multipliers. It will be

seen later that this represents a serious defect in the theory, and that an effort

should be made to find a Lagrangian formulation which explicitly includes all

constraints on the problem to be solved.

In the Lagrangian (49) the state variables x,y,_,r/and m, the control

variables O and _, and the Lagrange multipliers )'i will all be regarded as

coordinates. The only velocities appearing are those corresponding to the

state variables. The momenta conjugate to the coordinates are obtained by

differentiation of the Lagrangian with respect to the corresponding velocities:
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Px = )'1

Py = )'2

P_ = )`3

PT} = )'4

Pm )'5

p)'. = 0
1

Pe = 0

p=0
(50)

No velocities appear in the defining equations for the momenta and thus all of

these equations represent primary constraints. Further, all of the constraints

are independent. The constraints are labeled as follows:

q)l = Px - _'1 = 0 q)6 =P)'I = 0

cP2--Py-)'2=O cp7 =pk 2 =0

CP3=P_-)'3=0 ¢P8 =p)' =03

g_4 =pr_-)'4 =0 _09=p)' =04

CP5 Pm- )'5 0 CPl0 P)'5

_°11 = Pe = 0

q)12 = P_ 0

(51)

The function H 1 is selected to be

= (bV cflcos 2H1 )'I_ +)'27/-)'3 _-_- m _ sin8 (52)

bV cB cos2af

- )'4 k,'-_ - m

which is consistent with Eq. (22).

cos e> )'5 fl c°s2- _-1

To obtain the expressions for the@'s, it is necessary to obtain the P.B. 's

of the cp's among themselves and of each q_ with H 1. The P. B. 's of the q_'s

among themselves are
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[(Pl'(P6]= - [(P6'(Pl] - - 1

[(P2'(P7 ]= - [(/)7'(P2] = - 1

[(P3'(P8] =- [(P8'(P3] = -i

[q:)4'(/)9]= - [(P9'(P4] = - i

[(P5'(PI0]= -[(PI0'(05]= - 1

all other [(0i, (pj]
= 0 (53)

and the P.B's of the_'s with H 1 are

[(Pl' H1] = X3 _b2V+ X4 _b2V
bx 2 bxby

F(p6, H 1] =-#

_2 V 2 V
= -- + X4 _-----

[_2' H1] X3 5xSy 5y2 Fq)7' H1] = -_7

[(P3' HI] = - )'1
H 7=SV-cflc°s2c_ sin8

[q)8' 1 _ 5x m

[q_4' H1] = - >'2
H ] 5V cfleos2_

E 9' 1 m cos O

[(P5' H1] " c_0°s2(_2 (X3sinO+X4c°sO) [(Pl0'H1] = fi c°s2
m

oL

[_11' HI] = - offmc°s2 (_ ()'3 cos O - >'4 sin 8)

{° }[¢)12'HI] =fisin2(_ _(l 3 sin O+X 4cos e)-x 5 (54)

The time derivatives of the _0's are obtained by making use of Eq. (40) and they

must be equated to zero:
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61=-u6+)'3 b2V+k4b2V
bx 2 bxby 0

b2V

62 =-u7 + k3 bxby

b2V
+)'4 2 -0

by

63 = - u 8 - k1 = 0

64 = - u 9 - k2 = 0

65 _ ulO + cB cos2_= 2 (k 3sinO+k 4cos O) =0
m

(55)

2
bV c/_cos a sinO=O

68 =u3 + bx m

bV cficos 2 (_cos 0 =0
69 = u4 + b y m

2
$i0=u5 +Sc°s _ =0

c B cos 2 cz
611 = - m (k 3 cos 0 - k4 sin O) = 0

(° )612=fisin2 c_ m()`3 sin 0 + )'4 cos 0) - )'5 =0

It will be noted that the first ten q_'s give immediately the first ten u's. No

u's occur in the last two and hence the requirement that611 and 612 vanish

leads to two secondary constraints:
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2
×1 =c°s _(k 3cose-k 4sine)=0

} 0X2 =sin2(_ (k 3 sin 8+X 4cos e)- k 5

(56)

where the factors c, f_ and m, known to be nonvanishing, have been omitted.

Thesesecondary constraints are, in a way, somewhat embarrassing since

they both appear as products, so that further discussion requires consideration

of the various combinations in which the factors may vanish. The occurrence

of this problem is, however, not surprising; it is just the way in which the

"switching function"in the conventional theory would first appear. To complete-

ly specify the "switching function" requires consideration of second variations

to distinguish minima from other stationary values of the time integral of the

Lagrangian. There is no provision for this in the Dirac theory, and further

discussion of this point will be deferred. First, the Dirac Hamiltonian is

obtained and in the next section the way in which the Maximum Principle

complements the Dirac theory is discussed.

The ways in which the vanishing of the X'S may be guaranteed are:

Case 1. cos (_ = 0

Case 2. sin _ = 0, k 3 cos 8 - k 4

Case 3. k 3 = k 4 = X5 = 0

Case 4. k 3 = )_4 = sin _ = 0

Case 5. k3

sin 8 = 0

C

cos 8-k 4sin8 = 0, -_ ()'3 sin 8 +X4 cos 8) -X 5
=0

For a complete analysis of this time optimization problem, each of these

possibilities should be examined in detail with recognition of the fact that the

nature of the problem may require the use of different Hamiltonians for differ-

ent portions of the final optimum trajectory. Since, however, the purpose in

this report is merely to illustrate the application of the Dirac technique to op-

timization problems, only the first two possibilities are discussed. These

correspond to the conventional solution of the problem by the Pontryagin

principle. It might be mentioned that the occurrence of possibilities 3,4, and 5
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I+ P_I ()'3 _2V+ )_4 5x_yJ + P>,2 (_X3 5x 5y
b x 2

- _1 P},3 - X2 PX4

2
C _ COS CL

2 (X3÷

m
sin 0 + k 4 cos 0)PX5

-X 1cos 0+_2 sin0

+ k 3 sin0+X 4cos 0 P0 (64)
(cont'd)

The form of this Hamiltonian differs from that of case 1 only in the P0 term.

It will be recalled that it was stated in Section IV that the Dirac Hamiltonian

is not unique and that terms whose first variation vanishes identically may be

added at will. One way in which differing Dirac Hamiltonians could be obtained

would be to start with the k's in H 1 replaced by the momenta conjugate to the

state variables, which is consistent with the first five primary constraints. Had

this been done, the resulting Dirac Hamiltonians (59) and (64) for cases 1 and 2

would have Px' Py' P_ and PT?instead of k1, X2, k3 and k4, respectively. It is a

relatively easy matter to show that the difference between these Hamiltonians does

indeed have vanishing first order variation. Consider, for example, the difference

D 1 between the PX1 terms:

52V 52V

D1 = PX1 ((k3 - P_) _x--_ + (X4 - pr/) _-_-_-y . (65)

for which the variation is

5D 1 = 5 PX1 _(k3 - P_) b2---V (X4 - P_7) 52V5x 2 + 5xSy

_ _ 52V
+ PX1 _ (5_. a 5p_) 52VSx2 + (SX 4 - 5pr/) _"_y (66)

+ + (6 ._2V -,_
(X3-P_)( 552V_ (_'4-Pv/)\ 5xSy)J"

Dx 2j
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The constraints q_3 and _4 guarantee that the first bracket vanishes and the con-

straint q_6 guarantees that the Pkl term vanishes independent of the variations in

PXI' X3' P_' x and y. The remaining terms in the difference of the two HD'S

are treated similarly. Thus, the HD obtained is essentially independent of whichever

of the two forms outlined above is selected for H1.

The fact that any term of vanishing first variation can be added to H D

without changing its essential character may now be used to transform the

Hamiltonians (59) and (64) into the same form. This is achieved by eliminating

the variables 0 and P0" It is readily verified that one of the functions

sin e+ P_7cos e Tips2 + p2 (67)gl=P_
2

vanishes for case 2 as a consequence of the X2 constraint. Further, the varia-

tion in g is given by

Pf_ _ + icos 0:F f ? 2 J 5P1_8gl= in(s 0q: / 2 2 .- 5Pc -

2 _/P_ +P_ _ _P_ +P_?

+ (p_ cos O-p77sinO)SO

(68)

and again from the X2 constraint the coefficients of 5 p_, 5 p_ and 5 0 vanish.

Finally, since any function f multiplied by g will also have vanishing first order

variation, it follows that p_ sin 0 + p_.cos 0 may be replaced by ± p_ +p_
in the Dirac Hamiltonian (64). Since 0 and hence 0 are undetermined by the

Hamiltonian (59) for ease 1, the same substitution may also be made there.

The Hamiltonians now differ only in their P0 terms, and since the dependence

on 0 has been essentially replaced by p_ and P_7 these terms may be omitted

without loss of generality.

Anticipating the results of application of the Maximum Principle, it may

be noted that for case 2, it will be required that p_ sin 0 + Prl cos 0 must be

positive. Using this condition, one obtains the Dirac Hamiltonian as
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HD

2
V 5V eft cos

=Px _ +py _-p_ 5x P_ + m 2 2

p _ 52V )Pm fl cos 2 52V + Pr/ 5xby
- _ - 1 + PX1 _ b x 2

52V _ 52V'_

+ PX2 (P_ 5 x 5 y + Pr/5 y2 l ) - Px PX3 - Py PX4

(69)

+ c/_ cos 2 _ 2 2PC Px52 +
m

and, finally, at this stage the terms in PXi may be omitted in the same way as the

Pe" All of the essential information is carried by the state variables, their

momenta, and the control variable _ with the Hamiltonian

5V 5V
HD=Px _ +pyvl-p_ 5x Pr/Sy

cBcos2_ _p 2 2 2 (70)+
m _ +p_-Pm_COS (_ 1

which is canonical in all the variables. This is a very compact form for the

Hamiltonian. It has, however, one disadvantage. The momenta p_ and p_

enter irrationally. There may, therefore, be some advantage in retaining the

dependence on e, together with the two forms (59) and (64) for the Hamiltonians

corresponding to cases 1 and 2_respectively.

V. INCORPORATION OF THE MAXIMUM PRINCIPLE
IN THE DIRAC FORMULATION

The Dirac Hamiltonian obtained for the time optimal problem described

in Section IV was written in a number of different forms. It was noted that the

terms in the momenta conjugate to the state variables were just the Pontryagin

Hamiltonian
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Hp = Px _ + Py
b V c°s2 O)

7?-P_(_x "-cBm 0_ sin

(_bV cBcos 2_ cos 8)-PmBCOS 2
- P_ _-b'y m

ol

(7i)

so that corresponding to Eqs. (59) and (64)

b2V + _'4 b2v >
H D=HP- l+Pxl(X3bx 2 bxby

b2V X4 b2V_+ + _ -klPk3-k2Pk4PX2 (k3bxby by2-"
(72)

with

+ c flcos 2 ( X3sinO+k 4 cos O_px5 +ullpO2 ..
m

Ull undetermined for case 1

- X 1 cos O+k 2 sinO

Ull= X3sin@+ X4cos 0
for case 2

(73)

Now the Pontryagin principle requires that Hp be maximized with respect

to the control variables. Since the only way in which Hp and H D differin their

dependence on the control variables is in the Pk5 term in H D, and since P),5

vanishes, maximization of Hp with respect to the control variables implies the

corresponding maximization of H D and conversely. The first condition for

maximization is that

b Hp _ _ H D
-0

blip = bH D
-0

be be

(74)
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These conditions are guaranteed for H D which has been so constructed that the

Hamilton equations will yield vanishing time derivatives for p_ and PS' the

momenta conjugate to (_ and 8. It was these conditions which led to the secondary

constraints with five cases to be considered. Only the first two cases, corres-

ponding to the conventional Pontryagin formulation of the problem, have been

analysed in detail.

In the conventional treatment, the bounds on rh are not explicitly written

into the Lagrangian. To obtain the conventional Pontryagin Hamiltonian, one

could just omit the cos 2 (_ factors in Eq. (71) and apply later the condition that

the fuel flow, represented by fl has lower bound zero and upper bound, say,

f_max" Thus, the conventional Pontryagin Hamiltonian can be written as

5V 5V c__ _ "_
Hp = Px _ + Py _? - P_ 5--x- - P_ _- + m _P_ sin 8 + p_? cos 8/- Pm .B

(75)

with

0 < f_ < Bma x (76)

In this form Hp varies linearly with fl and hence the maximum of Hp with respect

to fl will be on one of the bounds, and which bound is to be used will be determined

by the sign of the switching function

k =c__ sin 8 + (77)
m _ p_ cos - Pm

according to the criterion that

k<0

(78)

k_0

The maximization with respect to O requires that
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Hp

_-_ =-_ <p_ cos 8 - p_ sin 8_= 0

_2H

_ cB \_p_sinS+ 8_0
5 82 m P_7cos

(79)

The first of these conditions implies that

sin 6) + P_7 cos 8 = ± 4 / p2 + p_72 (80)P_

and the second requires that the + sign be used in Eq. (80) for/_ _ 0.

It will be noted that the Dirac formulation with the bounds on n%included

in the Lagrangian requires (for cases 1 and 2) that the bounds of the fuel flow be

used and that Eq. (80) hold. The selection of the positive sign in Eq. (80) and

the operation of the switching function according to Eq. (78) are the essential addi-

tional information obtained from the Maximum Principle. It should be mentioned

that if the bounds on rh were explicitly included in the Pontryagin formulation

(i. e., by writing the constraint on Ifl as/_ cos 2 _ the same five cases for investi-

gation would appear as for the Dirac theory.

The analysis of this time optimal transfer problem has shown that the

Dirac formulation can be used instead of the Pontryagin formulation and that

the Maximum Principle can be applied to the Dirac Hamiltonian. It is shown

in Section VI that these conclusions can be extended to a general class of optimiza-

tion problems.

VI. THE DIRAC FORMULATION FOR A CLASS OF
OPTIMIZATION PROBLEMS

The construction of the Dirac Hamiltonian for application to more general

optimization problems is not difficult to carry out. Suppose, for example, that

the optimization problem is to minimize the time integral of a function f0 (x, y)

where x represents the state variables x 1, x2,..., x N subject to the differential

constraints
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-- fi (x, y) (81)

and y represents the control variables Yl' Y2' """ 'YK" It will be assumed that

any bounded control variables are replaced by an expression of the form

2 sin 2 (82)
Ymin cos _ + Ymax

where Ymin and Ymax are the bounds on the control variable. A similar form

will be employed for any bounded state variable with the differential equations

suitably rewritten in terms of the parameter a. Thus, it may be assumed that

the state and control variables are all unbounded.

Introducing Lagrange multipliers, the Lagrangian for the optimization is

N

L = fo (x,y) + _ Xi i - fi (x,y (83)
.-J

i=1

with coordinates x 1, x2,...,x N, Yl' Y2"'" 'YK" kl' X2""XN" The momenta

conjugate to these coordinates are

P xi = ki i = 1,2,3,... ,N

Pki = 0

Pyk _ 0
k= 1,2,...,K

(84)

It is convenient to write the corresponding primary constraints in the form

¢Pi = Pxi - ki = 0

_i = Pki = 0 (85)

a_ = Pyk = 0

As before, the function H I is defined by
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N

i i=l

(86)

and the Dirac Hamiltonian is given by

N N K

i=l i=l k=-i

(87)

where the u's, v's and w's must be suitably determined from the requirement

that the time derivatives of all primary and secondary .constraints must vanish.

To obtain the time derivatives of the primary constraints, use is made of their

P. B. 's among themselves and with HI:

[@i, }j]---[}j,@i]=-6ij

_x +_.
1 1

J
(88)

._, byk + by-'---k
J

from which one readily obtains

N N K

L 5 [_i, _j] +L _ [_i, 5]+L wk[_i,_k] =- vi
j=l j=l k=l

N N K

j=l j=l I_--1

(89)

(cont'd on next page)
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N N

j=l j=l

K

k=l

=0 (89) (cont'd)

so that

_i=-vi )Xj _x i

J

5 f0
+ -0

5x.
1

=u. -f. =0i i

_£-_Xj _Sy_ 5f0= + _y_

J

=0

From the $ and _ equations one obtains the u's and v's:

_j_ 5 f0

v,-_-___j _x. _x_
J

(90)

Uo _ fo

1 1

The _ equations do not contain any of the undetermined multipliers u i, v i, w k

and hence are secondary constraints ×£:

5 f0 _

× :___+__05 y_
J

(91)

(92)

whose P. B. ' s are:

r b2 f. b2fo

L×__,]:-7,_ ._L +
J

(93)

(cont'd on next page)
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bY£bY k
J

7X£, H 1 J = 0

(93)

so that

N N 52fj 52f0 ",
+

_(£=1 ui(-_i _jSxiSY £ b'xibY£ J
i=1 j=l

N 5 2f. 52 fo

-ii=1 vi_£ k=l j=l 5YkbY£ bY£bYk

(94)

These equations may or may not lead to further secondary constraints depending
52f.

1 . At any rate, completion of the calculation of the w k and deter-
on the b yk 5 y£

mination of the existence of first class constraints is a routine matter for any

particular problem. The Dirac Hamiltonian becomes, on using the expressions

for the u's, v's, _'s, _b's and t_'s

N N N

C '- +lWk _0kHD= i X35-f0+ a ujtoj+ ) vj_j

j=l j=l j=l k

N N

:L xjS- o+ 5%J-5 )
j=l j=l

N N

b fi _ bf0

->_, £(_ _b-'_./- 5"--_jjPkj+_WkPyk
j=l i=l a " k

N N
5 fi

L pxj_j- _o- _ h pxj_.+
j=l i,j=l l

N
5 fo

j=l J k

(95)

= Hp + terms linear in Pkj and Pyk

(cont'd)
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where some of the w k may vanish and others may be indeterminate, indicating the

presence of first class constraints. The function Hp is
N

Hp = - f0 + _ Pxj f'l (96)

j=l

which is consistent with the Pontryagin formulation.

This Dirac Hamiltonian may be used in place of the Pontryagin Hamiltonian

inthe Maximum Principle, since any contribution of the terms in Pkj and Pyk in

the application of this principle will contain Pkj or Pyk as vanishing coefficients.

VII. HAMILTONIAN TECHNIQUES FOR THE SOLUTION
OF OPTIMIZATION PROBLEMS

In the preceding sections a Hamiltonian formulation for optimization prob-

lems has been developed. It has been applied to a particular optimization problem

and it has been seen that the Maximum Principle can be incorporated in the formu-

lation. Further, it has been shown that this formulation can be generalized for

other optimization problems. In this section a perturbation theory for the solution

of optimization problems is outlined. First, however, one comment should be

made on a defect of the method.

This defect is that the constraints on the initial and final values of the

state variables have not been explicitly incorporated in the formulation. Just

how this might be done is far from clear. It may, however, be noted that in-

corporation of the bounds on fuel flow leads to secondary constraints which imply

that the fuel flow operates on its bounds for cases 1 and 2 without recourse to the

Maximum Principle. Explicit inclusion of constraints on the initial and final

values of the state variables might lead to additional secondary constraints on

the control variables which would automatically fit the final solution of the

Hamilton equations to initial and final values. It will be recalled that, in

addition to cases 1 and 2, which have been discussed in some detail, cases 3, 4,

and 5 may occur. These cases probably correspond, in some sense, to singular

solutions of the problem which are significant only for particular sets of initial
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and final values. Their treatment and interpretation would be greatly clarified

if the initial and final values were made an integral part of the formulation.

It should be mentioned that the theory developed in this report assumes

that a complete set of initial and final values has been imposed on the state

variables. No difficulty is anticipated in relaxation of this limitation. Incorpora-

tion of transversality conditions into the Dirac formulation appears to be straight-

forward. This would, of course, have to be done for application of the theory to

orbit transfer problems.

The theory as developed in the preceding sections is in a form particularly

suitable for the Hamilton-Jacobi approach. The Hamilton-Jacobi equation de-

rived from the Hamiltonian H D in the forms (59) and (64) would be a linear first

order partial differential equation. Neither of these equations separates. One

could, however, undertake a perturbation procedure and write

H D = HD0 + HD1 (97)

with HD0 selected to represent a solvable problem. The selection of HD0 would

depend on the particular problem to be solved. In general, one undertakes to

split H D so that not only is the HD0 problem solvable, but also that HD1 is, in

some sense, small compared with HD0. It would also be desirable to choose

HD0 in such a way that its Harnilton-Jacobi equation is separable. It is not

easy to satisfy all of these conditions on HD0, as will be seen from the examples

discussed below. Considerable further analysis is necessary before a satis-

factory perturbation theory for optimization problems can be worked out in de-

tail. Two ways in which the theory might be applied are:

Low Thrust Problems

For such problems it is assumed that the maximum thrust is small com-

pared with the gravitational forces acting on the vehicle. In addition, some of

the gravitational forces might be small in comparison with others. Thus,

HD1 might be chosen to include all terms involving B (since if the thrust is

small, fl is small) as well as those terms involving the small gravitational
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forces. Then HD0 would represent the optimal trajectory for a vehicle moving

under a gravitational force derivable from a potential V0. If the potential V 0

is just the two body potential then HD0 represents the classical Kepler problem

in a rather unconventional form. For the problem discussed in Section IV, for

instance, there would be many more variables than are normally associated

with the two body problem because of the presence of the p's. Further, the

Hamilton-Jacobi equation associated with HD0 does not separate for this case.

Since, however, the solution of the two body problem is well known, it should

be possible to somehow construct a solution of the Hamilton-Jacobi equation

which could be used as a basis for a perturbation theory for the low thrust

problem. *

High Thrust Problems

In this case one could select HD1 to include all terms involving V since

the gravitational forces would be assumed small compared to the thrust. The

Hamiltonian HD0 would then represent the optimal trajectory for a vehicle with

no forces other than thrust. The associated Hamilton-Jacobi equation does not

separate for this case either. As in the low thrust problems, however, the

solution for the HD0 can be obtained in closed form and is available for use in

the same way as the Kepler problem for the low thrust case.

It thus appears that the development of a Hamiltonian perturbation theory

for optimization problems is feasible. Further work in this area is planned, and

results will be submitted as they are obtained.
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INTRODUCTION AND SUMMARY

This is the final report on contract NAS 8-11020 entitled "Optimum

Trajectory Study".

In this section we will try to give a verbal account of the problems

considered, the reasons for considering them, and the main results ob-

tained. The remaining sections, while having independent introductions,

will contain the mathematical analysis.

The major objective of this study was to examine the use of Hamilton

Jacobi partial differential equations in determining fields of optimum

trajectories and to study sufficiency conditions° Since a great number

of optimal control problems can, with a slight reformulation, he posed as

time optimal problems, our attention is focused throughout on problems of

this type°

If given initial data, say time t = to, state x = x° for a time

optimal problem, the reachable set (in Euclidean (n+l) dimensional time--

state space) is defined to be the set of all points (t, x) with time

t _t and state x such that it can be attained in time t by a trajectory
o

of the dynamical system with an admissible control° Under very mild con-

ditions on the dynamical system equations and the control set, it is

known that a time optimal point to point transfer will lead to a tra-

jectory which lies on the boundary of the reachable set. Conversely,

trajectories which lie on the boundary of the reachable set are excellent

candidates for being time optimal for some point to point transfer, and

thus conditions which single them out are of interest° Now a point is on

the boundary of the reachable set if in every neighborhood of it there are

points not in the reachable set_ ioeo_ points not attainable by trajectories
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of the dynamical system. This leads one naturally to notions of

controllability°

Following the definition of Kalman 9 a linear system is said to be

completely controllable at time to if every state can be attained

(with _2 control) in finite time by a trajectory of the system having

arbitrary initial data (to, Xo)o Thus one can examine whether the terminal

data has been chosen so that the mission is possible° It is of further

interest to define local controllability, ioeo, a system is locally con-

trollable along a solution trajectory _t) if for some tI _ to all

points in some state space neighborhood of _(t l) are attainable in

time tI by trajectories with admissible controlso Obviously trajectories

along which a system is locally controllable cannot remain on the boundary

of the reachable set, and hence this becomes a test for optimality° It

might also be remarked that while for linear systems one could expect

global controllability results, for nonlinear systems it is natural to

expect only local resultso

In Section I_ the Kalman criterion for complete controllability for a

linear system is derived in a simple manner (corollary Iol) and an ex-

tension is obtained for a special form of nonlinear system (Theorem io2)o

e

In Section II, the nonlinear system x(t) = g(t_ x(t))+H(t,x(t))u(t),

x an n vector, H an nxr matrix_ u and r vector valued control with

1 _ r _ n, is studied° If B(t_ x) is an (n-r)xn matrix, of maximal rank,

such that B(t,x)H(t,x) _ O, the local controllability of the above system

is shown to be closely related to the integrability of the pfaffian system

B(t,x)dx - B(t,x) g(t, x)dt = Oo In particular_ the above nonlinear

system is defi_ed to be completely controllable if the associated pfaffian

system is not integrableo Theorem IIol then shows that in the special
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case of a linear system, this definition yields a criterion for complete

controllability equivalent to that Of Kalman. This new criterion is use-

ful since it does not depend on the knowledge of a fundamental solution

matrix for a time varying linear system. Its use is demonstrated by ob-

taining the result that an n dimensional system, formed from a single n_

order linear time varying differential equation of the form x(n)(t) +

al(t) x(n-l)(t) + o o . + an(t) x(t) = u(t), is completely controllable.

(Here u is a scalar valued control)° This result was previously known if

the functions a.(t) were constant°
I

The remainder of section II deals with local controllability in a

neighborhood of singular arcs° It is shown that local tests, which

depend on examining the controllability of the variational equation along

a singular arcwill always be non-conclusiveo Along an optimal singular

arc the system is truly not locally controllable, however it is shown by

example (example IIo2) that singular arcs can exist along which the system

is locally controllable° These can be thought of as inflection points in

function space, of the functional (time) which is to be extremizedo They are

analogous to inflection points which arise when extremizing a real valued

function F on a manifold in Euclidean space; ioeo, non-extremal points at

which the map F induces on the tangent space of the manifold into the tan-

gent space of the reals, vanishes_

These arcs are singular also in the sense of the classical calculus of

variations, hence the Hilbert differentiability condition fails to hold along

them, and classical sufficiency conditions fail.

In section III, the study of feedback control via the Pontriagin maximum

principle and Hamilton Jacobi theory is begun° Often the feedback control
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which the maximum principle prescribes, is discontinuous in the state

variables, which in turn leads to a Hamilton Jacobi equation with dis-

continuous coefficients° This is impractical both from a theoretical and

computational viewpoint° The first part of section III deals mainly with

the reason for this discontinuity, and yields conditions such that the

maximum principle would prescribe a continuous or even C1 (once continuously

differentiable) control° Theorems IIIo4 and III.5 then show that whenever a

control problem merely satisfies the conditions of Fillipov for the

existence of an optimal control_ there exists an approximate problem (the

precise definition of this precedes theorem IIIo4) for which the maximum

principle gives a C1 control_ and such that for any given E _ O, an

optimal trajectory of the original problem will be in an _ neighborhood

of that for the approximate problem°

The remainder of section III deals with the Hamilton Jacobi theory for

these smooth approximate problems, and for the special case of the control

appearing linearly_ an easy construction for the approximating problem is

shown_ while an example (example IIIol) is worked out in detail to

demonstrate the results°

Two sets of references are given, the first for sections I and II_ the

second for section IIIo
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CONTROLLABILITY AND THE SINGULAR PROBL_

INTRODUCTION TO SECTIONS I AND II

The concept of complete controllability of linear systems was

introduced by R° E. Kalman [i I. It is part of the purpose of this

paper to extend the concept to nonlinear systems, with control appear-

ing linearly. All systems considered are of this form.

Geometrically, a linear system is completely controllable at time

t if any state can be attained in finite time by a trajectory of the
o

system having arbitrary initial data x° at time to. The motivation for

the extension of this concept to nonlinear systems came largely from

results obtained in 12] and from the geometric interpretation of non-

integrability of pfaffians given in [31 and [4]. In particular, Cara-

theodory gives an argument to show that if, for a single pfaffian equation,

there are points in every neighborhood of a given point which are not

"reachable" from the given point by curves satisfying the equation, the

equation is integrableo This result was generalized to systems of

pfaffians in [4]° There is a difficulty in applying these ideas to

pfaffian systems which are quite naturally associated with control systems

having control appearing linearly. (See _ Ilo) The reason for this is that

usually the independent variable t appears explicitly in the pfaffian

system, hence its integral curves, which can be related back to solutions

of the control system, and are used to connect neighboring points to a
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given point, must have t parametrized as t(O-), a monotone function of O- .

[] []This is no___tthe case in the proofs in } and 4 , and with this restriction,

_n general the results of these papers are no longer valid.

The relation between singular problems and controllability arises

qu_ _e naturally from the pfaffian approach and can be anticipated from

results obtained by LaSalle in [5]. In _ II we define the concept of a

totally singular arc, _oeo_ an arc satisfying the differential constraining

equations, for which there exists an adjoint vector such that the maximum

principle yields no information as to the optimality of _ of the com-

ponents of the control along this arc. In particular, if the system

were linear and admitted no totally singular arc, the system would be

proper in the sense of LaSalle 15] and completely controllable in the

sense of Kalman [6 I. Even if the controls are merely restricted to be

_2 (L_besg-_e dntegrable) functions, it is shown that totally singu-square

Jar arcs can exis, and comprise some or all of the boundary of the attain-

able set_ thereby being optimal trajectories for certain time optimal

control problems° Th_se are also precisely the arcs along which the system

need not be ]_cally co_trol!able_ _.oeo9 if we assume initial data x° given

at time t _ there _ exist points in every state space neighborhood of a
C

_v(t!) of a _ot_y s_ngular arc ___ which are not attainable inpoint

time tI > tO by trajectozies of the system with _2 controls° Here _v

denotes the solution of the system with control Vo Precisely, if for every

> to there exist points in every state space neighborhood of _v(tl) ,t1
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attainable with _2 control in time tl, the arc _v is totallywhich are not

singular. However it is shown by example that there do exist totally

singular arcs about which the system is locally controllable.

_I. COMPLETE CONTROLLABILITY FOR LINEAR AND MILDLY NONLINEAR SYSTEMS

Throughout this section H will denote an nxr matrix valued function

of t, which is in_ 2 [to, t I ] for any given finite tl_to.. Controls

will be _, vector valued functions, We begin with the following basic
-L

Lemra a.

Lemma I. 1 A necessary and sufficient condition that there exist an

rxn matrix valued function V(t)in_ 2 [to, tl], such that for some

tl> to, II(T)V(T)dT is non-singular, is that for some tI > to

O

ttl H(T) lIT (T)d T is non-singular0

O

Proof sufficiencyis immediate by choosing V(T) = HT(T). To show

necessity assume there exist V_ tI 5_ to?such that _ tl H(_)V(T)d_ is

i Jto innon-singular, but H(T)HT(T)d'_ is singular for all i>t o,

particu]ar _ -: tl° o This implies there exists a constant vector c _ 0

(C )such that c }I(T)HT(T)dT cT= O, and since H(T)HT(T) is positive

o [ ]semi_def_nit(_, we obtuin cH(t)_-O a]most everywhere in to, t] . Thus
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ttl H(T)V(T)dy = 0 which contradicts the non-singularity of

O

tlH(T)v(T)dT°
O

We next consider the system

(i-i) _(t) H(t)u(t) x(t) Xo,

Define

_t tlM(t o, tl)_ H(T)HT(T)dT °

O

Theorem I.I A necessary and sufficient condition for the system (i-I)

to be completely controllable at to is that there exists tI >t o such

that M(to, tl) is non_singularo

Proof_ (Sufficiency) Let _ be any given point in En, Euclidean n

space° We w_ll show _ is attainable from x at time tlo Indeed pickO

u(t) = HT(t)_ 9 _E n. We desire _ = x(tl) = X(to) +(fttl H(T)HT(T)d_I_

or _= M-l(to_t3) (_ _ X(to))O o

o This
(Necessity)° Assume M(to, tl) is singular for all tl>t °

implies (see proof of lemma Iol) that there exists a constant vector

c _ 0 such that c H(t)_-----O popo Since x is arbitrary, let it be such
O

that c o xo = 0o We will show the point c is not attainable from Xo.

+  (T)u(T)d.TIndeed suppose for some u and tl_ c = x °

O
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IIII2C • C = C =CoX
o

the fact that c_ O. •

Corollar_ 1.1 (Kalman)

_t tl H(T)u(T )d 7" O, a contradiction to+ c =

o

The linear system

(1-2) £(t) = A(t)x(t)+ H(t)u(t) , (t) =xx o o

is completely controllable at to if and only if

t1

o

(te,T)H(T )HT(T ) _ T (to,T)aT is non-singular for some t 1 > t o.

Here _ (t,T) denotes a fundamental solution of the homogeneous system

x(t) = A(t) x(t).

Proofs Make the transformation y(t) = _ -l(t_ to) x(t).

satisfies (1-2) if an only if y satisfies

Then x

(1-3) _f(t) = _ (to,t) H(t)u(t), Y(to) = Xoo

(Note _ (to, t) = _ =l(t, to). ) From the transformation, it

follows 'that the system (I-2) is completely controllable if and only if

the system (1-3) is completely controllable, i.e., from theorem I.I that

there exists a tl.> to such that

t _I

o

(t c, 7" ) H(T ) HT(T ) _ T (to , T)d T is non-singular. 1
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Some special results for nonlinear s_stems

We next consider the nonlinear system

(1-4) x(t) = g(t, x(t)) + H(t)u(t), X(to): x °

with the assumptions_ i) IgJ(t,x) l _ M, j = I, 2, .oo_ n.

ii) IgJ(t_x) - gJ(t9 _)I< m Ix = _II , J : I, 2, o.o, no iii) g is

continuous as a function of t for each Xo

_ tlA ain let M(to,t 1) = H(T)HT(T)dT o
o

Theorem Io2 A sufficient condition that the set of points attainable

by trajectories of the system (1_4) with_ 2 control be all of En is

that M(to, tl) be non-singular for some tl> toO

Remark Rather than state the theorem in this manner, one might con-

sider merely ss_ving that the system (1-4) is completely controllable at

t o However, this notion has not been defined for nonlinear systems, and
o

it does not seem reasonable to this author to define it in such a global

fashion for these systems°

Proof For arbitrary u9 (1-4) has a solution designated _Uwhich

satisfies

t .t

o o

H(T )u(T )dT .

Let Y be any given point in Eno We desire a control such that for some

point finite tl> to, _u(tl) : X,o It suffices to consider controls which
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comefrom a finite dimensional subspace of _2' in particular the controls

considered will be of the form u(t) = HT(t)_ where _ _ En. Hence the

notation _ rather than _u will be used.

Define a mapping _8 En---_E n as follows:

Let_ (_) g(r, _ (r))dT , and define

o

_(_)-----M-l(to. tl)[_- _(_)- Xo]o From 41-5)it follows that

a fixed point of _will yield a value _ such that _ (tl) = _.

It is well known that with the conditions imposed on g [7, th. 7.4 -

Chapter I ] , _is a continuous function of _ in the topology CIto, tll _

i.e., the topology induced by the supremum norm. Thus _(_ ) is a continuous

function of _ , and _'_is a continuous function of _ .

We next show that there exists aK such that ll_l] -< K_II_(_)II <-- K.

Letting II_ll = _- I_ ] _ andl[ M-l[]be any matrix norm, since IgJ]_M,
i=l i

for any _, IIo((_ )II _ n(t I - to)M:

_t_ _ II.-_(_o_t_>]l[l[_ll+nM(t 1 - to)+ I]Xol]] ' it follows that

for any _9 [I_(_ )]] -_ K, hence in particular _maps the ball

II II-<co°t ooous   nto
Remark The result obtained in this theorem is not surprising in view of

theorem (I.!) and the boundedness condition on the vector g. Also the

condition M(to, tl) non-singular for some tl>t ° is much stronger than
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it need be. For example, if we consider a linear system of the form (1-2)

and H(t) is a column vector with one componentzero, then M(to,tl) is

singular for all t I __ t o, yet the system can certainly be completely

controllable.

_II. NONLINEAR SYSTEMS WITH LINEAR CONTROL_ THE SINGULAR PROBLEM

In this section, we consider extending the notion of complete con-

trollability to systems of the form

(2-1) x(t) = g(t, x(t)) + H(t, x(t))u(t)

where g is an n-vector, H an nxr matrix, while u is an_2 control vector.

It is assumed that g and H are C1 in all arguments. Throughout, the

stipulation l_<r<n is required to hold.

Let B(t, x) be a Cl, (n-r)xn matrix with rank (n-rank H) at each

point (t, x) in some domain_ of interest, such that

(2-2) B(t,x) H(t_ x)---_0 , (t, x) 6_o

Since r< n, we know that rank B >__I for all (t, x).

With the system (2-i), associate the pfaffian system

(2-5) B(t, x)dx -Bit , x) g(t, x)dt : O.

Let b be an arbitrary linear combination of the rows b _ of B,

taken with C1 scalar valued coefficients g_(t, x), _.eo,
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T-" ))
b(t, x) = L O{_ (t, x) b v (t, x). Throughout, b will be used to

denote such a linear combination which is no___tidentically zero.

Definition Iioi The pfaffian system (2-3) is integrable at the point

CI(_, _) if there exists a scalar valued function _(t, x) and an

> 0 such that for some b,

_Vx(t,x) = b(t,x), _Vt(t,x) ---b(t,x) • _(t,_)

for _ t<_ +E , Ix - xi<6.

Essentially this states that for some b,

(2-4) b(t, x)dx- b(t, x) • g(t, x)dt

is an exact differential in a "neighborhood" of (_, _). It should be

noted that any integrating factor can be included in the coefficients

of the linear combination of the rows b y .

The notion of integrability of a pfaffian system is, of course,

related to the property of completencess of an associated system of partial

differential equations° To show the relation, let C(x), x 6E n, be a

smoctb (n-r)xn matrix, and K(x) a smooth nxr matrix, both of maximum

rank, such that C(x)K(x) _ 0. With the pfaffian system

(2-_) C(x)d__-o

we associate the system of partial differential equations KT(x) _f(x) O.
_x
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Each row ki of KT can be considered as defining a vector field X i which

locally generates a one parameter semi group of diffeomorphisms, iTi(t)I ,

see for example 18, p. I0]. In turn, such a semi !group determines a

"I

vector field. If for each i, j = i, 2, ..., r and for all arbitrarily

smallfixedT, thevectorfielddeterminedby  Tj(T)Ti(t)Tj(-T) 

is linearly dependent on the fields Xi, the system of partial differential

equations is said to be complete. If it is not complete, the number m of

linearly independent fields formed in this manner is called the index of

both the pfaffian system and the associated partial.differential equation

system [4].

From the results in i4], it easily follows that the pfaffian s2stem

(2-4) is integrable (definition II.l) if and onl 2 if the index m is such

that m+r _ n. If the index m is such that m+r = n, Chow 141 shows that

there is a neighborhood of a point xoC En such that all points in this

neighborhood are attainable by curves satisfying (2-5). From the view-

point of local controllability for a control system, we can interpret this

as follows. If the pfaffian s,ystem associated with the control system

(2-5) x(t) = K(x(t))u(t) , X(to) = xo

has index m_ where K is a continuous nxr matrix function of x 6 En

with _onstant rank r, and m+r = n t then ever 2 point in some neighborhood

of x is attainable by trajectories of (2-9) with measurable controls°

Indeed, since all points in some neighborhood of x ° are attainable by
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absolutely continuous curves satisfying C(x,(t)) x(t) = O almost every-

where, we must only show that such a curve also satisfies 42-5) for some

control u. But C(x(t)) x(t) = O_x(t) is a linear combination of the

columns of K(x(t)), Since CK---_O. Thus there exists u(t) such that

x(t) = K(x(t))u(t) for almost all t. Since K has rank r, it has a con-

tinuous left inverse on its range, from which it follows that u is

measurable.

Before stating an explicit criterion for complete controllability of

a system of the form (2-1) one may askz What should one expect the

definition to _ield? This can presently be answered as follows. Since

the definition should extend that given for a linear system of the form

(1-2) which is a special case of (2-i), one expects,

a) If g(t, x) "=A(t)x, H(t, x)-------H(t), then the criterion which

defines complete controllability at t for (If.l) should be
o

equivalent with the condition _ (to, t)H(t)HT(t) IT(to , t)dt

-t
o

non-singular for some tI > to, as given in corollary I.i.

b) There should be a geometric interpretation of the condition,

e.g., what points are attainable from the initial point in finite

time? In the linear system there were global attainability

results, i.e., any point could be attained from the initial

point via a trajectory of the system. In the nonlinear problem,

one would expect at most local results of this nature°
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The approach will be to state a criterion for complete control-

lability of (2-1) which we will show satisfies a). We then use this

criterion to try to establish a geometric interpretation as mentioned

in b). Of course, how the definition of complete controllability should

be extended is somewhat a matter of personal opinion.

Definition 11.2 The system (2-1) is completely controllable at

(_, _) g_ if the associated pfaffian system (2-2) is not integrable at

(_, _).

It will next be shown that this criterion is equivalent to the con-

dition given in corollary 1.1 for the special case of the linear system

(1-2). In this case it suffices to take B = B(t) in forming the pfaffian

system equivalent to (2-3). Also, in taking the linear combination of the

rows of B to form the single pfaffian as in (2-4), we can consider the

scalar functions _ as function of only t. Indeed we must only show

that if the pfaffian form

(2-6) b(t)dx - b(t) A(t)x dt

has an integrating factor, then this _ntegrating factor, denoted bye,

can be taken as a function of only t. To obtain this, suppose_(t, x)

is such that.(t, x) b(t)dx -_(t, x)b(t)A(t)x dt is an exact

-- b i - _ bJ= O for all i, j = l, 2, ..., n, and
differential. Then_x j xi

b +_b = -_x b A x -/_b A. Define_(t) =/_(t, 0), noting that for
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the linear system_= (to,_)x En which implies (t, O)_for t >t .
o

It follows that _(t) is also an integrating factor•

S_nce it is sufficient to consider both/_ and the O(_ as functions of

only t, there is no loss of generality in considering that if the pfaffian

system

(2-7) B(t)dx- B(t) A(t)x dt = 0

associated with (i-2) is integrable, then (2-6) is an exact differential.

Since x appears linearly, definition II.l simplifies for such systems,

and is: The pfaffian s2stem (2-7) is integrable at the point _ if there

exists a CI scalar valued function_(t, x) and an_ 0 such that for

some _,

 Vx(t, = b(t),

for T_t<_ + 6 . (Notes

and_tx exist and are equal).

_t(t, x) =-h(t) A(t) x

Under the assumptions on B and H, _xt

Defioe_

_t tl t)dtW(to, r.!) = _(to, t)H(t)H T(t) _T(to , •

o

Then corollary I•i states that the system (1-2) is completely controllable

at to if and only if there exists a tl>t o such that W(to, tl) is non-

singular.

Remark 1. If A and H are constant matrices, Kalman [1] shows that this

condition _s equivalent to the condition: rank [A, AH, . An-Q]• • _ n@
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Remark 2. While the above condition given for the constant coefficient

case can be directly checked, W(t o, t I) depends on knowledge of a

fundamental solution _(t, to) which is not always easily obtainable.

Remark .,_. It is easily seen that W(to, tl) is a positive semi-definite

matrix. Thus if W(to,t I) is non-singular, W(to, t) is non-singular for

all t__t I.

The main purpose of this section will be to show that the condition

11.2 for complete controllability of (1-2) is equivalent to W(to, tl) being

non-singular for some tl>t o. Th_s condition has the advantage of not

depending on knowledge of a fundamental solution.

Before stating the main theorem, a simple computation yields,

for to< tl<t2,

W(t o, t2) = W(t o, tI) + _(t o, t!) W(t I, t2) _T(t o, tl).

Thus if W(tl, t2) is non-singular (positive definitive) it follows that

W(to, t2) is also _on-sin_lar (positive definite). The reverse im-

plicatic_ need not be t:_e.

Theorem IIo] A necessary and sufficient condition that W(tl, t2) be noN-

singular for all t2 > t I is that the pfaffian (2-7) be not integrab]e at

t 1•

For ease in both using and proving this theorem, we list the implications

and their contrapos_tives.
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I.A Necessary condition, W(tl, t2) non-singular for all t2 > tI

----'-:->pfaffian (2-7) is not inte@Table at tI.

I.B_ Necessary| contrapositive, Pfaffian (2-7) integrable at tI -_

W(tl, t2) is singular for some t2> tI.

IoC Sufficient condition8 Pfaffian (2-7) not integrable at tI

---_W(tlt t2) is non-singular for all t2> tI.

I.D Sufficient| contrapositive, W(tl_ t2) singular for some t2 > tI

------_pfaffian (2-7) is integrable at tI.

Proof, (We shall prove I.B and I.D)

Assume the pfaffian (2-7) is integrable at tI. Then there is

a vector b, which is a linear combination of the rows of By and an

> 0 such that b(t) = -b(t)A(t), for tI_ t< tI + _ . Let

_(t, tl); _(tl, ti) : I, be the fundamental solutionof i = A(t) x.

piThen the vector b admits the representation b(t) = c (t, tl) =

o }(tl, t) forsomeconstantvectoro° LethCt)be _ colu_ of_(t).

Then 0 = b(t)h(t) = c _(tl, t) h(t). Since h was an arbitrary column

of H, and W is positive semi-definite, we have c W(tl, t) cT = 0 for

tl_ t <t I +_ showing that there exists a t2>t I such that W(tl, t2)

is singular°

Assume, next, that W(tl, t2) is singular for some t2> tI. From

remark 3, it follows that W(tl, t) is singular for all tl_ t<t 2.

This implies there exists a vector c(t2) such that c(t2)W(tl, t2)cT(t2 ) --O°
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Since the _ntegrand of the integral defining W(tl, t2) is continuous,

c(t2) _(tl, t)H(t)HT(t) _T(tl, t)cT(ty)_0 for tl_ t<t 2.

It follows that O------c(t2) +(tl, t)H(t)--z c(t2) _-l(t, tl)H(t), thus b

defined by b(t)_ c(t2) _°l(t, tl) is an admissible vector in the sense

that b(t) H(t)=---0, i.e., b lies in the subspace spanned by the rows of B.

Define the scalar valued function_(t_x) = c(t2) _-l(t, tl)x.

Then _x(t, x) = b(t), _t(t, x) = -b(t) A(t)x for tl< t<t 2 showing

that the pfaffain (2+7) is integrable at tl. I

The following illustrates the advantage of a definition of complete

controllability for linear systems which does not depend on knowledge of

a fundamental solution.

It is known that an n dimensional system which is formed from a

single n_ order equation having constant coefficients and the control

as forcing term is com_219tely controllable. We next show that this is

also true for time v_ems of the form

x(n)(t) + al(t) xCn=i)(t) + o.o + an(t) x(t) = u(t).

Specifically we shall show that for any toy the associated pfaffian is

not integrable implying W(to, tl) is non-s_ngular for all tl> to.

We take the equivalent linear system of the form

y(t) = A(t) y(t) + h(t) u(t) where

A(t) =

d

0 _ 0 ..... 0

0 0 1
@ •

o 0 o 0

" 0
@ O

0 0 "I

-an9 -an+ 1 9 _ o o o _ _a]

, h(t) =

0

o

e

©

e

0

1
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One can choose B(t) as the (n-l)xn matrix

=

I

"I 0 0 ... 0 0

0 i 0 .o. 0 0

• • •

• @ •

• • •

0 0 0 . . . 1 0

The pfaffian system equivalent to (2-7) is then

(2-8) dxI - x2dt = 0

dx2 - x} dt = 0

@ @

• @

dXn_ I- Xndt : O.

If (2-8) were to be integrable there must exist scalar valued functions

o(j(t), not all zero, so that the single pfaffian

n-I n_l

j=I j=l

is an exact differential. But this would imply o(j(t) = O, j = I, 2, ...,

(n-l), which shows (2_) is not integrable for any @

o
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Geometric Interpretation_ Local Controllabilit2_ and the Singular Problem

By associated a pfaffian system of the form (2-3) with the system (2-1),

it is conspicuous that the stress is taken away from the functional form of

the elements of the matrix H_ and p_aced only on what the range of H(t, x),

considered as an operator on E r, is. Th_s obviously should be the case

when controls are required to be only _ functions.

In [9], Markus and Lee consider a system of the form x = f(x, u)_

f e CI in En x_, where_a compact set contained in Er with O in its

interior, is the range set of the control. Assuming f(O, O) = 0 and

letting A = fx(O, 0), H = fu(O, O), it is shown that if the linear system

@

x = Ax + Hu is completely controllable, then the set of points from which

the origin can be reached in finite time by trajectories of x = f(x, u),

is an open connected set containing the origin@ Kalman [i0] pointed cut

that a similar result can be obtained for a system of the form x = f(t, x, u)

by assuming tbe linear apprcxima.t_on is completely controllab]e in terms of

the criterion gi_en in _,_,![a.r? - I°io

The system

X(to) = x0

where x is an n vector 9 f is a C2 vector valued function and u is a r vector

valued measurable contro1_ is sa_d to be locally controllable along a

solution

v

corresponding to control v if for some tl>t ° all points in

72



some state space (n dimensional) neighborhood of _ v (tl) are attainable in

time tI by trajectories of (2-9) with admissible control.

It would be somewhat falacious to say that a time dependent system

is locally controllable, say at the origin, if all points in a neighborhood

of the origin in state space are attainable by trajectories of the system

in finite time. To see this_ we consider the following example of G. Haynes.

Example i,

e

x2 = xI + (sin t) u .

An integral of the motion is seen to be x I sin t - x 2 cos t = O, which one

can picture as a rotating (with time) line in Xl, x 2 space. As t varies

from 0 to 2 7_, all points of E 2 are swept out by this line. Now mnltiply

the first equation by cos t _ the second by sin t and one obtains by adding|

__d (xidt cos t + x 2 sin t) = u or
\

t

Xl cos t + x2 sin t = _0 _(T) aT
. Combining this with the

integral of the motion, gives

tXl2(t) + x22(t) = _0 d7 I

2

implying that as time increases, the

two dimensional neigh_ orhoods of the origin of E 2 which are attainable

also increase.
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Since all solutions lie on a surface in (t, x) space, one would

hardly feel that the system should be termed locally controllable and is

not locally controllable by the definition given above.

We next proceed with an analysis_ similar to that used in the papers

[9] and [10], to examine local controllability about a given trajectory of

the system (2-i). Let X(to) = 0 be initial data for this system v an

arbitrary_2 control and _v the corresponding solution. Let u(t_),

_ En, be a family of controls such that u(t; O) = v(t), u_ exists, and

denote x( o i_)as the response to u( o 9_). Then x(. ;_) satisfies

t

x(t,
O

[g('r, x(T;_)) + H(T,x(_;_))u(_;_)] d _.

ft

x_ (t; O)_Jt
0

+Hx(T,_V(T))v(T)] x_ (T, o)

r

where H V is an nxn matrix with i j-_element H v .
X X.

•//=1 a

For each t i_ t , we view x(t; _) as a mapping _ = x with

0__v(t)o Let Z(t_ _v u_) denote the Jacobian matrix x_ (t_ 0).

We have_ If for :tome __z_u____LZ_}__J_ is non-singular_ the attainable

set at 7 contains a neighborhood of the point Wv(i). Let _(t, to) be a

fundamental so]ution matrix of the system

x(t) = [gx(t,_v(t)) t hx(t,_v(t))v(t)] x(t). Then
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o

From lemma I.I and corollary I.I we have

Theorem 11.2 (Kalman) A necessary and sufficient condition that there

exist an rxn matrix u_ such that Z(tl; _v u_) is non-singular for

some t I > to is that the linear system

is completely controllable°

In terms of the pfaffian approach the equivalent theorem is

Theorem II._ A necessary and sufficient condition that there exist an

rxn matrix u[ such that Z_tl9 _v 9 u_) is non-singular for some tI_ to,
.D

is that the pfaffian system B(t, _v(t))dx - B(t, _v(t))

tl_ to, ioeo, that

(2-10)

is no_._ttand exact d_fferential for any b which is a linear combination of

the rows of B.

The same method, when applied to a system of the form (2-9) yields

Theorem I!._' A sufficient condition that there exists a tl_t ° such that

all points in some state space neighborhood of _v(t2) for all t2> tI are
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attainable in time t2 by trajectories of (2-9) with admissible controls,

is that there exists a tl_, to such that the pfaffian system

B(t_ v)dy- B(t_ v) fx(t, wv(t)_ v(t))y dt = 0

is not integrable at tlo [The notation B(t_ v) is used to denote the

dependence of B on the reference trajecto.ry, specifically

B(t_ v) fu(t,_v(t)_ v(t))_ 0,]

It is interesting at th_s point to see the implications of the

assumption that (2_I0) i_ an exact differential° This implies and is

implied by

(2-11) _t b(tg_v(t)) -- -b(t_v(t))[gx(t,_v(t)+ Hx(t_v(t))v(t)] ,

which can be recogni.zed aB the so-called adjoint system of the maximum

principle Ill] approach to the time optimal problem for system (2-1).

It should be noted that if b(t, _v(t)) satisfies (2-11.), then it is an

adjoint vector which is orthogonal to all of the columns of Ho S_nce the

maximum principle (for control components bounded by one in absolute value)

n

implies_ choose u_J_t) _ sgn Z bi(t_ _v(t))HiJ(t9 _v(t))_ in this case
i=l

it yields no information°

I shall de_igaate such a problem a_ one which admits a tota11.y

si_iar arc _9 i°eo_ where _he maxlm_nm principle yields no informat_ on

in the time optimal problem_ for any components of the optimal control°

The arc would be slngu]ar_ but not totally singular, if there is an adjoint
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vector orthogonal to some, but not all columns of H.

Theorem 11.4 The pfaffia_ form (2-10) is an exact differential if and

only if_ v is a totally singular arc.

Pro cf_ It has been shown above that if (2-10) is an exact differential,

then the vector b satisfies (2-I1), which implies _v is a totally singular

arOe

If _v is a totally singular arc, _there exists a vector p(t) such

that i) p(t) H(t,_v(t)) _ 0 and it) p(t) = -p(t)

Igx(t ,_v(t)) + Hx(t,_v(t)) v(t)l . From i) we oonclude that p(t) is

a linear combination of the rows of B(tg_v(t)), while II) implies that

this linear combination, (2-I0)_ is an exact differential. I

To summarize_ _v not a totally singular arc implies the pfaffian

form (2-10) is nc___t,an exact differential which implies there exist

_ to and u_ such that Z(T, _v u_) is non-singular and the attainable

set at time t contain_ a neighborhood of the point _v(_). The contra-

positive of _his statement provide_ an interesting characterization of

totally sJno_ular ar4s, loeb, if for every tl>t there exist points inO

every state space neighborhood of _v(t]) which are not attainable in time

tI withc_ 2 controls, the arc _v is totally singular. On the other hand,

as will be shown by example, a total3y singular arc can remain on the

boundary of the attainable set_ and thus provide a time optimal trajectory.

Theorem 11o5 If the system (2-1) is not completely controllable at to,

Z(t,_ v _ _) Js s_ngu]ar for all t> to,_ u and all reference trajec_

torles _ _ _ioeo_ every t_ajectory _? is totally singular.
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Proo_____f_Any vector b, which is a linear combination of the rows of

B, satisfies b(t, x)H(t, x)_O. Thus for any vector v(t),

_x [b(t, x)H(t, x)v(t)l _ O, or v(t)HT(t, X)bx(t, x)_

-b(t, x)Hx(t, x)v(t). Evaluating this identity at the point (t,_v(t)),

substituting into 42-11) and expanding of the left side yields

(2-12) bt(t,_v(t)) + b(t,_v(t))gx(t,_v(t))+g(t,_v(t))bxT(t,_v(t))_

v(t)HT(t,_v(t)) [bx(t_v(t) - bxT(t,_v(t)) I .

This identity provides a necessary and sufficient condition that (2-10)

be an exact differential, _ . that _v_oe , be totally singular.

Now assume the system (2-1) is not completely controllable. This

means that for some b, a linear combination of the rows of B, the pffafian

form b(t, x)dx -b(t, x)g(t, x)dt is an exact differential, or

bt(t,_)_-b(_ 9 x) g_(t9 x) ®g(t, x) bxT(t , x)

bx(t,_-_ b_T(_ x)mOo

Evaluating these two :identit_e_ at (t, _v(t)) for an &r'bitrary control v

shows that (2_12)i_ $ati_f:ied_ hence every trajectozoy _v is totally

singular°

A conjecture which one might be tempted to make is that if the

system (2-1) is comp!etely controllable, it admits no totally singular

arcs. This is not true, as the follow_ng example from 12 1 shows.
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Example II. I

xl = x12 - x!2 x2 u Xl(O ) = I

° ()
x 2 = - x 2 + u x 2 0 = 0 .

For the time op¢imal problem of reaching the point (2 9 0), it is shown

in [2] that u--O is the optimal control 9 if the restriction ]u(t)l__ i

is imposed, and it easily follows that this is also optimal in the class

of _2 controls.

For this problem, one can use for the matrix B, the single vector

b = (i, x12 x2). The associated pff_fian equation is

d.xI + x!2 x 2 dx 2 + _i 2 (x22- l)dt = O.

Let x = (xl, _2) , a(x) _- (l, x12x2, x12(x22- ])),. Then (curl K(x)).

a(x) = 2 x 2 [12_ 09 thus the pfaffian is not: intesTable.

Theop,i,o.l.p_th_-,'o=_.hepo_,t(i,O) to (_<,0),_<> l, is oh-

tai.ned wi.th -- :"--,- and

/__

_o:t,) j_ Th_,s is a totally sin_alar ar_.

{o.
To show this,

we note b(t_Q$°(t)) N: (], 0).

b(t _c(t))clx =b(,tg<_()) [gx(t, ) + Hx(t , ) 0

2_ 1
= _1 _ _ _" -": .... dto
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-2 x I

Let a(x, t) =- (1, O, i_--7 )o Then (curl _)° _ =--0 which implies the

2 x 1

pfaffian dxI + 0 dx 2 - 1--_-_"dt = 0 is integrable, and (po is a totally

Singular arc. Here the arc _e is on the boundary of the attainable set°

It should be s,'rezsed at this point that it has no____tbeen shown that

if .for some _o_, .... ol v,, the matrix Z(t, , u ) as singular for all t >_ to,

and u_ then suffi_;iently small n neighborhoods of a point _v(t) co,_-

tain points not attainable in time t, from initial data 0 given at t .
o

In fact it will next be shown (Example If°?) that this is not the case. To

do this we must produce a time optimal problem which posse._es a totally

sing_lar arc wh:lc_h _<ields neither a maximum or minimum. Since the arc _s

totally singular_ Theorem _r._+ shows that on_ c_unnot conclude that the

system is locally controllable along this arc by considering the linearized

equations as in Theorem i!o?o However the use of theorem II.5' on certain

arcs which differ from the singular are but have some poir,ts in common with

it_ will e_t,_bl!sh the local controllability.

We ,-,.on!-_id,_r _:;cn,rol syste_£s off _ne form studied _q [2]:, ,ioeo,

(2 i3) o

x{O) = x
o

' ,d " ,J '\
I (t)l <_ z o

We asstune th_._ i,_ :_o_,_ ri:gion of interest cf stato space._

cI¸
and that Ai, ]_<_ i = l_ ": are in .
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The pfaffian system associated with (2-15) is the single pfaffian

equation

(2-15) B2(x)_%.o B_(_)_2 ÷ A(_)dt= o.

SLnce i(x)_ 0 and maitiplication by a factor does not change inte-

grability, this can be rewritten as

(2-_6)
B2(x) B2(x)

dx I -_ dx 2 + dt = O.

Letz(x)=/B2(_) h(_) 11
_----_ 9 - _ _ _ then a necessary and sufficient

condition that the pfaff_ar. (2-16) be integrable at a point (t, x) is

that Z(x) - curl Z(x) -_ C i, a z_eLghborhood of ×. Computing yields

where _>(x) (usin_ _e _._+a__ -` of [2]) can be directly __-omputed from
\

the right sld,es <af t_e d;£'T_r nt/al equations (2-i5)o

Let v he a ',,tLn._-_>J=-_. :._nt:e/ (this is 3-,_f_ficient continuity when

the control app_a,e, ,ine_ri#) s_, sfylng v(t) <1, and let ypv be the

co_'espondi.._g tlaje_tory of (2-I })o

V

Theorem lI_6 I£ for- some _]_>_ to_ _ (-_" ....._onot a 7er.o of 03, then

for any t2_> tl all point_¢ in. at,me state space neighborhood of (_v(t2)

are attainable by traje_tories c£ (2._I_)_ in time t. _ with acLmissib]9

COntVOiSo
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Proofs The variational equation for the system (2-13) about the

trajectory _v is given by

_(t) = [Ax(_V(t))+ v(t)Bx(_v(t))] y(t)+ B(_V(t))u(t)

(AI) (Bi)
where A = _ B = . The pfaffian equivalent to 42-10)

A 2 B 2

for this variational equation is

42-17) B2(_v(t))dy I- B1(_v(t))dY 2 + (-B2(_v(t)),Bl(_V(t)))[Ax(_V(t)) +

v(t)B ydt o

A sufficient condition that (2-17) be not integrable at tI is that

(-B2(_V(tl) ),Bl(_V(tl) ))[ Ax( _v(tl))+
(2-18) _t (B2(_v(t))'Bl(_V(t)))]t=t 1

v($i) BX(_'_(¢I))] , WhiCh is implied

byf_)(/_v(t)) _ 0 as c_u be _hown by a straightfoI_'ard calculation.

[In terms of Theorem I_._, (2=_8) _tats_ that _v(tl) is not a potent of a

singular arc. In ['_ pgo 9?] it is ehown that for _ systems of this type

singular arc_ are characterized by the fact that 6Ois zero along the=.

It follows that if _V(¢l) is not a zero of _D, then it is no____ta point of

Oa singular arc, hence (_7) ,is not integrable and the conclusion of the

theorem follow_.] I
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It should be stressed that the integrability of (2-16) requires

60 (x) = Z(x) " curl Z(x) to be zero in a neighborhood of a point, while

Theorem 11.6 deals only with the value of _O at a point. It is possible,

Example II.I, to have the pfaffian (2-16) not _ntegrable at a point (_, _)

which u9(_) sunni have  v(7 ) -at = O, yet a trajectory V such that = x

and the system is not locally controllable about _v.

We next give the example of a problem which is locally controllable

along a totally singular arc.

Example II.2 (A singular arc _°(t) such that all points in a neighborhood

of _O(tl) are attainable in time tio)

Consider the system

@

x 2 = 1 + x2 Xl2 u x(O) - 0

Then _(x) 1, IA_(x) = x.± 2= _ hence if we were to consider the time

optimal probiem of reaching the flnal point xf(O, _), the Greens theorem

approa<:h [2], yle]ds the f'_..iO'W:_..g

x 2

x]
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the optimal arc being shown by the arrows. There is an arc along which

6&)= O, i.e., x I -_ O, and while this can be attained with the control

u -----0 it yields neither a maximum or minimum to the time optimal problem.

This arc we designate as _o

._£o1°(t)__o?,°Ct>
/

It is easily checked that the variational equation along _o is no___t

completely controllab]eo

Now consider a relation x I = k I san k 2 x2, kl, k2>O with k2>47_.

It will be shown that for kI sufficiently small, there exists a unique

admissible continuous control _(t) with trajectory_ _ which has
l

((Xl, X2)_ Xl = k I sin k 2 x29 x2_D_O _ as its track.

From the Greens theorem approach [2 I and the symmetry of O-)(x)about

the line Xl= 0, the parametrization of _ must be such that the even

numbered crossings of the x 2 axis 9 counting only crossings which occur for

x2>O _ one must have

o 2._/'F)(tr,lu ( 2nTTk2) _ 0 _I ( k2

_2u(_ ) _ 2n/W ).
k2 = k2 = _2 ° ( k 2

We will be interested in the case n = i, so that 2"--'_<i/2. It will

k 2 _

be shown that there is local control]ability along _u and since

_p
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_u (__2)= _o(- 2_ 2_k2 )_ it will follow that a neighborhood of

o 2_
( --_2 ) iS attainable in time 2_k2

First we will show tk_t for kI sufficiently small, there is a

unique continuous u which leads to a trajectory _u having

_(Xl, x2)s xI = k I _in k2 x2, _2> O} as
its track. Differentiatiou

of the track relation with respect to : yields

Xl(t) = k I k 2 [ cos k 2 x2(%) ] [2(t) •

Substitution from the system equations leaves

u(t) "_-.klk 2 [cos k2x2(t)] [1 + x2(t)xl2(t)u(t) ] .

For any control u,

f_

xz(t) "JO _-(T)d%

[Jo'so
exp - u_(_-) I_(_) ,_ d _ _ T .

0

Substi_ating these in (2-19) yields an expression of the form

where the definition of the non!Jnear operator_is obvious° Let
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C [0, _] denote the space of continuous vector valued functior_u on the

interval [0, _], with the supremum norm, and B_ the closed ball of radius

in this space. It is easily shown that for k I sufficiently small but

positive,u 6 __klWU 6 _, andk_Wis a contraotin_map. Thus

kl_has a unique fixed po-_nt in B_, call this point _. Then _Lis not

a singular trajectory, since k! positive implies _(t) _ O, and _u has the

desired track.

Now for 0 < tl< _
k 2

hence not a zero of L_).

m

, _u(t l) is not a point of the singular arc,

From Theorem II.6 it follows that all points in

neighborhood of --_ou(t2), for any t2> tI are attainable in time t 2 bysome

trajectories with admissible controls, hence this_ is true for t2 = k2

To determine local controllability along _a by use of the fundamental

solution of the variational equation about this trajectory would be a

virtually impossible task.

In concluding, it shou_J be noted that totally singular arcs were de-

fined with no mention made of tr_nsversality conditions. It is possible to

use these condit_on_ _n _ery sp_,_ia] oases, to rule out the exiaten,._e of

singalar arcs i,_ the <,l:t_mal strategy. Also, for a time optimal problem

for a system of _,he form

@

(2-2o) _(_) . g(_(t)) • H(,(t))u(t)

the maximum principle yields the fact that the HamJltonian is constant

along the optimal path. We shall show that this cannot be used to rule
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out totally singular arcs, since such arcs automatically satisfy the oon-

dition even though the Hamiltonian is seemingly a function of time along

them.

For the system 42-20) wfth any given control u(t) we define the

Hamiltonian for the time optimal problem as

_(t, _, p)=p _ g(x) , p . H(x) u(t) + 1.

A necessary condition is that _is a constant along the optimal tra-

jectory, it need not be so on a non-optimal trajectory. Define the ad-

joint system as

(2-21) p(t) =-p(t) gX(x,(t)) -p(t) Hx(x(t))u(t )

Theorem 11. 7 The Hamiltonian for the system (2-20) is constant along

any totally singular arc.

u

Proofs We defined a tota31y singular arc as an arc _ which

satisfies (2-20) for which there exists and adjoint vector p(t) satisfying

(2-21) such tha_ p(t)H(_U(t))_O for a set of t v_lues having positive

measure o Then

42_22) d _(t_ _u(t)gp(t))---- d [p(t) o g(_U(t)) + ii __ pigi + Pigx_i _ .

@

From (2a20) gi= sDiu = Hik Uk °

i " Hik

From (2_21) pi gx_ = - P_J _ Pi _ Uk ° Substituting in (2-22)
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_. _u • [_u._ ][__ _x ]_.u_{t, (t),p(t))_ Pi i " Uk + - Hik Ukdt

Hik *ul _d [p(t)H(_U(t))l_ 0o [-_-_ _u_u _---- ___

from the condition p(t)H(_U(t)) _ O.
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III. THE EqUIVAL_CE AND APPROXIMATION OF CONTROL PROBLEMS

INTRODUCTION TO SECTION III

In this section we will be concerned with the time optimal feed-

back control problem for an n vector system of the form

(3-1) x(t) = f(t, x(t), u(t)) , x = dt

where the control u is an r vector valued function with values in a

given set Uo The major interest Will be in feedback controlso

One of the difficulties in the theory of optimal feedback control is

the discontinuity of the control with respect to the state variables,

which the necessary condition termed the maximum principle, so often

shows to be the caseo Letting H(t, x, p, u) _ p o f(t, x, u) - i;

u*(t, x, p) be so that H(t, x_ p_ u*(t, x_ p)) _ H(t_ x, p, u) for

all u £ U, and H*(t, x, p) 5 H(t, x_ P9 u*(t, x_ p)), the Hamilton-

Jacobi equation approach [1] often leads to a partial differential

equation with discontinuous coefficients_ while the Hamilton/an equations

of motion which describe the system (the characteristic equations of the

Hamilton-Jacobi equation) are of the form

o _ o

(3-2) x - _p H*(t_ x_ p) , p = - _H*(t, x, p) o

The maximum principle of Pontriagin, for time optimal problems, assures

us that if u*(t) is an optimal control 9 x*(t) the corresponding optimal

trajectory, then there exists an absolutely continuous n vector p*(t),

not identically zero_ such that H_(t_x*(t),p*(t)) _ H(t_x*(t),p*(t)�u*(t))

while x* and p* satisfy equations (3_2) o The usual use of the maximum
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pri_ciple proceeds, however, by attempting to generate candidates for an

optimal trajectory by solving a two point boundary value problem for the

system (3-2). Since u* may be discontinuous, the fundamental questions

of existence and uniqueness of solutions to these equations cannot easily

be answered.

An alternative would be to restrict the controls to be continuous,

or even Cl, (continuously differentiable) functions and attempt to gen-

erate within this class a sequence of controls which will in some sense

tend toward the optimal control° In doing this, however, one must

seemingly discard the maximum principle which is one of the most useful

tools for generating optimal controls, for it so often demands dis-

continuous controls.

The approach taken here is not to forcefully restrict the class of

approximating controls, but instead to generate a class of approximating

C1problems whose solutions will be continuous or controls and will tend,

in a given sense, to the solution of the original problem.

For the system (3-1) let R(t, x) = If(t, x, u): u_U I . We shall

@

say that the time optimal problem for a system x = g(t, x, v), v C V is

equivalent to that for the system (3-1) if Ig(t,x,v):v £ V_ = R(t, x) for

all (t,x) in some domain of interest° For given _ _ 0 we define the time

e

optimal problem for the system x = h_ (t, x, v), v £ V(_) to be an

-approximate equivalent problem to the time optimal problem for (3-1)

if d _lh£ (t,x,v):vey(6)l , R(t, x_ _ for all (t,x) in the domain

of interest° Here d(Q,R) is the Hausdorff metric distance for sets in

Eno

Intuitively equivalent problems have the same optimal trajectories (as

will be shown) while the optimal trajectories of £ - approximate equivalent
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problems will be close (uniformly) to those of the original problem.

It will be shownthat under appropriate conditions (essentially the

Fillipov existence conditions [21 ) the approximating problems can be

chosen in such a way that the corresponding feedback controls are con-

tinuous9 or even of class CIo In certain cases this allows the Hamilton-

derived in [I] 9 to be utilized for the constructionJacobi theory, as

of fields of optimal trajectories and optimal feedback controls°

Although we deal only with the time optimal problem, it should be

noted that for a problem of the form x'(_) = f(T-, x(Y-), u(Y-)), with

the functional to be minimized being [_f

J

the scalar valued function o_

of independent variable

t"

tCT) = I 06(6", x(_)9 u(_))d_

_(O- _ x(O" )9 u(_-))dO- where

f-
O

satisfies _(d" _ x, u)___ _ =_ O, the change

reduces the problem to an

equivalent time optimal problem for the system

. [y(t) = _(15"(t)_y(t)gu(t)) f(Y-(t),y(t),u(t)) --_g(t,y(t),u(t)).

THE MAXIMIZATION OF pot WITH r IN A STRICTLY CONVEX SET

Our motivation is to choose approximating problems for which the

maximum principle will yield smooth controls° Let r*(p) be the function

which maximizes the functional F(p_r) _ por for fixed p _ E n- [O_ ,

r e R a given compact set in Eno We begin by examining conditions on

the set R which will insure that r" is smooth since it is a maximization

of this type which causes discontinuities in the control°
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Definition° If S is a set contained in En (Euclidean n space) a support

hyperplane is a hyperplane M which lies on one side of S and SAM _ _ ,

the empty set.

Definition. A convex set R contained in En will be said to be strictl_

convex if it contains more than one point, and every support hyperplane

has at most one point in common with No

If R is a compact set in E n we denote its boundary by _Ro

Lemma IIioi. If R is a strictly convex set in En, then R has internal

(interior) points° (This result depends on finite dimensionality).

Proof Let ro, o rl'rI_ R, r # and VI be the linear variety of

dimension one determined by these points° Let M 1 be any hyperplane con-

taining Vlo Since M1 contains two points of R it is not a support plane

and there exists a point r2 _ R, r2 _ MlO Let V2 be the linear variety

determined by ro, r2,rI and ° V2 has dimension two° Let M2 be a hyper-

plane containing V2o Again there is a point r3 _ R, r3 _ M2. We con-

tinue inductively getting at the (n-l)st step a linear variety Vn_ 1 of

dimension (n-l) determined by the points ro_ o o o _ rn_lO Then there

exists a unique hyperplane Mn_ 1 containing Vn_l, and again a point

rn C R, rn _ Mn_l o Since R is convex it contains the convex hull

of the set of points ro, o o o , rn_ and since the vectors rI - ro,

are linearly independent, they determine an
r2 - r° _ o o o , rn ro

n cell which has non void interiorol
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Lemma 111.2. Let R be a strictly convex, compact set in En. Then for any

fixed p _ En - tO } , the function F(p, • ) attains its maximum value at

a unique point r'(p) = r° Q _R.

Proof For any fixed p, F(p, ' ) is a continuous function o_ the compact

set R and hence attains its maximum there. Suppose the maximum is attained

Ro Let N(r o) be a neighborhood of r containedat an interior point r° o

in R. Then p • r o is an interior point of the real interval p. N(r o) =

_p-r: r _ N(ro) ) , contradicting the fact that F attains its maximum at

r .

O

To show uniqueness, assume F(p, ° ) attains its maximum at r , while
• O

rI _ r° belongs to R and F(p, rl) = F(p, ro )° Define

r(o(_) = _r ° + (i - o_ rl, - co -_ o_ -_oo o It follows that

F(p, r(_))= F(p, ro) for every such point r(_)o If for some _ ,

r(o_) is an interior point of R, the argument of the previous paragraph

would show a contradiction to F(p, - ) attaining its maximum at roo Thus

the one dimensional linear variety V = _o_r ° + (1-o_)rl: - oo-=_-_ col

does not intersect the interior of R_ which is not empty by Lemma IIIolo

theorem 3o6-E [31 there exists a closed hyperplane M containing V suchBy

that the interior of R lies strictly on one side of M. It follows that M

is a support plane for R_ and since M contains more than one point of R,

this is a contradiction to the strict convexity. I

Theorem IIIol Let R be a strictly convex_ compact set in En. Then the

function r*(p) (shown to be well defined in lemma III-2) is continuous.

Proof Suppose Pn _ pc Since R is compact, some subsequence

the sequence _r*(Pn) 1 converges to a point of R, and there is noof

loss of generality in assuming it is the original sequence, ice.
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let r'(Pn) ._ rI. We suppose rJ(p) = r2 / rI and seek a contradiction.

From the definition of r*, F(p, r2) =_F(p, r 1); let

F(p, r2) - F(p, rl) = $ >0.

Since F is continuous there exists an N _ 0 such that

IF(pn, - F(p, and IF(p,5) - F(pn,r'(Pn)l 

for n__ N. Then F(Pn , r2) - F(Pn, r*(Pn)) =_ IF(P, r2) - F(p, rl) ]

+ [F(Pn , r2) - F(p, r2) ] + [F(p, rl) - F(p n, r*(p n))]='_/2 for

n __N, a contradiction to the definition of r*(pn), t

We next examine when the function r*(p) is Clo

Definition. For y _ En, IYl =

Lemma III.3. Let R be a strictly convex, compact set in En which has a

unique outward unit normal n(r) at each point rE _R. Then for fixed

p _ E n - [0_ , F(p, • ) achieves its maximum at the unique point

r £ _R such that n(r ) = p/l Pl o
--0 o

Proof Assume without loss of generality that zero is an interior

point of R.

For x eE n, let I(x) = [a: a >0, a-lx e R I and define

p(x) = inf. a.
a gI(x)

; _(x) is called the support function of R, or also the

Minkowski functional. We note that if r £ _R and y is any vector, then
o

for a real scalar 4> O, _Y + r
o 6 _ R

_(oLY+r o)

and for _ sufficiently small, is in a neighborhood of r @

O
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From lemma 111.2, we know F(p, • ) achieves its maximum at a unique

1 /_y+r
be the point+ Let g(y, ro) = lira _ o

point on _R, let r ° O_+----_O _P
( y+ro)

Since dR has a unique outward normal at each point, g(y, rO) = -g(-Y,ro).

Since p . r° ___ p r for all r_ _R in a neighborhood of ro, it follows

that p • g(y, ro).< 0 for all yo Assuming there exists y such that

p • g(y, ro)< 0 implies p • g(-y, ro) >O, a contradiction. Thus

°) presentsp • g(y, r = 0 for all y, or a necessary condition that r °

F(p, • ) a maximum is that p be orthogonal to the support hyperplane at r o

o

Since R is strictly convex it is easily shown that there are exactly

two points which satisfy this necessary condition, one with outward

normal P/IPl giving F a maximum, the other with normal -P/IPl which

gives F a minimum°

Definition. We say that a strictly convex_ compact set R in En has a

smooth boundary if there exists a unique outward unit normal n(r) 6 C 1

defined on _ R° (Actually we consider n as a restriction of a C1

function in a neighborhood of r6 _R, see, for example, [4] pgo 27)+

Theorem IIIo2° If R is a compact set in E n with smooth boundary having

positive Gaussian curvature at all points, then r+(p) _ Clo

-r
o

Proof Since it is assumed that the unit normal to _R is of class Cl,

the Gaussian curvature is a continuous positive function on _Ro But _R

is compact, thus the Gaussian curvature is bounded away from zero. From

theorem 5.5 [5 , Pg° 35] it is easily followed that R is strictly convex°

From lemma 111.3, we have thar r'(p) satisfies n(r'(p)) _ P/IPI° Let

rO = r+(Po) be an arbitrary point on _ R o
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The method will be to utilize the implicit function theorem on a

relation of the form g(r, p) = n(r) - p/Ipl •

Let _1 _ n-1, . . . , be a local coordinate system for a neighborhood

of r on _ R. Then the inclusion map from _ R r E n determines n
o

¢2  nl) Xn( n-l)smooth functions Xl( , o . . , , . . • , , • • • ,

or briefly x( ¢ )o Assume x(O) = r° and let VI be a measurable neighborhood

of zero in the local coordinate system.

Let Sn-I be the unit (n-l) sphere; we consider n(" ): _R -- Sn-l.

Define 9( • ) : VI --_" Sn-I by n(x (_)) = @( _)o Thus

n 6 CI _ 9 £ CI .

Let _: _p) : p/%p, , p g e - {0_; then _6 CI. Our approach

will be to utilize the implicit function theorem on the relation

We note that G _ CI, and if _o = _Po ) then G(O, _o ) = O. Also

G_ (O, _o ) = 9_ (O). It must be shown that det(O_ (O)) / O.

From differential geometry we recall that as _ varies in VI, x(_)

traces out a region V2 on _R while the normal 9(_) traces out a region

V 3 on the surface of the unit sphere. Let K(_ ) denote the Gaussian curvature
\

of _R at x(_ ), and A3 the "area" of V3o Then

VI VI

arbitrary (but measurable)and 96_C I this implies det_ 9(_)) = K(_)./ \
w

By assumption K is positive at all points of _ R, hence

det(O_ (0)) / O. The implicit function theorem now gives the existence

CIof a function _(_) such that G( _ (_), _) = O.

Then r*(p) = x( _ (_(p)))6 Clol
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The following is an example of a strictly convex set R with smooth

boundary and a point at which the Gaussian curvature K is zero, for which

r'(p) is not C1.

4
Let part of the boundary of RC _ consist of the curve y = x , the

rest so as to make R strictly convex and with smooth boundary. We restrict

our attention to the defined part of the boundary, in particular to the

point (O, O) at which K is zero°

The outward normal is given by (4 x3, -1)o Let p =(Pl' P2 ) have P2

negative and Pl near zero° To compute r'(p) _ (x_(p), y'(p)) we compute

4
the point on the curve y = x where the normal has direction numbers

V3

(-Pl/P2 , -i)o This gives x'(p) = (-Pl/4 p2 ) _ y,(p) = (-Pl/4P2) 4/3

x'(p) is seen to not be continuous at Pl = O.
and _ Pl
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APPROXIMATION OF OPTIMAL TRAJECTORIES

The Time Optimal Problem

Consider the system (3-1), with U a compact set, and initial data

x(t o) = Xoo Let S be a smooth (C2) manifold in the (n+l) dimensional

(t,x) space with the property that for any t2, t3, [(t,x)£S: t2 _ t _ t31

is compact in En+l° The problem is to find a measurable function u = u(t)

having values in U, such that the solution of the initial value problem

for (3-1) with u = u(t), intersects the target S in minimum time; i.e.,

is an optimal trajectory.

We next give the conditions of Fillipov [2] , which insure the

existence of an optimal (open loop) control, and optimal trajectory for

the time optimal problem.

Existence Conditions

(3-3) f(t,x,u) is continuous in all variables t,x and u, and is

continuously differentiable with respect to Xo

(3-4) x- f(t,x,u) _ C( Ix 12+ I) for all t, x, u.

(3-5) R(t,x) _ I f(t,x,u):u 6 UI is convex for every t,Xo

(3-6) There exists at least one measurable function u(t) with values

in U, such that the corresponding solution of the initial value,

problem for (3-1) attains the target S for some tl_> to .

Equivalence of Problems

Let the same time optimal problem, as posed for (3-1), also be posed

for the system

(3-7) x(t) = g(t,x(t),v(t)),

where g satisfies condition (3-3)° Let Q(t,x)

v(t) _ V, a compact set,

Ig(t,x,v):v _ V I o
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Theorem 111o3 Assume the existence conditions are satisfied for the

time optimal problem for the system (3-1) o Let _(. ; u') denote the

optimal trajectory and u* the optimal control° Then if Q(t,x) = R(t,x)

for all (t,x), _( • ; u*) is an optimal trajectory for the time

optimal problem for the system (3"7) and there exists a measurable

function v'(t) with values in V such that _ (t; u') = g(t,_(t;u*),v*(t))

almost everywhere°

Proof f_t, _(t_ u*)_ u*(t)) is a measurable function of t_ with

values (almost everywhere) in R(t, _(t; u'))_ therefore in Q(t,_(t; u*))o

From lemma 1 of Fillipov [2] _ there exists a measurable function v*(t)

with values in V such that f(t_'(t_u*),u'(t))=g(t_(t_u*),v*(t)) almost

o

everywhere° It follows that _(t_ u*) = g(t_(t;u*), v*(t)) almost

everywhere.

Now if _ • _ u*) were not an optimal trajectory for (3-7), ioeo,

_( ° _ v) provides a better time, the same argument shows that _ ° ; v)

is a solution of (3-1) for some measurable control u with values in U9

thereby contradicting the assumed optimality of _ - _ U*)o_

This theorem stresses the fact that in seeking optimal trajectories9

it is the set function R(t,x) which is of major importance_ not the

function f(t,x_u) or the control set Uo

When the conditions of theorem IIIo3 are satisfied we define the time

optimal problem for the s_stem (3_7) to be equivalent to that for (3-1)o

If the existence conditions are satisfied for the time optimal problem,

from conditions (3_4) and (3_6) we can obtain a compact region of (t,x)

space to which analysis can be restricted° Indeed for t _ t _ t1

condition (3-4) implies any solution x(t) of (3-1) satisfies

ix(t)l 2 2(IXol + l) exp (2C Itl-tol )o Here Ix(t)l stands for the usual

Euclidean norm° Henceforth, we denote by _ the compact region of (t,x)
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space defined by t o__ t m2 t I , ixl2_ (iXo I 2+ 1)exp (2C 12tl-toi ).

Definition. The Hausdorff metric topology for non-empty compact sets in

Em is derived from the following metric: The distance between two non-

empty compact sets X and Y in the smallest real number d = d(X,Y) such

that X lies in the d neighborhood of Y and Y lies in the d neighborhood

of Xo

Approximate Equivalent Problems

Definition° For given £ =_ 0 the time optimal problem for the system

" EIxx = h6 (t,x,v)_ h£cor, tig_ :,"_s ._n _XV(6_)_ is said to be an 6

approximate equivalent problem to the time optimal problem for (3-1) if the

set - [h R(t,x) and

d(R(t,x,£ ), R(t,x))--_ for all (t_x)£ _ o

Since h6 (tgxg • ) is continuous on the compact set V(e), R(t,x,£)

is compact°

Theorem IIIo4o Assume that the Fillipov conditions (5-3)_ (3-4) and (5-5)

are satisfied for the t_me optimal problem with system equations (3-i)o

Then for every _-:> 0 there exists an 6 approximate equivalent problem

o

with system equations x = h g (tgxgv), vCV(_) which satisfies the

following propertieso

a) The control set V(6) can be taken to be the unit ball of En,

which we denote Bno

cOO _b) h E is a function on /Yx Bn, while for each (t,x)£

h E (t,x,.) is one-one on B--_ Eno

R(t,x,£) _ __h6 (tgx,v)_ vcBnl has smooth boundaryc) The set

having positive Gaussian curvature°
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d) The (single valued) function v*(t_xvp) with values in Bn which

o h_maximizes H(t_x_p_v_ _ ) = p (t_x_v) - i for each (t,x)6

p _ E n- {0!, is C1 in t_x_ and po Actually v*(t,x,p) _ % Bn = S n-l,

the (n-l) sphere°

The proof will proceed by obta_nlng a simplicial approximation to

in which the diametere of the simplexes are sufficiently small. For

each vertex (ti_ xi) of a slmpi.ex_ we approximate the convex set

R(t_, xi) by a strictly convex set Q(ti_ xi_ _ ) having positive

Gaussian curvature° A ve_tor func.tio__ gC(ti_ xi; o ) is then con-

structed so that Q(t i x._ "_7_ = i g#_ (+i xi; v)_ v_Bn_ _ and by use

of gE _ the set_ functi,:n Q :_s extended _ontin_Jous]y to all of _Y in

such a manner _ ti_,atfor each _t_,__>(• _ _ Q(t_x; 6 ) has smooth boundary

with posi*_ve _,-:u_:_slanc_r_at'.:_o The desired function h 6 is then ob-

tained by smoo"h_ng the fuu_-t_o_ g:: _r_ _ne variables (t_x) via the

Friedrick_ mollifier techr, lq_e

Proof R(t_x) i,_ ,:..'.r_,._n,__ :n the Ha:usdorff metric topology_ on the

compact set __ o For an). _ > _:"ie_. _,> 0 De such that

d(R(t_x)_R(t_'_"i")_"{./8 _r:ene'_e_= _i_,,_:_x_(_.._x_)l< _o Let O- n+l be
" g

any bounded g_:o_etr_,: _m;._e× _hi,:-_ contains _ _ and K be the geometric
- g

comp]e_ co_,_s_]ng c.f tnie: _=_ng_e _mp_e_o By baryc, en_.ric subdivision

K can be subdlvided into a geometric romp[e× K _ consisting of a family
g g

of geometric _impie_s _ __ n÷l ":• , _ each having diameter less than _o

Each point (t_x),Z_ :/.._"has a ur_ique representation of the form

n_2

where the

(n+2) points (ti_ ×,)_ or_ the _ert_c,.s of' the geometric simplex from

the family _ ef_ r_+_ _g ! _, wt_,,_ tn_, i,o:nt (t,_x) belcngso Without loss of
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generality we can now consider the union of the members of r--_6_n+l)
g

which have all vertices in _' as a new domain of interest; call this

domain again _o

Let (ti, xi) be an arbitrary vertex in _. Then R(ti, xi) is con-

vex° Let ]Q(R(t i, xi), _/4) be a convex 6/4 neighborhood of

R(ti, Xi)o From [6 , pgo 38] there exists a strictly convex set

Q(ti, xi, £ ) contairdng 7_(R(ti9 xi) , £/4); having an analytic boundary

with positive Gaus_ian curvature_ and such that

d(Q(tigxi9 6 )_ Yt(R(ti_ xi)_ C/4 ))< g/4o

tFor each (ti, xi) g _ we cons ruc_ a corresponding set Q(ti, xi, _ ) as

above° We next proceed to define a set valued function Q(t,x, _ ) on all

of _ o

It can he assumed without ]oss of generality that O C R(t,x) for all

(t,x) C _ o Indeed if this were not so_ one could choose a point

U and construct new set_ S(t_x) _ _ f',t_x_u) - f(t,X_Uo)_ u 6 U}
U O

which satisfy this property°

Let Bn be the unit ball in En_ Sn_l its _ surface and vI n-i_ooo_V a

sn-_! ncoordinate system on while v measures distance from the origin°

Then a ray from_ the origin through (vl_ v2_ o o o 9 vn-1, i) strikes

_Q(ti_ xi_ f ) in a unique point which we denote g_- (ti,xi_vl ,vn-l,l)$©oo °

sn_19This defines g_ (t1_x i • ) on o to extend Jt to Bn let

v = (v19 _ ° o _ n) Bno Define g_i (ti_ x i_ v) as that point in

Q(ti9 xi_ £) which lies on the ray through the origin and

vI n_l !)( , o o o , v _ and is such that

_x n

!ge(t, x V!,ooo,n-lfl
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Then g_ (ti_ xi, ' ): Bn ------_ Q(ti_ xi_ _ ) in a one to one fashion°

We will define Q(t_ x, C ) on all of#_ by extending the definition

of g _ to all (t,x)_ _ o

n+2

Assume (t_x)E _ o Let (t_x) = _ _i (ti9 xi) be the unique

i=l

representation of (t_x) in terms of the vertices of the geometric

simplex of K _ to which it belongs° Define
g n+2

g£ (t,x_v) = [ _i gC (ti_ xi _ v)_ vEBno

i=l

Then if

Q(t,x, 6 ) = Ig _ (t_x_v):vf-,B n! it follows that:

i) _(R(t,x)_ _/8)CQ(t_x_£)o Indeed_ from the choice of _ ,

_(R(t_x)_ 6/8)C_(R(ti_ xi) _ £/4)CQ(ti_ xi9 _ ) for all

vertices (ti_ x i) of the simplex in which (tgx) is contained°

But Q(t_x_£) = L _ Q(ti_' xi_ _ )° Thus if a point is in

_(R(t_ x)_ {::/8) it is Jn Q(t_x_ _ )o

ii) d(Q(t_x_)_ R(t_ x)) _ 36/4o To show this one notes that

R(t i, x.)<_,l '_(R(tj_ xj)_ _/4}_.Q(tj_ xj_ _) for all

i_ J : i_ 2_ o o o _ n+2o Therefore

d(R(t_x)_Q(t_x_£) _ d(R(t_x)_ R(ti_, xi)) +

d(R(ti_ x±), _j % Q(t 3_ xj_ C. ))_=_ _/8 +

max [d(R(ti_ xi)_Q(tj_ xj_ E )] __< E/8 +
J

max [d(R(ti_ xi),R(tj_ xjl)+d(R(tj_ _j)_Q(tj_ xj_E))]___
j
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ill) Q(t,x, £ ) is strictly convex, with smooth boundary having positive

Gausslan curvature9 for each (t,x) o Indeed of K(t,x,v 1,...,v n-l)

is Gaussian curvature at the point g(t,x,v 1,ooo,vn-l, i)6 _R(t,x,_),

n+2

then K(t,x,v I ,,n-l) = _ °_i K(t i, xi9 vI ,vn-l)9ooo 9oo0 •

i=l

iv) From the construction, EC (c,x,v) is analytic in v for fixed (t,x)

and continuous in (tvx) for fixed Vo

Combining the results of i) and ii) shows that for (t,x)_,

_(RCt�x), _/8) C Q(t_x�£)C _(R(t,x)_ 3_/4)o

It will next be shown that using g_ (t,x,v) one can construct a mapping

fh 6 (t,xvv) on _ x Bn --_ En such that if R(t,x,_) = h(t,x,v):vqB n ,

then R(t�x9 _) is a strictly convex_ compact set containing R(tvx);

d(R(t,x, _)_R(t?x�)) _ 6 _ _R(t_x96) is smooth with positive Gaussian

curvature, and if n(t_x_h _ (t_x_v I n-i_ooo_V ,i) is a unit normal to

_R (t_x�£) at h 6 (t_x_ v I n-I CI_ooo_V _ i) then it is a function of all

arguments.

For s_mplic_ty of notation let y = (t_x) denote a point in _ , and

let sk.y-_.(_ be a moliifler function_ see 7 o

n+i r n+l

choose sk(y_y) = (k/49T) 2 exp o

Extend g6 (y_v) as the zero function for y in the complement of _- o

Define hk(y,v) = f sk(y_y) g'_"(y_v) dy o

En+l

As an example one could
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Then for every integer k =-O, hk is an analytic function, while hk and its

derivatives with respect to v tend uniformly to g_ and its derivatives

with respect to v.

Let Rk(t,x,_) _ I hk(t'x'v): v _ Bn Io Since the Gaussian curvature to

Q (t,x, E) is given as a multilinear combination of the derivatives

gevt(t,x_vl Rk(t,x,,ooo,vn-l,l) while the curvature of _ 6) is given by the

same multilinear combination of the derivatives h_[t,x,v I n-i,ooo,V ,i); one

can choose k sufficiently large so that _H k (t,x,£) has positive

Gaussian curvature while R(tgx) C Hk(t_x, 6)C _(R(t,x), _)o For such a

choice of k, define h_- (tgx_v) = hk(t_x,v)_ R(t_xg_) _{h_(t_x,v):v_Bn} o

From its construction_ h 6 satisfies conclusions a)_ b) and c), while a

1 n-i C1unit normal n(t_x_h 6 (t,x_v _ooo_V _I)) to _R(t,x,_) is a function

of (tgx_ Vl_ooo_v n_l)o

It remains to show part d)o Using lemma IIIo3 define r*(t,x,p; _) as

the unique point on _R(t,x_&) such that n(t,x_r*(t,x,p_ _)) = p/I pto It

will be shown that r" is a C 1 function of t_ x_ and p by a proof similar

to that of theorem IIIo2o Defining v'(t_x_p) as the unique point on _B n

such that h_ (t_xgv'(t_x_p)) = r'(t_x_p_ _) it follows that v* maximizes

H(t,x,pgv_ 6) and it will be shown that v* is a G1 in t_ x and po

For fixed (t_x)_ we have

Sn-1 __he (t'x_vl_°°°'vn_l'-!-)> _ R(t_x,£ ) n(t,x_r) _ sn-i

vI ,vn_l) from Sn-I _ Sn-I de-which naturally induces a map @(t,x_ ,0oo

fined by @(t_x,v I ,vn_l) 1 n-I -_ooo - n(t,x,h 6 (t,x_v _°oo,V ,I)) Since we are

only interested in _ B n Sn-l= _ no confusion should occur if for the re-

mainder of this argument we let v = (v l,ooo_v n-l) _ Sn-I and therefore write

@(t,x,V) o This will be done°
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Let _= _(p) = p/Lp| , p 6 En - _0_ and define

G(t,x,v,_) _ @(t, x, v,) -_ • We will apply the implicit function

theorem to G, which is easily seen to be a CI function. For each

to' Xo' _o = Po/|Po _ ' there exists a unique point

ro = r*(to' Xo' Po"_ ) such that if n(to, x o, ro) = po/_Po_ and Vo is

Sn-] h 6 then
the unique point on such that (to,Xo,V o) = ro,

G(to, Xo, Vo, _o ) = Oo One next notes that G¥(to,Xo,Vo, _o ) = @v(to,Xo,Vo),

and from the definition of @ (see also the proof of theorem IIIo2)

det [9 (to, xo, ,o )] is the Gaussi_ curvature at ro6 _R(t, x, e )

which is positive. The implicit function theorem yields the existence

C1of a function ,(t, x, _) such that G(t, x, ,,(t, x, _), _) - 0 in

a neighborhood of the arbitrary point to, Xo, _9oO Then

r'(t, x, p; 6 ) _ he (t, x, v(t, x, _(p))) e C I, while

v'(t, x, p) ,(t, x, is also c l°|
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THE RELATION OF TRAJECTORIES OF THE APPROXIMATING PROBLem4 TO THOSE

OF THE TIME OPTIMAL PROBLem4

We assume the system (3-1) satisfies the Fillipov existence conditions

(3-3), (3-4), (3-5) and (3-6), with tI a time in which the target set S is

attainable. For any E _ 0 let h G (t, x, v), vaV(_), be an eapproxlmate

equivalent problem (not necessarily having the special properties shown to

exist in theorem IIIo4)o From condition (3-6) and the relation

R(t, x,_)_R(t, x), it readily follows that for every _ > 0 there exists

at least one measurable function v with values in V(_ ) such that the

corresponding trajectory _E( • _ v) of the q approximate problem

attains the target So

It will next be shown that when dealing with the approximate problem,

analysis can again be restricted to a compact set° Indeed any vector

h E (t, x, v) can be written as f(t_ x_ u) + _(t9 x) where l_(t, x)I _ 6 .

Then for any trajectory x(t) of the approximate problem

1 d 2 h6
_ _ Ix(t) I = x(t). (t,x(t),v(t)) =x(t). f_t,x(t)_u(t))+x(t)._(t_x(t))

C(I + Ix(t)I 2) +£[x(t)l o

d _n (i + _x(t)12)_2 C +
dt

261x(t)l
2(C+6),

i+ [x(t)l2 --

Ix(t)I 2 __ (1 + [Xol 2 )e

2(C+6 )(tl-t o)

Define #_6 to be the compact region in En+l dimensional (t,x) space

2) tl_to) ]so that Ixl2 _(l+ IXoI exp [2(C+_)(2 , t _ t "_2 tl o
O _

Theorem III.5o Consider a sequence {@k_ with £k _ O, E k _ 0

e k

and let _ denote the time optimal trajectory (assumed to exist) for

the 6 k approximate problem° Then _ is an equicontinous family on
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the interval [to, t 1 ] o It has a uniformly convergent subsequence

which converges to a function _ having the following properties.

i) _ is absolutely continuous

±i)

iii)

iv)

There exists a measurable function u* with values in U

such that _*(t) = f_t, _*(t), u*(t)) almost everywhere.

s

There exists a smallest t* _ t such that _(t*)_ S
-- o

is a time optimal trajectory for the system (3-1).

Proof We shall prove the conclusions in the order that they are stated.

Without loss of generality9 assume that R(t,x, E1)_R(t,x, E2)_ ..._R(t,x).

Therefore analysis can be restricted to the compact region _'lo Our first

goal is to show that there is a constant N independent of q k such that

G k

_ is Lipschitz continuous with Lipsch_ tz constant No To accomplish this,

for a compact set R in En let _(R) denote max Irl o For fixed ql'
r_R

R(t, x, E l) is a continuous set valued function (in the Hausdorff metric
E 1

topology) on the compact set _ and therefore the composite map

(R(t_ x, _i )) is a continuous real va]ued function on _ , hence bounded.

Let N be its bound@ It follows that l h (t, x_ v) __ N for all E k

6 k

and any trajectory _ is Lipschitz continuous with Lipschitz constant N.

Thus I;klis equicontinuous and has a subsequence which converg es

uniformly to a Lipschitz continuous function _J, which is therefore

absolutely continuous° We will not distinguish between _ and its

convergent subsequenceo
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ii> nextshowthat for almostall  Lto, tl , "° "*

Since the set function R(t, x) is continuous in the Hausdorff metric

topology (a consequence of the continuity of f), for any _ _ 0 jet

R D (t, x) be a closed convex _ - neighborhood of R(t, x). Then R_ (t, x)

is also a continuous set function°

Since _k (t) _ R(t9 _k(t) 9 _k ) and R(t, x9 _k ) _ R(t, x) in

the Hausdorff metric topology, there exists and N such that for all

n _ N, _k(t)_Rj (t, _*(t))o Fillipov's proof of theorem i, [2]

to show that for almost all t, _*(t) _ R_ (t, _*(t))o Butnow applies

R(t, x) is closed and D arbitrarily small, hence _'(t)gR(t,_z_(t)) for

almost all to

From the lemma of Fillipov [2] , we then obtain the existence of a

measurable control u* with values in U, such that for almost all

t_ [to , tl_, _*(t) = f(t, _*(t), u*(t))o

iii) Let t k> to denote the optimal time for the _k approximate

problem° Since R(t_ x9 _i ) _ R(t, x, E 2) _ ooo it follows that

I _ is a monotone non-drecreasing sequence of reals bounded above by
t_ k 6

tlo Let t* be its limit° Now ___k(t E ) _ S for each k, and
k

I I 6k tE k(t,x) _ S_ t _ t < tI is compact in E n+l, thus _ ( ) -----_ _*(t*)_ S.O

iv) Suppose ,_* is not a time optimal trajectory for the system

(3-1). Then there exists a measurable control u with values in U and

corresponding trajectory _( " _ u) such that _to; u) = Xo,

_(t3; u) _ S and t3 < t*o This implies that for k sufficiently large,

t3< t_k; but _( ° ; u) is an admissible trajectory to all q approximate

problems° This contradicts the optimality of o I
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This theorem essentially tells us that for sufficiently small £ ,

the optimal trajectories of the _ approximate problem are uniformly

close to an optimal trajectory of the original problem•

In the next section the "smoothness" which theorem 111.4 shows is

possible for the feedback control of the _ approximate problem, will

be exploited to obtain solutions°

Hamilton-Jacobi Theor_

Let the time optimal problem for (3-1) satisfy the Fillipov existence

conditions. Let x = h£ (t, x, v) denote an _. approximate system with

the properties a), b)_ c) and d)_ shown to exist in theorem III.4o For

the time optimal problem associated with the approximate problem we de-

fine the functions

H(t, x, p, v, _ ) - p. h 6 (t, x, v) - 1

H*(t, x, p, _ ) =_H(t, x, p_ v*(t, x, p), _)o

The inequality

(3-8) H(t9 x_ p, v*_)_H(t, x, P9 v_.) for all v E Bn_ v I v*

is a consequence of the definition of V*o

For the sake of completeness we repeat a short argument of Kalman (Ill

ppo 321-322) to show that for fixed _ _ O,

.h _H*(t, x, p, _ ) -p (t, x9 v*(t, x, p))
x x

H*(t, x, p, C: ) - he (t, x, v*(t, x, p))°
P

Indeed, we know that v*(t, x, p) _ _ Bn Sn-z= , thus let g(v) be a smooth

relation such that g(v) = 0 determines Sn-I in a neighborhood of v*(t, x, p).

Then gv(V*(t, x, p)) Vx(t x, p) = 0 and gv(V*(t, x, p)) v*(t, x, p) = Oop
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Noting that v* maximizes H(t, x, p, v, _ ), we consider this maximization

subject to the constraint v _ Sn-l, i.e., g(v) E O. The Lagrange multiplier

rule implies Hv + _ gv = 0 where _ # O. Evaluting this at v* and multi-

plying on the right by v_(t, x, p) and v_(t, x, p), in turn, gives the

required result.

If _, are solutions, respectively, to the boundary value problem

(3-9)

(3-1o)

h _x = H*(t, x, p, 6. ) - (t, x, v*(t, x, p))
P

p =-H*(t, x, p, _.) =- p. hE (t, x, v*(t, x, p))
X X

with boundary data X(to ) = Xo, x(tl) = xI, then (3-8) shows that

6

v*(t, _(t), _(t)) satisfies the necessary condition termed the maximum

principle, for being an optimal (open loop) control for the time optimal

problem of attaining the state x I from the state x° for the approximating

system.

It should be noted that under the conditions assumed, v* _ C1 and the

initial value problem for the equations (3-9), (3-10) with data given at t
O

will have a unique solution in a neighborhood of t o If v* is discontinuous,
O

this presents a serious difficulty in the application of the maximum principle.

With the (Hamiltonian) function H*(t, x, p, q ), E _ O and fixed, we

associate the Hamilton-Jacobi partial differential equation

(3-ii)
Vt(t,x) + H*(t, x, Vx(t _ x), £ ) = O.

Let the target S be a "smooth" n-dimensional, non-characteristic manifold

in the (n+l) dimensional (t,x) space, and prescribe the Cauchy data

V(t,x) = O, (t,x) 6 So The solution, in the classical sense, of this partial

differential equation problem, we denote by V _ ; the domain of solution by
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The characteristic equations associated with (3-11) are the

equations (3-9), (3-10). If a point (to, xo) is in _, S) there

exists a point (t l, xI) E S such that the boundary value problem con-

sisting of the equations (3-9), (3-10) with boundary data for (3-10)

being x(t o) = xo, x(t I) = x I, has a solution. The solution of such a

boundary value problem, when it exists, will be denoted by _, _.

From the continuity condition, for each E _ O, V:(t, _e(t)) exists

and satisfies equation (3-10)o (See for example[11 ). Thuswe

v (t,make the association _E (t) _ x

Let _-(C, S) denote the set of points (to, Xo)_ _(_, S) for

which t < tl; (t I xl) being the point on S joined to (to , x o) by ao--

curve _E . Assume (to, Xo)E _-( E, S). If we use the initial data

x(t ) p(t ) = V _ (to, Xo); by virtue of knowing a solution of the0 = XO' 0 X

partial differential equation we have the proper initial data to reduce

the previous two point boundary value problem for (3-9) and (3-10) to an

initial value problem° Thus to determine the trajectory _6 we can

consider the system

o \ V _ to(3-12) x = H'(t, x, (t, x); _ ), x( ) = x o
p x o

The major advantage of this method is that now v_ = v'(t, x, V _ (t,x)),
X

Joe°, a feedback control,

V e
Theorem III.6 (Kalman) Assume (t Xo)q _-( E, S); is the solutionO _

of the Hamilton_Jacobi equation (3-11) and _6 the solution of (3-12).

Then _E is a time optimal trajectory relative to all trajectories

_( • _ v) which connect (to9 xo) to S and lie in _(g, S)o
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Proof Assume, without loss of generality, that (to, x 0) _S.

From the definition of H, H* and V _ ,

0 =_ V_(t, x)+ V_x(t, x)" h_(t, x, v'(t, x, V:(t, x)))- l_V_(t, x) +

V£(t, x) .hE(t, x, v) - 1 for all veB n, v / v'.
x

Assume that t_ (t6 _ to ) is the first time such that (t6 ,_(t6 )) e S.

Let _6 denote the set of measurable control functions having values in Bn

and leading to trajectories of the _ approximate problem which connect

(to, Xo ) with a point on S and lie in _-(6, S). Then _6 is not empty since

x ) g_-(_, S) and _6 a characteristic implies(t
0 _ 0

I(t, _E(t)): to___ t --_t6 I is in _-(_, S)o If v*(t,_6(t), V_(t, _E(t))

is the only function (to within a set of zero measure) in _£, the result

is trivially true° If this is not the case let v = v(t) be any function in

_6 differing from v*(t, _6(t), Vx6(t,_(t))) on a set Aof positive

measure. Let _(- _ v) be the corresponding solution of the approximate

system and t2 the first time such that (t2,

We must show t_ _ t2o

_(t2; v)) £ S. (t 2 > t).o

Calculating

ddt V_ (t, _(t; v)) _ 1 _ V_(t, _t_v)) + Vx6(t,_(t;v)) ° h E (t,_(t;v),v(t))-l__O

for all t and strictly less than zero for t 6 A , implying

V e (t2, _(t2_ v)) - V£(to , Xo ) _ t2 - to ° But V £ (t2 _(t2; v)) = 0

since (t2, _(t2; v)) 6 S_ yielding -V 6 (t xo) < t2 - t o Similarly0 _ o

V6 (t,_wg(t))"_ - 1 _ 0 implying - V6(t xo) = t£ - t odt o' o

last two inequalities gives t£ • - t2 as was to be shown. I

Combining the



THE CONSTRUCTION OF APPROXIMATING PROBLEMS WH]_ THE CONTROL APPEARS LINEARLY.

Theorem III,4 gives conditions for the existence of an G equivalent

approximate problem which has the unit ball Bn as the set of values which

the control can assume. However, the functional form of the approximating

system is allowed to vary with _ .

In this section we consider a system of the form

(3-13) x(t) = g(t, x(t)) + H(t, x(t)) u(t),

u(t) _ U, a compact convex set in E r with i _ r _n; H an nxr matrix valued

C2 function; while g is a C 2, n vector valued function. For such systems

it is possible to provide a simple construction for _ approximate problems.

Since, for the approximate problem, one desires R(t, x, _ ) to be strictly

convex and lemma III.1 shows this implies non void interior, one is led to

extend H to an nxn matrix valued function and approximate the control set by

a compact set V(E ) which contains U. Furthermore, V(_) should have a non-

void n dimensional interior, a smooth boundary with positive Gaussian curvature,

and be such that in the Hausdorff metric topology, lim V(E ) = U.
E---O

The method of construction and the application to approximating problems

will be demonstrated in a two dimensional example; its generalization to

higher dimensions being immediate°

Example III.1 (Bushaw control problem).

Consider the time optimal problem for the system

(3-14)

o

x = x2
1

o

x =-Xl+U
2

with arbitrary initial data x(O) = xo, and target S = [(t, Xl, x2):
I

X_ = O, X = 01. The control u is to satisfy -1 -= u(t)_ I, i.e., U = [-l,lJ.
I 2 ;
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As an _ approximate problem we take the system

(3-15)
e

x I = x2 + v1

e

x2 = -x I + v2

with the same initial data and target, but with V(_ )

ioeo, an ellipse with semi major axis 1 and semi minor axis _ . Thus in the

Hausdorff metric topology lim V(@) = U, and _R(t, x, _ ) is smooth with

@-_0

positive Gaussian curvature° From the Hamilton-Jacobi theory

= _v_" Vl2+_2v 2 = 2_• 2 --_ '

H(t, x, p, v,_) = PlX2 + PlVl - P2Xl + P2V2 - io

Using lemma IIIo3 one computes

2 -_
v*(t, x, p* = (_2pl [_2p12 +P2 ] ' P2 [_2 2 2Pl + P2 ] -_

from which it follows that

H*(t, x, p, _ ) _ PlX2 - P2Xl + pl _2 + P2 2 ]

The associated Hamilton-Jacobi equation is

(3-16) Vt(t,x) + x2 Vxl(t,x) - x I Vx2(t,x) +[E2Vxl2
2 (t,x) ] -1 =0o

(t,x) + Vx2

Since the independent variables appear linearly, while the dependent

variable has derivatives which appear non-linearly, the Legendre contact

transformation is suggested° Let V(t,x) = W(t,p) - p- Xo Then V t = Nt,

V =-p, W = x and the transformed equation is
x p

2 2
Wt(t'P) - Pl Wp2(t'P) + P2 Wpl (t,p) + [C2 Pl + P2 - 1 = O.

The characteristic equations associated with this linear partial differential
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equation are t'(_-) = i, pi(_-) = p2(_r), p_(T-) = - pl(TO, yielding

solutions: t =_+_" , PI = @_sin (_-+_), P2 = _cos (_r-+_) with

d [E2p12(1-) + p22 (T)]_@_,/, _ arbitrary constants. Then _ W(t(_'), p(Y)) = i-

which, after a slight calculation, gives

+/(_- t)W(t,Pl,P2;_,Y) = t-_+_ [£2(p2 sin_- + PlCOST)2+(P2COSF-Plsin_)2 ]

0

For a time optimal problem with autonomous system equations and target a

a point in state space, the constant _ is inconsequential. We consider

= O and omit further reference to it.

By virtue of the transformation, solution trajectories to the system

(3-15) with v = v*(t, x, p) are given by x(t;_,/, _) = W (t,p(t;_,/);_)
P

or specifically

(_- t)

/ _e 2 sin(2_r-+_)cos_ - _cos (2_-+_) sin_-xl(t;
d_-"

[62 2 sin2 + oL2 cos2
0

dt.

( _- t)2

/ _ F. sin(2 _"+/(_) sin_-+ O(.cos (2 _"+_) cosT"
x2(t; _'/' _ ) [E2 _2 sin2(2 ,/-+_) + _2 cos2(2 _- +_) ] )_

0

d?"

These formulas can be interpreted as follows° If we choose _ > O and t = O,

0): (_l _) E _I gives the set of initial points x O from

which the origin can be reached in time _ by trajectories which satisfy

(3-15) with v = v*(t, x, p). In particular, it can be shown (via the theory

of homogeneous contact transformations) that the jacobian determinant
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"_ (x I , x2)
is zero, and in this case the set of initial points forms

a closed curve in E 2 for each_ • O.

To generate a field of extremals (it is to be cautioned that the term

extremal is to be taken in the sense of the classical calculus of variations;

ioeo, not necessarily to infer optimality) choose _= 0 and replace t with -t

in (3-17). For each choice of @_,_ one obtains an extremal which is at

the origin at time zero. Varying o_,_ now gives a field of extremals.
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SUMMARY

A method is presented for finding an extremal solution of launch trajec-
tories involving certain inequality path constraints. The method of solution
is an extension of a technique outlined by Denbow. Denbowhas formulated the
problem considering two or more intersecting admissible arcs; and by a suitable
transformation of the independent variable, these admissible arcs may be trans-
formed into a single admissible arc in the problem of Bolza. The transformation
leads to additional transversality conditions at the intersection of the arcs in
addition to the usual set of tranversality conditions at the final time.

The problem considered in this report is the maximization of final weight
and is solved numerically by the Mayer formulation of the calculus of variations.
The problem is represented by three arcs - two unconstrained arcs and one con-
strained arc due to the inequality path constraint.

The optimum control variables are obtained from the Euler-Lagrange equa-
tions while the trajectory is moving along the unconstrained arcs. While on
the constrained arc of the trajectory, the control variables are determined
from the constraint equation.
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Section I

INTRODUCTION

A method is presented for finding an extremal solution of exit phase
trajectories involving certain inequality path constraints. The example
problem considered involves determining the optimum control program to extre-
malize any desired functional of the coordinates (final vehicle mass). The
method of solution employed is an extension of the classical method of the
variational calculus as outlined by Denbow. Denbowhas shownthat two or more
admissible arcs can be transformed, by a suitable transformation of the inde-
pendent variable, into a single admissible arc in the problem of Bolza. The
problem of concern has three admissible arcs as shownin Figure 1. The results
of Denbow'swork indicates that at the intersection of these arcs certain trans-
versality conditions must be satisfied in order to insure an extrema over the
trajectory.

The matrix form of the transversality equation is used to determine the
necessary transversality conditions. In addition to the final transversality
conditions, certain other transversality conditions must be determined at the
intermediate points (corners of arcs) along the trajectory.

The equations of motion are written for a point mass in three-dimensional
space in an inverse-square gravitational field. The optimum control variables
are obtained from the Euler-Lagrange equations on the unconstrained arcs of the
trajectory and from the constraint equation while on the constrained arc of the
trajectory.

This report presents the solution to the problem as a result of the
application of Denbow's results.
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Section 2

MATH_4ATICAL FORMULATION

2.1 Statement of Problem

The problem may be stated as maximizing the vehiclemass to some given

set of end conditions through first stage flight. In addition, certain in-

equality path constaints are imposed on the trajectory. The statement "first
stage flight" entails the meaning of flight within the sensible atmosphere.

The particular constraint considered in this report is the product of the angle

of attack of the vehicle and its dynamic pressure. This type path constraint

gives an indication of the aerodynamic loads the vehicle will encounter; hence,

this constraint may be used to control the structural bending.

The method of solution chosen is an extension of a technique outlined by

Denbow, Reference 1. This method is essentially the classical calculus of
variations technique developed by Bliss (Reference 2).

Denbow has shown that the original problem may be transformed to an equi-

valent problem of Bolza (the Mayer formulation is used) by a suitable trans-

formation of the independent variable. This transformation takes the three

subarcs depicted in Figure 1 for our problem and combines them into a single

admissible arc. The results of Denbow's paper applied to the stated problem

lead to additional transversality conditions at the variable intermediate

points t I and tz .

q_

2.2 Equations of Motion

The equations of motion are written for a space vehicle traveling in an

inverse-square force field. Three degrees of freedom are used to describe the

motion about a non-rotating spheroid. The trajectory variables are defined as:

W_ Vehicle Mass

Inertial Frame Position

Inertial Frame Velocity

(2.1)

and the control variables as:

u I°]- X

Inertial Roll Attitude of Thrust Vector

Inertial Pitch Attitude of Thrust Vector

Inertial Yaw Attitude of Thrust Vector

(2.2)
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Time, t, is taken as the independent variable. The mass flow rate is constant

and the thrust vector, T, is assumed to be directed along the longitudinal

axis of the missile. In addition, roll effects are ignored throughout the

analysis.

The powered flight equations are then

× = (2.3)

where As, is the non-gravitational acceleration vector in the inertial frame.
The thrdst and drag are given by

- _ g% cV

Az¥ z x_

=___F

I":"-_r'

where

I

and _1 is the gravity vector in the inertial frame. The aerodynamic lift force
has been neglected in this formulation. The addition of lift would add ex-

cessive complication to the control equations and require supplemental iteration
to arrive at a solution.

For consistency in nomenclature, the differential equations of motion for

our problem will be written in the following vector notation.

,..t.

where _ is given in equation(2,3).
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and

is a _ -vector of known functions of XL_), _({), and _ , assumed :everywhere
differentiable with respect to _ and_ j

2.3 Mayer Formulation of Problem

The functional to be maximized, Equation (2.7) is written directly in

terms of the boundary conditions. Since the functional does not involve an

integral (as in the problem of Bolza), the problem can be stated using the

Mayer formulation of the classical method of the calculus of variations. The

Mayer formulation of the problem may be written explicitly as: In a class of

admissible arcs, XL_ ' satisfying the differential Equation (2.4)

and end conditions of the form

as well as the inequality path constraint

where _<T is the total angle of attack and _ is defined as the dynamic pressure,
find the specific arc that minimizes

_o
It may be recalled that the problem of maximizing final vehicle mass _yi_ is

identical with that of minimizing(-_$_.

The problem is shown schematically in Figure 1. The intermediate points

_ and _ , vary with each independent trajectory. The entry corner, _ , (point
where the trajectory goes from unconstrained arc onto a constrained arc) is

defined to be that time at which the product _ _ just equals to the maximum
allowable value. The exit corner (point where the solution goes from the con-

strained arc onto an unconstrained arc) is denoted by _2 • The criteria for

determining this time, _2 ' will be given in the Section on Control Equations.

By the calculus of variations technique, an extremal solution must satisfy

the following Euler-Lagrange equations given explicitly as

-___: o

].28
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where

is a vector of Lagrange multi

(2.9)

_lier functions and is the transpose of

The above Euler-Lagrange equations were derived explicitly through use of the

augmented function

2.4 Optimum Control Equations

(2.1o)

The optimum control variables, while on the unconstrained arcs (I and llI),

are found by solving the second set of Euler-Lagrange Equations (2.8) explicitly

for _ and T .

The optimum control variables, while the trajectory is on the unconstrained
arcs, are then found to be

T _.bA,,-I/( >,"_',,

When the vehicle is mov_g along the constrained arc TZ, one of the

control Eariables may be obtained from the constraint Equation (2.6). This

reduces the degree of optimality by one for flight along the constraining

arc. (Although strictly arbitrary, it was decided to solve the constraint

equation directly for % ).

The pitch command angle, _ , was solved from the constraint equation as
follows:

First, it was necessary to have the constraint equation as an explicit function

of the control variables. To do this, the constraint equation

]-29



was redefined as

" s_ _T _ _ _ -_ o

without loss of generality, since for small allowable _

(2.12)

Thus, the modified constaint equation is essentially unchanged.

constraining portion of the trajectory,

While on the

and a fundamental trigometric identity enables us to write

or

The total angle of attack, _T' , is defined as the angle between the thrust

and velocity vectors, which may be written vectorially as

•_ is the vector dot product

Cos _v - o ,,_ ,
/_1 I _a/ I I is the absolute value

or explicitly in terms of the control variables this becomes

__._-_ _?c..I.s_-._- s_./'i

By substituting the above equation into the modified constraint equation (2.12)

and collecting te_ms, a quadratic in _;.._ _ may be obtained_

where

Hence, the pitch command angle, _ , may be determined as a function of _ on
the constraint.
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To solve for the optimumyaw commandangle, _" , on the constraint, it is
necessary to modify the second set of Euler-Lagrange Equations (2.8). The
above Equation (2.13) is solved for % in terms of _ and substituted into these
Euler-Lagrange equations. Whenon the constraint, these modified Euler-Lagrange
equations maybe solved explicitly to give

T;!,../_-i-_.s_. c.;.'__?_-_. .,.,¢s.___s. ,) ........-- 0 (2._}•.,\ _-,_- j_ _.-,'-- ......s_c _ _

The two equations (2.13andl_4) may be solved by a Newton-Raphson iterative
scheme to obtain the control variables _I_and _ on the constrained arc.

As described in the Section on Mayer Formulation of Problem, the entry

time, _l , is thattime at which_ equals the constraint limit, L_.. Thus,
starting at time _.,_% will be determined from the constraint equation. The
criteria for determing the exit time, _, will be established as follows: The
exit corner time will be defined as that time when chi solved from the constraint

equation is equal to chi if solved from the Euler-Lagrange equation. Then, on the

unconstrained arb III _ and _ are solved from the Euler-Lagrange equations (see

Equation (2.11)).

2.5 Transversality Conditions

A method for determining transversality conditions was suggested in Hunt's

paper (Reference 3) and involved construction of the matrix shown in Figure 2.
The matrix form of the transversality conditions for the problem of Mayer was

formulated as follows

(a) Top Row

(A)

(B)

(c)-

Independent Variable (to)

The Dependent Variables (_) at _o

Next (A) and (B) are repeated for _ , _I ,

(b) First Column

(A) Initial Conditions

(c)

(B)

(C)

(D)

Boundary Conditions

_.._) of Mayer problem

Special Case - P_rtial Derivatives of augmented function,_- ,.

with respect to _L.

The partial derivatives of the Q column elements with respect to the
row elements were calculated to complete the matrix. The blanks

on Figure 2 indicate zero elements. The transversality conditions
are now determined from the augmented matrix by the relationship

that all determinants of order Q + 1 must be equal to zero.
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As the entry point, !i , and exit point, 12 , the evaluation of the deter-

minants results_in five independent transversality conditions relating the

changes in the k'S(denoted by A-_ ) across the constraint boundaries. For

the boundary points t, and [_ , the TVC's are

%_ _ _s - _ _ _ = o (2.15)

The Lagrange multiplier _, associated with the massdoesn't enter into

the equations and was omitted from the analysis. Another k may be set equal
to one due to homogeneity of Euler-Lagrange equation. This leaves five -k's

( k% %o k_ ) to be determined. Investigating the intermediate points, we find
that an additional transversality equation is available at these boundary

points, _, and __ •

From the augmented matrix, the following relations must hold:

Since the _-_ 's are not _,ero, these equations stipulate that

From the preceding section, it was seen that the constraint equation may
be written as:

where

This equations yields

_ _

Simple manipulations of the optimum control Equations (2.11) give the following
relations:

There for e,
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and

where

This gives

× .-

_sX_OST z k_

+

Substituting the necessary relations into Equation (2.16) and solving simul-

taneously, we obtain the following transversality condition valid on the
unconstrained side of points lj, and _.

- (2.171

It is interesting to note that this equation enables us to determine

A_6 or A_7 at point t_ from which the remaining _'s may be determined from

Equation (_.1%). Thus, all the TVC's at point t2 are trivially satisfied.

However, at the entry point, t_, the above TVC (Equation 2.17) is valid

on the left unconstrained side of the point. Therefore, we must isolate on one
of thee'Sat point _, from which the remaining A_'s may be determined from

Equation (2.1%). Equation (_.17) then remains as a transversality equation that

must be satisfied at the entry point, _.

A specified altitude and velocity was selected as end conditions for this

particular example problem. Velocity will be the "cutoff" criterion leaving

altitude as a transversality condition to be satisfied at the final time, _ .

This set of end conditions gave simplified final TVC's focusing attention to
the intermediate TVC's at _,and ±_. The remaining final TVC's are obtained

from the Transversality Matrix. The final TVC's are given in the following

equations.
TW CI)- - o

T VC (z) : _sT - X_Y = 0

TVC (_ = _X- k_ :o (_.18)

_VcC_) = __ _ : o
Summarizing the results above, we find that there are five transversality

conditions to be satisfied at the final time, t_ , and one remaining transver-

sality condition to be satisfied at the entry corner, ±,. Thus it is necessary
to have six adjoint variables that we can vary in order to satisfy these six

transversality conditions.

The total number of initial adjoint variables available at _o is seven.

However, one of these, namely _ , is associated with the vehicle mass and does

not appear in the transversality conditions and is omitted. One other
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may be set equal to one due to the homogeneity of the Euler-Lagrange equations.
This gives a total of five initial _ '5 that must be chosen. The sixth adjoint
variable free to choose is one of the _k'Sacross the entry corner, t, •

A systematic search routine is employedto determine the values of the
five initial _'_and the &_'_across the exit point in order to satisfy the
transversality conditions. By satisfying these transversality conditions, an
optimum trajectory for the entire first stage flight results.
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Appendix A

REFERENCEFRAMES

A description of the four coordinate frames used in the analysis is stated
below. The relationships amongthese reference frames are shownon Figure 1A.
It maybe noted that all reference frames are right-hand coordinate systems.

1. R-Frame This Reference-frsme has its XR -axis through the prime meri-

dian at the time of launch and its ZR -axis through the North Pole. The YR -axis
is oriented to form a right-hand coordinate system.

2. I-Frame This is an Inertial-frame centered at the launch site with

the XI -axis in the negative direction of the gravity vector, _, and ZI -axis
at a given azimuth from North. The orientation of the I-frame is found from

the R-frame by the following sequence of rotation:

(a) Rotation about the ZR - axis by the longitude of the launch

point,

(b) Rotation about the new YR - axis in the negative direction by

the plumbline latitude, -

(c) Rotation about the new_ S- axis in the negative direction by

the firing azimuth, -AZL;

The azimuth is measured in the plane normal to the local geodetic or plmnb-

line direction.

3. L-Frame This is the Local Horizontal (octangent)-frame which is

normal to the local geodetic or plumbline direction. The L-frame is transformed

from the R-frame by the following rotations:

(a) Rotation about the ZR - axis by the instantaneous longitude,_ .

(b) Rotation about the new Y_ - axis by _-_, where_ is the

instantaneous latitude.

4. M-Frame The origin of the Missile-frame is at the center of gravity
of the missile with the XM - axis forward along the longitudinal axis of the

missile. The negative ZM - axis is in the direction of aerodynamic lift. The
transformation is obtained from the I-frame by the Euler angle sequence of

rotation:

(a)

(b)

(c)

Rotation about the XI - axis by the inner gimbal angle, _ .

l
Rotation about the new ZI - axis by the middle gimbal angle, _ .

Rotation about the new Y" - axis by the outer gimbal angle,_.
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The three gimbal angles _ , _, and_ are the commandattitude angles.
They describe the orientation of the thrust vector in the I-frame.

The transformation matrices from one frame to another are given below.
These transformations are formed by successive rotations of the Euler angles
described in the preceding paragraphs. The transformation from R-frame to
l-frame, TR21, is time invariant (remains fixed from launch).

L J

m
-s¢ o (A.2)

F I

i,, ,/

c 'X c _

-sZ

S:_ el:

T'R2! '-r' !_.'_R

The transformations TRz_ , and T_u are determined in a similar fashion.

The inverse (transpose) of each matrix is

since all of the transformations are orthogonal.

(A._)

(A ._)
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ABS TRAC T

A three dimensional derivation is presented of the

equations and boundary conditions necessary to deter-

mine the minimum fuel orbit transfer path by optimizing

the thrust direction and duration. The formulation,

known as the Mayer problem in the calculus of variations,

yields a two point boundary value problem. A Newton-

Raphson method was used to attempt convergence of this

two point boundary value problem, but it was found to

be inadequate. However, with the final orbit unspecified

numerous solutions satisfying the Mayer formulation

were generated and then compared with the optimum

two-impulse transfer between the same two orbits.

This comparison is quite revealing; it shows first,

that for the restricted class of orbits examined the

optimum two-impulse estimate of velocity increment,

or fuel required is very good. Second, it demonstrates

that although the optimum departure and arrival points

obtained from the impu!sive and finite thrust solutions

may be quite different, the penalty in using the former

for design estimates may be quite minor.
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INTRODUCTION

w

In.this report we are concerned with the problem of moving a vehicle

between two arbitrary orbits in space. The orbits are assumed to have one

planet as a common focus which generates a uniform central gravitational

field, and the vehicle is assumed to be capable of thrust direction and on-off

control. We present a complete derivation, in three dimensions, of the

equatigns and boundary conditions necessary to determine the minimum-fuel

orbit transfer path by optimizing the thrust direction and duration, and the

departure and arrival points on the initial and final orbits. The Mayer

formulation' of the calculus of variations is used.

We turn to optimization procedures for finding the transfer path for

three reasons: First, the problem of realistic minimum fuel requirements

for space maneuvers is one of extreme importance. Second, for the

purposes of design studies based on impulsive transfer, it is necessary to

know the error made by the assumption of impulses. Third, the optimiza-

tion technique gives an organized and general way for finding a transfer

path; it is a procedure that is of significance no matter what quantity is to

be extremized, since it provides a suitable steering program to accomplish

the desired mission.

Selection of the optimization technique is primarily decided by what

has been reported in the literature, and the experience of the investigator.

Either the indirect method-use of Lagrange multipliers-or the direct

method-steepest descent-can be used. Reference (2) reports a successful

application of the Mayer formulation to the problem of boosting the

maximum payload into orbit with a high thrust engine. Reference (3) also

uses the same method successfully on the problem of coplanar orbital

transfer with very low thrust engines. Both applications utilized the

Newton-Raphson method as the principal iterai_ive technique for solving

the two-point boundary value problem. These reports were the main

factors in this selection and in the initial approach to the two-point boundary

value problem used in this study.
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I. EQUATIONS OF MOTION,:-"

The kinetic energy per unit mass is:

p = 1/2 (r 2 + r 2 2 82_Z + r cos _2); see Fig. 1

The potential energy per unit mass is:

v = :! (_ = KM
r earth )

The Lagrangian, L = P - V:

_2 2.2L = I/2 ( + r @ 2 2O _2_ ++ r cos 7. ; --
r

The three second-order equations of motion are obtained from:

d 8L 8L
-- __ Q. ,

dt 8_6i 8 qi i

i = I-3,

where the qi are r, 8, and 9- The Qi are the generalized force and

moments due to the thrust, T:

T
Q =- cos _ cos v

r m

T
=- r sin _bQ0 m

T

QO =--m r cos __ sin v cos O

Thus, the three second-order equations of motion are:

•- -Z 2 .2 tL T
r - r O r cos 0f +

Z m
r

COS _ COS V (1)

2 .2
___d (r 2 _) + r cos O sin 0
dt

T
:-- r sin

m
(2)

*See also references 4-6.
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d (r 2 2 T
d-'t" cos 0 $) = --m r cos _ sin v cos 0 (3)

We want the thrust, T, to be either on or off. Hence, we define T = c _,

where c = an effective exhaust velocity, and _ = mass flow rate.

Check dimensions: =F=MLI J2' c_ -- T " T
T

IT

Expanding (2) and (3), and noting that we cannot have 0 = ± 2 we get the

following seven first-order equations of motion, where new variables p , x,

y are defined as indicated:

wl_r-p=O (4)

w2-- O-x=O (5)

w3 - _- y = 0 (6)

2 2 2 _ c_
w 4 = _ - r x - r cos O y + Z m

r

cos _ cos v = 0 (7)

w
z c#

5 = x + Z pXr + cos O sin O y - --mr sin _ = 0 (8)

Z p y c_ cos _ sinv
- gtan@ • xy +

r mr cos O
-0 (9)

w - m + _ = 0
7

(IO)

The optimum path (for rain. fuel expenditure) that is to be found must

satisfy the equations of motion, and this is represented by constraints,

w i = o, i = I-7.

There is one further constraint to be added: We require the thrust to

be on or off--no throttling. This is expressed by:

w 8 _= ff (j3 - Pmax. ) = 0

1 f
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Hence, problem variables are:

Dependent

Dynamic and kinematic

r p

0 x

¢ y
m

Control

V

Independent

Denoting all dependent variables by z, the constraints can be expressed as:

w.1 = z.1 - f'l (zj) = 0 i = 1 -8, j = 1 -10
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II. DERIVATION OF OPTIMIZATION PROBLEM*

A. Since the quantity that we want to minimize only enters in the

boundary conditions (we use the Mayer formulation of the calculus of

variations), let us first obtain the Euler-Lagrange equations associated with

the control variables _, v, _.

17 = ki (t) w i (zi' zj)

Require :

d 8F 8F
-0 z. = v,_, _

dt 0z. 8z. 1
1 1

8k.w. 8w.

OF - 0 .." ) _ = k - J - o
8_. Oz. j Oz.

i I i

I.) Z = V

(c cos,co  )0k 4 cos _ sin v + k6 mr cos 0

cos _ cos v] 0
C_ k

cos _ sin v - k6 cos 0m 4 r

If _ = 0, then T = 0 and _ and v have no meaning, and we simply compute

the ki(t) by a closed-form solution which is given in Appendix A. For

_ 0, and c and m # 0 for all t:

k 6 cos w ]cos _ k 4 sin w - r cos 0 = 0

1T

;.Either _ = ±--2 ' or tan w = k

k
6

r cos @
4

k k r cos 0

6 4 (12),
.'.sin v - ±D , cos v = :h D

V V

(11)

(13)

':'-See also references (7)-(9).
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where

I

V_/k 2 2 2 2D
v = 6 + k4 r cos @

Note: From equations (7) and (9), that if _b = ± 7r/2, the v terms drop out,

as expected on physical grounds.

2.) z=_

[_ ] [-c_ ] [C_ sin _ sin vl= 0k 4 sin _ cos v + k 5 _ cos _ + k 6 ' m-_ c-os

If _ = 0, then the argument is the same as above. For _ _ 0:

k 6 sin v]sin _ r k 4 cos v + cos 0 " - k 5 cos _ = 0

Insert (12) and (13) for sin v and cos v, and collect terms:

cos :0sin _ cos 5

k cos e

sin__ = tan _ - 5
cos _ ± D

V

(14)

3.) z=_

[-c ]k4 m cos _ cos v - c sin _] + k+ k5 mr - C COS _ sin v]6 mr cos 0

+_7('_+__[(_- _m_ + _] =o

This equation yields k 8' but it is of no significance in this problem.

B. To reconcile the sign ambiguities in I.) and 2.), above, and to

determine when _ = 0, _ = _max.' we turn to the Weierstrass necessary
condition.

(15)
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I.) This condition states that for a minimum, E >i 0:

E = F (Z , Z ) - F (Z., ) - ,_ (Z - )
i i i i _ i i _.

i i

Z i differs from Z i by a finite, but admissible amount.

The only variables which admit of such strong variation are v, 4, and

_, where, for example:

, = , or , + _; v = v or u + _; _ = 0 or _max.

Now, the third term in E is identically zero since there are no constraints

involving _, $, _.

E = k i(t ) w i (Zj , Z i ) - ki(t)w i (Z j, Zi ) >i 0 j, i = 1-8

..... .. )]E =_i(t) #.[ - f. (z'_
1 j

k (t)I,i#.i - f. (Z)l J /> 0
1 z j

E = ki(t ) fi (Z.) - k.(t) f (Z.)j i i j
0

or

k i(t) fi (Z .)J

Applying (16)we get:

k4 I-_ - cos,cos v I + k

+ x 7 (- _) + k 8(- _[_ -

+k
5 I-_r sin

>i

Note, first, that the k

15o

ki(t) f. (Z.)1 j

(cIB ] (c]3 cos, sin w I5 _ sin, + k6 mr cos @

_max] ) >i k 4 cos , cos v

[c_ cos, sinv 1+
k6 mr cos @

+ k

+_'8 - _ (_ -

term = O.
8

(16)



Now, factoring out a _ and _* yields, in the notation of ref. (8):

_k- _ k >i 0

whe re

k
= __c-(k cos _bcos v +--5 sink +

m _ 4 r

k 6 cos qJ sin v\

r cos 8 /- k

, - ; -For k = k , _ _ _* k (_ _"_) >i 0

If k > 0, then _ > :=> _ =
max

If k < 0, then _ < _*==>_ = 0

Thus, we have the engine on-off criteria.

For _ = _ , k _ k';

k
5

k cos kb cos v +--
4 r

k 6 cos _ sin v ,

sin d/ + >i k 4 cos qbr cos @

k 5 ":'- k 6 c o s _* ;:..

sin _ + sin w
r r cos @

Hence, (18) becomes

k 4 cos d/ cos v +

k 6 cos d/ sin v

r cos 0
>t 0

7

COS V

(17a)

(17b)

(18)

Using (12)and (13):

cos d/

2 2 Z 2

k 4 r cos 0 + k6

i D r cos 0
V

> 0
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or,

V >

cos _ r cos e -
0

- 1T 1T

Since r > 0, and--_ < 0 <-_- , the above yields

+ D, cos q_ > 0
V

- D , cos qJ < 0
V

]
(19)

Physically, we will most probably be confined to

-- gr-Tr < qj <--_+ D
2 2

_I-" -,-" "%"

b.) v = v ; 0 # qb _ _ = d# or _ + _ (= qb )

From (14)and (19):

k cos @
5

tan q_ = - + D
V

k cos 0
5

sin q_ = ±D , cos q0 -

±D
V

+D
(20)

where

From (18) again:

k
4

= _D 2 + 2 2Dqj v k 5 cos

cos _ cos v +
k 5 sin q_ k

+
r

cos qJ sin v
6

r cos @
>_ 0
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Substituting (1 Z), (13), and (20) and clearing yields:

±D

> 0
r cos e

Again, since r cos 0 > O, this requires + D_

C. There is a first integral, since the Lagrangian, F,

involve time explicitly.

×.(t) w. (_., z.)

8 F Ek : C; 1 1 I _ Ek = C
8 _k 8 {k

a (;.. - f. (z.))

k i(t) 1 1 _ _'k : C
8 _k

doe s not

(Zl)

Hence,

kl;- + kz_ + k35 + k4f5 + k55¢ + k6_r + k7r:n = C
(22)

D. Boundary Conditions

The boundary conditions to be applied come from two sources:

implied by the physics of the problem, and the remainder from the

transver sality condition

8 F . 8_____ dz k : 0,d G + (F - 89.---_ Zk) dt + 8_k
0

Those

(z3)

where G is the function to be minimized.

I.) To clarify the derivation of the boundary conditions, let us first

consider that the two orbits are coplanar. We reiterate the problem: Find

the minimum fuel path to transfer between two coplanar orbits by optimizing

the thrust direction (v) and duration ("Bang-bang" control). The departure

and arrival points on the initial and final orbits are not specified, but the

total time of transfer is specified. The geometry is shown in Figure Z.

153



I

X3

X3

INITIAL ORBIT

TRANSFER

ORBIT

Xa

FINAL ORBIT

Xl

FIG. 2. TRANSFER GEOMETRY



Thus, we have a system of I0 first-order differential equations for

the variable s :

r, @, p, y, m, k I, k 3, k 4, k 6, k 7

This system thus requires 10 boundary conditions. The seven specified bythe

physics of the problem are: (i = initial, f = final).

Pi (or h.1 )' e.1 (or Ei )' _°i' m.l

pf (or hf), ef (or Ef), 0_f (24)

p, e, ¢o are semi-latus rectum, eccentricity, and argument of perigee,

respectively, h and E are angular momentum and total energy.

We derive the three remaining conditions from Equation (23) and thus

we are obliged finally to select the quantity to be optimized. Since we wish

to compare our results with minimum impulsive orbital transfer, let us

consider minimizing the characteristic velocity,

m.

1
G =cln--

mf

Equation (23)becomes, utilizing (Z2);

+ Im.
1

k7] dmi + [- C dt + kl dr

+ k 3 d@ + k 4 dp + k f T6dY = 0
0

(25)

Since m i is specified, dm i

unknown. Thus,

T
= 0. Also, dt]

0
= 0, which implies C

c
k =-- at t = T

7 m
(26)

This is our eighth boundary condition. The remaining two come from

kl dr + k3d_+ k4d p + k6dY I T = 0,
0

(27)
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where we use orbit equations to relate the differentials in terms of the given

parameters p, e, and w. To do this we note:

P = f(_) (24)
r = 1 + e cos (@ - co) -

dr = f'(_) d_

2.2
E/m = I/2(_: 2 + r _ ) --- (29)

r

.2 2.d(E/m) = {:dr + _ rdr + r _d_ + dr = 0

r

h/m = r _ (30)

2dd(h/m) = 2r _dr + r ¢': 0

Expressing all the differentials in terms of dg, the two boundary conditions

then are

k4 .2 2k6_

-- + k = 0, at t = 0, Tf'(_) kl _ (- re + ) - r 3
r

These two equations can be put in a more revealing form. Substituting _ and

from the equations of motion, we find

k sin v ]
_ c_ 6 + k cos v at t = 0, T

bkl + _k3 + P'k4 + _rk6 m r 4

Utilizing Equation 17 from p. 9, with _ =" 0 and k 5

right side of the above equation is

- 0, we see that the

_k+ _k 7' or

=_kat t = 0, T (31)

This thus identifies the constant, C (Equation(ZZ))as equal to _k at the

end points.

Further, if C _ 0 at t = 0, (31) implies that k(0) = k(T).
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2. } We can now proceed to derive, rather succintly, the boundary

conditions for the three dimensional case. The problem requires fourteen

boundary conditions since there are fourteen first order differential
conditions for the variables:

r,@ , ¢, p, x, y, m, kl, k2, k3, k4, k5, k6, k 7.

The physics of the problem now yields eleven conditions while the trans-

versality (Equation (23)) yields three, exactly as in the planar case. The

additional four physical constraints are that the vehicle's position and

velocity are to be in the specified initial and final planes.

We list the fourteen conditions in terms of their origin:

(a) From the final point (t = T), there are five: By choosing the final

plane to have zero inclination the two additional constraints at the final point

are simply e(T) = 0 and {)(T) = 0. The other three are Equations (28),

(29) and (30) applied to the final point.

(b) From the initial point (t = 0), there are six: One of the six is the

specification of initial mass, while five are orbit equations. The initial

orbital plane is taken to have an inclination i and to have its ascending node

on the x 1 axis as in Figure 2. The departure point angle called _b1 in

Figure Z is replaced so that ¢ represents the angle in the x 1, x z plane as

in Figure 1. The five orbital equations may be taken as: Equations (28),

(29), (30),

sin ¢: tan 0 cot i, (33)

and

2 20 hyr cos = -- cos i.m (34)

(c) From the transversality condition, there are three:

C=--att=T
7 m (35)

is obtained exactly as before.

and

k I dr + k Z de +

The remaining two equations are:

3 d_b + k 4 dp + k5 dx + k6 dyl =
J t=0

k dr + k 3d¢ + k 4dp + k 6 dy] t = T = 0

(36)

(37)
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In addition it should be pointed out that just as in the planar case
Equation (36) and Equation (37) are equivalent to

13(0) k (0) = C (38)

[3(T) k (T) = C (39)

Finally, for use in computation it must be indicated that equation (36)

along with the total differentials of the five orbit equations (28, Z9, 30, 33,

and 34) constitute a set of six homogenous equations, the determinant of

whose coefficients is the required relationship. This is the generalization of

Equation (3!) for the initial point. For the final point the generalization is

the same as in the planar problem.

E. Corner Conditions

The points at which the thrust goes on or off give rise to dis-

continuities in the Zk" The mathematical criterion needed to join

different positions of the extremal arc is supplied by the Erdmann-

Weierstrass corner condition:

or

Xk _ = k k +
(40)

8F _k = -F + 8£ k-F + 8_ k _ +

or_

C = C
- +

(41)
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We observe that any of the seven conditions which comprise (40) would

not apply if the value of the physical variable were specified at the dis-

continuity. Similarly, (41) would not apply if the time of the discontinuity

were specified.

F. Euler- Lagrange Equations

Here we write down the differential equations for the Lagrange

multipliers, which come from the Euler necessary condition in the calculus

of variations :

d-_ - 8z----k O; z k r, O, 9, p, x, y, m
(42)

F = X.w. = X (t)t [_ - f (zi)]lJ J J J J

af.

d __/. }
d--_ (kj(t) 5jk ) : - kj Oz k (z_

0f.

kk = - k. J
j 8 z k (z_)

(43)

Using equations (4) - (10), equation (43) yields:

2 2 2 2_ ]kl - k4 x + y cos 0 +---_-
r

k

5 [2p x2
r

C_mSin _ ]

x 6 f

2 [2p y
r

c _ cos _ sin v ]
m cos 0 i

(44)

k
2

2ry2 2
k 4(- cos 0 sin O) + k5y cos 2 0

- x6 2 c_ I2 x y sec 0 + _ cos _ sin v tan 0 sec 0
mr

(45)

k3 = 0 (46)
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2 k5 x 2 k6 y
k4- kl + +" (47)

r r

k5 = - k Z - Zr x k 4 + r - Z k6 y tan 0 (48)

2

k3 - 2ry k4cos 0 + 2 k5 y cos O sinO- 2 >'6 Ix tan 0-_] (49)

[ c c k5 sin qa c k6 cos qasin v

k7 - m[m k4 mr rnr cos 0--- -- cos _ cos v + + (50)

or_

1,k7 m 7

from Section II-B-I.

G
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III. ITERATIVE METHOD

The equations (4) - (i0) and (44) - (50), plus the control equations for

the switching function, k, and the steering angles, _b and v, are a set of

differential and algebraic equations whose boundary values at t = 0 and

t = T must meet the specified conditions at those two points. We are thus

faced with the well-known two-point boundary value problem. The Newton-

Raphson method, and a "Matrix Modification" technique were selected as

the first iterative techniques to attempt convergence of the two-point

boundary value problem. Both these methods are fully explained in

reference (2), and only a brief description of the convergence characteristics

of this method on this problem will be given here.

The iterative techniques have so far been only applied to the coplanar

case because it was felt that until a fast and reliable method was available

for that problem it was rather hopeless to tackle the three-dimensional

case. Reference (3) reported success with this technique for low-thrust

engines, but in this case when the thrust-to-weight ratio (T/W) is between

one and ten, it does not seem to be able to handle the problem. One

comment about a T/W of ten is in order; the iterative procedure begins

by first obtaining the optimum two-impulse transfer. We then have the

optimum departure and arrival points, velocity increment necessary, time

for the transfer, and initial and final thrust direction. Hence, if we

assume an engine with a T/W = I0, we have almost an impulsive vehicle,

and if the final time is set equal to the impulsive time for transfer plus

the time necessary to burn fuel yielding a velocity increment equal to or

slightly greater than the impulsive solution, we can expect that the

finite-thrust solution will be very close to the impulsive solution in all

respects. Once this one has been obtained, we can then proceed to

decrease the T/W to 8, 6, 4, etc., obtaining solutions for all these, until

we are down to precisely the engine in which we are interested.

Now, the Newton-Raphson method applied to the coplanar problem

has the behavior of converging on the transversality condition first,

equation (31)_ and then keeping that satisfied, move very slowly towards

meeting the orbit conditions, p, e, and ¢0. The conclusion, so far, is

that the method is inadequate for this complex and sensitive problem.

However, several modifications of the method, and its use, are being

studied, and it may yet prove capable. If not, other iterative methods for

handling the two-point boundary value problem are being studied, and will

be tried if the Newton-Raphson proves conclusively unsatisfactory.
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NUME RICAL RESULTS

In the introduction to this paper, three reasons for turning to optimi-

zation procedures for the solution of the minimum fuel orbital transfer

problem were given. This section gives an indication of the answer to the

second statement; i.e., the comparison with two-impulse orbital transfer.

The answer is not conclusive since the switching function time history was

restricted to one coast period, and the second burn period was terminated

as soon as

k (t) = k (0) ; see equation (31).

Thus, a rather restricted class of initial and final orbits was considered;

all orbit pairs intersected, and in'most cases the intersection was quite

shallow.

The following table presents some of the results gathered from this

restricted comparison. The first column is the thrust-to-weight ratio at

the initial orbit; for example, a vehicle of I000 slugs mass, with fuel-flow

rate, _, of 1 slug/sec. , has a specific impulse of 300 sec. if the

(T/W)i = . 7118, at a distance of 6058 miles from the center of the earth.

In the second column, the percentage difference in velocity increment is

given; V F = c in mi , and V I is equal to the total velocity increment

from the two-impulse minimization. Total A¢, in the third column was

computed as follows:

Total _= I_i,F - _i, II + I_f,F - _bf, II

Thus it represents the total deviation in the departure and arrival points

between this finite thrust solution--subscript F--and the impulsive solution--

subscript I. The last column gives an approximation to the penalty in

velocity increment, or fuel, if the departure and arrival point of the

impulsive solution is used instead of the points specified by the finite thrust

solution. This estimate was obtained in the following way: Reference (1)

presents contour maps of minimum transfer velocity ona _i,_fPl°t" By

differencing the value at (_i, I, _bf, I) with the value at (_i, F, _f, F), and

dividing by VI, we obtain an estimate of the penalty in velocity, or fuel, that

would be incurred. We emphasize that this is an approximation; but in view

of the results in the second column, it is probably a reasonable one.
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Finite Thrust Versus Two Impulse Comparison

(T/W)i (VF - VI) 102 Total A_, deg. A____V102 Penalty
V I VI

I0 .086 20.0 .135

I0 .136 26.3 .410

8 .203 21. I .352

8 .236 27.9 .401

6 .143 18.7 .365

6 .501 29.8 .685

4 .278 34.4 .874

4 .354 32.2 .247

2 .224 24.8 .611

2 .293 28.7 .631

.7118 .095 72.8 i. 89

•7118 .194 13.0 .407

We observe from the first and second columns, that if orbit transfers

with realistic vehicles are restricted to be completed in one orbit, then the

time constraintDobtained from the impulsive solution--placed upon these

finite thrust solutions is also realistic, and, ipso facto, the fuel requirement

for the transfer obtained from the two-impulse solution is a very good

estimate of that which would actually be needed. This is, of course, with

the assumption that the finite thrust transfer vehicle departs and arrives at

the proper point, for we see that the discrepancies in_i and _ f can be quite

sizable. However, from the fourth column, we note that the penalty in fuel,

or velocity, for using the optimum _i, _f from the impulsive solution rather

than those specified by the finite thrust solution may be quite minor; however,
this was a rather restricted comparison, and a good deal more numerical

results are necessary before any even tentative generalizations in this

direction are possible.
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CONCLUDING REMARKS

The Mayer formulation of the calculus of variations has been used to

derive, in three dimensions, the equations and boundary conditions necessary

to determine the minimum fuel orbit transfer path by optimizing the thrust

direction and duration, and the departure and arrival points on the initial

and final orbits. The closed-form solution to the Euler-Lagrange equations,

which apply along the coast arc has also been derived, rather explicitly, and

has been verified by some of the numerical integrations indicated in the

preceding section.

The numerical results section is considerably leaner than desired.

One conclusion, therefore, is that the multivariable Newton-Raphson

iteration technique is inadequate for this complex and sensitive problem.

This is a useful, albeit frustrating result. A more gratifying result is the

favorable comparison of two-impulse and finite thrust orbit transfer

solutions. Restrictive as it is, it should be of interest to design personnel,

for it is the first proven indication, to this writer's knowledge, of the real

utility of the impulsive solution and how much a design based on it differs

from the optimum.

It is hoped, and rather optimistically felt, that one of the iteration

techniques currently under study for solving the two-point boundary value

problem will be effective in this endeavor. With this accomplished, an

unrestricted variety of problems with an equally unrestricted genus of

propulsion systems will be able to be expediently solved. The two-impulse

solution is obviously not universally a good estimate for design, or even

applicable. When low-thrust ion or nuclear propulsion systems are being

considered, and interplanetary transfers are being studied, it will be

distinctly advantageous, if not imperative, that the capability begun herein

be a reality.
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APPENDIX A

SOLUTION TO EULER-LAGRANGE EQUATIONS DURING COAST

With the thrust off (_ = 0), the equations of motion are

• Z _ (AI)
_" = r_ 2

r

rl/; = -2 /:_ (AZ)

for coplanar orbits. The solution to these involves four arbitrary constants;

Pc, ec, _0c - the elements of the coast orbit - and _c, the angle at which the

coast is begun.

The Euler-Lagrange equations are:

2x 6_
l = -k + -- (A3)

4 1 r

Zk 6 r
= __ (A4)

i 6 -k 3 - 2k 4 r_ + r

Fir st,

k I - _

= 0; k = k at beginning
7 7 7

of coast (A6)

change the independent variable from t to 9:

, 2×6¢
k 4 _ = -kl +--r (A7)

, 2_
- -- k (A8)x 6 _ = -×3 2rSx4 + r 6
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Putting (A5) in (A7), and collecting terms, yields

k4_r - K4¥ - k3_ + C - k 6 . r +

The solution to (AI) and (AZ) is given by

_. °

r _ = h

0 (A9)

r

Pc

I + ec cos(,- c )

We find r by

Z he
r c

r - _ e sin (_ - _o ) _

Pc c c Pc

sin (9_ - ¢0 )
c

From (A2), 2r_ + $ = 0; thus (A9) becomes
r

°°

k4r k3 G

Defining true anomaly as @ ---.@ - 0_c, and using @ as the independent

variable, we get upon substituting the equations of motion solution:

3
k3P Cp__dk 4 k cot O

dO 4 h e sin @
h fi e sin'0 [i + e cos O]2

where the subscript c is now omitted.

Substituting the orbit solution in equation (A8) we get

2

d k 6 k6 Z e sin 0 -k3 p Z Pk4 (O)

dO 1 + e cos O h[l + e cos 012 l+ecosO

(Al O) ,

(Al 1 )_:"

(AI2)

We note the singularity in this equation at @ = 0, _, and that the limit

approaches ±a0on opposite sides of the singularity; the handling of this is

discussed below.
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We obtain the solution to (All) first.

f dk 4 _
k

4

The homogeneous equation is

fcot0dO

k 4 = K 1 sin 0
(AI3)

Applying variation of constants, we insert (AI3) into (All), letting K 1

K 1 (8).

Kl(8) -

C 1 C 2

2
sin z 8 sin 8 [I + e cos 8] 2

3
k3P Cp

where C 1 - he ' C2 - h Z e

KI(8) = -C 1

Letting u = [I + e cos 8]

cot8+C 3 -C

-2 Z
, dv = csc

f d8
Z sin z 0 [i + e cos 8] Z

0 d 0, we get

(AI4)

fudv = -cot 8 [I + e cos 8]-2 j

£ cos 8 d 8
+2e

[I+ ecosO] 3

Using ref. (I0), we find

2e f. cos 8 d O
[I + e cos 0l3

r
e | sin 0

(I - e Z) [(I + e cos 8) + /[-a e+c°sO]dO- 1[I + e cos 0] 2

Multiple use of #317 and #309 in ref. (i0) yields

f d0 1 [ -e sin0 2
- +

(I + e cos 0)Z (I - eZ) i + e cos 0 i_'_- e 2

- i tan Z 6)
tan 1 + e

where -_r < 8 < _ and 0 _< e < 1 - elliptical transfer orbits only.
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Again, using #315 and #309 we obtain

f cos 0 d 0
(1 + e cos 0) 2

Collecting terms we get:

f d 0Z
sin 0 [i + e cos O]

= - cot 0 [I + e cos -"OJ
Z

-Z

r
e i sin 0

+ L1 - e Z) (1 + e cos O) 2 I(1 e 2) 1

- e sin @

+ e cos 0

Z -I

+ ./_ Z tan
vl - e

tan 1/Z 0 I + 1 (.I + e I _e Z

sin @

1 + e cos O

2, e

V_I - e Z

-I q_l - e Z
tan

i

tan 1/Z 0

+ e + C 4 [ L + C 4

(O) = -C 1 cot O + C 3 - C 2 (- cot 0 [1 + e cos O]

-Z

+
e Z [ sin 0 O)ZI - e (I + e cos

sin 0 e 2+ [z +1]
(1 - e 2) (1 + e cos O)

6 e

(1 - eZ) 3/2
_1])tan (ARG) + C 4

Defining the constant C 3 - C Z C4 _- KI' we have:
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k4(e) = - C
cos 0 + K

1 1 sin 0 - C2. sin 0 (- cot 0 [ 1 + e cos 0]

-Z

+
e

Z
1 - e sin 0 O)z(I + e cos

+
sin 8 (Z e Z + I)

(1 - e z) (1 + e cos O)

6 e tan -1 (ARG)])
(1 - e Z) 3/2.

(AI 5)

wher e

Z
V_l - e tan 0/Z

ARG -
1 +e

and K1 is determined such that k 4 (q c - 00c) - k 4 (0c) is satisfied.

Turning now to equation (A1Z), we have for the homogeneous solution:

k 6 = K z (I + e cos 0)-z

Using the form (A14) for K 1 (0) in the equation for k4 (0), substituting the

homogeneous solution for k 6 (O), above, into (A1Z) and considering that

K Z = I<2 (O), yields the differential equation for K z (O):

! !

K Z (0) [I + e cos 0] _2. _ 7.p [I + e cos 0] -I= - C 1 [1 + e cos O] -Z

Z

d 0 " C 1 k3Ph
C 1 cos O + C 3 sin 0 - C Z sin 0 , -

sin 0 [1 + e cos O]

Thus,

[K Z (8) = - C 1 - 2 p [I + e cos 0] - C 1 cos 8 + C 3 sin O

f do ]C Z sin 0 Z
sin 0 [ 1 + e cos 0] Z
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Now-

!

f[-c l _z p [1 +e cos 0] - C 1 cos e + C 3 sin 0)] dO

= 2 p (C 1 sin 0 + C

eC eC
1 3 2

cos 0 + Z sin 0 cos 0 - Z sin 0) + C 5
(A1 6)

Finally, we need:

Let:

ZpC 2 fsin 0[1 + e cos O]

f d 0U =
• 2 g

sin 0 [1 + e cos 0]

sin Z 0 [I + e cos O] Z

dv = sin 0 [I + e cos O] d 0

e 2

v - cos 0 + "7 sin 0

(AI7)

fu v=d uv - f[-cos2 0 + e/2 sin Z 0]
sin 0 [1 + e cos 0] Z dO

udv = uv + Z
sin O [I + e cos e] Z --2-

For the first integral let

y = e cos 0

dy = - e sin 0 d 0

dO

+ e cos 0 1 Z

Y

J 2 2
Ve - y sin 0 =

Vfe Z 2
-y

e
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Now, let

Z

Z
Y

Then:

. cos 0 d 02
sin 8 [1 + e cos 0]

= l+y;

whe re

2
Z _ -- Z

2
= z -2z+l

= - e
2

f cos 0 d 02 2
sin 0 [ 1 + e cos O]

2
+2z + e -I,

f ydyz z z 3/z
[l+y] (e -y )

(z - 1)d ze _ 3/Z
z Z

z = l+ecos@

Using reference (10), #190 and #197:

. cos 0 d 0 fZ Z.= -e •
sin 0 [1 + e cos O]

d z

3/z
zZ

+ e , d z
z 2 Z3/2

(e 2 ZI/Z + z + 2e - 1 f d z ( 3 ),)z Z 1/2 1 + "(e 2- I

+ 3 3/2 I+ 2
Z e -

+ C 6

whe re

. dz 1 -1
z Z 1/2 - _ sin

z+ (e z - 1))Z e

(A1 8)

and

f dz z-1
Z 3/z ez z I12

Iyl



Thus, from previous results in k4(0)and collecting the above, we find:

KZ(8) : (AI6) + z p c
/uv _ (AI8) _e

Z
•t Z

1 | - e sin O

t(I e z) 1 + e cos 0

Z -I - e tan 0/2 + C

+ V/I - eztan I +e 7

(A19)

where u and v are defined below equation (AI7).

Collecting terms, we get:

k 6(0) = [I + e cos O]

eC3 2
+ -- sin

Z

+

[_ e C l
-Z -- sin @ cos 0

Z + gp(C 1 sin 0 + C 3 cos 0 + Z

( e Z8) + Z p C z [L + C4] [- cos 8 + _'sin 8]

e _- i I + _ _ -{IZ +
z e 2 1 z Z 1(e Z- i) Z I/g + 1 eZ

I ,)]e <es n0+ 3 Z3/Z _ 1 + g ' + Z - 1 + e cos O
e - 1 Z(I-e )

+ 2 ,_/1 - e 2 tan (ARC]
(AZO)

We note that the constants C 3 and C 4 appear explicitly in (AZ0).

eliminate this, we consider all terms containing them, namely:

To

C e C 3 Z \ e 2Z p cos 0 - Z sin O + Z p C Z (- cos 0 +-_sin 0)) C 4

= C 3 (2 p cos O - p e sin

Z Z

O) - C z C 4 (Z p cos O - p e sin 0)

Z

= K 1 p (Z cos 0 - e sin 0),

where _I is the constant we determine from the initial conditions on k4(8).
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" _6(0) = [1 + e cos O]

Z

+ IK1 p (Z cos 0 - e sin

e
+.--

2
e - 1

[% ( eco O)+ Z p C 1 sin 0 1 + 2

L

( eO) + Z p C Z L - cos e +'-_-sin 0

- ZI_Z I +--+ - 1 +z 2 ZIIZ Ze 1 z e - I

f d z ( 1 )] -;e2) ( - e sin 0+3 312 1 + ---_ +
Z e - 1 Z (I I + e cos 0

2>))Z -I 1 - e tan 0/Z

+_ 1 + e
tan

Z
I - e

(AZ:)

We note that equation (All) has a singularity at 0 = 0 or _r( @ = co or

= co + Tr). If it is necessary to evaluate k4 across either of theCe points,

we haCe, from the first integral (A5), a solution.

lira

c

(/) -_0_ + 11"
C

- p
r -

l±e

r = 0

__ )z_: (I ±e
P

.o

_=0

o,

r =
±e _ (i ±e) z

Z
P

where the upper sign is used for @ --- coc
--_ +_(0 : _).

c

(O : 0), and the lower for

We thus find, from (A5):
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lim

0--_0

C -k3_
k4=- i:

lira

0--_0
k 4 =

Cp Z k3h

e V(1 + e) 2 ev
(azz)

We can derive (A22) in a different,

equation (All) as:

d_4 1 [dO - sin0 k4 cos 0

and more fruitful manner. Rewrite

k, 3P Cp 3 ]+he - h2e [1 + e cos0] 2

Since we require continuity of the multipliers, the bracketed quantity must

approach zero just as sin0 does as 0 --_0. Solving, then, for k4 at 0 = 0,

give s :

Cp2 k3 h

_4 - et_ (i + e)2 etL

Thus, we know that

lim

0--_0 dk4_. 0

0 --_r dO 0

We can thus use L'Hospital's Ruleand derive two approximate

differential equations for k4 (0). In the neighborhood of e = 0,

dk4 2 Cp 2 0
-

dO V (1 + e). 3

In the neighborhood of 0 = _,

dk4 _
dO X4 (0 -_r) - 2 Cp 2 (0 -_r)

V(1 - e)3

Solying these two equations, we obtain:

_4 (0) = -

0_0

2 Cp 2 + K 3 exp
_(I + e) 3

_2cp2I,-., - /
_(I - e)3 + K4 exp _- 0 -
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We can similarly approximate {AI2}, and obtain

X 6 (0) = exp 1 + e --_ e

0,_0

2p K3 /2 (1 + e)._ K5]
l+eV f + Se "1'

where err (0) is the error function,

2

err (0) - Ncr_

or probability integral:

0

e - uZ du

0

("'i l)I'" (":)_.6 (0) = exp i - e ,r- - h ( 1 - e) z exp _-

I', J ".'(.I.1 +--'_(O-lr) + e/_(1 - e) 3 exp 10 - -

Zp _40
1 - e

where

4Cp3 ]
t_(1 + e) 4

-2e

AI- i_ e

1 - 3e

A3- l-e

Since we do not have the switching func_ion_ k, as an explicit function

of O, some iterative method is needed to find the first O at which k crosses

from negative to positive values. Simply using two points and a slope to find

a parabola for extrapolation works quite well. Writing k as:

k 4 r _6 k6 )k = c-c-- k 4 + _ -km D r 7
12

where

D = + + r
v 6
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and

dk
7

- 0
dO

we find

dk c

dO mD
k6 d k6

dk4 +
r k4 d-----_ r d 0

V

2

k6 e sin 0

P
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Summary

A study has been made of minimum-fuel transfer and rendezvous

between neighboring low-eccentricity orbits by power-limited rocket.

This study includes and extends previous work wherein only the case of

transfer between circular orbits was considered. As before, the

analysis is based on the assumption that only small deviations from an

initial orbit are allowed. Complete analytical solutions are obtained

in three different sets of variables: (i) rotating rectangular coordinates,

(2) rotating spherical coordinates, and (3) Lagrange's planetary

variables. In addition to the determination of optimal transfer and

rendezvous trajectories in three dimensions, synthesis of the optimal

controls is also carried out in each case. The guidance coefficients

resulting from the control synthesis are presented both in graphical form

and in equation form suitable for use in guidance applications.

Introduction

It is characteristic of high-specific-impulse, low-thrust pro-

pulsion systems that the source of power is separate from the thrust

device itself. Consequently, such propulsion systems are referred to

as power-limited, since thrust is restricted in magnitude by the output



P

of the power supply, which is in turn limited by the necessity of

minimizing power supply weight.

The problem of transfer and rendezvous between neighboring orbits

by a power-limited rocket is of interest for two basic reasons. First

of all, the problem can be solved analytically, as was demonstrated in

Refs. i and 2, provided that the thrust acceleration is not constrained

in magnitude and that the proper simplifying assumptions are made in the

mathematical model of the system. The analytic expressions thus obtained

for the controls and for the optimum trajectories then provide insight

into more general problems where the simplifying restrictions are lifted.

Secondly, the solution to this problem provides a lower bound to the

performance requirements for low-thrust orbital transfer and rendezvous.

It is interesting to note that if, for the same system model as has

been used herein, the thrust acceleration is assumed constant, analytic

integration of the equations of motion requires the evaluation of

incomplete elliptic integrals of the third kind (Ref. 3). Therefore

allowance for variable-thrust acceleration is essential if simple analytic

solutions are to be obtained.

t_

Analytical Method

Description of the Mathematical Model

The phrase "neighboring orbits," as defined here, requires that the

inclination between orbit planes be small and that the radial separation

between orbits be small relative to the semi-major axis of either orbit.

If it is further assumed that motion in the transfer orbit does not

deviate significantly from these neighboring orbits, linearization of

the equations of motion is permissible.

The analysis has been carried out in three set_ of variables:

(i) rotating rectangular coordinates, (2) rotating spherical coordinates

and, (3) Lagrange's planetary variables. The rotating coordinates have

been utilized previously in Refs. 4, 5, 6 , while the planetary

variables were applied to an orbit transfer problem in Ref. 3.

The rotating coordinate systems are depicted in Figs. i and 2.

Each consists of an origin which revolves at satellite velocity in the

initial (interior) circular orbit and orthogonal coordinates measured
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from this revolving origin. In the rectangular system of Fig. I, y'

is a radial dimension, x' is measured tangent to the initial orbit at

the origin, and z' is a coordinate which is out of the plane of the

initial orbit and is normal to both x' and y'.

In Fig. 2, the spherical system is composed of a radial coordinate

y, an arc x, measured circumferentially from the origin, and another

arc z_ which is orthogonal to the x-y plane.

The Lagrange planetary variables, which are derived from the

elements of an elliptic orbit and are used in the standard variation

of parameters equations of celestial mechanics (Ref. 7), are convenient

because they eliminate the necessity of treating singularities for

zero eccentricity and zero inclination in these equations. As they are

used in this study, the planetary variables consist of the non-

dimensionalized semi-major axis xI = a/ao, a circumferential distance

component_ x4, and the following combinations of the remaining

orbital elements :

xe =e sinw

xs :e cos_

x5 : sin i sin

x_ = sin i cos

(1)

where e is eccentricity, w is the longitude of peri-apsis, i is orbital

inclination, and _ is the longitude of the ascending node. The planetary

variables provide a simple means of introducing eccentricity into the

terminal orbits, and the form of the state equations using these variables

is particularly simple in the present problem. However, in a practical

application, they might be less desirable than the rotating coordinates

because the orbital elements cannot be directly measured.

In view of the foregoing considerations, eccentric terminal orbits

have been allowed only in the planetary variables in this study, while

the analysis in rotating reference frames is confined to circular

terminal orbits.

It should be noted here that the three sets of variables are

en%irely equivalent in that the equations of motion may be transformed

directly from one set to another by substitution. There are some

differences in the required linearizing assumptions which should be

mentioned_ however.
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Consider the coordinate system depicted in Fig. l, a rectangular

system with its origin fixed on the interior orbit (assumed to be the

reference orbit) in the x', y' plane. The mutually orthogonal coordi-

nates x', y', z' form a triad that revolves with angular speed no

characteristic of the reference orbit, so that motion in this frame

of reference is relative to a point on the reference orbit. The

spherical coordinate system in Fig. 2 is described by the arc x in the

plane of the reference orbit, the arc z measured normal to this plane,

and a radial dimension y.

In order to linearize the equations of motion in the first system,

it is necessary to assume that excursions x', y', z' from the origin be

small in comparison with the radiu% ro, of the reference orbit. Motion

is therefore constrained to a small sphere about the origin. No

restrictions are placed on the component velocities. In the rotating

spherical system, only the assumption of small component velocities

will linearize the equations, whereas the arc x is not limited. The

resultant motion is constrained to a torus about the reference orbit.

Since the linearized equations of motion are identical except for

differences in notation (Ref. 4), one can draw the conclusion that, if

in the spherical system the resultant motion does not involve large

variations in x, the velocity components may be large. In the present

study, use of the spherical system has been assumed throughout, and the

results may be extended according to the foregoing discussion.

In the case of the planetary variables, the linearizing assumptions

require that the difference in the semi-major axes of the terminal orbits

be small and that the eccentricity of the terminal orbits as well the

eccentricity of the instantaneous transfer orbit be small. The

implications of these assumptions are similar to those for the rotating

spherical system, in that "fast" trajectories are allowed only when the

linearizing assumptions may be relaxed. On the other hand, fast

trajectories are allowed in the rectangular system because no limits

are placed on the component velocities in the linearizing process.

Ana lys is

The optimization problem is to derive the optimal control equation

for the minimum-fuel transfer or rendezvous of a power-limited rocket

between neighboring orbits in a given time. Mathematically, this

requires minimization of the integral
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t T
J = __o_(T/m)2dt- J'of(n°/_ A2d7 = _[o_ fo(A)dT (2)

subject to constraints imposed by the equations of state which may be

expressed in the form

xl : fl (x, A) i : l,...,n (3)

The control is the thrust acceleration vector, A, in the present case.

The problem is treated as a problem of Lagrange in the calculus of

variations. In particular, Breakwell's formulation (Ref. 8) of this

problem is used because the linearized equations in the present case are

particularly well suited to this formulation.

If a fundamental function F is defined as

n

F = -fo + F kl fl
i=l

the variational treatment requires satisfaction of Euler-Lagrange

equations in the following form as necessary conditions for the

existence of an extremal arc:

(4)

dk i _F

d_ _xl (5)

_F©

_Aj - 0 (6)

An additional necessary condition provided by the Pontryagin Maximum

Principle must also be satisfied to insure that the stationary solution

predicted by the Euler equations is actually an extremum. The maximum

principle, which may be expressed as

* _i Aj )F (xl, kl, Aj)->F (xl, , (7)

ensures that the stationary solution is an absolute maximum. Further-

more, it has been shown (Ref. 9) that for a system where both the state

variables and the controls appear linearly in the state equations, the

maximum principle is also sufficient to ensure a minimum of the payoff,

J. Since all cases in the present analyses are linear in the controls

and satisfy the maximum principle_ the optimum trajectories described

herein are absolute extrema.
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Due to the great number of equations involved, the variational

analysis is not described in each case. 0nly the most important

equations are included, and these are grouped in an orderly fashion in

the appendices. The rotating coordinate systems are considered in

Appendix l,and the planetary variables are considered in Appendix II.

For a more detailed account of the application of the aforementioned

equations the reader is referred to Ref. i wherein a specific case is

treated in detail.

Synthesis of the Optimum Controls

In order to put the equations for the optimized controls into a

form compatible with guidance requirements, several changes are made.

First, T in the control equations is replaced by -_. That is, the

equations are rewritten with "time-to-go, as the independent variable.

Secondly, while in the ordinary transfer and rendezvous analyses in

rotating coordinates it was generally convenient to assume zero initial

conditions, the terminals are reversed in the control synthesis. That

is, the target orbit is assumed to be defined by zero values in most of

the state variables. The results of the control synthesis are expressed

in terms of the guidance coefficients, _Aj/_x i , of each component of the

control vector; A.

The equations for the control synthesis are summarized in Appendix

III, for transfer and rendezvous in each of the coordinate systems.

Those equations which deal specifically with transfer between circular

orbits have been presented previously in Ref. 2.

Results

Orbit Transfer and Rendezvous

The multiplicity of solutions generated in this study (particularly

for rendezvous) precludes a graphical presentation of all the resulting

trajectories. An attempt is made to summarize the results in a reasonably

concise form with orbit transfer solutions represented as special cases

of rendezvous wherever feasible.

To simplify the presentation of the results, only circle-to-circle

transfer and rendezvous cases are examined in the summary curves of

Figs. 3 through 12. The first set of plots, Figs. 3 through 5, shows

the variation of the components of the optimal thrust acceleration with
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time for circle-to-circle transfer only.

The in-plane components Ax/yz and Ay/yz are'seen to display symmetry

about the midpoint in time for all trip times, as does the out-of=plane

component Az/roi. In particular, when Tz = 2nw, the components Ax/y_

and Ay/y_ are constant with time, and the latter is zero. For the

coplanar problem, constant circumferential thrust acceleration is there-

by specified as the optimum mode for integral multiples of the period

of the reference orbit, a result that is in agreement with Ref. 6.

Figures 6 through 8 show the thrust acceleration components for

circle-to-circle rendezvous at a particular trip time equal to one

sixth of an orbital period of the reference orbit. The parameter

in Figs. 6 and 7 is x_/y_ which takes on the value 3/4 for the

special case of optimum transfer. Similarly the out-of-plane component

is plotted with _z as a parameter. As indicated, the longitude of

the node can have either of two values, 150 or 330 deg, for optimum

transfer.

The payoff_ J, can be best represented as the sum of three

components, 8I, J2, and ,Is, which are defined by Eqs. A-4_ and A-45

and are plotted in Figs. 9 through ii. The components J1 and J2

define propellant requirements for coplanar rendezvous, while the

addition of 'Is introduces the out-of-plane requirement. In particular

J is equal to J_ for coplanar transfer since the term x_/yz_f- 3/4 in

J2 is zero for optimum transfer.

All three components, as well as their sum, are seen to be

monotonically decreasing functions of T_. In the limit, as Tz _ _, A

and J _ O. This is a consequence of the fact that no limit has been

placed on exhaust velocity. Similarly all three components tend to

infinity as Tz approaches zero because zero trip time requires infinite

thrust acceleration.

An interesting feature of J3 is evident from Fig. ii. For _z = kw

where k = 0, i, 2, ..., Js is the same for all nodal longitudes, _.

For all other times the envelope of the family of curves is given by the

e quat ions

1 (8)
Jsma x = T_ - Isin Tf

_ I
J3mi_ T_ + Isin T:

(9)
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where the lower envelope is given by Eq. 9 and represents Js for
optimum transfer.

Application to Planetary Orbits

Strictly speaking, none of the planetary orbits are "neighboring

orbits" in the sense in which this term has been defined. Earth's

closest neighbor, Venus, has a semi-major axis, a = 0.7233 AU, compared

with a = 1.0 AU for earth, leaving a separation distance of 0.2767 AU

which is not << 1.O AU. However, it is possible to apply the linearized

analysis to earth-Venus trajectories with remarkably good accuracy.

In Fig. 12 a comparison has been made with the exact solutions of Ref.

lO , for earth-Venus transfers. The circled points were calculated

from Eq. A-43 of Appendix I. These results for the special case of

uninclined circular terminal orbits show only a slight discrepancy in

J for transfer times up to one earth year.

To obtain the circled points in Fig. 12 a reference orbit mid-way

between the two terminal orbits was selected, i.e., a = 0.8617 AU. This

improves the accuracy of the results over what could be obtained by

referencing the coordinates to the major axis of either terminal orbit.

These results are encouraging and tend to support the view that

an extension of the linearized analysis may be adequate for transfer

and rendezvous between the orbits of earth and the nearby planets.

Such an extension need not even be an exact second-order solution but

might include only the dominant sec0nd-order terms in the equations of

motion. This possibility is currently being explored by inclusion of

the second-order terms in the radial motion.

Control Synthesis

In this study it has been possible to express each of the components

of the optimal control vector, A, as a linear function of the n state

variables.

n _Aj
Aj =

i=i (io)

Therefore the presentation of the results can be confined to curves of

the guidance coefficients, 8Aj/Sx i plotted against time to go, _'.

Using the equations for the guidance coefficients which comprise

Appendix III, the summary curves of Figs. 13 through 24 were generated.
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The synthesized controls for the case of transfer between an

arbitrary state and a nearby circular orbit appear in Figs. 13 through

15 in terms of the rotating coordinate system variables. The extension

to include eccentricity of the final orbit is provided by use of the

Lagrange planetary variables in Figs. 16 through 18.

For rendezvous the same procedure is followed in the presentation

of the synthesized controls_ with the addition of curves to account for

the dependence of in-plane thrust acceleration components on the

circumferential distance. In rotating coordinates, Figs. 19 through 21

summarize the results for rendezvous between any initial state and a

point on a nearby circular orbit.

As in the transfer case, the planetary variables facilitate the

extension to rendezvous between an initial state and a point on a nearby

orbit of low eccentricity. The results for the planetary variables

appear in Figs. 22 through 24.

All the curves for the guidance coefficients display similar behavior.

When time-to-go is short, the curves diverge to infinity, (either positive

or negative), but a damped oscillation is evident, causing the coefficients

t o approach zero for very long times.
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Q

r

R

W
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Thrust-to-mass ratio
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nora

Integration constant
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Fundamental function

Defined by Eq. 2
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Lagrange multiplier
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Radial force
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Circumferential force

Mean angular motion

Position components in spherical system

Position components in rectangular system

Velocity components in x, y, z, directions

Time
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Subscripts

i

J

0

f

x,y,z,u,v,w

N_nenclature (Contd.

not

Time to go

True anomaly

Longitude of peri-apsis

Eccentricity

Unit vector normal to instantaneous transfer orbit

Semi-maj or axis

Longitude of the node

Inc linat ion

esinw

e cos

sin i sin

sin i cos

Angular momentum vector

Index denoting x,y,z,u,v,w

Index denoting x,y,z

Initial condition

Final condition

Denoting state variable
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Nomenclature (Contd.

Radial

Circumferential
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Optimum condition
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Appendix I

Rotating Rectangular and Spherical Coordinate Systems

i. Equations of State

dx
= u

dr

dy
v

dr

dz _
d'r w

du = Ax + 2y
dT

dv
dT - Ay + 3y -- 2u

dw - A z - z
dr

(A-l)

(A-2)

(A-3)

(A-4)

(A-5)

(A-G)

2. Euler-Lasran_e Equations

i x = 0

;_z : Xw

)Cu : -X,(+2X v

_v = - Xy- 2X u

×w : --Xz

Xu : noAx

X.v : noAy

Xw : noAz

(A-7)

(A-8)

(A-9)
(A-j0)

(A-If)

(A-_)

(A-13)

(A-14)

(A-15)
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3. Integrated Euler-La_ran_e Equations

Xx : noCo

Xy : -6no(C 4 + Co T -C_ C0ST + C2sin't" )

Xz = 2n o(C 5sinT. + C3cosT-)

Xu = no (3C4+ 5Co T - 4C I COST + 4C 2

Xv = 2no(Co+ CisinT + CzC0ST)

X w = 2no(CsC0ST - C3 sinT )

sin T )

(A-16)

(A-1T)

(A-_8)

(A-19)

(A-20)

(A-21)

1 Boundary Conditions

Transfer Rendezvous

State Variable
T:0 .T=Tf T =0

x 0 FREE 0

y 0 yf 0

z 0 zf 0

u 0 3 (I)
-_- yf 0

v 0 0 0

(z)

w 0 .v/_o 2 iz _zf2 0

T:Tf

Xf

Yf

Zf

.__._yf(t )

0

,V/_O 2 . 2 2I --Zf

(2)

o Integrated Equations of State -(with initial conditions)

+[_,o_o_co__]_[{_,_(co_)]c,
(A-22)

i94

y = [8(I-C0ST)-3T2]Co+ 5[SinT-- T.C0sT]C,+ [53

+ 6[sinT--T]C4

- [_cos_-s,o_]c3+[_s,n_]c5

]

sinT -- 8(I- COST)JC 2

(-A-23)

(A-24)

(I) REF 6

(2) REF 5



U -- [,6,,-0os_)--__210o+[6s,nT-,O_cos_]C,
+[,0_sio_-,2,,-cos_,]C2+[,2s,o_-9r]C,

(A-25)

V [8sio_-6_]Co+[sTs,o_]c,+
+3[,-cos_]c°

5r cost- 3sinr]C2

(A-26)

(A-27)

6. Transversality Conditions - Transfer

Q

k x =Co= 0

wf

C5 tanTt + z--;-
Wf

C3 I - Tf tan rf

Constants of Inte6ration

Transfer

C I

yf sin _-f

16(I- cosq) -q (5_-f + 3sinl-f )

- yf (I - coswf )

C2 = 16(I- cos-rf) - rf(5rf + 5sinq)

C 3

(sinTf + "rf cosrf )zf - (TfsinTf)_/ro2i 2- z2

__f2_ sin2q

C 4 =

Yf (-_- 5_-f+ 3sim-f)

16 (I - cosTf) -q(5_-f + 3sin B)

(A-28)

(A-29)

(A-B0)

(A-31)

(A-32)

(A-33)
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C o

C I =

C 2 =

C 3 =

0 4

C 5

o

Rendezvous

Tf yf( xf
yf rf

3 ) (5rf--3sinrf)4

3_ COS rf4 vf (5Tf-- 5sinTf)(rf z -80) + 4(I- cos_f)( 71vf2- 64) + 248vf z

yf sinrf

16(I- cosrf) - rf( 5rf Jr 3sinrf )

-yf(I- cos rf)

16(I- cosrf) - rf( 5rf + 3 sin Tf)

4-

+

o°E
Oo[

q
3sinrf -- 8(I-cosrf) I

J5rf - 5sinrf

3vf(I +cosvf) -8sinvf 7

J5-of -- 3sinrf

(sinrf + rfcosvf) zf -- (vfsinrf) _/roZi z -zf z

(rf 2 -- sinZrf )

Co
2

Y--f (5rf-t- 3sin-of)
6

16(I - cosrf) - "El (5l-f -t- 3sinrf)

(rfsinrf)Zf 4- (#cosrf -- sinrf) &o 2

(Tf 2 -- $inZTf)

2 2
- Zf

Controls

(A-34)

(A-35)

(A-36)

(A-37)

(A-38)

"(A-39)

Ax .c

Ay :

3C4-1- 3Cot -- 4C cost 4- 4C2sinr

2 [Co+ C, sin v + C z c0sr ]

(A-40)

(A-41)

A z = £ [C 5 cost - C 3sinr] (A-42)

o

Transfer

J

3 2
no ro

yf )z_o (5rf+ 3sin_)

8[Tf(5rf Jr 5sinrf) -16(I-cosrf)]

.2
I

+

rf + Isin vfl

(A-43)
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Rendezvous

J

3 2
n o r o

3 2
no ro

4-

yf )2J_(-7- +
o

2_, ro J yf Tf 4 Jr J3 i 2

(---Yo)2(5_ + 3sinTf)

8[rf(5rf + 3sinrf) - 16(I- cosrf)]

rf2 ( yf f( xf 3 2
_- r7 yfTf 4 ) ( 5rf - 3sinq)

(A-44)

3
_-- rf (5rf - 3sinrf )(rf2-- 80 ) 4- 4(I - cosrf)(71rfz-64) + 248Tf z cos'rf

i0. It should be pointed out that for each free end condition in the

case of orbit transfer, the variational analysis predicts an optimum

value for that particular state variable at the end point. In the

rotating coordinate systems the x and z coordinates are left open at

final time, _ The end point for the optimal transfer is then

determined in the analysis and is defined by the equations.

( Zf ) "_ ._1 _ COSrf= i 2

: -T _-f
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Appendix II

Lagrange's Variables

In the theory of special perturbations, as derived in Ref. 7 for

example, the equations for rates of change of the elements of an elliptic

orbit are written in terms of the elements and acceleration components

S, R, and W, which are perpendicular to the radius vector, radial and

normal to the orbital plane_ respectively.

Consider the five elements a, e, i,_ ,A_. The equations for

small rates of change of these variables are

dt n.,,/,,_-2 e eRsin.r/ + S(I + e cos-,?)

2

de ./__e 2 [ 2cos'q + e + e cos "9 S l
= I R sin -r/ + (A-49)

dt na I + e cos-_
J

di j[-e 2 (A-50)
- W cos (_ +'9)dt na

i

dco _/_--e 2 r 2 +ecosr/ e ton-_- sin(co+'r/) ] (A-51)
- L-Rc°s_ + S sinr/ - Wdt nee I + e cos- 9 1+ e cos',-/ J

d._ "_l-e 2 W
: sin (oo+r/) (A-52)

d I no sin i

In order to avoid singularities for zero eccentricity and

inclination in Eqs. A-51 and A-52 these equations may be transformed

according to the following definitions:

x 2 : e sin oJ

x 3 = e cosoo

x5 = sin sin_

x 6 = sin cos

(A-53)

(A-54)

(A-56)
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Under the assumptions

e<< I

0 _ 0 o

n _ no

T : not = _+'_

i << I

R S W
AR = -- 2 , AS- _ , AW - _-

Oo no Oo no 0o no

and with the further definitions

(A-57)

(A-58)

° (A-59)
Kl : O-_

x4 : x (A-60)

the equations of state for the variational problem may be derived from

Eqs. A-48 through A-56

There is a direct equivalence between these equations and the

equations of state in the rotating coordinate system variables. That

is, each of the Lagrange variables xI, x2, xs, ... xs, can be expressed

in terms of the rotating coordinate variables, x, y, z, u, v, and w.

Referring to Fig. 25 , define a position vector r in nonrotating

coordinates originating at the center of attraction F. Assume the motion

out of the reference plane is uncoupled from the in-plane motion.

Relative to a rotating rectangular coordinate system originating at

0 and rotating with angular velocity-_ this vector is

r = Xl + (ro-t-y) j
(A-61)

where the unit vectors i and j are taken in the x and y directions,

respectively. The vector velocity V is obtained by differentiating f .

-,- dr _ -t'. -'_ -"
V dt u, -t- v I + nxr

(A-62)
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Since n : no k , the expression for V is

[ ,]- -V : u-no(ro+Y i + (v + nox) J (A-63)

Using Eqs. A-61 and A-63 _ expressions can be written for the

angular momentum_ _ the path speed V and the radius r of the vehicle

_ __ [ ]-C : r x V : x(v+ noX) - (ro + y)(u-no{ro+yl) k (A-64)

V : • V : u-no(to+Y) 4- v +noX (A-65)

The following equations can be written for the angular momentum_ speed

and radius of a body in an inverse square field.

V : K( r a

a(I- e z )
r : (A-69)

I+ e cos

Combining these equations with the absolute value of C , and with

V and r from Eqs. A-64 , A-65 and A-66 the following scalar

equations result.

o _ (l+ y
°o T_° )( I+ e cos'r/)

u y

noro (I +To) = y
I -I-

to

v x /e cos "9
+

nor o ro 9_
Oo

(A-70)

(A-71)

(A-72)
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Finally_ noting that

0

-- : X I X 2 = e sinw x = e cosw
ao _ _ 3

e cos_ 7 = e cos(T-aJ) = x 2 SinT + X3C0ST

the equations relating the coordinates are obtained.

(A-73)

! : (x t - I) - x2sinT -x 3cost
_o (A-74)

v

noro x3 COST x 2 sinr (A_75)

u = 3
noro -_- ( x t - I ) - 2x 2 sinT -- 2x3cosT (A-76)

The components of the out-of-plane motion can be related in the

following way. If N is a unit vector normal to the instantaneous.

transfer orbit and s is a unit vector in the direction of the line of

nodes, then

S : N x k

and_ since the angle between s and the vehicle is T- _,

(A-77)

gZ) -- --. (A 78)COS(r - : S • I

Also, the orbital inclination is

- - (A 79)cos i : N • k

Using these parameters the equation for the elevation, z, of the probe

is

Z
-- : toni sin(T-_) -_ sini sin(T-_,)
r o

(A-80)

or

Z

ro
X 5 COST Jr" X 6 sinT

(A-81)
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The out-of-plane velocity, w, is

W
= x5sinr + x6 C0ST

noro
(A-82)

i. Equations of State

dx I

dT

dx 2

dr

- 2A S

- 2A ssinr -- A R cost

dx 3

dT : 2A S cost + A R sinT

dx 4 3

dr 2 (Xl-I) - 212 sinr - 2x3cosr

dx 5
dr A w sinr

dx 6
dr : AwCOST

2. Euler-Lagrange Equations

(A-83)

(A-84)

(A-85)

(A-86)

(A-87)

(A-88)

3 X4

X 2 : 2k4sinr

X 3 : 2X 4 cost

X,4 :Xs:X6:0

(A-89)

(A-9o)

(A-91)

(A-92)

no A S : 2(k I +k 2 sinr +;k 3cost )

noAR :--k 2 C0ST -I-k 3 sinr

noA w : --k 5 SinT -I- k 6 COST

(A'93)

(A-94)

(A-95)
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o Inte6rated Euler-La6ran6e EquatiGns

)_i = )_io B _4 r2 (A-96)

X2 = X2o - 2X4 cost (A-9T)

X 3 : XSO +2_. 4 sinr (A-98)

X4 = CONSTANT (A-99)

,' (A-IO0)X5 =

X6 = " (A-iOI)

4. Boundary Conditions

A great simplification in the complexity of the equations can be

achieved by taking advantage of the symmetry afforded by the Lagrange

variables x2 and xs . Therefore, in performing the integrations it will

be convenient to use limits--Tf/2 to wf/2 for the "in-plane" state
var iab le s.

Transfer Rendezvous

State Variable rf

("in-plane") r :-
r :I T :-A _ =_-

2 2 2

x I I /kxlf+ I I AXlf + I

x2 x20 x20+ Ax2f x20 ×20 + Ax2f

x3 x30 x30 + A xsf x30 x30 + Ax3f

x 4 X4o FREE x40 x,40 -.t- Ax4f

( out-of-plane ) "r=O l-:q "r=O r=q

x5 0 xsf 0 x5f

x6 0 X6f 0 X6f
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3 ,2"rf
ilx 3 = 4Xl0(sinT -l-sin _-_-f ) 4- -_--X20(sin2T --Sin T )

Jr- 5(T+-_-) + 3(sinT Cost +_-- )

- --_--) + 3( _- cos T + -_- cos

q )2 qAx4 =k,o{ 3(T+- 2- -8[l-cos(r+-2-)]}

+k2o (T-I--_) 5C0ST+6C0S -- --_- sin(T+_-)-- --_-SinT-8sin-_-

3 z'f 19 Tf }

5. Integrated Equations of State (with initial conditions)

Tf Tf
Ax_ = 4Xlo(T + -_- ) - 4X2o(COST-cos-2-)+ 4X3o(sin_- + sin-f-) - 3X4(T2- Tf--_24)

+ _ X_0( sin2T -- sin2--_-)- 2X4 4(sinT + sin -_- ) - 3(TC0ST "4- _- C0S_- )

(,A-103)

LA-104)

_ )2_ 3

_- lO5)

X5 X6 2 T (A-f06)
x5 : 2 (T- sinTc0sT) -- _- sin

X5 X6
x6 - 2 sin2T + -2- ('T + sinTc0sT ) (A-lOT

6. Transversality Conditions - Transfer

k 4 = O (A-108

X----95: tonr (A-109
k6

7. Constants of Integration

Trans fer

_IO =

AXlf m

4 (5q + 5sinTf) - 4Ax3f sin Tf2

Tf (STf + 3sin,-f) -- 16(I- C0STf)
(A-II0
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Rendezvous

)_20:

2 Ax2f

5rf- 3sinq
(A-111)

2 [gAx3f- 2Axmf sin--_ ]

X3o = (A-If2)
rf ( 5rf 4- 3sinrf) - 16( I - C0Srf)

X5 = xsf(rf+ sinrfcosr) + x6fsin2rf (A-113)

2(rf 2- sinZrf )

AXlf
4 (Srf + 5sinrf) -- 4Ax3fsin rf

2 (A-If4)
Xio =

rf ( 5rf-I- 5sinrf ) - 16( I - cosrf)

_k2o -

qC5Tf
3 z q q2

- 3sinTf)(T_rf + I)-2 (8sin-_--3TfC0S--_)

3 3 8 sinq]+ Axzf[- _ Tf +8rf-- 3Tf(I - c0sq) -

[3Tfcos-_-8sin-_] [2Ax3f ' Tf Tf ]]I sln-_- + Axnf + 4X3osin
J

rf q
TfAXlf( 3rf C0S-_ -8 sin -_ )

(A-ZZS)

k30= 2[rf Ax3f- 2AXlfsin-_- ] (A-II6)

rf (5rf+ 5sinTf) -- 16(1- C0STf)

X 4
I [ [5 TfAXif('STf_ 5sinTf)3 q q z -/-6

Tf (5rf - 5sinTf) (T_rf 2 +1) - 2(8sin_ - 5rf cos -_ )

Axe[ q T,
2 LIIrfc°s-_ +Ssin_(I-cosq)-22sin

Ax3f ' rf AX4f . rf 1

+ (STf- 3sinTf) [ Ts,n -_- + T + ×3oS,nT ] ] (A-117)
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_'5 --

2{xsf (Tf + sinTfC0STf) + ×6f sinZTf }

2 . 2
Tf -- sin Tf

2{XsfsinZTf + X6f(T f- sinTf C0STf)}

Tf 2 -- sin 2 Tf

2i [Tf sin&'-_#+ sin_ sin(_Q,f+Tf) ]

T{ 2 -- sin2Tf
CA-ZZ8)

2i [ Tf C0S &'),f -- sinTf C0S(_f+Tf) ]

Tf 2- sin2 Tf (A-I_19)

8. _Controls

no As = 2XlO - 3X4T + 2Xz0SinT 4- 2Xm: )cost

n oAR = 2X 4 - X.2oC0ST + ;k_ sinT

noA w = - X5 sinT + X6C0ST

(A-120)

(A-12i)

(A-122)

J

3 2
no ro

AXlf 2 2
8 (5Tf + 3sinrf) -- 4AXlfAX3f sin-_ + .-rf Ax3f

+

"of (5-rf + 3sin-rf)- 16(I-cos'_)

2
2A xzf

5q- 3sinq
+

,2
!

Tf+ Isin _fl

(A-i23)
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Re ndez vous

A Xlf 2
J

8

no3 ro2

-rf

(5_'f + 3sinTf) - 4 AXlf Axsfsin-_- + l-f A%f 2

_-f(5Tf + 3sin_'f)- 16(I-cosTf)

+
I ( Tf 3--_-(STf-Bsinrf) 2Ax2fc0s--_ -- 2Ax3fsin- _ -- Ax4f + _-BAxlf -4xaosin- _-}2

+
Axe( 3_ cos q2

3 Tf Tf )2
Tf(5Tf _- BsinTf )( I-ETf2-1 - I )- 2(BTfC0S- E -- 8sin_-

--Ssin-_) 2Ax2fcos-_- 2Ax,f sin-_--/kx4f+_-cfAXl,-4X3oSin_-

+

Jr

3 2+ Tf_ 8sin Tf )2
Tf(STf- BsinTf)(_ Tf I)-- 2(3TfC0S 2- 2

3
_-f AXZf2 ( T6 Tf2+ I )

3 2 2

Tf(5Tf -- Bsin_)( i-_Tf +1)-- 2(3]'fC0S_ 2 - 8sinTf2 )

(Tf2_ sin2 _.f)

(A-]_24)

10.

are

where the values x4 and I% are left open at the final time.

* 5 Tf Tf

Z_X 4 = _--TfAxlf--2Ax3f sin--_----4X3osin- _-

4Ax2f I

3-_cos-E-

The optimal values for changes in the state variables x4 an@_

predicted by the variational analysis in the case of orbit transfer

(A-]25)

_(. Tf (A-126)
: n')T-- -_-
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Synthesis

A. Rotating Coordinates

i. Control Equations

Appendix III

of the Optimal Controls

c)A _A
Y Y

Ay - c)y y 4" --_uu-u u

c)A× c)Ax

Ax - by Y 4- _ u

c)A z c)A z
A_ - c)z z -l-_w

ClAy
+ _v +

av

c_A,
+ --v H---

av

ClAy

ax

aA x

_X

(A- 27)

(A-129)

2. Guidance Coefficients-Transfer

_Ay 12 r'

Dy cD
( I - COST' )( 29 -- 27COST')

(A-130)

( t - COST') ( II sinr' -- 3r' COST' --8T')
(A-131)

_Ay 12
C)V - (_D ( 5T'2 Jr 3r' sinr' COST' - 8 sin2r ' ) (A-132)

#Ax 12
=

ay _b
-- [ 70r'sinr' -- 55r '2

1

+ IBr' sinr' COST'4" 3(I -- COST,)( 5 - 27COST') /

(A-133)

#A x 6

au _b
65r 2 - 80r' sinr'

1

- 24r' sinr' cosr'-(I - COST')( 25-- 103 COST')]

(A-134)
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c)Ax 24 (I)
- ( 8r'- II sinr, + 3r'C0Sr')(I --COST')

av el) (A-135)

(_A z - 2 sin2r '

_Z : r,2 _ sin2r, (A-136)

aA z = -( 2T'- sin 2T') (A-137)

C] w T '2 _ sin2T,

where

= 480T' -- 75T '3 -- 240T'C0ST'(I +C0ST')-- 144sinT'(I--c0sT')-- 213r' sin2T '

(A-138)

3. Rendezvous

Due to the length and complexity of the synthesized, in-plane,

control equations for rendezvous, the guidance coefficients are not

written explicitly here. Instead the basic equations are tabulated,

and the coefficients calculated from these equations are plotted in

Fig. 19 through 21.

CA, ac4 aCo ac, ac2 (A-139)

: 3 3- T, T,- 4- T, cosT,-4T, s oT,

(c)C o #C I aC 2 )
_Ay = 2 sinT' + COST'

--O_xi ax i @x i _ (A-140)

A_P

_A z _A z
Az - z + --w

@z aw (A-14I)

(i) NOTE :
_AX _ _Ay

_v _u
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C 0 =

x

Y

U

v

II

_3J

_2

_2

_14

_624

_34

_4

D (A-142)

C I =

_0

_o

x

Y

u

v

(_12 ¢14

D (A-143)

0 2 =

where

_io _ii x (4)14

(_20 (_2l Y (_24

(_30 (_31 u _)34

_4o _,, v _44

(A-144)

C 4 =

@,o @,, %

@20 @2, @22 y

@30 @3, @32 u
@,o @4, @42 v

O (A-Z45)

E) ---

_0

_2o
_3o
_4o

_3J

_2

_2
%2
_2

_4

_4

_4

(A-146)

and

_I0 =
___5r,3_ 8r' + 8sinr'
4

9
@3o : 8(l-cosT')- _- T'2

_II =

cJ_12 =

14 :

8(I - COST')-- 5r'sinr'

ST'cOST' - II sinr' + 6r'

9 ra
6(I- cosT') -

/:)31 : ST' COST' -- 5 sinr'

_32 : 5r'sinr'- 6(I-cosT')

9 ,
9B_ = yr - 6 sinr'
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3 Tw!

42°= __54(I-I" cosT')-- _n-P'T']
42, = L T'COS T'2

422 = _ T%inT' -- 4( I -- C0ST')

424 = 3 (T'-- sinT')

440 = 3T' -- 4 sinT'

5
441 = -_- T'sin T'

442 = 3 sinT'-- -_ T'COST 1

(A-14T)
_)44 = --3(I -- COST')

ClAz - 2 sin 2T'

0Z T _- sin2T '

(A-148)

_A z -(2T'- sin 2T')

C_w T '2 _ sin2r ,
(A-1LLg)

B. La6ran_e Variable s

1. Control Equations

OA R _A R (:}AR

A R : 0AxI AXN + _Ax2 Ax2 J,---_x3Ax3

c)As cIAs
- Ax a +As aAx I aAx2

c)As

-- Ax 2 + a-a_-3 Ax3

G_Aw aA w

AW- _Axs_X5 H _X6 AX 6

_A R OA R (A-150)

H- "-_x4Ax4 + -_-X X30

C)As A C)As
+ a, o 3O(A-151)

(A-152)

2. Guidance Coefficients-Transfer

T !

--4 sinT, sin _-
E

T'( ST' + 3sinT') - 16( I- cosT')
(A-153)
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2 C0S I-'

5T'- 3 sinr'
(A-Z54)

C)AR _ 2T'sin T'

C_Ax3 r[5r'+ 3sinr') - 16(I - cost')
(A-z55)

T' ' T' I (5T, + 3Sinr')
o_As 8 cos s,n 2 2

c)Ax I T'(ST' + 3sinT') - 16(I -cos_')
(A-Z56)

aA s 4sinT'

c_Ax z 5T'- 3 sinT'
(A-157)

C0S T' sin2T 'C)Aw _

alex5 r '2- sin2r ,

C)Aw _ / cosT'( 2T'- sin2T')2

_Ax 6 r '2- sin2r ,

c)AS

_Z_x 3

-_-I .[_I
4(2sin -_- T'cos )

T'(5T'+ 3sinT') -- 16( I -- C0ST')

(A-Z58)

(A-159)

(A-Z60)

3. Guidance Coefficients-Rendezvous

-rl

4 sinT'sin -_

Q

8 r 5r' - 3sinr'+ 2cosT'( 3r'C0S 2 -- 8sin -_ )

B
(A-161)

OA R
r' T' , Ti I

2r'cosr'( I--63r _ + I) + cos _- (5r'- 3sinT') + 2( 3r'c0s-_ - 8 sm-_ )(I + cosT'cos 2 )

c_Ax2 B

(A- 162 )
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OAR - 2r, sinr' sin -_"4--
_Ax 3 Q

T" TI ]
5T'-3sinr'+ 2cos_'(Br'cos-_ - 8sin-_)

B
(A-Z63)

Ti T I ]l_ ST'- 3sinT'+ 2cost'( 3_'c0s_- - 8sin-_ )
2

B

(A-164)

c]A s

c)A_,

_f_x z

aAs

c)_x 3

c)As

_Ax 4

_A S

ax_

_A w

_x 5

aAw

Ax 6

T' . T' ]r' " r' r' - 8 sin-2 )2sin -_ 5r'-3sm + 2C0S [3T'C0S-_-

B

• "L"1

I__ (ST' + 3sinT'-16sln_-C0ST')2

0 T']
16

B

4r'sinT[ T'2 + I ) + T'cos _ ( 5T'-- 3sinr')

B T'
TI T _

( 3r'cos-_ -- 8 sin -_ )(3T'+ 4sinT'c0s -_ )
+

B

T'

4( T'C0ST' -- 2sin _ )

' ° 4L-- sin 3T'(ST'--3sinT') + 8sin_(3T'cos-_ - 8sin_)
2

4-
B

[ . , , r']
T I

I 3T'(ST'--SsinT') + 8smr( 3rcos-_ - 8sin-_ )

B

sin --_ [ 3r'( 5T'- 3 sin T') +
T' T I ]8sinT'( 3T'COS_ --8sin -_ )

B

2 sinT'(T' + sin 2T')

T _ -- sin 2 T'

T,2--sin2T,

(A-165)

(A-166)

(A-167)

(A-168)

(A-169)

(A-]_TO)
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where

O = 16( I -COST')
i • -CI- r'(Sr + 3sin ) (A-173)

i_ T' T' 2B = r'(5r'- 3sinr')( r '2+ I ) - 2(8sin--_ - 3r'cos--_- ) (A-174)
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FIG. I

RECTANGULAR COORDINATE SYSTEM
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SPHERICAL COORDINATE SYSTEM

FIG. 2
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FIG. 3

RADIAL- ACCELERATION

CIRCLE - TO - CIRCLE TRANSFER
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FIG.4

CIRCUMFERENTIAL ACCELERATION

CIRCLE - TO - CIRCLE TRANSFER
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NORMAL ACCELERATION

FIG. 5

CIRCLE-TO-CIRCLE TRANSFER
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RADIAL ACCELERATION FIG.6
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CIRCUMFERENTIAL ACCELERATION

CIRCLE -TO - CIRCLE RENDEZVOUS
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NORMAL ACCELERATION

FIG,8

CIRCLE TO- CIRCLE
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DEFINITION OF SYMBOLS

U

R

r

V

6V

AV

k

T

m

m

c

)k,

1

t

t 1

t 2

X, rr

Gravitational constant

Vehicle position vector

I R ! = magnitude of It

Velocity vector of vehicle

Impulse velocity vector

IA_V I = magnitude of A V

Magnitude of thrust

Unit vector in direction of thrust

Mass of vehicle

Mass flow

Constant, proportional to specific impulse

Lagrange multipliers or adjoint variables

I_. I = magnitude of

I = magnitudeofx

Component of __ parallel to It

Component of k perpendicular to R

Time

Time at end of first thrust period

Time at beginning of second thrust period
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SUBSCRIPTS

Initial value

Final value
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REPUBLIC AVIATION CORPORATION

Farmingdale, L.I., New York

APPROXIMATE INITIAL VALUES
OF LAGRANGE MULTIPLIERS FOR THE

TWO POINT BOUNDARY VALUE PROBLEM

By

Jack Richman

SUMMARY

This report describes a method for obtaining a first estimate of initial

values of the Lagrange multipliers for the "Two Point Boundary Value Problem

of the Calculus of Variations".

This first estimate is obtained by assuming the "Two Impulse Orbit

Transfer Problem" to be a reasonably close approximation to the Calculus

of Variations problem.
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INTRODUCTION

The method used to solve the two point bmmdary value problem of the

calculus of variations is one where the decision functions are such that all the

trajectories being used are extremals [1]. In addition to the state variables,

that appear in the equations of motion, there are a number of adjoint variables

or Lagrange multipliers that satisfy additional equations for the optimization of

the given system. The boundary conditions for the adjoint variables define the

natural end-point conditions of the state variables. This natural end point, in

general will not be the desired end point. A differential correction scheme

provide the means of obtaining another optimum trajectory, the natural end

point of which will be closer to the desired end point [2].

The equations of motion of the vehicle in the gravitational field of a single

body subject to thrust are as follows:

=_-_-_ +-k T (1)
3 m-

r

m (tB) = m (t A) + m dt (2)
tA

where m = - _kand T is a unit vector parallel to the direction of thrust.
C

The optimum decision functions are determined with the help of the

Lagrange multipliers, k, k, and cr which satisfy the following equations

3u(_ R) R--- + - - (3)
- r 3 r 5

tB •

Cr(tB) = (r (tA) + S tA _ dt. (4)
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where
• kX
0"----_

2 "
m

The thrusting program is determined by the sign of the switching function

S, which is given by

>0 k=k

S=C)_ cr_ max (5)
- 5 < 0 k = kmi n

The direction of the unit thrust vector T is given by the direction of the

Lagrange multiplier X_

k
T =-- (6)- k

The natural end point if reached when

c; (tF)= 1 (7)

The problem is to generate a set of initial values of the Lagrange multi-

pliers such that an optimum orbit can be computed, where the natural end

point matches the desired end point. This is accomplished by obtaining a first

estimate of the initial values and improving these by using a differential correc-

tion scheme.

One of the requirements necessary for a rapid convergence of the differ-

ential correction scheme is that the first estimate of the initial values of the

Lagrange multipliers be reasonably close. The following is a method for ob-

taining a first crude estimate of the initial values of the Lagrange multipliers.
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INITIAI_ VALUES OF LAGRANGE MULTIPLIERS

First Method

A first estimate for the initial values of the Lagrange multipliers can be

obtained by making the following assumptions about the trajectory.

(a)

(b)

Two burning periods are required to accomplish the optimum tra-

jectory, one occurring in the time interval to to t1 and the other

in the time interval t2 to tf. During the time interval t1 to t2 the

vehicle is in a coasting region.

The time intervals in the thrust regions are so small that A V (to)

and AV_(tF) are obtained by solving the "two-impulse orbit transfer"

problem, where

AV(to) = V(tl) - V(to)

AV(tf) = V(tf) - V(t2)

(8)

(c) In the regions of thrust the gravitational force may be neglected.

If in addition we assume that the thrust direction is fixed the differential

equations for the state variables and the Lagrange multipliers, within the burning

region reduce to

_= _ crh T (9)
-- m -

= o (lO)

where

t

(y (t) = (_ (tA) + rt A
drdt (11)

ClM
dr =- _ (12)

m

e49



and

m (t) = m(t A) + (t- tA) (13)

In the burning regions the thrust vector is in the direction of AV.

from Eq. (6) we have

Therefore

_V

= X _---_- (14)

In the coasting region, m and a are constant. Thus, it follows that

(Y(tl) = a(t2) (15)

m(tl) = m(t2) (16)

For the computations of the initial values of the Lagrange multipliers, one

proceeds as follows:

First Eqs. (9) and (10) are integrated in the two burning regions t o to t 1

and t 2 to tf, resulting in
AV

O

m(tl) = m(to) e c (17)

( AVo +AV f)

m(tf) = m(to) e c (18)

_(tl) = _(to) = constant (19)

k*(t2) = k_'(tf) = constant (20)

k__(tl)= >,(to)+ (t1- to)k_"(to) (21)

k__.(tf) = k__(t2) + (tf - t2) k_"(t2) (22)

where the time spent in the two burning regions is computed by using Eqs. (13),

(16), (17), and (18), and is given by

25O



AV
O

c 1)m(to) (e

(t 1- to) = _ (23)

AV ° AVf

C C
m(to) e (e - 1)

(tf- t2) = r_ (24)

From the assumption that the thrust direction is fixed during each burning

interval it is evident that k. and k" are in the same direction. Therefore only the

magnitude of k_.and k_"need be considered, i.e. k and _.

At the transition times t I

(t 1) a (t 1)

m(tl) c

and t2 the switching function must be zero. Thus t

(25)

and

(t 2) a(t 2)

m(t2) c
(26)

Itcan be shown that by integrating Eq. (11) in the two burning regions and

making use of Eqs. (12)through (26) one forms the following three independent

equations with five unknowns, i.e., cr (t), k (to),)_ (to), k (tf) and X (tf)

c AVo

m(to) a(to)- TX(to)=0
(27)

AVo AVf AV ° AVf
C

ce _ +c __;_) X(tf)+m(to) e _e - (to)m(to) k (tf) c --C--- c 1)k

AVf

X(to) ]---r-- + AVf = 1 (28)+ m
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AV
o AV ° AVf

e c 1 _-e -_---)-_-_-e e )X(tf)=0
re(to ) _)` (to)-), (tf)]+ _-

(29)

t
O

By making use of the transversality condition X_-I_ - X" V + crrh = 0 at times

and tf one can obtain two more equations.

_V(to).Av
-X(to) AV ° m(---_o) ),(to) + 0"(to) Ih = 0 (30)

: +AVfAV o

V_(tf). A_Vf clh c

-X(tf) AVf m(to )'e ), (tf) + r_ = 0 (31)

Eqs. (27) through (31) constitute five equations with five unknowns. The

solution of this system of equations is given by

(AVo+ AVf
re-(to) c &-Vo

k__(to) = _ e A--V--
O

(32)

k_"(to) = 0 (33)

0"(to) = e

( AV° + AVf)

(34)

(AV ° + AVf)
re(to) - c AVf

k__(tf) - c e AV---_
(35)

k" (tf)= 0 (36)

It is of interest to note that the magnitudes of X at the initial and final times

are equal and directly proportional to the mass at the final time. In addition, the

value of o" is also proportional to the final mass and may be expressed as

m(tf) (37)
or(t) = m(t---_
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Second Method

An approach for obtaining a better first approximation is to remove or at

least "relax" some of the assumptions made in the first method. More specifi-

cally, instead of completely neglecting the gravitational force in the regions of

thrust it can be assumed that the gravitational force has a constant value of

- _Rf
-_R-° in the first region and in the second region.

3
r ° rf

In addition, we assume that the direction of the total acceleration in the

two regions of thrust is parallel to the vector AV_o and A Vf, respectively. This

implies that the direction of the thrust is not fixed.

it is clear that in the region of thrust the vector k lies in the plane formed

by the vectors 1={and A V. It is most convenient to resolve k_ into components

along the vector R and normal to it. These two components are designated as

k_ and k_7, respectively.

The differential equation for k can now be written as

= (38)

X = _ X17 (39)

The solution to Eqs. (38) and (39) is _iven by

k_ = X_(to)cosh _ 2_ t +_ 2_ X_ (to) sinh _2-_3
r3 r

3

k T: k_7(to)COS Jr_3 t+ _-- X (to)sin _

t (40)

t (41)

Since the intervals of thrust are assumed to be of short duration it is per-

missible to approximate Eqs. (40) and (41) in the regions of thrust by neglecting

the second order terms of a Taylor series expansion, i.e.,
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k_(t)_ X_(to) + (t-to) X (to) t o _ t < t 1 (42)

_(t)_ k. (t2) + (t-t2) X (t2) t2 -<t < tf (43)

Similarly, one can approximate X in the regions of thrust to the same order of

accuracy.

X_(t)_ _ (t-to)X _ (t o ) + X_ (to)
r

_:rl (t) _ - r_3 (t- to) k_7 (t o) + Xrl(t o)

t o <t <t 1

(44)

(45)

X_(t)_ 2r-_3(t- t2)k_(t 2) + X_ (t2)

_rl (t) _ - _3 (t- t2) Xrl (t 2) + _ (t 2)
r

t 2 -< t < tf

(46)

(47)

The procedure for obtaining the initial values of the Lagrange multipliers

is now the same as in the first method except that Eqs. (19) through (22) are now

replaced by Eqs. (42) through (47).

C ONC LUSION

A set of approximate initial values of the Lagrange multipliers have been

derived. In addition, a method for obtaining a better first approximation has

been outlined. It should be pointed out, however, that as one attempts to obtain

these improved first approximations in the manner outlined, the algebraic mani-

pulation of the expressions involved become more cumbersome and additional

approximations may be needed.
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SUMMARY

This report is submitted in partial fulfillment of the contract in "Space

Flight and Guidance Theory," No. NAS8-11040. It presents a discussion of

Lagerstrom and Kevorkian's two-variable expansion method for the compu-

tation of lunar trajectories. Section 2 discusses the general background of

the method in terms of singular perturbation theory. Section 3 discusses

the major steps in the development of a uniformly valid solution for earth-

moon trajector.ies and Section 4 presents a slightly different approach to the

same problem.
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I. INTRODUCTION

In refs. (3) and (4) a new method was suggested by Lagerstrom and

Kevorkian for the computation of lunar trajectories. The method was similar

to one which had been used successfully in a number of singular perturbation

problems of boundary layer theory (refs. l, 2). The result of approaching

the lunar trajectory problem as a singular perturbation problem was a uni-

formly valid solution (i.e. valid everywhere in the earth-moon space) to

first order in the parameter for a certain class of trajectories. The class

of trajectories is that which starts in a neighborhood of order /_J-- near the

earth and arrives near the moon to within a neighborhood of order /¢__- .

Similarly to other singular perturbation problems, this uniformly valid

solution was obtained by formulating two solutions, one valid near the earth

(the "outer solution") and the other valid near the moon (the "inner solution").

The inner solution is expressed in terms of "blown up" variables. The outer

and inner solutions are left undetermined by introducing a number of con-
\

stants; these constants are determined such that the singularities in the

outer and inner solutions cancel when they. are combined to form the "com-

posite solution."

The basic idea of the method was worked out in its application to the

two-fixed center problem with special initial conditions (ref. 3); then the

same technique was used in the restricted three body problem with more

general initial conditions (ref. 4). One of the most interesting results was

the finding that the outer solution must contain a part which is proportional

26O



to the small parameter /__ , or else it cannot be matched to the inner

solution; the outer solution can thus be interpreted as an earth centered

Kepler ellipse with a first order correction to take care of the moon's per-

turbation. In comparing this method with the usual way of "patching conics",

it was thus stated that a patched conic method could not be accurate, unless

the geocentric ellipse were corrected for the moon's perturbation. The two-

variable expansion method was thus offered as an improvement over patched

conic methods and it appeared to be {at least initially} equally practical.

This report presents an explanation of the method {in Section 3), based

mostly on ref. 4, and the beginning of a somewhat different approach (in

Section 4}. The claim that this report is an "explanation" is made with all

modesty; it is an explanation in the sense that it presents and discusses the

major steps of the developments in ref. 4, leaving out many of the laborious

details. In this way it is hoped that the reader may gain a full appreciation

and understanding of this very interesting method; this report may thus serve

as an introduction to the reading of refs. 3 and 4:. This explanation is pre-

ceded (Section 2} by a general discussion of singular perturbation theory,

based mostly on ref. 1 and 2. In particular with respect to this section,

and the conjecture and theorem on which the discussion is based, the authors

gratefully acknowledge personal communication with Dr. Kevorkian.

In Section 4 the beginning of a slightly different approach to the same

problem is presented. Whereas the work by Lagerstrom and Kevorkian is

formulated in inertial coordinates, th'is new approach makes use of rotating
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coordinates, and the Jacobi Integral in order to solve the problem as a third

order system of differential equations.
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2. DISCUSSION OF THE TWO-VARIABLE EXPANSION METHOD

The method used by Lagerstrom and'Kevorkian to formulate a uniformly

valid representation of earth-moon trajectories is that which is used in the

singular perturbation problems of boundary layer theory. A singular per-

turbation problem may be characterized as follows: a differential equation

/

L /X I 6-.{2 _-)_ C and boundary conditions/_//_Jj, _)-- O depend on a

small positive parameter _ in such a way that the order or type of L__

change when _=o , while the number of boundary conditions remains unchanged.

Thus, if _0represents the solution of Z//_d¢_, 0)-=0 , one may not

expect that _g_ approaches _O uniformly as _- _ 0-

Fundamental to the solution of singular perturbation problems is the

introduction of certain limits. Consider functions/of ___ , positive and

continuous in O_ __ _1 jz_ and tending to a definite limit as _---_ O ; intro-

then a limit on /_--/,k/# eJ is defined
duce a new variable >_f_ f ,

as

3 ] Xrf fixed and _ 0-

If/_ /, the limit is usually called "outer limit, " and _4 the "outer

variable", since in the boundary layer problem which motivated this formu-

lation this limit presents a satisfactory approximation in the physical space

away from the boundary. An "inner variable" and "inner limit" are obtained

in many problems by putting/_ _; the inner limit is an approximation in

that region of the physical space where the differential equation changes

order (or type) as __O. As the inner variable is kept constant, the
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physical variable _ tends to _ as _ _ O ; it is as if the problem is

discussed in terms of "stretched" or "blown-up" variables. Theoretically

of great importance are also the concepts of "intermediate variable" and

'_ntermediate limit, " which are intuitively understood as obtained by a function

_), where the order of magnitude O_/_ is in between O[//) a nd_).

A more rigorous discussion is given by Kaplun in ref. I.

The formulation of a solution based on inner and outer limit is based

on a "matching" of the two limits. But since there is no a-priori reason

why the regions of validity of inner and outer limits should overlap, it may

seem to be surprising that this has been so successful in many problems.

It is here that Zagerstrom and Kaplun have contributed greatly to the under-

standing of the problem by using the intermediate expansion to bridge the

gap. In ref. 5 Erdelyi discusses this in some more detail, but (as here} also

in an intuitive manner.

The method by which a uniformly valid solution of singular perturbations

is obtained is based on a conjecture and a theorem. The conjecture is: the

solution of the limiting differential equation (obtained by subjecting the

differential equation to the above defined limiting process} is identical with

the limiting approximation of the exact solution. Thus, if an exact solution

cannot be obtained directly, one can get an approximation (actually an

asymptotic expansion} by solving the limiting differential equation. The

validity of this conjecture is supported by a number of problems to which

exact solutions are available.
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I

be functions of _

as E----_ 0, then

if

In a singular perturbation problem it will be necessary to combine at

least two limiting solutions (i. e. inner and outer) to obtain a uniformly valid

solution, that is a solution valid in the entire physical space of the variables.

Kaplun's extension theorem bridges the gap which may exist between the

regions of validity of the limiting solutions. The formulation of the exten-

sion theorem requires the definition of "equivalence classes". Let/ and g
positive and continuous and tending to a definite limit

/(_) and/(_) belong tothe same equivalence class

A partial ordering of equivalence classes is defined by

A set _ of equivalence classes is convex if, for every ord_ _ and ord_
L/

in _, ord / A ord_ _ord_ implies ordi is in .,_. Openand

closed convex sets of equivalence classes are defined according to the usual

definitions of set theory. The extension theorem may now be formulated as:

If an approximation is valid to order ___ in a closed set S its domain

of validity may be extended to an open convex set -__ , containing o¢" .

Thus, the inner and outer expansions are valid in larger regions than

those for which they were derived. The regions of validity of inner and outer

expansions may now overlap or else they may be joined by an intermediate

expansion. Whether the inner and outer expansions are matched directly
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or by the use of an intermediate expansion, the matching is performed by

using overlapping regions of validity provided by the extension theorem.

It will be seen that in the earth-moon trajectory problem the matching can

be performed directly without the use of an intermediate expansion.

The following illustration may be of some help in understanding the

meaning of the expansion theorem. In figure 1 the shaded areas in the x)

space indicate the regions of validity of inner and outer expansions in a

problem with singularity at × = 0 •

Inner /

Exp.

/
_Ny ; >/ Outer Expansion

-"/ I /

_---Intermediate Expansion

Fig. 1 EXTENSION THEOREM

×

The outer expansion is valid for a range of X bounded away from zero.

The region for the inner expansion shows the typical behavior near the

singularity: As __ tends to zero the physical variable X tends to zero

also; the inner variable Xff. - remains finite. It is clear that for

small _ the regions of validity of inner and outer expansions do not over-
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lap. But the expansion theorem provides for small additional regions of

validity, indicated by the dashed lines in fig. 1. These regions can now be

used to provide overlap with an intermediate expansion (obtained by intro-

ducing the intermediate variable )')_t- = ]7)/'_ , ord _ < ),¢ ord ] )

and matching can be performed.

The plan for formulating a uniformly valid solution of a singular per-

turbation problem is now clear. An outer solution of the differential equation

is obtained, satisfying some of the boundary conditions. Typically, the

boundary conditions near the singularity are neglected, but the outer solution

must have as many arbitrary constants as there are neglected boundary

conditions. Next, the problem is "blown up" in the region near the singularity

by the transformation to inner variables. The boundary conditions which

were neglected in the outer solution can now be satisfied by the inner solution,

but the other boundary coflditions will in general not make sense. Therefore

the inner solution is partly indeterminate. To remove this indeterminacy

the inner and outer solutions are "matched" as follows. The outer solution

is evaluated at the inner region, the inner solution is evaluated at the outer

region and these two functions are equated after the introduction of the trans-

__.
.-_ . Finally, a "composite solution" is obtained byx

adding the inner and outer solutions and subtracting either the inner solution

evaluated at the outer region or the outer solution evaluated at the inner

region. This either/or condition reflects of course just the matching con-

dition. The matching and the formulation of a composite solution described
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here is possible when the regions of validity of inner and outer expansions

overlap, if this is not the case the same procedures have to be followed on

either side of an intermediate expansion.

The extension theorem is the basis for success in matching; the con-

jecture makes it plausible that the composite solution is uniformly valid,

even though the inner and outer solutions themselves are only valid in their

respective regions.

The application of these principles to the earth-moon trajectory problem

takes the following form. The equations of motion of the planar restricted

three body problem (in non-rotating coordinates) are formulated with one of

the coordinates, X , as the independent variable. Uniformly valid expres-

sions are sought for the time and the other coordinate as functions of X and

the smali parameter _ , the earth-moon mass ratio. Near the earth the

influence of the moon is seen in the equations of motion as a perturbation

(proportional to/Z_) of the Kepler equations. Clearly, in this problem the

singularity is located at X--_ | ,

the moon itself is the major force.

physical variable s

of the trajectory.

X- , _ and _]

since near the moon the attraction of

An outer solution is formulated in the

X , _-- and X/ ; it describes the earth-centered part

An inner solution is formulated in the "blown-up" variables

, the differential equations for which show the moon's

attraction as the major force. In principle the outer and inner solutions are

asymptotic expansions of which the separate terms can be obtained by sub-

2

stituting _ = 4 ¢-/co _/ --b .ZCz_z ]-,,, ,, ) y= )/c 7_ "[_ /" /d )(z /- .... '

2S8



in the equations of motion, ordering the results according to powers of

and solving the equations for ZZ_/ 7c / _:/J )// ...... in succession. A

major result of Lagerstrom's and Kevorkian's investigation was the finding

that, in order to formulate a first order solution, the outer solution must

contain the correction of order./gz_ to the earth-centered Kepler trajectory.

The reason is that the angular momentum near the moon (for a passage at

distance of orderj¢_ ) is of order/¢_ , and can thus only be defined when

terms of order _ are included in the approach trajectory. The matching

of inner and outer solutions is performed by equating term by term the results

of evaluating the outer solution at >( -- [ and the inner at )¢ = -o¢ ; for

this purpose the inner as well as the outer solution are expressed in the

inner variable. The results of the matching are the elements of the moon-

centered hyperbola and the phase constant of the moon. The composite

solution is obtained by adding the inner and outer solutions and subtracting

the outer expansion of the inner solution. From the form of inner and outer

solutions it is clear that no intermediate solution is required.

In their :first paper on the three-body problem (ref. 8) Lagerstrom

and Kevorkian treated the problem of two fixed force centers (the Euler

problem). They discussed trajectories which leave from the center of the

larger mass, the Kepler part of the outbound trajectory being a straight

line. The major result was that 1) a uniformly valid solution to order Zt_
0

could indeed be obtained and Z) the outer solution must contain a correction

of orderj/_ in order to be able to determine the constants of the inner
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solution. Because of the very special initial conditions the outer and inner

expansions are of simple form and therefore the principles of the method are

clearly demonstrated. In their second paper (ref. 9) they treated the more

practical restricted three body problem with arbitrary initial conditions

(although restricted to a neighborhood of order Zu near the earth). While

following the same method in principle, the details of the analysis are some-

what obscured by the added difficulties from the more general initial condi-

tions and the motion of the moon. The following section refers in particular

to this paper; it interprets and explains the method by lifting out the essential

difficulties and omitting all easily understood details. References l0 and ll

discuss some numerical aspects.

The following section contains an outline and discussion of ref. 9. It

is hoped that, by concentrating on the major difficulties, that section, together

with the general discussion in this section, will be useful for the better under-

standing and appreciation of the very interesting method of Lagerstrom and

Kevorkian.
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3. TWO-VARIABLE EXPANSION METHOD FOR EARTH-MOON

TRAJECTORIES

3. 1 Equations of Motion; Outer and Inner Variables

In geocentric, non-dimensional, inertial coordinates _4 , the equa-

tions of motion for the planar restricted three body problem are:

whe re

"7 =/<-G

/__= _¢a+y 2

/_ is the earth-moon mass ratio,

of the moon are

__ _-× (1)

, and the coordinates

(z)

'7"- is a phase angle which is to be determined later.

The goal is to formulate uniformly valid expressions (i. e. valid near

the earth as well as near the moon) to order _ for trajectories which

leave from a neighborhood of order vc- near the earth and reach a neighbor-

hood of order./z_ near the moon.

The outer variables, to be used for the outbound trajectory near the

-_z _o The inner variables will beearth, are the physical variables _ s <- )

chosen as

/ :7- TJ- -z-
(3)
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This choice assures that the motion near the moon is Keplerian up to

and including the first order of /Ac_ and that the velocity far from the moon

is of the same order (i.e.

The additional phase angle

vanish at perilune.

of order 1) as the velocity far from the earth.

is introduced so that _ can be made to

It is interesting to note that if a scale factor of J_- 1/3 is used in the

definition of _ and _ and the time is left unscaled, the equations of

motion in terms of X , C/ and _ after letting __-----_ O are the Hill

equations; these equations are valid in Hill's region, i.e. a region of order

1/3
/¢_ near the moon.

tions could provide it.

be matched without using an intermediate solution, although this cannot be

expected a priori. Apparently, for the class of trajectories considered

here (i.e. coming from a neighborhood of order/_c, near the moon), the

passage through Hill's region is so fast that Hill's equations do not need to

be considered.

If an intermediate solution were required, these equa-

It will be seen that the inner and outer solutions can

It will be convenient to introduce the coordinate X as the independent

variable; the matching of inner and outer solutions is then done on the basis

of distance instead of time. The equations of motion in the outer variables

are then

g,'/..o

.... ( ) £
Z/3 r3

(4)

272



°

The equations of motion in inner variables, valid near the moon, are

Keplerian up to and including the first order of/Z_ and do not have to be

written here. Terms proportional to the first power of/z_ are not present

because of the scaling of the variables and because the moon centered _ ,

axes are taken parallel to the earth centered X , _ axes.

3. Z Outer Expansion

The right hand sides of equs. (4) represent smallperturbations due to

the moon; near the earth the solution of equ. (4) is thus nearly Keplerian and

it will be convenient to specify the initial conditions of the trajectory by giving

the values of the Kepler integrals. The integrals to be chosen are the total

energy _ , the angular momentum _d_- the location of perigee and the

time of perigee passage. In order to reach the neighborhood of the moon,

the total energy must be C)_/) ;the initial velocity is thus /_)/_-'_-) and,

since the trajectory leaves from a neighborhood of order //A- near the earth,

momen*um Without

may be taken to be on the x-axis (on the side of the earth opposite to that of

the moon). The initial conditions are thus

at ,_=0 : 7_= -- /_2- (5)

4"

perigee on x-axis

and the time is specified by requiring that the Keplerian approximation is

exact at X _ 0 to all'orders of /Az-- .
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Since the angular momentum is of order

class of trajectories discussed here,

asymptotic expansions for _ and x/
/

__1,7/ it is clear that, for the

y is also of order /x_.. 1/2. The

may thus be taken to be

/ /

The differential equations for "_ , t-/

(7)

y#_ and yl are found by

substituting (7) and (8) into the equations of motion (4) and by ordering the

results according to powers of //c.- The equations for _ and
o _ are

of course just the Keplerian equations (equ. 4 with zero in the right handsides}

and their solutions do not have to be repeated here. However, one detail

must be pointed out. Whenever the parameter _ appears as ( /--.__- ),

the nondimensional gravitational constant, it is not subjected to the limit

process. Furthermore, the angular momentum constant has been written

as /¢_.._ _ and for these two reasons the parameter zc- appears thus in

the expressions for the Keplerian part of the trajectory. This seems at first

to be in contradiction with the principle of the singular perturbation method

according to which thezero-order solution would be independent of the

small parameter. Allowing the small parameter to appear in the Keplerian

part results in somewhat more convenient expressions. The first part of

_L (7(! _c) is now written as
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If the solution had been started with _o (_) ' according to a strict

application of the limit process it would be necessary to consider a separate

"boundary layer" near the earth, because the relative orders of magnitude

of the terms in _e (_ _) are different for X 0(]) and X --- _(_-)-

This nonuniformity has nothing to do with the moonVs perturbation and is

taken care of by letting /t'_ appear in the Keplerian solution.

The equations for the first order corrections _! and y_ are:

t;__ ÷ 3d¢,"_,:+ = _ c,0>

y,,

with _= t/(_)L=o and _lo=(][)l)_=o .

Because the initial conditions have been chosen such that the Kepler solution

is exactly valid at X= O , the initial conditions for _] and _l are

s imply

I,(o)-/, _)=o _o_t ?c; _n_ X7°).

3.3

and

First Order Corrections in Outer Expansion

The first order integrals of (10} and ill} are easily obtained as

-4'-- z' _j_,(c'_Jd_=,
0

(12)

(13)
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In principle _! and /i

no analytic expressions for £i

are thus obtained by quadratures but so far

f

and _, have been found. The functions ._

and _j_ are unbounded for X -----> I and their behavior near X' = ! can

E
be studied by expressing the several parts of ,_ and _ in Taylor series

,_o "

near _ =! . The re suits are

,'_5;x; - l o-x ) x>.j

where _ _J_) and I'?/X ; are the regular parts of /_c- and 7,:> ,

and

= __ (16)

which is the X" velocity of the Keplerian trajectory at X--_ / •

Using (14) and (15) the first order corrections to the Keplerian part

of the outer,expansion may be written as

.X _._ LL z

0,,_ y'- o
/

Since (at least to this time) no analytic solutions for _i and

(]8)

71 have

been found, the complete trajectory can only be computed by evaluating the

quadratures numerically. Clearly, this causes numerical difficulties be-

cause of the singular behavior near X ---I • It is of some help in establish-
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ing a computer program based on this method that 7z/ (X)

on only one parameter, namely the total energy - / °2 .

could thus be computed and tabularized once and for all.

_:l and _#1 may be expressed much more simply as

= _ </l-Xj -/.-Z-(P) +-/-)0) _91
-,.- Yz 19

y, -- (/#zz-) (i- ×) + Cp) + oo) c,o 

where _-

_t/ and

energy trajectories. This difficulty has been treated in detail in ref. 6.

Equ. (19) and {20), and particularly the functions _" and J , play

an important role in the matching of outer and inner expansions.

and _ (X) depend

The corrections

Also, near )_ I

and d are functions of the total energy alone. Unfortunately,

o; become unbounded as /_----> ], that is for the minimum

3.4

to the second and higher powers.

a solution to first order in

thus Keplerian and, in particular, hyperbolic.

characterize this hyperbola by the four constants

The Inner Expansion

Theequationsin the innervariables _ , 7 and Z have /_ only

Since the present purpose is to develop

the moon centered part of the trajectory is

It will be convenient to

_/ , the X of at _- o_component velocity

g ? -, the component of velocity at X = -- o_

/_# -- 14/_/--/_# related the direction of the asymptote

"- 0 at perilune.and
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CL

J/

In the definition of /_! ,

,4 -
is the semimajor axis, _ the eccentricity and _ is the counter-

clockwise angle between the X

expressions ?( )and

Keplerian) except as they are needed for the matching of inner and outer

axis and the apse line of the hyperbola. The

do not have to be given here (since they are

solutions. For this purpose their values as _(_-,_Oare needed. These

are

4L,

(21)

(22)

as follows readily from the equations of hyperbolic motion (most conveniently

by letting the eccentric anomaly approach- _:_).

3.5 Matching of Inner and Outer Solutions

The purpose of matching the inner and outer expansions is to determine

the constants of the moon, centered hyperbola, thereby also relating the

singularities in the two expansions in such a way that they cancel each other

in the composite solution. Because the singularities are logarithmic in

nature in the inner as well as the outer solutions, such matching can appar-

ently be achieved without the use of an intermediate expansion.

The geometry of the matching is illustrated in Fig. Z, as much as it

can be illustrated. The part of the fighre related to the inner expansion is
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drawn in the scaled coordinates ('X, ci_ .)/ and must be thought as infinitely

small in comp_risonwith the figure for the outer expansion. It may be

remarked tha.t this matching is strictly analytical, whereas the "patching"

of conics is strictly geometrical. A direct comparison of the two methods

is therefore difficult; such comparison should be based on the finai numericaI

resuits.

Y

×=1
E ",s

H

g M

-_-- t/.m

OUTER EXPANSION INNER EXPANSION

Figure g GEOMETRY OF MATCHING

The matching is performed by evaluating the outer expansion at x_- |

and equating the result term by term to the inner expansion evaluated at

N "" -'----_ , both expansions being expressed in the inner variable. (The

important thing is that both expansions are expressed in the same variable;
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the present choice of inner variable is simply for the sake of convenience.)

The part of the outer expansion identified with 2 is evaluated near

X =-: _ by writing two terms of its Taylor expansion at X _1 :

Jcc Ix) -
!

Sc, ;,; + * &-/)/c-'

using equ. (16). The inner variable is introduced by a = /4,_5 vc _ (__ 7-)

and if it is assumed that ('_: - T) is small ('as it will befrom equ. (3),

shown to be), there results

The introduction of the inner variable into the expression for _t

(23)

-= /LX the term cos _t-T)
(equ. 19) is taken care of by putting (/--X) / ,

in equ. (3) being put equal to unity with enough accuracy since _! is multi-

plied by zz By combining equs. (7), (9), (19) and (Z3), the outer expan-
.7

sion evaluated near X =/ and expressed in the inner variable is thus

(24)

From equ. (3) and (22) follows for the inner expansion evaluated at X=_-

(25)

Now, if the phase angle -T is chosen to be composed of several parts

according to powers of _ as follows,
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(26)

the third term in equ. (24) is to first order in/,-- , _- /&

and the two expressions for _ (1) can be made identical by making the

followingchoicesfor , tt I , andT.
-r--

tL, = /[
(27)

= ,Y.z_

(28)

(29)

Note that this implies that {//'/_/lj-/__ _--- ; this will be confirmed

by the matching of the expansions for V

From equ. (8), (20) and (3) follow for the outer expansion of 7

evaluated near k' = I and expressed in the inner variable )( ,

Since the Keplerian part of this expression is multiplied with MA. 1/2, its

value near X._ I is obtained simply by substituting g=i ; no Taylor expan-

sion need be used here because the second term would be proportional to

./z. 3/2"

From equ. (3) and the expression for the inner expansion, equ. (21)

follows for the inner expansion evaluated near ._ _-- ___ ,
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where it is again assumed that (_-T) is small, so that __._ ('_ - 7-) = (_ -7-).

This assumption is shown to be valid (at least to order JJ_) by equ. (35) and

(29). If then the expression for _(_) near X = I (equ. (25)), and the evalu-

ation of _ (equ. (29)), which followed from the matching of the expressions

for the time, are used, there follows for 7 (X) ,

(31)

The expressions (30) and (31) are made identical by the following choice

of the constants

2-

V_=-/

- K,-÷ :,j .T + Y_,,')-y_p)

(3Z)

(33)

(34)

T is arbitrary

The result _'/ '----I confirms the expression _ (/7_'/_2) -'/= which

was necessary for the time-matching since for the moon centered hyperbola

(v,--- / - _ With equs. (28), (33) and (34) the moon

centered hyperbola is now determined, the constants._, Z , /0 and
/

being expressed as
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_z= k;,u,

X - k',<4=+
(35)

These four constants are really equivalent to three integrals because

so that a fourth integral is still needed.

that _ _ _ at perilune.

the phase angle

÷/

This is provided by the condition

This condition is satisfied by the proper choice of

"7- and the origin of the inner variable _ whicll are

determined by equ. (27) for T ' equ. (32) for "_2_ ' and equ. (29) for

The constant A which is needed in equ. (29) is simply

It is a fortunate circumstance that T ' the part of the phase angle ] which

is proportional to/A/- , is'arbitrary. T influences _l ' and thereby the

angular momentum t -_l/i . With the hyperbola's total energy deter-

mined by /Z I , the perilune distance can thus be adjusted by changing the

angular momentum through T

It may now be noted that the phase angle -]'- (apart from the arbitrary

contribution i_z.T ) and two of the hyperbolic constants depend only on the

Keplerian part of the outbound trajectory. As a matter of fact, Lagerstrom

and Kevorkian derived
and

in the very beginning of their analysis
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and on the basis of the outbound Kepler trajectory alone. For the purpose

of this presentation of their analysis it was felt that the modification in which

-_ and --_zj are derived from the matching conditions is a little more in
2.

line with the general principle of the method of singular perturbations; this

principle being the determination of certain constants, which leave the inner

and outer expansions indeterminate, from matching conditions.

Furthermore, it is noted that the first order corrections of the outbound

trajectory enter into the matching conditions only through the functions )'[/_)

(in the determination o f"U> and /S(/0)- _///Cj) (in the determination of

). The functions _ and ,S become unbounded as ,/_-----_ I, i.e. for

minimum energy trajectories, but the difference (J--)Z)was shown to be

finite (ref. 11). The difference _-)_Jmay be interpreted as the correction

of _ , required if _,

trajectory alone. Since

of the moon-_entered hyperbola at

were determined on the basis of the Keplerian

k/, is the _ -intercept of the approach asymptote

X _1 , it has been claimed that _,(-._)

is a measure of the error made in the usual methods of "patched-conic"

computations; _-- _)is then simply the miss-distance of the approach

trajectory. Because of the basis difference in the two methods (which has

been pointed out earlier in this report: patching conics is geometric, while

matching inner and outer expansions is analytic) a comparison on the basis

of (.J- _/ tends to come out unfair for the patched-conic method. It

would be interesting to see how the corrections _] and \/i contribute to the

outbound trajectory near its intersection with the moon's sphere of influence.
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And if a thorough comparison of the two methods were desired, it should of

course be based on final numerical results for representative trajectories

computed by both methods. Lagerstrom and Kevorkian themselves have not

provided such a comparison, except by pointing out that (,J'- _/) is a measure

of the patched conic error; in ref. 5 there are comparisons with exact (i.e.

numerically integrated) trajectories, but whether or not the results say much

for the two-variable expansion method depends mostly on what kind of errors

one is willing to except.

3.6 The Composite Solution

The outer and inner solutions have been formulated and their singular

behavior has been identified. By matching these two solutions in their over-

lapping region of validity the phase angle and the constants of the moon

centered hyperbola have been determined. To complete the worka composite

solution must be formulated. According to the singular perturbation theory

the composite solution is obtained by adding the outer and inner solutions

and subtracting their common part. That common part is just the inner

solution evaluated in the outer region (that is for at _-- <>¢), or the

outer solution evaluated in the inner region (that is for X----_ I }; these

two evaluations are identical because that was just the condition for matching.

_tere it is convenient to use the inner solution evaluated for X -_ --:_.

According to equ. (8) the outer solution is

t

where
Az and _ are known functions, _ exhibiting a singularity for
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According to equ. (3) the inner solution is

where the moon coordinate

"(? 7-)with y._jz _ t_d

hyperbola.

and y(X) is the equation of the moon-centered

According to equ. (3) and (21), the inner solution evaluated for

"_----_-- _ is

X----_. - _

with ,._ (,_) __ _ C_ --
-- /c,

The composite solution for x/ is thus

and in the same way the composite solution for L (X/X.z.) is found to be

(36)

whe re

/ LLI _i _ Ga-

ll analytical expressions for 4 (_) and 'Ira) were available it would

be observed that their singularities are cancelled by the singularities of the

expressions in square brackets; this is for instance the case in the analysis

for the two-fixed center problem (ref. 3). In the absence of analytic expres-

sions for _! and VI , the singularities must cancel numerically. Now, to

determine just the geometry of the moon centered hyperbola (determined by
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the constants in equ. (35), the functions _j and _1 themselves are not

needed, only the function (,f-)') is. (_- _() depends on the initial con-

dition --/OZonly and can be computed and tabulated once and for all. However,

if the time-dependency and the entire trajectory is needed, the functions 6-t

and _ , as well as the expressions in the square brackets of equs. (36) and

(37) must be computed and their singularities made to cancel numerically;

this may be expected to cause some numerical difficulties.
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4. THE OUTER EXPANSION IN ROTATING COORDINATES

In the previous section it was shown that the application of singular

perturbation theory results in a uniformly valid solution to first order of

for a certain class of trajectories in the restricted three body problem. In

principle this is a satisfactory solution, but practically there are some

difficulties because this solution is left in terms of quadratures which must

be numerically integrated. Furthermore, since the formulation was carried

out in a non-rotating coordinate system one may ask whether a formulation

in a different coordinate system would be more advantageous.

Therefore, in conclusion, the following items are cited as possibly

leading to improvements or analytical simplifications for this type of first

order solution:

l) to obtain analytical approximations for the quadratures which

depend on some parameter of the zero-order ellipse (in this case the energy);

2) to represent the problem in a rotating coordinate system as a third

order system of differential equations by making use of the Jacobi Integral.

An investigation of the second recommendation has been initiated and

in what follows the results for the outer solution are outlined in terms of

quadratures. As a result of this investigation it was found that in addition

to the choice of a rotating frame of reference the choice of polar coordinates

was a decided advantage for the following reasons:

l) The solution for time is obtained from the first order differential

equation provided by the Jacobi Integral;
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2) The occurrence of elliptical integrals in the zero-order solution for

the time is avoided when the radius is used as independent variable;

B) A solution in polar coordinates readily lends itself to extension to

three dimensions.

The details of this analysis follow.
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In the planar restricted three body problem assume a non-rotating

earth-centered coordinate system with axes X, Y parallelto some inertial

axes and let the earth-moon distance equal 1 while the masses of the earth

and moon are 1-Az- and.Ax- respectively and the gravitational constant k2=l.

The Lagrangian for a massless particle at (x, y) is from Reference 7:

L = l l-,z_ + "_--_-_- (x t + sin t) (38)
6,z + +--7-- rz y- cos y

In this system the moon rotates with angular velocity ta3 --I and the

transformation to a rotating coordinate system X=:=, Y=:= with the moon at unit

distance on the X':-" axis is:

x;:" = x cos t + y sin t

ym = -x sin t + y cos t

(39)

where in polar coordinates relative to the rotating coordinate system:

x;:: = r cos 0::"

y':-" = r sin 0;:=

(40)

and r = r_:'. The Lagrangian in relative polar coordinates

becomes:

Lm = --21 [r 2 + (r _,)2
+ r2 _;:-"+ l-,a- + _z.

r r2
- #- r cos 0;:" (41)

where: r2 1 + r 2 2r cos = (r-1) 2 -
r

Since L;:= is time independent there exists an integral of the equations of
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motion known as the Jacobi integral which is equal to the 5acobi Constant C'

for the relative energy• Thus the expression for the relative velocity becomes:

_2 + r 2 ({}':-')2 = r 2 + 2(1-,u-) + 2__ - 2 _. r cos 0":"- C' (42)
r r2

An asymptotic series solution of the following form is to be obtained:

t = to (r) + _/_ tl(r) + 0 (.za2)

(43)

e ='" = O_:" ""o (r) + _- e'[ (r) + 0 (yfl)

where /zz o,. 01. The zero order solution is a two body ellipse relative to

the earth with elements a and b, e, i, co', _ , _/_ and constant angular

momentum fo and energy h o. It will be assumed that the initial conditions

are taken at the perigee. Then the solution for _. is essentially a first order

approximation to a "Kepler's Equation" for a special class of lunar trajectories

in the planar restricted three body problem and t o is exactly Kepler's equation

for the two body problem:

to = cos - e 1 (44)
ae - ('-'aE "-) j

and 0 o

is given by: I I0 _ -I a(l-e 2) - r _Jl= COS - t o - .0 re

where _i is an initial phase angle between the semi major axis and the X _

axis. Such a zero order solution is valid since Lagerstrom and Kevorkian,

Ref. 4, have shown that within a small neighborhood of the earth of 0 (_)

the motion is Keplerian up to order ./_
1+3_

• Hereafter the subscript zero
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refers to values for the zero order solution and the subscript i refers to the

initial conditions.

The Lagrange equation ILl 0 = 0 provides the following expression

for the change in the total angular momentum:

d
d'-}- (r25" + r2) = I- r sin 0;:" l(r2) 3 + r sin O::" (45)

Integrating for a first order approximation gives:

/ r in0o + r sin 0:

(46)

Clearly the integrand in equ. (46) is expressible as a function of r through

eqs. (44). However due to the transcendental nature of the resulting expression

for the integrand an analytical integration cannot be obtained directly. Instead

an approximation for the integral dependent on certain parameters of the zero

order solution can be determined and exercising choice as to the form of the

approximation will allow some simplification of the solution for t. Now 0_:"

be come s :

J

'"" _'o 1 + 72- P (r) (47)
+ r2O

where the approximation for the integral has been incorporated in P (r).

Now the Jacobi Integral, equ. (42) provides a first order differential

equation for t after substituting for 0":
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(to)z + z !

/t_t o tl =

2
r

(Z o ZC) r z+z r z 1• - - o r2(o) +

P(r) (r E- So)- A- r cos 0 o)
(48)

and

t o

I (2 i 0 - 2C).r2 + 2(1 r/_-) r - L20

where 2C = 2 ( _o - ho) is the energy constant for a two body orbit relative

to a rotating reference frame and /% = C ! - 2C. Note that in equ. (48) both

1
and P(r) become unbounded as r 2 > 0; however, the combination

r 2

of these terms should remain bounded insuring that --dr is bounded near the
dt

moon.

Similarly 0'' is obtained from equ. (48):

' ' _ o ' o tl + /a- P(r) t o (49)
0"o + ')zO'l 2 t o - t + /_-

r

where again the prime denotes differentiation witl_ respect to r.

This completes the outline of the outer solution. A similar investi-

gation of the inner solution and the results of matching the solutions will be

P

final deciding factors in the determination of the practicality of this approach.
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5. CONCLUSION

Interpreting the restricted three body problem as a singular perturbation

problem results in a uniformly valid solution to first order in the small parameter

_/_ for earth-moon trajectories. This solution can be thought of as being com-

posed of an "outer solution, " valid near the earth and an "inner solution, " valid

near the moon. The outer and inner solutions are matched in their common

region of validity by determining certain constants (i. e. the initial phase angle

of the moon and the elements of the moon-centered hyperbola) in such a way

that the singularities which appear in the inner and outer solution vanish in

the construction of the composite solution. The matching constants are ex-

pressed in terms of the initial conditions, with the exception of a.part of

order//_ in the phase angle which can be chosen arbitrarily and can thus be

used to adjust the lunar perigee distance.

It has been shown that the outer solution must necessarily contain a

part that is proportional to the small parameter .A_ in order to make the

match with the inner solution possible. A posteriori this conclusion could

have been anticipated from a consideration of the order of magnitude of the

angular momenta of inner and outer solutions. The need for this first order

correction to the earth-centered outbound ellipse seems to explain why the

usual patched conic methods (in which such a correction is not made) must

be inaccurate. But such a statement must be made with some care, since

in the two methods the matching is performed on a very different basis. In

the two-variable expansion method the outer solution is evaluated at the
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moon's distance and equated to the inner solution evaluated far away from

the moon, but far away in terms of the "blown-up" inner variable. Although

this procedure makes good sense analytically, it is hard to see what it means

geometrically. On the other hand, in the patched-conic method the earth

centered ellipse {an uncorrected outer solution) is evaluated at the sphere

of influence of the moon and equated to the moon centered hyperbola (the

inner solution, but in physical variables) at that point. To make a sound

comparison of the two methods, it should be based on the final numerical

results, or at least one should determine how much the first order correction

of the outer solution contributes to the Kepler ellipse up to the moon's sphere

of influence.

The composite solutions, in particular the first order correction, is

left in the form of quadratures for which no analytic expressions has been

found yet. Therefore, although in theory the singularities of outer and inner so

solutions cancel, the singularities must be evaluated numerically. This will

cause numerical problems if the entire trajectory is to be known as a function

of the time. On the other hand, if it is sufficient to just know the elements

of the moon centered hyperbola, the quadratures need not be evaluated entirely.

Only the parts of the first order correction indicated by _ CP) and y_/o_

are required, and in particular their difference ( o_- _) . These functions

depend only on the total energy _/°2- and can be evaluated once and for

all for any interesting range of energies. There is an additional difficulty

since J and _ tend to infinity for minimum energy trajectories, but even
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there the difference (j-- _) remains finite.

These difficulties may limit somewhat the practicality of the methods

depending on how much trouble one would want to go through to write a com-

puter program that evaluates the quadratures. Even so the method is of

great interest and a similar development may be attempted along some

different approach. Such a different approach is given in Section 4.
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DEFINITION OF SYMBOLS

t

f

R

r

G

P

_Q

i

J

k

e

g

P

q

a

a

n

A

Time

True anomaly

Position vector

IR I = magnitude of R

Gravitational constant

Angular momentum vector

Eccentricity vector

GxP

Unit vector in direction of x axis

Unit vector in direction of y axis

Unit vector in direction of z axis

Eccentricity

i_cl

IP_I

IQ_1

Time of perigee passage

SemimN or axis

Mean motion

Coefficient of second harmonic of the potential dueto the oblateness
of the earth

3_K 2

4
g

3Ol



B

(r,S)

P3

Polar coordinate system introdueed in x-y plane

SUBSCRIPTS

1,2,3 1st, 2nd, 3rd component of a vector

o Initial value

s Short periodic

£ Long periodic

SUPERSCRIPTS

• Differentiation with respect to time

Differentiation with respect to true anomaly
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TO THE POLAR OBLATENESS PROBLEM

By

John Morrison

Henry Weinberg

SUMMARY

This report presents the derivation of a set of two body parameters and

their associated perturbation equations. These equations are applied to the

polar oblateness problem characterized by the second spherical harmonic. A

modified Poisson method is used to obtain the first order solution to the problem.

The modification of the method is introduced in order to eliminate the occurrence

of secular terms which, because of the parameters employed, would have caused

a rapid deterioration of the solution. The approximate solution is expressed as

a function of true anomaly. Some analysis of second order theory is presented

which suggests that difficulties with particular initial conditions may be avoided.

INTRODUCTION

Among the numerous troublesome aspects which one encounters in attempt-

ing to integrate the perturbation equations for the polar oblateness problem, two

difficulties may occur which appear to be subject to, at least some amelioration.
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In general, there are two decisions one must make before these difficulties be-

come apparent. These decisions consist of selecting a set of parameters and a

method of integrating the perturbation equations. The possible sets of _o-body

parameters may be divided into two groups, one of which contains canonical

parameters and one which does not. Two methods of integration, in general

use, are l_oisson's method {1) and Von Zeipel's method {2). The latter method

is applied only to canonical parameters. In most instances, regardless of the

set of two-body parameters or method of integration employed, the results

present two interesting properties. The first is the occurrence of terms in the

approximate solution which show a secular growth. The second is the presence

of singularities in the second order corrections for certain initial conditions of

the parameters. The first property is not, in general, objectionable since the

secular terms usually appear in the expressions for angle parameters. How-

ever, for some parameters, such as the unit perigee vector, the occurrence of

secular terms destroys the unit characteristic and limits the applicability of

the results to relatively short time intervals.

It is proposed in this report to derive a set of parameters and their as-

sociated perturbation equations which, when applied to the polar oblateness

problem, yield, after approximate integration, equations for the parameters

which manifest no secular growth to the first order, except for one element.

A brief analysis of the structure of the second order perturbation equations is

developed which suggests that the occurrence of singularities arising from

initial conditions is not a necessary concomitant of the polar oblateness problem.

The application of second order theory, however, will not be attempted in this

report, because the parameters which have been chosen degenerate for nearly

circular orbits. Even though the set of parameters employed is defective, the

comparative simplicity of the perturbation equations recommends the use of

these parameters for a clearer insight into the particular difficulties which their

use is intended to eliminate. It should be noted that the degeneracy of the para-

meters for nearly circular orbits is not a case of replacing one difficulty with

another, but is simply a consequence of the choice of parameters and not of the

integration technique. A more judicious choice of parameters has been made

and an improved integration technique developed which eliminates the imper-

fections in the present method. A report is now in preparation which incor-

porates these developments.
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DERIVATION OF A SET OF PARAMETERS FOR THE KEPLER PROBLEM

To specify the solution of the vector equation

--
R+ 3 -0 (1)

r

six independent parameters are needed• For the purposes of this report, the

following set will be used:

a, the time of perigee passage;

_P, the eccentricity vector;

_Q, a vector perpendicular to _P and lying in the plane of motion.

At first glance it would appear that this set contains seven independent

elements; but, since P and _ are mutually orthogonal, any one component may

be expressed as a function of the remaining five. The vectors __Pand Q may be

obtained from Eq. (1) in the following manner: Take the cross product of R and

Eq. (I)

ee

RxR = 0 (2)

Integration of Eq. (2) gives

RxR=G (3)

in which G is the constant angular momentum vector•

product of Eq. (1) and G

Now take the cross

RxG+ xG__=0 (4)
r

After expanding R x G using Eq. (3) and recalling that G is constant, Eq. (4)

integrates to

RxG---=P
r

(5)
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in which P is a constant vector.

rewrite Eq. (5) in the form

To find the magnitude and direction of P

Evaluating Eq. (6) at perigee yields

P = U _e (7)
-- -p

where

e is the eccentricity of the orbit

and U
-p

is a unit vector in the direction of perigee. Let Q be defined by

_=GxP=_RxG+Rg 2r (8)

The magnitudes of G, P, and Q are g, p =/ze, and q = gp, respectively.

Since R, P, and Q are coplanar, RR- may be expressed as a linear combina-

tion of P and Q

R= al__P+ ¢z2 Q

The scalar product of Eq. (9) with _P yields

(9)

R. _.P rcosf

_1 2 p
P

(10)

where f is the true anomaly of R__.Similarly,
\

R'9 _r sinf
_2- 2 q

q

R may be written as

R=&I__P+ &2 Q

(ii)

(12)

Making use of the well known formulas

r _

g2

_z(l+e cos f) (13)
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g
2

r

it follows that

(14)

_1 = _ _sinf
gP

(15)

h2 _ e + cos fgq (16)

PERTURBATION EQUATIONS

After having obtained a set of parameters the first step in deriving the

perturbation equations is to introduce the perturbing force F on the R. H. S• of
n

Eq. (1) which gives

•. pR
11+ _ = _F (17)

r

The perturbing force F will cause R to deviate from the Keplerian orbit, and a

new solution must be found. This solution can also be put in the form of

Eq. (9), but now the parameters G, _Pand Q will be functions of time. In order

to determine the time dependences, it will be necessary to obtain the differ-

ential equations for the parameters in so far as they depend on the perturbing

force F.

Differentiationof Eq• (3) gives

• oo

G = R x R

Substitution of Eq. (17).yields

G=RxF

'Similarly, differentiation of Eq. (5) gives

..... RxG

P=RxG+RxG+_ 3
r

(18)

(19)

(20)
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• •o

Substituting for G andR yields

P=FxG+Rx (RxF)

From Eqs. (8), (19) and (21), Q__is given by

(21)

Q=_ _Rx(-RxF)+-Fg2+2--R(G--" _G) (22)

The equation for the variation of _, the time of perigee passage, is deriv-

ed from Kepler's equation, which, for 0 < e < 1, takes the form

n (t-(_)=tan -1 sinf_l-e 2
e + cos f

_1 2
sinf e -e

1 + e c-_s f (23)

wheren=_/--P-andg _/+ a(1-e2).
+a 3 = /a

For e > 1, Kepler's equation is given by

n (t - g) = tanh -1 sin f _e2 - 1 e_e 2 - 1 (23')
e+ cos f sinf l+e cosf

I

where n = _/_-_ and g
-a

=_-pa(e 2 -1). Using various identities, Eqs. (23) may

be put in the following form

-i R-R R.R
n (t - (Y)= tan 2 2 (24)

(l-r) a n a n

n (t- a) = tanh-I

R.i_ R.i_

r 2 2
(1-a) an a n

(24')

Differentiation of these equations with respect to time, and substitution of
el

Eq. (17) for tt gives, in either case

(_=F. { 3a _(t_ff)+aR+% _(1_e2)(_. R_)R_a p i} (25)
-- _-- u-- p -- -.-
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where

R'R 2

a /2 r

and

F

It is convenient to have available the total time derivative of true anomaly.

Differentiating the expression

R P
cos f .... (26)

r p

it follows that

- (sinf)f = rR PR2 p r
r

(27)

and therefore

P Q
=g---. -- (2s)

2 p q
r

APPLICATION OF THE PERTURBATION EQUATIONS
TO THE POLAR OBLATENESS PROBLEM

In this report, the polar oblateness problem will be assumed to be char-

acterized by the perturbing potential

r r

(29)

In order to apply the perturbation equations, previously presented, to this

problem, it is necessary to specify the perturbing force F. This force is the

gradient of the perturbing potential _.
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:F_- 5 - -
r r

The procedure for applying the perturbation equations may be outlined as follows:

(a) Reexpress the perturbation equations in terms of the parameters

_P, Q, and G, and true anomaly, f, by substituting Eqs. (9), (12),
and (30) for R, R_, and F, respectively.

(b) Since the resultingequations are functions of true anomaly, it is
legitimate to take f = g/r 2, for a first order approximation. It

follows that the differential equations with respect to time may be
transformed to differential equations with respect to true anomaly.

(c) These perturbation equations are now written as Fourier polynomials.
Terms with constant coefficients are transposed to the L. H. S.

(d) To obtain a first order solution for the system of equations derived

in (c), all parameters on the R. H. S. and the parameter g, wherever
it occurs, are held constant. Under these conditions, the system
can be solved exactly.

(e) The perturbation equation for the parameter a is treated similarly
with some modifications.

Carry_g out the operations indicated in (a), (b), and (c) the results are:

1 _#

g P q

4 k _ sin 3 f+ e sin 2 f+ e-_ sinf -_ cos 3f
g

(31)

- cos f +-_ sin 4 f

+ ( 7 15e2 7 5e 2 0 P3Q3 (15e-_-2
_4+-T6-) sin3f+3esin2f+(T4+ -_-)sin p q \8 cos5f

+ 3e cos 4f+ (_+ _- e 2) cos 3f+4ecos 2 f+ (_+ e 2) cosf
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(_}2 ( 5e2 3e 7 lle 2 .- _ sin5f+ _-sin4f+ 4_ ÷ -i_-/sin3f+esin2f

.3e 2 5 } fe 2 e2 ,)]+_-g---_)sinf -k._- sin 3 f+ e sin 2 f+ (l+ T) sin

+---- - \-i_c°s 5f+ _- cos 4f+( +-e2) c°s3f+ 3ecos2f
q

+4 +-_e2) c°sf + _ 16 cos5f+ _-cos4f+ (y_+ T6 e2) c°s 3f

7 9e 2 f} P3Q3 fSe 2 4f+(7 +3e2) sin3f+ecos2f-(Ti +_c°s p q \X sinsf+3esin

+ 4e sin 2f+ (2- - _) sin + cos 3 f +ecos2f +41+ 3e2-_-) cos f}

I

4311 cont'd

--- 2--_ + 2 2 J q p
g P q

3
K2

3
g

{_k[ P3 2 3e 2 cosf} + Q3 2_ T(2 sin3f

+ 47+ l'6e2) c°s3f+ 4ecos2f+(5+ 25 fSe 2

o_

3e 7 5e 2, 7 5e2) cosf}+P3Q3 d5e 2
+ -_- cos 4f+ ( + "1"6; cos 3f - 4_ + _ p----_ k.X sin 5 f
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# 3e sin4f_ (_+ 3e 2) sin 3f÷ 4e sin2f÷ (e 1_- - _) sin - k._- cos 3 f

3e2" _ qE(-_-J \ 16 sin5f+ _- sin4f4ecos2f+ (1+ -_-)cos f}-}+ Q P3 _2 (5e 2 3e

+ (_÷ ]-_ e 2) sin 3f+ 5e sin 2 f+ (7 13e 2 (Se 2- \ sin5f

3e 7 lle 2 .3e 2+ -_- sin 4f + ( + _) sin3f+e sin2f+ [, _
__5

7_) sin f}

P3Q3 _Se 2 7 21 e 2P q \--_cos 5f+ 3ecos 4f+ (_+ _ ) cos 3f+ 6e cos2 f

+ (_ + T) cos f \ 4 sin 3f+e sin 2f + (1 + 3e2-_-) sin (31) cont'd

Ge÷

2

g3 p q
xk

2
3_ K 2 P P3 e

g
cos 3f+ cos2f+ _- cos +

Q3 fe

-_-_ sin3f+ sin2 f

e 0 _ Q EP3(e e f_ Q3(_e+ _ sin + _- -_ _ sin3 f+ sin2f+ _ sin +-q- _cos3f-cos2 f

+_ cosf ! xk

where

( ), = d( )
df
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Consider the system of homogeneous equations obtained by setting the

R. H.S. of Eqs. (31) equal to zero.

3_t2K2P_ _rk Q3_ --P_ P3£ Q3£ "-Q£
Pj,' g: q_ P_ P_ q_ q-'-_LE23--P3_2p£2 ÷_5Q3_2-1_}=0

4 - , q£ P£ q£
g_ P£ P£ p _ q

=0 (32)

_2K2g_{r_ _ -Q_% }xk=0
G_ ÷ 4 p_ p_ + q_ q_
" g_

It will become apparent that _£, Q£, and _G£ represent the long periodic

terms of _P, Q_, and G, respectively.

For this system of equations, Eq. (8), Q£=G£x P£ still holds. Since

2 =_p£. _p£ q2 2 =_G" _G£P £ £ = 9£" _Q£ g £

It follows from Eqs. (32) that

q' _--Q_
%'9_ =°

(33)

_9
gl - _ " G' = 0

g£ - £

Therefore, for this system of equations, p£, q£, and g£ are constant.

Similarly,

1 _ ! !

(34)
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so that

is constant.

Using the identity

=B
(35)

_G£ -P£ Q3£ -Q_ P3£kx---

- g_ p_ % % P_
it follows that

(36)

P P
(-_ 3__!
\ P_ P_

+ -- -- xk= x
q_ q£J -

_ G3_
G3_ E _Q3-_ - -Q£ P3_ _ _G

Therefore, Eqs. (32), can be rewritten as

p, + f P3_ G__._ _Q_ 5 Q3_ } = 0
__ Ap_ _-kXg_ _(l__Bjh_k q_

, G P 5 P

Q _+ Aq_-_Q3-_k x -_/__-.._._ (__ B- t+k 3...__}=0
- g_ P_ - p_

_g_ - g_

where A = 3N2K2
4

g_

_ Q, sThe third components of P', _ _, and _G _ are

(37)

(38)
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Q3£ 5

P'3£+ Ap£-_-£ (_B-2_=0

3£ Aq£ P£ (2-_"

G' =0
3_

0 (39)

which form a system of first order, linear, homogeneous differential equations

with constant coefficients. The solution is

G3£ = G3o

where P3o" Q3o' and G3o are initial conditions.

ponents of G' are

G3£ = 0
G ' 1£ - A G2£ g-_-

G3---_= 0

G'2£ +AGI$ g£

This system has the solution

Similarly, the first two com-

(41)

o_ O_oco_(_°_+_7__.o_m(A_0_,

_2o°°_-_
where Glo and G2o are initial conditions. Using the identities,

(42)
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G_ G3__A= _ PI__AP3_.___ QI_ Q3_

g_ g_ P_ P_ q£ q_

G2_ G3_ = _ P2.___P3.__ _ 72_ Q3_

g_ g_ P£ P£ q_ q_

Eqs. (41) may be transformed into

(43)

O '1_+ A g_ _"P2_._ P3_.__+ Q2£ Q3_ _ = 0
_" P_ P_ q_ q£ -J

G '2_ - A g_ ;t PI_ P3_ + QI_ Q3____
P_ P_ q£ q£ J

Eqs. (44) together with the identities

=0

GI___= P2___£Q3£ P3_ Q3_

g_ P_ q_ P£ q_

G2___= P3£ QI_ _ PI_ Q3£

g_ P_ q_ P_ q_

determine the remaining components of P and _Q which are

(44)

(45)

PI_ _ P£ {IG2___j"A _ _-A--B-( P3"-''A_ A G22' Q3£ "_
P_ \ g_ g_ q_

{A% %
P2_ -A-B g_ q_ p_ \ -_-1 J

QI_ - q£ {A G2g P3_ Q3__Z / G2£'_ '
-AB g_ p_ + q_ _.-_-J}

Q2g AB (-A ( Glg_'
g_ p_ q£ g£ i

(46)
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All quantities appearing on the R. H.S. of Eqs. (46) are known. After

some algebraic manipulation, the solution for the system of Eqs. (32) may be

expressed

I::1
l

I%1

{

as

0 C 0

0 0 C

B

0 0

0 Plol

P2ol

P3o I

Qlol

0 Q2o {

Q3ol

Glo I

G2o I

I G3o I
u m

where

(47)

_j

and

C

m

cos A G3---_f sin A G3---_£f 0

g£ g£

m Sin A G3----_f Cos A G3--_ f

g_ g_

0 0

1

0

0

1

To find the particular solution of Eqs. (31), assume a solution of the form

(47) where Po' Qo' and G are functions of f. Substituting solution (47) into
--O

the L.H.S. of Eqs. (31) will yield three equations for -oP " -Qo _, and -oG _.

After solving for these derivatives, and recalling condition (d), -Po' -Qo' and

G may then be found by integration alone. If the second order terms in this
--O
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solution are neglected, the results are equivalent to integrating the R. H.S. of

Eqs. (31) and adding the results to solution (47). The first order solution for

_P, Q, G, is

0

0

f

G =_G_+[Gs]fo_

(48)

where -Ps' Q-s' -Gs' are the integrals of the R.H.S. of Eqs. (31), and the

quantities in brackets are to be evaluated between the limits f and fo"

In the perturbation equation for cr, Eq. (25) it may be noted that

• d_R. F =-3¢ R • F=--
-- _ dt

If the parameters a and cr are held constant at their initial values

aoR _ •
_t( 3a° 3a° _ (t-or o) +--_--j F- --_-- ¢ (t - cr o) } = (- --if- (49)

Therefore, Eq. (25) may be rewritten in the form

d-_ cr + --9-° _ (t_z - ao)

2

a {(1._e2)(_. R_)l_ r }= _ _-__P ._F (50)
P

Differentiation with respect to time is transformed to differentiation with

respect to true anomaly, and the R. H.S. is expressed as a Fourier polynomial.

The result is

.d
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g3p

3e _5e 2
+ _- cos 4f+< 16

÷(.._)215e2L 16

cos 5 f

7) 3e (5 5e._ f]+7t cos3f+_-cos2f+ 71 _ _os

cosSf+_- cos4f+ 4-i-6e cos3f

--_- cos 2 f + k.-_- - cos f P q sin 5 f- e sin4f (51)

_2 7h f] %% 5e2f
+\-8--7tyc°s _ p q L sin5f -e (7 8_sin 4f+ - sin3f

+3esin2f-(32+_-) ][2\ 4 sinf + cos3f+ecos2f

yield

Holding the parameters on the R.H.S. constant, Eq. (51) is integrated to

where
S

f

[Crs 3a°_/z (t If (52)O'=(YO+ -_ -(YO )

0

is the integral of the second member of Eq. (51).

CONCLUSION

The solution (47) obtained has f appearing in arguments of sines and

cosines, these terms having two essentially different periods: 2_/j (short

period where j is a natural number), and 2_/A (long period where A is a

quantity and equals 3/_ZK2/g4).-- The solution i s well behaved for allsmall

values of f because f appears in arguments of sines and cosines and because

3]-9



these functions are found only in the numerator. This would not be the case if

Eqs. (31) were integrated keeping all parameters constant; for then, the long

periodic terms in the previous solution would be replaced by their first order

approximations. This solution would grow linearly with time.

The next step in the usual procedure for deriving the second order

approximation consists in substituting the first order solution for the parameters

• in Eqs. (31). Before this step can be carried out, however, it should be recall-

ed that "Eqs. (31) were Obtained by putting dt/df = r2/g. If higher order solutions

are to be found, this approximation is no longer valid. Therefore, for a second

order approximation, dt/df must be replaced by its first order approximation

derived from Eq. (28).

Now suppose the parameters are replaced by their first order solutions,

terms of order K23 are neglected, and products of trigonometric functions are

replaced by trigonometric functions of sums. Under the following conditions,

the resulting equations may be integrated to give a well behaved second order

solution :

(a)

(b)

No constant terms are present

Whenever cos af or sin _f occurs ((_ a small quantity), (_ must
also appear as a factor in the numerator.

If these conditions are not fulfilled, and the equations are integrated,

f may occur outside trigonometric functions, or small divisors may be present.

A possible solution to these difficulties is obtained as follows:

(a) Denote the short periodic terms of the first order solution of

P, Q, G by-Ps (-1)o' -Qo' f)' -Qs (-Po' -Qo' f)' -Gs (-1)o' -Qo' f) and

assume a solution of the form _P = -P£+-Ps (P£' -Q£' f)' -Q = -Q_

+ -Qs (_£' -Q_' f)' G = G_ + _Gs (_P£, _Q_, f) __P£, _Q_, _G£ are new

variables which, to first order, are equivalent to solution (47).

(b) Substitute these expressions into both sides of Eqs. (31) as

modified in accordance with the qualification regarding dt/df

mentioned above. Neglect terms of order K23", expand into

Fourier polynomials, and neglect terms multiplied by sines
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and cosines. P£, Q£, G are determined from the resulting equations.

Investigations are currently being pursued for the purpose of finding the

second order solution by this method.

APPENDIX

EXAMPLE OF RAPIDLY VARYING PARAMETERS

Whenever perturbation equations for a set of parameters are solved employ-

ing an approximate integration method, it is always desirable that the parameters

be slowly varying. It is likely that, for the polar oblateness problem, no set of

parameters exist in which all elements possess this characteristic. An example

is presented to demonstrate the existence of rapidly varying parameters for the

polar oblateness problem• Consider the equation

2) ]z +Dz _ 3/_K2 2
3 5 -5 z+2z

r r r

which is obtained by taking the scalar product of Eq. (30) with k. Given the

initial conditions z (to) = z (to) = 0, it follows that all derivatives of z evaluated

at t - t o are zero. Therefore z is identically zero.

In the following example it is to be assumed that this is the case. Then

G = _R x F = 0 or G = G 3 k where G 3 is a constant. Now introduce a polar

coordinate system, (r, 0 ) in the x-y plane. From Eq. (30) two scalar equations

result:

eo

r - r (_)2 = _ _2 3_K24
r r

1 d (r2_
rd_- )=0

A particular solution of these equations is given by
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r=ro, 0=0o+t_-_3

r
o

where r o, 0 o are constant. Since

2
+_

5
r

o

g=I °I=,J o+

and

2
e cos f =_K__ _ 1

_r o

it follows that

3 uK 2

r
o

e cos f -

Also, r = 0, so that

3K 2

2
r

o

• . pr o e sin f
R R =rr- -0

g

As a result it is seen that e sin f = 0. Therefore, it may be concluded

that e > 0, f- 0. From the equation

R=r osf_- + sinf

one obtains

P
R=r-_-
-- p

It is clear that the vector _P is always in the direction of the vector R and

is thus a rapidly varying parameter. Consequently, there is no guarantee that

the method of variation of parameters and an approximate integration procedure

will yield a satisfactory solution.
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SUMMARY

This report contains the development of a first order solution for the

polar oblateness problem with the potential limited to the second spherical

harmonic. The development begins with the equations of motion of the two-

body problem. Expressions for a set of parameters are derived. The per-

turbation equations of these parameters for an arbitrary disturbing force are

generated, applied to the oblateness force and integrated analytically to obtain

the first order solution. This solution is valid for all orbits except those

which are nearly rectilinear.
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I - INTRODUCTION

The purpose of this report is to present the development of an improved,

approximate, closed form solution to the equations of motion of a vehicle about

a spheroidal earth. The nonsphericity of the earth is assumed to be character-

ized by the second spherical harmonic. A feature common to some solutions

which have been offered is a limitation on the applicability of the solutions in
• 1,2

the neighborhood of an inclination of 63 °, due to a singularity at this inclination .

The original motive for the invest{gation, the results of which are presented

here, was to examine the possibility of overcoming that restriction. Since the

use of the argument of perigee is the immediate occasion for the presence of

the critical angle of inclination, an obvious corrective measure is the choice

of a set of parameters which does not incorporate that element. However,

numerous other pitfalls must be avoided. Some of these are: a) indetermination

of the initial value of the time of perigee passage for nearly circular orbits 3,

b) degeneracy of the solution caused by the presence of the eccentricity in the

denominator of the perturbation equations for nearly circular orbits 3, and c)

the introduction of secular terms in elements which are clearly bounded as a

result of the integration of the perturbation equations. The particular set of

two-body parameters selected for the present development has been chosen

so as to minimize the difficulties listed above. Neither time of perigee

passage nor argument of perigee is included in the set of elements, none of the

perturbation equations contain the eccentricity in the denominator and the in-

tegration process is modified so that secular terms do not occur explicitly in

the equations for bounded elements. However, it should be noted that the solu-

tion is not applicable to nearly rectilinear motion.
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The development is self-contained. First, expressions for the two body

parameters are derived from the equations of motion, then perturbation equations

for these parameters are obtained for an arbitrary disturbing force, and are then

particularized to the oblateness problem. Next, these equations are integrated to

obtain first order corrections• Finally, some remarks are included concerning

the properties of the parameters, some general results of the second order theory,

and some possible applications.

In this report, the convention is adopted that capital Latin letters repre-

sent vectors (or matrices), and small Latin letters with appropriate subscripts

indicate the components of these vectors.

H - DERIVATION OF A SET OF TWO-BODY PARAMETERS

The equations of motion for a vehicle of negligible mass about a spherical

earth are:

R +-_3 R= 0 (1}
r

where D is the product of the gravitational constant and the mass of the earth,

R is the position vector and r is %he magnitude of R• A rectangular, inertial

coordinate system is used with the equatorial plane taken as the x-y plane•

The general solution to these second order, differential equations generates

the vectors R and R as vector functions of six constants of integration and time.

The six constants are determined by a complete set of initial conditions: vectors

R0, R 0 and t0.

From the many constants that can be derived, an independent set must be

selected. For application to the oblateness problem, the following set has been

chosen: U, V, g, e cos 0, e sin e and t0. U and V are unit orthogonal vectors

which specify the plane of the motion. The parameter, g, is the magnitude of

the angular momentum vector, e is the eccentricity, and 0 is the angle measured

from U to the perigee vector. The parameters g and e determine the shape and

size of the osculating ellipse and 8 gives the orientation of this ellipse in the

plane. Expressions for these parameters will now be derived and their in-

dependence demonstrated.



Three of the constants are obtained immediately by crossing Eq. (1) on

the left by R and integrating the result•

m

R x R = 0 (2)

RxR=G =R 0xR 0 (3)

The magnitude of this constant vector just defined is one parameter, g.

The other two parameters are contained in the unit vector G/g which may

be expressed as the cross product of two orthogonal unit vectors in the plane

perpendicular to G. Thus

G
--= Ux V (4)
g

U is arbitrarily chosen to be in the direction of R0; this direction is not

a constant of integration and therefore not a parameter• Thus R and R can be

expressed as follows:

R=(R • U) U+ (R "V) V (5)

R=(R "U) U+ (R • V) V (6)

Let _ denote the angle between R and U. Then R • U = r cos q_ and R " V

= r sinq_.

To obtain an expression in _ for R • U and R • V, one proceeds as follows:

"" " ° }R'U=- ulR3 u)= _ R" (Vx )
r r

J=D__v . ER ( _R
g r 3 r

Integration yields
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R. U---_V" R+cl (7)g r

Using the initial conditions to evaluate the constant, one obtains, recalling that

initially U is in the direction of R O,

R0 • R 0 R0 • R 0
+/_ sinD0=c 1=

r 0 g r 0

since (P0 = 0. Eq. (7) now becomes

R. U=_g_ER" Vr P ro_KR0" R0 _

In the same way, starting from

_-v=_ ,-[ __-_--_ 1g 3 rr

one gets

(8)

R. V-I_ (R" U)=c2g r
(9)

Using

(_x_ _"- gr '

and the initial conditions, -the constant c2 ma:_ be evhluatdd

_ _=c__(L_)__0
Thus, finally, Eq. (9)becomes

4 e

R" V =ll R • U+
g,. -7--- - j (i0)
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It is still necessary to express r in terms of @ in the new parameters. This

will also allow one to express R as a function of these parameters alone•

First, one multiplies Eq. (8) by sin (p and Eq. (i0) by cos (p and subtracts to

obtain

But

I(=R" (U sin _ - V cos _) = - r" (U cos _ + V sin _)

- Vg R°" R0 _ 2

and

Hence

and

(R _a3=_ _R" (Usinq_- Vcosq_)=R" rX gj r

17,. (Ucosq_+Vsin_)= 1
r

=0-=o ,,-A-O.os,j)I---I( =-LI r 0 sin@-_._r 0

r _

g2

/_o" _
DII+coscP(g2 -1)-g_r0 bL r 0 sin_. _

(11)

One now defines the parameters e sin 0 and e cos 0 by the relations

and

2
-g-- - l=ecos 0
_r 0

_ g R 0" R o

r 0
'= e sin 0
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where it is evident that e is the eccentricity and e is the angle measured from

U to perigee• Eq. (11) thus becomes

2 2

r - g - g (11')

1 "_ (1 + e cos f)p +ecos_-e) 9

where f is the true anomaly.

One can now rewrite Eqs. (8) and (10) as follows:

R • U =-l!(sinq_+esin 0) (8')
g

R" V= _(cosq_+e cos 0) (10')
g

A further expression is requiredto relate ¢p and t. In the process of deriv-

ing this relation, a sixth constant of integration will arise. To do this one'pro-

ceeds by multiplying Eq. (8) by cos _ and Eq. (10) by sin(p and adding:

ro
÷(L

The left hand side is R • R and the first term on the right is zero.
r

= cos O + - sin O j = _ e sin f =
r g ,- _ r 0 _#r 0 g

cos O

Hence,

(12)

From Eq. (11)

:: s,oo:#-0-,"0"0
t-=- '# 0 u r-o

cos _

[ _- i2l+cos@ Pr0 1)- g R0:R0 sinq_
/_ r o

_=P_r2 h R
g

r

333



or

r =-r \. rg

Hence

= g- (13)2
r

This equation may be written as

r(_ = g
r

and using Eq. (11 '), one obtains

or

2

gu[l+ecosf] _ = (l+e cosf}

2

____EI e2 22 e 2 1l+e cosf 3 - +e cosf+ e cos f+ sin 2 f (14)
g

Considering only the factor on the right, the following statements can be made•

2 n
(i) _- 1%

g3 _l-e2' is a constant and can be shown to be equal to/; e 2

where n is the mean motion

(2)

2

:l_--ecosf(l+ecosf)= _e cosf r___l urd e sin f
g2 g r r g g g dt

1Ae 2 2 l_e sinfi"
(3) gg2 sin f=_g

Combining the last two expressions above, one gets

ILErd_-
g2 (e sinf)+e sinfi" =_2 dtd (r esinf)

g
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Thus Eq. (14) now becomes

f 6dr 2
l+ecosf _l-e 2

nl+e cosf - t 2 +-_2 (resin f)

_l-e g

Integrating with respect to t, the left hand side becomes after some algebraic

reduction,

r
_1 - e 2 sin q_

tan -1 (
(1+cos_) (1+e cos0 ÷e sinf sinj

and the final equation* is

f J1 - e 2 sin _ ._

n (t-t0) = 2 tan-l_ (1+ c_-_-_:ec_ f) + e sinfsin_J

!

e 2
-t "_1- (r esinf+r oesin0)

This is also the defining equation for tO, the sixth constant of integration.

In Eqs. (5), (6) and (15) the constants U, V, g, e sin 0, e cos 0 and to

occur. To summarize, these constants are defined by the following equations:

__ FG_ R]U=Rr c°sq_-sin_°Lg Xr

v=Rsinq_+r c°sc_[--gXr

g=lGI

e cos0 =K(R- V)-cos

(15)*

(16)

(17)

(18)

(19)

* This equation holds only for e < 1. Only slight modifications are required

required for e > 1.
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e sin 8 = _ (sinq_) - R " U (20)

._/i-e2 sin _o
tO=t-n2tan-l_._c-_-)Cl+e cos f) + e sin f sin (p

+ -_2 ,_1/ - e2 (r e sinf+r 0 e sin 8)

ng

(21)

It should be noted that U and V account for only two independent parameters

since they are orthogonal unit vectors and the direction of U was chosen arbitrarily.

It remains to be shown that the parameters just defined are independent of each

other• This will be proved by showing the equivalence between the set above and

the set R0, R 0 whose elements ar_ known to be independent of each other.

Further discussion of these parameters appears in Section VI.

From the derivation that has preceded, one easily obtains R 0 and R 0 in terms

of the parameters on the one hand, namely,

2
g

r0 = (1 + e cos O)

2
= g U

R0 (1+ e cos 8)

R 0 = - e sinO U+ (l+e cos O) V

and on the other hand, the following parameters in terms of R 0 and R0:

R 0
U =_

r 0

g=_(R 0XR0 ) • (R0xl_0)

G R0

V=-_x ro (G=R 0xR0)

336



2
g

e cos e--_ - 1
/_r 0

e sin e = - g R0 " R0

r 0

to = t o

IT[- PERTURBATION EQUATIONS

Before proceeding to the development of the pe1_urbation equations, it

should be observed that, of the quantities listed at the end of the preceding

section, only six have been obtained as constants of integration. These are

to, e sin e, e cos 0, g, and two contained in U and V which determine the

plane of U and V. The third constant contained in U and V which specifies the

direction of U in the plane is arbitrary. This last arbitrary constant does not

vary under the action of the disturbing force• As a result, U is not subject to

rotation about the angular momentum vector.* Since _ is measured from U, this

restriction implies that _ does not include the time rate of change of U in the

osculating plane. As a consequence, the time rate of change of_ must have the

same functional form that it has in a purely Keplerian motion, i.e., _ = g/r 2.

Keeping in mind the result just noted, the method for obtaining the perturbation

equations for the set of parameters is as follows:

Each of the Eqs. (16-21) is differentiated with respect to time
(considering the parameters too as functions of time)

Wherever R occurs, it is replaced by

_uR+ F
3

r

where F is the disturbing force

The resulting equations axe simplified by making use of the
relations obtained in the preceding section.

(22)

* Compare Ref. (4).
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1. Equation for

Noting that

2
g =G'G g=G G

g
G=RxR

one obtains

r

(23)

and hence

e

-g

Equation for U

Differentiating Eq. (16) with respect to time

(U = sincPr- coscp-_Xr _-
r

U

+ cos q_r - sin _ q_ r

(24)

Then, using

R=_gI-(sin(p+esin S) U+ (cosqg+eeos O) V 1

and

G x R _ AAF (sin_Lg r gr

it follows that

+e sin 8) V+ (cosq_+e cos 8) U]
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But

cos _ r - sin _ x =-_--igrLesin f U + (1 + e cos f) V_

___.e sin f_ R • R
gr 2 (Eq. (12))

r

and

or

-_--(l+e cos f)= g
gr 2

r

(Eq. (11'))

_( 1 + e cos f) =_b

The coefficient of _ in the U equation above is then simply - V.

terms in the U equation

U=_V _ R. R u+R- R _d fG_2 TU+ V 6 - sing) il_'k._J
r r

Replacing these

but

X r,

and hence

or

•

_--_= - _F G_d _GxR .
g g g_)

13= sin_PE dG R _

rFalJ = - sin q_ _-_.

Equation for V

In an entirely analogous fashion one obtains V.

(25)
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_,r'_G. F) GV=e°sq 9g'.g _" (26)

e Equation for (e ebs O)

(e¢6sS)=Kh. v+sin¢6+_h" v+_ h- v
_t bt /.t

From Eq. (26) it follows that

R-V=O

and, rearranging terms,

(ecbsS)=(-_2sin_+(_sin_+gF" V+_[I{" V
r /_

The first term on the right is identically zero, so that, finally

o

(e c6s o)=gF" V+]_R " V

Equation for (e sin 8)

(27)

In analogous fashion

• L ](e sin O) =- _" U+ F" U (28)

6. Equation for t0

In order to simplify the derivation of t0' Kepler time derivatives will be

assumed to have been canceled. In addition, in order to simplify the writing,

e cos f = p

e sin f = q

e cos O = Po

- e sin O = qo

(29)

Starting from Eq. (15)
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n (t-to) = 2 tan -1 F
L.

__ e2sin _2 q /_'-_f" q

--- j -#--e "-l_
cos 2_ (l+p) + q sin 2

qo "_

l+Po/

one obtains, on differentiating with respect to time,

fi (t-to)-nt 0 = 2 .2_
(1-e 2) sin 2

l+r

Lcos 2_ (l+p) +q sin 2_] 2

_U'-2

d( sin 271-e
cos 2_(1+p) + q sin 2_)

q df

_l-e _ \.l+p 1-_Po--

(30)

a. The first term on the right of Eq. (30) becomes

Esin 2_ (cos 2_ (I+P) + (_ sin 2_) _ - 2_ +q_,,,1_o- k.P
2

c 2_ 2_12I cos (l+p) + q sin + (1-e 2) sin 2
,- _ 2

The denominator, by making use of the identity p2 +q2 = e 2, is

bo

(l+p) (l+Po)

The last term in Eq. (30) is

-,/,--7 +,)- _
( 1 + p)2

+ Po ) - Po qo

( 1 + po ) 2

4_

c. The right hand side of Eq. (30) thus becomes

_/1__{ 2sin 2_c°s2q_+[lSin? ) _l(l+p)-q__ qo(l+Po)-Poqo _
- (l+p) (l+Po) + -

(i + p)2 (i + po )2 '

d ("/l_e 2 ") i- qo (1 + p)}
+ (ldt\°VYp) (1 +-po)',{2 sin 2¢_i (I+P) c°s 2_ + q sin 2_] -q (1 + Po)+.
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do _tt _1 - e 2 = - (p b + q _1)

The coefficient of this derivative becomes, after some algebraic manipulations,

(1 - e2) sin (p and one gets for the whole equation,

h(t-t 0 )-nto=-,. )t_ (l+Po)

r

eo

+ (l+p)__t-..q__ rio (1 + po ) - Po qo'_

(1 + p)2 (1 + po )2 J

Using the fact that

Po = p cos (p + q sin (p

qo - p sin (p + q cos (p

Po = _ cos (p + _ sin (p

_l° = - p sin (0 + (_ cos (p

_t° (i + po ) - Poqo

(1 + po )2

(p sin(p - q cos(p) (l+Po) + (p cos(p+ _ sin(p) qo

(1 + po )2

and rearranging, one gets

fi (t-to)-nto= (1+--_ il+Po 2)
sing)+ sin(p) (l+p) (l+Po)

- q(l+Po )2

+ _ _(qsin(p+ 1-cos_o) (l+p) (l+Po) + (l+p) (l+Po)2

+(% _in(p-cos(p(i+po))(I+p)2]

+ (sin (p (l+Po) + qo cos(p) (1+ p)21

(31)
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f. Noting that

•

p=g--- 1 q=gR- R
/_r _t r

I)= _ (I + p)
g _=_-q+(1+P) R" Fg

it is now possible to express Eq. (31) in a more convenient form. First, the

right-hand (R. H. ) side of Eq. (31) is rearranged as follows:

R. H•

(l+p) 2 (1+po2)

+2 £,.sin_ (l+Po) +Cto cos_) (l+p) 2 + q (l+Po) (q sin¢) +l-cos

[f _x. ]

+ _-qq• sin (p- q cos (_(I+ po))..(1 + p) J|

(32)

+ (1 + p)2 R-____FF P• )2g (qsine)+l-cos_)(l+Po)+(1+

+ (qoSin(p- cosg)(l+Po ))(l+p)

1) The coefficient of _ is rewritten as follows:

2 sin (p(l+p) 2 (l+Po)+ 2 (sin(p(l+Po) + q• cos (p)(l+p)2J_.qqo sin (p

- qcos(p(l+Po) j(l+p)

- (l+Po) (q+qpo-q2 sincp- q+qcoscp)

Replacing P• by p cos q_ + q sin cp, one can factor out (1 + p) from the whole

expression and rearranging again,
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But

f •(l+p) 2(l+Po ) sin ¢0 (2 + p) + ( l +p o) (2psin_ 2qcosq_)+2{l+p)qo

+ q qo sin (0_

and

-psin_+qcos_ =qo

qsinq_+p cos(p=po

thus by Eq. (34)

(l+p) (2 (l+Po) sin(p (2+p) -2 (l+Po) qo+2 (l+p)qo

p.o= (l+p) 2 _sinq_ (l+Po) (2+p)- qo

cos

(33)

(34)

cos _ + q qo sin _

(i-cos_)_- q qo sinai

2) The coefficient of R • F is rewritten as follows:

L2 (l+Po) (qskn_+ 1- cosq_) + (l+po) l+Po - qsin_ - 1+ cos_ - cos g_-p cosq_j

+ (l+p) qosinc0

By using Eq. (34) this expression reduces to

2 (l+Po) (qsincp+ 1-cos_)+ qo sin_ (l+p)

Putting the last two results together, one gets

'r 2

R.H.--\/1-e (_i2 {sin(p(l+Po)(2+P)- qo (1-cos(p)}- q qo sin (pJ

(I+Po)2 g

+ R" F 2 (l+Po) (qsinq_+l-cos(o)+ (l*p) qoSinq_J_

g. fi (t-t0) - n (t 0 )
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Noting that

1 2 R'R
n =

a 3 a r

3 h 2 a2 "
h =-_n a h - R" F

thus

fl = - 3 n--_a R • F

and

E • -1h(t-t0)-n(t0 )=-n 3__a_abLR" F (t-t 0 )+t0 t

If both sides of Eq. (31) are then divided by n, the coefficient of R. H. becomes

1 - e 2

gn(l+Po)2

but

/i- e 2
_/ 1

g _/r_a

and the coefficient becomes

1 a

(i+po )2

Thus, Eq. (31) becomes finally

3--_aR F a
t0 + _z " (t-t0)=_(l+Po)2 (_-2 [sin(p (l+Po)(2+p)-qo (1-cos_)]- qqo sin_

+(a"F)L2(l+po)(qsin_+i_cos0)+(1+p)%sino]} (35)
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IV- APPLICATION OF THE PERTURBATION EQUATIONS
TO THE POLAR OBLATENESS PROBLEM

For this problem, F = V¢ where

2.

r r

and where k 2 is the coefficient of the second spherical harmonic due to the

oblateness of the earth. Then

(36)

F- 5 L -5 R+2zK
r r

(37)

By Euler's theorem

R. F=-30 r3 1- _r
(38)

Since all the expressions on the right side of the perturbation equations are ex-

pressed more simply in terms of q_ than in terms of t, derivatives with respect

to t will be replaced by derivatives with respect to ¢_. For this purpose relation

(14) is used, i.e.,

_=-g- 2
r

from which one obtains

dt d =(r2_ d

The right-hand sides are expanded in terms of trigonometric polynomials in

multiples of _ with functions of the parameters as coefficients.

(39)

For purposes of integration the perturbation equations are all written as

the sum of two parts, the first of which, indicated by a subscript H will be integrat-

ed "exactly" while the second part, indicated by a subscript S, contains short period

terms only.
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The perturbation equations are as follow:

! I

1) (e cos e)' = {e cos e) H + (e cos e)s

where
2

" 3bL k2 1_ f) sin_o%' g4 v. °

3_2k2 1 2
(e cos e) s' = 4 {- 4 (u3

g

(40a)

v32 ) 1- (7 sin 3 co + sincp)+_ u3v3 (7 cos 3(p+ cos(o)

i3 2 -v32) j+ e sin 0 _ (u 3 (cos 4 q_ - cos 2 ¢_)+ 3u3v 3 (sin 4 _ - sin 2 _)

V 1 9 7 2
+ (e sin e) (e cos O)L-_-(cos 3 _ - cos _o)+(5 cos 5 (O+_cos 3 _ - _cos_o)u 3

(40bl

v32 5 3 1 5 3 5 . "+ (-_cos 5_+-_ cos3 _+_'cos c_)+u3v 3 (_ sin5 ¢p+_ sin 3_-_sm¢_) '

_,2 rl. 1
+ (e cos v} [__(sin 3 _+ sin _0) - i-_(5 sin 5 so+ 23 sin 3 _o+ 18 sin q_) u32

1 u3v3
+_ (5 sin 5 _+ 11 sin 3 ¢p+ 6 sin q_)v32 +_ (5 cos 5 ¢o+ 17 cos 3 _+ 10 cos _)/-_

2

+ (e sin 0) 2 E- 1 u3(sin 3 (p - 3 sin (o) + _ (5 sin 5 (p - 5 sin 3 _o- 10 sin tO)

2
v 3 u3v 3

+ -_- (- 5 sin 5 (o+ 17 sin3 (p- 26 sin ,(0)+ _ (- 5 cos 5(p+ 11 cos 3 (p

- 6 cos¢)!_

'e 2)

where

! !

(e sin e)' =(e sinO)H +(esin O)S
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u2'-k2_3-(u32+ v32) - 1I!(1+ 2 e cos f) cos (D (41a)

3

(-e sine)H_= 4 L2 _
g

9
3

_k2{ 1 2 v32) (7 cos3 cos - u3v 3 (7 sin3q_-sinq_)
i 1

(esin0)s = 4 -4(u3- ¢P- _) _-
g

+ e cos 8i-23- (u32 - v32) (cos 4 ¢)+ cos 2 ¢)) - 3u3v 3 (sin 4(p+ sin 2 q_)

E 1 (u32 _ v32) (3 sin4 ¢) - 5 sin2 q_) +u3v 3 (3 cos 4c0 - 5 cos 2 q))+ e sin e - _

2

+ (e sin e) (e cos 0) (sin 3 _ + sin q)) +--_-- (-5 sin 5q)- 3 sin 3 ¢) + 2 sin _p)
(41b)

2
v 3 u3v 3

+ -_- (5 sin 5 ¢p- 9 sin 3 ¢) - 14 sin ¢p)+ _ (5 cos 5 _) - 3 cos 3q_- 10 cos q))J

2

+ (e cos e) 2 (cos 3 q_+ 3 cos _) --_- (5 cos 5 _ + 17 cos 3 q_- 26 cos ¢p)

2
v 3 u3v 3

+-_- (5 cos 5 ¢p+ 5 cos 3 q_ - i0 cos q_) -_ (5 sin 5 _+ ii sin 3 (_+ 6 sin ¢p)]

2

+ (e sin 8)2E -I_(cos 3 _ - cos (p) (5 cos 5 e_ - 11 cos 3 q_+ 6 cos q_)

2

v3 u3v3 1}+-_- (- 5 cos 5 _+ 23 cos 3 _ - 18 cos q)) + _ (5 sin 5 q_- 17 sin 3 q)+ 10 sin

Next, the perturbation equations for the components, of U and V are given.

3) (Ul)'= (Ul)H' + (Ul)S'

2

6b_ k 2 . g3Y. + g3 g3
(Ul)H ' = ---_-- sln q_-_-_t-v2 Ul-_-) cos _ + (u2 + Vl -_-)sin_ _ (42a)

g
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(Ul)s =-T-
g

(42b)

4) (u2)' = (u2) H' + (u2) S'

u2
g

(43a)

(u2) S '
__33_ g3 . "12 g3 cos _+ <_Ul + v2_-_sm q__= 6/_____ (e cos f)- sin _{<Vl+U 2

4 g
g

(43b)

5) (u3)' = (u3) H' + (u3) S'

(u3) H'=_\gj sin_(u 3
g

cos _ + v 3 sin _)
(44a)

(U3)s' = -X-- \_)
g

(e cos f) sin _ (u 3 cos _ + v 3 sin (p)
(44b)

6) (vl)'= (vl)H' + (vl)s'

6 2k 2 g3 g3

g

(Vl) S ' = 612k2 g3 g3" + v1_._3_ sin

g

(45b)
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7) ! !

(v2)'= (v2)H + (v2)S

(v2) H ' =

2k
6 _t 2 g3 (d g3"_ g3>-_ cos (p -_- _ Vl + u2 -_-j cos (p + <- u 1+ v 2 -_- sin (p}
g

(46a)

6/z2k2 e cos fg3
(v2) s' = -_ g

g

g3
(46b)

8) (v3)' = (v3) H' + (v3) S'

6 _2k2 <___33>24 cos (_(u3 cos _ + v3 sin (p)
g

62k2 (e cosf)<_>2 cos q9 (u 3 cosq9 + v 3 sin qg)(V3)s' = 4
g

(47a)

(47b)

9)
!

g3g,=gH +gs'

, 2
gH =- 6D k 2 (v 3 cos(_-u 3 sin_) (u 3cosq_+v 3 sin_)

(48a)

10)

2
gs' = - 6/_ k 2 e cos f (v 3 cos q9 - u 3 sin_o) (u 3 cos q9 + v 3 sin qg) (48b)

t0

3ak2 _t g3{[ 3 i_( l-e2_o+3a $(t_to ) +3_aa ¢= _ (u32 v32)_ )
-_- _ (l+e cos 8) 2 2 +

+ cos $oLu3v 3 (..-2 e sin 8 + 43-e sin 0 e cos 0+ e sin 8 (e cos O)2 +_ (e sin O)3 i

2 2._1 5 cos0+7(eeos0)2 1 0)3 + 9 (e sin @)2)-(u 3 -v 3 ),_+_e +_(ecos

(49)

(cont'd on next page)
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/ 1 1
+<3 (U3+V3) _ !)_- 2-e cos e+ _ (e cos 0) 2 -_-(e cos 0) 3

_! e)2 - e e)2 2

- 3 5 3 7 1
+ Cos 2 g_Lu3v3(_ e sin 8+_ e cos ee sin 8)+ (u32-v32) (-_-_e cos e -_e cos 0) 2

3 2 2
5 8)2_-<2 ( 3 3 l_<e (e cos e) 2+_(esin -u +v )- cos8+

+ _ (e sin 0)2

_- f O+_e sinOe e+le sin e (e cos e)2 - 11 (e sin O)3"_'_ --_ j+ cos 3(p_u3v3ky 2 e sin cos

. 2 2./7 11 e_l(e ^.2 17 5+(u 3 -v 3 _-+_-ecos cos_) +-_-(esine)2+_(ecosO) 3

• _3+e cos e(esin8)2 ) -2- (u32+v32)- 1J_ le sin0)22

_ (e cos 0)2 - (ec°sO)3+ e cos e (e sin O)2j]2 2

- 1 +_e sin 8e e) + 7(u32-v32)_2 e cos 0 2 (e cos e) 2+ cos 4_L- u3v 3 (_ e sin 0 cos +

- (e sin 0)2)t

+ (u2_v32_(e cos 0)2+ (ecos 0)3_5 5 (e sine)2)j4 4 4 e cos 0 (e sin O)2 -

- 5 8 + 23- (e cos O)2 + _ - _ e cos 0 (e+sin_L_u3v 3(l+Secos 5 (e sin O)2 3 sin 0)2>

+ (u32_v32), " . 1 1 1 3)resin e - e sin Oe cos 8 - _ e sin e (e cos O)2 - _ (e sin o)

(49)
(cont'd on next page)
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+ (u32+v32) - sin e e cos e-le sin e (e cos e) 2 -_(e sin e)3JJ

+ sin 2_I_3 u3v3(1-(e sin e)2- (e cos 8)2- le sin e e cos 6)

_ 5(u32-v32)(e sin e + 1 e sin e e cos e)- (2 e sin @+ 3 e sin ee cos e)

C3 (u32+v32)-1_ 1

E 3(7 11 17 (e sin e) 21 5 (e cos 8) 3+sin3o u3v + _-ecose+-_- -_(ecose)2+_

+ 27e cos e (e sil) 6) 2)+ (u32-v32)(e sin e+_ (e sin e)3 - _6 e sin e (e cos 6) 2

9 "_ C23_(u32+v32)_ 1)(_-_e sin ee cos 0_+ e since cos e

+ _ (e sine) 3 -_ e sine (e cos 6) 2

- 3 e
+ sin 4 q_Lu3v3 (6 e cos 6+6 (e cos e)2 - 3(e sin e)2 - _ sin ee cos e)

9 e)j+ i\3esin e+ e sin Oe cos

1 1 sin 0) 2)+ sin 5q_E5 u3v3C¼(e cos 0)2 +l(e cos O) 3 - _(e sin O)2 -_e cos(} (e

• 2 2.(_1 •
+5tu 3 -v 3 ),_esmBe cos O+ _- e sin 0 (e cos 0) 2 --i-_ (e sin O)

(49)
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V - FIRST ORDER SOLUTION OF THE
I:_)LAR OBLATENESS PERTURBATION EQUATIONS

In solving the perturbation equations derived in the preceding section, _

general procedure is to solve exactly for as large a piece of the equation as

possible, assuming that the parameters appearing in that piece are constant

(except that parameter for which one solves in that particular equation). * The

remaining terms are then integrated holding all the parameters constant and

the results are added to the solutions obtained in the first step. This procedure

is justified because it is equivalent to a second application of the variation-of-

parameters method in which only first order terms are retained. Thus in the
I

perturbation equation for a parameter x, that part, labeled x H in the preced-

ing section, is the piece of the equation that can be solved exactly under the

restrictions mentioned above. The remaining part of the equation, which is
I

integrated keeping all the parameters constant, was labeled x S in the preced-

ing section.

The equations to be solved to obtain e cos 0, e sin 0, Ul, u2, u 3, Vl, v 2

and v 3 are Eqs. (40 through 47). Of these equations, those lettered "a" may be

divided int° the sets °f c°upled equati°ns i(40a) and (41a)_ ' ! (44a) and (47a)]_- n

and L(42a), (43a), (45a) and (46a)_. These sets are solved by standard methods

with the following restriction: In each system of equations, those parameters

on the R. H.S. (right-hand side) which do not appear on the L. H.S. are kept con-

stant. Thus, for example, in the system of Eqs° (40a) and (41a) the parameters

g, u 3 and v 3 appearing on the R. H.S. are held constant on solving this system.

The first order solutions are then the following:

* Although the method employed here and that prescribed by the method of
averages have different theoretical justifications, the application of the two
methods requires the solution of equations which appear to be quite similar. 5
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N

_ c 2 + (e cos 8) 0

le sin

+ sin _2_
sin (P cos ¢/

-cos_ sin_ol

(50)

where ¢2

(e sin O)S' d

go

= Icos q_ - sin

\sin _ cos ¢

(U )s

+

(vs)S' d

where (1 = _ "go /
go

cos 1+__1 _ 30j

(51)
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u 1

u 2

v 1

_2

ac a_ b s

1 -a s +a c be.

_J_2+2_+1 %-% de

c c cs -d s

where

- bc / ulO_

b_ _ U2o1

ds t vl° }

dc \v20/
(52)

ac = - (! x21+ 2e) coslxll_,,(Ix l!+ 2p)cosI_1<_-(tx41-2s)coslX31_

+ ( ! )'31- 2tt)_os Ix41

_ : - (!x21+2B)s_. lx_I_ +(!x_l +2_)sin !x21_-(Ix41 -2.8)sin !_C3!<0

+ (IX3!.- 2n) _n IX41_

b = (IX2!-2_)_ IX_Io-(Ix_I-2_)_,, IX21_-(ix41-_)._n IX31_

+(ix31-_)_. Ix41

bc= (Ix2!-2_cos Ix_l_-(Ix_l-2<_)_o_ Ix21_-(Ix41-_)cos Ix31

+ (Ix3t - 2_) cos Ix41 (53)

(cont'd on next page)
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c
C = -(Ixe}+2_)ooslxlie+(}x_I+2._)cos!Xel¢+(!x41-es)cosIx3I®

-(Ix31-eB)cos x41

es = - (IX21 + 2_) sin !Xl!(D+(!Xl!+2B) sin IX2!(p+(IX41 - 2fl)sin IX3!(p

and

(53) cont'd

g3

go

¢ go"

1>,11=_+ 1 +,_/2 + 2_ + 1

/

!221 =a+ i _,j2 + 2_ + i

/

• b!x31=(_ - 1) + + _._+ 1

!X4 I = (a- 1)-Ja 2 + 2@+1

The absolute value signs used here
indicate that a factor i is omitted
from the k's which are the character-

istic roots for the system of Eqs.
(42a, 43a, 45a, 46a).

The equations to be solved to obtain g are Eqs. (48a) and (48b). The R. H. S."

of Eq. (48a) is a perfect differential if one takes into account the equations for
! I

u 3 and v 3 (Eqs. 44a, 44b, 47a, 47b). In Eq. (48b) the parameters appearing

in the R. H.S. are given their initial values and one obtains finally the following

expression for g4
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g4 12 2 IG3cos +v3sin 2_-go4 _ k2 __ _21 _ gs _ (54_

The equation to be solved to obtain to is Eq. (49). The L. H.S. of this

equation is a perfect differential, provided one assumes that a is a constant,

a0, and that the tO occurring in the second term on the L. H.S. is also a con-

stant. In a first order solution this is justified. Thus, the L. H.S. of the

equation integrates to

3%
to (t) + _ _ (t - tOO)

In the R. H.S. of the equation, the parameters are assumed to have their initial

values and the integration is performed with respect to q_. Thus

3a 0 3k 2

t0(t)=t00 _ _(t-too)-Fl+(ecos0)o_2go_3(u302+v302)-l_LJ - _ (55)

+ integral of other terms.

The limits of integration are zero and _.

SECTION VI - DISCUSSION OF THE RESULTS AND APPLICATIONS

Now that the perturbation equations and their first order solutions are avail-

able for examination, some distinctive features of the parameters become apparent.

It has already been noted that the parameters U and V are perpendicular unit vectors

which are to be regarded as rigidly attached to the angular momentum vector G

throughout the motion. These parameters thus differ in an essential way from any

of the conventional sets of parameters such as the Delaunay elements or initial

conditions, because to relate the initial values of the parameters with their values

at time t requires knowledge not only of the position and velocity initially and at

time t, but also a knowledge of the trajectory between these times. For any con-

ventional set of elements, on the other hand, knowledge of the initial and terminal

conditions is sufficient to determine the initial and terminal values of the elements.

It may thus appear at first sight that the elements used in this report involve
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complications that are not present in the use of conventional elements. It must,

however, also be recalled that the present elements are so defined that the

independent variable (p has no perturbation derivative, while with conventional

elements the independent variable, usually either true or mean anomaly, does

have a perturbation derivative, which introduces complications in the derivation,

and integration of the perturbation equations. Further, even though the present

elements are functions of the trajectory (and hence of the particular perturbing

function used), once the perturbation equations have been integrated the fact that

the solution of these equations must be used to determine the elements poses no

fundamental problem.

In this report only the first order solution of the perturbation equations has

been presented. To obtain the second order solution Eqs. (40) to (49) are integrated

again replacing those parameters held constant in the first order integration by

their first order solutions. The integration of these equations involves a great

deal of routine trigonometric manipulation and will be the subject of a later report.

It is, however, possible to state a general conclusion on the results of the integra-

tion. This conclusion is that the second order terms will be small compared to

the first order terms for a time of the order of 100 periods. This means that

for any problem (for which the first order solution has sufficient precision) the

first order solution is usable and valid for about 100 periods. The reason for

this is that in the second order solution, terms of the form

and 1 - cos c_0 (56)
E E

2
occur with coefficients of the form A k 2

for any ¢

where A is of order unity.

1 sin 2

2

it is evident that no such term can creep into first order so long as

A k22 a_ < k 2

Noting that,
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or

jp_ < 1 .._ 100
2_ 21TAk2

It should be remarked that if E vanishes the first of the terms (56) is secular and

the second is a constant. It turns out that for at least two particular sets of initial

conditions there will be secular terms, namely, for initial conditions such that

the angle of inclination is 63.4 ° and 67.8 ° . Thus, critical angles of inclination

occur in this formulation, but not in the same way as in conventional theories,

for which only one critical angle has been found. The significant difference is

that in conventional theories the critical angle appears as a singularity in the

second order solution, whereas in the present theory the second order solution

has no singularity, and while it is unbounded in time, it will not affect the first

order solution for about 100 periods.

One might inquire what sort of precision can be expected from the first

order theory. In order to discuss this question, it must first be remarked

that parameters associated with the Kepler problem may be separated into two

categories. Parameters such as the semimajor axis, the eccentricity, and the

angle of inclination, as well as functions of such parameters have only short

period terms in their first order corrections. Other parameters such as

argument of perigee conventionally contain not only short period terms but also

secular terms. No first order secular terms appear in this formulation because

of the way in which the differential equations (40) to (47) are separated. The closed

form contribution to the first order solutions obtained in Section IV from Eqs.

(40a), (41a),... (47a) include the analogues to the secular terms as well as such

short period terms as could be included in the closed form integration. Suppose

now that one numerically compares trajectory predictions based on the Kepler

problem, based on the first order solution derived in this report and based on a

high precision numerical integration. If the comparison is made for ¢p = 2y, all

short period terms will disappear. Those parameters involving only short

period terms should be the same for both the Kepler and the first order predictions

and should agree to about six significant digits (since k22 = 10 -6) with the precision
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calculation. The remaining parameters should be given to about three more

significant digits by the first order theory than by the Kepler estimate. If the

comparison were made on functions of the elements, rather than on the elements

themselves, one would still expect the first order theory to yield about three

more significant digits than the Kepler estimate except for functions independent

of parameters containing secular terms. A comparison, at_ = 2_r, on position

and velocity would thus be expected to yield, in general, three more digits from

the first order estimate than for the Kepler estimate. Preliminary numerical

comparisons indicate that this is indeed the case.

The application of the theory developed in this report for prediction is

fairly direct. To obtain position, velocity and time corresponding to a speci-

fiede0, one simply evaluates the elements from Eqs. (50) - (55), and then sub-

stitutes in Eqs. (5), (6) and (15). To obtain position and velocity at a specified

time it is necessary to replace all elements in Eq. (15) except t and _ by their

expressions in terms of _, to obtain a transcendental relation between q_ and t.

The angle q_would then be obtained by numerical solution of this equation. Once

q_ is known, position and velocity are obtained as above•

The boundary value problem is somewhat more difficult. In this case one

would require knowledge of seven conditions, some given at the initial point and

the rest at the terminal point. Now Eqs. (50) to (55) give the parameters as

functions of _ and Eq. (15) relates q_ and t. Eqs. (5) and (6) give position and

velocity as functions of the parameters• The boundary conditions would thus

give seven equations for the determination of six independent parameters and

t. The solution of these equations would have to be carried out numerically

because of their transcendental character.

In conclusion, one might comment on some special solutions of the perturba-

tion equations• If the initial conditions are such that the initial orbit is either

equatorial or polar the U and V vectors are constants of the motion• The perturba-
• " g3

tion equations (42) - (47) for U and V contain -_ as a factor on the right hand side.

For polar orbits g3 vanishes and hence U and V are constant vectors. For an

equatorial orbit u 3 = v 3 = 0 and hence, again, the right hand side of Eqs. (42) -

(47) for U and V vanishes. This last result illustrates one advantage of these
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parameters. The conventional elements include longitude of the node and

argument of perigee which are not defined for equatorial orbits and hence

modifications are required for the treatment of this case.

In Eqs. (40) and (41) the expression (1 - 3 cos 2 i) can be shown to be a

factor of the right hand side. This factor vanishes for an angle of inclination

of 54.74 ° and hence for an orbit initially at this inclination the eccentricity

and the parameter 0 (angle between U and perigee) are constants of the motion.

The critical angles 63.4 ° and 67.8 ° which appear in the second order theory

have no obvious significance for the parameters used in this report. It is

curious, however that these three angles have the property that

2. 1 1 1
COS 1 --

3'5'7

respectively.
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SUMMARY

A statistical procedure, taking into consideration variations due

to changes in launch times as well as errors introduced by the path

adaptive guidance polynomials, was designed to obtain confidence li-

mits for desired cutoff conditions such as radius, velocity, etc. The

following upper bounds for Z0- limits were obtained for a given example:

Z100 meters for the radius, i. 615 meters/second for the velocity,

• Z69Z degrees for the flight path angle, and .0Z6 degrees for the orbi-

tal inclination.
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INTRODUCTION

It is our purpose in this study to design and perform an experiment

that can be used to obtain confidence limits for desired cutoff conditions

such as radius, flight path angle, velocity, and orbital inclination. We

are interested in two results - the design of a statistical procedure that

could be employed for similar problems and the actual numerical re-

suits from this particular experiment. The confidence limits obtained

will be such that they will take into consideration variations in launch

times across a selected launch window as well as errors introduced

by the path adaptive guidance polynomials.

In the example that we considered, a volume of trajectories was

computed by the Boeing Company using the theory of calculus of vari-

ations. Each of the trajectories obtained, if flown, would place a

vehicle at the desired end conditions in an optimum manner. Like-

wise, multidimensional polynomials were computed by the Boeing

Company, to fit or approximate the volume of optimum trajectories.

In our experiment the data consists of results obtained by running on

a computer actual trajectory simulations with guidance commands

being provided by the polynomials. These simulations, as run by the

Boeing Company, used the steering and cutoff polynomials to guide the

flight.
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THE DESIGN OF THE EXPERIMENT

Now in the design of our experiment, instead of selecting a random

sample from the volume of al___loptimum trajectories associated with a

given cutoff condition, we elected to take a sample from a sub-set of

the universe of all optin_um trajectories.

A description of the sub-set of the universe from which we select-

ed our sample involves the definition of a nominal trajectory. In the

process of generating a volume of optimum trajectories a certain op-

timum trajectory that satisfies selected performance criteria is clas-

sified as "the nominal trajectory". The universe of trajectories that

we considered in our experiment was generated by considering varia-

tions or perturbations of parameters from their values given for the

nominal trajectory.

Thus each vehicle parameter and flight parameter was assumed

to have a nominal value. In a like manner the tolerance or standard

deviation measuring variation from this nominal value was taken to be

known for each parameter. It was further supposed that deviation from

a nominal trajectory could be caused by any one or combination of a

number of independent error sources or parameters, each of which

was normally distributed about the nominal value as a mean.

Under these assumptions the universe that we considered consisted
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, , , n , ,, ,)IJof trajectories, T (xi, xz, x3, - • x_) such that II _l-P(xi<xi<x i

i_--1

= 05 where x[ and x" are perturbed values of x i (i = 1 Z, • n)

' = x" This universe or family of trajectoriessuch that x i - _xi _xi - i •

we called "5 percent level trajectories"

For example if a trajectory is to be obtained by the deviation

of one parameter from a nominal value l-P(x_'<x, <x_) = .05 or

• " I. 96¢orP(y_'<xI<x{) = •95. Thus x_ = _ + 1 96¢and x I = M - x_ is the

sum of the nominal value of the variable and approximately two stan-

dard deviations of the variable.

If a trajectory is to be obtained by the deviation of tw____oparameters

F " F

thenLl-P(-x_'<Xl <x_) L 1-P(-x_'<xz <x__)'i = . 05. An infinite number of

!

combinations of x,' and xz could be assumed to give these trajectories

For example if x, and xz are nominal values then five possible combi-

nations are:

_i + .67¢xi , x--z + 1.65¢xz

xl + Cxi, xz + 1.4ZCxz

_I ÷ I. ZZCxi , EZ + I. ZZ¢
XZ

m m

xl + I. 4Z0-Xl , xz + ¢Xz

x--1+ 1.65¢xi, xz + .67¢
XZ

THE VARIANCE OF CUTOFF ERRORS

Now let us define y to be a variable representing any one of the
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cutoff conditions: radius, flight path angle, velocity, or orbital inclina-

tion. Then by the variance of y, _z, we mean the average of the
Y

squares of the deviations of y from the desired cutoff condition.

We observe that, on the average, trajectories formed by small

deviations of parameters from the nominal, give cutoff errors close

to those given by the nominal. Since variations in a parameter are

considered to be normally distributed about the nominal value as a

mean, a large percentage of the trajectories will have cutoff errors

about the same size as those for the nominal. A comparison of a

sample of 5 percent level trajectories with the nominal clearly indi-

cates that the variance of any cutoff condition for the 5 percent level

trajectories will be greater than the variance of the universe of all

optimum trajectories.

The next step in our experiment consisted of selecting a sample of

forty-six (46) trajectories from the universe of all 5 percent level

trajectories. Eleven (ll) of these trajectories were generated by de-

viating one parameter from the nominal. The eleven parameters were

chosen because they seemed to produce the largest cutoff errors. The

parameters selected to generate these off-nominal trajectories were:

stage 1 thrust, specific impulse, and inertia weight; stage Z thrust,

specific impulse and inertia weight; stage 3 thrust, specific impulse
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and inertia weight along with head wind and left cross wind. Of these

eleven parameters the ones that produced the largest errors we.re then

combined using the probability theory indicated previously. Fifteen

(15) trajectories were generated by deviating two parameters from

their nominals such as stage 1 thrust along with stage Z inertia weight.

Twenty (20) of the trajectories were generated by deviating simultan-

eously three parameters from their nominals. As indicated a special

effort was made in the selection of the parameters and combination of

parameters to select those that would make as large as possible the

errors in cutoff conditions. For example in a combination of para-

meters the direction of the variations were selected so that the result-

ing errors would be in the same direction. To summarize, the forty-

six (46) trajectories used in the sample were selected by the Saturn

Booster Branch of the Boeing Company to be 5 percent level trajectories

that would produce the largest errors in cutoff conditions.

Thus

_z (Sample)> _z (5 Percent Level)
Y Y

_z (5 Percent Level) > _z (Universe)
Y Y

_z (Sample) > _z (Universe)
Y Y

This selection technique as described produces a sample which

will have a variance that can serve as an upper bound for the variance
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of the universe of all trajectories generated by allowing parameters

to assume off-nominal values. We could call this " a 95 percent level

upper bound" since the probability that parameters will deviate from

the nominal by more than the parameters used to obtain this upper

bound in less than .05.

However, due to the cost involved it was decided that the size of

the sample was too large. From a careful study of the data a more

select sample of size i0 was chosen. Once again the parameters that

were chosen for this sample were selected because they induced the

largest errors in cutoff conditions. A comparison of the variance of

the sample of size I0 with the variance of the sample of size 46 is

given in the following table:

Cutoff Sz

Condition (Size 10) (si_.e 46) F = _ F(9V. S%)

Radius 1,833,578 593,310 3.09 Z.43

Velocity .938 .346Z Z. 7Z Z. 43

Flight Path

Angle . 03566 .0083 3.08 Z. 43

Orbital

Inclination .0000053 .0000166 .3Z Z.43

Under the assumption that the two samples come from populations

with equal variance there is less than a Z. 5 percent chance of getting

a variance in a sample of size I0 that deviates as much from the sample
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of size 46 as the sample selected. This is true for three cutoff condi-

tions: radius, velocity, and flight path angle. Hence, it can be stated

-I

that the variance of the selected sample of size 10 is an upper

bound for the variance of the universe of all trajectories in the volume

relative to these cutoff conditions. It is probably true that the selected

sample of size 10 produces an upper bound for the variance of the vari-

able, orbital inclination.

The ten optimum trajectories that were selected because they

seemed to produce extremely large cutoff errors were generated by:

(1) 2_ head wind, (2) 2_ stage two thrust, (3) 3_ stage two inertia

weight, (4) -1.2_ stage two thrust along with 1.2o- stage two inertia

weight, (5) 1. go- head wind along with 1.2_ stage two inertia weight,

(6) 1.2¢ stage two inertia weight combined with 1.2_ stage three iner-

tia weight, (7) 1.2_ head wind and a -1.2_ stage two thrust, (8) .9ff

head wind, -. 9_ stage two thrust, and . 9¢ stage two inertia weight,

(9) . 9_ "head wind, . 9_ stage two inertia weight, and a . 9_ stage three

inertia weight, (10) -. 9_ stage two thrust, . 9_ stage two inertia weight

and a . 9_ stage three inertia weight.

VARIATIONS IN LAUNCH TIME

Note that in all the precedirg discussion, we have considered a

fixed launch time. Let us now extend our sampling process to the
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entire launch window. We will design our procedure to involve running

simulated flights at seven different launch times in the launch window;

i.e., -30, -Z0, -i0, 0, i0, Z0, 30 minutes. The results of the data

obtained from this experiment will be used to construct upper bounds

for confidence limits for the errors of a given cutoff condition. The

confidence limits obtained will cover the complete launch window and

include all possible trajectories that would be included by chance 95

percent of the time.

The variance of the seven samples taken at the seven different

launch times will be pooled or averaged together to give an upper bound

for the variance of the universe of all optimum trajectories throughout

the launch window. We make use of the following formula for this

analysis.

Using s_

z (hi-l) + -i) + (n7-)sz
S 7 =

nl + nz + • + n7 -7

as an upper bound for the variance of the universe of all

optimum trajectories, the following upper bounds are obtained for Z0-.

Cutoff Condition

Radius

Velocity

Flight Path Angle

Orbital Inclination

Upper Bound for 2"_

2656 meters

1.8544 meters/sec

• 314Z degrees

• 0458 degrees
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The process by which we selected our samples indicates that a

somewhat smaller upper bound can be obtained by using statistical

theory utilizing the range. At the same time it is evident that the

range of our selected sample of size ten at a given launch time is un-

doubtedly an upper bound for the range of random sample of size ten

from the universe of all trajectories at a given launch time.

Thus, let us assume that we are taking random samples of size

i0 from a universe made up of optimum trajectories generated by

allowing the vehicle and flight parameters to vary. Since our samples

are small (of size 10) the range and standard deviation of a sample

are likely to fluctuate together. Thus the range may be used to esti-

mate variance with little loss of efficiency. Once again, assuming

that the errors for each variable are normally distributed, we utilize

tabulated tables for the w distribution where w = R/_.

To estimate the standard deviation of the universe we calculate

the average range of the 7 samples. Call this value, R. For samples

of size i0 the expected value of w is 3. 078. Thus an estimate of the

R

standard deviation of the universe is given as 3. 078 In other words

to takeR to be an estimate of the mean value of the range of all samples

of size 10 is the equivalent of taking the standard deviation of the uni-

verse to be R/3.078. Since the range for each of the selected samples
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at different launch times is an upper bound for the range of random

samples at these times, then

R
E(O-) - (Random Samples)<3. 078

R
3. 078 (Selected Samples)

Thus R /3.078 for our selected samples gives an upper bound for o- of

the universe.

Cutoff Condition

Radius

Velocity

Flight Path Angle

Orbital Inclination

VARIABILITY TESTS

Upper Bound for 2o-

ZI00 meters

1.615 meters/sec

.Z69Z degrees

.0Z6 degrees

In the preceding theory we have made the basic assumption that

the variability of output errors remains constant during changes of

launch window. In particular we have made this assumption for the

universe from which we picked out "selected sample" We wish now

to test whether or not the variability of output errors remains constant

across the launch window. As a word of caution it should be remem-

bered that if the variation as indicated by the samples should prove to

be significant it could be due to departure from normality within the

groups rather than departure from heterogeneity.

Two tests will be made for each variable. The

a quick test for comparing the variance estimates.

z
max s i

mfn szi
will afford

Cochran's Tests
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for the homogeneity of variance
Z

max S i

Zs_

significantly larger than the others.

Variable

r

tests whether one variance is

Max S z Max S z

Min S t 5% Point Result _ S_

not
1.06 .7.42 .15

significant

not
e 1.59 7.4Z .156

significant

not
V 1.17 7.4Z .159

significant

5% Point Result

not
.315

significant

not
• 315

significant

not
.315

significant

1 6.2 7.4Z significant .54 .31 5 significant
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SUMMARY

This report presents the derivation of a mathematical model for

fitting the steering function. The solution gives cot e(@=_+_ where

is the steering angle and_ = arc tan y) as a function of time and state
x

variables along the trajectory. This function evaluated at t = t should
o

be the desired steering function. No end conditions were considered as

all constants of integration were combined with unknown constants in

the power series expansion; it is proposed that curve fitting techniques

will be used to obtain these constants.
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INTRODUCTION

This paper is concerned with the development of a mathematical

model that may be used as a guidance function. The basic requirement

of a guidance function is that it instantly converts sensed state varia-

bles of the vehicle into command signals to enable the vehicle to follow

a newly selected optimal path.

At this time multivariate polynomials are being used to express

the guidance parameters in terms of the state and performance varia-

bles of the vehicle. From all reports these polynomials seem to be

adequate to represent the problem encountered at this time. However,

at several meetings of those concerned with this phase of the guidance

problem, opinions have been expressed that some other type function

might better represent the relationship between guidance parameters

and state variables.

So this research was motivated by the problem of trying to develop,

if possible, a function or form of a function that would represent the

relationship between the state variables and guidance parameters. The

model that will be obtained will have three important properties. First

of all its form will not be assumed in any way. Secondly, the functional

relationship will be developed from the equations that define the motion

and the conditions that insure an optimum trajectory. Finally, the

relationship will contain a number of undetermined coefficients which

will need to be obtained by some method of curve fitting techniques.
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THE PROBLEM CONCEPT

In this paper a mathematical model defining the steering function

in terms of instantaneous state variables is developed for the powered

flight problem defined as follows:

i. Motion is assumed to occur in a vacuum.

Z. Only two dimensional motion is considered.

3. Rigid body dynamics is neglected.

4. The earth is assumed to be spherical and homogeneous.

5. A constant applied force (F) is considered.

6. The time rate of change of the mass (r_) of the vehicle is

constant.

gangrangian Multipliers are used to formulate necessary conditions

for extremizing some variable such as propellant consumption or burn-

ing time.

Equations Defining the Problem

The_differential equations which define the motion of the vehicle

may be written as:

•. F kx
x = -- sin _ - --

m r3

: --m cos 9 - r3

The coordinate system, x,y is chosen so,that x is parallel to the

surface of the earth, and y is perpendicular to the surface. The dot

(i)
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represents differentiation with respect to time. F is the thrust magni-

tude which we assume to be constant. Likewise, k is considered as a

given constant. The mass, m, is of the form m ÷ m t where m and
o o 0

r_ are considered as constants. The control variable is 4, the direc-
0

tion of the thrust vector measured positive from the upward vertical.

Now consider the change of variables defined by

x = r cos q5 Xl = r x 3 = r

y = r sin_ xz = r_ O = _ +_

(z)

Under this transformation equations (1) become

Z

_, Xz k F- 2 + -- sin e
x3 x3 m

_z x, xz + F- -- cos @
x 3 m

(3)

The function whose time integral is to be extremized may be defined

as G = i + Eikig i where k.1are the undetermined Lagrangian Multipliers,

and

Z
xz k F

+ sin @ 0gl = x, - -_-- -'z -
X3 X3 m

Fxlxz
gz = _:z + -- - -- cos @ = 0

x 3 m

g3 = x3 - xl = 0 (4)

xz
g4 = X4 --- =

X3

g5 = fn - fno = 0
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Applying the Euler-Lagrange conditions to the function G results in

the following system of equations:

X Zz k F
xl = _ - -2 +-- sin @

X3 X3 m

-xl xz + F-- cos @xz -
x3 m

(5)

(6)

• X Z
M - kz - k3 (7)

X3

ZXz 1
_z - - M + x-!kz - _ M (8)

X 3 X3 X3

>[3 = xz z _ Zk kl - x_ kz + xZ k4
(9)

;<.4 = o (io)

F F
)[5 = --z sin 0 kl +--z cos O kz (Ii)

m m

F F
- -- cos O kl +-- sin Okz = 0 (IZ)

m m

Since G is explicitly independent of the independent variable, t, a

first integral of the system can be shown to be

)_I Xl + XZ Xz + _k3 X3 + )%4 >L_ + )_5 I_q -- C1 (I 3)

F

By substituting in equation (II) the values given for-- sin @and
m

F
-- cos (9in equations (5) and (6) the following relationship is obtained:
m

z k Xl xz k5 (14)kl xl + kz xz x__zkl +- kl +- kz = m
- X 3 X Z X3

By eliminating kl xl + kz xz between equations (13) and (14) the result

may be expressed as

z k x, xz kz
x_/_z kl - -- kl - + Xl X3 + _-4 X4 + r:nk5 + m_.5 "= Cl (15)
X3 xZ X3
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Now multiply (7) by xl , (8) by Xz and (9) by 2x3, and add to obtain

4k xz
Xl _l + XZ kZ + ZX3 K3 = - Xl k3 - --2- kl + -- k4 and (1 6)

X3 X3

integrate both sides to obtain:

_FE
xl M + xz kz + 2x3k3 _j_xlM+_cz kz+ Z_c3k3-xl),3

4__kk xz ]-x_ M + rex3 k4 dt + c3 (17)

This simplifies (by using 13) to

x, k, + xz kz + Zx3k3 = 4_1____ kldt- /k5 m dt+c,t+c3
jxg J

to tc. The values of all state variables at tc

one arbitrary constant.

(18)

The limits of integration throughout this development are from t

are lumped together as

Now solve xl k3 in equation (15) and add this result to x3)_3 as

found in equation (9) to obtain:

x3k3 + x3k3 + mk5
k

+ r:nks = Cl - "2 ),I (19)
X3

which after integration with respect to t becomes

-f5xsk3 + mk5 = kl dt + clt + c4

the result obtained fOrfxk--_3Substituting

yields

Xl kl + xz kz - Zx3k3 = 4mk5

(z0)

kl dt in (Z0) into equation (18)

- 3clt + c5 -_mk5 dt
(Z1)

Now replace x3k3 with the value given in equation (7); simplify and

integrate to obtain

x3 kl 3 k3 dt = f4 m k5 dt -_!m k5 dt - 3/z Cl t z + c5 t +c6

J -J" (2Z)
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f
Integrate/x3k3 dt by parts to obtain using equation (20)

t

X3_ 3 dt = x3)_ 3 t )kI dt- cl-!----+ m ks t - mk5 )dt (23)
3:,:3 2 •

(kt kl dt
Now apply the mean value theorem for integrals to the integral[ z

d x3

f tckt kl dt <tP kt kl dtWrite xZ as x_ + c7 where the interval from t to
Ct

tp is picked so that-_- does not change sign in the interval t . Then

fttc kt )_I dt /" tp k kl dt f tc k kl dt
xZ3 can be written as a Jt z + c7 = aX 3 X_

_t tc k kl dtc8 where e8 = c7 - a xZ and t< a < tp. Now replace

fk Xi dt /'kt kl dtxZ by its value inPequation (Z0). Then/j x3Z - - ax3 k3 -

amk 5 + ac, t + c9 (24)

Substituting this result in equation (23) and then in (22) yields

/3 -jjx3k, + (a-t) x3k 3 = mk 5 dt rnk5 dt + mk5 (Cl0-t)

tzCll -_ Clz t+ C13 (25)

Equations (15), (Z1) and (25) can be so arranged that the right side

of the equations are functions of m, t, ks, and k 5 .

the right sides can be considered as functions of m
]

m-mo
Since t -

_n

ks is • Now
J

remember, in this study we are not attempting to solve these equations

but to find a model with undetermined coefficients that will satisfy the

equations. Thus

side of each equation can be expressed as a power series in

X2

xl kl

to find such a model we now assume that the right

(F) to give

x /kl kz + xl k3 + c _ = N b i
x 3 x3 x3

i=0

oo In', |i" oo ' 'i

+x,_,,x_ =_ c_l_-l-_ +_a _I_=_ _
i=o km ] J i= o

(Z6)
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The bl, ci and dl are unknown coefficients, which when they appear

in the model, will need to be evaluated by some curve fitting technique

that fits the model to the space of optimum trajectories. Now consid-

ering these equations as three equations in unknowns kl, kz , k3, we

kz
solve for kl , and kz . Since cot 8=-_1 the results will be expressed in

terms of cot @; cot @was selected rather than tan 0 to make the denom-

inator as simple as possible.

cot e _(x_

+ xZ _m + ci ixz]

+ cs xa x lXz _'gi + xz x3_,hi
I

+ c6xl xz t + c7 xz x3t + csxz z t + cgxz z/
(ZT)

In recent guidance polynomials the series have been truncated after

- I_ + x_ Ef-i + x, x3Zri

Esi i-- = t + Cz xlx3t +c3xlxz t+c4xl xz

becomes

cot 0 =

385
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second order terms involving --. If we assume that all terms involving

m

__.F of the rational function are dropped off after equation (27)
In _'



F
Of course the assumption that the series involving-- can be trun-

m

cated after second order terms may or may not be correct. The order

of the terms at which all other terms would be insignificant would need

to be determined by considering problems on an electronic computer.

Thus the cot eis exllressed in terms of a rational function of state

variables involving 17 terms in the numerator and I0 terms in the de-

nominator. To use this function as a guidance function would require

that Z9 constants be found by some curve fitting technique such that the

function would give a good representation of the space of optimal tra-

jectories.

It is of interest to investigate what additional assumptions will need

to be made in order to change our rational function to a polynomial.

This can be accomplished in either of the following ways.

In reference (I) Mr. Moyer considered the equations (4) without the

condition that g4 = x4 - -- -
xz

x3
0. If we take the assumption of Mr. Moyer

we will be able to obtain a polynomial.

If we are not able to make the above assumption then we can still

obtain a polynomial by certain assumptions relative to equation (15).

In this equation group the x4 k4 (which can be written as c xz) on the
X3

right side of the equation to obtain:

z k xl xz _ cxz +x___zkl - -_ k, ---kz + xxk3 = ci rAk5 + m)[5,
X3 X3 X3 X3

CZ XZ
Now assume that cl +mk 5 + mk 5 can be written as a power

X3
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F
Series. involving --

m
; Under" this assumption , then equation (27) may

be simplified in the following manner. Multiply the numerator and de-

F
nominator by --; divide by xz x3; and then divide the numerator and

m

denominator by the power series2_hi iFii to obtain:

Z :i

k _a, I_I _b, f_/ ÷ _cot'e -

r s- i=0 im Ir! i:l _m I . ir/

Gcl +

i=o i=I Imi j

(Z9)

or

cot e= _[r{$z- k 3) Sfii:0 (F) i +--rr Sgii:l {F} i+ >-;,hii:0

ri +_Ski
r

These two expressions for cot e are equivalent.

denominators are reciprocals. N°wif r--r Sei {Fli=0 --m

i r P'ji

÷ T i:l

(30)

The terms in the
i

converges to a

number in absolute value less than 1, the denominator can be expanded

as a negative binomial in the numerator. If --_ Sei is greater than
r

r I'one then- Ski -- is less than one and the second denominator can
r m

be expanded as a negative binomial in the numerator. Thus we have

two polynomials representing cot edepending on whether __r Sei ""IF] i

r i=0 _m]

r i=0 Ira/

is not known, we write down all the terms contained in both polynomials.

Notice that the model obtained involves r, _ and $ and could possibly

reduce the number of terms needed in a polynomial guidance function.
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SUMMARY

From a given vector derived previously, an ideal function is developed

which satisfies a specified least squares error tolerance.

THE FUNCTION

-- (kO, kn), [ ]In the vector _N+I = kl, ... , computed in 3 , suppose we

• be the value of some ideal function _N+l(_) at _i; i.e., _N+l(_i) =let k m

k.. Then this ideal function assures us that the error E, where
l

E
n N _ 2

: iZ:o[x(_i)- j_--oAj_j(_i) - A_+l%+l(_i) j ,

is less than the imposed tolerance 5. Since we know the values of this

ideal function at the tabular values _i' our next objective is to develop
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a technique for computing _N+l(_'), for somevalue _' _ _i' i = O,l,...,n,

N+I
such that the error obtained by using E

j=0
Aj_j(6') to approximate X(B'),

in the sense of least squares, is as small, if not smaller, than the error
N

obtained by approximating X(8') with E (8')- Weobtain this value
j=O Aj_j

_N+l(6' ) in the following manner°

First, we compute_+l(k), k =-i, 0, i, ... , N, eN+1 and _+i as

follows:

AN+I(-i)
1

N

11%+i- _'
j=o

(%+i,%)ej 11

AN+I(O) = AN+I(-I) AO(-I)(_+ I, _0)

AN+I(N) : %+l(-1)%(-i)(%+i,%)
N-1

_ A_+l(J)AN(J)-
j--o

N

e-_+l : %+1(-l)%+i - z %+l(J)e.
j=0 J

A_+I : (_, e_+I)-

Finally, compute the (N+2) A.'s, j = 0, i, .o. , N+I, as follows:
J

A_+I = A_+I A_+l(-i)
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: - A.+p,)]

: _-i ('l) {_-1

Now let 0i, be a _i such that II 6i'

and let us define the following function:

- *'If: rain { II 6i
O<i<n

N

z A£%(n,) + AN+]_M(r_'),
..1=0

where M(6') = ki,

fo_2 IIh, - _' II < _'(h,),

0_ otherwlse,

where L(6i, ) = min
0<i<n

i_i '

{ II r_i- _i, II}-

Thus, when _' is chosen, we are able to use the function above to

approximate X(6'), being assured that the approximation obtained here is

N

no worse than the value E A4_.(6' ) obtained by using the initial least

J=0
d d

squares approximating function.
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Writing this multiple of ki as

! L(_i ) _ II_i,2

c J

!25(_i,)

we see that we have a factor which varies from zero to one as 8' varies

from a position on the boundary to a position at the center of the ball

I 1

Thus, the factor Xi,whichwas derived in association with the vector _i'

is weighted depending on the nearness of 8' to 8i''

For a particular 8' we may have a possibility of multiple choices

for 6i ,. Perhaps, more than one of these would satisfy

2 II6 i, - 8' II < L(6 i,)"

This situation depends on the configuration of the _i's and on the

orientation of 8' with the _i's near it in the norm sense.

Suppose there are m choices of 6i'' and r of them satisfy

2 II6i, - 8'II< L(Bi,)-Let , , ... , denote these , .

r

I 1(_i{)- 2 II_i, " 6'II

Let Hi_ = max and M(_' ) =

1 < t < r L(6i_)O _

Xi , . Hi. . Thus we orient 8' with the 6i which exerts the most influence

O O

on 8'.
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