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TECHNICAL MEMORANDUM X-53268

A METHOD OF IMPLEMENTING CUTOFF CONDITIONS FOR SATURN V LUNAR MISSTIONS

OUT OF EARTH PARKING ORBIT ASSUMING A CONTINUOUS GROUND LAUNCH WINDOW

SUMMARY i)

A method of implementing Saturn V lunar missions from an earth park-
ing orbit is presented. The ground launch window is assumed continuous
over a four and one-half hour period. The iterative guidance scheme
combined with a set of auxiliary equations that define suitable S-IVB
cutoff conditions, is the approach taken. The four inputs to the equa-
tions that define cutoff conditions are represented as simple third-
degree polynomials as a function of ignition time.

Errors at lunar arrival caused by the separate and combined effects
of the guidance equations, cutoff equations and input representations are
shown. Vehicle performance variations and parking orbit injection errors
are included as perturbations.

Appendix I explains how aim vectors were computed for the cutoff
equations. Appendix II presents all guidance equations and related imple-
mentation procedures. Appendix III gives the derivation of the auxiliary !
cutoff equations. :
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No error at lunar arrival was large enough to require a midcourse
correction greater than one meter per second assuming a transfer time of
three days and the midcourse correction occurs five hours after injection.
Since this result is insignificant when compared to expected hardware
errors, the implementation procedures presented are adequate to define
cutoff conditions for Saturn V lunar missions.
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The iterative guidance scheme will generate steering functions which
will insure attainment of a desired cutoff condition. Since these steer-
ing functions are updated in flight, the cutoff condition does not have to
be invariant with respect to time. Each evaluation of the guidance scheme
generates steering functions which will direct the vehicle, in a near
optimum maneuver, toward whatever end condition was defined for that
evaluation.



A set of equations describing a cutoff condition which will satisfy
a given mission is defined as a hypersurface. The hypersurface used in
this report requires four basic inputs: a unit aim vector, eccentricity,
cutoff energy and an aim vector magnitude. For a continuous launch capa-
bility, these four quantities are generated in the guidance computer as
a function of parking orbit ignition time. The unit aim vector was imple-
mented by fitting each component as a third-degree least square polynomial.
The three magnitudes, eccentricity, cutoff energy and aim vector magnitude,
were also represented as third-degree least square polynomials.

All nominal trajectories used to compute basic input data for the
hypersurface were optimized for cutoff weight at lunar injection subject
to three lunar end conditions: (1) radius of closest approach equal to
1923 kilometers (RCA), (2) a flight time of 72 hours from lunar injection
to radius of closest approach (Tf), and (3) inclination of the flight
plane with respect to the moon's equatorial plane at arrival minimized for
the chosen launch time (INC). For the particular launch day selected for
the error analysis, the declination of the moon at arrival was near
minimum. Therefore, launch azimuth is not symmetrical with respect to
launch time,

To evaluate the effectiveness of the method used to compute basic
hypersurface inputs, implementation procedures, the guidance equations,
and hypersurface accuracy, a set of error analyses is shown. A measure
of the accuracy of any lunar injection guidance scheme is how far the
nominal radius of closest approach (RCA) is missed. Each error analysis
shows the RCA miss distance, time of flight variation, inclination errors
and payload losses for six.launch azimuths ranging from 72 to 105 degrees.
This corresponds to a launch window of about 4 1/2 hours. What each error
analysis shows is briefly described as follows:

(1) Errors and performance losses caused by the guidance
scheme and hypersurface.

(2) Errors and performance losses caused by the hypersurface.

(3) Errors and performance losses caused by the guidance
scheme, hypersurface and implementation of basic hyper-
surface inputs by polynomial representation.

(4) Same as (3) except vehicle performance and parking orbit
perturbations are superimposed. Only a 72 degree launch
azimuth case is shown, since it is representative of
other azimuths.

For reference, the calculus of variations optimum nominals are shown.
From these trajectories the basic hypersurface inputs were calculated as
described in Appendix I.




II, GUIDANCE SCHEME AND HYPERSURFACE ERRORS

Errors at lunar arrival caused by the guidance scheme and hyper-
surface equations are shown in Table I. Nominal input values for the
hypersurface were taken from the optimized nominal trajectories shown
in Table V. 1Initial conditions and vehicle characteristics were the
same as the optimized nominals.

TABLE I

Azimuth /RCA ATg AINC I
(deg) (km) (sec) (deg) (1bs)
72 -3 -4 -.01 -24
77.7 2 9 .00 -25
90 -8 -13 -.01 -25
93.7 -9 -17 -.05 -25
98.4 2 8 .00 -25
105 -2 -5 .00 -24

The radius of closest approach miss distance (ARCA) is shown in
kilometers. The deviation time of flight (ATp) from the 72-hour nominal
value is shown in seconds. Inclination errors (AINC) are usually very
small, and are shown in degrees. Payload losses (/W), due almost entirely
to. the guidance scheme, are shown as the number of pounds the guided runs
were below the optimized nominals whose payloads were approximately
128,000 lbs. at lunar injection. The same guidance equations which were
used for ascent into an earth parking orbit were used for the lunar
injection phase. Slight modification of the ascent guidance equations
can reduce payload losses to about three pounds. However, since either
case is acceptable, the same guidance equations are used for both opera-
tions.

Appendix II shows in detail the guidance equations, inputs required,
and hypersurface equations used for these error analyses.



ITI. HYPERSURFACE ERRORS

Errors at lunar arrival caused by the cutoff hypersurface equations
only are shown in Table II. The powered flight phase was optimized for
payload by calculus of variations techniques subject to the cutoff con-
dition specified by the hypersurface. It is emphasized that Table ITI
does not represent guided trajectories.

TABLE II

Azimuth ARCA ATE NINC A
(deg) (km) (sec) (deg) (1bs)
72 -3 -3 -.02 0.
77.7 -4 -2 .02 0.
90 -1 8 .16 0.
93.7 -3 A .10 0.
98.4 -2 -1 .00 0.
105 -2 -7 .21 0.

Therefore, the deviations from the optimized nominals represent only hyper-
surface errors and cutoff tolerance errors. The cutoff tolerances were
small enough to enforce RCA to within one kilometer and flight time within
two seconds. Inclination enforcement was much more difficult to achieve,
and the differences between the values shown in Table I and II show the
guidance scheme can cut off in a given plane more accurately than a cal-
culus of variations program using a reasonable number of isolation runms.
Experience has shown that this is true for other types of missions as well.
Payload losses were less than one pound for all cases.




IV, REPRESENTATION ERRORS

If the basic hypersurface inputs (M, M, e, cs) are represented as
third-degree polynomials as a function of ignition time (measured from
midnight), larger errors at lunar arrival will occur than if nominal
hypersurface inputs are used. Table III represents guided trajectories
with hypersurface inputs curve fit as a function of parking orbit
ignition time. Ignition occurred when the vehicle was a fixed angle
from the aim vector. Since the aim vector is a function of ignition
time, a series of tests is necessary to determine ignition time. This
will be no problem for the onboard camputer, and the ingition criterion
is satisfactory.

TABLE III

Azimuth ORCA ATg AINC Yy
(deg) (lm) (sec) (deg) (1bs)
72 -15 9 Y -26
77.7 30 45 1.63 -31
90 -45 -83 .29 -25
93.7 -24 -86 1.64 -30
98.4 8 -51 3.57 -40
105 -24 -56 .46 -24

After time of ignition was determined, the polynomials were evaluated
and the results used as inputs to the hypersurface.

A comparison of Table III with Table I shows the radius of closest
approach error increased slightly because of representation errors. The
accuracy decrease is a small consideration when compared to the simplicity
of implementation for an entire launch window. Larger errors are shown
in this table than would be expected, because the launch window was con-
sidered to be 4 1/2 hours and the maximum allowed for a realistic mission
will be 2 1/2 hours. Therefore, the nonsymmetry of the hypersurface inputs
versus time resulted in larger curve-~-fit errors than if the more linear
part of the launch window were chosen.



V., VEHICLE AND PARKING ORBIT PERTURBATIONS

Assuming the S-IVB vehicle will not perform nominally and that park-
ing orbit injection conditions will not be perfect, Table IV presents
lunar arrival errors caused by these type of perturbations for a 72-degree
launch azimuth. The results are representative of any launch azimuth
contained in the launch window.

TABLE IV

4 . OARCA AT AINC Y
Perturbation (km) (sec) (deg) (1bs)
Nominal -15 +9 A7 -26
+F 8 -23 .39 -29
-F -47 -37 .52 -29
+Isp -24 -30 .46 -25
'Isp -16 -31 44 -25
+W -23 -26 47 -25
-W -16 -36. A2 =25
+R -3 -36 L4l -25
-R -38 -25 .49 -25
+V -16 =25 45 -24
-V -11 -9 .49 =27
+ty -37 -11 .58 -25
-ti 12 -16 .39 -25
+tp, -34 -70 -.04 -28
-ty 6 32 1.84 -26




A typical S-IVB vehicle was used for the nominal case. Magnitudes of the
perturbations were as follows.

iF +8000 1bs thrust

*TIsp +8.62 sec specific impulse

W +2500 lbs weight uncertainty

R *+30 km parking orbit altitude variation

+V +15 m/sec parking orbit velocity variation

g *15 sec time of ignition error

tty +1 minute time of launch (azimuth mis-alignment error),

These magnitudes are far larger than any expected vehicle perturbations
or parking orbit variations.

If the cutoff ellipse were invariant even when a parking orbit alti-
tude variation occurred, large payload losses would result, However,
small payload losses are maintained by varying the eccentricity of the
cutoff ellipse so that the altitude gain by the optimum nominal profiles
is enforced. This is accomplished as a part of the cutoff hypersurface
equations by computing the change in eccentricity as

e = (88 o
or

\

where Je/dr is an analytic first order approximation. The cutoff hyper-
surface equations are shown in detail in the flow chart on page 16.




VI, OPTIMUM NOMINALS

~ The problem of computing optimum nominal lunar transfer trajectories
from an earth parking orbit requires a large amount of computer time.
A calculus of variations powered program assuming constant thrust and
flow rate was used. Once a parking orbit is established and the lunar
end conditions specified, the problem can be resolved to finding the
minimum time required to transfer the vehicle from some set of initial
state variables to some other set of terminal state variables subject to
the lunar end conditions. The initial state variables are only a func-
tion of time of ignition. This problem can be solved in five to ten
minutes on the IBM 7094 computer.

Table V shows the nominal trajectories that were used to obtain
input data for the cutoff hypersurface. Small variations in RCA and
flight time are caused by isolation tolerances. Time of launch is shown
to illustrate the nonsymmetry of launch azimuth versus launch time. A
3-hour launch window is possible between 72 and 90 degrees launch azimuth.
However, the hypersurface inputs were third-degree polynomials in time
from 72 to 105 degrees launch azimuth,

TABLE V
Azimuth RCA Tf INC Time of Launch
(deg) (km) (hr/sec) (deg) (hr/min)
72 1921 72/7 1,11 6/25
77.7 1922 72/5 .32 7/32
90 1922 72/3 .75 9/43
93.7 1921 72/3 .70 10/7
98.4 1923 72/13 .30 10/ 27
105 1922 72/3 .46 10/42




VII., OONCLUSIONS

Lunar arrival errors caused by the iterative guidance scheme, cut-
off hypersurface, and representation of inputs by simple polynomials are
insignificant when compared to expected errors caused by vehicle hard-
ware. Therefore, the implementation procedures as presented are adequate
to define cutoff conditions for the S-IVB vehicle,.

No plane change cases have been presented. Current studies indicate
that a slight modification of the hypersurface equations will increase
performance for missions that require a plane change maneuver.






APPENDIX T

Aim Vector Calculation

After a nominal powered trajectory is obtained which satisfies all
mission constraints, basic inputs required by the hypersurface can be
computed. The basic inputs are a unit aim vector (M), eccentricity (e),
cutoff energy (cs), and an aim vector magnitude (M). An optimum nominal
trajectory is not essential. However, the set of equations that define
the hypersurface will assume the cutoff condition of the nominal only
when furnished the nominal range angle. Since the range angle as com-
puted by the Iterative Guidance Scheme will be nearly optimum, if the
reference is not an optimum trajectory, nominal cutoff will not occur,
Therefore, it is usually desirable that the reference trajectory be an

optimum so that any deviation in cutoff conditions will cause performance
losses.

All trajectories used to define basic hypersurface input values
were optimized for payload subject to mission constraints. WNo plane
change maneuver was performed. Payload was optimized subject to an
energy cutoff value that resulted in a desired flight time. Time of
coast and time of launch were varied to meet the other constraints
described in the introduction. The maximum payload possible for a given
flight time was computed.

Using these optimum nominal powered flight trajectories, the basic
hypersurface inputs are computed as follows with all vectors computed
in the space-fixed plumbline earth-centered coordinate system.

r = position vector at cutoff
v = velocity vector at cutoff
r= magnitude of r
v = magnitude of v
Ixy
N =
= Ixy
cs = V@ - %i b = .3986032 x 10*5 m®/sec?
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After powered cutoff the vehicle coasts to the desired lunar end
condition. Any point along the ballistic flight could be chosen as the
aim point. For all error analyses in this report the aim point was
chosen where the vehicle entered the lunar sphere of influence (defined
‘as 35,000 statute miles from the center of the moon). The distance from
the center of the earth when the vehicle entered the lunar sphere of
influence was chosen as the aim vector magnitude.

=
]

aim vector magnitude

p = arc cos {% [%-(1 - e?) - 1}}-

Lz cos - 5 v, 0t (5 - 5 |

=
"

[

Now the four basic inputs required for the hypersurface have been
computed: '

M = unit aim vector
M = aim vector magnitude
e = eccentricity

cs = cutoff energy.

12




It is important to select the aim point from an integrated ballistic
flight that satisfies a desired end condition. The desired end condition
need not correspond to lunar arrival conditions even though that is the
final objective. For example, an aim point may be chosen where a mid-
course maneuver is to occur.

Reviewing the equations used to compute the hypersurface inputs
will reveal why lunar arrival errors are small when cutoff is approxi-
mated by simple elliptic equations. The desired cutoff energy and
eccentricity are computed using the cutoff condition of the nominal.
An arbitrary distance from the center of the earth is chosen as the aim
vector magnitude. This magnitude determines the angle between the aim
vector and perigee vector. Next the aim vector is computed in the
nominal cutoff plane. Although the actual cutoff plane as determined
by the hypersurface will depend upon parking orbit variations, the hyper-
surface equations will insure that the injection point defined by the
hypersurface will be near the injection point of the nominal. This means
that both ballistic trajectories will experience almost the same gravi-
tational perturbations. The small differences will cause only small lunar
arrival errors.

13






APPENDIX II
Guidance Equations and Hypersurface

A. TImplementation Techniques

The guidance equations and hypersurface used for the error analysis
shown in the text are presented in the form of a flow chart on page 16,

Ignition occurred when the vehicle was a fixed angle from the aim
vector (TIGA was set equal to zero). This ignition criterion was used

for all cases where the hypersurface inputs were represented as poly-
nomials. '

The hypersurface equations themselves can be considered the equa-
tions necessary to compute the perigee vector (S). All other equations

are used only to translate from the hypersurface coordinate system to
the guidance reference system.

The guidance equations themselves begin in the block where the
terminal range angle is estimated and continue until the pitch and yaw
angles are computed.

In addition to the equations used to compute pitch and yaw, the
computer simulation program used a pitch and yaw rate given as

and

respectively,

Therefore, the equations for XL and X; (chi pitch and chi yaw in the
guidance reference coordinate system) become

X) >~<y - K5 + K, t,

where small 5t is defined as the time since the guidance equations were
last evaluated.

15



I INPUTS FOR OUT OF ORBIT

Vehicle Dependent Inputs (1)

T' =estimated burning time out of
parking orbit

Mission Dependent Inputs (28)
3
M M, THM TEeM, T

unit aim vector
M sRy+R,T+R,T2+RyT3
aim vector magnitude
oy =eg+e T+ep T24e,T?
nominal eccentricity

Cy #Co+C T+C,T24+C5T?

cutotf enery
e *nominal radius of time of ignition
K¢ = mission constant
COSA = cosine of angle before M to ignite
TIGA =cosine of ongle before M 1o begin
chill down

IGNITION
INHIBITOR
SWITCH

QUADRANT
TEST

ITERATIVE GUIDANCE MODE EQUATIONS FLIGHT OUT OF ORBIT

TERMINAL RANGE ANGLE CALCULATION

IN ORBIT PLANE

MATRIX TO TRANSFORM FROM PLATFORM
COORDINATES TO GUIDANCE COORDINATES
in A o A
[A]- smo z ‘ coso T ]
-cos Ay o] sin Ay
[t o o
Bl= o4 cos ¢, sin ¢,
[ 1 L ] -sin¢: cou:
cos@  -3in®@ o ]
[C]' sin® cos® o
L o o i ]
[ cosi o sini
[0]= 0 I 0
L -sini o cosi
[¢]-[e] [c] [s] [a]
!

I COMPUTE AT SECOND S-IVB IGNITION N |

M unit oim vector

ey nominal eccentricity
Cy cutoff energy

o =floy-N+t

P :%!(o'-l)
cosg* 23 G -0

Kg = /07

N =Xy

0D =(N-MI7INx M
FF «N-M/INXMIZ

 J
AFTER PARKING ORBIT INJECTION
COAST UNTIL
r- M
COS A= 15 +TIGA
IGNITION OCCURS IN TIG SECONDS

M aim vecior magnitude

eccentricity of cutoff ellipse
semilatus rectum

true anomaly of aim vector
constont

normal to parking orbit plane
constont

constant

s =[DD M-FF u+-§§% (&’?0—* —oo)%]cou* perigee vector

- S cos¢* ) .
S, * =cos vector perpendicular to periges vector

Ci *Sx§, normoal fo cutoff plane
£ =cos Ay cosgy, I+sing, ] — sin A; cos ¢, Kk earth spin vector
cosi=@-C, inchination of cutoff plane
I:L =-cos Az sin B, I+cos B, |
+sin Az sin 8, k vector 1o lounch site
ON = Cixf constont vector
cos | singo— G-
° '“°’°“(—M4‘m-h LLu) descending nade

a =arc fon (%_&—g*) ongle from S to descending node

Lz =in[rp/(r,-Tp))
Jz *Vex, fr2la-T2) |
Sp *Jp-T Vex, L2
Q=i Ve, T7+1 S,
y = Voy,/ (F/M)
L= In[?| /(tl-ﬂ)]

di 2 Vg, (ril-T)
Si= - Ti Ve, Lt
Q= 3 Vey, Ten s,

L2 Vo Ly + Vo, L2

B = =Si-Rp+MT,+T)

Tice Ti+TasTe

L' = In[ey/(ey-T"]

32 Vg (rgl'=TY

T T'4 Ty¢

ALV L

By x VTR-J'4+A'T = Ko (ry-T' A +V-Vy)L

ol

1t orc'on(x"/y”H# (3,+8;)

&P = g ta true anomaly
8¢ = orc tan [ﬁ% path angle
9y p/{1+ecos AD) rodius

1
Vy® Kg(l+e2+2ecos ADE  velocity
fA1* Vr %in 6y velocity olong n oxis
€5 = Vycos 87 velocity along ¢ oxis

COORDINATE ROTATIONS

gy = “a/ne?

cosdy -singy O
¢r|= |singy cospy O
I+ ¢ o I

4 = [¢d(e]

i3 x £ X
o [y| « |9] < K]y
{4 z 4 i
E. 0- '
e|* % iy + [k}
E| Y 9

.

TIME TO CUTOFF
CALCULATION

AE* = Er-E-E,T"
Aﬁ‘ = '.'IT""";';.T.
Y A
G=_;_[(A€"‘)'+(Aﬁ“)’+(Ac"‘)'_A,]

AI
AT =Glry—T) Vg,
Ty *T'+AT
T* 2 THLAT

1

POSITION, VELOCITY, F/m &
p FROM NAVIGATION

X, 9,2, % Y, & F/m, p

! PITCH AND YAW ANGLE CALCULATIONS

M= "cos Xy + Kysin Xy
N ='Kqsin Xy

Aps MAy - NBy

Py =- %le Vex)* 114

P = § T2 Vau t alrat 2Ty

Py =~ 3 To Vaxy + dlry+ 2Tyc)

Bp= MBy-N(T2 Vexolo+

+TiE VoxsLa+ J3= I+ Ta6
+R+R+R) C' = Jyy-AyTy-3,
Eps =g+ T+ LigTe - Cy= C'cos 3y

- (MC'-ND'}sin%p
Cp= (MC'-ND')cos Xp
Q= %Tsz V“S* 353
U IS
Uze §73 Vaxp + Qalra* 2T

Uy = §TVexy+Q'lrs+2Tc)
Dp= {MO'-N[Uj+uz+us+Ts2+ | Q3o §T8 eyt Sylry+ T

+TE Sy~ {Ts+ TP,

+ T Vayalp) - Psz] }eos Xp | Dy* D'cosy
K, =, Bp Ep/{ApDp - Bp Cp)

xp* ;p'KI

Aés AEM-EoaT

by Aqt-ijgaT

at Af*-foar

Ry = orc !on[Ail(Aézli-Aﬁz)'/']
e orcion (89 /8€)
Vexsls ® VexsL'+6

Ays L*4Vgyts

Ey = (+{T*+3EgI"2-C'sinRy
83 = Jy +da+ TiVes,l2

By U3+ T.cv.,sL;'P 3
dgr Qi+ 0Q2-T29+ TiS2

35 % By(Ty+Te)

Sy J3-TaVexyls

+P+ D' = 34-33+Qy

Ky * ByEy/(AyDy-~ByCy)

xy* % K3

 J

CUTOFF WHEN

ve-2t .,
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It is important to the guidance implementation procedure to fix
the end conditions as predicted in the terminal range angle block about
25 seconds before cutoff. Normally K., K, Kz and K, are frozen 10 sec-
onds before cutoff. This procedure prevents large turning rates from
building up after the guidance parameters are frozen.

To rotate the direction cosines of the guidance coordinate system
to an earth-centered plumbline coordinate system, the inverse of the K
matrix is used. This is the system required in the flight computer.

Note that although the guidance scheme computes chi yaw before
chi pitch, the rotation order is chi pitch then chi yaw, which is the
same as the vehicle platform.

[ -~ ” — —— —

cos cos X cos X' cos X!

DX Xp y P v

-1

= J|sin X cos X. | =] K A sin X! cos X'

bex 7 y [ J B y
DCZ -sin ¥ ' sin X'
y y

=
"

arc tan by
P DCX

x
]

arc sin (DCZ).
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B. A Description of the Iterative Guidance Scheme

Some of the basic principles of the iterative scheme can best
be demonstrated by assuming constant gravity, thrust and specific impulse.
If only a velocity end condition is enforced, it can be shown that a
cons tant thrust direction is the optimum steering law [l]. The thrust
direction can be found by the following geometric construction.

Xp> Yo
_zg
gT T
- Vg '?‘Z
Vi o>
\I-/
X ;?‘"
R,
+
—
o>
—¥
o —fe kp - ki >
~ §T - (§1 - 8D
tan X = 3 :
T T *1
T time to cutoff
Vl initial velocity vector
Xq initial velocity in x direction
Vi initial velocity in y direction
gT velocity loss due to gravity
vT cutoff velocity vector
kT cutoff velocity in x direction
&T cutoff velocity in y direction
Vg velocity to be gained by vehicle
X direction of thrust vector if velocity only is to be enforced
(measured from x-axis).

FIGURE 1., THRUST DIRECTION.GEOMETRY
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If the remaining time, T*,is not known, it can be estimated by
the characteristic velocity equation and updated for each guidance evalua-
tion cycle. Terminal velocity components %y and yp are assumed constants,
As time-to-burn approaches zero (cutoff), the steering commands are frozen
to avoid indeterminate expressions. Since actual vehicle implementation
procedures require frozen steering functions near cutoff, no scheme
generality is sacrificed,

A constant thrust direction cannot enforce both altitude and
velocity. Therefore, a different steering law is needed. The steering
law which the iterative uses is

-

X = X - Ky + K, 8¢,

where K; and K, are subject to the conditions that the velocity constraint
enforced by X is not violated. Each evaluation cycle updates %, K, and Ko
using the current state variables and vehicle characteristics. Small &t
is the time since the last guidance evaluation cycle.

This new steering law has a theoretical basis: the first order
expansion of the calculus of variations steering law derived subject to
the same assumptions (flat earth, conmstant thrust and specific impulse,
altitude and velocity enforced, no range enforcement) is

X = a + bt

where a and b are computed subject to current state variables, vehicle
characteristics and desired terminal conditions.

It is possible to avoid specifying lateral terminal displacement
and velocity components. This is accomplished by defining a guidance
reference coordinate system that has one axis perpendicular to the final
cutoff plane (Figure 2). All calculations by the guidance equations are
done in the guidance reference coordinate system. The coordinates are
defined as follows: 1 i$ measured from the center of the earth and
passes through the final cutoff point, & is measured from the center of
the earth, perpendicular to 7, in the direction of flight, and { completes
a right-handed coordinate system,

Usually, cutoff conditions are specified as a desired radius (r),

velocity magnitude (v), and path angle (6), measured from the local hori-
zonal. These cutoff conditions transformed to the £, n, £ system are

19
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gT =0 gT = Vv cos @
N =T T = V sin @
T T

CT =0 CT = 0.

To rotate platform coordinates to the desired cutoff plane,
the G matrix is computed by the launch wehicle computer., This matrix is
a constant and can be computed as soon as launch azimuth, launch latitude,
descending node and inclination of the cutoff plane are known., The
terminal range angle, @, is the remaining rotation necessary to transform
from the cutoff plane to the guidance reference system, The matrix that
rotates the platform coordinates into the guidance reference system is
called the K matrix, It is computed in the coordinate rotation section.
The K matrix is updated through gy every evaluation cycle so that 7
always passes through the predicted cutoff point. WNotice that the pre-
dicted terminal values are in the guidance reference system so that {4
and {p are zero (&p is zero also). '

Time-to-burn is updated based on velocities to be gained measured
in the guidance reference system, Cutoff occurs when the vehicle reaches
the desired energy. At this time the altitude and path angle constraints
will be enforced.
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APPENDIX IIT

Derivation of the Cutoff Hypersurface Perigee Equation

It has been empirically shown [14] that the injection points of
earth-moon trajectories with constant transit times map concentric
circles on the surface of the earth. The diameter of these injection
rings is a function of the injection path angle. All nominal optimized
trajectories generated for a particular vehicle from a circular parking
orbit will have almost equal injection path angles. The major lack of
path angle uniformity is caused by earth gravitational variations result-
ing from different launch azimuths. Therefore, the injection ring can
be considered to have a constant diameter for the type of trajectories
considered in this report.

Each injection point defines a transfer ellipse. The perigee points
of these transfer ellipses map a perigee circle which is smaller and con-
centric to the injection circle. For convenience of representation, the
cutoff hypersurface equations are derived based on the perigee ring.

Consider one particular optimum transfer trajectory where an aim
point has been selected and the unit aim vector computed as described
in Appendix I. A rotation of the trajectory plane about the aim vector
will cause the perigee vector corresponding to the transfer ellipse to
sweep out a right circular cone. The apex of this cone is the center
of the earth and the perimeter of the base is the perigee ring. Notice
also that the axis coincides with the unit aim vector.

Since all optimum nominal cutoff planes contain the axis of the
perigee cone, the cutoff plane for all earth-moon trajectories is defined
to be the plane that contains a perigee vector in the parking orbit plane
and the aim vector. The perigee vector in the parking orbit plane will
be the vector from the center of the earth to the point of intersection
of the parking orbit plane and the perigee circle ahead of the ignition
point. Actually, both the perigee and aim vectors are considered unit
vectors with separate magnitudes.
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Cutoff Plane

Mx (NxM ane

I N x M

NxM —

- [N x M]

M unit aim vector

S unit perigee vector

B angle between M and §

N unit vector normal to parking orbit plane at ignition.

For clarity of derivation, the aim vector is assumed to point to
the center of the perigee circle, and the acute angle between M and §
is defined as B. The perigee vector is computed in an orthogonal
coordinate system defined in terms of the two unit vectors N and M.
The axis of the coordinate system are
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X
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12 1=

Mox (N x M)

NxM © system

unit aim vector

unit vector in the parking orbit plane

unit vector completing the right-handed coordinate

where N and M are computed in the earth centered plumbline coordinate
system. Since any vector can be expressed as a linear combination of any
other three non-coplaner vectors, let

where a, b and c are the direction cosines of § to be determined.

observation

Y]
1]

cos B

and

b= - cos B tan v,

where y is defined by

sin y =N - M

cos y = |N X Ml.

IR I=

J1 - cos2p secZy,

By
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or, in terms of B, N and M,

JIN x M[Z - cos®p
N x M|

c =

Since

Mx WxM) =N- M- NN,

S can be written as

RN N  NxM
L VA a7 B Ty

Substituting a, b, ¢, -M for M and B = n - &*, the equation for S becomes

r ¥x1 1
§=LDD§I_-FFE+INXM| fcosgﬁf DDJCOSW"
where
o - M
R TERE +1

This is the form of the perigee vector used in the precompute section on
page 16.
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A unit vector normal to the cutoff plane can be written as

SxM

S

Using the normal to the desired cutoff plane, the inclination and descend-
ing node can be computed. Next the location of the perigee vector with
respect to the guidance reference coordinate system is computed. The
cutoff path angle, radius and velocity are computed as functions of true

anomaly of cutoff, which is updated every guidance equation cycle by the
guidance scheme. '
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