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1.0 INTRODUCTION

The purpose of the Apollo Navigation Working Group (ANWG) is to coordi-
nate the analysis and study of problems of the Apollo missions from the navi-
gations point of view. Emphasis isplaced on the total system rather than on the
onboard and ground systems individually in order that the optimum combination
of them can be achieved.

This report presents the results of studies of navigation systems capabili-
ties. The ultimate goal of these studies is to verify the adequacy of the com-
bined onboard and ground systems and to recomment corrective actionif needed.
In this, the first issue of this report, the results of ground network navigation
studies are given. It was the consensus that the publication should not be de-
layed until the studies of the onboard and the combined systems are completed.
The publication of the results from these studies is therefore left for future
issues of this report.

The lunar mission has been divided into seven consecutive phases, each of
which has been analyzed under conservative assumptions. The results, there-
fore, are conservative compared with the results of an analysis of a continuous
mission. Note that the results are given in 35 values. The analysis was based
on a ground tracking network performance as specified in 65-AN-1.0 "Apollo
Missions and Navigation Systems Characteristics."

The units used are consistent with the rules of 65-AN-1.0. Scales in both
English and metric units are included on diagrams and graphs with the excep-
tion of logarithmic scales, which are given only in English units. The term
speed uncertainty, as used in this report, means the uncertainty of only the
magnitude of the velocity vector in contrast to velocity uncertainty, which
reflects both the uncertainty in orientation and magnitude.
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2.0 CHANGES AND ADDITIONS

This document is the first publication of the "Apollo Navigation — Ground
and Onboard Capabilities" document. In future issues, this section will consist
of a summary of the additions and revisions to the document.
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3.0 EARTH ASCENT PHASE

3.1 INTRODUCTION

The earth ascent of the Apollo mission begins at liftoff of the launch vehicle
and terminates with abort initiation or the GO/NO-GO decision. The launch is
separated into two phases. The first is from liftoff to S-IVB cutoff and repre-
sents the powered flight phase. The second is from S-IVB cutoff to the GO/NO-GO
decision and represents the hold phase. The hold phase is studied in this chapter.

3.2 DESCRIPTION OF PHASE

The Apollo space configuration will be launched from Merritt Island, Launch
Complex 39, Cape Kennedy, on a launch azimuth of 72 degrees to 108 degrees.
The operational launch azimuths have a daily range of 26 degrees within this
range of azimuths. Referring the 26 degrees to time, they amount to a daily
launch window of at least 2-1/2 hours, based on the requirement for insertion
tracking using one ship. (Reference 1). A minimum of 2-1/2 to 3 minutes of
tracking is obtainable following termination of the powered flight phase of
the trajectory. The nominal orbit is circular at an altitude of 100 nm
(185 km). An elliptical trajectory is not ruled out, in which case perigee
may be at 85 nm (157 km) and apogee at 150 nm (278 km). Cutoff of the
powered flight phase occurs approximately 1440 nm (2667 km) downrange
from the launch area.

Figure 3.1 shows the position coverage of the insertion tracking ship rela-
tive to the ground track of six launch azimuths. The ship would be near point A
for northerly launch azimuths and point C for southerly launch azimuths. During
a month, the ship would have to travel approximately 350 nm (648 km) to ade-
quately cover the 36 degree range of launch azimuths, but it would not move
significantly during the day of launch. Also shown are coverage circles for Cape
Kennedy, Bermuda, San Salvador and Antigua.

During the powered flight phase of the earth ascent, the Apollo Saturn con-
figuration utilizes closed loop inertial guidance. No steering commands are
sent from the ground during this phase as they were for Projects Mercury and
Gemini. Consequently, the ground stations can only perform monitoring during
the powered flight phase.
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These are five sources of trajectory data available during this phase. The
ground tracking systems (land based and ship based) consists of AZUSA, C-band
and the Unified S-band Systems. Two sources of on-board position and velocity
measurements are available to the ground station via the telemetry link; one from
the Inertial Guidance Computer in the Saturn Vehicle and the second from the
Apollo Guidance Computer in the Spacecraft. As the data is received, it is
processed and used to compute data quality parameters which are used to select
the best source. The selected source is then used to compute trajectory monitor-
ing, guidance monitoring and trajectory planning parameters.

During the powered flight phase, coverage from the ground stations is suf-
ficient and in part redundant (Figure 3.1) and land based coverage of the flight essen-
‘tially terminates at cutoff of the S-IVB as it occurs 1440 nm (2667 km) down-
range. Antigua can view the cutoff and insertion phase, but only for launch azimuths
greater than 95 degrees. The insertion ship then becomes, for most launch azi-
muths, the primary site for the insertion phase. Four data sources are available
to the ship at this time; shipboard C-Band and Unified S-Band, and telemetry
data from the two on board inertial guidance systems. With this information,
the GO/NO-GO decision will be made.

. Important questions that must be answered are:

1. What data rates and tracking arcs (time) are required for shipboard
tracking to make the GO/NO-GO decision?

2. What criteria are to be used in selecting the best data source for the
GO/NO-GO decision? '

3. What data or combination of data are to be transmitted from the ship
to the Mission Control Center?

Of the studies required to answer these questions, the analysis of the C-band
capability from the insertion ship was chosen first and is presented in this
Chapter.

Measurement noise and bias and station errors over three different time
arcs for various data sampling rates were used. The assumptions used in this
study are given below and discussed in more detail in paragraph 3.4.



1. Trajectory Parameters (circular orbit) (reference 2)

Velocity 25568 ft/s (7793 m/s)
Flight path angle 0.0 degrees
Altitude 100 nm (185 km)
Launch Azimuth 108 degrees

2. Data Type and Uncertainties, C-Band Shipboard Radar, 1o Values
(reference 3)

NOISE BIAS
Range 30 feet 60 feet
Azimuth 0.4 m. rad. 0.8 m. rad.
Elevation 0.4 m. rad. 0.8 m. rad.

3. Ship Location and Biases, lo Values

Latitude 21° 15' North + 0.3' or 0.3 nm bias
Longitude 48° 45' West + 0.3' or 0.3 nm bias

4. The data was not degraded due to any other uncertainities than those
given above. It was assumed that the data had been corrected for ships
motion, speed, local vertical and refraction.

3.3 GENERAL DISCUSSION

The studies using the before mentioned assumptions were generated with
the Short Arc Digital Program (reference 4). This program uses range, azimuth
and elevation data to compute the orbit of the spacecraft in the form of inertial
position and velocity vectors. The Short Arc method is based on a least squares
curve fit to a truncated Taylor's series expansion of the inertial position from
the center of the earth to the spacecraft. It utilizes the two-body equations of
motion to obtain the expansion as a function of initial position and velocity (drag
and oblateness terms are neglected). Time arcs of twenty, forty and sixty seconds
were used for the present study, with the solution referenced to the mid point
of the time arc.

The Short Arc Program was selected to study the insertion phase because
this method was used to compute the actual GO/NO-GO decision for the Mercury
Missions and a similar method is currently used in Gemini. Possibly, a Short
Arc or similar method will be selected for Apollo. The results of this stydy should
apply regardless of the method selected.
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In Project Mercury, the GO/NO-GO decision was made following shutdown
and separation of the spacecraft from the booster. In less than a minute, the
tracking data was evaluated to decide if the mission should continue or be aborted.
The.GO decision was based on the insertion velocity magnitude, flight path angle
and altitude, and an orbit lifetime of 1-1/2 orbits with a minimum perigee of 75
n. mi. (139 km). Any orbit outside of these constraints would have resulted in a
NO-GO decision and subsequent abort.

For the Gemini Missions, the GO/NO-GO decision is similar. However,
the spacecraft has on board propulsion to obtain orbital velocity, should analysis
of the tracking data indicate an underspeed at insertion.

The earth insertion phase for Apollo is somewhat more complicated than
for Mercury and Gemini. The nominal Saturn V launch phase to the earth park-
ing orbit insertion consists of S-IC, S-II, and S-IVB burns with the first S-IVB
cutoff occuring approximately 12 minutes after liftoff. Guidance and sequencing
are under the programmed control of the launch vehicle computer and inertial
reference system. The spacecraft crew and ground personnel monitor the pro-
grammed sequence of events, the performance of the vehicle systems and the
achieved trajectory. The orbit insertion verification comes from the first S-IVB
cutoff data.

If necessary the spacecraft crew can:

1. Override automatic event sequence timing

2. Select back-up modes

3. Cut off the S-IVB propulsion to prevent overspeed, or

4. Initiate abort sequences including selection of the appropriate
guidance program.

3.4 PROCEDURE AND RESULTS

The studies for this Chapter have been concerned with determining the
errors in speed, flight path angle, altitude, position vector and velocity vector
based on shipboard C-band tracking. A total of 40 Monte Carlo runs were made
with the Short Arc Program for each of the uncertainty combinations listed
below. Five data sampling rates were considered: 10/sec, 5/sec, 2/sec, 1/sec
and 10/min over tracking arcs of 20, 40 and 60 seconds. Table 3.1 lists the
combinations of uncertainties that were studied for the three tracking intervals.

Error free radar data (range, azimuth and elevation) were generated for the
insertion ship and used in the Short Arc Program to determine the accuracy of
the Program. The errors caused by round-off and truncation as well as mathe-
matical models errors, were found to be negligible. For this study the uncer-
tainties were then added to the data as follows:
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1. NOISE:
The noise was added to the data via a random number generator. Forty
separate runs were made, each with a different random number starter
for the three radar parameters. ’

2. NOISE AND + BIAS:
Positive biases in all three radar quantities (range, azimuth and eleva-
tion) were added simultaneously with the noise.

3. NOISE AND - BIAS
Same runs as 2, except with negative biases.

4. NOISE, BIAS, AND STATION ERROR:
To the noise and bias were added errors in the latitude and longitude of
the ship of £0.3'. The positive and negative signs indicate the error di-
rection used for placement of the ship.

Table 3.1
MEASUREMENT STATION LOCATION
UNCERTAINTIES " UNCERTAINTIES
1. Noise Q
2. Noise and + bias 0
3. Noise and - bias 0
. . + latitude
4. Noise, - bias {_ longitude
. . + latitude
5. Noise, + bias {+ longitude
. . + latitude
6. Noise, + bias {_ longitude
7. Noise, + bias - 1at1tt.1de
+ longitude
. . - latitude
8. Noise, + bias {_ Jongitude

As indicated above, selective combinations of noise, bias and station error
studies were made. The data given in the figures present the most coriservative
results obtained thus far in the study.
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- The 30 results as shown on the graphs are based on the expected shipboard
C-band'tracking accuracies. The noise and data bias uncertainties used for
this study were based on the results of the performance of the two C-band tracking
ships used in support of the Mercury — Atlas 9 (MA-9) mission. The average noise
of the ships' observations and the noise values used for the Apollo insertion ship
studies are given in Table 3.2.

Table 3.2
STANDARD DEVIATIONS (NOISE) OF SHIPS' OBSERVATIONS
Data Type Range Tracker | Twin Falls Victory Inﬁslg :ﬁgn
(RTK) (TFV) Ship
Range (feet) 48. 27. 30.0
Azimuth (m. rad.) 0.68 0.32 0.4
Elevation (m. rad.) 1.20 0.40 0.4

The data biases (not shown) on MA-9 ships' observations were roughly double
the noise figures. Therefore in this study, data biases of 60 feet in range and 0.8 m.
rad. in angles were used for the insertion ship.

The 1o total error in ship position for this study was assumed to be 0.4 n.mi.
(0.74 km). This value is more optimistic than those on MA-9, but with the Inser-
tion Ship's Inertial Navigation System, and other navigational aids, it should be
attainable.

The above assumptions, based on actual shipboard C-band tracking, make
the results presented in this Chapter realistic. But, if the new Apollo ships
perform as well as expected, these results are conservative.

The 108 degree launch azimuth was chosen because it gave low elevation
angles and maximum values of slant range for the insertion ship. Antigua was also

able to view the spacecraft at insertion for the 108 degree launch azimuth. All of the
studies for the ship were also made for Antigua using the same assumptions with
only the geometry being different (Figure 3.1). Table 3.3 gives the values of the
tracking data over the longest arc used in the studies.



Table 3.3

TRACKING COVERAGE — 108 DEGREE LAUNCH AZIMUTH
INSERTION SHIP ANTIGUA
Time
From . . : .
Range | Azimuth | Elevation Range | Azimuth | Elevation
SIV-B i) d d d d
Cutoft (deg) | (deg) (mm) | (deg) | (deg)
(sec)

0 501. 259. 7.6 320. 62. 15.9
20 449, 251. 9.4 368. 73. 13.0
40 405. 242, 11.2 426. 80, 10.3
60 373. 232. 12.7 488, 86. 8.0

From Table 3.3, it can be seen that the spacecraft is approaching the ship
while for Antigua, the converse is taking place. Since essentially the same re-
sults were obtained from Antigua and the ship, only the ship results are given.
It should be noted, however, that because of the close agreement, a somewhat
greater level of confidence is placed on the study.

It was mentioned previously that the GO/NO-GO decision was based on three
critical orbital parameters. They were: speed, flight-path angle and altitude.
Figures 3.2 through 3.4 give the 3o uncertainties in these parameters as a function
"‘of\g'acking sampling rates and arc length of data. The position and velocity
vectors are not used for the earth orbit insertion decision but rather the scalar
components given above. Figures 3.5 and 3.6 give the 3o errors in the position
and velocity. They have been included to show the relative comparison between
the scalar and vector errors.

In Figures 3.2 the 30 uncertainty in speed is given as a function of five
different data rates. The graphs are presented for 20, 40 and 60 second tracking
intervals. It is shown that bias on the measurement and station location contribute
little to the uncertainty in speed, but noise on the other hand, contributes sig-
nificantly to this uncertainty. Furthermore, there is a significant improvement
in accuracy if the tracking interval is increased from 20 seconds to 40 or 60
seconds. ‘
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In Figures 3.3, the 3o uncertainty in flight-path angle is given for various
data rates and tracking time arcs. High data rates do not give significant im -
provement to this parameter for tracking intervals of 40 seconds and longer.
Station location biases do not affect the error in this parameter.

In Figures 3.4, the 3o uncertainty in altitude is given for various data rates
and tracking intervals. Again, station location biases have little effect, and noise
is not significant. Data bias errors cause the greatest uncertainty in the altitude,
and increasing the tracking arc or data rate will not reduce this error. Increasing
the data rate above 2/sec does not significantly reduce the uncertainties.

In Figures 3.5, the 3o uncertainty in position is given for the various data
rates and tracking time intervals. It is noted that the station location bias causes
the greatest uncertainty, and the effect of measurement bias, though significant,
is smaller. Measurement noise has no effect. In addition, data rates and tracking
interval have no effect.

In Figures 3.6, the 30 uncertainty in velocity is given for the various data
rates and tracking intervals. The greatest uncertainty is caused by the measure-
ment bias for tracking intervals of 40 to 60 seconds. The effect of measurement
noise and station location bias can be significant and the uncertainty is sensitive
to both data rates and tracking interval.

The results of this study have been checked with similar runs made with
the ERRAN error analysis program, Mission Analysis Office, Goddard Space
Flight Center. The results of the two programs agree to within £10%. Checks
have also been made with the operational Gemini "Real-Time Program' at
GSFC, with even closer agreement.

3.5 CONCLUSIONS

The results presented in this Chapter pertain to the tracking intervals and
data rates of the earth insertion phase, based on the expected accuracies of a
shipboard C-band radar. From the enclosed graphs, the following conclusions
may be made.

1. A 40 second tracking interval is significantly more accurate than a 20
second tracking interval, both for speed and flight path angle (Altitude
error is insensitive to both tracking interval and data rate.) Therefore
the GO/NO-GO decision should be based on a tracking interval which is
longer than 20 seconds.
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2. Data rates of 5/sec give essentially the same resulis as 10/sec for a
tracking interval of 40 seconds. For a 60 second interval, a 2/sec data
rate is adequate.

3. Table 3.4 summarizes the approximate uncertainty percentage contributed
by measurement noise, measurement bias, and station location bias to
the three critical insertion parameters for a tracking interval of 40

seconds.
Table 3.4
Uncertainty Speed Flight Path Angle Altitude
Measurement Noise ~ 95% ~40% ~10%
Measurement Bias ~5% ~60% ~85%
Station Location Bias ~0% ~0% ~5%

3.6

4. Table 3.5 summarizes the percentage of uncertainty contributed to the
insertion position and velocity for a tracking interval of 40 seconds.

Table 3.5
Uncertainty Position Velocity
Measurement Noise ~ 5% ~20%
Measurement Bias ~ 459 ~60%
Station Location Bias ~50% ~20%

FUTURE STUDIES
1. Expansion of the present study to a tracking interval of 90 seconds.

2. Investigation of the use of data from other sources (paragraph 3.2) in
making the GO/NO-GO decision.

3. Obtaining results of the Bermuda GO/NO-GO decision based on C-Band
data for Gemini 3, 4 and 5.
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4.0 EARTH ORBIT PHASE

4.1 INTRODUCTION

The earth orbit phase as discussed below begins with the go decision to
orbit and ends at the initiation of translunar injection. '

During earth orbit, ground estimates of the orbit will be used to detect
any deviations from the nominal or current flight plan. For unacceptable de-
viations, the S-IV-B guidance targeting may be updated. Onboard (S-IV-B
and SC) knowledge of the orbit will be compared with the ground and the onboard
values updated as necessary. Other earth orbit functions dependent on ground
navigation are abort planning, site acquisition, and spacecraft platform alignment
(Reference 1).

4.2 DESCRIPTION OF PHASE AND PROCEDURES
4.2.1  Geometry

The nominal orbit is circular at 100 nm (185 km) altitude with a launch
azimuth in the range from 72 to 108 degrees. The results of this report should
not change for slightly elliptical orbits (85 perigee - 150 apogee).

The relationship of radar locations and the ground track for possible
orbits is shown by Figure 4.1. The circles indicate the area in which a vehicle
in a 100 nm (185 km) orbit has an elevation greater than five degrees to the
radar. One revolution is covered on each plot.

It is noted that for azimuths between 85 and 95 degrees that Carnarvon,
at about 45 minutes from insertion, is the first iand based system to track. The
Canary system tracks for azimuths less than 80 degrees and Ascension tracks
when the azimuth is greater than 100 degrees. Tracking times are shown on
Figure 4.2.



4.2.2 Study Procedure

Tracking coverage plots (Figures 4.1) were used as a basis for the selec-
tion of orbits which would result in a representative sample of the variation in
tracking coverage. Three orbits were chosen with launch azimuths of 72, 90,
and 108 degrees.

Accuracies for 72 degree launch azimuth orbits are available from past
postflight analysis (References 2, 3 ). These numbers would directly apply to
Apollo C-band tracking if the venting uncertainty were very small and the same
drag uncertainties were experienced.

A profile of orbit uncertainty was computed as a function of time from
insertion for the three azimuths, including USBS tracking and the effect of vent-
ing uncertainties. Orbit accuracy was estimated with the use of statistical error
analysis procedures based on the assumption that the error model biases were
not accounted for in the orbit determination process. In actual orbit determination,
some of the systematic errors are accounted for through empirical weighting of
the data. It“would be optimistic to assume an error model and then to compute
orbit accuracy based on the assumption that the biases of the assumed model
were all properly accounted for, since this would be equivalent to assuming that
all actual biases are properly accounted for in orbit determination. In general,
assuming that the biases of the error model are not accounted for could be either
pessimistic or optimistic. For example, if the error model included ten percent
of the actual errors but only half of the effect of the actual errors were accounted
for in the orbit determination process, then the results would be optimistic. If in-
stead the error model included 90 percent of actual errors and half were accounted
for in orbit determination, then assuming none were accounted for would be pes-
simistic. The method used in this study seems to provide fairly realistic results.

The overall procedure for checking the station error and other assump-
tions was to compute the expected orbit accuracy for the 72 degree launch azi-
muth orbit and to compare the results with actual Mercury and Gemini experience.
The results for the three orbits were then computed with the influence of the vent-
ing uncertainty included.

4.2,3 Data

The selection of data rates was based primarily on past Gemini and Mer-
cury analysis and experience. When the results would be unaffected, less data
was used in the study than would be processed during a mission, primarily to
make the study easier and less costly. Uncertainties for the orbit based on data

4-2



from the first station and then from the first two stations were computed, after
which the best set of three radars over the last one and a half revolutions was
used to compute the uncertainties.

C-band data wereused during earth orbit at the rate of one set of range,
azimuth, and elevation every six seconds. Very little is gained by processing
data at higher rates. USBS Doppler and angle data were used at six second inter-
vals along with one range value per pass. Error analysis results seem to show
that using frequent range values along with the Doppler and angles does not im-
prove the orbit accuracy (Reference 4). The use of USBS Doppler and range for
orbit determination should be studied further. When two tracking systems were
available at a station, only one was used. Present results indicate that little is
to be gained by using data from more than one radar at a station. Also, the pre-
dicted orbit accuracy for the USBS appears to be about the same as the realized
accuracy for existing C-band radars (Reference 4, 5).

Onboard landmark angle sightings will likely be made for onboard check

out purposes, but no onboard angle observations will be used in the ground orbit
determination.

4.2.4 Error Model

The noise and bias used on the observables along with values for the
station position uncertainty are listed in Table 4.1 and were taken from Refer-
ence 6. The noise was adjusted to account for the smoothing effect obtained by
accumulating Doppler count over six second intervals.

The observation bias values of Table 5-1, Reference 6, were used. For
operational convenience, it was assumed that the bias values represent the com-
posite effect of a number of sources including refraction, local vertical, and
instrumentation, even though each source results in a differently behaved sys-
tematic error in the observable. This procedure has enough flexibility for gen-
erating useful earth orbit uncertainties. Very few, if any, error analysis pro-
grams are capable of properly handling the various sources of error individually.
In general, the orbit errors experienced for actual flights over various fracking
situations are in reasonable agreement with orbit uncertainties based on the
above error model.

Prediction Model: The influence of the uncertainty in the earth's gravi-
tational parameter, u , though small, was included for computing ground navi-
gation uncertainty. The uncertainty due to drag for a 100 nm orbit is negligible.
Uncertainties in venting thrust of 1.0 and 10.0 pounds were considered. During
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past Gemini and Mercury missions, the error in predicted position and velocity
over several revolutions was due primarily to the error in the initial position and
velocity. The contribution of earth gravitational and atmospheric drag uncertainties
appeared small in comparison. In contrast, for Apollo earth parking orbits, a large
S-IV-B venting uncertainty would have a significant influence on prediction accuracy.
The present lo value for the uncertainty is 0.65 pounds, which is ten percent of the

total vent force. Therefore, a one pound uncertainty is about the correct size
and ten pound uncertainty is pessimistic.

The S-IV-B computer uses its estimate of position and velocity at inser-
tion and equations of motion to compute position and velocity during the earth
orbit phase. The error in onboard navigation would be due to the error in the
initial conditions and the error in the prediction equations. The largest part of
the error in onboard knowledge of the orbit will likely be due to the initial condi-
tions at the end of launch. Present estimates of these errors were used to com-
pute onboard navigation uncertainties. The onboard system is not able to measure
and account for deviations from nominal venting acceleration so that it suffers
from the same venting uncertainty as the ground. It was assumed that the on-
board system, when updated, would receive the components of the most recently
computed position and velocity vectors. The onboard system then predicts
forward to the time of injection.

4.3 RESULTS

The results based on a realistic venting uncertainty of one pound are
discussed first and given for 72, 90, and 108 degree launch azimuths. The results
for a pessimistic venting uncertainty of ten pounds for the 72 degree launch azi~
muth arethendiscussed. This is followed by a comparison of actual Mercury accuracy
Wwith statistical error analysis results and additional comments on the influence
of a one pound venting error.

Figures 4.3 through 4.8 present 3o orbit uncertainties for the 72, 90, and
108 degree launch azimuth orbits. That is, the accuracy during the flight is ex-
pected to be well within the values presented in these figures. The influence of a
one pound venting uncertainty was included. The vertical lines show the instan-
taneous improvement inthe orbit asitis updated over each station. The lines which
run across the page show how the initial errors propagate with time. For example,
for the orbitcomputed 45 minutes after insertion, the 3o uncertainty in predicted
position at 160 minutes from insertion would be 6 nm (11 km) (Figure 4.3).
However, for the orbit computed at 140 minutes from insertion, the position un-
certainty at 160 minutes would be 1.3 nm (2.4 km). These numbers are three
timesthe root sum square of the 1o component errors in position and velocity.

4-5



The cross correlation between position and velocity should be accounted for’
when using the numbers in other work.

If the orbit is updated every 45 minutes, then the largest 3¢ orbit un-
certainty any time after 45 minutes from insertion is 3.5 nm (6.5 km). This
is true for all launch azimuths. The corresponding velocity values are 21 ft/s
(6.4 m/s).

The results (Figure 4.4) indicate that for launch azimuths less than 80
degrees the orbit based on the Canary data can be used for an early comparison
with onboard results. Present results indicate that the orbit based on Canary
data is not useful for updating the onboard computers. For the 108 degree launch
azimuth, the earliest time for a useful orbit is 15 minutes (Ascension). After 15
minutes, for the 108 degree azimuth, the orbit should always be known within 3o
bounds of 4 km or 2 nm and 5 m/s or 15 ft/s (Figure 4.7).

Figures 4.9 and 4.10 show 72 degree launch azimuth orbit uncertainties,
but with a ten pound venting uncertainty. For the one pound vent uncertainty, up-
dating the orbit every 45 minutes meant that after 45 minutes from insertion, for
all launch azimuths, the 3o uncertainty was less than 3.5 nm (6.5 km) and 21
ft/s (6.4 m/s). The corresponding values for a ten pound vent uncertainty are
30 nm (55 km) and 180 ft/s (55 m/s).

The actual errors for orbits computed during a typical Mercury flight
(MA-6) are presented in Figures 4.11 and 4.12. For comparison, one sigma
results from the statistical error analysis are also presented for a similar orbit
and similar tracking. The straight lines merely connect local uncertainty or error
points and do not represent propagated errors. The actual velocity errors are in
good agreement with the estimated errors. The MA-6 position error of 0.23 nm
(0.42 km) around 140 minutes is about three times the 1o estimate, but it should
be noted that the tracking capabilities have improved since the MA-6 era. More
recent results (Reference 7) indicate that for the first Gemini flight (GT-1) the
error in this region was 0.08 nm (0.15 km)

Figures 4.13 and 4.14 show how the error in predicted position and veloec-~
ity due to errors only in u or venting increase with time (perfect initial conditions).
In actual practice the error due to p does not appear so dominant, possibly be-
cause the orbit determination program may adjust the semi-major axis slightly
to account for the error in the orbit period due to ¢, or because the actual error
ing may be less than the 1o value quoted. The results show that the one pound
vent uncertainty becomes important after about one hour.
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4.4 CONCLUSIONS

For the expected tracking and venting uncertainties, the results indicate
that the accuracy of the ground navigation is sufficient to perform the functions
described in the introduction, i.e., updating of the onboard computer and flight
plan verification.

Because of the expected rate of decline in the accuracy of the onboard
navigation (Reference 8) and the rate of improvement of that of the ground, it is
concluded that a ground update should be made 45 minutes from insertion if
navigation accuracy is the sole consideration. Additional time before updating
might be desired to obtain confidence in the orbit determination results. In
this case, updating might be delayed until two land stations have tracked, for

example, until over Hawaii, 70 minutes from insertion for the 90 degree
azimuth orbit.

Furthermore, because of the time required to process the tracking data,
compute the update, etc., it may not be desirable fo track and update with the
same station. The procedure in this case would be to track with two stations
and update from the following station. For launch azimuths less than 100 degrees
the first update would then occur at 80 minutes (near the end of the first revolu-
tion) and for launch azimuths greater than 100 degrees it would occur after 45
minutes over Carnarvon, assuming that Pretoria is available.

Mission plan verification can best be done with orbits computed during
the second half of the first revolution. Rough verification will be possible from
the ship results combined with either Canary or Ascension within 15 minutes
from insertion, except for launch azimuths from 80 to 98 degrees where only
ship tracking is available during the first half of the revolution.

The navigation update area is under consideration by many groups con-
cerned with Apollo. The above discussion is meant only to serve as an aid
to this planning. Further, the picture may change depending on the achieved
accuracy for onboard and ground navigation. Future postflight analysis
of early Apollo missions will provide valuable results needed for the evalu-
ation of navigation updating procedures. The problem of updating guidance target-
ing may be considered in future revisions. Further, the effect on the midcourse
fuel cost of performing injection with expected navigation error is an important
part of the problem. Such work should be included in future revisions. For ex-
ample, if the difference in required midcourse fuel is small for onboard versus
ground navigation, the difference between the two systems is less interesting.
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9.0 TRANSLUNAR PHASE

5.1 INTRODUCTION

The translunar phase of the Apollo lunar mission is defined as beginning
at the end of the injection burn and ending at the beginning of deboost into the
lunar parking orbit. During this phase the MSFN (Manned Spaceflight Network)
will be the prime source of navigation data. The purpose of the study presented
in this chapter is to evaluate the capability of determining the translunar orbit
using data from the MSFN.

Several operational modes (e.g., single and multiple station tracking) have
been simulated in this study and some conclusions concerning the operational
use of the MSFN have been reached.

The study was conducted with certain assumptions concerningthe accuracy of
the MSFN and with a linear error analysis program based on a weighted least
squares Tiltering technique. |(Reference 1) This error analysis program was used to
evaluate the capability of determining an orbit with data of the assumed character-
istics and with a filter which ignored the assumed biases. Further discussion of
the assumed data characteristics is contained in the paragraph below. It should
be noted that the Apollo real time orbit determination program will account for
some bias effects by adjusting the measurement data weighting scheme or by
solving for the known biases explicitly or, more probably, by using some combina-
tion of these two techniques. Consequently, the results reported below are con-
sidered to be conservative and are subject to change as further studies are conducted.

5.2 ASSUMPTIONS

The assumptions on which this study was based are consistent with
Reference 2. For convenience, however, the uncertainties in station locations,
gravitational constants of the earth and moon, and the noise and biases of the
MSFN data are shown on each graph as they are applicable. Other assumptions
which should be noted are:

1. The translunar trajectory is of the free-return type with a perigee of
80 - 108 nm and a perilune of 80 + 5 nm. Figure 5.1 is an illustra-
tion of this trajectory showing the planmed maneuvers.

2. The results for tracking ship capabilities assume two co-located ships
at 20 degrees north, 130 degrees west with USB systems; the difference
between them being in the level of uncertainty with which their locations
are known and the noise and biases of their data.
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5.3 RESULTS

To facilitate the studying and reporting of the MSFN performance, the
translunar phase has been divided into five legs. These legs begin and end with
one of the planned maneuvers (e.g., injection, transposition and docking, mid-
course correction, and lunar deboost), and are defined as follows:

Leg 1 - From end of injection burn to initiation of transposition and docking.

Leg 2 - From end of transposition and docking fo initiation of first mid-
course correction.

Leg 3 - From end of first midcourse correction to initiation of second
midcourse correction,

Leg 4 - From end of second midcourse correction to initiation of third
midcourse correction.

Leg 5 - From end of third midcourse correction to initiatiop of deboost
into lunar parking orbit.

Each of these legs is nominally associated with a time from injection as
shown by the upper scale of the schematic below. The lower scale of this
schematic defines the time scale which is used in preparing the graphs of the
results of this study.

INJECTION ENTRY INTO LSOl pRILUNE ARRIVAL
TIME SCALE I [ i
FOR TRANSLUNAR PHASE 0 20 40 | 60 hr
1 | T
LEG 1 | (3 MINTO 24 MIN)
LEG 2 |3 (1 hrto2hr)
LEG 3
LEG 4
50 hrs -
LEG 5 L
TIME SCALE FOR 1 | l
LEGS 1,2 AND3 O 20 40 50 hr  60hr
1
TIME SCALE FOR LEGS 4AND 5 0 10 hr

The uncertainties that are depicted in the graphs are computed at various
times in the legs and an explanation of the annotation of these computations is
given on the following page.

5-2



t = 0 This statement on a graph indicates that the uncertainties
are of the orbit parameters at the beginning of the leg.

t + 30 min. This statement indicates that uncertainties are of the
orbit parameters at 30 minutes after the time against
which they are plotted. This illustrates the accuracy
with which an update of the onboard system can be
made after a period of tracking, data processing etc.

Entry into LSOI = This statement indicates that the uncertainties are
computed at the LSOI (Lunar Sphere of Influence).

Perilune Arrival This statement indicates that the uncertainties are
computed at the nominal time of arrival at the perilune.

In all of the above cases the uncertainties are plotted on the same time
scale as the radar coverage periods and, thus, one can determine how the MSFN
navigation capability varies with tracking time and with tracking coverage.

5.3.1 Leg 1 — Navigational Accuracies at Injection
The results of the analysis for this leg illustrate the MSFN performance
in the determination of position and velocity at injection and show the effects of

these uncertainties in predicting the vehicle's position and velocity at the nominal
time of entry into the LSOI.

The following eight cases (operational modes) were considered in the
analysis.

Case 1: Two C-band radars tracking; the first from three to seven minutes
and the second from seven to 24 minutes.

Case 2: The same as Case 1 with two USB Systems replacing the C-band
radars.

Case 3: Three C-band radars tracking; the first from three to seven
minutes, the second from seven to fourteen minutes and the third

from fourteen to 24 minutes.

Case 4: The same as Case 3 with USB Systems replacing the C-band
radars.

Case 5: Ship A (USBS) tracking from three to 24 minutes.
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Case 6: Ship B (USBS) tracking from three to 24 minutes.
Case 7: One USB System tracks from 10 to 24 minutes.

Case 8: Ship B tracks from three to ten minutes and the USB System of
' Case 7 tracks from 10 to 24 minutes.

The uncertainties in position and velocity tor Cases 1 through 8 are
referenced to t = 0 (Figures 5.2a, 5.2b, 5.3c, and 5.3d, respectively).

The uncertainties in position and velocity for Cases 1, 2, and 5 through 8
are propagated to the LSOI where entry into the L.SOI is assumed to occur 50
hours after injection (Figures 5.2e and 5.2f).

5.3.2 Leg 2 — Navigational Accuracies for the First Midcourse Correction

The results of the analysis for this leg of the translunar phase illustrate
the accuracy with which the position and velocity of the vehicle can be predicted
30 minutes in advance and at the LSOI.

The following seven cases (operational modes) were considered in the
analysis for this leg.

Case 1: Texas tracking with no a priori knowledge at the beginning of
track. '

Case 2: Case 1 with a priori knowledge.

Case 3: Texas and Antigua tracking simultaneously with no a priori
knowledge at the beginning of track.

Case 4: Case 3 with a priori knowledge.

Case 5: Madrid, Ascension and Canary tracking simultaneously with no
a priori knowledge at the beginning of track assumed.

Case 6: Madrid, Texas, and Ascension tracking simultaneously without a
priori knowledge.

Case 7: Madrid and Ascension tracking simultaneously without a priori
knowledge.

The uncertainties in position and velocity are propagated to t + 30 minutes
for all seven cases (Figures 5.3a and 5.3b) and propagated to the LSOI for cases
1, 3, and 5 through 7 (Figures 5.3c and 5.3d).
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5.3.3 Leg 3 — Navigational Accuracies at the Second Midcourse Correction
The results of the analysis for this leg illustrate the accuracy in pre-

dicting the vehicles' state vector thirty minutes in advance of MSFN tracking
and at the LSOI.

Three cases were simulated in the analysis for this leg and are as follows:

Case 1: Texas, Canberra, and Madrid alternating after each radar has.
tracked for several hours and with no a priori knowledge.

Case 2: The same as Case 1 with a priori knowledge.

Case 3: Texas, Antigua, and Hawaii alternate at the end of each hour and
no a priori knowledge is assumed. The analysis for this case
extended over a five hour interval which is sufficient to study

the effects of a more frequent alternation of stations.

The uncertainties in position and velocity (Figures 5.4a and 5.4b) are
propagated to t + 30 minutes for all three cases and to the LSOI for Case 1 only.
5.3.4 Leg 4 — Navigational Accuracies for the Third Midcourse Correction

The results of the analysis for this leg illustrate the accuracy in predicting

the vehicular position, velocity, and selenocentric radius 30 minutes in advance
of MSFN tracking and at perilune.

Two cases were simulated in the analysis for this leg and are as follows:

Case 1: Three radars tracking simultaneously with no a priori knowledge.

Case 2: The same as Case 1 with a priori knowledge.

The uncertainties in position, velocity, and selenocentric radius are
propagated to t + 30 minutes (Figures 5.5a through 5.5¢c, respectively) and to

perilune (Figures 5.5d through 5.5f). In all cases the orbital parameters are
referenced to a selenocentric coordinate system.



5.3.5 Navigational Accuracies at Deboost into Lunar Parking Orbit

The results of the analysis for this final leg of the translunar phase
illustrate the accuracy in predicting position, velocity, selenocentric radius,
and lunar ground speed at perilune.

Four cases were simulated in the analysis where a priori knowledge and
use of angle data account for the differences in the cases. The cases are as

follows:

Case 1: Three radars tracking simultaneously using angle, range-rate,
and range data and assuming a priori knowledge.

Case 2: Same as Case 1 without angle data.

Case 3: Same as Case 1 without a priori knowledge.

Case 4: Same as Case 1 without angle data and without a priori knowledge.

The uncertainties in the four orbital parameters given above are propagated
to perilune for all four cases (Figures 5.6a through 5.6d).
5.4 DISCUSSION OF RESULTS

The results presented below represent how well the MSFN can do for a
likely station and data utilization plan and suggest means for improving this
utilization plan. Where improvement in navigational accuracy seems desirable,
there are many avenues open which were not explored, such as:

1. Utilization of onboard data.

2. A more rigorous use of a priori knowledge.

3. Solving for the three-way doppler biases.

4, Utilization of more multiple station tracking data.

5. Alternating assignments more frequently between stations using
two-way doppler.
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5.4.1 Legl

The first four cases (Figures 5.2a and 5.2c) represent multiple tracking.
As might be expected, three stations are shown to be better than two. However,
general conclusions concerning the relative merit of C-Band radar and USB
Systems cannot be made because the errors vary so markedly with tracking
time and period or propagation. The results from the next four cases (Figures
5.2b and 5.2d) are markedly poorer than for the first four.

It is interesting to compare Ship A, which is equivalent to a land station
in tracking capability, with the HAW USBS at seven minutes. The only difference
between these two solutions is their viewing angles (the vehicle is setting for HAW
and rising for the ship). HAW yields a better local uncertainty (at t) but a
worse propagated uncertainty (at t .., ).

Similarly, GST tracking from 10 minutes to 24 minutes yields a better
solution at t; than does Ship B, which tracks from 3 to 24 minutes, but at t 4,
Ship B's solution is considerably better. This makes it difficult to determine
which tracking situation yields the best solution since a great deal depends upon
the propagating effects.

A USBS solution is greatly enhanced after a second station has viewed
the vehicle. The GST and Ship B combination is better than Ship A alone and
much better than either GST or Ship B alone. Notice also that the Ship A, Ship
B, or GST solution does not improve significantly after ten minutes of tracking.

5.4.2 Leg 2

In the hour to hour and a half following transposition and docking, the
three station solution is clearly better (Figure 5.3a) than that of two station or
a one station, even when the other two solutions use a priori knowledge. Within
25 minutes, the three station solution can predict the position att, .. to within
486 nm (900 km). This is with no a priori knowledge at the beginning of track.
Tracking an additional hour only improves position uncertainties to 270 nm
(500 km). The corresponding velocity uncertainty at £ ,q; is less than 14 ft/s
(4 m/s) after 25 minutes and less than 7 ft/s (2 m/s) after 1 hour and 25
minutes of tracking. '

5.4.3 Leg3

Stations were alternated during the 48 hour period between first and
second midcourse corrections. It is seen that by the time a second station tracks,
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the effect of a priori information is overcome and the position uncertainties at
t + 30 varies between 13.5 nm (25 km) and 54 nm (100 km) all the way out

to the LSOI (Figure 5.4a). For the last ten hours of the leg, the uncertainties
at t + 30 and the uncertainties propagated to L.SOI are nearly the same.

The x}elocity uncertainties at t + 30 show a slightly decreasing charac-
teristic after two stations have tracked, going from 5 ft/s (1.5 m/s) to 0.7 ft/s
(0.2 m/s) (Figure 5.4b).

If a more rapid reduction in the uncertainties of the orbital parameters
is desired then at least three stations should track alternately with a period of
approximately one hour.

5.4.4 Leg4

In this leg the uncertainty in knowledge of position and velocity at t + 30
can be brought below 27 nm (50 km) and 20 ft/s (6 m/s), which implies an un-
certainty of 78 nm (136 km), 295 ft/s (90 m/s) and 16 nm (30 km) in position, .
velocity, and altitude respectively at perilune arrival.

It is observed that the uncertainties for the case with poor a priori
knowledge and the case with no a priori knowledge converge to the same level
of uncertainty by the end of about four hours.

5.4.5 Leg5

In this leg after 2~1/2 hours of tracking the knowledge of position and
velocity at perilune can be known to within 400 nm (720 km) and 3000 ft/s (900
m/s). Little of this uncertainty is in perilune altitude (uncertainty 2.7 nm (5
km)) and ground speed (uncertainty 16.5 ft/s (5 m/s)). The uncertainties in
perilune conditions are very interesting because it is now likely that the third
midcourse correction will be made one hour prior to perilune arrival and must
guarantee a perilune altitude to within 5 nm (9.3 km) of nominal.

By the time of loss of sight, or 20 minutes before perilune arrival, the
uncertainties in perilune conditions are less than 54 nm (100 km) in position,
197 ft/s (60 m/s) in velocity, 3.3 ft/s (1 m/s) in speed, and 0.5 nm (1 km) in
altitude. '

During the last four hours, the use of angular measurements speeds up
the convergence. However, if a realistic a priori knowledge had been carried

over from the previous 56 hours of tracking then angular measurements may
not have been necessary.
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5.5 CONCLUSIONS

The assumed noise, systematic biases, and uncertainties in location for
the ship's tracking data (Ship B) degrades by a factor of 2 the accuracy with which
position and velocity can be determined over the accuracy resulting from a
ground station with a tracking geometyy identical to the ship's.

In comparing the graphs of Figures 5.2a, 5.2d, 5.4a, and 5.4d, it is observed
that alternating the tracking assignments of stations significantly reduces the
uncertainties in the state vector.

The results for leg 5 \(Figures 5.6a through 5.6d) show that angle measure-
ments taken at lunar distance are useful for rapid convergence. However, the
results depicted on these same figures show that all four operational modes
(with and without angles, with and without a priori knowledge) converge to the
same uncertainty level before perilune arrival.

After tracking from injection to initiation of transposition and docking
the uncertainties in position and velocity at injection are 0.4 nm '('6:;74 Ai{m) '
and 10 ft/s (3.0 m/s) if data from land based USB Systems are used and 17 nm
(31 km) and 300 ft/s (91 m/s) if ships data are used. These uncertainties, when
projected to the LSOI, are 165 nm (306 km), 9 ft/s (2.7 m/s) and 1400 nm
(2600 km), 30 ft/s (9.1 m/s) respectively.

The uncertainties in position and velocity for the first midcourse correction
are 44 nm (82 km) and 20 ft/s (6.1 m/s) resulting in uncertainties of 270 nm
(500 km) and 6 ft/s (1.8 m/s) when projected to the LSOI.

The uncertainties in position and velocity for the second midcourse cor-
rection are 13.5 nm (25 km) and 2 ft/s (0.6 m/s).

The uncertainties in position, velocity, and radius for the third midcourse
correction are 25 nm (46 km), 22 ft/s (6.7 m/s), and 8.5 nm (15.7 km), respectively,
and the corresponding uncertainties at perilune are 71 nm (130 km), 280 ft/s,

(85 m/s) and 16.5 nm (31 km).

The uncertainties in position, velocity, radius, and lunar ground speed
at perilune arrival, based on tracking up to 20 minutes before perilune arrival
can be known to within 54 nm (100 km), 175 ft/s (53 m/s), 2 nm (3.7 km), and
7 ft/s (2.1 m/s).

5-9



5.6 APPENDIX A, COORDINATE SYSTEMS
5.6.1 Station Location Coordinate System

The coordinate system is earth centered with the X-axis through the
prime meridian, the Z-axis in the direction of the earth's angular momentum
vector, and the Y-axis such as to form a righthand orthogonal system.
5.6.2 Vehicular Coordinate System

The coordinate system is an earth or moon centered (depehding on the
reference body) non-rotating system with the X-axis pointing toward the vehicle
at time t = 0, the Z-axis in the direction of the orbital angular momentum vector,
and the Y-axis such as to form a right-hand orthogonal system.
5.7 APPENDIX B, TRAJECTORIES

5.7.1 Trajectory A (For analysis of Legs 1, 2, and 3)

This trajectory is an earth referenced conic section generated from the
following initial conditions.

At Inclination to earth Radius Tangen.tlal Radl?d
Time equatorial plane (nm) Velocity Velocity
(ft/s) (ft/s)
0 32.47° 3613.15728 | 35325.436 4087.31952
- Subvehicle Point
Latitude Longitude
14.16943°N 157.934°W

The vehicle is ascending in its orbit at t = 0.

5.7.2 Trajectory B (For analysis of Legs 3 and 4)

This trajectory is a moon referenced conic section generated from the
following initial conditions:
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Vehicle with Respect to Moon

At | Inclination to moon Radius Tangential Hadial
Time equatorial plane (nm) Velocity Velocity
(ft/s) (ft/s)
0 177° 27013.2246 ~-4154.373 318,935
Subvehicle Point
Latitude Longitude
2.26°N 54,2°W

This trajectory will have a perilune latitude of 0.0°, a perilune radius of 1022.87556
nm, and a total flight time of 10 hours from LSOI to perilune arrival. The
vehicle is ascending in its orbit at time t = 0.

Moon with respect to the Earth

Moon's Orbital Inclination

Earth-Moon Distance Sublunar Point to Earth's Equator

207,5677.08 nm 15°N, 125°E 28.67°

The moon is ascending in its orbit about the earth.

5.8 APPENDIX C, COMPONENTS FOR ASSUMED A PRIORI KNOWLEDGE

Position (nm) Velocity (ft/s)
o, o'y o, o, O‘y o,
Leg 2
.51 13 .51 3.84 3.64 5.54
Leg 3
.66 .54 1.42 .34 44 2.09
Legs 4 &5
10.8 10.8 21.6 6.56 6.56 13.12
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5.9 APPENDIX D, CHECKOUT PROCEDURES

The error analysis program that was used to obtain the results presented
in this chapter has been thoroughly checked out during the past two years. In
addition, results from the program compare favorably with orbital accuracies
based on real time data (Ranger and Gemini) for earth orbits. The same assump-
tions were made for this study as were made in the comparison and therefore

‘the results presented in this chapter are considered to be conservative estimates
of the capability of the MSFN.

5.10 REFERENCES

1. "Description of Orbit Error Analysis Program,'" Volumes 1 and 2, Bissett-
Berman Corporation, Santa Monica, Calif., July and August, 1965.

2. MSC-GSFC, ANWG Report No.65-AN-1.0, '"Appolo Missions and Navigation
Systems Characteristics,'' Feb. 5, 1965.
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6.0 CSM LUNAR PARKING ORBITS

6.1 INTRODUCTION

Error analysis studies were made for the CSM lunar parking orbit phase of
the Apollo Mission for the purpose of evaluating the capabilities of the ground
navigation system. This system makes use of the Manned Space Flight Network
(MSFN). For the studies involving the ground navigation system, the Sept. 17, 1969
reference trajectory was used (Reference 1, page 3-11).

In order to evaluate the capabilities of the ground navigation system during
the CSM lunar orbit phase, the following critical periods must be studied in detail:

1. From lunar parking orbit insertion to the beginning of CSM/LEM separation.

2. From the end of CSM/LEM separation to the beginning of CSM/LEM
rendezvous

3. From the end of CSM/LEM rendezvous to transearth injection.

Although the present chapter emphasizes only the first period, the accuracies
stated are indicative of those to be expected for any two orbits of the CSM. The
first revision of this ANWG document will cover other portions of the CSM lunar
orbit phase of the Apollo Mission in detail. Future studies will also consider the
capabilities of the onboard navigation system which relies on an optical instrument
much like a sextant to make sightings of lunar landmarks (References 5, 6, and 7).

6.2 DESCRIPTION OF THE LUNAR ORBIT PHASE

At-the end of the burn of the Service Propulsion System, the spacecraft
(CSM/LEM) is inserted into a lunar parking orbit. The inclination of the parking
orbit is determined as a function of the landing site location, a region on the
visible side of the moon bounded by selenographic longitude +45° and selenographic
latitude +5°. The nominal parking orbit will be circular with an altitude above the
moon's surface of 80 + 5 nm (148 + 9 km). It is required that the vector from
the moon's center through the chosen landing site lie in the lunar parking orbit
plane during the period of time that the LEM lands on and lifts off the lunar surface.



The maximum allowable deviation of the landing site vector from the plane
of the parking orbit is +0.5° (Reference 1, page 3-7).

The coordinates of the landing site chosen for the Sept. 17, 1969 reference
trajectory are (Reference 4, pages 2-8 and 2-9):

Selenographic Latitude: 2.24°N
Selenographic Longitude: 13.00°W

For this reference trajectory, the CSM/LEM is inserted into a lunar parking
orbit on the back side of the moon. The spacecraft will be occulted by the moon
for approximately 22 minutes after insertion. Following this initial occultation
period, the spacecraft will be visible to various tracking stations of the MSFN
for a period of 77 minutes 18 seconds and occulted for a period of 45 minutes
42 seconds. Tracking coverage for the various tracking stations of the MSFN
is given for the first 6 hours, 30 minutes after the spacecraft is inserted into
the lunar parking orbit (Figure 6.1),

Near the end of the second lunar parking orbit, ot approximately 3 hours
48 minutes after lunar orbit insertion, CSM/LEM separation occurs. Knowledge
of the state vector at the time of CSM/LEM separation depends upon the tracking
of the CSM during this first period. This state vector, when propagated through
the thrusting period of the LEM, will then represent the a priori knowledge for
the LEM descent transfer trajectory. The ability of various tracking station
combinations of the MSFN to determine the state vector during this first critical
phase of the CSM lunar orbit operations is investigated in detail.

6.3 THE GROUND NAVIGATION SYSTEM

The accuracy with which the state vector of the spacecraft is determined at
the beginning of CSM/LEM separation is dependent on such factors as:

a, Tracker — spacecraft geometry
b. Types of measurements made

c. The a priori knowledge about the condition of the state at the time of
CSM/LEM lunar orbit insertion

d. Frequency with which measurements are made

6-2



e. Errors due to:

Measurement noise
Measurement biases

Station location biases
Equations of motion biases.

It is assumed that linear filter theory can provide a statistical estimate
of the state vector uncertainty which reflects the effects of the various error
sources inherent in a measurement. One of the most commonly used linear
estimators is the minimum variance filter (or Kalman — Schmidt filter). This
linear estimator properly accounts for all the biases without updating and pro-
vides a (theoretically) optimal estimate of the state vector. This estimation
procedure is recursive, i.e., data points are processed successively in their
natural time order. The recursive procedure gives the optimal estimates at
each data time.

Two error propagation computer programs using the minimum variance
filter were used to generate all the error analysis studies in this chapter
(References 3 and 8). Station location biases and the speed of light bias were
accounted for in both programs, whereas measurement biases were accounted
for in only one of these programs (Reference 8). The one sigma values of
bias and noise used for the analysis, taken from Reference 1, are given on each
graph presented. The present versions of these computer programs do not
include the effects of errors in the equations of motion, such as the biases in
the moon's gravitational constant and in the coefficients in the moon's gravitational
potential function. Present plans call for these to be included in future studies.

6.3.1 Error Propagation in Spacecraft Position and Velocity
Using One Tracking Station

Figures 6.2a and 6.2b show the three sigma errors in spacecraft position
" and velocity' with and without the assumption of a priori knowledge of the state
at lunar orbit insertion. Without a priori knowledge the errors in the state
vector are greater than when a priori knowledge is available. Range rate
measurements from a single tracking station are used to improve estimates of
the energy dependent variables such as velocity magnitude, semimajor axis, and
orbital period. On the other hand, very little information about the orientation
of the spacecraft's orbital plane can be extracted from these measurements. This
information about the orientation is, however, implicitly contained in the a priori
knowledge of the state. Therefore, the errors in the state vector will be smaller
whenever a priori knowledge is available.
1These minimum variance error propagation computer programs require an initial statistical estimate
of the state vector. Therefore, for analysis with no a priori knowledge, a very poor initial estimate

is used. 6-3



If a single tracking station is used for determining the errors in the state
vector at the time of CSM/LEM separation, the results depend on what initial
a priori knowledge about the state is available. A summary of the three sigma
errors at the time of CSM/LEM separation is given in Table 6.1.

Table 6.1
3o Errors of the State Vector at Time of CSM/LEM
Separation Using Measurements From One Tracker

Type of Was a Priori 3 Sigma 3 Sigma
Measurement | Knowledge Used? Position Error Velocity Error
R No 70,000 ft. (21 km) 30.0 ft/s (12.1 m/s)
R Yes? 50,000 ft. (15 km) 25.0 ft/s (7.6 m/s)

6.3.2 Error Propagation in Spacecraft Position and Velocity Using
Three Tracking Stations

Wherever possible, a tracking station complex composed of three Unified
S-Band Systems tracks the CSM/LEM up to CSM/LEM separation. The tracking
station complex is composed of one 85-foot USBS which tracks the spacecraft
in the two-way Doppler mode and two 30-foot USBS which track the spacecraft
in the three-way (or passive) Doppler mode.

Figures 6.3a and 6.3b show how the tracker-spacecraft geometry influences
the RMS errors in the state vector. The 85-foot USBS at Canberra tracks the
spacecraft in the two-way Doppler mode and the 30-foot USBS at Carnarvon and
another 30-foot USBS, either at Guam or at Hawaii, track the spacecraft in the
three-way Doppler mode. Solutions are presented for both combinations.

Because of the better geometry of the Canberra — Carnarvon — Hawaii —
combination, the three sigma errors inspacecraft position and velocity are
smaller than for the Canberra — Carnarvon — Guam combination.

At the time of CSM/LEM separation, the three sigma errors in space-
craft position and velocity are as follows:

25 priori knowledge for study is:
Three sigma error in position: 51141.6 ft (15.5 km)

Three sigma error in velocity: 102.3 ft/s (31 m/S)} (see Reference 2)




3 Sigma 3 Sigma
_USBS Combination Position Error Velocity Error

Canberra - Carnarvon - Hawaii | 28,000 ft. (8500 m) | 20 ft/s (6.1 m/s)

Canberra — Carnarvon - Guam | 35,000 ft. (10700 m) | 26 ft /s (7.9 m/s)

The a priori knowledge which was assumed is

3 sigmaposition error:; 51,141.6 ft (15500 m)
3 sigma velocity error: 102.3 ft/sec (31 m/s).

Figures 6.4a and 6.4b illustrate how the effect of measurement bias errors
causes the errors in spacecraft position and velocity to increase. Using the
tracker combination of Canberra — Carnarvon — Hawaii the three sigma errors
at CSM/LEM separation are:

With/Without 3 Sigma 3 Sigma
Measurement Bias Position Error Velocity Error
Without 1000 ft. (300 m) 0.7 ft/s (0.2 m/s)
With 28,000 ft. (8500 m) 20ft/s (6.1 m/s)

As may be readily seen, the measurement bias errors are the major contributors
to the errors in spacecraft position and velocity.

, Increased sampling rates (Figures 6.5a and 6.5b) will not decrease the errors
in spacecraft position and velocity for this case. Only measurement noise will
decrease with an increased sampling rate; the measurement bias errors will
remain unaffected. At the time of CSM/LEM separation, the three sigma errors
in spacecraft position and velocity remain almost unchanged whether sampling
rates of one measurement per minute or ten measurements per minute are used.
The relatively close agreement between the curves of Figures 6.5a and 6.5b

shows that increased sampling rates (for this tracking interval) cannot alone
reduce errors in position and velocity in the presence of large bias errors.

For the results presented in Figures 6.6a and 6.6b, the spacecraft was
tracked by the Canberra - Carnarvon - Hawaii complex of USBS tracking stations
for the first tracking period of approximately 77 minutes 18 seconds. The re-
sulting errors in spacecraft position and velocity propagated to the beginning of
the second tracking period are the a priori knowledge of the state at this time.



Then two cases were compared. On one, the spacecraft was tracked by the same
complex for the second tracking period. On the other, the spacecraft was tracked
by only the Canberra tracking station for the second tracking period. The re-
sulting errors in spacecraft position and velocity are practically the same for
these two cases. Thus the number of tracking stations may be reduced on the
second tracking period without degradation of the results.

6.4 LEVEL OF CONFIDENCE

A comparison of results between two different minimum variance error
programs (References 3 and 8) has been made for the treatment of the effects of
station location biases and the speed of light bias. For example, the two pro-
grams were in agreement on the results presented on the lower curves of Figures
6.4a and 6.4b to within 10 ft. and .01 ft/s, respectively, at all points. The
error analysis studies for the ground navigation system for which the effects of
measurement bias errors were evaluated have not been verified directly. How-
ever, the results are in general agreement with those obtained in other independent
studies performed at GSFC and MSC.

6.5 CONCLUSIONS

For the ground navigation system, the propagation of three sigma errors
in spacecraft position and velocity during the first critical period of the CSM-lunar
parking orbit phase of the Apollo Mission has been described. From all the
results presented, it is quite evident that the measurement bias errors inherent
in the data from the ground navigation system significantly influence the accuracy
of the estimate of the spacecraft's position and velocity vectors. For example,
the effect of measurement bias errors (Figures 6.4a and 6.4b) at the time of
CSM/LEM separation (3 hours 48 minutes after lunar orbit insertion) has in-
creased the error in spacecraft position and velocity by almost a factor of 30
(from 1,000 ft. to 28,000 ft. and from 0.7 ft/s to 20 ft/s respectively). One
possible means of offsetting such effects could be the combining of data from
the onboard navigation system with data from the ground navigation system.

In past error analysis studies it has been found that by solving for the
measurement bias errors their effect on the knowledge of the state vector is
decreased. This does not mean that such results can be obtained by a real time
orbit determination program (ODP). Difficulty of uncoupling the effects of
measurement bias errors might degrade rather than improve the knowledge of
the state. Therefore, it is a qualified recommendation that some selected
measurement bias errors should be solved for in order to reduce their effects
on knowledge of the state vector, (subject to verification by simulating the
processing of data with an operational ODP).
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Figure 6.2b—Effects of a priori knowledge on error propagation in spacecraft velocity for
a single station measuring range rate
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Figure 6.3b—Effects of tracker geometry on error propagation in spacecraft velocity for
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6-17




10,000

STATION LOCATION MEASUREMENT —
STATION | SYSTEM UNCERTAINTIES M%\ESN[#RSE- SA%:#NG UNCERTAINTIES
ur 10 | Lon. 10 | HEISHT 19 NOISE, 16 | BIAS, 10
CNB UsBS 19 22" 216.5 R 1 per min 0.03 ft/s 01ftls | —]
A CRO usBs 1.9 2.2" 216.5 R 1 per min 0.03 ft/s” 0.2 #t/s
/I \‘ HAW USBS L4 16" 1.1 R 1 per min 0.03 ft/s 0.2 ft/s
[ \ H * Adjusted for a sampling rate of 1 measurement per minute
1,000 —
P ORBITAL PARAMETERS
Equator of Date Coordinates - Moon Centered
T = Sept. 17, 1969 770170049 —
X, = 165.63936 nm X, =-5208,3665 ftls
Xz = -919.37695 nm X =-817.04316 ft/s
X, = -415.86151 nm Xy -268.21399 ftls
HOR{ZON
Elevation angle > 5°
L L L L
TRACKING WITH NO DIFFERENCE
9 THREE STATIONS -~ l+FOR ONE OR THREE -+
100 REQUIRED STATION TRACKING

30 UNCERTAINTIES IN VELOCITY (ft/s)

RNV

™~

"/
D
\\

\I (
\

| CANBERRA I \
CARNARVON I
HAWAII

- POOR A PRIORI KNOWLEDGE

OCCULTED

4 5
TIME FROM LUNAR ORBIT INSERTION (hours)

Figure 6.6b~Error propagation in spacecraft velocity when tracking the spacecraft with one
or three trackers after the first complete occultation period

6-18



1.0 LEM OPERATIONS PHASE

7.1 INTRODUCTION

The LEM operation phase is defined for this study as beginning with the
separation of the LEM from the CSM and terminating with the docking of the LEM
with the CSM. For the present, this study investigates only the free fall portions
of both the descent and ascenttrajectories and makes no utilization of onboard
data concerning the position and velocity of the LEM. All results are based on
data obtained by the MSFN (Manned Spaceflight Network) alone.

The study concerning the descent trajectory starts immediately subsequent
to insertion into the descent trajectory and ends at perilune arrival.

The study concerning the ascent trajectory starts immediately subsequent
to ascent burnout and ends at the nominal time of rendezvous. The thrusting
maneuvers that occur subsequent to ascent burnout and prior to rendezvous are
taken into account only insofar as execution errors are assumed for each maneuver.

7.1.2 Use of the MSFN

During periods when tracking occurs, it is assumed that three USBS sta-
tions are simultaneously tracking the LEM. One station is the transmitting sta-
tion (master) and the other two are passive trackers (slave 1 and slave 2). The
transmitting station obtains two-way Doppler while the passive trackers obtain
three-way doppler. All of the observations are taken at a rate of one observation
per six seconds. Angular data, due to its geometric dilution at lunar distances,
was not used. The predominate procedure for this study was to not use range
measurements. Data reliability is assumed to be 100 percent, i.e., no data is
assumed lost due to loss of lock, station failures, or transmission troubles.
Noise and biases on the data, uncertainty in the gravitational constant of the moon,
and station location uncertainties that were assumed for this study are presented
on the figures in which they are applicable, and are consistent with Reference 1.
When results are presented in tabular form, reference will be made to the data
characteristics that were assumed for those results.



7.1.3 Areas of Investigation
A. USBS tracking station geometry relative to the LEM's orbit

In this study three different sets of three stations were chosen to
track the LEM in order to investigate the influence that the different station
geometries have on the results. These three sets and their geometry relative
to the LEM's orbit plane are:

1. Goldstone (master), Antigua (slave 1), and Hawaii (slave 2). These
stations have a very good east-west separation but a poor north-
south separation. The sublunar point (the point where the earth-
moon line pierces the earth) at the epoch time for each trajectory
for which these stations are tracking the vehicle was assumed to
be 20°N latitude and 90°W longitude. The LEM's orbit plane (which
is assumed for this entire study to be in the earth-moon plane) is
in approximately the plane of the stations.

2. Madrid (master), Canary (slave 1), and Ascension (slave 2).
These stations have a good north-south separation but a poor
east-west separation. The sublunar point at the epoch time for
each trajectory, for which these stations are tracking the vehicle,
was assumed to be 20°N latitude and 40° E longitude. The LEM's
orbit plane is approximately perpendicular to the plane containing
these stations.

3. Canberra (master), Carnarvon (slave 1), and Guam (slave 2).
These stations have both a fairly good east-west and north-south
displacement. The sublunar point at the epoch time for each tra-
jectory for which these stations are tracking the vehicle was as-
sumed to be 20°N latitude and 165°E longitude.

B. Landing sites

The longitude of the landing site determines the length of the tracking
interval previous to perilune arrival and subsequent to ascent burnout. There-
fore, descent to and ascent from three different landing sites were investigated
in this study. They are 45°W longitude, 0° longitude, and 45° E longitude in the
selenographic coordinate system. Varying the latitude of the landing site has
little effect on the tracking, and, hence, it was kept fixed at 0°.



C. Error Analysis Techniques

This study was conducted with certain assumptions concerning the
accuracy of the MSFN and with a linear error analysis program (Reference 2)
based on a weighted least squares filtering technique. This error analysis pro-
gram was used to evaluate the capability of determining an orbit with data of the
assumed characteristics and with a filter which makes certain assumptions con-
cerning the biases.

Most of the study was conducted to evaluate the capability of determining
an orbit with data containing noise and biases and with a filter which ignored the
assumed biases. This filter will henceforth be referred to as Filter-1. In making
this evaluation the error analysis program computed the uncertainties in the
orbital parameters taking into account that there are biases on the data which are
being ignored by the filter. It should be noted that the Apollo real time orbit
determination program will account for some bias effects by adjusting the meas-
urement data weighting scheme or by solving for some biases explicitly or,
most probably, by using some combination of these two techniques. Consequently,
the results obtained with Filter-1 are considered to be conservative and subject
to change as future studies are conducted.

The concluding portion of the study was conducted to evaluate orbital
accuracies with two other filters which assume:

1. The MSFN measurements are corrupted by random noise and biases,
and, in this case, the biases are solved for in the same manner as the position
and velocity. This procedure, referrved to as an optimum filter, should produce
the smallest residuals in the orbit determination. It will hereafter be referred
to as Filter-2. '

2. The MSFN measurements are corrupted by random noise and biases.
In this case, selected biases are solved for in the same manner as the position
and velocity, but the remaining biases are ignored. This procedure will be re-
ferred to as Filter-3. This filter offers a compromise between filters 1 and 2,

3. Filter-3 was studied for a case such that the data it processed actually
was bias free. The results which this case produces serve ds a gauge by which
to measure the results obtained from the other filters.



7.2 PROCEDURES AND ASSUMPTIONS
7.2.1 Geometry of the Descent and Ascent Trajectories (Figure 1)

The LEM will separate from the CSM and initiate its Hohmann descent
trajectory (80 nm apolune to an 8 nin perilune) as it reaches a point a little
more than 180° from the chosen lunar landing site in the second lunar orbit of
the CSM. The chosen landing site will lie between +5° latitude and +45° longitude
in the selenographic coordinate system. The period of the trajectory is approxi-
mately two hours so that, depending upon the landing site, the LEM will come
into view of the earth 15 to 45 minutes prior to perilune arrival. At perilune the
vehicle begins initiation of the powered descent. The plane of the LEM's orbit
will be the same as the CSM's lunar orbital plane, which will lie within 15° of
the earth~moon plane.

The following description of the ascent trajectory represents the type that
is likely to be chosen when navigational aid, either in a primary or back up role,
is to be based on MSFN data. The LEM ascends to an orbit having a perilune of
8 nm and an apolune of 30 to 70 nm. At apolune the LEM initiates a maneuver
to circularize the orbit. Approximately 20 to 30 minutes after the LEM reappears
from behind the moon (allowing time for an update of the LEM's position and
velocity, based on MSFN navigation) it initiates a rendezvous transfer maneuver.
Rendezvous with the CSM occurs at an 80 nm. altitude and approximately 150°
from the transfer maneuver. A midcourse correction will probably be made
between the transfer maneuver and rendezvous.

7.3 RESULTS
7.3.1 Outline of Results
A. Descent Phase ~ 4 Figures, 2 Tables.

Figures 7.2 - 7.4 present the position and velocity uncertainties at
perilune arrival, as a function of tracking time, that result from different track-
ing geometries and different landing sites.

Figure 7.5 presents the position and velocity uncertainties at perilune
arrival, as a function of tracking time, that result from an analysis with Filter-1,
Filter-2, Filter-3, and Filter-3 for which the data contain no biases.

Table 7.1 breaks down the position uncertainties at perilune arrival
into the components altitude, range, and track. Altitude is in the direction of the
. radius vector; track is parallel to the orbit angular momentum vector; and range
completes a right-hand orthogonal system.
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Each row in Tables 7.1, 7.3, 7.4, and 7.5 and each curve on a figure
represents a particular set of assumptions labeled by case numbers. These
cases are defined in Table 7.6.

Table 7.2 shows the one sigma uncertainties of the biases, as a func-
tion of tracking time, that result when the biases are solved for in the same
manner as the position and velocity.

B. Ascent Phase - 3 Tables

Table 7.3 presents the uncertainties in the LEM's position and velocity
vectors at four key points along the ascent trajectory. These points are:

1. t, (ascent burnout)

2. t . . (the time of the circularization maneuver)
circulation

3. t (the time of the rendezvous transfer maneuver)

transfer

cendesous (the nominal time of rendezvous)
Points 1 and 2: Columns 1-2 and 3-4 show how well insertion conditions can be
known and circularization conditions can be predicted. These uncertainties are
based on tracking data obtained between ascent burnout and 5 minutes prior to
loss of sight (the 5 minutes being allowed for updating the LEM computer and
verification of this update). Points 2 and 3: Columns 5-6 and 7-8 show how well
the circularization conditions can now be known and how well the transfer condi~
tions can be predicted. These uncertainties are based on the additional tracking

data obtained between the time the LEM is reacquired after being occulted by the
moon and up to 5 minutes prior to the transfer maneuver. Points 3 and 4: Col-

umns 9-10, 13-14, 17-18, and 11-12, 15-16, 19-20, respectively, show how well
conditions at transfer can be determined and how well rendezvous conditions can
be predicted. Execution errors were taken into account for each maneuver.

Table 7.4 presents a regrouping of selected cases from Table 7.3 in
order to facilitate a comparison.

Table 7.5 presents uncertainties in the LEM's position and velocity
after the transfer maneuver, assuming that the LEM guidance computer has been
updated with MSFN navigation data prior to transfer.
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7.3.2 Discussion of Results
A. Descent Phase

The configuration of Goldstone, Antigua, and Hawaii represents the
poorest station geometry of the three tracking station sets that were considered
for this study, provided the tracking interval is at least 10 minutes. Figures 7.2
through 7.4 show that the uncertainties in position and velocity that were computed
from the data obtained by Goldstone, Antigua, and Hawaii are consistently greater
than the uncertainties that were computed from the data obtained by the other two
station sets. As these stations lie approximately in the LEM's orbit plane, little
knowledge of the out-of-plane component can be obtained from their data. An
inspection of Table 7.1, cases 1, 4, 7, 10, and 13 (see Table 7.6) will verify that
the uncertainty in the track (out-of-plane) component of position is not reduced
as significantly as the in-plane components with increased tracking time.

The configuration of Madrid, Canary, and Ascension represents the
poorest station geometry for a tracking interval of 5 minutes. Table 7.1, cases
2, 5, 8, and 11 will show that the uncertainty in the range component of position
consitututes a large part of the total position uncertainty that is computed from
5 minutes of tracking data. The range component, during these 5 minutes, is
approximately perpendicular to the plane containing the stations. These stations
have very little east-west separation, and, consequently, the data they obtain in
5 minutes contain very little information concerning this component. However,
after about 10 minutes the earth's rotation plus the LEM's motion offsets the
lack of east-west separation and the uncertainty in the range component is signi-
ficantly reduced.

Table 7.1, cases 1-9, all without a priori knowledge, show that the
uncertainty in the track component of position is not significantly reduced with
increased tracking time. In an effort to reduce the uncertainty in this component,
cases 10, 11, and 12 were investigated assuming a priori knowledge of the LEM's
position and velocity. A comparison of cases 1, 2, and 3 with cases 10, 11, and
12, respectively, will show that, the respective cases give approximately the
same results.

In addition, case 13 was investigated to ascertain the significance of
range measurements. It is the same as case 7 except the data from the master
station includes range measurements at a frequency of one observation every 15
minutes. A comparison of these two cases will show that range measurements
offered very little additional information regarding the -track component.



Figure 7.5 is presented in order to allow a comparison of the results
obtained from the three filters that were explained in section 7.2.3 C. The un~
certainties that result when Filter-1 processes data that contain biases repre-
sent the upper bound in this comparison. The uncertainties that result from the
data processing of Filter-2 show that, as the knowledge of the biases is improved,
they approach the minimum case, i.e. Filter-3 with no biases on the data. If
only the 3~way doppler biases are solved for with Filter-3, the improvement over
Filter-1 is as much as 50 per cent of the improvement of Filter-2 over Filter-1.

The question may arise as to why special emphasis was placed on
three-way doppler biases. Table 7.2 gives the one sigma uncertainties of the
biases as a function of tracking time. This table shows that the uncertainties in
the biases of the gravitational constant of the moon, two-way doppler bias, and
three-way doppler bias are significantly reduced with increased tracking time.
The uncertainties in the biases of station location showed little or no improvement
and therefore the station location biases need not be solved for. Furthermore, it is
not necessary to solve for the bias of the gravitational constant of the moon because
it will be significantly reduced as a result of missions prior to the Apollo lunar
missions. As seen from the preceeding paragraph, the 3-way doppler biases
have a predominating effect, and, therefore, it was logical to place emphasis on
them.

B. Ascent Phase

The position uncertainties presented in Table 7.3 and referenced to
the time of rendezvous are of particular interest. These uncertainties represent
the predicted rendezvous miss that results from MSFN navigation and the execu-
tion errors assumed for each maneuver. It should be noted, however, that these
uncertainties are inertially referenced and are based on the knowledge of the
LEM's position and velocity alone. The uncertainty in the relative range of the
LEM and CSM is a subject for future studies.

Table 7.3, cases 17, 18, and 19 give the position and velocity uncer-
tainties that result when ascent is from 45°W longitude. No a priori knowledge
of the LEM's position and velocity at ascent burnout was assumed. The execution
errors for the circularization maneuver and the transfer maneuver were assumed
to be 9.8 ft/s in each component of the velocity vector. Cases 20, 21, and 22
give the position and velocity uncertainties that result when ascent is from 0°
longitude. Cases 23, 24, and 25 give the position and velocity uncertainties that
result when ascent is from 45°E longitude. The assumptions concerning a priori
knowledge and execution errors for cases 20-25 are the same as those for cases
17, 18, and 19.



The importance of the tracking station geometry relative to the geom-
etry of the LEM's orbit plane was noted in the results presented for the descent
trajectories. The same trend can be noted for the ascent trajectories. Com-
paring cases 17, 20, and 23 with either cases 18, 21, and 24 or cases 19, 22, and
25, respectively, will verify that the data obtained from Goldstone, Antigua, and
Hawaii yield larger uncertainties in the LEM's position and velocity than those
that were computed from the data obtained by either of the other two station sets.

Cases 26, 27 and 28 are the same respectively as cases 23, 24, and
25 except that the execution errors for the maneuvers were reduced from 9.8
ft/s to 0.1 ft/s in each component of the velocity vector. A comparison of the
results will show that the uncertainties, presented at times after a maneuver
has been performed, are larger for the cases with larger execution errors, as one
would expect.

Cases 29, 30, and 31 are the same respectively as cases 26, 27, and
28, except that a priori knowledge of the LEM's position and velocity at ascent
burnout was assumed for the former cases. The a priori covariance matrix used
was assumed to represent the LEM's launch cutoff conditions; however, it is felt
to be optimistic. A comparison of the results will show that the a priori knowledge
that was assumed did not significantly reduce the uncertainties at rendezvous
in spite of the optimism.

Case 32 is the same as case 29 except that range measurements from
Goldstone were included. A comparison of the results will show that range meas-
urements add very little to the knowledge of the LEM's position and velocity at
the nominal time of rendezvous.

Cases 33 and 34 are the same, respectively, as 17 and 19, except that
Filter-3 was used in the former cases. Also, cases 35 and 36 are the same,
respectively, as 17 and 19, except that Filter-2 was used in the former cases.
A comparison of case 33 with cases 17 and 35 and a comparison of case 34 with
cases 19 and 36 (refer to Table 7.4) will illustrate the advantages of solving for
the 3-way doppler biases.

C. Confidence Level

The results of this analysis were checked against the results obtained
from a previous analysis in which the Jet Propulsion Laboratory's Orbit Deter-
mination Program was used (Reference 3). The LEM rendezvous flight plans
and the data assumptions for each of the analyses were somewhat different, but,
when tracking intervals and propagating times were similar, the results were in

close agreement.
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7.4 CONCLUSIONS

The results of this study indicate that north-south station separation is
more beneficial than east-west separation.

A combination of range measurements with the Doppler data obtained by
the master station, in those cases for which the combination was made, gave no
additional information concerning the position and velocity of the LEM.

Because using Filter-2 resulted ina 50 percent decrease in two-way
doppler bias, study of the effect of this bias needs to be made to determine whether
or not it should be solved for in the real time Apollo ODP,
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Table 7.6
Data Characteristics and Definition of Cases

Data Characteristics Station L.oceftlon
A Uncertainties
Station | Measure- Sampling Noise Bias o oy | oz
ment Rate lo lo (&) | () | (ft)
GST R (ihen 1 per 6 sec | 0.1 ft/s 0.1ft/s | 112 [121} 115
. 1 per 15 min | 60 ft 120 ft
apphgable) ;
ANT R lper6sec | 0.1ft/s |0.2ft/s 115 | 131 | 121
HAW R 1per 6 sec | 0.1ft/s | |0.2ft/s 174 | 243 | 240
MAD R Lper6sec | 0.1ft/s |0.1ft/s 128 | 102 | 121
CYI R 1 per 6 sec 0.1 ft/s |0.2 ft/s 253 | 453 | 417
AsC R 1per6sec | 0.1ft/s '|0.2f1t/s 141 | 340 | 358
CNB R lper6sec. | 0.1ft/s ||0.1ft/s 207 {197 | 200
CRO R 1 per 6 sec 0.1ft/s | |0.21ft/s 197 (210 | 197
GUA R 1per 6 sec | 0.1ft/s !]o0.2ft/s 410 {535 | 633
CASE DEFINITIONS
Case 1 Descent to perilune of 45°W longitude; ANT, GST, and HAW trackmg,
no a priori knowledge assumed; Filter-1.
Case 2 Descent to perilune of 45°W longitude; MAD, CYI, and ASC tracking;
no a priori knowledge assumed; Filter-1.
Case 3 Descent to perilune of 45°W longitude; CNB CRO, and GUA tracking;
no a priori knowledge assumed; Filter-1.
Case 4 Descent to perilune of 0° longitude; ANT, GST, and HAW tracking;
no a priori knowledge assumed; Filter-1.
Case 5 Descent to perilune of 0° longitude; MAD, CYI, and ASC tracking;
no a priori knowledge assumed; Filter-1.
Case 6 Descent to perilune of 0° longitude; CNB, CRO, and GUA tracking;
no a priori knowledge assumed; Filter-1.
Case 7 Descent to perilune of 45° E longitude; ANT, GST, and HAW trackmg,

no a priori knowledge assumed; Filter-1.
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Case 8 -

Case 9 -

Case 10 -

Case 11 -

Case 12 -

Case 13 -

Case 14 -

Case 15 -

Case 16 -

Case 17 -

Case 18 ~

Descent to perilune of 45° E longitude; MAD, CYI, and ASC tracking;

no a priori knowledge assumed; Filter-1.

Descent to perilune of 45° E longitude; CNB, CRO, and GUA tracking;
no a priori knowledge assumed; Filter-1.

Descent to perilune of 45° W longitude; ANT, GST, and HAW tracking;
a priori knowledge assumed:

oy = 8.1nm oy = 49.2 ft/s
o, =8lnm oy = 49.2 ft/s
o, = 8.1 nm oy = 49.2 ft/s

x - altitude, y - range, z - track; Filter-1.

Descent to perilune of 45° W longitude; MAD, CYI, and ASC tracking;
a priori knowledge assumed (same as in Case 10); Filter-1.

Descent to perilune of 45° W longitude; CNB, CRO, and GUA tracking;
a priori knowledge assumed (same as in Case 10); Filter-1.

Descent to perilune of 45° E longitude; ANT, GST, and HAW tracking;
no a priori knowledge assumed; GST takes range measurements in
addition to doppler data; Filter-1.

Descent to perilune of 45° W longitude; CNB, CRO, and GUA tracking;
no a priori knowledge assumed; Filter-3, three-way doppler biases
are solved for. .

Descent to perilune of 45° W longitude; CNB, CRO, and GUA tracking;
no a priori knowledge assumed; Filter-3.

Descent to perilune of 45°W longitude; CNB, CRO, and GUA tracking;
no a priori knowledge assumed; Filter-3, data contain no biases.

Ascent from 45° W longitude; ANT, GST, and HAW tracking; no a
priori knowledge assumed; execution errors assumed to be 9.8 ft/s
in each component of the velocity vector; Filter-1.

Ascent from 45° W longitude; MAD, CYI, and ASC tracking; no a

priori knowledge assumed; execution errors same as for case 17;
Filter-1.

7-16



Case 19

Case 20

Case 21

Case 22

Case 23

Case 24

Case 25

Case 26

Case 27

-Case 28

Case 29

Ascent from 45° W longitude; CNB, CRO, and GUA tracking; no a
priori knowledge assumed; execution errors same as for case 17;

Ascent from 0° longitude; ANT, GST, and HAW tracking; no a priori
knowledge assumed; execution errors same as for case 17; Filter-1.

Ascent from 0° longitude; MAD, CYI, and ASC tracking; no a priori
knowledge assumed; execution errors same as for case 17; Filter-1.

Ascent from 0° longitude, CNB, CRO, and GUA tracking; no a priori
knowledge assumed; execution errors same as for case 17; Filter-1.

Ascent from 45° E longitude; ANT, GST, and HAW tracking; no a
priori knowledge assumed; execution errors same as for case 17,
Filter-1.

Ascent from 45° E longitude; MAD, CYI, and ASC tracking; no a
priori knowledge assumed; execution errors same as for case 17;
Filter-~1.

Ascent from 45° E longitude; CNB, CRO, and GUA tracking; no a
priori knowledge assumed; execution errors same as for case 17;
Filter_lc

Ascent from 45°E longitude; ANT, GST, and HAW tracking; no a
priori knowledge assumed; execution errors assumed to be 0.1 ft/ sec
in each component of the velocity vector; Filter-1.

Ascent from 45° E longitude; MAD, CYI, and ASC tracking; no a
priori knowledge assumed; execution errors same as for case 26;
Filter-1.

Ascent from 45° E longitude; CNB, CRO, and GUA tracking; no a
priori knowledge assumed; execution errors same as for case 26,
Fﬂtel"’]_.

Ascent from 45° E longitude; ANT, GST, and HAW tracking; a priori
knowledge assumed is:

43.8 ft2/s?
13.6 ft2/s?

= 3,39 x 10° ft?
1.8 x 106 ft2

i

‘<3° xﬁq
1}

o
o?
Y
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o, = 3.05x10° ft? o? = 40.3 ft2/s?

x - altitude, y - range, z - track; execution errors same as for case
26; Filter-1.

Case 30 - Ascent from 45° E longitude; MAD, CYI, and ASC tracking; a priori
knowledge assumed (same as for case 29); execution errors same as
for case 26; Filter-1.

Case 31 - Ascent from 45° E longitude; CNB, CRO, and GUA trackingr; a priori
knowledge assumed (same as for Case 29); execution errors same
as for case 26; Filter-1.

Case 32 - Ascent from 45° E longitude; ANT, GST, and HAW tracking; a priori
knowledge assumed (same as for case 29); execution errors same as
for case 26; Filter-1.

Case 33 - Ascent from 45° W longitude; ANT, GST, and HAW tracking; no
a priori knowledge assumed; execution errors same as for case 17;
Filter-3, three-way doppler biases are solved for.

Case 34 - Ascent from 45° W longitude; CNB, CRO, and GUA tracking; no
a priori knowledge assumed; execution errors same as for case 17;
Filter-3.

Case 35 - Ascent from 45° W longitude; ANT, GST, and HAW tracking; no
a priori knowledge assumed; execution errors same as for case 17;
Filter-2.

Case 36 - Ascent from 45° W longitude; CNB, CRO, and GUA tracking; no
a priori knowledge assumed; execution errors same as for case 17;
Filter-2.
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8.0 TRANSEARTH PHASE

8.1 INTRODUCTION

The transearth phase of the Apollo lunar missions is defined as beginning
at the end of the injection burn and ending at the reentry into the earth's atmos-
phere. During this phase the MSFN (Manned Spaceflight Network) will be the
prime source of navigation data. The purpose of the study presented in this chap-
ter is to evaluate the capability of determining the transearth orbit by using data
from the MSFN.

Several operational modes (e.g., single and multiple station tracking) have
been simulated in this study and some conclusions concerning the operational use
of the MSFN have been reached.

The study was conducted with certain assumptions concerning the accuracy
of the MSFN and with a linear error analysis program (Reference 1) based on a
weighted least squares filtering technique. This error analysis program was used
to evaluate the capability of determining an orbit with data of the assumed charac-
teristics and with a filter which ignored the assumed biases. Further discussion
of the assumed data characteristics is contained in the paragraph below. It should
be noted that the Apollo real time orbit determination program will account for
some bias effects by adjusting the measurement data weighting scheme or by
solving for the known biases explicity or, most probably, by using some combina-
tion of these two techniques. Consequently, the results reported below are con-
sidered to be conservative and are subject to change as further studies are
conducted.

8.2 ASSUMPTIONS

The assumptions on which this study was based are consistent with Ref-
erence 2. For convenience, however, the uncertainties in station locations,
gravitational constants of the earth and moon, and the noise and biases of the
MSFN data are shown on each graph as they are applicable. Other assumptions
which should be noted are:
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(1) Injection will occur from an 80 +£ 5 nm. lunar parking orbit and on

the back side of the moon. Figure 1 is an illustration of a transearth trajectory
showing the planned maneuvers.

(2) The vehicle is occulted by the moon for the first 20 minutes after
injection, and each midcourse correction burn causes the loss of 5 minutes of
tracking data.

8.3 RESULTS

To facilitate the studying and reporting of the MSFN performance, the
transearth phase has been divided into five legs with the exception of leg 2; these
legs begin and end with one of the planned maneuvers (e.g., injection and mid-
course corrections). Leg 2 ends at entry into ESOI (earth's sphere of influence)
which is an artificial break established for the purpose of analysis and should
logically be considered a part of leg 3.

The legs of the transearth phase are defined as follows:

Leg 1 - From end of injection burn to initiation of first midcourse
correction.

Leg 2 - From end of first midcourse correction to entry into ESOL.

Leg 3 - From entry into ESOI to initiation of second midcourse
correction.

Leg 4 - From end of second midcourse correction to initiation of third
midcourse correction.

Leg 5 - From end of third midcourse correction to reentry (400,000 feet
altitude).

Each of these legs is nominally associated with a time from injection as
shown by the upper scale of the schematic below. The lower scale of this sche-
matic defines the time scale which is used in preparing the graphs of the results
of this study.
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INJECTION  ENTRY INTO ESOI REENTRY
0 | 20 40 60 | 80 hr
l 1 l i
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LEG 1
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| | i J
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The uncertainties that are depicted in the graphs are computed at various
times in the legs and an explanation of the annotation of these computations is
given below.

t=0 This statement on a graph indicates that the uncertainties are of
the orbit parameters at the beginning of the leg.

t + 30 min. This statement indicates that the uncertainties are of the orbit
parameters at 30 minutes after the time against which they are
plotted. This illustrates the accuracy with which an update of the
onboard system can be made after a period of tracking, data proc-
essing, etc.

Reentry This statement indicates that the uncertainties are computed at
the nominal time of reentering the earth's atmosphere.

In all of the above cases the uncertainties are plotted on the same time scale as
the station coverage periods and, thus, one can determine how the MSFN naviga~
tion capability varies with tracking time and tracking coverage.

8.3.1 Leg1l ~ Navigational Accuracies at Injection

The results of the analysis for this leg illustrate the MSFN performance
in the determination of position and velocity at transearth injection and the effects
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of the uncertainties in predicting the vehicle's position and velocity 30 minutes
in advance of MSFN tracking.

Five cases (operational modes) were simulated in the analysis for this
leg and are as follows: ‘

Case 1: Range, range rate, and angular measurements are used and
a priori knowledge is assumed.

Case 2: The same as case 1 without a priori knowledge.

Case 3: The same as case 2 except that angle measurements are taken
for only the first 15 minutes.

Case 4: Madrid and Ascension tracking simultaneously with angle meas-
urements from Madrid for the first 15 minutes and no a priori knowledge assumed.

Case 5: Same as case 4 with Texas added.

The uncertainties in position and velocity are referenced to t = 0 (Figures
8.2a and 8.2b) and propagated to t + 30 minutes (Figures 8.2c and 8.2d).
8.3.2 Leg 2 - Navigational Accuracies for Entry into the ESOI

The results of the analysis illustrate the uncertainties in position and
velocity at t + 30 min. (Figures 8.3a and 8.3b).

Two cases were simulated for the analysis for this leg and are as follows:

Case 1: Three stations tracking simultaneously and a priori knowledge
is assumed.

Case 2: The same as case 1 without a priori knowledge.

8.3.3 Leg 3 - Navigational Accuracies at the Second Midcourse Correction

The results of the analysis illustrate the uncertainties in position and
velocity at t + 30 min. (Figures 8.4a and 8.4b).



Two cases were simulated:

Case 1: Goldstone, Canberra, and Madrid alternately tracking in the 2-way
doppler mode and no a priori knowledge is assumed.

Case 2: Same as case 1 with a priori knowledge assumed.

8.3.4 Leg 4 - Navigational Accuracies for the Third Midcourse Correction

The results of the analysis show the uncertainties in the spacecraft's position,
velocity, and geocentric radius at t + 30 min. (Figures 8.5a through 8.5¢).

Two cases were simulated:
Case 1: Three stations tracking simultaneously and a priori knowledge is
assumed. Because of its long viewing period, the USBS at Guam was used in the

two-way doppler mode.

Case 2: Same as case 1 with no a priori knowledge assumed.

8.3.5 Leg 5 - Navigational Accuracies at Reentry

The results of the analysis illustrate the uncertainties in position, velocity,
geocentric radius, and ground speed at reentry. (Figures 8.6a through 8.6d). It
should be noted that, although the trajectory assumed for this analysis can be
viewed from ground located stations up to five minutes before reentry, it is en~
tirely possible for reentry to occur such that the vehicle cannot be viewed from
the ground for the last 30 minutes or more before reentry.

Two cases were simulated:
Case 1: Madrid tracks the vehicle for the first 17 minutes and Guam
tracks the vehicle up to five minutes before reentry. No a priori knowledge of

the vehicle's position and velocity is assumed.

Case 2: Same as case 1 with a priori knowledge assumed.
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8.4 DISCUSSION OF RESULTS

The results, presented below, represent how well the MSFN can do for a
likely station and data utilization plan and suggest means for improving this util-
ization plan. Where improvement in navigational accuracy seems desirable,
there are many avenues open which were not explored such as:

(1) Utilization of onboard data

(2) A more rigorous use of a priori knowledge

(3) Solving for the three-way doppler biéses

(4) Utilization of more multiple station tracking data

(5) Alternating assignments more frequently between the stations using
two-way doppler.

8.4.1 Legil

The reason the one station solution with a priori knowledge information
is so accurate is that the a priori knowledge accounts only for injection errors
and not for the uncertainties prior to the injection burn. The case was run for
the purpose of determining the value of a priori knowledge for the one station
tracking situation. Leg 1 also demonstrates that with the filter used the process~
ing of angles, after fifteen minutes, is a detriment rather than an aid.

8.4.2 leg?2

The last 11 hours in the lunar sphere of influence are interesting in that
they exhibit the possible fluctuations in solution accuracy due to station geometry.
ANT, HAW, and GST offered a good geometrical view of the vehicle. The switch
from ANT to CNB at 8 hr. and 30 min. resulted in an increase in position uncer-
tainty because the vehicle was effectively in the same plane as CNB, GST, and
HAW. (Figure 8.3a).

A corresponding change in the slope of the velocity uncertainty curves
can be seen in Figure 8.3b. These figures also show that the difference between
the assumed and no a priori knowledge has little effect after about two hours of
tracking.
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8.4.3 Leg3

This leg was separated from leg 2 for computational reasons only. In
the long span of time |available, the effect of a priori knowledge decreases. Be-
cause of the excessive amount of data available, the three station solution pro-
cedure was dropped in favor of sequential one station solutions. A more rapid
reduction of uncertainty could be effected by use of simultaneous tracking or more
rapid switching between stations. For results see Figures 8.4a and 8.4b.

8.4.4 Leg4

During this ten hour span, the three station solution procedure was re-
sumed. A comparison of the uncertainties in position and radius (Figures 8.5a
and 8.5c¢) show that the major uncertainty is in the orientation of the radius vector.

8.4.5 Legh

There is little choice in selection of stations during this leg. For the
analysis all available data was used. Even without a priori information the un-
certainties in position, velocity, radius, and speed at reentry are less than 0.54
nm. (1 km), 7 ft/s (2 m/s), 0.3 nm (0.5 km) and 2 ft/s (0.5 m/s), respectively.
This accuracy was achieved by 40 minutes of tracking in the last hour, and
little improvement was achieved during the last twenty minutes. However,
continuous coverage for the first 40 minutes may not always be available for all
incoming trajectories. This, and its effect, must be investigated.

8.5 SUMMARY

By the time of the first, second and third midcourse corrections and by
the time of reentry the ground will know the position and velocity uncertainties
to:



By time of first
midcourse correction

By time of second
midcourse correction

By time of third
midcourse correction

By time of reentry

Position
Uncertainty

49 nm
(90 km)

11 nm
(20 km)

22 nm
(40 km)

0.8 nm
(1.5 km)

(Out-of plane
position com-~
ponent
uncertainty)

47.5 nm
(88 km)

7.3 nm
(13.5 km)

21 nm
(39 km)

0.75 nm
(1.4 km)

Velocity
Uncertainty

39 ft/s
(12 m/s)

0.82 ft/s
(0.25 m/s)

7 ft/s
(2 m/s)

10 ft/s
(3 m/s)

For the midcourse corrections the answers are referenced to the time of the
maneuver and tracking was terminated 30 minutes prior to each maneuver to
allow time for the ground to compute and execute an update and time for the ve-
hicle to align for the maneuver.

8.6 CONC LUSIONS

The results that are presented in this study represent how well the MSFN

can do for a likely station and data utilization plan and suggest means for im-

proving this utilization plan.

The results for leg 1 (Figures 8.2a and 8.2b) indicate that three stations,
tracking in the 3-way doppler mode, are no better than two in determining the
orbit subsequent to injection and prior to the first midcourse correction. This
leads to the conclusion that the biases on the data (being ignored by the ODP)
are cancelling the usefulness of the data from the third radar. Therefore, the
following table is presented to show that when the biases are accounted for, in

the ODP, three stations are much better than two, as expected.
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Orbit Determination Program

Time

After . . Solves for all Biases Listed on
injec— Ignores biases (Figure ‘8.2a) Figure 8.2a

tion

(hr:min) MAD, ASC MAD, ASC, TEX MAD, ASC MAD, ASC, TEX
30, (nm) 30, (nm) 30 (nm) 30 (nm)

00:35 15.1 40.4 14.1 104

2:35 14.0 14.6 5.3 2.6

A priori information is not a critical factor in determining the orbit when
several hours of tracking is available (based upon the results for legs 2 through
5).

The uncertainties in position and velocity for the first midcourse correc-
tion are 54 nm (100 km) and 39 ft/s (11.5 m/s), assuming no a priori knowledge.

The uncertainties in position and velocity for the second midcourse cor-
rection are 11 nm (20 km) and 0.9 ft/s (0.3 m/s).

The uncertainties in position, velocity, and radius for the third midcourse

correction are 23 nm (43 km), 6 ft/s (1.8 m/s), and 1.2 nm (2.2 km), respectively.

Based upon the first 40 minutes of tracking, the uncertainties in position,
velocity, radius, and ground speed at reentry are 0.8 nm (1.5 km), 10 ft/s (3.1
m/s), 0.25 nm (0.46 km), and 2 ft/s (0.6 m/s), respectively.

8.7 APPENDIX A - COORDINATE SYSTEMS
8.7.1 Coordinate System for Station Location
The coordinate system is earth centered with the x-axis passing through

the prime meridian, the z-axis in the direction of the earth's angular momentum
vector and the y-axis such as to form a right-hand orthogonal system.
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8.7.2 Vehicular Coordinate System

The coordinate system is an inertial earth or moon centered (depending upon
the reference body) coordinate system with-the x-axis pointing toward the vehicle,
at time t = 0, the z-axis in the direction of the orbital angular momentum vector
and the y-axis such as to form a right-hand orthogonal system.
8.8 APPENDIX B - TRAJECTORIES

8.8.1 Trajectory A

This trajectory is a conic section generated from the following initial
conditions.

Moon Referenced

AT Radius Inclination to Subvehicle Point
TIME (nm) Moon's Equator Latitude Longitude
0 1022.973 175.95° 1.44°S 149.48°W

Velocity (ft/s)

Tangential Radial
8008.566 202.4777

The vehicle is ascending in its lunar orbit.

Moon with Respect to Earth

E-M Dis ténce (nm) Inclination of Moon's Sublunar Point
Orbit to Earth's Equator att=0
207577.08 28.67° 10°N, 15°W

The moon is ascending in its orbit.
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8.8.2 Trajectory B

This trajectory is a conic section generated from the following initial

conditions
Earth Referenced
AT Radius Inclination to Subvehicle Point
TIME (nm) Earth's Equator Latitude Longitude
0 178,762.8906 37.92° 25.781°N 123.4°
Velocity (ft/s)
Tangential Radial
703.01224 -1897.105752

And the vehicle is ascending in its orbit.

8.9 APPENDIX C - COMPONENTS OF ASSUMED A PRIORI KNOWLEDGE

Position (nm )

Velocity (ft/s)

[ gy o o oy g
0.06 0.09 0.42 2.21 .95 1.48
Leg 2
1.62 1.62 4.32 6.56 6.56 16.40
Leg 3

.59 8.35 41.94 0.39 1.44 6.89
Leg 4
2.16 2.70 4,32 3.28 3.28 16.40
Leg 5
14.04 14.04 8.64 6.56 6.56 13.12
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8.10 APPENDIX D - CHECK OUT PROCEDURES

The error analysis program that was used to obtain the results presented
in this chapter has been thoroughly checked out during the past two years.

In addition, results from the program have been compared to orbital
accuracies based on real time data (Ranger and Gemini) for earth orbits and
were found to compare favorably therewith., The same assumptions were made
for this study as were made in the comparison and, therefore, the results as

presented are considered to be conservative estimates of the capability of the
MSFN.

8.11 REFERENCES

1. "Description of Orbit Error Analysis Program,' Volumes 1 and 2, Bissett-
Berman Corporation, Santa Monica, Calif., July and August, 1965.

2. MSC-GSFC, ANWG Report No. 65-AN-1.0, ''Apollo Missions and Navigation
Systems Characteristics,'" February 5, 1965,
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BURNOUT PERILUNE

INITIATION OF BURN \

CSM PARKING ORBIT
1ST MIDCOURSE CORRECTION

CHANGE COORDINATE SYSTEM
FROM MOON CENTER TO EARTH CENTER

2ND MIDCOURSE CORRECTION

3RD MIDCOURSE
CORRECTION

REENTRY
» EARTH ATMOSPHERE

400,000 FEET

Figure 8.1-Geometry for earth transfer orbit
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9.0 REENTRY PHASE
9.1 INTRODUCTION

The purpose of this chapter is to discuss the navigational problems en-
countered during the earth reentry phase of an Apollo lunar mission. The navi-
gational accuracies at the point of atmospheric reentry that are required to
complete a safe single pass reentry are defined by a reentry corridor. It will
be the function of the midcourse navigation and guidance system to steer to a
point in this corridor that will ensure a safe reentry. Safe reentry will be defined
to mean a reentry within a corridor that prevents undershoot and its accompanying
excess aerodyhamic loads or overshoot and an uncontrolled exit back into space.

Throughout the reentry phase, the onboard inertial navigation system will
be the primary method of navigation. In addition, operational requirements on the
lunar mission specify that the Command Module be tracked by radar during a
skip-out portion of the reentry trajectory (Reference 1). However, the tracking
system to be used has not been specified at this time; therefore, no tracking
errors are presented for this phase. Emphasis will be placed on the capabilities
of the onboard inertial system and the Manned Space Flight Network will be
discussed in future revisions to this document. The problems associated with
positioning the ship and tracking during reentry are discussed from the point
of view of the Command Module range capabilities and communications ''blackout"’
during reentry.

9.2 ASSUMPTIONS AND PROCEDURES
9.2.1 Definition of Reentry Phase

The aerodynamic portion of the phase is assumed to begin when the Command
Module reaches an altitude of 400,000 feet (122 km). This phase is assumed to
terminate at an altitude of 24,000 feet (15 km). The reentry trajectory that the
Command Module will follow is a function of the steering commands that are
generated by the onboard guidance system which in turn are a function of the
onboard navigational measurements combined with the targeting data in the
Apollo Guidance Computer.



9.2.2 Reentry Corridor

The reentry corridor is defined by the conditions at the beginning of the
earth's atmosphere (assumed 400,000 feet altitude) that will allow a safe reentry
of the Command Module. It is the function of the midcourse guidance system
to steer to a point within the reentry corridor such that the estimates of the
position and velocity combined with the uncertainties in these quantities are still -
within the corridor.

The concept of the reentry corridor was discussed by Chapman (Reference
2) and is presented pictorially by Figure 9.1. The numerical values that define
the corridor for the Apollo Command Module are presented in Figures 9.3a to
9.3h. The technique that was used to compute the reentry corridor is described
in Reference 3 which was the source of the information presented here.

The reentry corridor is formed by overshoot and undershoot boundaries,
as the lower and upper limits, respectively. The overshoot boundary as used in
this report is formed by the reentry conditions (inertial velocity and flight path
angle) that will enable the spacecraft to be captured by the earth's gravitational
field and atmosphere on the first attempt. Both positive and negative lift over-
shoot boundaries are shown on the figures. The use of negative lift has the
effect of increasing the corridor width to allow for more flexibility at the reentry
interface. The conditions on both of these overshoot boundaries result in
equilibrium glide conditions when the flight path angle passes through zero.
Equilibrium glide is defined to be the condition when the time rate of change of
flight path angle equals zero (¥ = 0). Thus, with an equilibrium condition at
the point when the flight path angle equals zero, it is possible to prevent the
altitude from increasing and thus an uncontrolled skip out.

The negative lift overshoot boundary is defined by a lift vector down attitude
from reentry to the point when the flight path angle equals zero. The positive
lift overshoot boundary is based on a lift vector up orientation from the reentry
interface until zero flight path angle, but with lift vector instantaneously re-
oriented to 15 degrees from the lift vector down attitude at zero flight path angle.
This approximate lift vector down attitude is required to maintain an equilibrium
glide condition. The 15 degree orientation from the lift vector down position
is to compensate for the finite time required to roll from the 1lift vector up
(positive lift) to the lift vector down attitude (negative lift).

The undershoot boundary is defined as the reentry conditions that will not
exceed a specified "g" limit between the reentry interface and the point that the
flight path angle equals zero.

9-2



To account for atmospheric density deviations from the 1962 U, S. Standard
Atmosphere, the effect of density deviation was evaluated using the change of
-density defined in Reference 7. This density deviation is also presented in
Figure 9.2 of this report. The effect of a negative deviation of the atmosphere
on the overshoot boundaries is fo reduce the width of the corridor. For the
undershoot boundaries, however, the corridor is reduced by either a positive or
negative density deviation depending on the reentry velocity.

The reentry corridors are shown in Figures 9.3a through 9.3d, in terms
of reentry inertial flight path angle for lift-to-drag ratios (L. /D) of 0.2, 0.3, 0.34,
and 0.4, respectively. An alternate means of describing the reentry corridors
is vacuum perigee altitude. The corridors are presented in Figures 9.3e to 9.3h
for the same values of lift-to-drag ratio.

9.2.3 Unusual Problems During Reentry

There are two unique problem areas in the acquisition and tracking of the
Command Module from the ground during the reentry phase.

1. The Command Module will have the capability to move in a lateral
direction as well as down range.

2. There will be communications bladkout during a significant portion of
the flight.

The lateral capability of the Command Module is desirable from a guidance
point of view but adds to the difficulty of placing a tracking ship along the flight
path. The lateral capabilities of the Command Module for lift-to-drag ratios
of 0.3 to 0.4 as a function of range are presented in Figures 9.4a to 9.4g. These
results also show the predicted communications blackout boundaries that can be
expected during the flight. It should be noted that the problem of predicting the
onset and termination of communications blackout has not been completely resolved
at present (Reference 4); therefore, these curves should be used with caution.
Furthermore, the lateral capabilities of the Command Module are based on current
estimates of the spacecraft aerodynamic characteristics which are also subject
to revision. However, these curves may be used for present planning purposes
and will be updated as more current information becomes available. Lift-to~drag
ratios of 0.3 and 0.4 were chosen because they bound the nominal ratio of 0.34.

There is a requirement for the Command Module to be tracked during a
skip-out phase of the reentry trajectory. However, the equipment to be used by
the tracking ship during reentry has not been specified at the present time.
Consequently, the discussion of the tracking ship will be deferred until future
revisions of this document.
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9.2.4 Capabilities of the Onboard Inertial Navigation System

Throughout the reentry phase the primary means of navigation will be -
the self-contained, onboard inertial navigation system. It is the purpose of this
section to discuss the errors in indicated position at the termination of the re-
entry trajectory. In order to prevent the necessity of a classified appendix to-
this volume, the results of the inertial guidance system error analysis will not
be presented here. The reader is referred to Reference 6 for the absolute values
of the system performance. Position errors have been computed separately for
each hardware error source and are tabulated in Reference 6 for reentry tra-
jectories of 1500 and 5000 nautical mile total range. A discussion of the results
will be presented here, however.

Assumptions and Method of Analysis

_The following assumptions are pertinent to the analysis and interpretation
of data contained in Reference 6.

1. The position and velocity uncertainties due to the various Inertial
Measurement Unit error terms are predicted uncertainties. No
steering errors were assumed. The uncertainties in position were
computed separately for each sensor error term using an array of
error equations and the input position and acceleration profile from
the trajectory data. These equations take into account the effect of the
position error on the gravity vector computation.

2. The Inertial Measurement Unit was aligned prior to reentry.

3. The data in the error tables (Reference 6) are given relative to local
vertical axis (altitude, track, range) at an altitude of 50,000 feet.

4. An "open loop" method of analysis was used to propagate inertial system
errors to termination of a reentry trajectory. "Open loop" in this case
means that the errors in position and velocity were not propagated
through the guidance equations which would cause erroneous steering
commands. Reference 5 gives a description of the type of analysis
used. A comparison of this technique with a complete flight simulation
"computer program indicated a difference of about 20 percent, item for
item, and about 10 percent for the total root-sum-square.

The onboard inertial navigation system consists of the following
components.
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1. Inertial Measurement Unit
2. Display and Control Unit

3. Digital Guidance Computer

The navigational uncertainties due to hardware errors in the Inertial Measure-
ment Unit will be discussed in this chapter.

The following local coordinate system is defined for the termination of

the reentry trajectory and is applicable to the following discussion of the onboard
system.

Y (ALTITUDE)
X (RANGE)

7 (TRACK)

The X-axis is in the local horizontal along the velocity vector, Y is the local
vertical (up) and Z completes the right-hand triad.

The accuracy of the onboard inertial system is a function of the components
in the system. The component error sources considered in the analysis are
accelerometer errors and gyro errors and are tabulated below.

Accelerometers

1. Bias

2. Scale Factor

3. Non-Orthogonality
4

. Acceleration Squared Sensitive Indication
Gyros

1. Null Bias Drift
2. Acceleration Sensitive Drift

3. Acceleration Squared Sensitive Drift
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The following generalized error models were used for the study:
1. Accelerometer Error Model
AA; =B+ (SF)A; + (GSEN)A} + (NO)A;
where
A, = Sensed acceleration along accelerometer input axis
A; = Sensed acceleration along 7% axis normal to A
B = Accelerometer bias error
SF = Accelerometer scale factor error
GSEN = Accelerometer sensitivity to input acceleration squared
NO = Accelerometer input axis misalignments
2. Gyro Drift Model
¢ = BIAS + (ADIA)A, + AD |, .. A?
where

BIAS = Null bias drift

ADIA = Acceleration sensitive drift

AD(I Ay (1~ Acceleration squared sensitive drift

3. Initial Platform Misalignment

9.3 RESULTS AND CONCLUSIONS

It was found that the errors in the components of the inertial system them-
selves contribute little to the final position errors as compared with the initial
condition errors or the initial platform misalignment error. The misalignment
about the vertical propagates primarily into track errors; the misalignment about
the downrange axis propagates into track errors; and the misalingment about the
track axis propagates into altitude and range errors.

9-6



The seven inertial component error sources that were considered (see
page 9-6) were assumed to be uncorrelated. The accelerometer with the input axis
along the vertical does not propagate any of the accelerometer error sources
into a track error, whereas the accelerometer with the input axis normal to the
trajectory plane does not propagate any of the accelerometer error sources into
altitude or range errors at touchdown. The accelerometer with its input axis
along the range axis does not propagate any of its error sources into track errors
at final touchdown. The gyro with its input axis normal to the trajectory plane
does not propagate any of its error sources into track errors at final touchdown.

The accelerometer bias errors cause the largest final position errors of
the inertial components with the null bias drift and the gyro acceleration sensitive
drift the next largest error sources, respectively.

9.4 LEVEL OF CONFIDENCE

The error analysis technique that was described is termed an "open-loop"
error analysis. The errors are integrated based on a pre-stored guided reentry
trajectory that is generated with a perfect stable platform and initial conditions.
This technique had been compared with what is termed a "closed loop'" error
analysis. The "closed loop" error analysis uses a guided reentry with an imperfect
stable platform and initial conditions to generate steering commands. Hence,
the steering commands are based on indicated position and velocity. The dif-
ference between the two analyses is about 20 percent, item for item, and better
than 10 percent for the total root-sum-square.

9.5 ACKNOWLEDGMENT

The editor wishes to acknowledge the contributions to this chapter by
Messrs. James Adams and Aaron Cohen of the Manned Spacecraft Center, Houston,

Texas. They contributed the data on the reentry corridors and Inertial Guidance
System error analysis, respectively.



9.6

1.

REFERENCES

Program Support Requirements — Apollo/Saturn V, Vol. 1, General Informa-
tion (p. 1410.01), April, 1965,

Chapman, D.R., '""An Analysis of the Corridor and Guidance Requirements
for Supercircular Entry into Planetary Atmospheres,'' NASA Technical
Report R-55, 1960.

Adams, J.H., ""Apollo Rentry Corridors,'' Manned Spacecraft Center
Memorandum 65- FMb5-32, June 29, 1965.

Lehnert, R. and Rosenbaum, B., '"Plasma Effects on Apollo Reentry Com-
munication,'' NASA Technical Note D-2732, March, 1965.

Harter, G.A., ''Inertial Guidance,'' (Chapter 12) edited by G. R. Pitman, Jr.,
J. Wiley and Sons, Inc., 1962.

Cohen, A., ""Apollo Reentry Guidance Requirements,'' Manned Spacecraft
Center, Apollo Spacecraft Program Office, 1965,

Smith, O. E. and Chenoweth, H. B., ''Range of Density Variation from Surface
to 120 km Altitude,'' NASA Technical Note D-162, July, 1961.

9-8



SKIP - OUT CANNOT
BE PREVENTED

OVERSHOOT BOUNDARY oO%

UNDERSHOOT BOUNDARY

EXCESSIVE
~ G - LOADS

REENTRY AN
POINTS

\ ATMOSPHERE
\ LIMIT

PERIGEE OF OVERSHOOT
BOUNDARY TRAJECTORY

PERIGEE OF UNDERSHOOT
BOUNDARY TRAJECTORY
'

AN \\ /
N \\ ~ P
cogg]_ok? e “‘\\ > VACUUM TRAJECTORIES
\\ ~- -
~N ~
~
\\\
\\\
\\\\

Figure 9.1-Reentry corridor.
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